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CHAPTER 1

INTRODUCTION

The volume of routinely collected data, like those in observational databases such
as electronic health records (EHR), is steadily climbing, increasing the accessibility
to clinically meaningful variables. Perhaps it is to be expected, then, that the uptake
of repurposing observational data, e.g., for analysis, research, or to inform policy,
has grown accordingly (Safran et al., 2007; Kim et al., 2019). Of particular appeal to
biomedical researchers is the ability to analyze data that come at little to no additional
cost for collection. Thus, we have seen the utilization of EHR data surge in many
clinical domains, including HIV and AIDS (Zaniewski et al., 2018), genetics (Wei
and Denny, 2015), emergency medicine (Green, 2013), and therapeutic effectiveness
(Tannen et al., 2009) to name a few. While the benefits might be clear, there are a
number of obstacles to responsibly analyzing EHR data that need to be addressed,
chief among them the error-prone nature of routinely collected data (Safran et al.,
2007).

So-called “secondary use” data like those extracted from the EHR or other ob-
servational databases are expected to be error-prone since their primary purpose was
in direct support of patient care, rather than analysis (Nordo et al., 2019). Many
papers have noted quality concerns with observational data, particularly in the EHR,
as a major hurdle to large-scale adoption in healthcare research (Hersh et al., 2013;
Kim et al., 2019). Others have described the impacts of error-prone data on clini-
cal analyses (Green, 2013; Chen et al., 2019; Giganti et al., 2019). In the statistics
literature, errors in variables are described as either measurement error or misclassifi-
cation, with the former applying to continuous variables and the latter to categorical
ones. Common sources of continuous measurement error include instrument error or
errors due to self-report; examples of these errors include mismeasured lab values and
dietary intake, respectively (Keogh et al., 2020). Misclassification can be the result
of imperfect diagnostic testing, i.e., due to low sensitivity or specificity, but in sec-
ondary use data, like EHR, there is particular concern of misclassification in derived
outcomes such as disease status or phenotype (e.g., Sinnott et al. (2014); Beesley
and Mukherjee (2020)). Errors in observational data can also be quite complicated.
They can be the result of complex relationships between error-prone and error-free
variables which can be difficult to identify in practice.

To ensure the integrity of observational data, complete data validation would be
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ideal. However, this is an expensive undertaking that is often unattainable in practice,
particularly for large databases like EHR. For example, the Vanderbilt Comprehensive
Care Clinic (VCCC) in Nashville, Tennessee spends >$60,000 US annually to sustain
full-data validation, i.e., ongoing review of all patients and variables, in their EHR.
A cost-effective alternative to complete data validation is a two-phase design (White,
1982) or validation study. Phase I consists of the error-prone variables which are
available or inexpensive to obtain for all subjects, e.g., from the EHR; this information
can be used to select the Phase II subsample. Then, Phase II involves reviewing the
records for a subset of people, e.g., through chart review, to collect the validated
outcome and predictor(s). Many statistical methods have been proposed which use
all data from both Phases I and II, thus attaining high-powered inference based on
an audited subset (e.g., Tang et al. (2015) and Tao et al. (2021)).

While two-phase designs are promising alternatives to full-data validation, they
remain resource-intensive undertakings. Even auditing subsets of patients or variables
can be costly and time-consuming. For instance, a survey of the Swedish Association
of the Pharmaceutical Industry found that data auditing consumed 25% of study
budgets, on average (Funning et al., 2009). We have identified key opportunities to
maximize the research return on two-phase designs along what we call the audit-to-
analysis pipeline: (i) design of Phase II, (ii) audit protocol to collect data in Phase II,
and (iii) analysis of Phases I and II. In this dissertation, we propose novel methods to
promote the statistical and practical efficiency of two-phase designs for data quality
at each of these stages.

In practice, the size of a data audit is often resource-constrained, which can limit
the numbers of patient records and variables that can be reviewed. Thus, selecting
the most informative patients for validation is paramount. In Chapter 2, we use
the asymptotic properties of the maximum likelihood estimator (MLE) to derive the
optimal validation study design to obtain the most efficient log odds ratios under
binary outcome and exposure misclassification. Since the optimal design is a function
of unknown parameters, and thus not implementable in practice, we propose a multi-
wave approximation to it, as well. The multi-wave optimal design breaks the audit
into two “waves”: the first wave can be used to estimate the necessary parameters to
decide optimal allocation of subjects in the second wave. Since the variance of the
MLE cannot be minimized directly (i.e., there is no closed-form solution), we propose
a novel adaptive grid search routine to solve for the optimal design.

Source document verification (SDV), or data auditing, is a common method to
assess data quality. SDV involves comparing data from the research database to
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clinical source documents, e.g., patient charts, to identify and correct any discrepan-
cies. These methods have long been standard in clinical trials (Weiss, 1998) and are
catching on in observational research, as well (Chaulagai et al., 2005; Kimaro and
Twaakyondo, 2005; Kiragga et al., 2011; Duda et al., 2012; Mphatswe et al., 2012;
Giganti et al., 2019; Lotspeich et al., 2020). The most objective auditors might be
external investigators, e.g., from the data coordinating center, but sending auditors
to remote locations has its drawbacks, particularly in a multi-national cohort like the
Caribbean, Central and South America Network for HIV epidemiology (CCASAnet).
In Chapter 3, we propose a creative new protocol where site-level investigators in
CCASAnet were trained to audit their own data. Eight clinical sites participated
in these “self-audits,” and three of them were additionally visited by external audi-
tors for conventional “travel-audits.” Using data from the doubly-audited sites (i.e.,
those who were both self- and travel-audited), we compare audit findings between the
protocols, discuss lessons learned, and make recommendations about implementing
self-audits in the future.

As biomedical research increasingly turns to secondary data sources like EHR,
statistical methods are needed to obtain valid inference from error-prone data, ide-
ally without sacrificing the high power of large datasets. In addition, relationships
between error-prone and error-free variables add complexity to how we correct for
them, especially when modeling the errors directly. Full-likelihood approaches have
been proposed for logistic regression in two-phase studies (Tang et al., 2015), but
they make many parametric assumptions and are limited to binary misclassified co-
variates. In Chapter 4, we propose a semiparametric likelihood approach to estimate
odds ratios that uses all information from a two-phase study and accommodates a
number of error mechanisms. Our approach handles error-prone covariates that can
be categorical or continuous and leaves their distributions completely unspecified. In
addition, the selection of the Phase II sample can depend on Phase I data in an
arbitrary manner.
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CHAPTER 2

OPTIMAL MULTI-WAVE VALIDATION FOR SECONDARY USE DATA WITH
OUTCOME AND EXPOSURE MISCLASSIFICATION

2.1 Introduction
The ever-growing trove of patient information in observational databases, like

electronic health records (EHR), provides unprecedented opportunities for biomedical
researchers to investigate associations of scientific and clinical interest. However, these
data are usually large and error-prone since they are “secondary use data,” i.e., they
were not primarily created for research purposes (Safran et al., 2007; Hersh et al.,
2013; Kim et al., 2019). Ignoring the errors can yield biased results (Green, 2013;
Chen et al., 2019; Giganti et al., 2019), and the interpretation, dissemination, or
implementation of such results can be detrimental to the very patients whom the
analysis sought to help.

To assess the quality of secondary use data, validation studies have been carried
out wherein trained auditors compare clinical source documents (e.g., paper medical
records) to database values and note any discrepancies between them (Duda et al.,
2012). The Vanderbilt Comprehensive Care Clinic (VCCC) is an outpatient facility
in Nashville, Tennessee that provides care for people living with HIV/AIDS (PLWH).
Since investigators at the VCCC extract EHR data for research purposes, the VCCC
validates all key study variables for all patients in the EHR. The VCCC data have
demonstrated the importance of data validation, as estimates using the fully-validated
data often differ substantially from those using the original unvalidated data extracted
from the EHR (Oh et al., 2018; Giganti et al., 2020).

However, validating entire databases can be cost-prohibitive and often unattain-
able: in the VCCC, full-database validation of approximately 4000 patients costs over
US$60,000 annually. A cost-effective alternative is to implement a two-phase design
(White, 1982), or partial data audit, under which one collects the original error-prone
data in Phase I and then uses this Phase I information to select a subset of records for
validation/auditing in Phase II. This type of design greatly reduces the cost associated
with data validation and has been implemented in cohorts using routinely collected
data, like the Caribbean, Central, and South America network for HIV Epidemiology
(CCASAnet) (McGowan et al., 2007).

CCASAnet is a large (∼50,000 patients), multi-national HIV clinical research col-
laboration. Clinical sites in CCASAnet routinely collect important clinical variables,
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and these site-level data are subsequently compiled into a collaborative CCASAnet
database that is used for research. One interesting question for CCASAnet investiga-
tors is whether patients treated for tuberculosis (TB) are more likely to have better
treatment outcomes if their TB diagnosis was bacteriologically confirmed. TB is diffi-
cult to diagnose and treat among PLWH, and some studies suggest that those treated
for TB without a definitive diagnosis are more likely to subsequently die (Crabtree-
Ramirez et al., 2019). Key study variables are available in or can be derived from
the CCASAnet database, but both the outcome and exposure, successful treatment
completion and bacteriological confirmation, respectively, can be misclassified in the
database. For more than a decade, the CCASAnet Data Coordinating Center has
performed partial data audits to ensure the integrity of its database (Duda et al.,
2012; Giganti et al., 2019; Lotspeich et al., 2020), and plans are currently under-
way to validate these TB study variables on a subset of records in the near future.
Site-stratified random sampling has been the most common selection mechanism for
audits thus far, including a previous audit of the TB variables in 2009–2010. Now,
we are interested in developing optimal designs that select subjects who are most
informative about the association between bacteriologic confirmation and treatment
completion.

Statistical methods have been proposed to combine Phase I and Phase II data
from two-phase studies with binary outcome misclassification and covariate error.
These methods can largely be grouped into likelihood- or design-based estimators.
The former include the maximum likelihood estimator (MLE) (Tang et al., 2015)
and semiparametric maximum likelihood estimator (SMLE) (Lotspeich et al., 2021),
while the latter include the inverse probability weighted (IPW) estimator (Horvitz
and Thompson, 1952), generalized raking/augmented IPW estimator (Deville et al.,
1993; Robins et al., 1994; Lumley et al., 2011), and the mean score estimator (Reilly
and Pepe, 1995). Likelihood-based estimators tend to be more efficient, while design-
based estimators can be more robust.

Given the resource constraints imposed upon data audits, efficient designs that
target the most informative patients are in high demand. Optimal designs have been
derived for binary outcomes with error-prone covariates but not yet for binary out-
come misclassification in addition to covariate error. Thus far, closed-form solutions
exist for the optimal sampling proportions under covariate error for some design-based
approaches, including the IPW and mean score estimators (Reilly and Pepe, 1995;
McIsaac and Cook, 2014; Chen and Lumley, 2020). Optimal designs for likelihood-
based estimators have also been considered, although the variance of these estimators
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does not lend itself to a closed-form solution unless additional assumptions are made
(Breslow and Cain, 1988; Holcroft and Spiegelman, 1999; McIsaac and Cook, 2014;
Tao et al., 2020). While likelihood-based estimators can still gain efficiency under
design-based optimal designs (McIsaac and Cook, 2014; Amorim et al., 2021), they
will be most efficient under designs that are optimal for likelihood-based estimators.

Regardless of the estimator, optimal designs share common challenges; in particu-
lar, they require specification of unknown parameters. To overcome this, multi-wave
designs have been proposed that estimate the unknown parameters with an inter-
nal pilot study and then use this information to approximate the optimal designs
(McIsaac and Cook, 2015; Chen and Lumley, 2020; Han et al., 2020). Instead of
selecting one Phase II subsample, multi-wave designs allow iterative selection of two
or more waves of Phase II. This way, each wave gains insight from those that came
before it. So far, multi-wave designs have only been used to adapt optimal designs
for design-based estimators and under settings with covariate error alone. We fo-
cus on designing multi-wave validation studies to improve the statistical efficiency of
likelihood-based estimators under the unaddressed setting of outcome and exposure
misclassification.

Based on the asymptotic properties of the two-phase MLE for logistic regression,
we derive the optimal validation study design to minimize the variance of the log odds
ratio (OR) under differential outcome and exposure misclassification. In the absence
of a closed-form solution, we devise an adaptive grid search algorithm. Since it is
a function of unknown parameters, we introduce a two-wave approximation to the
optimal design that can be implemented in practice. Through extensive simulations,
the proposed optimal designs are compared to case-control or balanced case-control
sampling for a variety of error settings. Notable gains in efficiency can be seen not only
with the optimal design, but also with the two-wave approximation to it. Using the
VCCC data, we compare the various designs by examining the efficiency of validating
different subsets of the EHR data and comparing results from two-phase analyses to
those from the full-cohort analysis using fully-validated data. Finally, we implement
our approach to design the next round of CCASAnet audits.

2.2 Methods
2.2.1 Model and Data

Consider a binary outcome, Y , binary exposure, X, and covariates ZZZ which are
assumed to be related through the logistic regression model P (Y = 1|X,ZZZ) = [1 +
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exp{−(β0 + βX +ZZZβββz)}]−1. Instead of Y and X, error-prone measures denoted Y ∗

and X∗, respectively, are available, i.e., from an observational database; covariates ZZZ
are also available and error-free. Fortunately, n of the N subjects (n < N) will have
their data validated through auditing. The validation indicator Vi = 1 if subject i
(i = 1, . . . , N) is audited and Vi = 0 otherwise. The joint probability of a complete
observation is P (V, Y ∗, X∗,ZZZ, Y,X)

=P (V |Y ∗, X∗,ZZZ)P (Y ∗|X∗,ZZZ, Y,X)P (X∗|Y,X,ZZZ)P (Y |X,ZZZ)P (X|ZZZ)P (ZZZ), (2.1)

where P (V |Y ∗, X∗,ZZZ) is the validation sampling probability; P (Y |X,ZZZ) is the logistic
regression model of primary interest; P (Y ∗|X∗,ZZZ, Y,X) and P (X∗|ZZZ, Y,X) are the
outcome and exposure misclassification mechanisms, respectively; P (X|ZZZ) is the con-
ditional probability of X given ZZZ; and P (ZZZ) is the marginal density of ZZZ. Sampling
(i.e., V ) is assumed to depend only on Phase I variables (Y ∗, X∗, ZZZ), so (Y,X) are
missing at random (MAR) for unaudited subjects (Little and Rubin, 2002). Equation
(2.1) captures the most complex differential misclassification in both the outcome and
exposure, but addresses other common settings as special cases. For classical scenarios
of outcome or exposure misclassification alone, set X∗ = X or Y ∗ = Y , respectively.
Nondifferential misclassification can be assumed if P (Y ∗|X∗, Y,X,ZZZ) = P (Y ∗|Y,ZZZ)
or P (X∗|Y,X,ZZZ) = P (X∗|X,ZZZ) (Keogh et al., 2020).

All observations, (Vi, Y ∗i , X∗i ,ZZZi, Yi, Xi) (i = 1, . . . , N), are assumed to be i.i.d.
following equation (2.1). The necessary unknowns in equation (2.1) – specifically,
P (Y ∗i |X∗i , Yi, Xi,ZZZi), P (X∗i |Yi, Xi,ZZZi), and P (Xi|ZZZi) – are assumed to follow addi-
tional logistic regression models. All model parameters are denoted together by θθθ;
since we focus on estimating β, all other nuisance parameters are denoted by ηηη and
θθθ = (β,ηηηT )T . Given that (Yi, Xi) are incompletely observed, the observed-data log-
likelihood for θθθ is lN(θθθ) =

N∑
i=1

Vi log {P (Y ∗i |X∗i ,ZZZi, Yi, Xi)P (X∗i |ZZZi, Yi, Xi)P (Yi|Xi,ZZZi)P (Xi|ZZZi)}

+
N∑
i=1

(1− Vi) log


1∑
y=0

1∑
x=0

P (Y ∗i |X∗i ,ZZZi, y, x)P (X∗i |ZZZi, y, x)P (y|x,ZZZi)P (x|ZZZi)

 .
(2.2)

The distribution of V can be omitted because the Phase II variables are MAR. The
fully-parametric MLE (Tang et al., 2015) can be obtained by maximizing equation
(2.2). In deriving the optimal design, we wish to obtain the most efficient estimator
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of β, the conditional log OR for X on Y .

2.2.2 Optimal Design
Under standard MLE theory, we have

√
N(θ̂θθ − θθθ)  NNNd(000, I(θθθ)−1), where θ̂θθ =

(β̂, η̂ηηT )T are the MLE, θθθ denotes the true parameter values, represents convergence
in distribution, and NNNd(000, I(θθθ)−1) is a multivariate normal distribution centered at 000
with variance equal to the inverse of the Fisher information. The Fisher information
is defined as I(θθθ)

= E
{
Si(θθθ)Si(θθθ)T

}
=
 E {Si(β)2} E

{
Si(β)Si(ηηη)T

}
E {Si(β)Si(ηηη)} E

{
Si(ηηη)Si(ηηη)T

} =
I(β, β) I(β,ηηη)T

I(β,ηηη) I(η, ηη, ηη, η)

 ,
where Si(θθθ)T = (Si(β), Si(ηηη)T )T (i = 1, . . . , N) is the score vector for a single ob-
servation based on expression (2.2). We wish to minimize V ar(β̂) with the optimal
design, which can be expressed as

V ar(β̂) = N−1
{
I(θθθ)−1

}
[1,1]

= N−1
{
I(β, β)− I(β,ηηη)TI(ηηη,ηηη)−1I(β,ηηη)

}−1
, (2.3)

as long as I(θθθ) is invertible and the models are correctly specified.
The elements of I(θθθ) are expectations taken with respect to the complete data,

which allows us to express them as functions of the sampling probabilities, πy∗x∗z ≡
P (V = 1|Y ∗ = y∗, X∗ = x∗, Z = z), and model parameters, θθθ. To demonstrate,
consider the element I(θj, θj′) (θj, θj′ ∈ θθθ)

=
1∑

y∗=0

1∑
x∗=0

q∑
z=1

πy∗x∗z
1∑
y=0

1∑
x=0

Sv(θj; y∗, x∗, z, y, x)Sv(θj′ ; y∗, x∗, z, y, x)P (y∗, x∗, z, y, x)

+
1∑

y∗=0

1∑
x∗=0

q∑
z=1

(1− πy∗x∗z)S v̄(θj; y∗, x∗, z)S v̄(θj′ ; y∗, x∗, z)
1∑
y=0

1∑
x=0

P (y∗, x∗, z, y, x),

(2.4)

where Sv(·) and S v̄(·) are the score functions of validated and unvalidated subjects,
respectively (see Section 2.7.1 for definitions). For notational simplicity, our deriva-
tions are based on designing validation studies with Y ∗, X∗, and a q-level categorical
Z, which may include all observed combinations of multiple categorical covariates or
discretized continuous Z. Note that if we discretize continuous Z to define strata for
sampling, we would still retain its continuous value for inference.

Since θθθ is fixed, we see from equation (2.4) that the efficiency of the MLE can only
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be improved through how we define the sampling probabilities. Thus, the optimal
design will be the one that chooses {πy∗x∗z} to minimize the asymptotic variance of
the MLE through the elements defined in expression (2.4). The size of the audit, n, is
assumed to be constrained by budget, time, or other practicalities. This is expressed
as

n =
 1∑
y∗=0

1∑
x∗=0

q∑
z=1

πy∗x∗zNy∗x∗z

 , (2.5)

where Ny∗x∗z is the observed size of the Phase I stratum with (Y ∗i = y∗, X∗i = x∗,
Zi = z). Constrained optimization of V ar(β̂), e.g., with Lagrange multipliers for the
audit size constraint, does not yield a closed-form solution. Therefore, we devise a
novel grid search algorithm to find the optimal values of {πy∗x∗z}.

2.2.3 Adaptive Grid Search
The challenge at hand is one of combinatorics: of all the possible designs that

satisfy the audit size constraint and are supported by the available Phase I data
(i.e., the stratum sizes Ny∗x∗z), which minimizes V ar(β̂)? To answer this, we have
developed an adaptive grid search algorithm, where a series of grids are constructed
at iteratively tighter scales and over more focused grid spaces, to locate the optimal
design. “Grid” refers to the collection of all possible audit designs. In iteration t, the
gridGGG(t) can be represented by a matrix with columns for each stratum size such that
each row is a potential design (Figure 2.1). The adaptive nature of our algorithm is
necessitated by the computational strain of this grid, whose dimension increases with
the Phase I–II sample sizes and the number of sampling strata.

The minimum stratum size, m, is introduced for stability of the MLE; constraints
like this are needed to avoid degenerate optimal designs (Breslow and Cain, 1988).
Let K denote the number of strata used in sampling. For the initial grid search,
we consider audits made up of stratum sizes between the minimum and maximum
allocations, m and (n − Km), respectively. Stratum sizes are incremented by s(1)

subjects between designs; given the large scope of this search area, we choose s(1) to
be the largest grid scale. For all successive grids, the search space focuses around
the previous iteration’s lowest-variance design, denoted {n(t−1)

y∗x∗z}. The previous step
size, s(t−1), determines the window around {n(t−1)

y∗x∗z} to be searched, with stratum sizes
between n(t−1)

y∗x∗z− s(t−1) and n(t−1)
y∗x∗z + s(t−1) considered at a smaller scale of s(t) subjects

(s(t) < s(t−1)). These steps are detailed below.
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(a) Matrix representation

(b) Graphical representation

Figure 2.1: Matrix (a) and graphical (b) representations of a three-step adaptive grid search with
audit size n = 400; minimum stratum size m = 10; and grid scales of s(1) = 15, s(2) = 5, and
s(1) = 1 subject(s). In (a), the bold row indicates the design achieving the lowest V ar(β̂); in (b) the
triangle does. n00 can be omitted because it is determined by the audit size constraint.

1. Construct the grid GGG(t) of possible audits from stratum sample sizes ny∗x∗z
within the search window, varying by increments of s(t) subjects between de-
signs.

1.a. If t = 1, GGG(t) is comprised of all combinations of stratum sample sizes
between [m, (n−Km)] in increments of s(t) that satisfy equation (2.5). If
Ny∗x∗z < m or Ny∗x∗z < (n−Km), stratum sizes are adjusted accordingly.

1.b. If t > 1, GGG(t) is made up of all combinations of stratum sizes between
[n(t−1)
y∗x∗z − s(t−1), n(t−1)

y∗x∗z + s(t−1)] in increments of s(t) that satisfy equation
(2.5). If n(t−1)

y∗x∗z−s(t−1) < m or n(t−1)
y∗x∗z+s(t−1) > Ny∗x∗z, strata are restricted

accordingly.

10



2. Based on θθθ and {πy∗x∗z = ny∗x∗z/Ny∗x∗z}, evaluate equation (2.3) for each row
of GGG(t) to estimate V ar(β̂) under each design.

3. Let {n(t)
y∗x∗z} denote the design that achieved the minimum values for V ar(β̂).

4. Repeat steps 1–3, reducing the scale of the grid in each iteration until s(t) = 1.

The lowest-variance design from the final iteration is the optimal design, the optMLE.
In rare situations, the grid search may be stuck in some local area of designs with
extremely imbalanced strata sizes, rendering singular or nearly-singular information
matrices despite the minimum stratum size requirement. In this situation, we need
to retune the grids in the previous iteration or restart the algorithm using a different
grid.

2.2.4 Two-Wave Approximate Optimal Design
Clearly, the optimal design derived in the Section 2.2.2 relies on the model pa-

rameters θθθ, which are unknown. Thus, application of the optMLE design in practice
requires reliable estimates of these parameters. If available, historical data from a
previous audit could be used to estimate these parameters. Otherwise, we propose
a two-wave design. Whereas traditional two-phase studies require all of the informa-
tion up front (at Phase I), multi-wave designs allow sampling to adapt as information
accumulates.

We separate the validation study into two waves, labeled Phase II(a) and Phase
II(b), respectively, and denote their corresponding sample sizes as n(a) and n(b) (n(a) +
n(b) = n). Fully-adaptive designs have been considered elsewhere wherein, after
an initial wave of Phase II, the design is re-approximated with each new person
sampled. However, two waves with a 50/50 split between them were seen to be
sufficient (McIsaac and Cook, 2015). Following this discussion, we choose n(a) =
n/2 subjects in Phase II(a); selection of these subjects will be through balanced
case-control sampling of the Phase I data if no prior information is available. The
unknown parameters can then be estimated following collection of validated data on
these subjects. Therefore, the optimal design can be approximated to determine the
allocation of the remaining subjects in Phase II(b). This is our two-wave approximate
optimal design, the optMLE-2.
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2.3 Simulations
2.3.1 Validation Study Designs

In the simulations that follow, we compare the performance of five audit designs in
two-phase analyses under differential outcome and exposure misclassification. Since
optimal designs have not yet been proposed for this setting, the proposed designs
are compared to existing case-control and balanced case-control designs based on the
error-prone (“unvalidated”) Phase I data. While the total size of the validation study
is the same, allocation of subjects between the Phase I strata differs between designs.

Simple random sampling (SRS): All subjects in Phase I have equal proba-
bility of inclusion in Phase II.

Unvalidated case-control sampling (CC*) Subjects are stratified on Y ∗

and separate random samples of size n/2 are drawn from each stratum (Toste-
ston and Ware, 1990).

Unvalidated balanced case-control sampling (BCC*) Subjects are jointly
stratified on (Y ∗, X∗) and separate random samples of size n/4 subjects are
drawn from each stratum (Breslow and Cain, 1988; Tosteston and Ware, 1990).

Optimal design (optMLE) Subjects are jointly stratified on (Y ∗, X∗), and
stratum sizes are chosen following Section 2.2.2. The optMLE design is included
as a “gold standard” design since it requires knowing the parameters θθθ.

Two-wave approximate optimal design (optMLE-2) Subjects are jointly
stratified on (Y ∗, X∗). In the first wave, n/2 subjects are selected using BCC*,
and in the second wave the remaining subjects are chosen following the design
in Section 2.2.2.

All simulations include differential outcome and exposure misclassification, and Sec-
tion 2.3.3 extends to include an additional error-free covariate.

Designs are compared based on two precision measures: the relative efficiency
(RE), defined as the ratio of empirical variances of parameter estimates, and the
relative interquartile range (RI), defined as the ratio of the width of the empirical
interquartile range (McIsaac and Cook, 2015). The optimal design based on true
parameter values and observed stratum sizes was treated as the reference standard.
Optimal designs based on (a) true parameter values and expected stratum sizes or
(b) full cohort parameter estimates and observed stratum sizes were also considered,
but results were similar (Table 2.5). RE and RI values > 1 indicate better precision
than the optMLE design while values < 1 indicate worse.
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2.3.2 Outcome and Exposure Misclassification
Data were generated for a Phase I sample of N = 10,000 subjects according to

equation (2.1). True X and Y were generated from Bernoulli distributions with px =
P (X = 1) and P (Y = 1|X) = [1 + exp{−(β0 + 0.3X)}]−1. The approximate outcome
prevalence py = P (Y = 1|X = 0) was used to define β0 = log{py/(1 − py)}. Error-
prone Y ∗ and X∗ were generated from Bernoulli distributions with P (X∗ = 1|Y,X) =
[1 + exp{−(γ0 + 0.45Y + γ1X)}]−1 and P (Y ∗ = 1|X∗, Y,X) = [1 + exp{−(α0 +
0.275X∗ + α1Y + 0.275X)}]−1, where (γ0, γ1) and (α0, α1) control the strength of
the relationship between error-prone and error-free values. We define the “baseline”
false positive and true positive rates for X∗, denoted FPR0(X∗) and TPR0(X∗),
respectively, as the false positive and true positive rates of X∗ when Y = 0. Similarly,
FPR0(Y ∗) and TPR0(Y ∗) are the false positive and true positive rates for Y ∗ when
X = X∗ = 0. With these definitions, we have α0 = − log

{
1−FPR0(Y ∗)
FPR0(Y ∗)

}
, α1 =

− log
{

1−TPR0(Y ∗)
TPR0(Y ∗)

}
−α0, γ0 = − log

{
1−FPR0(X∗)
FPR0(X∗)

}
, and γ1 = − log

{
1−TPR0(X∗)
TPR0(X∗)

}
− γ0.

When FPR0 and TPR0 are both 0.5, the error-prone values are not informative
about error-free ones. Using the designs in Section 2.3.1, n = 400 subjects were
selected in Phase II. Minimum stratum sizes of m = 10–50 were considered for the
optMLE design (Figure 2.6); all yielded stable estimates, so m = 10 was used for all
simulations herein.

2.3.2.1 Varied outcome misclassification rates
We fixed exposure misclassification rates at FPR0(X∗) = 0.1 and TPR0(X∗) =

0.9 and varied outcome misclassification rates between combinations of FPR0(Y ∗) =
0.1, 0.5 and TPR0(Y ∗) = 0.9, 0.5. We also varied py = 0.1, 0.3, 0.9 for fixed px = 0.1.
Designs are illustrated in Figure 2.2(a). The composition of the optMLE design
depended on the frequencies of Phase I strata and misclassification rates. It generally
favored oversampling from the smaller strata; since px = 0.1, optMLE design targeted
records with X∗ = 1 and those with Y ∗ = 1 or Y ∗ = 0 when py < or > 0.5,
respectively. The oversampling of less-frequent Y ∗ strata was typically heightened in
higher-error settings. For example, for py = 0.1, the optMLE design selected more
subjects with (Y ∗ = 1, X∗ = 1) as FPR0(Y ∗) increased and TPR0(Y ∗) decreased.
When Y ∗ was more error-prone than X∗, the optMLE design redistributed more of
the audit to the less-frequent strata of Y ∗ with less emphasis on the less-frequent
value of X∗. We note that the initial BCC* sample of n(a) = 200 in Phase II(a) kept
the optMLE-2 design from being as extreme as the optMLE, but overall the optimal
designs were similar. With FPR0(Y ∗) = TPR0(Y ∗) = 0.5 , the optimal designs
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were relatively unchanged by py; the optMLE and optMLE-2 designs were also less
similar, which we attribute to added uncertainty from estimating parameters from
weakly informative Phase I variables (Figure 2.7(a)).

(a) Exposure misclassification rates were fixed: FPR0(X∗) = 0.1, TPR0(X∗) = 0.9.

(b) Outcome misclassification rates were fixed: FPR0(Y ∗) = 0.1, TPR0(Y ∗) = 0.9.

Figure 2.2: Average Phase II stratum sizes ny∗x∗ under outcome and exposure misclassification.

The MLE was essentially unbiased, though SRS or CC* designs encountered some
extreme replicates (Table 2.6(a)). The empirical standard error (SE), RE, and RI for
the MLE under these designs are included in Table 2.1(a). The optMLE-2 design lost
little efficiency to the optMLE design with RE > 0.9 and RI > 0.95 in most settings.
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We note that the RE and RI for the optMLE-2 design could be > 1 since the optMLE
design is asymptotically optimal but not necessarily optimal with finite samples. In
most settings the optMLE-2 design exhibited sizeable gains over the BCC*, CC*, and
SRS designs, with gains as high as 43%, 74%, and 83%, respectively. The optMLE-
2 design saw the largest gains when the error-prone variables were informative (i.e.,
FPR0(Y ∗) 6= 0.5 and/or TPR0(Y ∗) 6= 0.5) or Y ∗ was less balanced (driven by choices
of py farther from 0.5). The grid search successfully located the optMLE and optMLE-
2 designs in all and ≥ 93% replicates per setting, respectively. The grid search failed
to locate the optMLE-2 design in a few replicates because it was stuck in some
local area of designs that rendered singular information matrices. Ideally, we should
retune the grids or restart the algorithm using different grids for these replicates.
However, the specific solution needs to be tailored for each problematic replicate
separately and thus is time-consuming to implement in large-scale simulations. For
ease of implementation, we discarded the few problematic replicates. In practice, we
recommend retuning the grids or restarting the algorithm.

2.3.2.2 Varied exposure misclassification error rates
Outcome misclassification rates were fixed at FPR0(Y ∗) = 0.1 and TPR0(Y ∗) =

0.9, while exposure rates were varied in FPR0(X∗) = 0.1, 0.5 and TPR0(X∗) =
0.9, 0.5. We varied px = 0.1, 0.9 for fixed py = 0.3. Interpretations of the opti-
mal designs were very similar to Section 2.3.2.1 but with an emphasis on X∗ rather
than Y ∗ (Figure 2.2(b)). Briefly, the optMLE and optMLE-2 designs targeted less-
frequent values of Y ∗ and X∗ but oversampled from less-frequent X∗ with greater
intensity under higher-error settings. In the highest error setting, the optimal designs
favored X∗ = 1 strata for either px and the optMLE-2 design was more balanced
(Figure 2.7(b)). Tables 2.1(b) and Table 2.6(b) include simulation results for the
MLE under these settings. The MLE was always unbiased. The optMLE-2 design
remained close in efficiency to the optMLE design and continued to demonstrate no-
table gains over the BCC*, CC*, or SRS designs, with as much as 30%, 63%, or 69%
higher efficiency, respectively.

2.3.3 Outcome and Exposure Misclassification with an Additional Error-Free Co-
variate

Following equation (2.1), data were generated for a Phase I sample of N = 10,000
subjects. Error-free binary covariate Z was generated from a Bernoulli distribution
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Table 2.1: Simulation results under outcome and exposure misclassification

a) Varied Outcome Misclassification Rates/Prevalence

Errors in Y ∗Y ∗Y ∗ optMLE-2 BCC* CC* SRS
pypypy FPR0FPR0FPR0 TPR0TPR0TPR0 SE RE RI SE RE RI SE RE RI SE RE RI
0.1 0.1 0.9 0.214 1.028 1.015 0.254 0.728 0.855 0.347 0.391 0.640 0.516 0.176 0.459

0.5 0.241 0.908 0.960 0.286 0.643 0.815 0.362 0.403 0.679 0.512 0.201 0.508
0.5 0.9 0.321 0.935 1.017 0.409 0.578 0.763 0.560 0.308 0.570 0.563 0.305 0.552

0.5 0.361 1.067 1.008 0.377 0.982 1.004 0.512 0.531 0.767 0.543 0.472 0.700
0.3 0.1 0.9 0.190 1.009 0.983 0.223 0.734 0.855 0.297 0.413 0.683 0.333 0.329 0.569

0.5 0.219 1.003 1.048 0.226 0.941 1.087 0.317 0.480 0.723 0.344 0.406 0.658
0.5 0.9 0.241 0.924 0.879 0.274 0.717 0.814 0.386 0.360 0.588 0.357 0.421 0.626

0.5 0.248 0.918 0.957 0.240 0.982 1.035 0.369 0.416 0.664 0.369 0.415 0.675
0.9 0.1 0.9 0.249 0.927 0.963 0.277 0.749 0.874 0.430 0.310 0.551 0.592 0.164 0.370

0.5 0.381 0.887 1.040 0.505 0.505 0.774 0.600 0.357 0.663 0.596 0.362 0.660
0.5 0.9 0.279 0.916 0.966 0.342 0.608 0.826 0.543 0.242 0.517 0.589 0.205 0.443

0.5 0.491 0.926 0.950 0.515 0.842 0.985 0.620 0.582 0.779 0.608 0.605 0.757

b) Varied Exposure Misclassification Rates/Prevalence

Errors in X∗X∗X∗ optMLE-2 BCC* CC* SRS
pxpxpx FPR0FPR0FPR0 TPR0TPR0TPR0 SE RE RI SE RE RI SE RE RI SE RE RI
0.1 0.1 0.9 0.190 1.009 0.983 0.223 0.734 0.855 0.297 0.413 0.683 0.333 0.329 0.569

0.5 0.218 0.998 0.986 0.247 0.781 0.860 0.336 0.420 0.600 0.338 0.414 0.637
0.5 0.9 0.295 0.977 1.015 0.351 0.691 0.866 0.342 0.730 0.885 0.351 0.693 0.866

0.5 0.343 1.020 1.028 0.342 1.028 0.993 0.348 0.993 1.026 0.357 0.942 0.997
0.9 0.1 0.9 0.189 0.851 0.940 0.201 0.750 0.879 0.310 0.316 0.584 0.339 0.265 0.520

0.5 0.290 0.960 0.910 0.343 0.685 0.811 0.345 0.678 0.771 0.381 0.555 0.750
0.5 0.9 0.221 0.977 0.920 0.264 0.681 0.838 0.337 0.418 0.600 0.366 0.355 0.576

0.5 0.364 1.008 0.984 0.366 0.996 0.975 0.360 1.029 0.983 0.387 0.890 0.941

Note: Misclassification rates for X∗ and Y ∗ were fixed at FPR0 = 0.1 and TPR0 = 0.9 in a) and b), respectively. SE is the
empirical standard error of the MLE. RE and RI are the empirical relative efficiency and relative interquartile range of the design
to the optMLE design, respectively. When py 6= 0.3, select error settings encountered replicates where the SRS, CC*, or BCC*
estimates could be > 5 in magnitude; this happened in < 1% for any individual setting when py = 0.1 and < 5% when py = 0.9
so these replicates were excluded. All other entries are based on 1000 replicates.

with P (Z = 1) = pz = 0.25, 0.5. True X and Y were generated from Bernoulli
distributions with P (X = 1|Z) = [1+exp{−(−2.2+0.5Z)}]−1 and P (Y = 1|X,Z) =
[1+exp{−(−0.85+0.3X+βzZ)}]−1, for βz = −0.25, 0, 0.25. Baseline misclassification
rates were fixed at FPR0 = 0.25 and TPR0 = 0.75 such that X∗ and Y ∗ were
generated from Bernoulli distributions with P (X∗ = 1|Y,X,Z) = [1 + exp{−(−1.1 +
0.45Y + 2.2X + λZ)}]−1 and P (Y ∗ = 1|X∗, Y,X, Z) = [1 + exp{−(−1.1 + 0.275X∗+
2.2Y + 0.275X + λZ)}]−1, where λ = −1, 0, 1. In Phase II, n = 400 subjects were
selected by extensions of Section 2.3.1 to sample on (Y ∗, X∗, Z). The optMLE design
sampled ≥ 10 subjects from each stratum.

Typical Phase II stratum sizes for the designs when pz = 0.5 are depicted in
Figure 2.3; designs were similar when pz = 0.25 (Figure 2.8). The optimal designs
favored subjects with Z = 1, sampling minimally from the Z = 0 strata regardless
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of the values for (Y ∗, X∗). This was partly because Var(X|Z = 1) was larger than
Var(X|Z = 0), such that the true value of X was harder to “guess” when Z = 1, and
validating X among subjects with Z = 1 was more “rewarding” than validating X
among subjects with Z = 0. Within the Z = 1 strata, the optimal designs preferred
subjects with (Y ∗ = 1, X∗ = 1), in alignment with Section 2.3.2.

Figure 2.3: Average Phase II stratum stratum sizes ny∗x∗z under outcome and exposure misclassifica-
tion when additional error-free covariate information was included in sampling. Error-free covariate
Z had prevalence pz = 0.5.

Simulation results for the MLE are included in Tables 2.2 and 2.7. The MLE was
always unbiased. The optMLE-2 design was competitively efficient to the optMLE
design and surpassed the BCC*, CC*, or SRS designs, with efficiency gains as high as
43%, 56%, or 59%, respectively. Gains were more pronounced in settings with λ ≤ 0,
such that Z = 1 decreased the probability that Y ∗ = 1, or Z was less common.

2.3.4 Special Cases of Misclassification
Special cases with outcome or exposure misclassification alone are illustrated with

additional simulations in Sections 2.7.2.1 and 2.7.2.2, respectively. The optimal de-
signs targeted the less-frequent value of the error-prone variable, with little regard
for the value of the error-free variable (Figures 2.4 and 2.5). In both settings, the
optMLE-2 design approximated the optMLE design well and continued to offer sizable
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Table 2.2: Simulation results under outcome and exposure misclassification with available error-free
covariate information

optMLE-2 BCC* CC* SRS
pzpzpz λλλ βZβZβZ SE RE RI SE RE RI SE RE RI SE RE RI

0.25 −1 −0.25 0.225 1.329 1.246 0.296 0.767 0.835 0.321 0.653 0.833 0.352 0.543 0.770
0.00 0.227 1.097 1.024 0.288 0.683 0.792 0.325 0.535 0.734 0.332 0.515 0.755
0.25 0.221 1.036 0.991 0.287 0.613 0.764 0.333 0.454 0.681 0.337 0.444 0.682

0 −0.25 0.249 0.975 0.960 0.296 0.690 0.790 0.321 0.587 0.788 0.352 0.489 0.729
0.00 0.245 1.021 0.965 0.288 0.735 0.816 0.325 0.577 0.756 0.332 0.554 0.778
0.25 0.242 0.879 0.925 0.287 0.625 0.787 0.333 0.463 0.701 0.337 0.453 0.702

1 −0.25 0.267 0.943 1.000 0.296 0.767 0.835 0.321 0.653 0.833 0.352 0.543 0.770
0.00 0.275 0.840 0.940 0.288 0.766 0.857 0.325 0.601 0.794 0.332 0.578 0.816
0.25 0.270 0.932 1.065 0.287 0.823 0.966 0.333 0.610 0.860 0.337 0.596 0.861

0.50 −1 −0.25 0.229 1.295 1.241 0.304 0.735 0.971 0.310 0.707 0.913 0.338 0.596 0.832
0.00 0.228 1.088 1.093 0.264 0.811 0.902 0.312 0.579 0.764 0.317 0.559 0.764
0.25 0.225 0.994 0.972 0.287 0.612 0.776 0.308 0.531 0.685 0.304 0.545 0.715

0 −0.25 0.250 0.927 1.052 0.304 0.628 0.869 0.310 0.603 0.817 0.338 0.509 0.745
0.00 0.239 0.924 0.959 0.264 0.762 0.849 0.312 0.545 0.719 0.317 0.526 0.719
0.25 0.251 0.836 1.010 0.287 0.639 0.839 0.308 0.555 0.740 0.304 0.569 0.773

1 −0.25 0.277 0.890 1.029 0.304 0.735 0.971 0.310 0.707 0.913 0.338 0.596 0.832
0.00 0.267 0.991 0.994 0.264 1.014 1.012 0.312 0.725 0.858 0.317 0.700 0.857
0.25 0.261 0.916 0.939 0.287 0.760 0.867 0.308 0.660 0.765 0.304 0.678 0.799

Note: SE is the empirical standard error of the MLE. RE and RI are the empirical relative efficiency and relative interquartile
range of the design to the optMLE design, respectively. Each entry is based on 1000 replicates.

efficiency gains over the BCC*, CC*, and SRS designs.

2.4 Comparing Partial- to Full-Audit Results in the VCCC
The VCCC EHR contains routinely collected patient data including demographics,

antiretroviral therapy (ART), labs such as viral load or CD4 count, and clinical events.
Since the VCCC data have been fully validated, pre-/post-validation datasets are
available. These datasets can be used to compare two-phase designs and analyses that
only validate a subset of the records to the gold standard analysis using fully-validated
data. We used these data to assess the relative odds of having an AIDS-defining event
(ADE) within one year of ART initiation between patients who were/were not ART
naive at enrollment, controlling for CD4 (square root transformed) at ART initiation.
There were N = 2012 records extracted from the EHR, with their unvalidated data
suggesting that 73% were ART naive at enrollment and 8% experienced an ADE
within one year. There was 6% misclassification in ADE, with 63% false positive rate
(FPR) and only 1% false negative rate (FNR); ART naive status at enrollment had
11% misclassification with FPR = 13% and FNR = 3%. Only 19 subjects (1%) had
both outcome and exposure misclassification. CD4 count was error-free.

For our two-phase analyses, subjects were first divided into four strata based on
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Phase I ADE and ART naive status with stratum sizes (N00, N01, N10, N11) = (504,
1350, 42, 116). Though a full audit was completed, only an artificial subsample of
n = 200 subjects (10%) were assumed to have validated information available. We
used the optMLE-2 design to choose subjects for data validation to maximize the
efficiency of the MLE of the ART naive coefficient. The n(a) = 100 subjects for Phase
II(a) were selected via BCC*. Results using BCC*, CC*, and SRS designs are also
included. The process was repeated 1000 times. The SRS, CC*, and BCC* audits
chose, on average, Phase II strata of sizes (n00, n01, n10, n11) = (56, 134, 4, 12); (27,
73, 26, 74); and (50, 50, 50, 50), respectively. The grid search successfully located
the optMLE-2 design in 95% of replications, with average Phase II stratum sizes
(n00, n01, n10, n11) = (25, 39, 42, 95).

The partial-audit estimates were all reasonably close to the fully-validated gold
standard and led to the same clinical interpretations: after controlling for

√
CD4

at ART initiation, ART naive status at enrollment was not associated with changes
in the odds of ADE within one year of ART initiation (Table 2.3). However, the
proposed optMLE-2 design gained 15% efficiency over CC* or BCC* in estimating
the relationship between ADE and ART status at enrollment. The SE using SRS
was dramatically larger, with the optMLE-2 design over 9× more efficient than SRS.
There were also gains in estimating the intercept but not the log OR for

√
CD4. The

latter is to be expected since the optMLE-2 design was specifically tuned to minimize
the SE for the ART status coefficient. As in simulation, a small number of replicates
(∼ 7%) using the SRS led to extreme values and were excluded; see the distributions
of estimates in Figure ??.

We also considered designs that further stratified on error-free CD4 count. Since
CD4 count is continuous, we dichotomized it at the median, 238 cells/mm3. Pa-
tients were divided into eight strata, jointly defined on their Phase I ADE, ART
status, and CD4 category, of sizes (N000, N010, N100, N110, N001, N011, N101, N111) =
(171, 701, 34, 93, 333, 649, 8, 23). The SRS and CC* results were unchanged
since these designs do not use covariate information. The BCC* selected (n000, n010,
n100, n110, n001, n011, n101, n111) = (28, 28, 28, 29, 28, 28, 8, 23) subjects in Phase II.
The grid search successfully located the optMLE-2 design 95% of the time, selecting
(n000, n010, n100, n110, n001, n011, n101, n111) = (14, 32, 33, 70, 13, 13, 8, 16) in Phase II;
it seemed to favor patients with below-average CD4 counts. In Table 2.3, we see that
further stratification on CD4 count offered little improvement to design efficiency.

19



Table 2.3: log OR and standard errors from the analysis of the VCCC dataset

(Intercept) ART Status
√
CD4
√
CD4
√
CD4

Design log OR SE log OR SE log OR SE

Full cohort analysis
Gold standard −1.184 0.294 0.032 0.260 −0.180 0.022

Naive −0.043 0.234 −0.308 0.200 −0.148 0.015
Two-phase analysis

Sampling on ADE and ART Status
SRS −1.044 0.821 −0.163 1.173 −0.189 0.058
CC* −1.536 0.439 0.092 0.395 −0.148 0.034

BCC* −1.336 0.419 0.001 0.394 −0.168 0.035
optMLE-2 −1.542 0.394 0.118 0.368 −0.151 0.035

Sampling on ADE, ART Status, and CD4 Count
BCC* −1.402 0.421 0.115 0.406 −0.163 0.034

optMLE-2 −1.495 0.392 0.105 0.362 −0.150 0.034

Note: log OR and SE are, respectively, the empirical means of the log odds ratio
and the empirical standard error estimates of the MLE. Each two-phase analysis
was repeated 1000 times; full cohort analyses were run once. The Naive analysis
used Phase I data only. The SRS and CC* designs are the same whether CD4
Count was included in sampling or not.

2.5 Prospective Audit Planning in CCASAnet
Researchers are interested in assessing the association between bacteriological con-

firmation of TB and successful treatment outcomes among PLWH who are treated for
TB. We are in the process of designing a multi-site audit of n = 500 patients to vali-
date key variables and better estimate this association in the CCASAnet cohort. The
outcome of interest (Y ) is successful completion of TB treatment within one year of
diagnosis; among patients who did not complete treatment, this captures unfavorable
outcomes of death, TB recurrence, or loss to follow-up (with each of these outcomes
also of interest in secondary analyses). Bacterial confirmation (X) is defined as any
positive diagnostic test result, e.g., culture, smear, or PCR. The CCASAnet database
contains error-prone values (Y ∗, X∗) of these variables.

The Phase I sample comes from the current CCASAnet research database and
includes all patients initiating TB treatment between January 1, 2010 and December
31, 2018. There were N = 3478 TB cases across sites in five countries (anonymously
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labeled Countries A–E) during this period. Patients were stratified on (Y ∗, X∗) within
Countries A–E to create 20 strata of sizes (N00, N01, N10, N11) = (704, 246, 1015, 415);
(239, 139, 336, 218); (3, 7, 5, 17); (6, 9, 15, 14); and (12, 16, 36, 26), respectively.

To implement the optMLE-2 design as in Sections 2.3–2.4, n(a) = 250 patients
would be chosen in Phase II(a) using BCC* from the 20 (Y ∗, X∗, Country) strata.
Site-level designs (Y ∗, X∗) would be (n(a)

00 , n
(a)
01 , n

(a)
10 , n

(a)
11 ) = (12, 12, 13, 13) in Coun-

tries A, B, and E. Countries C and D were smaller, so we would sample all subjects
from them such that (n(a)

00 , n
(a)
01 , n

(a)
10 , n

(a)
11 ) = (3, 7, 5, 17) and (6, 9, 15, 14), respec-

tively. We note that in this case, n(a) < 250, but Phase II(a) strata are large enough
for stable estimates so the extra subjects can be deferred to Phase II(b). After com-
pleting this preliminary audit, the parameter estimates can be used to optimize Phase
II(b). However, prior information is available to design Phase II(a), so a naive BCC*
design is not necessary.

Between 2009–2010, on-site chart reviews were conducted by external auditors in
the five CCASAnet sites. A total of 595 TB cases were chosen for validation via
site-stratified SRS. Based on original data, 70% of cases completed treatment within
one year and 68% had bacteriological confirmation of TB. Due to time constraints,
review of these records was incomplete; validated TB treatment and diagnosis were
available for 40 subjects. We observed 13% and 20% misclassification in Y ∗ (FPR=
7%, FNR= 23%) and X∗ (FPR= 39%, FNR= 5%), respectively. No subjects had
both their outcome and exposure misclassified. We demonstrate two ways to use these
historic audits to design an optimal validation study for the next round of CCASAnet
audits: (i) to derive the optMLE design to allocate all n = 500 subjects in a single
Phase II subsample or (ii) to inform the first wave of n(a) = 250 for the optMLE-2
design. Strategy (i) puts more trust in the historic audits, while strategy (ii) allows
the design to adjust accordingly if Phase II(a) parameters differ from historic ones.

Given the small size of the historic audit, it was not possible to obtain country-
level estimates of all parameters needed to derive the optimal design. Instead, we
created country groupings (CoG), based on site-specific audit results (Table 2.8).
CoG was defined as a three-level categorical variable: CoG = 0 for countries with
errors in Y ∗ or X∗ (Countries A–B), CoG = 1 for countries with errors in both Y ∗ and
X∗ (Countries C–D), and CoG = 2 for countries without errors (Country E). These
groupings were used to obtain the MLE for the historic data. Since audits will be
conducted at the site level, we applied these parameters to the 20 Phase I strata from
the current data by assuming the same coefficients for countries in a given grouping
(Table 2.8).
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First, we derived the optMLE design for n = 500 based on the historic parameters,
setting the minimum stratum size to be m = 10. The optimal design was composed
of the following (Y ∗, X∗) strata from Countries A–E, respectively: (n00, n01, n10, n11)
= (10, 15, 10, 21); (20, 80, 11, 168); (3, 7 , 5, 17); (6, 9, 15, 14); and (12, 16, 35, 26).
All, or nearly all, available subjects were taken from Countries C–E. In Countries
A and B, subjects with X∗ = 1 were preferred, particularly with Y ∗ = 1. We note
that the number of records in Country B is smaller, so it was oversampled more than
Country A.

Then, we derived the optMLE design for just the first n(a) = 250 subjects as a
more-informed first wave for the optMLE-2 design. Once again, we assumed that
m = 10. Site-level (Y ∗, X∗) strata of (n(a)

00 , n
(a)
01 , n

(a)
10 , n

(a)
11 ) = (10, 10, 10, 10); (10,

10, 10, 45); (3, 7, 5, 17); (6, 9, 10, 13); and (12, 16, 11, 26) from Countries A–
E, respectively, were recommended in Phase II(a). This time, audit resources were
more focused on sampling from the smallest countries (C–E). Country A was sampled
minimally, as was Country B except for the (Y ∗ = 1, X∗ = 1) stratum. Data on these
subjects can subsequently be used to re-estimate the model parameters and derive
the optimal allocation of the remaining subjects in Phase II(b). Alternatively, the
Phase II(a) and historic data could be pooled to re-estimate the parameters; since the
historic audits were much smaller, Phase II(a) would likely still dominate the pooled
estimates. However, if Phase II(a) were smaller, it might be beneficial to combine the
data for more stable estimates.

Ultimately, the choice between these validation designs is determined by logistics
and our confidence in the historic data. For the CCASAnet audits, we plan to use
the optMLE-2 design informed by the prior audits. This decision is based on our lack
of confidence in estimates derived from the prior audits and the results of others who
have seen that incorporating prior, even somewhat biased, information can improve
multi-wave sampling designs (Chen and Lumley, 2020). Also, multiple waves of val-
idation is feasible in the CCASAnet cohort if performed by in-country investigators
(Lotspeich et al., 2020).

2.6 Discussion
Validation studies are integral to many statistical methods to correct for errors

in secondary use data, but they are resource-intensive undertakings. This can limit
the numbers of records and variables that are reviewed. Thus, selecting the most
informative records is key to maximizing the benefits of data validation. We in-
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troduced a new optimal design, and a multi-wave approximation to it, which max-
imizes the efficiency of the MLE under differential outcome and exposure misclas-
sification – a setting for which optimal designs have not yet been proposed. We
provide a novel method to minimize the asymptotic variance of a full-likelihood
estimator, which has no analytical solution; our adaptive grid search is provided
in the auditDesignR software as an R package (available on GitHub at https://
github.com/sarahlotspeich/auditDesignR) or a Shiny application (accessible at https:
//sarahlotspeich.shinyapps.io/auditDesignR/).

We focused on designs for likelihood-based estimators because they tend to be
more efficient than design-based estimators and remain valid under a wide range of
Phase II designs. To the latter point, data from design-based optimal designs can be
analyzed with likelihood-based estimators, but the opposite is not necessarily true:
likelihood-based optimal designs can be too extreme for analysis via design-based
estimators. Earlier work has suggested to design validation studies that are optimal
for design-based estimators because these designs can be used with all estimators and
still result in improved efficiency for likelihood-based estimators over other traditional
designs (McIsaac and Cook, 2014). However, in other work, we have seen substantial
efficiency gains by using an optimal likelihood-based design over an optimal design-
based design when using a likelihood-based analysis (Amorim et al., 2021).

While the MLE makes parametric assumptions, in earlier work we found that using
logistic regression for outcome and exposure misclassification models can be fairly
robust for two-phase analyses (Lotspeich et al., 2021). Note that optimal designs for
the MLE are also likely optimal or near-optimal for other likelihood-based alternatives
such as the SMLE (Lotspeich et al., 2021), which makes no assumptions about the
exposure error mechanism. In an additional simulation, we saw that the efficiency
gains of the SMLE based on the optMLE and optMLE-2 designs over the BCC*,
CC*, SRS designs were essentially identical to those of the MLE (Table 2.10).

Future research could consider extending the proposed optimal designs to likelihood-
based estimators for more general outcomes and exposures. Our designs can be im-
plemented with continuous covariates or exposures but require categorization. How
to best stratify continuous covariates for design purposes or obtain optimal designs
that do not require stratifying continuous covariates could be investigated.
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2.7 Appendix A
2.7.1 Derivations of Sv(·) and S v̄(·)

We denote the log-likelihood contribution of the ith subject by lv(θθθ;Y ∗i , X∗i ,ZZZi, Yi, Xi)
or lv̄(θθθ;Y ∗i , X∗i ,ZZZi) (i = 1, . . . , N), respectively, depending on whether his/her data
have been validated or not. We denote the score vector for the ith subject by
Si(θθθ) = (Si(β), Si(ηηη)T)T, where

Si(θj) =Vi
∂

∂θj
lvi (θθθ;Y ∗i , X∗i ,ZZZi, Yi, Xi) + (1− Vi)

∂

∂θj
lv̄i (θθθ;Y ∗i , X∗i ,ZZZi)

≡ViSv(θj;Y ∗i , X∗i ,ZZZi, Yi, Xi) + (1− Vi)S v̄(θj;Y ∗i , X∗i ,ZZZi), ∀ θj ∈ θθθ.

We decompose ηηηT into (ηηηT
y∗ , ηηη

T
x∗ , ηηη

T
y , ηηη

T
x )T, where ηηηy∗ , ηηηx∗ , ηηηy, and ηηηx correspond to the

nuisance parameters in models Pηηηy∗ (Y ∗|X∗,ZZZ, Y,X), Pηηηx∗ (X∗|ZZZ, Y,X), Pηηηy(Y |X,ZZZ),
and Pηηηx(X|ZZZ), respectively. Then, we have

Sv(θj;Y ∗i , X∗i ,ZZZi, Yi, Xi)

=



{
∂
∂θj
P (Y ∗i |X∗i ,ZZZi, Yi, Xi)

}
{P (Y ∗i |X∗i ,ZZZi, Yi, Xi)}−1 , if θj ∈ ηηηy∗ ,{

∂
∂θj
P (X∗i |ZZZi, Yi, Xi)

}
{P (X∗i |ZZZi, Yi, Xi)}−1 , if θj ∈ ηηηx∗ ,{

∂
∂θj
P (Yi|Xi,ZZZi)

}
{P (Yi|Xi,ZZZi)}−1 , if θj ∈ (β,ηηηy),{

∂
∂θj
P (Xi|ZZZi)

}
{P (Xi|ZZZi)}−1 , if θj ∈ ηηηx,

S v̄(θj;Y ∗i , X∗i ,ZZZi)

=
∑1
y=0

∑1
x=0

∂
∂θj
{P (Y ∗i |X∗i ,ZZZi, y, x)P (X∗i |ZZZi, y, x)P (y|x,ZZZi)P (x|ZZZi)}∑1

y=0
∑1
x=0 P (Y ∗i |X∗i ,ZZZi, y, x)P (X∗i |ZZZi, y, x)P (y|x,ZZZi)P (x|ZZZi)

.

2.7.2 Additional Simulations
2.7.2.1 Outcome misclassification only

For the special scenario of outcome misclassification alone, X∗ = X such that
equation (2.1) reduces to P (Y ∗, Y,X) = P (Y ∗|Y,X)P (Y |X)P (X). We generated
Y and X in the same way as in Section 2.3.2, with py = 0.3 and px = 0.1, for
a sample of N = 10,000 subjects. We generated error-prone Y ∗ from a Bernoulli
distribution with P (Y ∗ = 1|Y,X) = [1 + exp{−(α0 + α1Y + 0.28X)}]−1, where α0

and α1 were defined in the same way as in Section 3.2 with FPR0(Y ∗) ∈ {0.1, 0.5}
and TPR0(Y ∗) ∈ {0.9, 0.5}. We set n = 400. Without exposure misclassification,
the sampling strata for the BCC*, optMLE, and optMLE-2 designs were defined by
(Y ∗, X). The grid search located the optimal designs in ≥ 98% of replicates.
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Table 2.4: Simulation results under outcome or exposure misclassification only

(a) Outcome Misclassification Only

Errors in Y ∗Y ∗Y ∗ optMLE-2 BCC* CC* SRS
FPR0FPR0FPR0 TPR0TPR0TPR0 Bias SE RE RI Bias SE RE RI Bias SE RE RI Bias SE RE RI
0.1 0.9 0.002 0.125 0.843 0.840 −0.002 0.133 0.741 0.800 0.005 0.209 0.302 0.526 0.003 0.234 0.240 0.452

0.5 0.018 0.183 0.829 0.952 −0.002 0.192 0.754 0.902 −0.009 0.293 0.325 0.563 0.009 0.315 0.281 0.548
0.5 0.9 0.000 0.199 0.859 0.898 −0.001 0.218 0.717 0.790 −0.013 0.376 0.241 0.477 0.006 0.345 0.287 0.519

0.5 0.010 0.219 0.914 0.997 0.004 0.207 1.019 1.061 −0.009 0.373 0.314 0.623 0.001 0.348 0.362 0.657

(b) Exposure Misclassification Only

Errors in X∗X∗X∗ optMLE-2 BCC* CC* SRS
FPR0FPR0FPR0 TPR0TPR0TPR0 Bias SE RE RI Bias SE RE RI Bias SE RE RI Bias SE RE RI
0.1 0.9 −0.005 0.158 0.861 0.917 0.009 0.180 0.660 0.838 0.005 0.282 0.270 0.536 0.003 0.285 0.264 0.540

0.5 0.003 0.206 1.002 0.928 0.013 0.237 0.754 0.788 0.008 0.313 0.433 0.607 0.002 0.332 0.385 0.618
0.5 0.9 −0.011 0.298 0.852 0.902 0.008 0.361 0.580 0.736 −0.010 0.327 0.706 0.831 −0.014 0.336 0.667 0.795

0.5 −0.030 0.345 0.941 0.957 0.017 0.343 0.949 0.959 0.006 0.348 0.923 0.964 −0.012 0.362 0.854 0.880

Note: Bias and SE are, respectively, the empirical bias and standard error of the MLE. Each entry is based on 1000 replicates.

Figure 2.4 shows the average Phase II stratum sizes selected under each of the
designs. The optimal designs favored strata with the less-frequent value of Y ∗ (i.e.,
Y ∗ = 1) in all settings where it was informative (i.e., FPR0(Y ∗) 6= 0.5 or TPR0(Y ∗) 6=
0.5). In the highest error setting, the optimal designs appeared to be similar to the
BCC* design. Simulation results for the MLE are included in Table 2.4(a). The
optMLE-2 design did not lose much efficiency to the optMLE design and typically
surpassed the efficiencies of the BCC*, CC*, and SRS designs, with gains as high as
17%, 72%, and 72%, respectively.

Figure 2.4: Average Phase II stratum sizes ny∗x under outcome misclassification.

2.7.2.2 Exposure misclassification only
For the special scenario of exposure misclassification alone, Y ∗ = Y such that

equation (2.1) reduces to P (X∗, Y,X) = P (X∗|Y,X)P (Y |X)P (X). We generated Y
and X in the same way as in 2.7.2.1 for a Phase I sample of N = 10,000 subjects.
We generated error-prone X∗ from a Bernoulli distribution with P (X∗ = 1|Y,X) =
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[1 + exp{−(γ0 + 0.45Y + γ1X)}]−1, where γ0 and γ1 were defined in the same way
as in Section 2.3.2 with FPR0(X∗) ∈ {0.1, 0.5} and TPR0(X∗) ∈ {0.9, 0.5}. We
set n = 400. Without outcome misclassification, the sampling strata for the BCC*,
optMLE, and optMLE-2 designs were defined by (Y,X∗). The grid search successfully
located the optimal designs in all replicates.

Figure 2.5 shows the average Phase II stratum sizes selected under each of the
designs. The optimal designs favored strata with the less-frequent value of X∗

(i.e., X∗ = 1) in all settings where it was informative (i.e., FPR0(X∗) 6= 0.5 or
TPR0(X∗) 6= 0.5). In the highest error setting, the optimal designs appeared to be
similar to the BCC* design. Together with 2.7.2.1, these results suggest that the
optimal designs seemed to target the less-frequent value of the error-prone variable
with very little regard for the error-free variable. Simulation results for the MLE are
included in Web Table 2.4(b). The optMLE-2 design did not lose much efficiency to
the optMLE design and typically surpassed the efficiencies of the BCC*, CC*, and
SRS designs, with gains as high as 32%, 69% and 69%, respectively.

Figure 2.5: Average Phase II stratum sizes nyx∗ under exposure misclassification.
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2.7.3 Additional Figures and Tables

(a) Exposure misclassification rates were fixed at FPR0(X∗) = 0.1 and TPR0(X∗) = 0.9.

(b) Outcome misclassification rates were fixed at FPR0(Y ∗) = 0.1 and TPR0(Y ∗) = 0.9.

Figure 2.6: Distribution of β̂ under the optMLE design with outcome and exposure misclassification.
The dashed line denotes the true value β = 0.3.
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(a) Exposure misclassification rates were fixed: FPR0(X∗) = 0.1, TPR0(X∗) = 0.9.

(b) Outcome misclassification rates were fixed: FPR0(Y ∗) = 0.1, TPR0(Y ∗) = 0.9.

Figure 2.7: Distribution of Phase II stratum sizes ny∗x∗ under outcome and exposure misclassifica-
tion.
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Figure 2.8: Average Phase II stratum sizes ny∗x∗z under outcome and exposure misclassification
when an error-free binary covariate Z with 25% prevalence was used in sampling.

Table 2.5: Three versions of the optimal design under outcome and exposure misclassification

Errors in Y ∗Y ∗Y ∗ Errors in X∗X∗X∗ optMLE optMLE-EXP optMLE-FC

FPR0FPR0FPR0 TPR0TPR0TPR0 FPR0FPR0FPR0 TPR0TPR0TPR0 Bias SE Bias SE RE RI Bias SE RE RI

0.1 0.9 0.1 0.9 −0.006 0.191 −0.006 0.193 0.977 0.983 0.001 0.192 0.987 0.976
0.5 0.003 0.220 0.014 0.225 0.956 1.019 0.007 0.215 1.039 1.012

0.5 0.9 0.004 0.232 0.008 0.221 1.094 0.940 0.007 0.222 1.093 1.024
0.5 0.014 0.238 0.010 0.239 0.988 0.949 0.019 0.248 0.921 0.982

0.1 0.9 0.1 0.9 −0.006 0.191 −0.006 0.193 0.977 0.983 0.001 0.192 0.987 0.976
0.5 0.015 0.218 0.013 0.213 1.048 1.002 0.026 0.216 1.013 0.967

0.5 0.5 0.008 0.347 0.024 0.341 1.031 1.007 0.002 0.338 1.054 1.057
0.9 0.014 0.292 0.025 0.287 1.033 1.032 0.013 0.285 1.051 0.995

Note: The optMLE design was based on the true parameters θθθ and the observed stratum sizes {Ny∗x∗} in each replicate. The
optMLE-EXP design was based on the true parameters θθθ and the expected stratum sizes E(Ny∗x∗) = N × Pβ,ηηη(Y ∗ = y∗, X∗ =
x∗); this design was the same for each replicate. The optMLE-FC design was based on the full cohort parameter estimates θ̂θθ

FC

and the observed stratum sizes {Ny∗x∗} in each replicate. Bias and SE are, respectively, the empirical standard error and bias
of the MLE. Each entry is based on 1000 replicates.
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Table 2.6: Additional simulation results under outcome and exposure misclassification

a) Varied Outcome Misclassification Rates

Errors in Y ∗Y ∗Y ∗ optMLE optMLE-2 BCC* CC* SRS

pypypy FPR0FPR0FPR0 TPR0TPR0TPR0 Bias SE Bias SE Bias SE Bias SE Bias SE

0.1 0.1 0.9 −0.012 0.217 −0.009 0.214 −0.012 0.254 −0.028 0.347 −0.058 0.516
0.5 0.024 0.230 0.003 0.241 0.004 0.286 −0.012 0.362 −0.052 0.512

0.5 0.9 −0.003 0.311 −0.009 0.321 −0.009 0.409 −0.065 0.560 −0.053 0.563
0.5 0.011 0.373 −0.005 0.361 −0.019 0.377 −0.032 0.512 −0.081 0.543

0.3 0.1 0.9 −0.006 0.191 0.004 0.190 0.001 0.223 0.022 0.297 −0.004 0.333
0.5 0.003 0.220 0.015 0.219 −0.002 0.226 0.020 0.317 0.004 0.344

0.5 0.9 0.004 0.232 0.002 0.241 −0.001 0.274 −0.023 0.386 0.006 0.357
0.5 0.014 0.238 0.005 0.248 −0.002 0.240 −0.003 0.369 −0.003 0.369

0.9 0.1 0.9 0.011 0.240 0.003 0.249 0.009 0.277 0.046 0.430 0.093 0.592
0.5 0.030 0.359 0.000 0.381 0.064 0.505 0.043 0.600 0.082 0.596

0.5 0.9 0.024 0.267 0.002 0.279 0.022 0.342 0.043 0.543 0.048 0.589
0.5 0.019 0.473 0.068 0.491 0.071 0.515 0.070 0.620 0.052 0.608

b) Varied Exposure Misclassification Rates

Errors in X∗X∗X∗ optMLE optMLE-2 BCC* CC* SRS

pxpxpx FPR0FPR0FPR0 TPR0TPR0TPR0 Bias SE Bias SE Bias SE Bias SE Bias SE

0.1 0.1 0.9 −0.006 0.191 0.004 0.190 0.001 0.223 0.022 0.297 −0.004 0.333
0.5 0.015 0.218 0.013 0.218 0.003 0.247 0.010 0.336 −0.005 0.338

0.5 0.9 0.014 0.292 0.006 0.295 −0.006 0.351 0.011 0.342 0.000 0.351
0.5 0.008 0.347 0.008 0.343 0.001 0.342 0.007 0.348 0.014 0.357

0.9 0.1 0.9 −0.001 0.174 0.006 0.189 −0.003 0.201 0.012 0.310 0.000 0.339
0.5 0.012 0.284 −0.016 0.290 0.013 0.343 0.007 0.345 0.003 0.381

0.5 0.9 0.011 0.218 −0.006 0.221 0.008 0.264 −0.006 0.337 0.017 0.366
0.5 0.021 0.365 0.018 0.364 0.023 0.366 0.006 0.360 0.036 0.387

Note: Misclassification rates for X∗ and Y ∗ were fixed at FPR0 = 0.1 and TPR0 = 0.9 in a) and b), respectively. SE is the
empirical standard error of the MLE. When py 6= 0.3, we excluded a few replicates with unstable estimates under the SRS,
CC*, or BCC* design. All other entries are based on 1000 replicates.
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Table 2.7: Additional simulation results under outcome and exposure misclassification with available
error-free covariate information

optMLE optMLE-2 BCC* CC* SRS

pzpzpz λλλ βZβZβZ Bias SE Bias SE Bias SE Bias SE Bias SE

0.25 −1 −0.25 −0.012 0.259 −0.011 0.225 −0.005 0.296 −0.016 0.321 −0.037 0.352
0.00 0.000 0.238 0.001 0.227 −0.002 0.288 0.010 0.325 −0.010 0.332
0.25 0.003 0.225 −0.014 0.221 0.023 0.287 −0.006 0.333 0.001 0.337

0 −0.25 −0.009 0.246 −0.010 0.249 −0.005 0.296 −0.016 0.321 −0.037 0.352
0.00 −0.004 0.247 −0.010 0.245 −0.002 0.288 0.010 0.325 −0.010 0.332
0.25 0.000 0.227 −0.006 0.242 0.023 0.287 −0.006 0.333 0.001 0.337

1 −0.25 −0.012 0.259 −0.016 0.267 −0.005 0.296 −0.016 0.321 −0.037 0.352
0.00 −0.017 0.252 −0.003 0.275 −0.002 0.288 0.010 0.325 −0.010 0.332
0.25 −0.007 0.260 0.001 0.270 0.023 0.287 −0.006 0.333 0.001 0.337

0.50 −1 −0.25 −0.014 0.261 −0.018 0.229 0.002 0.304 −0.007 0.310 −0.012 0.338
0.00 −0.010 0.237 −0.028 0.228 −0.004 0.264 −0.001 0.312 −0.018 0.317
0.25 −0.006 0.225 −0.018 0.225 0.013 0.287 −0.003 0.308 0.005 0.304

0 −0.25 0.000 0.241 −0.002 0.250 0.002 0.304 −0.007 0.310 −0.012 0.338
0.00 0.014 0.230 −0.003 0.239 −0.004 0.264 −0.001 0.312 −0.018 0.317
0.25 0.009 0.229 −0.007 0.251 0.013 0.287 −0.003 0.308 0.005 0.304

1 −0.25 −0.014 0.261 −0.028 0.277 0.002 0.304 −0.007 0.310 −0.012 0.338
0.00 0.002 0.265 −0.005 0.267 −0.004 0.264 −0.001 0.312 −0.018 0.317
0.25 0.008 0.250 0.008 0.261 0.013 0.287 −0.003 0.308 0.005 0.304

Note: Bias and SE are the empirical bias and standard error of the MLE, respectively.
Each entry is based on 1000 replicates.

Table 2.8: Historic TB audits results in CCASAnet

Misclassified (%)

Country Audited Treatment Completion (Y ∗) Bacterial Confirmation (X∗)

Country Grouping = 0

A 6 2 (33.3%) 0 (0.0%)
B 7 0 (0.0%) 2 (28.6%)

Country Grouping = 1

C 6 1 (16.7%) 1 (16.7%)
D 10 2 (20.0%) 5 (50.0%)

Country Grouping = 2

E 4 0 (0.0%) 0 (0.0%)

Note: No subjects had both outcome and exposure misclassification.
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Table 2.9: Parameter estimates for TB analysis in CCASAnet using historic audits

Coeff log OR

Analysis model (Y )

Intercept 0.752
X −0.415
CoG = 0 (Co = A–B) Referent
CoG = 1 (Co = C–D) 0.601
CoG = 2 (Co = E) 0.211

Outcome misclassification mechanism (Y ∗)
Intercept 2.088
X∗ 0.156
Y ∗ 4.644
X 2.485
CoG = 0 (Co = A–B) Referent
CoG = 1 (Co = C–D) −1.182
CoG = 2 (Co = E) −0.956

Exposure misclassification mechanism (X∗)
Intercept −0.600
Y −2.611
X 4.770
CoG = 0 (Co = A–B) Referent
CoG = 1 (Co = C–D) 1.685
CoG = 2 (Co = E) 0.170

Exposure model (X)
Intercept −1.017
CoG = 0 (Co = A–B) Referent
CoG = 1 (Co = C–D) −0.160
CoG = 2 (Co = E) −0.592

Note: The optimal designs for CCASAnet were
based on parameters β̂ = −0.415 and η̂ηηT = (0.752,
0, 0.601, 0.601, 0.211, 2.088, 0.156, 4.644, 2.485,
0, −1.182, −1.182, −0.956, −0.6, −2.611, 4.77,
0, 1.685, 1.685, 0.17, −1.017, 0, −0.16, −0.16,
−0.592)T.
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Table 2.10: Simulation results comparing the MLE and SMLE

MLE SMLE

Design Bias SE RE RI Bias SE RE RI

optMLE 0.010 0.176 1.000 1.000 0.008 0.176 1.000 1.000
optMLE-2 0.003 0.181 0.942 0.933 0.001 0.181 0.946 0.934

BCC* 0.002 0.198 0.788 0.853 0.001 0.198 0.785 0.855
CC* 0.000 0.270 0.426 0.616 0.000 0.270 0.425 0.618
SRS −0.017 0.305 0.333 0.541 −0.017 0.305 0.332 0.544

Note: The SMLE was proposed with X∗ as a surrogate for X such that (Y ⊥ X∗)|X.
Thus, X∗ was generated from a Bernoulli distribution with P (X∗ = 1|Y,X) =
[1 + exp{−(γ0 + γ1X)}]−1. All other variables were generated as in Section 2.3.2,
with py = 0.3, px = 0.1, FPR0(Y ∗) = 0.1, TPR0(Y ∗) = 0.9, FPR0(X∗) = 0.1, and
TPR0(X∗) = 0.9. Bias and SE are, respectively, the empirical standard error and
bias of the estimators. Each entry is based on 1000 replicates.
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CHAPTER 3

SELF-AUDITS AS ALTERNATIVES TO TRAVEL-AUDITS FOR IMPROVING
DATA QUALITY IN THE CARIBBEAN, CENTRAL AND SOUTH AMERICA

NETWORK FOR HIV EPIDEMIOLOGY

This chapter is adapted from “Self-audits as alternatives to travel-audits for im-
proving data quality in the Caribbean, Central and South America network for HIV
epidemiology” published in Journal of Clinical and Translational Science and has
been reproduced with the permission of the publisher and my co-authors Mark J.
Giganti, Marcelle Maia, Renalice Vieira, Daisy Maria Machado, Regina Célia Succi,
Sayonara Ribeiro, Mario Sergio Pereira, Maria Fernanda Rodriguez, Gaetane Jul-
miste, Marco Tulio Luque, Yanink Caro-Vega, Fernando Mejia, Bryan E. Shepherd,
Catherine C. McGowan and Stephany N. Duda.

3.1 Introduction
High quality data are essential for valid inference and decision making in obser-

vational HIV cohort research. Source document verification, or data auditing, is the
standard for ensuring high quality data in clinical trials (Weiss, 1998) and has also
been used to assess data quality in observational studies (Chaulagai et al., 2005;
Kimaro and Twaakyondo, 2005; Kiragga et al., 2011; Mphatswe et al., 2012; Duda
et al., 2012; Giganti et al., 2019). The data audit process involves a group of external
data auditors visiting the research site, comparing records in the research database to
clinical source documents, and reporting any discrepancies. In addition to assessing
the accuracy and completeness of existing data, audits can help educate local staff
on good data management practices, highlight areas for improvement in data collec-
tion methods, and provide a deterrent against data fraud. Statistical methods have
been developed that incorporate audit information into analyses, potentially provid-
ing more accurate estimates based on error-prone data (Shepherd and Yu, 2011).

Despite its benefits, source document verification of entire databases, or even of a
subset of records and variables, is a resource-intensive exercise that often exceeds the
available capacity and budget of research studies. We have developed methodologies
and tools to simplify the audit preparation and feedback process (Duda et al., 2011,
2012), but the practice remains relatively uncommon among observational HIV co-
horts. Although the most objective audits are conducted by external auditors, sending
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trained auditors to distant sites within multi-national networks (on-site monitoring
or travel-auditing) requires extensive travel funds and dedicated personnel effort (De,
2011). External auditors require additional time to familiarize themselves with local
source documents and procedures, while sites may spend unplanned time obtaining
patient charts for review and hosting the visitors. Language differences can further
complicate the audit process.

To address the logistical and financial challenges of these travel-audits, the present
work investigates the efficacy of audits executed by local sites themselves, referred
to as “self-audits.” These self-audits explore a creative way to continue maintaining
high data quality standards, while markedly lowering the costs of performing the
audits. Several novel internal checks are built into our self-audits in an attempt to
strengthen their validity: (1) records to be audited are randomly selected by the data
coordinating center rather than the sites themselves and (2) prior to performing their
self-audits, local personnel are notified that several sites will be randomly selected to
have their self-audits verified by travel auditors, i.e., that external auditors will travel
to some of the sites and validate the same records as self-auditors. We describe our
experience conducting a self-audit process within a multi-national HIV cohort and
compare the findings from self- and travel-audits at those sites randomly selected to
receive both.

3.2 Methods
3.2.1 Cohort

The Caribbean, Central, and South America network for HIV epidemiology
(CCASAnet) is a consortium of HIV care and treatment clinics in seven countries in
Latin America. CCASAnet clinics pool their routine clinical care data to conduct col-
laborative research to better understand the HIV epidemic in the region (McGowan
et al., 2007). In early 2017, investigators from eight sites (six adult and two pediatric)
participated in a new self-audit process to review their data. Participating sites in-
cluded Instituto Nacional de Infectologia Evandro Chagas in Rio de Janeiro, Brazil;
Universidade Federal de Sao Paulo, Brazil; Universidade Federal de Minas Gerais,
Brazil; Fundación Arriarán in Santiago, Chile; Le Groupe Haïtien d’Etude du Sar-
come de Kaposi et des Infections Opportunistes in Port-au-Prince, Haiti; Instituto
Hondureño de Seguridad Social and Hospital Escuela Universitario in Tegucigalpa,
Honduras; El Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
in Mexico City, Mexico; and Instituto de Medicina Tropical Alexander von Humboldt
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in Lima, Peru.
The CCASAnet data structure roughly follows data exchange protocols outlined

by the HIV Cohorts Data Exchange Protocol (HICDEP) and the International epi-
demiology Databases to Evaluate AIDS (IeDEA) (IeDEA - Data Exchange Standard
(DES), 2017; HICDEP 1.110., 2017). Variables captured in the following patient
forms were audited: basic demographic information typically captured at enrollment
(tblBAS), information on visits and vital status (tblVIS and tblLTFU), CD4+ cell
count measurements (tblLAB_CD4), HIV viral load measurements (tblLAB_RNA),
antiretroviral therapy regimens and dates (tblART), and clinical endpoints (tblCEP).
An abbreviated data dictionary for these tables is provided in Section 3.5 (Table 3.3).
Of 28 audited variables, 13 were captured at each patient’s first appointment only
(e.g., sex, birthdate), and 15 could be collected multiple times per patient during
subsequent clinic visits (e.g., weight, height, CD4+ cell count). For clarity, we re-
fer to individual occurrences or measurements of these data values as “data entries.”
Clinical source documents were in the form of parallel paper-based forms at each of
the study sites.

3.2.2 Study Design
For each site, the CCASAnet Data Coordinating Center at Vanderbilt (VDCC)

selected 40 patient records to be audited. Of these, 20 records were randomly selected
among patients enrolling within the previous year to assess the quality of recent data
capture, and 20 records were randomly selected among all patients. For the six adult
sites, an additional 10 records were chosen from those audited in a previous study
(Giganti et al., 2019). Institutional review board approval was obtained from each
site and the VDCC.

Prior to the audit, each site selected representatives to attend a two-hour online
training session that explained procedures for conducting a data audit and docu-
menting findings. Following completion of the training session, sites were given two
weeks to complete the self-audit. Upon return of self-audit results, sites were com-
pensated $2000 US for their efforts. In June 2017, two VDCC investigators performed
on-site audits at three randomly selected HIV clinics (one adult and two pediatric)
using published audit procedures (Duda et al., 2011, 2012) to audit the same pa-
tient records that were chosen for the self-audit. We refer to this as the travel-audit.
Travel-auditors spent two and a half days on average performing audits at each site.
The self- and travel-audits for this study were completed between May and July 2017.
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The VDCC developed a REDCap web-based data capture interface, so site and
travel auditors could view audit records and enter audit findings and data corrections
in a structured, electronic format (Harris et al., 2009). These REDCap forms were
based on audit templates developed in prior audit work (Duda et al., 2011, 2012).
The most recently submitted study data for the randomly selected audit patients
were imported into corresponding fields in the REDCap database. Each site could
only see its own audit records.

For each data entry, both sets of auditors compared the value in REDCap, repre-
senting data the site had submitted to CCASAnet for research studies, to the site’s
source documents, including paper patient charts, laboratory summaries, and elec-
tronic data systems. Within the REDCap interface, auditors were asked to categorize
their findings as one of the following: “Value matches the chart (correct),” “Value
doesn’t match the chart,” or “Can’t find this value in the chart.” For data entries in
error, auditors were prompted to provide corrected values. If they identified a new
data entry in the source documents that was not in the REDCap data but should
have been, they entered it into a blank supplemental data field with the label “Found
value in the chart (was not in the study data).” For our analysis, findings were col-
lapsed into “correct” (matches the chart) and “incorrect” (does not match the chart,
could not be found in the chart, or was found in the chart but not present in the
study data). Following completion of the audits, audit findings and corrections were
extracted from REDCap for analysis.

3.2.3 Analysis
R Statistical Software (R Core Team, 2019) was used for all analyses. Analyses

focused on data entries that were reviewed by both sets of auditors, referred to as the
“doubly-audited sample.” All patient records were reviewed by self-auditors but due to
time constraints, many records were not reviewed by travel-auditors. Characteristics
of doubly-audited (included) and self-audited only (excluded) patient records were
compared using logistic regression models, controlling for site. Because our sample
included both pediatric and adult sites, we excluded two variables, receiving PMTCT
as an infant and birth mode, which are specific to pediatric patients. Entries for
clinical AIDS diagnosis prior to first visit, date of prior clinical AIDS diagnosis, and
WHO stage were also excluded because they were incompletely audited. (The related
variables, prior AIDS diagnosis and date, were included.) All other variables reviewed
during self- or travel-audits were included in analyses.
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To directly compare findings, we defined an entry in “discordance” to mean that
self- and travel-audit findings did not agree. Rates of audit discordance were cal-
culated by variable and by site. Variables collected only once (e.g., sex, birthdate)
were calculated as the proportion of patients’ entries in discordance. Repeatedly col-
lected entries (e.g., visit date, height, and labs) were calculated as both the average
per-person proportion of entries in discordance and the total percentage of entries
in discordance. The Kappa statistic was computed to estimate overall agreement
between self- and travel-audit entries.

Further descriptive analyses addressed differences in how self- and travel-auditors
recorded fixes for incorrect entries, focusing on entries agreed to be incorrect by
both sets of auditors and excluding those that could not be found in the patient
chart. With these, we inspected different fixes submitted for the same incorrect
entries (called “mismatched corrections”). Mismatched corrections were reviewed by
two investigators to identify possible causes for the mismatch, which we categorized
as audit protocol issues, date approximations, genuine differences, near-equivalent
coding, or typographical errors (typos). Audit protocol issues included entries that
one team declared incorrect while the other team labeled “could not verify/no source
document” (a matter of interpretation or thoroughness of chart searching) or some
incomplete data entries that self-auditors corrected in a way that created duplicate
data, while travel-auditors labeled them “could not find in the chart” in order to avoid
duplicate data rows. For example, an instance of ce_d (start date of clinical endpoint)
was corrected by self-auditors to the same date as the previous ce_d (creating a
duplicate of this clinical endpoint), while travel-auditors reported that they could
not find the original ce_d value. Other correction mismatches occurred because of
the combination of dates and date approximation variables. One audit team might
record a corrected date “exact to the day” whereas another recorded a correction that
was only “exact to the month.” Although one correction was more precise than the
other, both were technically correct.

3.3 Results
A total of 39,269 entries in 130 patient records were selected for self- and travel-

audit across the three sites. Figure 3.1 (left panel) summarizes audit results for
these entries. Travel-auditors faced time constraints and therefore audited fewer
records: 29,965 of the selected entries (76%) were self- but not travel-audited. Patients
whose records were not at all travel-audited (n=65, 50%) were not materially different
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from those who were at least partially travel-audited, since the order of auditing was
essentially random (Section 3.5, Table 3.4). Among patients that were both self- and
travel-audited (n=65), some were not fully audited. There were 52 patients (80%)
whose original records contained entries that were self- but not travel-audited, and
41 patients (63%) with entries that were travel- but not self-audited. While these
percentages appear somewhat similar, we note that only 298 entries (less than 1% of
the original sample) were travel- but not self-audited whereas 29,965 entries (76%)
were self- but not travel-audited.

Figure 3.1: Comparison of audit findings between self- and travel-auditors at the three sites (left)
and among only doubly-audited entries (right).

3.3.1 Overall Data Quality
Across 65 patient records, 8919 data entries capturing 28 clinical and demographic

variables were both self- and travel-audited. Figure 3.1 (right panel) shows the num-
ber and distribution of errors by audit site for entries that were both self- and travel-
audited. Across all variables, records, and sites, self- and travel-auditors reported
similar proportions of entries to be correct in the doubly-audited sample (93% ver-
sus 92%). Self-auditors reported slightly more values not matching the charts (5.0%
versus 3.8%), while travel-auditors indicated that more values could not be found in
charts (3.0% versus 1.0%). Auditors reported the same number of values that were
found in the patient chart but not originally in the database (1.1%).
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Figure 3.2: Percentage of audit findings by variable and audit type. Variable definitions are in
Section 3.5.

Figure 3.2 shows the error rates for each variable from both travel- and self-audits
among the doubly-audited sample. Independently, self- and travel-auditors reported
similar rates of incorrect values for all variables in the ART, viral load, and CD4 data
tables (all rates were less than 5% different). From the baseline and visit tables, both
teams reported small error rates for sex, death (yes/no), height, weight, and visit
date (all less <5%). However, audit results for date of death substantially differed, as
self-auditors reported 0% (0 of 12) incorrect but travel-auditors reported 33% (4 of
12) incorrect. Similar rates of incorrect entries for clinical diagnosis dates (ce_d) were
reported by both audit teams, but travel-auditors reported that 16% (30 of 185) of
disease codes (ce_id) were incorrect whereas self-auditors reported only 2% (3 of 185)
incorrect. Across all variables except AIDS diagnosis date (aids_d), travel-auditors
reported a larger number of entries that could not be found in the chart. Details are
shown in Table 3.1.
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Table 3.1: Self- and travel-audit discordance by variable in the doubly-audited sample (n=8919
entries)

Audited patient
records

Audited entries Discordant
entries

Average
discordance per

record

Overall
discordance

tblBASa 434 434 38 9% 9%
male_y 65 65 0 0% 0%
birth_d 65 65 1 2% 2%

hiv_diagnosis_d 62 62 14 23% 23%
mode 63 63 5 8% 8%

recart_y 62 62 3 5% 5%
aids_y 36 36 4 11% 11%
aids_d 18 18 5 28% 28%

baseline_d 63 63 6 10% 10%
tblLTFUa 168 168 18 11% 11%

drop_y 52 52 1 2% 2%
drop_d 22 22 4 18% 18%
drop_rs 19 19 8 42% 42%
death_y 63 63 1 2% 2%
death_d 12 12 4 33% 33%
tblVISb 213 4248 206 11% 5%
visit_d 57 1216 43 6% 4%
height 57 1075 36 5% 3%
weight 57 1061 52 12% 5%

cdcstage 42 896 75 26% 8%
tblLAB_CD4b 164 1933 46 4% 2%

cd4_d 55 652 19 6% 3%
cd4_v 55 649 8 2% 1%

cd4_per 54 632 19 3% 3%
tblLAB_RNAb 96 1248 54 6% 4%

rna_d 48 624 23 8% 4%
rna_v 48 624 31 5% 5%

tblARTb 193 514 69 13% 13%
art_id 58 155 9 4% 6%
art_sd 58 153 25 20% 16%
art_ed 39 110 19 17% 17%
art_rs 38 96 16 15% 17%

tblCEPb 100 374 79 20% 21%
ce_d 50 189 48 23% 25%
ce_id 50 185 31 18% 17%

Note: aVariables from tblBAS and tblLTFU were collected once per record. bVariables from all other tables were
repeatedly collected.

For quantitative variables height, weight, lab values, and dates, the median dis-
crepancies between the original entries and the self- or travel-audit corrections (with
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the interquartile range [IQR]) are included in Table 3.2. Lab dates (cd4_d and rna_d)
were corrected in at least 20 entries by either set of auditors, with median corrections
of 16–17 days for CD4 labs and 0–2 days for RNA labs. For ART regimens, self-
auditors corrected both the start and end dates by about 1 month on average, while
travel-auditors supplied slightly larger fixes to start dates than to end dates (median
differences of 28 and 17 days, respectively). Many of the remaining variables were
corrected on only a few entries (e.g., birth_d, aids_d, baseline_d, cd4_v, cd4_per),
so median discrepancies may appear more extreme. Corrections made to height and
weight were minor.

Table 3.2: Magnitude of discrepancies between original entries in quantitative variables found to not
match the charts and corrections submitted by self- or travel-auditors.

Self-audit Travel-audit
Corrected entries Median difference (IQR) Corrected entries Median difference (IQR)

tblBAS
birth_d 3 6 (4, 34) days 2 34 (20, 47) days

hiv_diagnosis_d 14 6 (−377, 110) days 17 14 (−14, 155) days
aids_d 2 116 (43, 190) days 4 10 (−4, 81) days

baseline_d 6 −8 (−17, 2) days 2 817 (416, 1217) days
tblLTFU

drop_d 3 0 (0, 33) days 1 −309 (NA, NA) days
death_d 0 NA (NA, NA) days 4 7 (−8, 19) days

tblVIS
visit_d 17 −6 (−31, 29) days 7 −10 (−228, −5) days
height 12 −0.4 (−1.4, 2.9) cm 13 −0.5 (−1.0, 0.5) cm
weight 26 −0.1 (−0.1, −0.1) kg 27 −0.1 (−0.1, −0.1) kg

tblLAB_CD4
cd4_d 26 17 (1, 38) days 20 16 (1, 40) days
cd4_v 4 −53 (−325, 441) cells/mm3 5 −100 (−600, −5) cells/mm3

cd4_per 8 −0.3 (−15.1, 4.4)% 5 −0.6 (−4.0, 1.0)%
tblLAB_RNA

rna_d 26 2 (−4, 26) days 31 0 (−8, 27) days
rna_v 18 350 (30, 350) copies/mL 7 −101 (−498, 366) copies/mL

tblART
art_sd 28 32 (0, 154) days 25 28 (0, 47) days
art_ed 23 −26 (−88, 149) days 19 17 (−17, 154) days

tblCEP
ce_d 36 56 (−2, 147) days 11 30 (21, 227) days

Note: Entries from the doubly-audited sample (n = 8919) that received audit findings of “doesn’t match chart” from self-
auditors and/or from travel-auditors are included in the left and right halves of the table, respectively.

3.3.2 Comparing Audit Findings
Across all patient entries, 8409 (94%, Kappa = 0.59) received the same assessment

from self- and travel-auditors (7988 correct and 421 incorrect). Of the 510 discordant
entries, 44% were marked correct by travel-auditors but incorrect by self-auditors
while 56% were marked correct by self-auditors but incorrect by travel-auditors. Pa-
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tient sex was the only variable with no discordance, but other variables pertaining
to CD4 and RNA labs, routine visit variables (visit_d, height, and weight), and
baseline variables (recart_y, drop_y, death_y, and birth_d) exhibited less than 5%
discordance based on more than 50 entries each.

Variables drop_rs (42%) and death_d (33%) from tblLTFU had the largest in-
dividual proportions discordant, but these estimates were based on only 19 and 12
entries, respectively, while many of the more concordant variables were based on >600
entries. Of the 8 discordant drop_rs entries, 6 were originally entered as “Other,”
which self-auditors considered to match the chart while travel-auditors corrected 3 to
“LTFU/not known to be dead” and could not find the other 3. Disagreement in the 4
death_d entries came from self-auditors finding them “correct” while travel-auditors
proposed corrections that were 0, 30, 34, and 14 days from the original entries. There
was also 18% discordance in ce_id, with more than half of the discordant ce_id en-
tries unable to be found by travel-auditors but assessed to be correct by self-auditors.
Between-audit discordance rates are reported for all variables in Table 3.1.

Discordance rates for certain variables (e.g., CDC stage, reason for dropout,
dropout date, and death date) differed between the three sites Figure 3.4). While
these variables saw more variability in site-specific discordance rates, we note that
rates for reason for dropout, dropout date, and death date were based on a small
number of audited entries (≤ 10). We attribute the disparities between discordance
rates for CDC stage to differences in the number of audited entries at the three sites:
32 at the adult site versus 292 and 572 at Pediatric Sites A and B, respectively.

3.3.3 Comparing Audit Fixes
Of 421 entries marked incorrect by both teams of auditors, 52 (12%) were not

corrected by either because the original values could not be found in the patient
charts; these were appropriately left uncorrected. Of the remaining 369 erroneous
entries, 304 (82%) were corrected by both auditors (called the “doubly-corrected
sample”). Most of the singly-corrected entries (n=60, 92%) were unable to be found
by one team but were found by the other, which resulted in the blank corrections. All
entries agreed to be incorrect are included in Figure 3.3, colored by the categorized
comparison of the self- and travel-auditor corrections.
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Figure 3.3: A comparison of corrections made to 421 entries assessed as incorrect by both self-
and travel-auditors. This plot includes entries that neither set of auditors could find (which were
appropriately left uncorrected and counted as “Fixes match”), as well as singly- and doubly-corrected
entries.

Of 304 doubly-corrected records, 250 (82%) received the same corrections from
self- and travel-auditors. While proportions of entries receiving mismatched correc-
tions varied by variable, there were seven variables that received all matching fixes
from self- and travel-auditors: CD4 value (n=17), height (n=13), birthdate (n=2),
drop from cohort (n=2), prior ART (n=1), date of prior AIDS diagnosis (n=1), and
sex (n=1). On the other hand, the mismatched corrections (n=54) occurred across
15 variables, with the largest numbers in “reason for changing ART regimen” (n=9),
end date of ART regimen (n=8), viral load value (n=6), CD4% (n=6), and date of
HIV diagnosis (n=6).

The largest number of mismatches were identified to be genuine differences be-
tween self- and travel-corrections (n=29, 54%). These mismatches were found primar-
ily across variables CDC stage, reason for switching ART regimen, and date of HIV
diagnosis variables (4–5 entries each). After this, there were fewer than 10 entries
found to be attributable to typographical errors (n=9), differing interpretations of
audit protocol (n=6), date approximations (n=6), or near-equivalent coding (n=4).
Most typographical errors were found in lab values, where self-auditors entered com-
mas as decimal separators (frequently used throughout South America) instead of
periods as decimal point separators (e.g., “11,99” instead of 11.99, with software sav-
ing as “1199” when alerts were overridden). Near-equivalent coding applied mostly to
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the “reason for switching ART regimen” variable (art_rs), where selection of codes
depended on auditor interpretation (e.g., “availability of more effective treatment”
vs. “simplified treatment available”).

3.4 Discussion
In this study we describe a novel approach where sites perform self-audits super-

vised by a central data coordinating center. We compared audit findings between
self- and travel-auditors on a sample of 8919 entries across 65 patients capturing 28
HIV variables at three HIV clinics in Latin American. Overall error rates were similar
between self- and travel-auditors, with 94% of entries receiving the same assessment
from self- and travel-auditors, and the majority (72%) of incorrect variables received
the same corrections from both groups. Despite some discordance and mismatched
corrections between auditors, our findings suggest that data audits carried out by
local investigators can provide a viable alternative to travel-audits to investigate data
quality.

Monitoring data quality in a multi-site research network can be logistically chal-
lenging, costly, and time-consuming (De, 2011). The time and costs have been well-
documented in the clinical trials space, where extensive source document verification
is often required for government regulatory agency approval of new drugs and devices
(Houston et al., 2018). Cost-savings measures in clinical trials have prompted the roll-
out of “remote auditing,” where trial auditors log in to the electronic medical records
of distant hospitals to review and verify patient information (De, 2011; Duda et al.,
2011). Such solutions are not feasible in many global heath settings, however, where
electronic systems are not designed for secure remote login capacity, large geographic
distances produce high internet latency, patient charts are on paper, or internet is
not available.

The CCASAnet cohort faces particular challenges because the sites are dispersed
in seven countries throughout North and South America. Despite the demonstrated
importance of data audits (Weiss, 1998; Kimaro and Twaakyondo, 2005; Chaulagai
et al., 2005; Kiragga et al., 2011; Mphatswe et al., 2012; Duda et al., 2012; Giganti
et al., 2019), constraints in both time and funding have limited the extent to which
data audits have been performed in this network. The self-audits described in this
manuscript allowed us to collect extensive data on all eight sites using fewer resources.
The self-audit involved a two-hour online training session and compensation of $2,000
US to local investigators. Local sites were given two weeks to complete the self-audit,
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compared to the approximately two and a half days travel-auditors spent at each site.
The number of entries audited by self-auditors was strikingly higher than our previous
efforts with added benefits of lower cost and roughly equivalent resulting quality.

Although results were largely similar between self- and travel-auditors, the between-
auditor discrepancies that we observed illustrate some challenges with determining
correct values even with an audit. Many audit decisions are not straightforward, and
neither the self- nor travel-audits should be considered a gold standard. Self- and
travel-auditors contributed insights into the reasons for mismatched corrections, and,
when shown the results, recommended establishing a better protocol for definitions
of certain variables for data auditing and collection. Both sets of auditors felt there
could be ambiguity in interpretations of specific variables (e.g., can CDC stage go
from C to B, or once C is it always maintained as C?), which could contribute to
finding discordance and correction mismatches. Audit entries were labeled as “cor-
rect” or “incorrect,” whereas there is often some ambiguity in the true value; for
example, an auditor’s inability to find an original value in the source document does
not necessarily imply that the original data were incorrect.

Our study has several limitations. Travel-auditors were unable to completely audit
all records and the subset of doubly-audited records may not be fully representative
of all records selected by the data coordinating center to be audited. This analysis
excluded three patient fields of potential interest (clinical AIDS diagnosis prior to first
visit (yes/no), date of prior clinical AIDS diagnosis, and WHO stage) because they
were incompletely audited, which poses limitations in extending these findings to these
specific variables. At some sites, self-auditors may have been involved in the original
data entry, which could potentially lead to underreporting of errors. Sites were aware
that their records could be externally audited, which we believe strengthened the
quality of their self-audits and lessened concern of such underreporting. In addition,
sites were given a small amount of compensation for completing their self-audits.
Self-audits without the possibility of external auditing or without compensation may
perform differently. Only three sites were doubly-audited, and sites that were not
selected for a travel-audit may have had substantially different levels of concordance
between self- and travel-audits.

Finally, our travel- and self-audit results may not be applicable to other settings.
Settings with paperless data capture may require different source data verification
techniques, such as detailed consideration of all text and data fields in an electronic
health record, some of which may not have made it into the research database. We
recognize that all our sites had prior experience with audits, were active research
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contributors, and engaged in data quality activities. If sites are unfamiliar with data
quality concepts or when scientific misconduct or fraud is a potential concern, self-
audits are unlikely to be an effective solution despite cost-savings.

Our study has several strengths. This study builds upon previous data quality
initiatives in a diverse, multi-national HIV cohort. Initial self- and travel-audit find-
ings gauged the overall integrity of data at the three sites, while the comparison of
doubly-audited entries investigated the efficacy of the proposed self-audits to replace
travel-audits in the future. The analysis built on a large dataset, capturing many
facets of the patient record, which allowed us to draw conclusions not just about the
general quality of data but also inspect the integrity of specific variables and forms.
Additionally, anti-fraud precautions were incorporated into the self-audit methodol-
ogy: 1) patient IDs were randomly selected by the VDCC (not the sites) and 2) a
random subset of the eight sites were chosen for a travel-audit, as well.

With similar overall error rates, our findings suggest that self-audits are an ef-
fective approach for assessing data quality and should be considered in networks
performing analyses using pooled HIV observational data. However, discrepancies
observed between corrections illustrate challenges in determining correct values even
with audits. For multi-site collaborations, we recommend first conducting baseline
travel-audits. After the team is familiar with sites’ data quality and the audit process,
we recommend regular audits, which may include self-auditing in a manner similar
to that described here.
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3.5 Appendix B

Table 3.3: Data dictionary for CCASAnet variables

tblBAS: Contains basic patient information typically collected at enrollment
record_id Study ID
male_y Sex
birth_d Birth date

hiv_diagnosis_d HIV diagnosis date
mode Mode of transmission

recart_y Prior ART?
aids_y AIDS diagnosis prior to first visit?
aids_d Date of prior AIDS diagnosis

aids_cl_y Clinical AIDS diagnosis prior to first visit?
aids_cl_d Date of clinical AIDS diagnosis prior to first visit
baseline_d First visit date at CCASAnet clinic

pmtct Received PMTCT as an infant? (pediatric sites only)
birth_mode Birth mode (pediatric sites only)

tblLTFU: Contains death and drop-out information collected during follow-up
drop_y Has patient been dropped from cohort?
drop_d Date of drop
drop_rs Reason for dropping
death_y Did the patient die?
death_d Date of death

tblVIS: Contains visit-related information
visit_d Visit date
height Height (in cm)
weight Weight (in kg)

cdcstage CDC stage
whostage WHO stage

tblLAB_CD4: Contains CD4 lab measurements
cd4_d CD4 date
cd4_v CD4 value

cd4_per CD4 percent

tblLAB_RNA: Contains viral load lab measurements
rna_d Viral load date
rna_v Viral load value

tblART: Contains antiretroviral therapy (ART) information
art_id ART regimen
art_sd Start date of ART regimen
art_ed End date of ART regimen
art_rs Reason for stopping ART regimen

tblCEP: Contains clinical events including serious non-AIDS conditions
ce_d Date of disease diagnosis
ce_id Disease code

Note: The CCASAnet data structure roughly follows data exchange protocols outlined by
the HIV Cohorts Data Exchange Protocol (HICDEP) and the International epidemiology
Databases to Evaluate AIDS (IeDEA).
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Table 3.4: Comparing baseline and follow-up characteristics of patients who were only self-audited
and who were self- and travel-audited

Variable Self- and travel- Self-audited P-Value
audited (n = 65) only (n = 65)

Age at first clinic visit mean (sd) 15.3 years (17.9) 18.5 years (18.9) 0.55

Age at death mean (sd) 18.0 years (21.2) 31.3 years (24.5) 0.36

Number of form entries mean (sd)
ART regimen 2.7 (2.5) 3.6 (3.0) 0.06
CD4 labs 17.4 (16.3) 21.4 (19.2) 0.09
Clinical endpoints 5.9 (9.2) 6.6 (8.0) 0.62
Viral load labs 17.8 (16.3) 20.6 (18.1) 0.2
Visits 43.4 (44.8) 57.4 (58.1) 0.15

Sex (% male) n = 41 (63%) n = 37 (57%) 0.52

Dead (% yes) n = 12 (18%) n = 14 (22%) 0.51

AIDS (% yes) n = 20 (31%) n = 17 (26%) 0.12

Prior ART (% yes) n = 10 (15%) n = 9 (14%) 0.83

Drop from cohort (% yes) n = 22 (34%) n = 16 (25%) 0.44

Reason for droppinga

LTFU/ not known to be dead n = 8 (36%) n = 5 (31%) Ref
Other n = 8 (36%) n = 7 (44%) 0.77
Transfer to another center n = 6 (27%) n = 4 (25%) 0.77

Mode of transmission
Heterosexual Contact n = 7 (11%) n = 13 (20%) Ref
Homosexual/bisexual contact n = 9 (14%) n = 9 (14%) 0.28
Perinatal n = 39 (60%) n = 31 (48%) 0.45
Other n = 2 (3%) n = 2 (3%) 0.86
Unknown n = 8 (12%) n = 10 (15%) 0.49

Note: P-values are from the Wald tests for the coefficient effects in logistic regres-
sion models for whether the patient was included in the analysis, controlling for site.
aProportions of reason for dropping are limited to subjects who were dropped.
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Figure 3.4: Average proportion of discordant entries per patient by variable by site (sized by number
of audited patient records). For variables that were collected once, this is the proportion of patients
whose entries were discordant. For variables that were collected more than once, this is the average
of the per-patient proportions of entries that were discordant.
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CHAPTER 4

EFFICIENT ODDS RATIO ESTIMATION UNDER TWO-PHASE SAMPLING
USING ERROR-PRONE DATA FROM A MULTI-NATIONAL HIV RESEARCH

COHORT

4.1 Introduction
Electronic health records (EHR) and other observational databases routinely col-

lect a wide array of information on large numbers of patients. While initially created
to support clinical care, financial billing, and insurance claims (Nordo et al., 2019),
these databases are increasingly being used for clinical investigations that can influ-
ence disease prevention and policy-making. In particular, there has been an uptake in
observational studies of HIV/AIDS, where patients engage in regular, frequent care,
generating large amounts of routine clinical data (Zaniewski et al., 2018).

Observational databases can be error-prone since data collection is often secondary
to clinical care, and the error mechanisms can be quite complicated. For example, a
binary outcome of interest may be differentially misclassified; that is, the sensitivity
and specificity may depend on other variables such as study site. Errors in continuous
variables can be even more so: they can be additive or multiplicative, symmetric or
skewed, and centered around zero or systematically biased. In addition, errors can
be correlated across multiple error-prone variables. Naive logistic regression analyses
could yield biased odds ratio (OR) and standard error estimates in the presence
of outcome misclassification and/or covariate errors (Barron, 1977; Copeland et al.,
1977; Quake et al., 1980; Neuhaus, 1999).

To ensure data integrity, clinical trials have long relied on source document ver-
ification and data auditing. Observational studies have begun to advocate for these
procedures as well (Duda et al., 2012; Giganti et al., 2019; Lotspeich et al., 2020). In
a typical data audit, external, trained auditors visit the site, compare existing records
to clinical source documents, and report discrepancies. Complete data re-entry would
be ideal, but could be too resource-intensive, especially for large databases like EHR.
A cost-effective alternative is the partial audit or two-phase design, wherein error-
prone variables are observed for all subjects from the research database during Phase
I, and then this information is used to select a validation subsample in Phase II. Thus,
the available data consist of validated records for subjects chosen in Phase II and un-
validated records for everyone else. Two-phase sampling greatly reduces the burden
of data validation and thus has been used in several large-scale observational studies,
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including the Caribbean, Central, and South America Network for HIV Epidemiology
(CCASAnet).

CCASAnet is a multi-site research network that uses routinely collected HIV pa-
tient care data to address questions about the characteristics of the HIV epidemic
and to improve the quality and consistency of clinical research activities across Latin
America. Individual-level data from CCASAnet clinical sites are sent to the Data Co-
ordinating Center at Vanderbilt University (VDCC) in Nashville, Tennessee, where
they are compiled into a research database (McGowan et al., 2007). Participating
sites are regularly audited by the VDCC to ensure data quality; we focus on one
round of audits from 2013–2014 (Giganti et al., 2019).

We are interested in estimating the associations between risk factors CD4 count
and AIDS, both measured at the time of antiretroviral therapy (ART) initiation,
and the odds of subsequently developing an AIDS-defining event (ADE) within two
years after initiating ART. Error-prone data were available for 5109 patients in the
collaborative CCASAnet database (Phase I sample), and audit data were available
for a site-stratified simple random sample of 117 patients (Phase II sample). The
audits revealed many data errors. Giganti et al. (2019) noted a higher prevalence of
ADE in the audit database than in the original research database. In addition, from
previous audits we have learned that date variables tend to be particularly prone to
errors. Since the outcome (ADE within two years of ART initiation) and primary
predictors (CD4 and AIDS diagnosis at ART initiation) were derived based on the
date of ART initiation, errors in the date of ART initiation could induce dependent
errors in these key study variables. More details on the definitions of these variables
can be found in Section 4.4. Here we propose a method to combine the audit data
with the pre-audit data to obtain unbiased and efficient OR estimators.

Statistical methods have been developed to obtain valid inference from error-prone
data under a two-phase design. The majority of those methods address classical mea-
surement error in covariates only (Carroll et al., 2006) or binary outcome misclas-
sification alone (Magder and Hughes, 1997; Neuhaus, 1999). Fewer methods have
been developed to handle outcome misclassification and covariate measurement error
simultaneously. When sensitivity and specificity or false positive and false negative
rates (FPR and FNR, respectively) of a binary outcome and covariate are known
or can be reliably estimated, the matrix method (Barron, 1977) or inverse matrix
method (Marshall, 1990) can be extended to correct naive OR estimates based on
misclassified data (Tang et al., 2013). Fully-parametric maximum likelihood estima-
tors (MLE) have been proposed for outcome and/or binary covariate misclassification
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(Tang et al., 2015), but they do not accommodate error-prone continuous covariates.
In addition, they require explicit specification of the distributions of measurement
errors, which may render bias when models are misspecified (Robins et al., 1994).
Design-based estimators, such as the Horvitz–Thompson (HT) (Horvitz and Thomp-
son, 1952) and generalized raking (Deville et al., 1993) estimators, can also be used
(Lumley et al., 2011). While these estimators do not require specification of the error
models, they tend to be less efficient than model-based estimators, especially when
the Phase II sampling probabilities are extremely unequal.

In this manuscript, we propose a general framework to accommodate a misclas-
sified binary outcome and error-prone categorical or continuous covariates under a
two-phase design. Our methods handle settings where the error rates depend on other
error-prone and error-free covariates. We model the covariate error distribution non-
parametrically with B-spline sieves (Grenander, 1981) to accommodate continuous
covariates subject to arbitrary measurement error patterns. We develop a compu-
tationally efficient and numerically stable EM algorithm to maximize the resulting
semiparametric likelihood. Our estimators are shown to be consistent, asymptotically
normal, and asymptotically efficient.

4.2 Methods
Consider a binary outcome, Y , and vector of continuous or categorical covariates,

XXX, which are assumed to be related through the logistic regression model Pθθθ(Y =
1|XXX) = [1 + exp{−(α + XXXβββ)}]−1, where θθθ = (α,βββT )T . Error-prone measures of
the outcome and covariates recorded in the database are denoted by Y ∗ and XXX∗,
respectively. Throughout the paper, we use “error-prone” to describe both categorical
variables subject to misclassification and continuous variables subject to measurement
error. A complete, validated observation (Y ∗,XXX∗, Y,XXX) is assumed to be generated
from

P (Y ∗,XXX∗, Y,XXX) = Pθθθ(Y |XXX)P (Y ∗|XXX∗, Y,XXX)P (XXX|XXX∗)P (XXX∗), (4.1)

where Pθθθ(Y |XXX) is the logistic regression model of primary interest, P (Y ∗|XXX∗, Y,XXX)
is the conditional probability of Y ∗ given (XXX∗, Y,XXX), P (XXX|XXX∗) is the conditional
density of XXX given XXX∗, and P (XXX∗) is the marginal density of XXX∗. Conditional inde-
pendence of Y and XXX∗ given XXX is assumed, such that P (Y |XXX,XXX∗) = Pθθθ(Y |XXX). No
additional assumptions are made, and expression (4.1) allows for differential outcome
misclassification and correlated covariate errors. This general setup covers the clas-
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sical scenarios with either (1) outcome misclassification only, letting XXX∗ = XXX and
P (Y ∗, Y,XXX) = Pθθθ(Y |XXX)P (Y ∗|Y,XXX)P (XXX), or (2) covariate measurement error only,
setting Y ∗ = Y and P (XXX∗, Y,XXX) = Pθθθ(Y |XXX)P (XXX|XXX∗)P (XXX∗). Error-free covariates
can also be included by decomposing XXX = (XXXT

a ,XXX
T
b )T and XXX∗ = (XXXT

a ,XXX
∗T
b )T , where

subscripts a and b denote error-free and error-prone covariates, respectively. Thus,
complete observations are assumed to be generated from

P (Y ∗,XXX∗, Y,XXX) = Pθθθ(Y |XXXa,XXXb)P (Y ∗|XXX∗b , Y,XXXa,XXXb)P (XXXb|XXX∗b ,XXXa)P (XXX∗b ,XXXa).

With complete data on all N subjects, estimates can be obtained by maximizing
the usual likelihood ∏N

i=1 Pθθθ(Yi|XXX i). In a two-phase study, however, the likelihood
contributions of validated and unvalidated subjects are different. While validated
subjects contribute complete data to the likelihood via equation (4.1), unvalidated
subjects can only contribute incomplete data to the likelihood by marginalizing out
the unobserved Phase II variables. Let V denote the validation indicator, where
Vi = 1 if subject i was selected for Phase II and 0 otherwise. The observed-data
log-likelihood can be expressed as

N∑
i=1

Vi

{
logPθθθ(Yi|XXX i) + logP (Y ∗i |XXX∗i , Yi,XXX i) + logP (XXX i|XXX∗i )

}

+
N∑
i=1

(1− Vi) log


1∑
y=0

∫
xxx
Pθθθ(y|xxx)P (Y ∗i |XXX∗i , y,xxx)P (xxx|XXX∗i )dxxx

. (4.2)

Because XXX∗ is fully observed at Phase I, P (XXX∗) can be ignored in the inference of θθθ.
Further, two-phase designs assume that the selection of the Phase II sample depends
on Phase I variables Y ∗ and XXX∗ only. Thus, the Phase II variables are missing at
random and the distribution of V can be omitted from expression (4.2).

Our primary interest lies in the inference of θθθ, the true conditional log OR of
XXX on Y . The unknown error mechanisms P (Y ∗|XXX∗, Y,XXX) and P (XXX|XXX∗) are nui-
sance parameters, rarely of interest on their own. Tang et al. (2015) proposed a
fully-parametric MLE for misclassified Y ∗ with a single binary error-prone covari-
ate Xb and error-free covariates XXXa. They instead factored the joint density as
P (Y ∗, X∗b , Y,Xb,XXXa) = Pθθθ(Y |Xb,XXXa)P (Y ∗|X∗b , Y,Xb,XXXa)P (X∗b |Y,Xb,XXXa)P (Xb|XXXa)
P (XXXa), modeled the first four terms with four logistic regressions, and ignored the
last term becauseXXXa was fully observed at Phase I. This approach explicitly specifies
all error mechanisms, and thus could perform poorly if not done so correctly. In par-
ticular, the MLE will be biased if errors are incorrectly assumed to be independent
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of other variables. Usually, little is known about how errors were introduced to data,
so proper specification of error models can be challenging, especially with continuous
error-prone covariates.

As we extend to settings with continuous covariate error, we aim to develop a
more robust estimator for θθθ by requiring fewer assumptions on the error mechanisms.
Since we already assume that Y |XXX follows a logistic model, it is reasonable to assume
a logistic model for the outcome error mechanism Pγγγ(Y ∗|XXX∗, Y,XXX) in a similar man-
ner, where γγγ denotes the model parameters. The algorithm derived herein treats this
model generally and does not dictate the form of the linear predictor. No assumption
is made about the distribution of XXX|XXX∗, i.e., P (XXX|XXX∗) is estimated nonparametri-
cally. Let m denote the number of distinct values of XXX in the validation sample, and
let xxx1, . . . ,xxxm denote these values. For each XXX∗ = xxx∗, we use discrete probability
functions to estimate P (XXX = xxxk|XXX∗ = xxx∗) (k = 1, . . . ,m). This works when XXX∗ is
categorical. However, with continuous components of XXX∗, few validated subjects will
have XXX∗ = xxx∗ for each distinct xxx∗. In this situation, this nonparametric estimator for
P (XXX = xxxk|XXX∗ = xxx∗) is not directly applicable and smoothing techniques are required.

We extend Tao et al. (2017) and use the method of sieves (Grenander, 1981) to
handle error-prone continuous covariates. Specifically, B-splines (Schumaker, 1981)
are used to approximate the covariate error mechanism. We note that B-splines have
been used to promote robustness in measurement error settings elsewhere (Stauden-
mayer et al., 2008; Sarkar et al., 2014). The error-prone covariates are assumed to
have bounded support. Without loss of generality, each component X∗ in XXX∗ is stan-
dardized to have support on the interval [0,1]. Let q and bN denote the order and
number of interior knots for the B-splines basis, respectively, and let {t−q+1, . . . , tq+bN}
denote the knots. The bN interior knots are assumed to be evenly spaced across the
range of XXX∗; this can be revised in practice to best suit the covariate data. Then,
the interval [0,1] can be partitioned around the knots as ∆ ≡ {t−q+1 = . . . t−1 =
0 = t0 < t1 < · · · < tbN+1 = 1 = · · · = tq+bN}. For one covariate X∗ in XXX∗, the q
order B-spline basis associated with the partition ∆ is denoted by {N q

l (X∗)}bNl=−q+1,
where N q

l (X∗) corresponds to the lth B-spline basis function of order q and is defined
according to the recursive formula N q

l (X∗) = X∗−tl
tl+q−1−tl

N q−1
l (X∗) + tl+q−X∗

tl+q−tl+1
N q−1
l+1 (X∗)

(l = −q+1, . . . , bN). The first order B-spline basis function is defined as the histogram
function N1

l (X∗) = I(tl ≤ X∗ < tl+1) with I(·) being the indicator function. The mul-
tivariate B-spline basis function on the full set of d covariates XXX∗ ≡ (X∗1 , . . . , X∗d)T is
defined as Bq

j (XXX∗) = ∏d
s=1 N

q
ls

(X∗s ) (s = 1, . . . , d; ls = −q+ 1, . . . , bN ; j = 1, . . . , sN),
where sN = (bN + q)d represents the total number of multivariate B-spline basis func-
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tions. In essence, the scalar index j replaces the multivariate index (l1, . . . , ld) to
simplify notation.

We approximate logP (XXX i|XXX∗i ) and P (xxxk|XXX∗i ) in expression (4.2) with

m∑
k=1

I(XXX i = xxxk)
sN∑
j=1

log pkjBq
j (XXX∗i ) and

m∑
k=1

I(XXX i = xxxk)
sN∑
j=1

pkjB
q
j (XXX∗i ), (4.3)

respectively, where pkj is the coefficient of Bq
j (XXX∗) at xxxk (k = 1, . . . ,m; j = 1, . . . , sN).

Thus, using the approximations in expression (4.3) the observed-data log-likelihood
(expression (4.2)) can be rewritten as lN(θθθ,γγγ, {pkj})

=
N∑
i=1

Vi

 logPθθθ(Yi|XXX i) + logPγγγ(Y ∗i |XXX∗i , Yi,XXX i) +
m∑
k=1

sN∑
j=1

I(XXX i = xxxk) log pkjBq
j (XXX∗i )


+

N∑
i=1

(1− Vi) log


1∑
y=0

m∑
k=1

Pθθθ(y|xxxk)Pγγγ(Y ∗i |XXX∗i , y,xxxk)
sN∑
j=1

pkjB
q
j (XXX∗i )

, (4.4)

which is to be maximized with respect to θθθ, γγγ, and {pkj} under constraints

m∑
k=1

pkj = 1, and pkj ≥ 0, (j = 1, . . . , sN ; k = 1, . . . ,m). (4.5)

The maximization of the right-hand side of expression (4.4) is carried out through an
EM algorithm (Dempster et al., 1977).

Remark. The selection of bN and q need to satisfy condition (C4) in Section 4.6.1.
Specifically, bN should increase at a much slower rate than the Phase I and Phase II
sample sizes, and q should increase with the dimension of the error-prone continuous
covariates but is usually restricted to be less than or equal to four (corresponding to
cubic splines). In practice, bN and q can be chosen in a data-adaptive manner such
as cross-validation. For any fixed bN and q, one evaluates expression (4.4) in the
validation fold using estimates obtained from the training folds. The optimal bN and
q are those that maximize the average cross-validation likelihood. For the purposes of
this paper, and to save computation time, we choose q and bN such that the model is
stable within a reasonable range of bN values.

4.2.1 EM Algorithm
Direct maximization of the observed-data log-likelihood is difficult due to the in-

tractable term of the likelihood contribution of unvalidated subjects. Following Tao
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et al. (2017), we devise an EM algorithm to maximize expression (4.4). Specifi-
cally, a latent variable Z ∈ {1/sN , 2/sN . . . , 1} that satisfies the constraints P (Z =
j/sN |XXX∗) = Bq

j (XXX∗), P (XXX = xxxk|XXX∗, Z = j/sN) = P (XXX = xxxk|Z = j/sN) = pkj,
P (Y ∗|XXX∗, Y,XXX,Z) = Pγγγ(Y ∗|XXX∗, Y,XXX), and P (Y |XXX,Z) = Pθθθ(Y |XXX) is introduced for
unvalidated subjects such that the corresponding observed-data log-likelihood can be
interpreted as

N∑
i=1

(1− Vi) log


1∑
y=0

m∑
k=1

Pθθθ(y|xxxk)Pγγγ(Y ∗i |XXX∗i , y,xxxk)
sN∑
j=1

pkjB
q
j (XXX∗i )


=

N∑
i=1

(1− Vi) log


1∑
y=0

m∑
k=1

sN∑
j=1

P (Y ∗i ,XXX∗i , y,xxxk, Z = j/sN)

, (4.6)

i.e., assuming complete data consist of (Y ∗,XXX∗, Y,XXX,Z) but with (Y,XXX,Z) missing.
Thus, the complete-data log-likelihood is

N∑
i=1
Vi

 logPθθθ(Yi|XXX i) + logPγγγ(Y ∗i |XXX∗i , Yi,XXX i) + logP (XXX i|XXX∗i )

+

N∑
i=1

(1− Vi)

 logPθθθ(Yi|XXX i) + logPγγγ(Y ∗i |XXX∗i , Yi,XXX i) + logP (XXX i|XXX∗i , Zi) + logP (Zi|XXX∗i )


=

N∑
i=1
Vi

 logPθθθ(Yi|XXX i) + logPγγγ(Y ∗i |XXX∗i , Yi,XXX i) +
m∑
k=1

I(XXX i = xxxk)
sn∑
j=1

log pkjBq
j (XXX∗i )

+

N∑
i=1

(1− Vi)
 1∑
y=0

m∑
k=1

I(Yi = y,XXX i = xxxk)

 logPθθθ(y|xxxk) + logPγγγ(Y ∗i |XXX∗i , y,xxxk)


+

m∑
k=1

sN∑
j=1

I(XXX i = xxxk, Zi = j/sN) log pkj +
sN∑
j=1

I(Zi = j/sn) logBq
j (XXX∗i )

. (4.7)

In the E-step, conditional expectations of I(Yi = y,XXX i = xxxk) and I(XXX i = xxxk, Zi =
j/sn) are calculated given Phase I data. Specifically, in the (t + 1)th iteration we
calculate

ψ̂
(t+1)
kyji ≡E {I(Yi = y,XXX i = xxxk, Zi = j/sN)|Y ∗i ,XXX∗i }

=
P
θ̂θθ

(t)(y|xxxk)Pγ̂γγ(t)(Y ∗i |XXX∗i , y,xxxk)p̂
(t)
kjB

q
j (XXX∗i )∑1

y′=0
∑m
k′=1 Pθ̂θθ(t)(y′|xxxk′)Pγ̂γγ(t)(Y ∗i |XXX∗i , y′,xxxk′)

∑sN
j′=1 p̂

(t)
k′j′B

q
j′(XXX∗i )

for each unvalidated subject. Then, estimates of E {I(Yi = y,XXX i = xxxk)|Y ∗i ,XXX∗i } and
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E{I(XXX i = xxxk, Zi = j/sN)|Y ∗i ,XXX∗i } are obtained as

ŵ
(t+1)
kyi =

I(Yi = y,XXX i = xxxk) if Vi = 1,∑sN
j=1 ψ̂

(t+1)
kyji if Vi = 0,

(4.8)

and

û
(t+1)
kji =

1∑
y=0

ψ̂
(t+1)
kyji if Vi = 0, (4.9)

respectively. Substituting equations (4.8) and (4.9) into the right-hand side of equa-
tion (4.7) yields the following objective function for the M-step:

N∑
i=1

 1∑
y=0

m∑
k=1

ŵ
(t+1)
kyi {logPθθθ(y|xxxk) + logPγγγ(Y ∗i |XXX∗i , y,xxxk)}

+
m∑
k=1

sN∑
j=1

log pkj
{
ViI(XXX i = xxxk)Bq

j (XXX∗i ) + (1− Vi)û(t+1)
kji

}. (4.10)

In the M-step, θ̂θθ
(t+1)

and γ̂γγ(t+1) are updated by maximizing

N∑
i=1

1∑
y=0

m∑
k=1

ŵ
(t+1)
kyi logPθθθ(y|xxxk) and

N∑
i=1

1∑
y=0

m∑
k=1

ŵ
(t+1)
kyi logPγγγ(Y ∗i |XXX∗i , y,xxxk),

respectively, both of which are log-likelihoods of weighted logistic regression models.
The nuisance parameters p̂(t+1)

kj are updated by maximizing

N∑
i=1

m∑
k=1

sN∑
j=1

log pkj
{
ViI(XXX i = xxxk)Bq

j (XXX∗i ) + (1− Vi)û(t+1)
kji

}
,

such that

p̂
(t+1)
kj =

∑N
i=1

{
ViI(XXX i = xxxk)Bq

j (XXX∗i ) + (1− Vi)û(t+1)
kji

}
∑m
k′=1

∑N
i=1

{
ViI(XXX i = xxxk′)Bq

j (XXX∗i ) + (1− Vi)û(t+1)
k′ji

}
(k = 1, . . . ,m; j = 1, . . . , sN). Notice that the constraints of {pkj} from expression
(4.5) are satisfied in each iteration. Starting with initial values θ̂θθ

(0)
= 000, γ̂γγ(0) = 000,

and p̂(0)
kj = ∑n

i=1 ViI(XXX i = xxxk)Bq
j (XXX∗i )/

∑n
i=1 ViB

q
j (XXX∗i ), the sieve maximum likelihood

estimators (SMLE) θ̂θθ, γ̂γγ, and {p̂kj} are obtained by iterating between the E- and
M-steps until convergence.
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4.2.2 Asymptotic Properties
Let the true values of θθθ, γγγ, and F (the joint cumuulative distribution function ofXXX

and XXX∗) be denoted θθθ0, γγγ0, and F0, respectively. We impose the following regularity
conditions:

(C1) The set of covariates (XXX,XXX∗) has bounded support.

(C2) If there exist two sets of parameters (θθθ1, γγγ1, F1) and (θθθ2, γγγ2, F2) such that

Pθθθ1(Y |XXX)Pγγγ1(Y ∗|XXX∗, Y,XXX)F1(XXX,XXX∗) = Pθθθ2(Y |XXX)Pγγγ2(Y ∗|XXX∗, Y,XXX)F2(XXX,XXX∗),

where (Y,XXX, Y ∗,XXX∗) ∈ C ≡ {(y,xxx, y∗,xxx∗) : P (V = 1|y∗,xxx∗) > 0}, then θθθ1 = θθθ2,
γγγ1 = γγγ2, and F1 = F2. Further, if there exist a vector of constants ccc such that

{
∂

∂θθθ
log Pθθθ0(y1|xxx)

Pθθθ0(y2|xxx) + ∂

∂γγγ
log Pγγγ0(y∗1|xxx∗, y1,xxx)

Pγγγ0(y∗2|xxx∗, y2,xxx)

}T
ccc = 0

for any (y∗i ,xxx∗, yi,xxx) ∈ C, i = 1, 2, then ccc = 000.

(C3) The distribution function F0 is positive in its support and q-times differentiable
with respect to a suitable measure.

(C4) As N →∞, sN →∞, and N1/2s
−q/d
N → 0.

(C5) The function E(V |XXX,XXX∗) is q-times continuously differentiable with respect to
XXX and XXX∗.

We state the asymptotic results for the proposed SMLE in two theorems, with
proof provided in Section 4.6.1.

Theorem 4.2.1. Under conditions (C1)-(C5),

||θ̂θθ − θθθ0||+ ||γ̂γγ − γγγ0||+ sup
xxx,xxx∗
|F̂ (xxx,xxx∗)− F0(xxx,xxx∗)| → 0

almost surely.

Theorem 4.2.2. Under conditions (C1)-(C5), N1/2(θ̂θθ−θθθ0) converges in distribution
to a zero-mean normal random vector whose covariance attains the semiparametric
efficiency bound.

In short, the proposed estimators possess desirable statistical properties: they are
consistent, asymptotically normal, and asymptotically efficient.
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4.2.3 Variance Estimation
Variance estimator of θ̂θθ is obtained by inverting the observed profile information

via the profile likelihood method of Murphy and Van der Vaart (2000). The profile
likelihood is defined by pl(θθθ) = sup

γγγ,{pkj}
lN(θθθ,γγγ, {pkj}). In practice, pl(θθθ) is obtained by

holding θθθ fixed in the EM algorithm and calculating the observed-data log-likelihood
at convergence. The (k,l)th element of the observed profile information I

(
θ̂θθ
)

is
calculated as

− 1
h2
N

[
pl
(
θ̂θθ + eeekhN + eeelhN

)
− pl

(
θ̂θθ + eeekhN

)
− pl

(
θ̂θθ + eeelhN

)
+ pl

(
θ̂θθ
)]

where hN is a constant of order N−1/2 and eeek is the kth canonical vector. The variance
V ar

(
θ̂θθ
)
is estimated by

{
I
(
θ̂θθ
)}−1

.

4.3 Simulation Studies
Our simulation studies begin with the setting of an error-prone outcome and

binary covariate (Section 4.3.1). The SMLE, fully-parametric MLE (Tang et al.,
2015), complete-case analysis, and design-based generalized raking and HT estimators
are compared. Next, binary outcome misclassification and a continuous error-prone
covariate are considered (Section 4.3.2), illustrating the performance of the SMLE
under settings where the MLE does not apply. Method performance is assessed
on bias, confidence interval (CI) coverage, and efficiency. Error-free covariates are
included. All settings focus on estimation of β: the conditional log OR for Xb on Y .
The bootstrap method of Koehler et al. (2009) was used to estimate the Monte Carlo
simulation errors for bias and coverage.

4.3.1 Error-Prone Binary Covariate
True binary covariate Xb, error-free covariate Xa, and true outcome Y were gen-

erated from Bernoulli distributions with P (Xb = 1) = 0.5, P (Xa = 1) = 0.25, and
P (Y = 1|Xb, Xa) = [1 + exp{−(−0.65 − 0.2Xb − 0.1Xa)}]−1. Error-prone X∗b and
Y ∗ were generated from Bernoulli distributions with P (X∗b = 1|Xb, Y,Xa) = [1 +
exp{−(−1.1 + 2.2Xb + 0.5Xa)}]−1 and P (Y ∗ = 1|X∗b , Y,Xb, Xa) = [1 + exp{−(−2.2−
0.2X∗b + 5.14Y −0.2Xb−0.1Xa)}]−1. These settings followed from Tang et al. (2015),
except that conditional independence between X∗b and Y given (Xb, Xa) was assumed
here. There was approximately 32% and 35% prevalence of Y and Y ∗, respectively,
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and 8% and 25% misclassification in Y ∗ (FPR = 8%; FNR = 6%) and X∗b (FPR =
28%; FNR = 23%), respectively. From N = 1000 and 2000 Phase I subjects, pro-
portions of pv = 0.1, 0.25, or 0.5 were selected for validation through simple random
sampling (SRS) or 1:1 case-control sampling based on Y ∗ (naive case-control). The
likelihood for the fully-parametric MLE (Tang et al., 2015) was correctly specified
for the data generation scheme, and the nlm function in R (R Core Team, 2019) was
used to obtain the estimates. For generalized raking, we calibrated sampling weights
to the naive, error-prone influence functions following Chen and Lumley (2020) and
used the survey package in R (Lumley, 2019).

Results for these settings are presented in Table 4.1. All methods were essentially
unbiased. The average standard error estimates (SEE) for the SMLE were reasonably
close to the empirical standard error (SE), and improved with increasing N . As
expected, for a fixed N , increasing pv decreased both bias and standard error. Results
were similar withN = 5000 (Table 4.6). In comparison, a naive analysis using only the
error-prone Phase I data yielded an average bias of 14%. All estimators had smaller
standard errors under naive case-control than SRS. The SMLE was as efficient as the
MLE, suggesting that the added robustness of the SMLE came at little cost. The
complete-case, HT, and raking estimators, by comparison, lost as much as 31%, 33%,
and 23% efficiency to the SMLE, respectively. Our EM algorithm was stable, with
convergence rates ≥ 99% for audit sizes n > 100. Additional simulations, reported in
Section 4.6.2.2, compared the SMLE with the MLE under model misspecification. In
general, these simulations suggest that with binary Xb/X

∗
b , both estimators behaved

similarly and were fairly robust to misspecification.

4.3.2 Error-Prone Continuous Covariate
4.3.2.1 Varying covariate error variance

Continuous covariate Xb was generated from a standard normal distribution.
Error-free covariate Xa and outcome Y were generated from Bernoulli distributions
with P (Xa = 1) = 0.25 and P (Y = 1|Xb, Xa) = [1 + exp{−(−1 + Xb − 0.5Xa)}]−1.
Error-prone covariate X∗b was constructed as X∗b = Xb + U , where U was a normal
random variable with mean zero and variance σ2

U . We considered σ2
U values of 0.1,

0.25, 0.5, and 1, corresponding to correlations of 0.95, 0.9, 0.82, and 0.71, respectively,
between Xb and X∗b . The error-prone outcome Y ∗ was generated from a Bernoulli
distribution with P (Y ∗ = 1|X∗b , Y,Xb, Xa) = [1 + exp{−(−2.2 +X∗b + 5.14Y +Xb −
0.5Xa)}]−1. This simulation setup yielded approximately 28% and 37% prevalence of
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Table 4.1: Simulation results for outcome misclassification and a binary error-prone covariate for
increasing Phase I sample size N and audit proportion pv

SMLE MLE Complete-Case HT Raking
N pv Bias SE SEE CP Bias SE RE Bias SE RE Bias SE RE Bias SE RE

SRS

1000 0.10 −0.003 0.381 0.369 0.950 0.010 0.376 1.027 −0.012 0.452 0.711 −0.012 0.452 0.711 −0.008 0.419 0.825
0.25 0.007 0.247 0.242 0.950 0.007 0.246 1.008 −0.008 0.283 0.732 −0.008 0.283 0.732 −0.003 0.271 0.831
0.50 0.001 0.183 0.181 0.938 0.001 0.183 1.000 0.000 0.193 0.902 0.000 0.193 0.902 −0.001 0.187 0.954

2000 0.10 0.002 0.271 0.258 0.946 0.004 0.270 1.007 −0.008 0.310 0.762 −0.008 0.310 0.762 −0.006 0.285 0.905
0.25 0.001 0.177 0.171 0.941 0.001 0.177 1.000 −0.005 0.195 0.820 −0.005 0.195 0.820 −0.008 0.178 0.984
0.50 0.000 0.128 0.128 0.954 0.000 0.128 1.000 −0.007 0.133 0.924 −0.007 0.133 0.924 −0.006 0.128 1.001

1:1 case-control sampling based on Y ∗

1000 0.10 0.018 0.366 0.343 0.936 0.020 0.363 1.017 −0.015 0.423 0.750 −0.026 0.430 0.724 −0.022 0.393 0.869
0.25 −0.011 0.239 0.228 0.943 −0.011 0.238 1.008 0.001 0.263 0.824 −0.009 0.267 0.799 −0.010 0.253 0.895
0.50 −0.001 0.169 0.171 0.954 −0.001 0.169 1.000 0.016 0.183 0.856 0.009 0.186 0.827 0.007 0.181 0.874

2000 0.10 −0.008 0.242 0.240 0.952 −0.009 0.241 1.008 0.002 0.291 0.690 −0.008 0.295 0.671 −0.013 0.276 0.770
0.25 0.004 0.163 0.161 0.949 0.004 0.162 1.012 0.003 0.183 0.800 −0.005 0.184 0.784 −0.002 0.169 0.930
0.50 0.005 0.118 0.121 0.957 0.005 0.118 1.000 0.002 0.129 0.835 −0.006 0.131 0.811 −0.006 0.125 0.894

Note: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE is the average of the standard error estimator;
CP is the coverage probability of the 95% confidence interval. RE is the relative efficiency of the estimator to the SMLE. Each entry is based on 1000
replicates. Convergence rates for the SMLE with an audit size of n = 100 were 89% and 94%, respectively, under SRS and 1:1 case-control sampling based
on Y ∗. This was due to complete or quasi-complete separation of the outcome error model P (Y ∗|X∗b , Y,Xb, C) in these settings. The SMLE had greater than
99% convergence rates in other settings. The Monte Carlo simulation error for the bias and CP of the SMLE did not exceed 0.013 and 0.8%, respectively.

Y and Y ∗, respectively, regardless of the choice of σ2
U , and 12%–13% misclassification

in Y ∗ (FPR =14%–15%; FNR = 6%–7%). We used a cubic B-spline basis (q = 4)
and varied bN from 16 to 28 to assess its effects on model fitting, maintaining a 3:1
ratio of knots allocated to subjects with Xa = 0:Xa = 1. This ratio allocated the
knots proportionally to the available data, distributing 25% of the knots to the 25%
of subjects with Xa = 1. When N = 1000, the results were very similar for bN ≥ 20,
i.e., the maximum difference in the coverage probability of the 95% CI was less than
0.5%. Consequently, separate cubic B-splines with 15 and 5 interior knots were used
for subjects with Xa = 0 and Xa = 1, respectively; when N = 2000, 18 and 6 interior
knots were used.

Simulation results using SRS to select Phase II are shown in Table 4.2. The
proposed SMLE continued to be unbiased, with accurate SEE and reasonable coverage
probabilities. The EM algorithm remained stable, converging in ≥ 96% of replicates.
The complete-case and HT estimators are equivalent under SRS. The efficiency gain
of the SMLE, which used all available information on all subjects, over the complete-
case analyses, which used information on audited subjects only, was higher for smaller
values of σ2

U . This makes sense because X∗b was more informative about Xb when
σ2
U was smaller. Thus, more information could be gained by including the Phase I

data. In some settings, the complete-case was as much as 41% less efficient than
the SMLE. The SMLE was generally, although not always, more efficient than the
raking estimator. For a fixed σ2

U , the relative efficiency (RE) of the SMLE to the
complete-case or raking estimators decreased as pv increased. This also makes sense
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Table 4.2: Simulation results for outcome misclassification and a continuous covariate with varied
additive measurement error variance when the Phase II design is simple random sampling

SMLE Complete-Case/HT Raking
σ2
U N pv Bias SE SEE CP Bias SE RE Bias SE RE

0.10 1000 0.10 0.005 0.250 0.237 0.943 0.069 0.323 0.599 0.038 0.271 0.849
0.25 −0.005 0.157 0.160 0.953 0.019 0.183 0.736 0.016 0.166 0.898
0.50 0.005 0.121 0.121 0.940 0.009 0.132 0.840 0.005 0.116 1.085

2000 0.10 −0.012 0.166 0.164 0.953 0.031 0.216 0.592 0.020 0.181 0.843
0.25 −0.011 0.112 0.112 0.949 0.010 0.132 0.721 0.005 0.119 0.887
0.50 0.002 0.083 0.085 0.956 0.002 0.087 0.905 0.004 0.085 0.949

0.25 0.10 1000 0.003 0.267 0.251 0.950 0.070 0.322 0.688 0.045 0.285 0.878
0.25 −0.004 0.166 0.166 0.959 0.019 0.183 0.823 0.019 0.173 0.925
0.50 0.007 0.125 0.123 0.944 0.009 0.132 0.897 0.006 0.120 1.091

2000 0.10 −0.015 0.179 0.173 0.943 0.031 0.216 0.686 0.025 0.187 0.915
0.25 −0.011 0.117 0.116 0.944 0.010 0.132 0.784 0.005 0.122 0.918
0.50 0.004 0.084 0.086 0.956 0.002 0.087 0.936 0.004 0.086 0.958

0.50 1000 0.10 0.030 0.292 0.273 0.948 0.067 0.318 0.843 0.050 0.298 0.959
0.25 0.001 0.171 0.173 0.957 0.019 0.183 0.873 0.020 0.179 0.910
0.50 0.008 0.128 0.126 0.941 0.009 0.132 0.940 0.005 0.122 1.103

2000 0.10 0.001 0.196 0.187 0.941 0.031 0.216 0.824 0.029 0.194 1.021
0.25 −0.006 0.123 0.121 0.949 0.010 0.132 0.862 0.006 0.127 0.931
0.50 0.003 0.085 0.088 0.961 0.002 0.087 0.965 0.004 0.089 0.922

1.00 1000 0.10 0.060 0.318 0.292 0.951 0.070 0.322 0.975 0.053 0.310 1.052
0.25 0.010 0.177 0.180 0.964 0.019 0.183 0.936 0.022 0.183 0.931
0.50 0.008 0.129 0.128 0.948 0.009 0.132 0.955 0.006 0.124 1.083

2000 0.10 0.026 0.212 0.201 0.940 0.031 0.216 0.960 0.032 0.202 1.097
0.25 0.001 0.126 0.125 0.953 0.010 0.132 0.908 0.005 0.129 0.951
0.50 0.002 0.086 0.089 0.957 0.002 0.087 0.988 0.003 0.091 0.903

Note: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator;
SEE is the average of the standard error estimator; CP is the coverage probability of the 95% confidence
interval; RE is the relative efficiency of the estimator to the SMLE. Under SRS the HT and complete-
case estimators are equivalent. Each entry is based on 1000 replicates. The SMLE had greater than
96% convergence rates in all settings. The Monte Carlo simulation errors for bias and CP did not
exceed 0.01 and 0.8%, respectively.

because, as audited data became available on more subjects, less information could
be extracted from the unvalidated subjects. The naive analysis was most biased in
settings where σ2

U was smaller and improved as σ2
U increased. Specifically, the naive

estimator yielded an average of 65%, 57%, 36%, and 3% bias when σ2
U = 0.1, 0.25,

0.5, and 1, respectively. This counterintuitive phenomenon was due to the way we
generated X∗b and Y ∗. In additional simulations (Section 4.6.2.4), we found that
the bias of the naive estimator could increase as σ2

U increased or reverse direction in
various settings.

Simulation results using naive case-control to select Phase II subjects are included
in Table 4.3. The SMLE continued to perform well under this sampling scheme,
with smaller standard errors than under SRS. The complete-case estimators were
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Table 4.3: Simulation results for outcome misclassification and a continuous covariate with varied
additive measurement error variance when the Phase II design is 1:1 case-control sampling based on
Y ∗

SMLE Complete-Case HT Raking
σ2
U N pv Bias SE SEE CP Bias SE Bias SE RE Bias SE RE

0.10 1000 0.10 −0.049 0.234 0.222 0.932 −0.059 0.286 0.046 0.298 0.617 0.043 0.248 0.891
0.25 −0.028 0.148 0.151 0.952 −0.077 0.160 0.028 0.170 0.758 0.004 0.156 0.898
0.50 −0.008 0.118 0.115 0.941 −0.091 0.115 0.009 0.124 0.906 0.006 0.118 1.004

2000 0.10 −0.046 0.159 0.155 0.930 −0.073 0.192 0.031 0.207 0.590 0.024 0.172 0.853
0.25 −0.026 0.103 0.106 0.945 −0.090 0.111 0.010 0.119 0.749 0.015 0.111 0.863
0.50 −0.006 0.079 0.080 0.946 −0.096 0.078 0.005 0.084 0.884 0.002 0.081 0.947

0.25 1000 0.10 −0.042 0.233 0.237 0.950 −0.047 0.274 0.054 0.294 0.650 0.040 0.267 0.764
0.25 −0.021 0.150 0.157 0.958 −0.081 0.161 0.021 0.170 0.853 0.005 0.162 0.856
0.50 0.000 0.118 0.117 0.949 −0.085 0.115 0.013 0.124 0.890 0.009 0.115 1.057

2000 0.10 −0.038 0.172 0.165 0.930 −0.069 0.186 0.028 0.200 0.681 0.026 0.176 0.960
0.25 −0.029 0.109 0.110 0.933 −0.094 0.112 0.002 0.120 0.840 0.011 0.113 0.924
0.50 −0.004 0.080 0.082 0.948 −0.093 0.079 0.005 0.086 0.909 0.001 0.081 0.968

0.50 1000 0.10 −0.004 0.270 0.256 0.940 −0.038 0.270 0.060 0.292 0.855 0.037 0.272 0.987
0.25 −0.006 0.160 0.165 0.958 −0.068 0.162 0.027 0.172 0.865 0.013 0.157 1.037
0.50 0.005 0.122 0.119 0.946 −0.075 0.118 0.019 0.127 0.923 0.012 0.125 0.954

2000 0.10 −0.019 0.178 0.177 0.938 −0.068 0.183 0.028 0.193 0.851 0.020 0.190 0.880
0.25 −0.017 0.114 0.114 0.954 −0.084 0.115 0.007 0.123 0.859 0.013 0.117 0.946
0.50 −0.005 0.080 0.083 0.962 −0.089 0.078 0.004 0.084 0.907 0.010 0.084 0.902

1.00 1000 0.10 0.013 0.288 0.270 0.941 −0.034 0.285 0.051 0.300 0.922 0.044 0.287 1.007
0.25 0.001 0.172 0.169 0.942 −0.063 0.168 0.021 0.179 0.923 0.012 0.180 0.918
0.50 0.002 0.118 0.120 0.953 −0.072 0.114 0.013 0.121 0.951 0.008 0.121 0.947

2000 0.10 0.007 0.193 0.189 0.952 −0.057 0.186 0.028 0.198 0.950 0.019 0.199 0.936
0.25 −0.012 0.118 0.118 0.948 −0.080 0.117 0.004 0.124 0.906 0.014 0.121 0.945
0.50 −0.002 0.082 0.084 0.953 −0.078 0.079 0.005 0.084 1.000 0.005 0.082 1.000

Note: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE is the average
of the standard error estimator; CP is the coverage probability of the 95% confidence interval. RE is the relative efficiency
of the estimator to the SMLE, but relative efficiency of the complete-case estimator to SMLE is not reported since it was
biased under this sampling scheme. Each entry is based on 1000 replicates. The SMLE had greater than 96% convergence
rates in all settings. The Monte Carlo simulation errors were ≤ 0.009 for bias and ≤ 0.8% for CP.

5%–10% biased because the case-control sampling was based on an outcome subject
to differential misclassification, but the HT and raking estimators remained unbiased.
In general, efficiency was slightly better with naive case-control sampling than SRS,
although the RE of the SMLE to the other estimators was similar.

4.3.2.2 Varying outcome misclassification rate
We also varied the misclassification rate in Y ∗ by changing the intercept and

regression coefficient of Y , denoted by γ0 and γ1, respectively, in its generation model
P (Y ∗|X∗b , Y,Xb, Xa) = [1 + exp{−(γ0 + X∗b + γ1Y + Xb − 0.5Xa)}]−1. The values of
γ0 and γ1 were determined by the “underlying” sensitivity and specificity of Y ∗ when
it depended on Y only, i.e., γ0 = − log

(
specificity

1−specificity

)
and γ1 = −γ0 − log

(
1−sensitivity
sensitivity

)
.

The underlying sensitivity of Y ∗ was varied from 0.95 to 0.55 by decrements of 0.1,
and the underlying specificity was set to be 0.05 lower than the underlying sensitivity.
A Phase I sample of N = 1000 subjects was generated, and a validation subsample
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Table 4.4: Simulation results for outcome misclassification with varied baseline sensitivity and speci-
ficity and an error-prone continuous covariate

SMLE HT Raking
Sensitivity Specificity Bias SE SEE CP Bias SE RE Bias SE RE

SRS
0.95 0.90 −0.007 0.156 0.160 0.953 0.018 0.178 0.768 0.021 0.170 0.842
0.85 0.80 −0.006 0.170 0.175 0.961 0.020 0.180 0.892 0.022 0.176 0.933
0.75 0.70 0.001 0.177 0.182 0.965 0.020 0.183 0.936 0.015 0.189 0.877
0.65 0.60 0.010 0.182 0.185 0.962 0.019 0.184 0.978 0.021 0.193 0.899
0.55 0.50 0.018 0.183 0.186 0.963 0.019 0.183 1.000 0.021 0.190 0.928

1:1 case-control sampling based on Y ∗

0.95 0.90 −0.028 0.148 0.151 0.952 0.028 0.170 0.758 0.012 0.154 0.924
0.85 0.80 −0.016 0.164 0.168 0.950 0.021 0.176 0.868 0.021 0.172 0.909
0.75 0.70 −0.003 0.178 0.177 0.951 0.019 0.185 0.926 0.009 0.180 0.978
0.65 0.60 0.018 0.182 0.184 0.956 0.028 0.185 0.968 0.025 0.184 0.978
0.55 0.50 0.020 0.188 0.186 0.952 0.021 0.188 1.000 0.026 0.194 0.939

Note: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; SEE
is the average of the standard error estimator; CP is the coverage probability of the 95% confidence interval;
RE is the relative efficiency of the estimator to the SMLE. Each entry is based on 1000 replicates. The
SMLE had greater than 99% convergence rates in all settings. The Monte Carlo simulation errors for the
bias and CP of the SMLE were ≤ 0.006 and ≤ 0.7%, respectively.

of n = 250 subjects was selected via SRS or naive case-control. The error variance
was fixed at σ2

U = 0.1, and all other variables were generated as in Section 4.3.2.1.
The results are shown in Table 4.4. The largest efficiency gains of the SMLE

over the HT estimator under SRS (equivalent to the complete-case analysis) and
naive case-control were seen when the sensitivity and specificity of Y ∗ were highest.
In fact, the RE decreased with these diagnostic measures until it was approximately
equal to one at 0.55 sensitivity and 0.5 specificity. This was expected because for there
to be an efficiency gain of the SMLE from incorporating information in unvalidated
subjects, there needs to be a fair degree of correlation between Y and Y ∗. Sensitivity
and specificity of Y ∗ near 0.5 resulted in near random misclassification, in which case
the unvalidated subjects were not very informative about the relationship between Y
and Xb. The SMLE was always more efficient than the raking estimator, which also
incorporates information in unvalidated subjects.

4.3.2.3 Other simulations with an error-prone continuous covariate
In Section 4.6, we include comparisons of the SMLE to regression calibration

(RC) (Prentice, 1982) and generalized raking under the classical measurement error
setting with covariate error only (Section 4.6.2.3). The robustness of the SMLE to
different covariate error mechanisms, including non-zero mean additive errors and
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multiplicative errors, was illustrated in Sections 4.6.2.5 and 4.6.2.6, respectively. In
these simulations, the errors in X∗b depended on the error-free covariate Xa. The
SMLE continued to perform well in these settings.

4.4 Application to the CCASAnet Dataset
We now apply our method to the CCASAnet dataset. As in Giganti et al. (2019),

the risk of developing an ADE after initiating ART was of primary interest. Specifi-
cally, we were interested in estimating the relative odds of developing an ADE within
two years of ART initiation for two risk factors, CD4 count and prior AIDS diagnosis,
conditional on other covariates. Both risk factors were measured at ART initiation.
Specifically, CD4 count was defined as the lab measurement closest to the ART initi-
ation date but no more than six months prior to or thirty days after ART initiation.
Prior AIDS diagnosis was any evidence of a clinical AIDS event before ART initiation.
Because variables were derived based on error-prone ART initiation date, errors could
be correlated. Other error-free covariates included clinical site, age at baseline, sex,
and year of ART initiation. CD4 count was rescaled to units of ten cells per microliter
before being square root transformed, age was rescaled to ten-year increments, and
year of ART initiation was centered at the median, 2004.

Clinical data from five sites (anonymously labeled as sites A–E) were compiled into
the CCASAnet research database. Each site underwent an on-site audit by VDCC
investigators between 2013–2014. Approximately 30 patient records were randomly
selected from each site for auditing. Pre-audit records were compared with clinical
source documents, including paper-based patient charts or electronic medical records;
see Giganti et al. (2019) for details about the audit protocol and findings. The values
found in clinical source documents were treated as the reference standard and are
assumed to be more correct than the database.

To be included in our analysis, patients needed to (1) initiate ART while in care
at a CCASAnet clinic, (2) be at least 18 years old at cohort enrollment, (3) have a
valid CD4 measurement at time of ART initiation, and (4) remain in care for at least
two years after initiating ART. Based on the unvalidated data, these inclusion criteria
resulted in a Phase I sample of 5109 subjects from the CCASAnet research database,
of whom 117 were audited. The number of audited records meeting these criteria
varied between 16–36 per site. There were 510 unvalidated ADE (10% prevalence)
and 13 validated ADE (11% prevalence). Giganti et al. (2019) noted that risk of
an ADE was higher in the audited data than in the pre-audit data over a ten-year
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follow-up period.
In these audits, the VDCC identified 6% misclassification in the ADE, all of which

were false negatives. AIDS prior to ART initiation had 6% misclassification, with a
higher FPR (13%) than FNR (3%). CD4 count had an error rate of 8%, with mean
magnitude of −0.11 and variance of 2.51 on the square root scale. Errors in CD4 count
were assumed to be additive on the square root scale, so magnitude was calculated
by subtracting error-prone from validated values. No subject had errors in both
their outcome and covariates and only one had errors in both CD4 count and AIDS
status, suggesting little evidence of error correlation. Sites A, B, and C had five or
six erroneous records while sites D and E had two or three. The low error rates and
small audit size led us to choose the histogram basis for the SMLE. Specifically, we
used separate histogram bases with one interior knot for subjects with and without
unvalidated AIDS at ART initiation. Thus, errors in AIDS and CD4 count were
assumed to be independent of other error-free covariates. Further stratification by
site did not noticeably alter the results (see Table 4.13).

Results are presented in Table 4.5. The naive analysis using only Phase I data
indicated that both CD4 count (log OR = −0.28; 95% CI: (−0.34,−0.22)) and prior
AIDS (log OR = 1.54; 95% CI: (1.32, 1.77)) were strongly associated with ADE during
the first two years after initiating ART. The complete-case and HT analyses, which
only used Phase II data, yielded larger point estimates for the CD4 count association
but point estimates closer to the null for the prior AIDS association; confidence
intervals for the complete-case and HT analyses were quite wide due to the small
audit size and included zero for the prior AIDS association. The CI for AIDS in the
raking analysis was narrower than those in the HT and complete-case analyses, but
still contained zero. Using the SMLE, estimates for CD4 count (log OR = −0.48; 95%
CI: (−0.73,−0.24)) and AIDS (log OR = 1.39; 95% CI: (0.58, 2.19)) were significant
and fell between those of the naive and complete-data-based analyses, capturing the
information from the validated data while harnessing the statistical power of the full
cohort.

Our analyses excluded 283 unaudited and 5 audited subjects who died within two
years of initiating ART and thus did not meet inclusion criterion (4). Analyses were
repeated including these patients and using the composite endpoint of death or ADE;
results were largely similar (Section 4.6.3.1).
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Table 4.5: log OR estimates and 95% confidence intervals from the analysis of the CCASAnet dataset

Naive Complete-Case HT Raking SMLE
Covariate log OR 95% CI log OR 95% CI log OR 95% CI log OR 95% CI log OR 95% CI√
CD4/10 −0.280 (−0.343, −0.217) −0.688 (−1.164, −0.212) −0.755 (−1.154, −0.356) −0.620 (−0.922, −0.318) −0.482 (−0.725, −0.240)

AIDS 1.543 (1.317, 1.770) 0.243 (−1.166, 1.653) 0.579 (−0.850, 2.009) 0.093 (−1.131, 1.318) 1.388 (0.582, 2.194)
Site: A −1.399 (−1.755, −1.042) −0.396 (−2.433, 1.642) −0.357 (−2.601, 1.887) −0.289 (−1.945, 1.368) 1.129 (0.278, 1.980)
Site: C 0.409 (0.154, 0.664) 0.561 (−1.368, 2.491) 0.658 (−1.447, 2.764) 0.543 (−1.099, 2.184) 0.184 (0.003, 0.365)
Site: D −0.991 (−1.412, −0.570) −2.416 (−5.027, 0.194) −2.638 (−5.015, −0.261) −2.548 (−5.226, 0.131) −1.225 (−2.394, −0.056)
Site: E −0.225 (−0.581, 0.131) −0.688 (−3.353, 1.976) −0.686 (−3.615, 2.244) −0.542 (−2.855, 1.772) −0.732 (−1.725, 0.260)
Male 0.073 (−0.169, 0.316) −0.728 (−2.330, 0.874) −0.823 (−2.395, 0.749) −1.195 (−2.669, 0.280) −0.703 (−1.933, 0.527)
Age/10 years 0.014 (−0.091, 0.119) 0.354 (−0.296, 1.003) 0.310 (−0.315, 0.935) 0.223 (−0.311, 0.756) −0.690 (−1.644, 0.263)
Year of ART −0.023 (−0.051, 0.006) 0.092 (−0.144, 0.327) 0.155 (−0.206, 0.516) 0.081 (−0.134, 0.297) −0.508 (−1.225, 0.210)
Note: 95% CI is the 95% confidence interval.

4.5 Discussion
Measurement error is a wide-reaching problem in biomedical research. As error-

prone observational data are increasingly supporting decision-making in health policy
and patient care, there is a demonstrated need for statistical methods that can retain
the high power lent by large cohorts while accounting for data errors. We proposed a
new SMLE method that can address dependent errors in binary outcomes and cate-
gorical or continuous covariates, and we illustrated its performance in our simulations
and CCASAnet data application. The SMLE is robust, efficient, and can handle mea-
surement error settings not yet addressed by the MLE of Tang et al. (2015). We note
that other methods, including multiple imputation approaches proposed by Edwards
et al. (2013) and Giganti et al. (2020), could be adapted to handle the same prob-
lem. Because these approaches rely on proper specification of the error-generating
mechanisms, we expect them to perform similarly to the MLE.

The SMLE has limitations. First, it can only accommodate two or three continu-
ous covariates in the B-spline basis because the dimension of the basis grows exponen-
tially fast as the number of continuous covariates increases. This is a manifestation of
the curse of dimensionality. There are workarounds: 1) error-free covariates that can
be assumed to be independent of the error-prone covariates can be omitted or 2) di-
mension reduction techniques can summarize the covariates into a few representative
features on which the basis is constructed. Second, although the logistic regression
model Pγγγ(Y ∗|XXX∗, Y,XXX) seems to be fairly robust (Section 4.6.2.2), proper specifica-
tion is still desirable. One may include additional covariates that affect Y ∗ but not
Y and additional interaction terms or splines to facilitate flexible modeling of the
outcome error mechanism. Third, XXX∗ is assumed to be a surrogate for XXX such that
P (Y |XXX,XXX∗) = Pθθθ(Y |XXX). Relaxing this assumption is straightforward, but changes
the marginal interpretation of the estimates.

The proposed SMLE allows the Phase II sample selection to depend on the Phase
I data in any manner. An interesting topic worth further investigation is efficient
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design under outcome misclassification and covariate measurement error. Because the
outcome is subject to misclassification, traditional case-control sampling may not be
ideal. Multi-wave designs like those proposed by McIsaac and Cook (2015) and Chen
and Lumley (2020) are promising because one can use validated data obtained from
earlier waves to gain insights about error mechanisms and then use this knowledge to
optimally allocate audit efforts in later waves.

4.6 Appendix C
4.6.1 Asymptotic Properties of the SMLE

Our asymptotic theory extends that in Tao et al. (2017) to allow for the outcome
Y to be a Phase II variable. First, the joint cumulative distribution function of XXX
and XXX∗, F (XXX,XXX∗), can be estimated by

F̂ (xxx,xxx∗) = N−1
m∑
k=1

N∑
i=1

I(xxxk ≤ xxx,XXX∗i ≤ xxx∗)
sN∑
j=1

Bq
j (XXX∗i )pkj. (4.11)

Let ΘΘΘ and ΓΓΓ denote the parameter spaces of θθθ and γγγ, respectively, which are bounded
open sets in the domains of θθθ and γγγ, respectively. Let F denote the space of joint
distributions of (XXX,XXX∗). Let θθθ0 ∈ ΘΘΘ denote the true value of θθθ, γγγ0 ∈ ΓΓΓ denote the
true value of γγγ, and F0 ∈ F denote the true value of F (XXX,XXX∗). We impose the
following regularity conditions:

(C1) The set of covariates (XXX,XXX∗) has bounded support.

(C2) If there exist two sets of parameters (θθθ1, γγγ1, F1) and (θθθ2, γγγ2, F2) such that

Pθθθ1(Y |XXX)Pγγγ1(Y ∗|XXX∗, Y,XXX)F1(XXX,XXX∗) = Pθθθ2(Y |XXX)Pγγγ2(Y ∗|XXX∗, Y,XXX)F2(XXX,XXX∗),

where (Y,XXX, Y ∗,XXX∗) ∈ C ≡ {(y,xxx, y∗,xxx∗) : P (V = 1|y∗,xxx∗) > 0}, then θθθ1 = θθθ2,
γγγ1 = γγγ2, and F1 = F2. Further, if there exist a vector of constants ccc such that

{
∂

∂θθθ
log Pθθθ0(y1|xxx)

Pθθθ0(y2|xxx) + ∂

∂γγγ
log Pγγγ0(y∗1|xxx∗, y1,xxx)

Pγγγ0(y∗2|xxx∗, y2,xxx)

}T
ccc = 0

for any (y∗i ,xxx∗, yi,xxx) ∈ C, i = 1, 2, then ccc = 000.

(C3) The distribution function F0 is positive in its support and q-times differentiable
with respect to a suitable measure.
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(C4) As N →∞, sN →∞, and N1/2s
−q/d
N → 0.

(C5) The function E(V |XXX,XXX∗) is q-times continuously differentiable with respect to
XXX and XXX∗.

With conditions (C1)–(C5), we state and prove the following asymptotic results.
Theorem 4.2.1. Under conditions (C1)−(C5),

||θ̂θθ − θθθ0||+ ||γ̂γγ − γγγ0||+ sup
xxx,xxx∗
|F̂ (xxx,xxx∗)− F0(xxx,xxx∗)| → 0

almost surely.

Proof. Since estimators θ̂θθ and γ̂γγ are bounded and F̂ (xxx,xxx∗) is a distribution function
with bounded support, it follows from Helly’s Selection Theorem that, for any sub-
sequence of θ̂θθ, γ̂γγ, and F̂ (xxx,xxx∗), there exists a further subsequence (still denoted θ̂θθ, γ̂γγ,
and F̂ (xxx,xxx∗)) such that θ̂θθ and γ̂γγ converge to some vectors θ̆θθ and γ̆γγ, respectively, and
F̂ (xxx,xxx∗) converges weakly to some function F̆ (xxx,xxx∗). For Theorem 4.2.1 to hold, we
need to show that θ̆θθ = θθθ0, γ̆γγ = γγγ0, and F̆ = F0.

Recall that the B-spline coefficients p̂kj are defined to maximize the observed-data
log-likelihood lN(θθθ,γγγ, {pkj}) in expression (4.4). Differentiating lN(θθθ,γγγ, {pkj}) with
respect to pkj, we have

µ̂j =
N∑
i=1

Vi
I(XXX i = xxxk)Bq

j (XXX∗i )
pkj

+
N∑
i=1

(1− Vi)
∑1
y=0 Pθ̂θθ(y|xxxk)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk)B

q
j (XXX∗i )∑1

y=0
∑m
k′=1

∑sN
j′=1 Pθ̂θθ(y|xxxk′)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk′)B

q
j′(XXX∗i )pk′j′

, (4.12)

where µ̂j is the Lagrange multiplier for the constraint ∑m
k=1 pkj = 1. By multiplying

both sides of equation (4.12) by pkj and summing over k (k = 1, . . . ,m), we can show
that

µ̂j =
N∑
i=1

ViB
q
j (XXX∗i )

+
N∑
i=1

(1− Vi)
∑1
y=0

∑m
k′=1 Pθ̂θθ(y|xxxk′)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk′)B

q
j (XXX∗i )pk′j∑1

y=0
∑m
k′=1

∑sN
j′=1 Pθ̂θθ(y|xxxk′)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk′)B

q
j′(XXX∗i )pk′j′

. (4.13)

From equation (4.12), it follows that p̂kj can be expressed as

p̂kj =
∑N
i=1 ViI(XXX i = xxxk)Bq

j (XXX∗i )

µ̂j −
∑N
i=1(1− Vi)

∑1
y=0 Pθ̂θθ(y|xxxk)Pγ̂γγ(Y ∗i |XXX

∗
i ,y,xxxk)Bqj (XXX∗i )∑1

y=0

∑m

k′=1

∑sN
j′=1 Pθ̂θθ(y|xxxk′ )Pγ̂γγ(Y ∗i |XXX

∗
i ,y,xxxk′ )B

q

j′ (XXX
∗
i )p̂k′j′

. (4.14)
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Now if we plug µ̂j from equation (4.13) into the form for p̂kj from equation (4.14) we
have the alternate form

p̂kj =
∑N
i=1 ViI(XXX i = xxxk)Bq

j (XXX∗i )∑N
i=1 {Vi + (1− Vi)(aij − bikj)}Bq

j (XXX∗i )
, (4.15)

where

aij =
∑1
y=0

∑m
k′=1 Pθ̂θθ(y|xxxk′)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk′)p̂k′j∑1

y=0
∑m
k′=1

∑sN
j′=1 Pθ̂θθ(y|xxxk′)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk′)B

q
j′(XXX∗i )p̂k′j′

,

bikj =
∑1
y=0 Pθ̂θθ(y|xxxk)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk)∑1

y=0
∑m
k′=1

∑sN
j′=1 Pθ̂θθ(y|xxxk′)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk′)B

q
j′(XXX∗i )p̂k′j′

.

Recall that the B-spline basis is constructed such that P̂ (xxx = xxxk|xxx∗) = ∑sN
j=1B

q
j (xxx∗)p̂kj.

With the form for p̂kj from equation (4.15), we have

P̂ (xxx = xxxk|xxx∗) =
sN∑
j=1

Bq
j (xxx∗)

[ ∑N
i=1 ViI(XXX i = xxxk)Bq

j (XXX∗i )∑N
i=1 {Vi + (1− Vi)(aij − bikj)}Bq

j (XXX∗i )

]
. (4.16)

Because B-spline basis functions have local support, there is only a narrow region
where Bq

j (xxx∗) takes on a value other than 0. This property can be expressed in the
following inequality:

|Bq
j (x̃xx∗)−B

q
j (xxx∗)I(||x̃xx∗ − xxx∗|| ≤ ξN)| . ξN (4.17)

where . means less than or equal to up to a constant and ξN = (1 + bN)−1. By
condition (C4), we have sN →∞ as N →∞. Since sN = (bN + q)d and parameters
q and d are fixed, it must be that bN →∞ as N →∞. Now, from inequality (4.17)
it follows that asymptotically

Bq
j (x̃xx∗) ≈ Bq

j (xxx∗)I(||x̃xx∗ − xxx∗|| ≤ ξN) (4.18)

for a general pair of values x̃xx∗ and xxx∗ in the domain of XXX∗. From expression (4.18)
and equation (4.16), we have that P̂ (XXX = xxxk|xxx∗) is asymptotically equivalent to

∑sN
j=1

∑N
i=1 ViI(XXX i = xxxk)Bq

j (xxx∗)I(||XXX∗i − xxx∗|| ≤ ξN)
g1N(xxxk,xxx∗; θ̂θθ, γ̂γγ, F̂ )

(4.19)
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where

g1N(xxxk,xxx∗; θ̂θθ, γ̂γγ, F̂ ) =
sN∑
j=1

N∑
i=1
{Vi + (1− Vi)(aij − bikj)}Bq

j (xxx∗)I(||XXX∗i − xxx∗|| ≤ ξN).

(4.20)

With (4.19) and the definition in equation (4.11), we have that F̂ (xxx,xxx∗) is asymptot-
ically equivalent to

N−1
m∑
k=1

N∑
i=1

I(xxxk ≤ xxx,XXX∗i ≤ xxx∗)
∑sN
j=1

∑N
i=1 ViI(XXX i = xxxk)Bq

j (xxx∗)I(||XXX∗i − xxx∗|| ≤ ξN)
g1N(xxxk,xxx∗; θ̂θθ, γ̂γγ, F̂ )

.

Next, we show that (NsN)−1g1N(xxx,xxx∗, θ̂θθ, γ̂γγ, F̂ ) is bounded away from zero for
sufficiently large N . By the approximation theory of B-splines (Schumaker, 1981)
and Glivenko-Cantelli theorem,

N−1
1∑
y=0

m∑
k=1

sN∑
j=1

Pθ̂θθ(y|xxxk)Pγ̂γγ(y
∗|xxx∗, y,xxxk)Bq

j (xxx∗)p̂kj

=
1∑
y=0

∫
x̃xx
Pθ̂θθ(y|x̃xx)Pγ̂γγ(y∗|xxx∗, y, x̃xx)F̂ (dx̃xx,xxx∗)→

1∑
y=0

∫
x̃xx
Pθ̆θθ(y|x̃xx)Pγ̆γγ(y∗|xxx∗, y, x̃xx)F̆ (dx̃xx,xxx∗)

(4.21)

uniformly in (xxx∗, y∗). With the asymptotic results from expression (4.21) and equa-
tion (4.20), it follows that (NsN)−1g1N(xxx,xxx∗; θ̂θθ, γ̂γγ, F̂ ) converges to g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ ) for
(xxx,xxx∗) in the support of (XXX,XXX∗), where g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ ) is defined as

E

1− (1− V )
∑1
y=0 Pθ̆θθ(y|xxx)Pγ̆γγ(y∗|xxx∗, y,xxx)

∫
x̃xx F̆ (dx̃xx,xxx∗)∑1

y=0
∫
x̃xx Pθ̆θθ(y|x̃xx)Pγ̆γγ(y∗|xxx∗, y, x̃xx)F̆ (dx̃xx,xxx∗)

 fxxx∗(XXX∗)
∣∣∣∣∣∣XXX∗ = xxx∗

 ≥ 0,

(4.22)

and fxxx∗(XXX∗) is the density function of XXX∗. Recall from equation (4.19) that

1 =
m∑
k=1

P̂ (XXX = xxxk|xxx∗)

=
m∑
k=1

∑sN
j=1

∑N
i=1 ViI(XXX i = xxxk)Bq

j (xxx∗)I(||XXX∗i − xxx∗|| ≤ ξN)
g1N(xxxk,xxx∗; θ̂θθ, γ̂γγ, F̂ )

.
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By equation (4.22) and the approximation theory of B-splines, we have

m∑
k=1

∑sN
j=1

∑N
i=1 ViI(XXX i = xxxk)Bq

j (xxx∗)I(||XXX∗i − xxx∗|| ≤ ξN)
g1N(xxxk,xxx∗; θ̂θθ, γ̂γγ, F̂ )

→
∫
xxx

E {V fxxx∗(xxx∗)|XXX∗ = xxx∗}
g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ )

dxxx.

Now, if g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ ) is not bounded away from zero, then there must exist xxx0

in the support of XXX such that g1(xxx0,xxx
∗; θ̆θθ, γ̆γγ, F̆ ) = 0. Because g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ ) is a

smooth function on the continuous components of xxx, there exists a positive constant
δ such that for any ε > 0,

1 ≥
∫
xxx

E {V fxxx∗(XXX∗)|XXX∗ = xxx∗}
g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ ) + ε

dxxx ≥
∫
||xxx−xxx0||≤δ

E {V fxxx∗(XXX∗)|XXX∗ = xxx∗}
|g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ )|+ ε

dxxx

&
∫
||xxx−xxx0||≤δ

E {V fxxx∗(XXX∗)|XXX∗ = xxx∗}
||xxx− xxx0||+ ε

dxxx, (4.23)

where & means greater than or equal to up to a constant. Because
∫
||xxx−xxx0||≤δ(1/||xxx−

xxx0||)dxxx is infinite, the last integration in expression (4.23) also goes to∞ when ε→ 0.
Thus, we have the following contradiction:

1 &
∫
||xxx−xxx0||≤δ

E {V fxxx∗(XXX∗)|XXX∗ = xxx∗}
||xxx− xxx0||+ ε

dxxx→∞,

and it must be true that g1(xxx,xxx∗; θ̆θθ, γ̆γγ, F̆ ) is bounded away from zero for (xxx,xxx∗) in the
support of (XXX,XXX∗). Further, the same is true for (NsN)−1g1N(xxx,xxx∗; θ̂θθ, γ̂γγ, F̂ ) when N
is sufficiently large.

Finally, through the Kullback-Leibler inequality we prove that θ̆θθ = θθθ0, γ̆γγ = γγγ0,
and F̆ = F0. Specifically, let

p̃kj =
∑N
i=1 ViI(XXX i = xxxk)Bq

j (XXX∗i )/P (Vi = 1|XXX∗i , Y ∗i )∑N
i=1 ViB

q
j (XXX∗i )/P (Vi = 1|XXX∗i , Y ∗i )

and

F̃ (xxx,xxx∗) = N−1
m∑
k=1

N∑
i=1

I(xxxk ≤ xxx,XXX∗i ≤ xxx∗)
sN∑
j=1

Bq
j (XXX∗i )p̃kj. (4.24)

By the approximation theory of B-splines (Schumaker, 1981), F̃ (xxx,xxx∗) → F0(xxx,xxx∗)
uniformly. From the definitions of F̂ and F̃ in equations (4.11) and (4.24), respec-
tively, it follows that F̂ is absolutely continuous with respect to F̃ , and thus dF̂ /dF̃
converges uniformly to dF̆ /dF0. By condition (C3), F̆ is continuously differentiable
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with respect to xxx and xxx∗.
By definition, the SMLE θ̂θθ, γ̂γγ, and {p̂kj}maximize the observed-data log-likelihood

(expression (4.4)), i.e. lN(θ̂θθ, γ̂γγ, {p̂kj}) = sup
θθθ,γγγ,{pkj}

lN(θθθ,γγγ, {pkj}). Thus, the following is

true

lN(θ̂θθ, γ̂γγ, {p̂kj}) ≥lN(θθθ0, γγγ0, {p̃kj})

That is,

0 ≥N−1lN(θθθ0, γγγ0, {p̃kj})−N−1lN(θ̂θθ, γ̂γγ, {p̂kj})

=−N−1
N∑
i=1

Vi

{
log Pθ̂θθ(Yi|XXX i)

Pθθθ0(Yi|XXX i)
+ log Pγ̂γγ(Y ∗i |XXX∗i , Yi,XXX i)

Pγγγ0(Y ∗i |XXX∗i , Yi,XXX i)

}

−N−1
N∑
i=1

Vi
m∑
k=1

sN∑
j=1

I(XXX i = xxxk) log p̂kj
p̃kj

Bq
j (XXX∗i )

−N−1
N∑
i=1

(1− Vi) log
{ ∑1

y=0
∑m
k=1 Pθ̂θθ(y|xxxk)Pγ̂γγ(Y ∗i |XXX∗i , y,xxxk)

∑sN
j=1 p̂kjB

q
j (XXX∗i )∑1

y=0
∑m
k=1 Pθθθ0(y|xxxk)Pγγγ0(Y ∗i |XXX∗i , y,xxxk)

∑sN
j=1 p̃kjB

q
j (XXX∗i )

}
.

(4.25)

The first and second terms in expression (4.25) converge as follows:

−N−1
N∑
i=1

Vi log Pθ̂θθ(Yi|XXX i)
Pθθθ0(Yi|XXX i)

→ −E
{
V log Pθ̆θθ(Y |XXX)

Pθθθ0(Y |XXX)

}
, (4.26)

and

−N−1
N∑
i=1

Vi log Pγ̂γγ(Y ∗i |XXX∗i , Yi,XXX i)
Pγγγ0(Y ∗i |XXX∗i , Yi,XXX i)

→ −E
{
V log Pγ̆γγ(Y ∗|XXX∗, Y,XXX)

Pγγγ0(Y ∗|XXX∗, Y,XXX)

}
. (4.27)

In the third term, the approximation ∑sN
j=1 log p̂kj

p̃kj
Bq
j (XXX∗i ) is asymptotically equivalent

to

log
∑sN
j=1 p̂kjB

q
j (XXX∗i )∑sN

j=1 p̃kjB
q
j (XXX∗i )

= log dF̂ (xxx,xxx∗)
dF̃ (xxx,xxx∗)

∣∣∣∣∣∣
xxx=xxxk

,

following from the approximation theory of B-splines (Schumaker, 1981). Given this,
it follows that

sN∑
j=1

log p̂kj
p̃kj

Bq
j (XXX∗i )→ log dF̆ (xxx,xxx∗)

dF0(xxx,xxx∗)

∣∣∣∣∣∣
xxx=xxxk
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uniformly. Thus, we have

−N−1
N∑
i=1

Vi
m∑
k=1

sN∑
j=1

I(XXX i = xxxk) log p̂kj
p̃kj

Bq
j (XXX∗i )→ −E

{
V log dF̆ (XXX,XXX∗)

dF0(XXX,XXX∗)

}
. (4.28)

By definition, the last term in (4.25) is equivalent to

−N−1
N∑
i=1

(1− Vi) log
∑1
y=0

∫
xxx Pθ̂θθ(y|xxx)Pγ̂γγ(Y ∗i |XXX∗i , y,xxx)F̂ (dxxx,XXX∗i )∑1

y=0
∫
xxx Pθθθ0(y|xxx)Pγγγ0(Y ∗i |XXX∗i , y,xxx)F̃ (dxxx,XXX∗i )

,

which converges to

→ −E

(1− V ) log
∑1
y=0

∫
xxx Pθ̆θθ(y|xxx)Pγ̆γγ(Y ∗|XXX∗, y,xxx)F̆ (dxxx,XXX∗)∑1

y=0
∫
xxx Pθθθ0(y|xxx)Pγγγ0(Y ∗|XXX∗, y,xxx)F0(dxxx,XXX∗)

 . (4.29)

Substituting expressions (4.26)−(4.29) into inequality (4.25), we have

0 ≥− E
[
V

{
log Pθ̆θθ(Y |XXX)Pγ̆γγ(Y ∗|XXX∗, Y,XXX)dF̆ (XXX,XXX∗)

Pθθθ0(Y |XXX)Pγγγ0(Y ∗|XXX∗, Y,XXX)dF0(XXX,XXX∗)

}]

− E

(1− V ) log
∑1
y=0

∫
xxx Pθ̆θθ(y|xxx)Pγ̆γγ(Y ∗|XXX∗, y,xxx)F̆ (dxxx,XXX∗)∑1

y=0
∫
xxx Pθθθ0(y|xxx)Pγγγ0(Y ∗|XXX∗, y,xxx)F0(dxxx,XXX∗)

 (4.30)

Based on expression (4.30), we conclude that the Kullback-Leibler information of the
density indexed by θ̆θθ, γ̆γγ, and F̆ with respect to the true density indexed by θθθ0, γγγ0, and
F0 is non-positive and thus must be zero. Therefore, the two densities are identical
almost surely. For V = 1, this implies that

Pθ̆θθ(Y |XXX)Pγ̆γγ(Y ∗|XXX∗, Y,XXX)F̆ (XXX,XXX∗) = Pθθθ0(Y |XXX)Pγγγ0(Y ∗|XXX∗, Y,XXX)F0(XXX,XXX∗).

It follows from condition (C2) that θ̆θθ = θθθ0, γ̆γγ = γγγ0, and F̆ = F0. Thus, Theorem 4.2.1
holds.

Theorem 4.2.2. Under conditions (C1)−(C5), N1/2(θ̂θθ − θθθ0) and N1/2(γ̂γγ − γγγ0)
converge in distribution to zero-mean normal random vectors whose covariances attain
their corresponding semiparametric efficiency bounds.

Proof. Denote the product of the two parametric models from the joint density as

Pθθθ(Y |XXX)Pγγγ(Y ∗|XXX∗, Y,XXX) ≡ Pλλλ(Y, Y ∗|XXX∗,XXX),

where λλλ = (θθθ,γγγ). Let λ̂λλ = (θ̂θθ, γ̂γγ). The score function for the true values λλλ0 = (θθθ0, γγγ0)
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breaks into the sum of the separate score functions for θθθ0 and γγγ0, i.e.,

Uλλλ = ∂

∂λλλ
logPλλλ0(Y, Y ∗|XXX∗,XXX) = ∂

∂θθθ
logPθθθ0(Y |XXX) + ∂

∂γγγ
logPγγγ0(Y ∗|XXX∗, Y,XXX).

Let UF (h) denote the score function along the submodel {1 + εh(xxx,xxx∗)}dF0(xxx,xxx∗)
based on one complete observation (Y,XXX, Y ∗,XXX∗), where h ∈ L2(P) for P the prob-
ability measure indexed by (θθθ0, γγγ0, F0) and E {h(XXX,XXX∗)} = 0. The two-phase score
operators, based on observed data, are defined as

U o
λλλ = V Uλλλ + (1− V )E (Uλλλ|Y ∗,XXX∗) , and U o

F = V UF + (1− V )E (UF |Y ∗,XXX∗) .

The information operator is U o∗
λλλ U

o
λλλ U o∗

λλλ U
o
F

U o∗
F U

o
λλλ U o∗

F U
o
F

 ,
where U o∗

λλλ and U o∗
F are the adjoint operators of U o

λλλ and U o
F , respectively. Elements of

the information operator are calculated as

U o∗
λλλ l

o
λλλ = E

{
V U⊗2

λλλ + (1− V )E(Uλλλ|Y ∗,XXX∗)⊗2
}
,

U o∗
λλλ U

o
F (h) = U o∗

F (h)U oT
λλλ = E [E {V Uλλλ + (1− V )E(Uλλλ|Y ∗,XXX∗)|XXX,XXX∗}h(XXX,XXX∗)] ,

U o∗
F (h)U o

F (h) = E (V |XXX,XXX∗)h(XXX,XXX∗) + E [(1− V )E {h(XXX,XXX∗)|Y ∗,XXX∗} |XXX,XXX∗] ,

where ccc⊗ = ccccccT .
We aim to show the asymptotic normality and asymptotic efficiency of λ̂λλ. In

order to do that, we need to show that the information operator above is invertible.
We note that the information operator is the sum of an invertible operator and a
compact operator from the space M ≡ Rdλλλ × BV (Dxxx,xxx∗) to itself, where dλλλ is the
dimension of λλλ and BV (Dxxx,xxx∗) is the space of functions with bounded total variation
in the support of (XXX,XXX∗). Using Theorem 4.7 of Rudin (1973), we can show that
the information operator is invertible by demonstrating that the Fisher information
along any nontrivial submodel is nonzero.

Suppose that the Fisher information is zero along some submodel

[λλλ0 + εccc, dF0(xxx,xxx∗){1 + εh(xxx,xxx∗)}],

where ccc ∈ C is a vector of constants. The two-phase score along this submodel is
U oT
λλλ ccc + U o

F (h), and must also be zero. Consider the score contribution for a single
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validated subject with complete data (Y,XXX, Y ∗,XXX∗) ∈ C and constants ccc such that

U oT
λλλ ccc+ U o

F (h) = 0.

For any pair of complete observations (y∗1,xxx∗, y1,xxx) and (y∗2,xxx∗, y2,xxx) ∈ C, we have

{
∂

∂λλλ
logPλλλ0(y1, y

∗
1|xxx∗,xxx)

}T
ccc+ h(xxx,xxx∗) =

{
∂

∂λλλ
logPλλλ0(y2, y

∗
2|xxx∗,xxx)

}T
ccc+ h(xxx,xxx∗),

which can be rewritten as a linear equation on the vector of constants ccc:
{
∂

∂λλλ
logPλλλ0(y1, y

∗
1|xxx∗,xxx)− ∂

∂λλλ
logPλλλ0(y2, y

∗
2|xxx∗,xxx)

}T
ccc = 0.

By condition (C2), for this to be true it must be that ccc = 000 and h = 0. Thus, the
information must be nonzero along any submodel and the information operator is
invertible. This further implies that there exists a function h such that U o∗

F U
o
F (h) =

U o∗
F U

o
λλλ, i.e.,

E (V |XXX,XXX∗)h+ E {(1− V )E(h|XXX∗, Y ∗)|XXX,XXX∗}

=E {V Uλλλ + (1− V )E(Uλλλ|Y ∗,XXX∗)|XXX∗,XXX} ,

meaning that the least favorable direction for λλλ0 exists. Also, it can be shown that
h is q-times continuously differentiable by using similar arguments as in the proof of
Theorem 3.4 of Zeng (2005) in conjunction with conditions (C3) and (C4).

Recall that the SMLE (θ̂θθ, γ̂γγ, F̂ ) = (λ̂λλ, F̂ ) are defined to maximize the observed-
data log-likelihood (expression (4.4)). Therefore, the derivatives of this function with
respect to ε along the submodel (λ̂λλ+εccc, dF̂ ) must be zero for any ccc, as is the derivative
along submodel {λ̂λλ, dF̂ (1 + hN)}, where hN is the projection of h onto the tangent
space of the B-spline sieve space. By the approximation theory of B-splines, we
have ||hN − h||L2 . s

−q/d
N . The SMLE (λ̂λλ, F̂ ) can therefore be found by solving the

functional
ΨN(λλλ, F ) = Ψ1N(λλλ, F )−Ψ2N(λλλ, F ) = 0,

where

Ψ1N(λλλ, F ) =PN
{
V
∂

∂λλλ
logPλλλ(Y, Y ∗|XXX,XXX∗)

}
+
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PN

(1− V )
1∑
y=0

∫
xxx

∂

∂λλλ
logPλλλ(y, Y ∗|xxx,XXX∗)g2(Y ∗, y,XXX∗,xxx;λλλ, F )F (dxxx,XXX∗)


Ψ2N(λλλ, F ) =PN

V hN(XXX,XXX∗)

+

PN

(1− V )
1∑
y=0

∫
xxx
g2(Y ∗, y,XXX∗,xxx;λλλ, F )hN(xxx,XXX∗)F (dxxx,XXX∗)

 ,
PN is the empirical measure of the sample, and

g2(Y ∗, y,XXX∗,xxx;λλλ, F ) = Pθθθ(y|xxx)Pγγγ(Y ∗|XXX∗, y,xxx)∑1
ỹ=0

∫
x̃xx Pθθθ(ỹ|x̃xx)Pγγγ(Y ∗|XXX∗, ỹ, x̃xx)F (dx̃xx,XXX∗)

. (4.31)

Replace the empirical measure with the true P and define Ψ(λλλ, F ) following the
same form as ΨN(λλλ, F ). Since ΨN(λ̂λλ, F̂ ) = 0, it follows that λ̂λλ satisfies the following
equation:

N−1/2
{

ΨN(λ̂λλ, F̂ )−Ψ(λ̂λλ, F̂ )
}

= −N−1/2Ψ(λ̂λλ, F̂ ). (4.32)

The left-hand side of equation (4.32) is an empirical process of the following two
classes of functions indexed by (λ̂λλ, F̂ ):

F1N =

V ∂

∂λλλ
logPλλλ(Y, Y ∗|XXX,XXX∗) + (1− V )

1∑
y=0

∫
xxx

∂

∂λλλ
logPλλλ(y, Y ∗|xxx,XXX∗)×

g2(Y ∗, y,XXX∗,xxx;λλλ, F )F (dxxx,XXX∗) : |λλλ− λλλ0|+ ||F − F0|| ≤ ε0


F2N =

V hN(XXX,XXX∗) + (1− V )
1∑
y=0

∫
xxx
g2(Y ∗, y,XXX∗,xxx;λλλ, F )×

hN(XXX,XXX∗)F (dxxx,X∗) : |λλλ− λλλ0|+ ||F − F0|| ≤ ε0

,
where ||F − F0|| is the supreme norm in Dxxx,xxx∗ . By Theorem 4.2.1 and the approxi-
mation theory of B-splines (Schumaker, 1981), it is straightforward to verify that

V
∂

∂λλλ
logPλ̂λλ(Y, Y

∗|XXX,XXX∗)

+ (1− V )
1∑
y=0

∫
xxx

∂

∂λλλ
logPλ̂λλ(y, Y

∗|xxx,XXX∗)g2(Y ∗, y,XXX∗,xxx; λ̂λλ, F̂ )F̂ (dxxx,XXX∗)
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converges uniformly in (Y,XXX, Y ∗,XXX∗) to

V
∂

∂λλλ
logPλλλ0(Y, Y ∗|XXX,XXX∗)

+ (1− V )
1∑
y=0

∫
xxx

∂

∂λλλ
logPλλλ0(y, Y ∗|xxx,XXX∗) Pθθθ0(y|xxx)Pγγγ0(Y ∗|XXX∗, y,xxx)F0(dxxx,XXX∗)∑1

y=0
∫
xxx Pθθθ0(y|xxx)Pγγγ0(Y ∗|XXX∗, y,xxx)F0(dxxx,XXX∗)

=V Uλλλ + (1− V )E (Uλλλ|Y ∗,XXX∗) = U o
λλλ

Following these same steps, we can verify that

V hN(XXX,XXX∗) + (1− V )
1∑
y=0

∫
xxx
g2(Y ∗, y,XXX∗,xxx; λ̂λλ, F̂ )hN(XXX,XXX∗)F̂ (dxxx,XXX∗)

converges uniformly in (Y,XXX, Y ∗,XXX∗) to

V h(XXX,XXX∗) + (1− V )
∑1
y=0

∫
xxx h(xxx,XXX∗)Pθθθ0(y|xxx)Pγγγ0(Y ∗|XXX∗, y,xxx)F0(dxxx,XXX∗)∑1
y=0

∫
xxx Pθθθ0(y|xxx)Pγγγ0(Y ∗|XXX∗, y,xxx)F0(dxxx,XXX∗)

=V h(XXX,XXX∗) + (1− V )E {h(XXX,XXX∗)|Y ∗,XXX∗} = U0
F (h).

Using Theorem 2.11.22 from van der Vaart and Wellner (1996), we can show that
the left-hand side of equation (4.32) equals

−N−1/2(PN − P) {U o
λλλ − U o

F (hN)}+ op(1). (4.33)

In order to use this theorem, we need to verify its conditions. Clearly, all functions in
the classes F1N and F2N are uniformly bounded. Next, we check the uniform entropy
condition. Let f1 and f2 be two arbitrary functions from class F1N indexed by (λλλ1, F1)
and (λλλ2, F2), respectively. The difference between them is bounded above by

∣∣∣∣∣ ∂∂λλλ logPλλλ1(Y, Y ∗|XXX,XXX∗)− ∂

∂λλλ
logPλλλ2(Y, Y ∗|XXX,XXX∗)

∣∣∣∣∣
+

∣∣∣∣∣∣
1∑
y=0

∫
xxx

∂

∂λλλ
logPλλλ1(y, Y ∗|xxx,XXX∗)g2(Y ∗, y,XXX∗,xxx;λλλ1, F1)(F1 − F2)(dxxx,XXX∗)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1∑
y=0

∫
xxx

{
∂

∂λλλ
logPλλλ1(y, Y ∗|xxx,XXX∗)− ∂

∂λλλ
logPλλλ2(y, Y ∗|xxx,XXX∗)

}

× g2(Y ∗, y,XXX∗,xxx;λλλ1, F1)F2(dxxx,XXX∗)

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
1∑
y=0

∫
xxx

∂

∂λλλ
logPλλλ2(y, Y ∗|xxx,XXX∗)

g2(Y ∗, y,XXX∗,xxx;λλλ1, F1)

− g2(Y ∗, y,XXX∗,xxx;λλλ2, F2)

F2(dxxx,XXX∗)

∣∣∣∣∣∣
=(i) + (ii) + (iii) + (iv).

Because the denominator in expression (4.31) is bounded away from zero, we obtain
that

term (ii) .
∫
xxx
|F1(xxx,XXX∗)− F2(xxx,XXX∗)|dxxx .

∫
xxx∗

∫
xxx
|F1(xxx,xxx∗)− F2(xxx,xxx∗)|dxxxdxxx∗.

Furthermore, by the mean-value theorem, we have

term (i) .||λλλ1 − λλλ2||,

term (iii) .||λλλ1 − λλλ2||
1∑
y=0

∫
xxx
g2(Y ∗, y,XXX∗,xxx;λλλ1, F1)F2(dxxx,XXX∗) . ||λλλ1 − λλλ2||

term (iv) .||λλλ1 − λλλ2||+
∫
xxx∗

∫
xxx
|F1(xxx,xxx∗)− F2(xxx,xxx∗)|dxxxdxxx∗.

Combining these upper bounds for terms (i)-(iv), we have

|f1 − f2| . ||λλλ1 − λλλ2||+
∫
xxx∗

∫
xxx
|F1(xxx,xxx∗)− F2(xxx,xxx∗)|dxxxdxxx∗.

Consider an arbitrary finite measure Q. It follows from the Cauchy-Schwartz inequal-
ity that

||f1 − f2||L2(Q) . ||λλλ1 − λλλ2||+
{∫

xxx∗

∫
xxx
|F1(xxx,xxx∗)− F2(xxx,xxx∗)|2dxxxdxxx∗

}1/2

= ||λλλ1 − λλλ2||+ ||F1(XXX,XXX∗)− F2(XXX,XXX∗)||L2(Q̃), (4.34)

where Q̃ is the uniform measure on Dxxx,xxx∗ . Based on expression (4.34), we conclude
that the covering numbers N(·, ·, ·) are related as follow:

N (ε,F1N ,L2(Q)) .N (ε/2, {λλλ : ||λλλ− λλλ0|| < ε0} , | · |)×

N
(
ε/2, {F : ||F − F0||∞ < ε0} ,L2(Q̃)

)
. (4.35)

The covering number
N (ε/2, {λλλ : ||λλλ− λλλ0|| < ε0} , | · |)
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from expression (4.35) is O(1/εd). Next, observe that {F : ||F − F0||∞ < ε} is in the
symmetric convex hull of a Vapnik-Chervonenkis class

[
I{aaa < (XXXT ,XXX∗T )T ≤ bbb} : aaa, bbb ∈ R2d

]
.

Following from Theorem 2.6.9 of van der Vaart and Wellner (1996), we have that the
last covering number N (ε/2, {F : ||F − F0||∞ < ε0} ,L2(Q)) is O(exp{ε−2B/(B+2)})
for some positive index B. From these results and expression (4.35), F1N has been
shown to satisfy the uniform entropy condition in Theorem 2.11.22 of van der Vaart
and Wellner (1996). By similar arguments and the fact that ||hN ||L2 . ||h||L2 , we can
show that F2N also satisfies this condition.

Replacing the arbitrary measure Q with true P in expression (4.34), we see that
the functions in F1N and F2N are Lipschitz continuous with respect to (λλλ, F ) in the
metric defined as

p {(λλλ1, F1), (λλλ2, F2)} = ||λλλ1 − λλλ2||+ ||F1 − F2||L2(P).

Lastly, the total boundedness of the index set (λλλ, F ) holds due to the precompactness
of (λλλ, F ) under the uniform metric. Thus, we have now verified all of the conditions
in Theorem 2.11.22 of van der Vaart and Wellner (1996), and therefore, following
from this theorem, equation (4.33) holds as desired.

Together equations (4.32) and (4.33) give us that

−N−1/2
{

Ψ1(λ̂λλ, F̂ )−Ψ2(λ̂λλ, F̂ )
}

=N1/2(PN − P){U o
λλλ − U o

F (hN)}+ op(1), (4.36)

where Ψ1(λ̂λλ, F̂ ) and Ψ2(λ̂λλ, F̂ ) are the same as Ψ1N(λ̂λλ, F̂ ) and Ψ2N(λ̂λλ, F̂ ), respectively,
replacing PN with P . We can linearize the left-hand side of equation (4.36) around
the truth (λλλ0, F0) to show that Ψ1(λ̂λλ, F̂ ) is equal to

Ψ1(λλλ0, F0) + P
{
V

∂2

∂λλλT∂λλλ
logPλ̃λλ(Y, Y ∗|XXX,XXX∗)(λ̂λλ− λλλ0)

}

+ P
(1− V )

1∑
y=0

∫
xxx

∂

∂λλλ

{
∂

∂λλλ
logPλ̃λλ(y, Y ∗|xxx,XXX∗)g2(Y ∗, y,XXX∗,xxx; λ̃λλ, F̃ )

}

× (λ̂λλ− λλλ0)F̂ (dxxx,XXX∗)


+ P
(1− V )

1∑
y=0

∫
xxx

∂

∂λλλ
logPλ̃λλ(y, Y ∗|xxx,XXX∗)

 ∂

∂F
g2(Y ∗, y,XXX∗,xxx; λ̃λλ, F̃ )
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× F̃ (dxxx,XXX∗)

(F̂ − F0)
,

where ∂/∂F denotes the pathwise derivative, and (λ̃λλ, F̃ ) lies between (λ̂λλ, F̂ ) and
(λλλ0, F0). Similar expansions can be obtained for Ψ2(λ̂λλ, F̂ ). By the approximation
theory of B-splines (Schumaker, 1981), we can also show that the left-hand side of
(4.36) equals

−N−1/2{1 + op(1)}E
{
U o
λλλλλλ(λ̂λλ− λλλ0) + U o

λλλF (F̂ − F0)− U o
Fλλλ(λ̂λλ− λλλ0)− U o

FF (hN , F̂ − F0)
}

−N−1/2 {Ψ1(λλλ0, F0)−Ψ2(λλλ0, F0)} , (4.37)

where the derivatives in expression (4.37) are as follows: U o
λλλλλλ is the derivative of

U o
λλλ with respect to λλλ; U o

λλλF (h) is the derivative of U o
λλλ with respect to F along the

direction h; U o
Fλλλ(h) is the derivative of U o

F (h) with respect to λλλ; and U o
FF (h1, h2) is

the derivative of U o
F (h1) with respect to F along the direction h2.

Since h was chosen to be the least-favorable direction for λλλ0 and ||hN−h|| . s
−q/d
N ,

it follows that

E
{
U o
FF (hN , F̂ − F0)

}
=E

{
U o
λλλF (F̂ − F0)

}
+O(s−q/dN ),

E
{
U o
Fλλλ(hN)(λ̂λλ− λλλ0)

}
=E

{
U o
Fλλλ(h)(λ̂λλ− λλλ0)

}
+O(N1/2s

−q/d
N ).

Thus, by condition (C4) the first term in expression (4.37) is

N−1/2ΣΣΣ(λ̂λλ− λλλ0) +O(N1/2s
−q/d
N ) = N1/2ΣΣΣ(λ̂λλ− λλλ0) + o(1),

where ΣΣΣ = −E {U o
λλλλλλ − U o

Fλλλ(h)}. The covariance matrix ΣΣΣ is invertible following from
the invertability of the information for (λλλ0, F0). The last term in expression (4.37)
equals zero because

P
{
V
∂

∂λλλ
Pλλλ0(Y, Y ∗|XXX,XXX∗)

}
= 0,

P

(1− V )
1∑
y=0

∫
xxx

∂

∂λλλ
logPλλλ0(y, Y ∗|xxx,XXX∗) Pλλλ0(y, Y ∗|xxx,XXX∗)F0(dxxx,XXX∗)∑1

y=0
∫
xxx Pλλλ0(y, Y ∗|xxx,XXX∗)F0(dxxx,XXX∗)

 = 0.

Finally, it follows from equation (4.36) that

N1/2 {1 + op(1)}ΣΣΣ(λ̂λλ− λλλ0) + op(1) = N1/2(PN − P) {U o
λλλ − U o

F (h)} ,
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thus establishing the asymptotic normality in Theorem 4.2.2. Further, ΣΣΣ−1{U o
λλλ −

U o
F (h)} is the efficient influence function for λλλ0, so the limiting covariance matrix

attains the semiparametric efficiency bound.

4.6.2 Additional Simulation Studies
4.6.2.1 Validity checks in a larger Phase I sample

All variables were generated following Section 4.3.1. From N = 5000 Phase I
subjects, proportions of pv = 0.1, 0.25, or 0.5 were selected for validation through
SRS or naive case-control sampling. Results in Table 4.6 are consistent with what we
saw with increasing N = 1000 to 2000 in Table 4.1.

Table 4.6: Simulation results for validity checks with outcome misclassification and a binary error-
prone covariate based on larger Phase I sample size

SMLE MLE Complete-Case HT Raking
pv Bias SE Bias SE RE Bias SE RE Bias SE RE Bias SE RE

SRS

0.10 0.006 0.170 0.006 0.170 1.000 −0.013 0.197 0.744 −0.013 0.197 0.744 −0.009 0.183 0.861
0.25 −0.001 0.110 −0.001 0.110 1.002 0.004 0.122 0.808 0.004 0.122 0.808 0.003 0.115 0.916
0.50 −0.003 0.083 −0.003 0.083 1.001 −0.007 0.089 0.879 −0.007 0.089 0.879 −0.006 0.084 0.976

1:1 case-control sampling based on Y ∗

0.10 −0.005 0.151 −0.005 0.151 1.004 0.005 0.185 0.668 −0.005 0.186 0.659 −0.005 0.173 0.763
0.25 −0.001 0.097 −0.001 0.097 1.003 0.008 0.114 0.718 −0.001 0.116 0.700 −0.001 0.106 0.832
0.50 −0.003 0.076 −0.003 0.076 0.999 0.008 0.082 0.870 −0.001 0.083 0.851 0.001 0.079 0.948

Note: Bias and SE are, respectively, the empirical bias and standard error of the parameter estimator; RE is the relative efficiency
of the estimator to the SMLE. Each entry is based on 1000 replicates. The SMLE converged in all replications. The Monte Carlo
simulation error for the bias of the SMLE was ≤ 0.006.

4.6.2.2 Robustness of the SMLE and MLE
A continuous, error-free covariate Xa was generated from a standard normal dis-

tribution with mean 0 and variance 1. Misclassification-prone X∗b was generated from
a Bernoulli distribution with P (X∗b = 1|Xb, Y,Xa) = [1 + exp{−(−1.1 + 2.2Xb +
0.5Xa + δ3X

2
a)}]−1. The coefficient δ3 was varied in between −0.5 and 0.5. All other

variables were generated as in Section 4.3.1, with the Phase I and II sample sizes
fixed at N = 1000 and n = 250, respectively. The fully-parametric MLE assumed the
covariate error model to be P (Xb = 1|X∗b , Y,Xa) = [1 +exp{−(δ0 + δ1Xb+ δ2Xa)}]−1,
i.e., main effects only. Clearly, when δ3 = 0 the MLE will be correctly specified but
it will be misspecified otherwise. The SMLE placed separate cubic B-splines on Xa

with 10 each interior knots on subjects with Xb = 0 and Xb = 1. SRS and naive case-
control were used to select Phase II. The bias of the MLE remained reasonably small
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(Table 4.7), suggesting that logistic regression can be fairly robust in these settings,
even for large choices of δ3. The bias of the generalized raking estimator was around
5% in all settings, likely due to the small audit size of n = 250; it reduced to less
than 1% when n = 500 (data not shown).

In a second set of simulations, error-prone Y ∗ was generated from a Bernoulli
distribution with P (Y ∗ = 1|X∗b , Y,Xb, Xa) = [1 + exp{−(−2.2 − 0.2X∗b + 5.14Y −
0.2Xb − 0.1Xa + θ5X

2
a)}]−1. The coefficient θ5 was varied between −0.5 and 0.5;

when θ5 = 0 the model reduces to main effects only. All other variables were gener-
ated as above with δ3 = −0.1, and the same B-spline specification was used for the
SMLE. We compare the performance of the SMLE when the logistic regression model
P (Y ∗|X∗b , Y,Xb, Xa) included the quadratic termX2

a , which was correctly specified for
θ5 6= 0, to the SMLE when this model assumed main effects only, which was misspeci-
fied for all θ5 6= 0. The fully-parametric MLE assumed main effects only in the covari-
ate and exposure error models such that P (Xb = 1|X∗b , Y,Xa) = [1+exp{−(δ0+δ1Xb+
δ2Xa)}]−1 and P (Y ∗|X∗b , Y,Xb, Xa) = [1+exp{−(θ0 +θ1X

∗
b +θ2Y +θ3Xb+θ4Xa)}]−1,

respectively. SRS and naive case-control sampling were used to select the Phase II
subsample. While the SMLE was slightly more biased when the outcome error mech-
anism was misspecified (Table 4.8), it was still no more than 5% biased and coverage
probabilities for the 95% CI remained reasonable. The bias tended to be larger when
θ5 was positive than negative, even for the same magnitude of the coefficient; for
example there was 5% bias when θ5 = 0.5 and the SMLE assumed the main effects
only but 2.5% bias when θ5 = −0.5 and the same model was used. As expected, the
SMLE assuming main effects only performed similarly to the MLE. Performance of
the raking estimator was similar to what was seen in Table 4.7, with low bias but less
efficiency than the SMLE or MLE. Like those in Table 4.7, these simulations suggest
that logistic regression can be fairly robust to model misspecification.

4.6.2.3 Classical covariate measurement error
Continuous covariate Xb was generated from a standard normal distribution.

Error-free covariate Xa and outcome Y were generated from Bernoulli distributions
with P (Xa = 1) = 0.25 and P (Y = 1|Xb, Xa) = [1 + exp{−(−1 + βXb − 0.5Xa)}]−1,
respectively. Error-prone covariate X∗b was generated by X∗b = Xb + U , where U was
a normal random variable with mean zero and variance σ2

U = 0.5. The outcome, Y ,
was assumed to be error-free. The Phase I and II sample sizes were N = 1000 and
n = 250, respectively, and Phase II was selected by SRS and traditional case-control
sampling. The effect β was varied between −2 and 2. When implementing the SMLE,
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Table 4.7: Simulation results under complex specification of the covariate error mechanism

SMLE MLE Raking
δ3 Bias SE Bias SE Bias SE

SRS

−0.5 −0.001 0.246 0.009 0.240 −0.010 0.266
−0.2 0.001 0.242 0.008 0.238 −0.010 0.263
−0.1 0.002 0.243 0.007 0.238 −0.010 0.264
0.0 0.001 0.243 0.007 0.237 −0.011 0.265
0.1 0.001 0.243 0.007 0.236 −0.012 0.264
0.2 0.001 0.241 0.007 0.235 −0.013 0.265
0.5 0.005 0.246 0.009 0.240 −0.013 0.267

1:1 case-control sampling based on Y ∗

−0.5 −0.015 0.241 −0.010 0.236 −0.013 0.252
−0.2 −0.004 0.235 −0.003 0.229 −0.002 0.253
−0.1 −0.014 0.240 −0.011 0.234 −0.003 0.253
0.0 −0.001 0.237 0.000 0.232 −0.007 0.260
0.1 −0.013 0.230 −0.009 0.224 −0.002 0.245
0.2 −0.004 0.241 0.000 0.235 −0.010 0.251
0.5 −0.012 0.240 −0.006 0.236 −0.002 0.241

Note: The error-prone exposure X∗b was generated from a
Bernoulli distribution with P (X∗b = 1|Xb, Y,Xa) = [1 +
exp{−(−1.1 + 2.2Xb + 0.5Xa + δ3X

2
a)}]−1. The fully-parametric

MLE specified this model with main effects only; the SMLE and
raking estimator require no such model specification. Bias and SE
are, respectively, the empirical bias and standard error of the pa-
rameter estimator. Each entry is based on 1000 replicates. The
SMLE had greater than 98% convergence rates in all settings.
The Monte Carlo simulation error for the bias of the SMLE was
≤ 0.008.
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Table 4.8: Simulation results under complex specification of the outcome and covariate error mech-
anisms

SMLE
Includes quadratic term Main effects only MLE Raking

θ5 Bias SE SEE CP Bias SE SEE CP Bias SE Bias SE
SRS

−0.5 0.008 0.242 0.242 0.954 −0.005 0.248 0.244 0.951 −0.006 0.247 −0.008 0.262
−0.2 0.005 0.241 0.241 0.945 0.001 0.242 0.242 0.947 −0.005 0.247 −0.009 0.263
−0.1 0.004 0.242 0.242 0.942 0.002 0.243 0.242 0.944 −0.005 0.248 −0.008 0.264
0.0 0.002 0.243 0.242 0.949 0.002 0.243 0.242 0.949 −0.007 0.249 −0.010 0.264
0.1 0.004 0.244 0.243 0.951 0.005 0.245 0.243 0.951 −0.007 0.249 −0.010 0.264
0.2 0.005 0.242 0.243 0.952 0.007 0.244 0.244 0.950 −0.007 0.251 −0.010 0.266
0.5 0.007 0.238 0.244 0.956 0.010 0.249 0.248 0.947 −0.011 0.254 −0.009 0.270

1:1 case-control sampling based on Y ∗

−0.5 −0.003 0.243 0.230 0.938 −0.011 0.248 0.233 0.939 0.006 0.227 0.007 0.240
−0.2 −0.012 0.234 0.230 0.947 −0.014 0.234 0.230 0.945 0.000 0.233 −0.003 0.248
−0.1 −0.003 0.241 0.230 0.945 −0.004 0.242 0.230 0.943 0.003 0.230 0.003 0.245
0.0 −0.004 0.241 0.230 0.940 −0.004 0.241 0.230 0.941 −0.011 0.234 −0.009 0.252
0.1 0.003 0.233 0.230 0.946 0.004 0.233 0.231 0.947 −0.010 0.236 −0.005 0.252
0.2 −0.008 0.240 0.232 0.948 −0.007 0.241 0.232 0.946 −0.001 0.242 −0.001 0.258
0.5 0.003 0.245 0.235 0.944 0.007 0.255 0.239 0.936 −0.010 0.234 −0.007 0.251

Note: The error-prone outcome Y ∗ was generated from a Bernoulli distribution with P (Y ∗ = 1|X∗b , Y,Xb, Xa) =
[1+exp{−(−2.2−0.2X∗b +5.14Y −0.2Xb−0.1Xa+θ5X

2
a)}]−1. Bias and SE are, respectively, the empirical bias and

standard error of the parameter estimator; SEE is the average of the standard error estimator; CP is the coverage
probability of the 95% confidence interval. Each entry is based on 1000 replicates. The SMLE had greater than
95% convergence rates in all settings. The Monte Carlo simulation error for the bias and coverage probability of
the SMLE were ≤ 0.008 and ≤ 0.8%, respectively, when the model included the quadratic and ≤ 0.009 and ≤ 0.9%,
respectively, when the model did not.
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Table 4.9: Simulation results under continuous covariate error with additive measurement error of
varied effect size β

SMLE RC Raking
β Bias SE Bias SE Bias SE

SRS

−2 −0.069 0.215 0.268 0.137 −0.033 0.244
−1 −0.033 0.122 0.038 0.101 −0.018 0.149
0 0.000 0.093 −0.001 0.089 −0.002 0.107
1 0.045 0.126 −0.031 0.102 0.011 0.142
2 0.087 0.220 −0.260 0.138 0.035 0.247

1:1 case-control sampling based on Y

−2 −0.070 0.231 0.262 0.140 −0.050 0.241
−1 −0.036 0.117 0.019 0.098 −0.019 0.135
0 0.003 0.089 0.003 0.089 0.007 0.093
1 0.029 0.126 −0.025 0.106 0.009 0.141
2 0.075 0.220 −0.253 0.143 0.028 0.229

Note: Bias and SE are, respectively, the empirical bias and
standard error of the parameter estimator. Each entry is
based on 1000 replicates. The SMLE converged in all repli-
cations. The Monte Carlo simulation error for the bias of the
SMLE was ≤ 0.007.

we used the histogram B-spline basis and varied bN from 16 to 52 to assess its ef-
fects on model fitting. As in the main text, we maintained a 3:1 ratio of the number
of knots allocated to subjects with Xa = 0:Xa = 1. Results were very similar for
bN ≥ 32, i.e., the maximum difference in the coverage probability of the 95% confi-
dence interval was less than 0.5%. Consequently, separate histogram B-splines with
24 and 8 interior knots were used for subjects with Xa = 0 and Xa = 1, respectively.
We note that this B-spline setup differs from that for the same Phase I sample size
in Section 4.3.2.

Performance of the SMLE under classical covariate measurement error is com-
pared to RC and generalized raking in Table 4.9. The SMLE and generalized raking
estimator performed well, with the SMLE generally being slightly more efficient than
the raking estimator. The RC estimator performed well when β was small to moder-
ate but became biased when β was large. The findings were similar when either SRS
or case-control sampling was used to select Phase II.
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Table 4.10: Simulation results for the naive estimator under outcome misclassification and a contin-
uous covariate with varied additive measurement error variance when the Phase II design is simple
random sampling

Errors in Y ∗ and X∗b
Error in X∗b γ2 = −1 γ2 = 0 γ2 = 1

σ2
U Bias Bias FPR/FNR Bias FPR/FNR Bias FPR/FNR

0.10 −0.105 0.021 0.1/0.04 0.518 0.14/0.06 −0.385 0.09/0.06
0.25 −0.228 −0.125 0.1/0.04 0.357 0.14/0.06 −0.525 0.10/0.06
0.50 −0.372 −0.294 0.1/0.04 0.173 0.15/0.06 −0.691 0.11/0.07
0.75 −0.470 −0.408 0.1/0.04 0.049 0.15/0.07 −0.806 0.11/0.07
1.00 −0.542 −0.490 0.1/0.04 −0.039 0.15/0.07 −0.892 0.12/0.08
1.25 −0.596 −0.552 0.1/0.04 −0.104 0.16/0.07 −0.958 0.13/0.09
1.50 −0.639 −0.601 0.1/0.04 −0.155 0.16/0.08 −1.010 0.14/0.09
1.75 −0.674 −0.640 0.1/0.04 −0.195 0.17/0.08 −1.050 0.14/0.10
2.00 −0.703 −0.672 0.1/0.04 −0.227 0.17/0.08 −1.090 0.15/0.10
Note: Bias is the empirical bias of the naive estimator; FPR and FNR are the average false
positive rate and false negative rate, respectively, for Y ∗. Each entry is based on 1000 replicates.

4.6.2.4 Naive estimator
Intuitively, larger errors in X∗b would result in larger bias for the naive estima-

tor. This was not always the case, as could be seen from the simulation results in
Table 4.10. When only X∗b was error-prone, larger σ2

U led to larger negative bias.
When both Y ∗ and X∗b were error-prone, and the errors were correlated, the direction
and magnitude of the bias depended on both σ2

U and γ2, where γ2 is the regression
coefficient for X∗b in P (Y ∗ = 1|X∗b , Y,Xb, Xa).

4.6.2.5 Systematically biased covariate error
In this set of simulation studies, the mean of the additive error U depended on

the error-free covariate Xa, i.e.,

U ∼

N(µ0, σ2 = 0.1), if Xa = 0;

N(µ1, σ2 = 0.1), if Xa = 1.

The means µ0 and µ1 were chosen from {0, 1, 2}. All other variables were generated
as in Section 4.3.2.1 with Phase I and II sample sizes of N = 1000 and n = 250, re-
spectively. The Phase II sample was selected by naive case-control sampling. Results
for the SMLE, HT analysis, and raking estimator are included in Table 4.11. All esti-
mators remained unbiased under additive errors that were not centered at zero. The
SMLE was much more efficient than the HT or raking estimators, but the relative
efficiency of raking to the SMLE approached 1 for µ0 = 2 and larger choices of µ1.
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Table 4.11: Simulation results under outcome misclassification and a continuous covariate with
additive measurement error that may not center at zero

SMLE HT Raking
µ0 µ1 Bias SE Bias SE RE Bias SE RE
0 0 −0.028 0.148 0.028 0.170 0.758 0.016 0.166 0.795

1 −0.023 0.153 0.025 0.179 0.731 0.017 0.167 0.839
2 −0.020 0.155 0.015 0.174 0.794 0.019 0.168 0.851

1 0 −0.013 0.154 0.016 0.175 0.774 0.018 0.169 0.830
1 −0.016 0.148 0.014 0.166 0.795 0.019 0.170 0.758
2 −0.005 0.160 0.018 0.184 0.756 0.020 0.171 0.875

2 0 0.013 0.167 0.015 0.182 0.842 0.020 0.175 0.911
1 0.015 0.173 0.027 0.186 0.865 0.021 0.175 0.977
2 0.012 0.176 0.018 0.194 0.823 0.022 0.176 1.000

Note: Bias and SE are, respectively, the empirical bias and standard error of
the parameter estimator; RE is the relative efficiency of the estimator to the
SMLE. Each entry is based on 1000 replicates. The Monte Carlo simulation
error for the bias of the SMLE was ≤ 0.006.

4.6.2.6 Multiplicative covariate error
We set X∗b = XbU , where the multiplicative error U was generated as follows:

U ∼

Unif(0, η0), if Xa = 0;

Unif(0, η1), if Xa = 1.

All other variables were generated as in Section 4.3.2.1 with Phase I and II sample
sizes of N = 1000 and n = 250, respectively. The Phase II sample was selected
by naive case-control sampling. Results for the SMLE, HT analysis, and the raking
estimator are included in Table 4.12. The SMLE continued to perform well in this
setting and was substantially more efficient than the other estimators.

4.6.3 Additional Results of the CCASAnet Data Analysis
4.6.3.1 Sensitivity analysis of death within two years of ART initiation

There were 288 subjects who met criteria (1)–(3) from Section 4.4 but were ex-
cluded from the main analysis because they died within two years of initiating ART.
Here we investigate potential survivor bias resulting from these exclusions. Thus, a
Phase I sample of 5379 subjects was extracted from the CCASAnet research database,
of whom 122 (2.3%) were audited.

We define a composite endpoint of either ADE or death within two years of ini-
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Table 4.12: Simulation results under outcome misclassification and a continuous covariate with
multiplicative measurement error

SMLE HT Raking
η0 η1 Bias SE Bias SE RE Bias SE RE
1 1 −0.007 0.146 0.024 0.176 0.688 0.011 0.162 0.815

2 −0.004 0.144 0.029 0.177 0.662 0.009 0.168 0.732
3 0.002 0.146 0.027 0.175 0.696 0.006 0.169 0.743

2 1 0.002 0.151 0.024 0.179 0.712 0.010 0.170 0.787
2 −0.014 0.150 0.024 0.178 0.710 0.011 0.171 0.768
3 −0.013 0.156 0.024 0.184 0.719 0.009 0.171 0.830

3 1 0.013 0.157 0.020 0.176 0.796 0.011 0.171 0.842
2 −0.014 0.155 0.020 0.178 0.758 0.011 0.171 0.820
3 −0.015 0.164 0.024 0.190 0.745 0.010 0.171 0.920

Note: Bias and SE are, respectively, the empirical bias and standard error
of the parameter estimator; RE is the relative efficiency of the estimator to
the SMLE. Each entry is based on 1000 replicates. The SMLE had ≥ 95%
convergence in all settings. The Monte Carlo simulation error for the bias of
the SMLE was ≤ 0.005.

tiating ART, with 905 unvalidated events (17% prevalence) and 19 validated events
(16% prevalence). During the audits, the VDCC identified 6% misclassification in the
outcome, all false negatives. There was also 6% misclassification in AIDS at initia-
tion, with 4% false positive rate and 2% false negative rate, and 7% error rate in CD4
count, with mean magnitude of −0.03 and variance 0.24 on the square root scale. No
subject had errors in both the outcome and covariates and only one had errors in
both CD4 count and AIDS status, suggesting that there was little evidence of error
correlation.

In Table 4.14, results of the SMLE are presented with the naive, complete-case,
HT, and generalized raking analyses for comparison. The clinical conclusions drawn
based on these models are all in alignment with those from the main analysis: the
naive analysis and SMLE found both CD4 count and AIDS at initiation to be sig-
nificantly associated with poor prognosis (in this case, death or ADE), while the
complete-case, HT, and raking analyses only found CD4 count to be.
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Table 4.13: log OR estimates and 95% confidence intervals from the analysis of the CCASAnet
dataset using the SMLE approach with various B-spline bases

Not stratified by site group Stratified by site group
Predictor log OR 95% CI log OR 95% CI

B-spline basis specification (a)√
CD4/10 −0.377 (−0.580, −0.174) −0.344 (−0.553, −0.135)

AIDS 0.196 (−0.484, 0.876) 0.191 (−0.516, 0.897)
Site: A −1.653 (−2.395, −0.911) −1.566 (−2.357, −0.775)
Site: C 0.038 (−0.088, 0.164) 0.057 (−0.065, 0.179)
Site: D −2.354 (−3.244, −1.463) −2.224 (−3.111, −1.337)
Site: E −0.786 (−1.401, −0.171) −0.741 (−1.331, −0.150)
Male 0.254 (−0.603, 1.112) 0.203 (−0.638, 1.045)
Age (/10 yrs) −1.305 (−2.211, −0.399) −1.278 (−2.201, −0.355)
Year of ART 0.439 (−0.195, 1.073) 0.443 (−0.201, 1.087)

B-spline basis specification (b)√
CD4/10 −0.482 (−0.724, −0.239) −0.471 (−0.817, −0.125)

AIDS 1.386 (0.580, 2.193) 0.792 (−0.170, 1.754)
Site: A 1.124 (0.272, 1.977) −2.165 (−3.325, −1.004)
Site: C 0.183 (0.002, 0.365) 0.014 (−0.142, 0.170)
Site: D −1.222 (−2.389, -0.055) −1.788 (−3.129, −0.447)
Site: E −0.733 (−1.725, 0.258) −1.170 (−1.926, −0.413)
Male −0.709 (−1.943, 0.524) 0.094 (−1.058, 1.247)
Age (/10 yrs) −0.694 (−1.648, 0.261) −1.068 (−2.521, 0.385)
Year of ART −0.505 (−1.224, 0.214) 0.293 (−0.595, 1.180)

B-spline basis specification (c)√
CD4/10 −0.482 (−0.725, −0.240) −0.433 (−0.683, −0.182)

AIDS 1.388 (0.582, 2.194) 1.384 (0.508, 2.260)
Site: A 1.129 (0.278, 1.980) 1.218 (0.284, 2.152)
Site: C 0.184 (0.003, 0.365) 0.179 (−0.030, 0.388)
Site: D −1.225 (−2.394, −0.056) −1.157 (−2.268, −0.045)
Site: E −0.732 (−1.725, 0.260) −0.484 (−1.487, 0.519)
Male −0.703 (−1.933, 0.527) −0.793 (−2.025, 0.440)
Age (/10 yrs) −0.690 (−1.644, 0.263) −0.706 (−1.703, 0.290)
Year of ART −0.508 (−1.225, 0.210) −0.489 (−1.202, 0.224)
Note: B-spline basis specification (a) corresponds to zero and zero interior
knot for subjects with and without AIDS at initiation, respectively; (b) cor-
responds to one and zero interior knot for subjects with and without AIDS
at initiation, respectively; (c) to corresponds to one and one interior knot for
subjects with and without AIDS at initiation, respectively. 95% CI is the 95%
confidence interval.
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Table 4.14: log OR estimates and 95% confidence intervals from the analysis of the composite
outcome (death or ADE within two years) in the CCASAnet dataset

Naive Complete-Case HT Raking SMLE
Covariate log OR 95% CI log OR 95% CI log OR 95% CI log OR 95% CI log OR 95% CI√
CD4/10 −0.285 (−0.334, −0.236) −0.621 (−1.032, −0.211) −0.860 (−1.273, −0.488) −0.549 (−0.868, −0.230) −0.378 (−0.717, −0.040)

AIDS 1.371 (1.202, 1.540) 0.750 (−0.416, 1.917) 0.520 (−0.872, 1.912) 0.613 (−0.472, 1.698) 1.472 (0.623, 2.321)
Site: A −1.343 (−1.604, −1.083) −0.610 (−2.363, 1.143) −0.831 (−2.953, 1.291) −0.254 (−1.724, 1.215) 0.582 (−0.447, 1.611)
Site: C 0.109 (−0.105, 0.323) −0.075 (−1.778, 1.627) −0.232 (−2.211, 1.746) 0.034 (−1.437, 1.505) 0.058 (−0.739, 0.852)
Site: D −0.458 (−0.729, −0.187) −1.957 (−3.794, −0.119) −2.395 (−4.300, −0.489) −1.665 (−3.567, 0.238) −1.722 (−2.760, −0.685)
Site: E −0.333 (−0.620, −0.046) −1.344 (−3.844, 1.157) −1.627 (−4.570, 1.316) −0.869 (−3.229, 1.491) −1.220 (−2.258, −0.182)
Male 0.073 (−0.113, 0.259) −0.967 (−2.275, 0.341) −0.956 (−2.320, 0.409) −1.250 (−2.562, 0.064) −0.436 (−1.065, 0.194)
Age/10 years 0.077 (−0.005, 0.158) 0.215 (−0.358, 0.788) 0.135 (−0.589, 0.859) 0.166 (−0.351, 0.683) −0.128 (−0.392, 0.136)
Year of ART −0.028 (−0.050, −0.005) 0.089 (−0.104, 0.282) 0.186 (−0.080, 0.452) 0.072 (−0.116, 0.260) −0.074 (−0.146, −0.001)
Note: 95% CI is the 95% confidence interval.
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CHAPTER 5

CONCLUSION

This dissertation and the research within it were driven by a demonstrated need
for methods to promote the practical and statistical efficiency of two-phase designs
for data quality. We know first-hand from our collaborations with two large-scale, ob-
servational HIV cohorts, the Carribean, Central, and South America network for HIV
Epidemiology (CCASAnet) and the Vanderbilt Comprehensive Care Clinic (VCCC),
that, while the benefits of data auditing are clear, they are resource-intensive under-
takings. Therefore, simply put, we sought methods to make the most of the invest-
ment in two-phase studies with respect to the design, implementation, and analysis.
The proposed methods from Chapters 2–4 can be used together, so that this en-
tire dissertation can serve as a start-to-finish guide for likelihood-based analyses in
error-prone binary response data.

We began by answering the question “who should we audit?” In Chapter 2,
we derived the optimal, i.e., lowest-variance, two-phase design for likelihood-based
analysis of data with binary outcome and exposure misclassification. This setting was
not yet addressed in the literature; to our knowledge, the proposed optimal design is
the first to capture complex outcome misclassification in addition to covariate error.
With this design as our gold standard, we introduced a multi-wave design which
can be implemented to approximate it in practice without knowledge of modeling
parameters, unlike the optimal design. Since the variance of the MLE cannot be
minimized directly, we developed a novel adaptive grid search algorithm to solve for
the optimal design. We demonstrated the superior efficiency of the proposed designs
through extensive simulations and in EHR data from the VCCC. We illustrated real-
world implementation of the optimal designs in CCASAnet.

Now since we know who best to audit, the question became “how should we
audit?” The typical data audit procedure first used in clinical trials (Weiss, 1998)
and later adopted to observational studies like Duda et al. (2012), Kiragga et al.
(2011), and Mphatswe et al. (2012), involved on-site audits conducted by external
auditors. While improvements to this protocol were made through the development
of more advanced audit capture tools (e.g., a REDcap database instead of a paper
audit form as in Duda et al. (2012)), sending trained auditors to clinical sites for these
“travel-audits” is expensive, especially in a multi-national cohort like CCASAnet.
This imposes heavy constraints on how many sites can be visited, how often, and on
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the number of patient records and variables that can be reviewed. In Chapter 3, we
investigated the efficacy of data audits conducted by clinical staff at the sites (called
“self-audits”) as alternatives to conventional travel-auditing. We analyzed a sample of
doubly-audited data, i.e, records that were reviewed by both self- and travel-auditors,
and found similar overall error rates: self- and travel-auditors reported that 93% and
92% of data entries, respectively, were entered correctly in the original database. In
addition, the auditors agreed on 94% of point-by-point audit findings. Therefore,
data audits conducted by trained local investigators could provide a cost-effective
alternative to on-site audits by external auditors to ensure continued data quality.
Our findings led us to consider the proposed self-audit procedure for future projects;
it is particularly useful as plans are underway for audits in 2021, in the midst off the
COVID-19 pandemic, when travel is especially difficult.

Lastly, with the error-prone and error-free data collected we ask ourselves “how
should we incorporate this audit data in analyses?” After great care was taken in
the planning and execution of the audit, a statistical method was needed to analyze
the data with the same level of precision. Thus, in Chapter 4 we proposed a new
full-likelihood approach, the sieve maximum likelihood estimator (SMLE), for logistic
regression under complex error settings. The SMLE has desirable statistical properties
- namely that it is consistent, asymptotically efficient, and asymptotically normal -
and it handles outcome misclassification with continuous covariate error, a setting not
yet addressed by other likelihood approaches in the literature (Tang et al., 2015). The
utility of this approach was demonstrated through extensive simulations and in data
from CCASAnet. With a binary misclassified covariate, the added robustness of the
SMLE came at little cost in its efficiency relative to the MLE, and with continuous
covariate error there were clear efficiency gains for the SMLE over existing approaches.
Finally, the SMLE allows selection of Phase II to depend on the Phase I data in any
way, so it can be paired with our optimal design from Chapter 2 for even greater
efficiency gains.

All computation in this dissertation was carried out in R Statistical Software (R
Core Team, 2019). The auditDesignR software accompanies Chapter 2, including an
R package and Shiny application. The auditDesignR R package (available on GitHub
at https://github.com/sarahlotspeich/auditDesignR) contains functions to compute
the MLE and optimal design, in addition to analysis code from the chapter. The
auditDesignR Shiny application is accessible at https://sarahlotspeich.shinyapps.io/
auditDesignR/ and can be used to find the optimal design, as well. The R package
logreg2ph that implemented the SMLE in Chapter 4, along with all simulation and
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analysis code, is available on GitHub (https://github.com/sarahlotspeich/logreg2ph).
We focused on binary outcomes in Chapters 2 and 4, but these methods could

be extended to other types of response data. First, future work could adapt the
optimal designs for other generalized linear models; the objective function for the
adaptive grid search would need to be altered accordingly, but the general plan would
be similar. Second, future research could develop semiparametric SMLE approaches
to other types of outcomes; one was proposed in Tao et al. (2021) for continuous
error-prone outcomes, but none have been derived for Poisson or Cox regression.

Secondary use databases include large, diverse datasets that are convenient for
biomedical analyses and often come at little-to-no additional cost to collect. As
such, these data are being utilized to answer scientific and clinical questions in a
broad range of disciplines. Given the error-prone nature of routinely collected data,
it is important that these data are analyzed responsibly to avoid biased inference.
Two-phase designs can be employed to ensure the quality of observational data for
healthcare research, but they can be expensive initiatives. In this dissertation, we
proposed new methods to select the most informative records for validation, conduct
cost-effective on-site audits, and incorporate audit data into statistical analyses to
maximize the investment in two-phase studies.
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