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CHAPTER 1 

 Introduction 
 

The past few decades have seen a dramatic transformation of the healthcare system as hospitals have 

overwhelmingly adopted vendor-based electronic health records (EHRs), completely changing the 

practice of medicine for physicians1. Healthcare systems have struggled with rising costs and transitioned 

to value-based care2. Medical knowledge has continued to advance at a rapid pace, leading to the 

generation of clinical guidelines which may already be outdated by the time clinical decision support 

(CDS) systems are built. Clinicians struggle to keep up with medical knowledge. The promises of EHRs, 

such as improved quality and safety, have not yet been fully realized, even as large amounts of “big data” 

are generated through clinical care using EHR systems3. Meanwhile, technology has advanced 

considerably outside of the medical field, especially in the area of machine learning, where techniques 

like deep learning are shaping the future of artificial intelligence4.  

In the everyday practice of medicine on the hospital floor, it can seem as though the advances of modern 

technology have not yet permeated through the hospital walls. Medical errors still abound5, and the 

computer can often seem more like a foe to the clinician than a helpful assistant6. One of the most 

frequent nuisances clinicians experience throughout the day is that of CDS alerts which are unhelpful and 

must be overridden for the clinician to proceed with his or her work7.  

Even as clinical data amasses and machine learning provides an opportunity to build more useful CDS, 

the rate of progress is slow, and most alerts continue to be simple, such as those that warn about potential 

interactions between medications8. Few CDS alerts make use of machine learning to incorporate multiple 

patient characteristics and provide better guidance to clinicians. As we will describe, machine learning-

based alerts have the potential to perform better than simple alerts, provide more useful information to the 

clinician, and decrease the rate of “nuisance alerts,” but they are challenging to develop. To combat the 
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slow pace of innovation in healthcare9, we need to develop more effective systems and technologies for 

learning from data, making use of clinicians and informaticians throughout this process.  

Here, we present the Medication Ordering Safety System (MOSS), a platform we designed to improve the 

process of learning from data to generate machine learning-based CDS around medication safety. By 

streamlining the process of predictive modeling, we aim to create CDS which performs better than the 

typical alerts that fill today’s EHR. By removing technical barriers, we aim to develop a system which is 

more approachable to clinicians and other personnel who could not otherwise contribute to the process of 

learning from data to generate more intelligent CDS. Rapid generation, updating and retraining of clinical 

prediction models through such a pipeline could help address the issue of calibration drift10. Such a system 

could also help institutions train clinical prediction models using their own data rather than relying on 

models developed at outside institutions which may not be relevant to their own population. 

In the chapters that follow, we present the motivation for creating MOSS, describe its design, and provide 

examples of its use. Chapter 2 describes the potential benefits and challenges of using machine learning to 

extract knowledge from clinical data to inform improved CDS. Chapter 3 outlines the architecture of 

MOSS, which standardizes the process of generating predictive models around medication safety to make 

it more approachable for novices, as well as more efficient for advanced data scientists. In chapters 4 and 

5, we present two clinical scenarios for which we used MOSS to train prediction models: one to predict low 

blood pressure in hospitalized patients after blood pressure-lowering medications are prescribed, and 

another to predict low blood glucose after insulin is prescribed. Finally, in chapter 6 we discuss the strengths 

and limitations of MOSS and describe our future research directions as we build out the MOSS pipeline 

and improve its ability to catalyze the creation of machine learning-based CDS.  
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CHAPTER 2 

 Background 
 

2.1. Introduction 

The idea of learning from clinical data to improve patient safety is not a new one. In this chapter, we 

introduce the problem of medication errors, the potential benefits of EHRs and computerized prescribed 

order entry (CPOE) in improving patient safety, and reasons for the discrepancy in the perceived benefits 

of these technologies and the persistence of medication errors in modern healthcare. Next, we will discuss 

the potential benefits and challenges of using machine learning to improve CDS around medication 

safety. Finally, we discuss current technologies that help researchers learn from clinical data and provide 

motivation for developing tools like MOSS which might facilitate the process of learning from clinical 

data to improve CDS.  

2.2. Medication Errors 

In the 1990s, researchers reported that hundreds of thousands of people die in the US each year due to 

medical injuries and that most medical injuries are “adverse drug events” caused by medication errors11. 

These adverse drug events were found to cost hospitals millions of dollars per year. Notably, a large 

proportion of these were preventable errors12. In 1999, in “To Err is Human: Building a Safer Health 

System,” the Institute of Medicine reported that an estimated 44,000-98,000 people die each year due to 

preventable medical errors13. The same institute published recommendations in 2007 on how to prevent 

medication errors, including strategies such as creating a culture of safety, ensuring safe nursing ratios, 

involving pharmacists, improving patient identification, and, importantly, implementing CPOE14.  

2.3. Benefits of CPOE in Preventing Medication Errors 

The promotion of CPOE as a solution for medication errors was based on work by researchers like David 

Bates who had found that computer order entry decreased serious medication errors by 55%15. Rather 

than relying on hand-written orders, CPOE requires prescribers to use a computer interface to enter 
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orders16. One study found that implementing CPOE and an electronic medication administration record 

eliminated all physician and nursing transcription errors17. In addition to reducing risks of illegible 

prescriptions, saving time for clinicians, and saving costs by reducing the need for paper forms, CPOE 

provides the opportunity for CDS to be integrated into the medication ordering process.  For example, 

CPOE with effectively designed CDS could help ensure that the medication matches the patient’s 

condition, is the correct dose, is appropriately adjusted for a patient’s age and kidney function, and is not 

on the patient’s allergy list18.  

2.4. The Gap in Perceived Benefits and Actual Outcomes 

Since then, major healthcare systems have switched from “home-grown” EHRs to commercial vendor 

systems which come with built-in medication alerts and other CDS. After the Health Information 

Technology for Economic and Clinical Health (HITECH) Act of 2009, EHRs became widely adopted1. 

With increased use of CPOE, one might expect the problem of medication errors to be largely solved. On 

the contrary, in 2016, Makary et al. suggested that medical errors may now be the third leading cause of 

death in the United States5.  

2.5. Table-based medication alerts 

The gap in the perceived benefit of CPOE and the progress to date in reducing medical errors likely 

relates to the state of clinical decision support used in modern EHRs. Medication alerts are most 

commonly rule-based alerts which rely on tables, such as those pertaining to allergies, potential 

interactions between medications, or duplicative therapy8.  
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Figure 1. Example of table-based medication alerts. © 2021 Epic Systems Corporation. 

For example, let us imagine a scenario where a clinician is ordering aspirin and warfarin for her patient. 

She may be displayed two medication alerts (Figure 1).  The first alert warns that she is prescribing 

aspirin to a patient with an aspirin allergy. The second alert is a drug-drug interaction alert which warns 

her about a potential interaction between warfarin, which she is trying to prescribe, and fluconazole, 

another medication the patient is already taking. While these are quite different alerts, they both have in 

common that they are triggered using tables and simple rules. The aspirin allergy alert uses a table of all 

the medications the patient is allergic to. If the new medication being prescribed has an ingredient 

matching one on the patient’s allergy list, an alert is triggered. Similarly, the drug-drug interaction alert 

depends on a table which lists all medications that interact with warfarin and is triggered if the clinician 

tries to prescribe warfarin to a patient on one of these medications. Such table-based alerts do not account 

for patient-specific characteristics such as the patient’s most recent laboratory results, vital signs, or actual 

bleeding risk. Occasionally, alerts may incorporate basic patient information, such as age or kidney 
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function but these are less common than simple rule and table-based alerts. Research has shown that 

simple displays of laboratory data alongside alerts may not be helpful enough19. The National Academy 

of Medicine has highlighted the importance of leveraging multiple data types for successful clinical 

decision support20. 

2.6. Alert Fatigue 

Studies of medication alerts have revealed some of the many challenges of building clinical decision 

support that is effective and helpful to clinicians7. Alert overrides frequently occur, such as when a patient 

receives an alert about a drug-drug interaction when prescribing warfarin but prescribes it anyway. Alerts 

may contribute to “alert fatigue,” where clinicians who are repeatedly shown warnings become less likely 

to pay attention to them. Alert fatigue can contribute to users’ dissatisfaction with the EHR, which may 

increase clinician burnout21. The low positive predictive value of table-based alerts likely contributes to 

alert fatigue and frequent alert overrides. For example, one common type of medication alert warns 

clinicians of the risk of torsades de pointes, a dangerous heart rhythm, when ordering medications which 

prolong the QT interval22. However, a real-world analysis looking at how often propofol administration 

really leads to torsades de pointes found a very low incidence of 1.93 per million23. In our analysis, this 

would correspond to a precision of 0.002% and sensitivity of 38% for drug-drug interaction alerts 

warning of the potential additive effect between propofol and other medications which also prolong the 

QT interval. Even very low-performing machine learning-based prediction models have much higher 

performance, demonstrating the potential of machine learning to improve upon the low performance of 

table-based alerts. 

2.7. Clinical Prediction Models 

Risk prediction models have been developed for a wide range of uses in healthcare. For example, there 

are a multitude of calculators to predict cardiovascular risk, of which the most commonly used is the 2013 

American College of Cardiology/American Heart Association Pooled Cohort Equations CV Risk 

Calculator24. The pulmonary embolism rule-out criteria are used to identify patients who may not need 
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further testing for pulmonary embolism25. The Morse Fall Scale is commonly used in the acute hospital 

setting to predict falls26. Another calculator, the FIB-4 index, is used to predict advanced fibrosis in 

patients with concern for liver disease27. While historically, the traditional approach to developing clinical 

risk prediction models has been to use regression models such as logistic regression, more recently, 

machine learning algorithms such as neural networks, support vector machines, and random forest have 

been used28. Innovations in machine learning and predictive modeling present us with an opportunity to 

develop more intelligent machine learning-based clinical decision support systems29. Such systems would 

make use of “big data” to generate predictive models which can be integrated into the EHR to prevent 

medical errors. 

 

 

Figure 2. A mock-up of a machine learning-based medication alert. © 2021 Epic Systems Corporation. 

2.8. Machine learning-based clinical decision support systems 

As an example, let us consider a clinical scenario where a physician is prescribing a blood pressure-

lowering medication to a patient with a normal blood pressure. A machine-learning based alert (Figure 2), 

trained using data from the hospital’s clinical data warehouse, could incorporate multiple patient factors 

to predict blood pressure, such as the patient’s diagnoses, vital signs, laboratory values, and medications. 
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Such an alert could show the user patient-specific factors that put the patient at risk for low blood pressure 

after the medication is prescribed. By making use of clinical data from the hospital’s own population, 

such alerts have the potential to have improved positive predictive value and sensitivity than table-based 

alerts. 

2.9. Integration of Clinical Prediction Models into the EHR  

The use of machine learning and predictive models to generate CDS may seem intuitive, with clear 

benefits. However, while a significant number of machine learning algorithms and predictive models have 

been developed, evaluated, and published, few have been successfully integrated into the EHR as clinical 

decision support systems.  

Some notable exceptions exist. One group implemented a real-time sepsis alert for patients admitted to a 

medicine ward, and found that 70.8% of patients in the intervention group received at least one 

intervention for sepsis, as compared to 55.8% of patients in the nonintervention group (p=0.18)30. Another 

group implemented a readmission prediction tool in their EHR and found an area under the curve of 

0.716-0.76031. The New York Department of Health integrated a fall prevention program into the EHRs 

of primary care sites and saw as many as 79.0% of eligible patients screened for fall risk in the first 12 

months of their study32.  However, the few models that have been integrated into the EHR may perform 

poorly33. Sittig et al. named effective mining of large clinical databases to create new CDS one of the 

grand challenges of CDS and highlighted the idea that new clinical knowledge, guidelines, and CDS 

interventions are waiting to be developed if we can find ways to overcome this grand challenge34. 

2.10. Challenges of learning from clinical data to create CDS 

The process of developing clinical prediction models for CDS is challenging. Each step in the process – 

determining the question the model proposes to address, preparing the theoretical framework, selecting 

the dataset, determining which variables to include, generating the prediction models, and evaluating their 

performance – has practical barriers35. First, the developer must have access to data – a not insignificant 

task due to protections around health data. This data must then be extracted from the EHR or back-end 
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database to build and train the model. Clinicians often need to work with non-clinician data analysts to 

extract relevant data from the clinical data warehouse36. This process is often time-consuming, as clinical 

concepts must be abstracted to rules, and knowledge must be transferred back and forth from the clinician 

to the technical expert.  

The actual task of data extraction typically requires knowledge of SQL, the data warehouse’s structure, 

and the specific tables with the data of interest. Features must be engineered and specified in detailed 

queries.  

For example, it is not enough to specify that one is looking for patients with diabetes. One must decide 

whether to use the patient’s problem list, billing diagnosis codes, and/or laboratory values, such as 

hemoglobin A1c. Entire research labs are devoted to developing these kind of phenotyping algorithms.  

Beyond diagnosis, other potential features such as medications, lab results, and vital signs can be 

similarly complex. Use of medications as features requires knowing at what level to categorize them, 

whether it be the pharmaceutical class, subclass, generic medication, or brand name. One must decide 

whether to include medications which combine more than one ingredient, such as oxycodone and 

acetaminophen, and how to classify them: should this count as an opioid or an anti-pyretic? Should only 

ordered medications be used as features, or also administered medications? Such decisions require both 

knowledge of clinical concepts and workflow, and the realities of the clinical data warehouse at a granular 

level. Moreover, after the features are engineered and the data extracted, it must be cleaned, pre-

processed, formatted, and loaded into a platform where predictive modeling can be performed and 

evaluated.  

Further challenges surround the process of integrating such models into the EHR for CDS. Additionally, 

models that are developed at one institution may not perform as well at other institutions37 and making 

models generalizable may risk sacrificing performance at any one institution38. Those models which are 

implemented may suffer from calibration drift, in which model accuracy deteriorates over time due to 
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dynamic clinical environments39. One study of models for hospital-acquired acute kidney injury over 9 

years showed that calibration declined and models increasingly overpredicted the outcome10. The process 

of extracting clinical data, building predictive models, and integrating models into EHR as CDS takes 

months, if not longer, which may explain the relative paucity of intelligent clinical decision support 

systems in today’s EHRs.  

2.11. Query Tools 

Given the time-intensive nature of the data extraction process, certain tools have been developed to help 

researchers query clinical databases directly in more user-friendly interfaces34. One example of this is the 

Partners Research Patient Data Registry (RPDR) which was developed at Partners Healthcare in Boston, 

MA40. The RPDR is a drag-and-drop web query tool which helps users determine, for example, how 

many patients within the clinical data warehouse have both a certain diagnosis and a certain lab value. 

Users may request data through this tool, and it has proved useful for developing clinical trial cohorts. 

Integrating Informatics and Biology at the Beside (i2b2) uses a similar strategy of a user-friendly 

interface for creating queries and has been used at a wide network of clinical research institutions41(p2). 

Vanderbilt has a similar tool in Record Counter, which allows researchers to query a de-identified version 

of the clinical data warehouse using a visual interface and request datasets42. Additional query tools for 

clinical data have been developed by the Observational Health Data Sciences and Informatics program 

(OHDSI) which creates tools centered around the Observational Medical Outcomes Partnership Common 

Data Model (OMOP CDM)43.  However, no self-service query tool that we know of has been developed 

with the purpose of facilitating predictive modeling around medication safety.  

2.12. Conclusion 

The adoption of EHRs and CPOE most likely has improved the safety and quality of today’s practice of 

medicine. However, as medicine becomes more complex, new medications are developed, and the 

amount of clinical knowledge that each clinician is expected to master expands, the task of driving out 
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medical error becomes more difficult. Machine learning presents us with an opportunity to address these 

challenges.  

The work of improving CDS has the potential to deliver not only safer and higher-quality patient care, but 

also a patient care process which is more enjoyable for clinicians, who are currently bombarded with low 

positive predictive value alerts. Developing and adopting machine learning-based CDS will require 

improved integration of clinical experts into the predictive modeling process. Learning from clinical data 

to create advanced CDS may be stalled until we develop effective tools to make this process more 

efficient and approachable for large numbers of clinicians and informaticians.  
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CHAPTER 3 

3. Design of the Medication Ordering Safety System 
 

3.1. Introduction 

This chapter outlines the architecture of MOSS and its various modules which support the user in 

accessing the clinical data warehouse and training and evaluating predictive models. We describe the 

individual modules of MOSS. We also use an example to show how MOSS can be used to generate a 

predictive model. Finally, we discuss MOSS’ unique way of approaching diagnoses and developing 

medication scores for predictive modeling.  

3.2. Motivation 

The process of using machine learning to develop clinical prediction models can be resource-intensive 

and time-consuming. Extracting data from the clinical data warehouse typically requires knowledge of 

SQL. Seemingly simple tasks such as extracting lab values for patients admitted to the hospital during a 

certain time period can require multiple lines of code. Even for those already experienced with writing 

SQL queries, each new data extraction task may require remembering minute details about which table 

contains certain data. Query writers often save old queries and copy and paste them into a new query, 

before modifying them for the task at hand. Such a process takes time. We designed MOSS to run entirely 

within R and allow the user to extract data by making use of simple functions. SQL queries are generated 

automatically by MOSS functions, allowing the user to more easily and quickly extract data from the 

clinical data warehouse. 

3.3. Pipeline design 

The design of MOSS is shown in Figure 3.  Data generated through the care of patients using VUMC’s 

EHR, Epic, is saved in the Clarity Data Warehouse (© 2021 Epic Systems Corporation). MOSS runs 

entirely in the R programming language. Data extraction functions are used to generate SQL to query 
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Clarity and return features in the form of tabular data. These data are combined into a dataset which is 

used to train and test models.  

 

Figure 3. Medication Ordering Safety System diagram. Data generated through patient care is stored in 

the Clarity data warehouse. MOSS generates SQL queries which return results that are joined into a data 

structure used by modeling packages in R to generate predictions. 

3.4. Modules 

MOSS contains five modules, including a cohort creation module, feature extraction module, dataset 

creation module, model training module, and model evaluation module (Figure 4). This modular design 

allows for flexibility: if a user prefers not to utilize the cohort creation module, he or she may instead 

substitute his or her own cohort which can be used with the feature extraction module. Similarly, once a 

user has used the dataset creation module to generate a dataset, this dataset may be used with any standard 

modeling package in R rather than MOSS’ model training and evaluation modules.  
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Figure 4. Medication Ordering Safety System modules. 

3.5. MOSS Example 

In the following sections, we will describe the five modules of MOSS. To illustrate how these modules 

work, we will use the example of Dr. Green, who uses MOSS to generate a predictive model about low 

blood sugar. She wants to predict whether an insulin order will be followed by a low blood glucose within 

the 24 hours following the order. She will use two features to train her model: the patient’s weight, and 

the patient’s last known blood glucose before the new insulin order. 

 

Figure 5. The cohort creation module. This module uses the get_event() function to generate a SQL query 

which returns a list of medication orders.   

3.6. Cohort Creation Module 

First, to generate a cohort of all the medication orders which will be used to train and test her model, Dr. 

Green uses the get_event() function. This function takes the start and end time of the inclusion period, a 
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pharmacologic class name or grouper identification number (an internal identifier within Epic which 

refers to a value set) to specify which medication orders should be included, a minimum age value which 

allows the user to exclude pediatric patients if necessary, and excluded locations. Once Dr. Green runs 

this function, a SQL query is automatically generated which connects to the Clarity Data Warehouse and 

extracts a list of event IDs, which are medication order numbers, and a corresponding list of values, which 

are the timestamps for each medication order (Figure 5). In addition, there is an option to specify the 

medication routes to include when retrieving medication orders.

 

Figure 6. Example of a feature extraction function. The get_last_weight() function returns a list of 

weights (in ounces) for each event ID (medication order ID) that it is supplied. 

3.7. Feature Extraction Module 

Next, Dr. Green uses the feature extraction module to retrieve data about the patient’s last weight and last 

glucose prior to the new medication order. She uses the get_last_weight() function, and only needs to 

supply the list of event IDs she retrieved in the last module, which specify her cohort of medication 
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orders. This function then generates a SQL query which is automatically sent to Clarity to retrieve a list of 

weights corresponding to each event ID (Figure 6).  

Dr. Green next uses the get_last_lab() function to retrieve the glucose level corresponding to each event 

ID. To do this, she must pass the function both the event IDs and a list of laboratory test IDs (component 

IDs, which are an internal identification number within Epic) that specify glucose. These laboratory test 

IDs are easy to find within the Epic system when reviewing laboratory results. Notably, the laboratory 

functions in MOSS are written to automatically parse any test values that are returned from text to 

numeric values. This is useful in the frequent case where a laboratory value may be returned as e.g., 

‘>600’ or ‘<25’, signifying that the laboratory result is at the extreme limit of the assay. Such results are 

converted to numeric values (e.g., 600 and 25) automatically by MOSS so that they can be more easily 

included in predictive models.  

Finally, Dr. Green uses the get_next_lowest_lab() function to retrieve data for her outcome of interest, 

which is whether the patient experiences a low blood sugar after the insulin order. To use this function, 

she supplies the event IDs which specify her cohort of medication orders, the laboratory test IDs to 

specify that glucose is the laboratory test of interest, and a ‘lookahead’ of 24 to specify that she wants to 

look for glucose results which resulted in the 24 hours following the insulin order. 

MOSS contains a suite of feature extraction functions, including functions for extracting patient 

characteristics, diagnoses, vital signs, laboratory results, medications, and details about the new 

medication order, such as the dose, unit, frequency, and route (Table 1).  
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Patient Characteristics and 
Diagnoses 

Vital Signs and 
Laboratory Results 

Medications Characteristics of 
Medication Order 

get_age() 
get_sex()  
get_last_weight() 
get_adm_diag_binary() 
get_hosp_prob_binary() 
get_problem_list_binary() 
get_problem_list_icd10() 
get_hosp_problem_list_icd10() 
get_all_diag_binary() 
get_some_diag_binary() 

get_flowsheet_row() 
get_last_sbp() 
get_min_sbp() 
get_last_dbp() 
get_lab() 
get_last_lab() 
get_last_lowest_lab() 
get_next_lab() 
get_next_lowest_lab() 
 

get_insulin_order_score() 
get_insulin_infusion_total() 
get_insulin_admin_total() 
get_med_score() 
get_med_admin_total() 
get_med_infusion_total() 
get_med_admin_binary() 
get_med_admin_count() 
get_opioid_admin_total() 
 

get_med_name() 
get_thera_class_name() 
get_pharm_class_name() 
get_pharm_subclass_name() 
get_simple_generic_name() 
get_med_dose() 
get_med_dose_range_min() 
get_med_dose_range_max() 
get_med_unit() 
get_med_frequency() 
get_med_route() 
get_PO_med() 

Table 1. Examples of MOSS feature extraction functions. 

3.8. Dataset Creation 

Once Dr. Green has retrieved her cohort and features, she uses the dataset creation module to join all of 

her data into a single dataset. This dataset can be used by the MOSS testing and evaluation modules, but 

is also a standard format which can be used by any of the multitude of predictive modeling packages in R. 

Finally, she can use the train_test_split() function to split her dataset randomly into a training set and a 

test set.  

 

Figure 7. The dataset creation module. Event IDs and features are joined into a single dataset which can 

be used by modeling functions. 
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3.9. Model Training Module 

Dr. Green uses the model training module to train her predictive model. To use the moss_train() function, 

she must supply her dataset, whether she would like to remove null values (this is recommended, as most 

algorithms cannot accept null values), and the algorithm she would like to use. The moss_train() function 

is a user-friendly function that supports logistic regression, regularized logistic regression, random forest, 

XGBoost, and K nearest neighbors by creating a wrapper around functions from the ‘caret’ package 

created by Max Kuhn44. Some benefits and limitations of these algorithms are presented in Table 2. More 

advanced R users may prefer to use the MOSS dataset with the ‘caret’ package directly, or another R 

modeling package.  

 

Model Strengths Limitations 

Logistic regression Fast to train, efficient, 
interpretable, can implement in 
Epic 

Theoretically less powerful 
than other algorithms 

Regularized logistic regression Helps to avoid over-fitting with 
high dimensional datasets 

Slow to train 

Random forest Unlikely to overfit, can 
implement in Epic 

Slow to train, black box 

XGBoost Fast, unlikely to overfit Black box 

K Nearest Neighbors Clinically intuitive Slow to train, needs balanced 
dataset 

Table 2. Strengths and limitations of selection of algorithms used for machine learning. 

3.10. Model Evaluation Module 

Finally, Dr. Green evaluates her model with the MOSS model evaluation model, using the 

moss_evaluate() function, which takes the model trained in the previous module, as well as the dataset to 

test the module with (typically, the test set) and generates a receiver operator characteristic (ROC) curve 

and area under the curve (AUC). She is also able to generate precision and recall results for her model, 

which help her plan for future integration of her model as a machine learning-based medication alert. 
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3.11. Diagnoses in MOSS 

MOSS’ suite of feature extraction functions (Table 1) includes a number of functions to retrieve patient 

diagnosis from the admission diagnosis list, hospital problem list, and problem list. These diagnosis 

functions fall into two groups: 1) ‘regex’ functions which use regular expressions to extract diagnoses as a 

binary feature and 2) ‘CCSR’ functions which use diagnosis categories to rather than regular expressions 

to extract diagnoses.  The ‘CCSR’ functions make the Agency for Healthcare Research and Quality’s 

Clinical Classifications Software Refined45 (CCSR) which group ICD-9 and ICD-10 diagnoses into 

clinically meaningful categories. While ‘regex’ diagnosis extraction functions require users to determine 

themselves which diagnoses to focus on, and how to capture them (such as using the expressions ‘CHF’ 

and ‘heart failure’ to look for cases of congestive heart failure), the ‘CCSR’ diagnosis extraction functions 

allow the user to use all CCSR categories, if desired, and does not require the user to come up with any 

regular expressions in order to extract diagnoses. 

3.12. Medication scores 

Medications in EHRs are represented by prescription records which must be transformed before they can 

be incorporated into prediction models. For example, having several records of different antihypertensive 

prescriptions with different start and end dates is less useful than a representation of the total amount of 

antihypertensive medication a patient is on. Similarly, knowing that a patient has a new antihypertensive 

order is less useful than knowing whether this is an increase or decrease relative to her previous 

medication regimen. To represent medication amounts in MOSS, we created a set of functions that 

calculate a cumulative medication score, with support for antihypertensives, insulin, and opioid 

medications. These functions are described below. 

3.13. Cumulative Antihypertensive Score 

The therapeutic intensity score has previously been studied as a summary measure which can be used to 

represent the total number and dose of antihypertensive medications in a way that indicates the expected 

blood pressure lowering effect of therapy in outpatients46. This score is calculated by adding up the 
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percentage of maximum of each prescribed antihypertensive a patient is on. For example, if a patient is on 

20 mg lisinopril, which has a maximum dose of 40 mg daily, and 50 mg of hydrochlorothiazide, which 

has a maximum dose of 50 mg, he or she would have a therapeutic intensity score  as calculated below. 

𝑇ℎ𝑒𝑟𝑎𝑝𝑒𝑢𝑡𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =
20𝑚𝑔

40𝑚𝑔
+

50𝑚𝑔

50𝑚𝑔
= 1.5 

To provide support within MOSS for predictive modeling around antihypertensives, we developed a 

similar method. However, rather than using the maximum daily dose, we mined training data to determine 

the median daily dose. First, we grouped antihypertensives at the generic level by intravenous (IV) vs. 

oral (PO) administration route. We then determined the median daily dose within the training set. Finally, 

we determined the average change in blood pressure in the 24 hours following an antihypertensive order 

by subtracting the minimum blood pressure found in the 24 hours following the antihypertensive order 

from the last blood pressure measured prior to the antihypertensive order. The cumulative 

antihypertensive score was calculated for each patient by determining each patient’s 24-hour 

antihypertensive dose as a proportion of the maximum dose for that generic medication and route, 

multiplied by the average change in blood pressure.  

To further illustrate how the cumulative antihypertensive score is calculated, let us take the example of a 

patient on 20 mg lisinopril and 50 mg hydrochlorothiazide. Suppose that the median daily dose of 

lisinopril within the training set is found to be 10 mg, and the average maximum drop in the systolic 

blood pressure is 43 mmHg. In the same way, suppose that the median daily dose of PO 

hydrochlorothiazide is 25 mg and the average maximum drop in the systolic blood pressure is 40 mm Hg. 

The calculation for this patient’s cumulative antihypertensive score is shown below. 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑡𝑖ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑠𝑐𝑜𝑟𝑒 =
20𝑚𝑔

10𝑚𝑔
∗ 43 +

50𝑚𝑔

25𝑚𝑔
∗ 40 = 166  

MOSS contains a mapping table with the mined median daily doses and average drop in systolic blood 

pressures that is used in the antihypertensive score functions. 
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3.14. Cumulative Insulin Score 

Insulin is measured in International Units (units), which is standardized across different formulations of 

insulin. For this reason, totaling up the combined effect of different insulin prescriptions is relatively 

straightforward. The get_insulin_order_score() and get_insulin_admin_score() functions calculate the 

cumulative insulin score by totaling the amount of all insulin units a patient was ordered for, or was 

administered, over a 24-hour period. Similarly, MOSS contains functions for extracting insulin infusions, 

by totaling up the amount of insulin a patient was scheduled to receive, or did receive, over a 24-hour 

period based on the rate of the infusion and the amount of time the order was active. 

3.15. Cumulative Opioid Score 

MOSS also supports predictive modeling around medication orders for opioids. Because different opioid 

medications have different potencies, doses must be converted to morphine milligram equivalents 

(MMEs) in order to calculate a standardized daily dose. We used the Center for Disease Control and 

Prevention’s MME conversion table to create a mapping table47. This mapping table is used by MOSS 

opioid functions to calculate the MME daily dose.    

3.16. Connection to Clarity 

Central to MOSS’ architecture is the ability to connect to the Clarity data warehouse from within R. To 

accomplish this, MOSS makes use of the dbConnect function in R, which creates a connection using the 

necessary authentication mechanisms48. For a MOSS user to access Clarity, he or she must be logged into 

a computer with the correct credentials on the appropriate network. Once this connection is created, it is 

then passed as an object to MOSS’ feature extraction functions and used to send SQL queries to Clarity. 

3.17. Conclusion 

MOSS is designed to make the process of training clinical prediction modules for medication safety 

approachable for users who may not have advanced SQL knowledge, or understanding of the Clarity data 

model. Next, we will look at the results of using MOSS for two clinical scenarios: predicting low blood 
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pressure, or ‘hypotension’ after prescription of a blood pressure lowering medication (‘antihypertensive’) 

and predicting low blood sugar (‘hypoglycemia’) after prescription of insulin.  
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CHAPTER 4 

4. MOSS Use Case #1: Predicting Antihypertensive-Induced Hypotension 
 

4.1. Introduction 

In this chapter, we discuss a proof-of-concept example where MOSS is used to train a model to predict 

hypotension in patients who are prescribed an antihypertensive medication, a real-life adverse drug event 

which can cause patient harm. 

4.2. Background 

Hypotension is a frequent and life-threatening condition in hospitalized patients and may often be caused 

by medical treatment. Patients exposed to hypotension are at increased risk for organ damage related to 

insufficient blood flow, such as myocardial injury and kidney injury. Iatrogenic hypotension was found to 

be the third most frequent cause of medical errors in the hospital by one research group49. Blood pressure 

medications are on the Institute for Safe Medication Practices’ list of high-risk medications50.  

Most studies of inpatient hypotension have focused on patients undergoing anesthesia and intubation, 

especially in intensive care units (ICUs). One group developed a prediction model for hypotension 

following endotracheal intubation in medical and surgical ICUs51. They reported a C-statistic of 0.71 to 

0.75 for their logistic regression, depending on inclusion criteria. Another group used multiple machine-

learning classification techniques to predict hypotension during induction of general anesthesia and found 

AUCs from 0.63 (support vector machines) to 0.76 (gradient boosting machine), with an AUC of 0.71 for 

logistic regression52. In a similar published report of using different machine learning methods to predict 

post-induction hypotension, the AUC was 0.84 for random-forest, 0.78 for Naïve Bayes, 0.76 for logistic 

regression, and 0.76 for an artificial-neural-network53. Models for predicting hypotension during 

hemodialysis have also been reported, such as one study which used a deep neural network to predict 

intradialytic hypotension, with an accuracy of 64.97%54.  
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No study that we know of has built a predictive model around iatrogenic hypotension in patients on the 

non-ICU medical wards of a hospital. Here, we use MOSS to build a predictive model for 

antihypertensive-induced hypotension in non-ICU inpatient adults. 

4.3. Materials and methods 

4.3.1. Study site and population 

This study was conducted at Vanderbilt University Medical Center (VUMC), a large urban academic 

medical center in Nashville, Tennessee. VUMC’s EHR, Epic, was implemented in November 2017 and 

includes a data warehouse, Clarity, which houses clinical data including medications and laboratory 

results (© 2021 Epic Systems Corporation). We included in our study population all patients aged 18 or 

older who had orders placed during an inpatient admission between January 1, 2018 and December 31, 

2019. We excluded patients in intensive care units or palliative care units. This study was approved by the 

VUMC institutional review board. 

4.3.2. Definition of Outcome 

We defined antihypertensive-induced hypotension as a low systolic blood pressure (<90 mmHg) within 

24 hours after ordering an antihypertensive. 

4.3.3. Features 

We used MOSS’ feature extraction module to retrieve features for use in our hypotension model. Features 

used are listed in Table 3. We made use of MOSS’ cumulative antihypertensive score functions to 

determine antihypertensive scores for patients at 24 hours and 1 minute prior to the new medication order 

and including the new medication order. Data retrieved were joined into a dataset using the MOSS dataset 

creation module.  
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Patient characteristics 
Age 
Sex 
Weight 
Diagnoses 
Diagnoses on problem list, hospital problem list, and 
admission diagnoses (e.g., congestive heart failure, 
atrial fibrillation, hypertension, hypotension, end stage 
renal disease) 
Vitals 
Systolic blood pressure 
Diastolic blood pressure 
Laboratory values 
GFR <60 
WBC <4 
WBC >14 
Lactate >2 
Medications 
Antihypertensives on home medication list 
Antihypertensives ordered and administered 

Table 3. Features included in MOSS hypotension model. 

4.3.4. Diagnosis Categories 

We compared frequencies of CCSR diagnosis categories in positive and negative cases and incorporated 

as features only those CCSR categories with at least 5% absolute difference in frequency between 

positive and negative cases, as preliminary data had shown worse performance when using all CCSR 

categories.   

4.3.5. Missing Data 

Medication orders with missing data were excluded using case-wise deletion, as preliminary data showed 

that less than 5% of medication orders were missing data, and these missing data were primarily blood 

pressure measurements. We determined that any future clinical decision support predicting hypotension 

was unlikely to be useful in patients for whom blood pressure data was not available. 
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4.3.6. Model Development and Evaluation 

We randomly split data into a training set (80%) and test set (20%). Models were trained with the training 

set and tested both on the training set and the test set. We performed a 10-fold cross-validation within the 

training set. We compared the performance of logistic regression, random forest, XGBoost, and K Nearest 

Neighbors. For each model, we graphed a receiver operating characteristic (ROC) curve and determined 

the area under the curve (AUC). We also looked at the precision of each model for a recall of 

approximately 50%. We determined the top 10 most significant predictors, ranked by the absolute value 

of the z-score. Models were run on the Vanderbilt Advanced Computing Center for Research and 

Education (ACCRE, www.vanderbilt.edu/accre).  

4.4. Results 

 

Figure 8. Flow diagram for hypotension model. 

A flow diagram is presented in Figure 8. Of 115,441 orders for antihypertensives retrieved during the 

study period, 30,869 (27%) were excluded, and an additional 3,299 (3%) were removed due to missing 

data, leaving 81,273 orders used to build and test predictive models. Of these 81,273 orders, 8,039 (10%) 
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were followed by hypotension within the following 24 hours (Table 4). Selected baseline characteristics 

for patients at the time of the antihypertensive order are listed in Table 4. 

 

Predictor  
Age, mean (SD) 60 (17) 
Sex, N (%)  
Female 36,365 (45) 
Male 44,908 (55) 

Antihypertensives on home med list  
None 22,494 (28) 
One 11,328 (14) 
2+ 47,451 (58) 

Diagnoses  
Hypertension 27,630 (34) 
Congestive heart failure 22,464 (28) 
Atrial fibrillation 9,440 (12) 
End stage renal disease 4,326 (5) 
Hypotension 1,476 (2) 

Laboratory values  
Last GFR < 60, N (%) 31,293 (39) 
Last WBC < 4, N (%) 4,648 (6) 
Last WBC > 14, N (%) 8,981 (11) 
Last lactate >2, N (%) 65 (1) 

Blood pressure  
Last SBP, mean (SD) 135 (26) 
Last DBP, mean (SD) 77 (17) 
Lowest SBP in last 24 hours, mean (SD) 119 (23) 

Outcome  
Hypotension, N (%) 8,039 (10) 

Table 4. Baseline characteristics and outcome, hypotension model. 
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Figure 9. Area under the curve for hypotension model using logistic regression. 

Model 
Logistic 
Regression 

Random 
Forest XGBoost 

K Nearest 
Neighbors 

Hypotension 0.78 0.77 0.79 0.64 
Table 5. AUCs for hypotension model comparing logistic regression, random forest, XGBoost, and K 

Nearest Neighbors. 

4.4.1. Model Performance 

The AUC for the hypotension model using logistic regression was 0.80 when tested on the training set, 

unchanged with 10-fold cross-validation, and 0.78 when tested on the test set (Error! Reference source 

not found., Table 5). Both random forest and XGBoost performed similarly, with AUCs of 0.77 and 0.79 

respectively. K Nearest Neighbors was worse with an AUC of 0.64. We determined that using the logistic 

regression model, a precision of 0.31 corresponded to a recall of 0.51. The most significant predictors for 

the hypotension model were the patient’s lowest systolic blood pressure in the 24 hours prior to ordering 

the new medication, the last systolic blood pressure, and the patient’s weight (Figure 10). 
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Figure 10. Feature importance for hypotension model. The top 10 most significant features for the 

hypotension model are displayed in a bar chart, ranked by the absolute value of the z-score. 

4.5. Discussion 

Using MOSS, we generated a clinical prediction model for hypotension in non-ICU inpatients with an 

AUC similar to those reported for post-intubation and post-induction hypotension. While a precision of 

0.31 and recall of 0.51 leave room for improvement, they are higher than the precision and recall of 

typical table-based alerts.  

The most important features for this model were the patient’s lowest systolic blood pressure in the last 24 

hours and the last systolic blood pressure recorded before the new order for an antihypertensive 

medication. This is a similar finding to another study which tried to predict hypotension after induction 

with machine learning, where the patient’s lowest systolic blood pressure, lowest mean blood pressure, 

and mean systolic blood pressure before intubation were the most important factors53.  

XGBoost had the best performance, but the AUC for logistic regression was also acceptable. Given the 

proposed application of this model within a medication alert, it would be preferable to use logistic 

regression due to better explainability of the prediction. For example, when displaying an alert warning 

about hypotension, the logistic regression model could include patient-specific factors, such as the most 

recent systolic blood pressure, that put the patient at risk for hypotension (Figure 2).  
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4.6. Conclusion 

This chapter demonstrates the potential of MOSS to facilitate the development of a prediction model for 

antihypertensive-induced hypotension. Using MOSS’ feature extraction functions, we were able to 

automatically generate SQL queries to extract data from the Clarity database. While the positive 

predictive value for our hypotension alert showed improvement over common table-based alerts, it may 

be desirable to implement this alert at a higher positive predictive value with lower sensitivity to prevent 

alert fatigue. Determining the best threshold for alerting would depend upon clinical priorities and further 

evaluation of the impact on such an alert on workflow. 
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CHAPTER 5 

5. MOSS Use Case #2: Predicting Insulin-Induced Hypoglycemia 
 

5.1. Introduction 

In this chapter, we discuss a second proof-of-concept example for the use of MOSS to develop a clinical 

prediction model. This time, we use MOSS to train a model predicting hypoglycemia in patients who are 

prescribed insulin. Hypoglycemia is a common condition in hospitalized patients, especially those with 

diabetes. It can be life-threatening, and for this reason, clinical prediction models for hypoglycemia have 

been an area of interest in recent years. 

5.2. Background 

Reduction in average glucose levels is a key target of therapy for diabetes, since it can prevent 

microvascular complications such as retinopathy, nephropathy, and neuropathy, and may prevent negative 

outcomes such as myocardial infarction55. However, therapy to lower blood glucose can also put patients 

with diabetes at risk for hypoglycemia, a condition which manifests as autonomic symptoms such as 

tremor, anxiety, and sweating, as well as symptoms due to decreased glucose availability to the brain, 

such as dizziness and confusion. In some cases, hypoglycemia can lead to coma and death. Insulin is on 

the Institute for Safe Medication Practices’ list of high-risk medications50. Recently, models for insulin-

associated hypoglycemia have been published, with one study reporting a C-statistic of 0.8656, and 

another study reporting an AUC of 0.75 with logistic regression vs. 0.96 with XGBoost57. Here, we use 

MOSS to build a predictive model for insulin-induced hypoglycemia in non-ICU inpatient adults. 

5.3. Materials and methods 

5.3.1. Study site and population 

This study was conducted at VUMC, a large urban academic medical center in Nashville, Tennessee. 

VUMC’s EHR, Epic, was implemented in November 2017 and includes a data warehouse, Clarity, which 

houses clinical data including medications and laboratory results (© 2021 Epic Systems Corporation). We 
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included in our study population all patients aged 18 or older who had orders placed during an inpatient 

admission between January 1, 2019 and December 31, 2019. We excluded patients in intensive care units 

or palliative care units. This study was approved by the VUMC institutional review board. 

5.3.2. Definition of Outcome 

We defined insulin-induced hypoglycemia, as a low blood glucose (<70 mg/dL) within 24 hours after 

ordering insulin.  

5.3.3. Features 

We used MOSS’ feature extraction module to retrieve features for use in our hypoglycemia model. 

Features used are listed in Table 6. We made use of MOSS’ insulin score functions to determine insulin 

scores for patients at 24 hours and 1 minute prior to the new medication order and including the new 

medication order. Data retrieved were joined into a dataset using the MOSS dataset creation module.  

Patient characteristics 
Age 
Sex 
Weight 
Diagnoses 
Diagnoses on problem list, hospital problem list, and 
admission diagnoses (e.g., diabetes, type 1 diabetes) 
Laboratory values 
Glucose (last glucose, lowest glucose in last 24 hours) 
GFR <60 
WBC <4 
WBC >14 
Lactate >2 
Medications 
Insulins on home medication list 
Insulins ordered and administered 
Dose, route, and units of new insulin order 
Diet 
Whether last diet order was nil per os 

Table 6. Features included in MOSS Hypoglycemia Model. 
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5.3.4. Diagnosis Categories 

We compared frequencies of CCSR diagnosis categories in positive and negative cases and incorporated 

as features only those CCSR categories with at least 5% absolute difference in frequency between 

positive and negative cases, as preliminary data had shown worse performance when using all CCSR 

categories.   

5.3.5. Missing Data 

Medication orders with missing data were excluded using case-wise deletion, as preliminary data showed 

that less than 5% of medication orders were missing data, and these missing data were primarily blood 

glucose measurements. We determined that any future clinical decision support predicting hypoglycemia 

was unlikely to be useful in patients for whom blood glucose data was not available. 

5.3.6. Model Development and Evaluation 

We randomly split data into a training set (80%) and test set (20%). Models were trained with the training 

set and tested both on the training set and the test set. We performed a 10-fold cross-validation within the 

training set. We compared the performance of logistic regression, random forest, XGBoost, and K Nearest 

Neighbors. For each model, we graphed a receiver operating characteristic (ROC) curve and determined 

the area under the curve (AUC). We also looked at the precision of each model for a recall of 

approximately 50%. We determined the top 10 most significant predictors, ranked by the absolute value 

of the z-score. Models were run on the Vanderbilt Advanced Computing Center for Research and 

Education (ACCRE, www.vanderbilt.edu/accre).  
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5.4. Results 

A flow diagram is presented in Figure 11. Of 46,804 orders for insulin retrieved during the study period, 

14,525 (31%) were excluded, and an additional 1,368 (3%) were removed due to missing data, leaving 

30,911 orders used to build and test predictive models. Of these 30,911 orders, 2,599 (8%) were followed 

by hypoglycemia within the following 24 hours (Table 7). Selected baseline characteristics for patients at 

the time of the insulin order are listed in Table 7. 

  

Figure 11. Flow diagram for hypoglycemia model. 
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Predictors  
Age, mean (SD) 58 (16) 
Sex, N (%)  
Female 13,350 (43) 
Male 17,561 (57) 

Insulins on home med list  
None 13,315 (43) 
One 5,224 (17) 
2+ 12, 372 (40) 

Diagnoses  
Diabetes 21,138 (68) 
Type 1 Diabetes 1,468 (5) 
End stage renal disease 2,359 (8) 

Laboratory values  
Last GFR < 60, N (%) 14,639 (47) 
Last WBC < 4, N (%) 2,107 (7) 
Last WBC > 14, N (%) 4,226 (14) 
Last lactate >2, N (%) 577 (2) 
Last glucose, mean (SD) 219 (109) 
Lowest glucose in last 24 hours, mean (SD) 170 (92) 

Diet nil per os 5,850 (19) 
Outcome  
Hypoglycemia, N (%) 2,599 (8) 

Table 7. Baseline characteristics and outcome, hypoglycemia model. 
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Figure 12. Area under the curve for hypoglycemia model using logistic regression. 

Model 
Logistic 
Regression 

Random 
Forest XGBoost 

K Nearest 
Neighbors 

Hypoglycemia 0.74 0.78 0.76 0.62 
Table 8. AUCs for hypoglycemia model comparing logistic regression, random forest, XGBoost, and K 

Nearest Neighbors. 

5.4.1. Model Performance 

The AUC for the hypoglycemia model using logistic regression was 0.74 when tested on the training set, 

unchanged with 10-fold cross-validation, and 0.74 when tested on the test set (Figure 12, Table 8). Both 

random forest and XGBoost performed slightly better, with AUCs of 0.77 and 0.76 respectively. K 

Nearest Neighbors was worse with an AUC of 0.62. We determined that using the logistic regression 

model, a precision of 0.22 corresponded to a recall of 0.51. The most significant predictors for the 

hypoglycemia model were the patient’s lowest blood glucose in the 24 hours prior to ordering the new 

medication, the medication route, and the patient’s weight. 
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Figure 13. Feature importance for hypoglycemia model. The top 10 most significant features for the 

hypoglycemia model are displayed in a bar chart, ranked by the absolute value of the z-score. 

5.5. Discussion 

Using MOSS, we were able to generate a clinical prediction model for inpatient hypoglycemia. The 

precision of 0.22 and recall of 0.51 leave room for improvement, but still outperform typical table-based 

alerts.  

The model performed worse than another published model for hypoglycemia which reported an AUC of 

0.96 using XGBoost57. They reported a number of significant predictors which we did not include in our 

model, such as diastolic blood pressure, oxygen saturation, temperature, albumin levels, sulfonylurea use, 

metformin use, and procedures. Many of these features are already supported with MOSS’ feature 

extraction module, and present an opportunity for further improvement of the model.  

The most important feature for this model was the patient’s lowest blood glucose in the last 24 hours prior 

to the new order for an antihypertensive medication. This parallels our finding for the hypotension model, 

in which the patient’s lowest systolic blood pressure in the last 24 hours was the most important feature.  

For predicting hypoglycemia, random forest had the best performance, but the AUC for logistic 

regression was also acceptable. It would likely be preferable to use logistic regression given its better 
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explainability, though both logistic regression and random forest can be implemented as prediction 

models in Epic according to our preliminary investigation.  

5.6. Conclusion 

This chapter demonstrates the potential of MOSS to facilitate the development of a prediction model for a 

second clinical scenario further illustrating the flexibility of MOSS in generating different prediction 

models. For this use case, XGBoost outperformed other algorithms. This use case highlights one of the 

benefits of MOSS: its support for experimenting with different models and features. A clinician without 

SQL knowledge or advanced machine learning experience would be able to use MOSS’ functions to add 

new models or features without the time-consuming back-and-forth of working with a non-clinician data 

analyst. 
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CHAPTER 6 

6. Discussion 
 

6.1. Introduction 

As EHRs become widespread, clinical data amasses, and machine learning methods advance, the need 

arises for a platform to catalyze the process of learning from data in healthcare to make care safer and 

better for patients.  

6.2. The MOSS Architecture 

As laid out in chapter 3, the MOSS architecture presents an example of how to standardize the process of 

generating clinical prediction models. Key themes of the MOSS architecture including streamlining the 

process of generating SQL queries, having modular components and flexibility among functions, and 

supporting the feature engineering process by preparing data for use in models. 

6.3. Automatic Generation of SQL Queries 

As we designed this platform, the objectives were to both make this process more approachable for 

individuals not familiar with SQL, as well as to make this process more efficient for users with advanced 

SQL knowledge. The ability of MOSS feature extraction functions to automatically build SQL queries 

saves users the time of rewriting SQL queries and remembering which tables and fields hold data of 

interest. Moreover, when functions are run, users have the option to inspect the queries that are generated, 

which can serve as a learning tool for SQL coding and the Clarity data model.  

6.4. Modularity and Flexibility 

The design of MOSS emphasizes modularity and flexibility at multiple levels. Each MOSS module can 

function independently, allowing the user to pick and choose which modules to use. Furthermore, the 

feature extraction module allows each feature to be extracted independently before being joined into one 

dataset. This has the potential downside of slower performance; rather than creating one large SQL query 

to extract all the features at once, MOSS sends out multiple sequential queries. Some of these queries are 
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redundant: one might use the get_last_lowest_lab() function multiple times with different time intervals 

for the same laboratory test, e.g., glucose. Each time the function is run, a temporary table is created with 

all the glucose results for the cohort. We could have engineered MOSS to re-use these temporary tables 

rather than recreating it each time a function is run, but the initial strategy was to make each part of 

MOSS standalone, ensuring that one function does not depend on another function. Further optimization 

is possible, although as designed, the MOSS feature extraction module has typically taken less than thirty 

minutes to extract one year of data. Such performance would not meet the requirements of point-of-care 

model generation for CDS, but should prove sufficient for the use case where a model is trained and 

updated proactively, as the predictions themselves are quickly made once the model has been trained. 

6.5. Alternatives to Medication Orders for Cohort 

As currently implemented, MOSS is designed to predict adverse outcomes at the time of medication 

orders. However, by substituting a different cohort in the cohort creation module, MOSS can be adapted 

to focus on medication administrations, or theoretically any other timed event. This would allow MOSS 

to generate predictions at the time of medication administration, which could lead to CDS for nurses at 

the time that medications are given. Such a model might provide another layer of safety, for example in 

the case that a blood pressure lowering agent was ordered when a patient’s blood pressure was normal, 

but a patient’s blood pressure fell prior to the scheduled time of administration. Theoretically, MOSS 

could be used to predict the risk of an adverse event at any point in time, such as at chart opening or at the 

time a laboratory test results. 

6.6. Support for Feature Extraction 

The MOSS feature extraction functions are designed to minimize time-consuming tasks of data cleaning, 

such as converting text laboratory results to numeric values. These functions often take a time period as 

an argument, so that the user can specify whether they would like to look for lab results from 24 hours 

prior to the medication order, or only 6 hours before. This flexibility around time periods presents the 

potential to optimize these as a hyperparameter. MOSS also provides support for combining similar 
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medications to generate a medication score. While this might not be necessary for models like neural 

networks, in our experience logistic regression models have benefited from using medication scores as 

features.  

6.7. Explainability 

We demonstrated the ability of MOSS to generate predictive models for two use cases. As has previously 

been shown, there was only a small difference in the performance of more complicated machine learning 

methods over logistic regression. Logistic regression has the benefit of being interpretable, as opposed to 

other “black box” methods such as random forest and XGBoost. Miller and Masarie write that the most 

important intellect brought to any CDS system is that of the clinician58. Medication alerts that provide 

useful information to the clinician, such as through presentation of patient risk factors, will make the best 

use of the clinician’s valuable intellect. 

Despite the attractiveness of logistic regression, MOSS does allow the user to select other models. One 

major strength of MOSS is the ability to test and compare different algorithms once the MOSS data 

structure has been generated. Certain use cases, such as those that require a large feature space, may 

benefit from the use of more advanced machine learning algorithms. The decision to use such algorithms 

would have to weigh performance benefits and the downsides of using “black box” methods which make 

it hard to provide rationale when displaying an alert to users.  

6.8. Limitations 

While MOSS shows great potential as a platform for generating predictive models, further investigation is 

required to determine its effectiveness with models besides antihypertensive-induced hypotension and 

insulin-induced hypoglycemia. MOSS does not yet provide any support for unstructured data. Its regular 

expression tools provide a starting point, but adding more advanced natural language processing (NLP) 

methods has the potential to improve model performance. Finally, MOSS has not yet been integrated into 

the EHR, though preliminary investigation suggests this is possible in our hospital’s EHR, especially with 

logistic regression and random forest models. 
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6.9. Future Work 

6.9.1. Additional Use Cases 

In our experience, compared to the time spent building out MOSS for our first use case, adding an 

additional use case was much faster, as it reused many of the MOSS functions that had already been 

constructed. It is our hope that with each additional use case that is added, MOSS becomes more flexible 

and adaptable for different purposes. With this in mind, we aim to add additional use cases in our future 

work, including opioid-induced respiratory depression, anticoagulant-induced bleeding, and nephrotoxic 

medication-induced acute kidney injury. Since MOSS is designed with the goal of preventing adverse 

events, we hope to add additional feature extraction modules that find potential safety events, such as 

significant events (rapid responses and codes), transfers to higher levels of care, and readmissions. 

6.9.2. Unstructured Data 

As we add additional use cases and improve existing models, we hope to use the large amount of 

unstructured data in the EHR, such as clinical notes. Parsing of natural language is a challenging task 

given the vastly large size of natural language and problems such as word ambiguity59. However, modern 

machine learning methods such as support vector machines, hidden Markov models, conditional random 

fields, and N-grams have been applied to NLP tasks and found to improve the performance of models. 

One study found that adding NLP to a clinical prediction model of outcomes among ICU patients 

improved the AUC from 0.899 to 0.92260. More recently, NLP techniques such as the Bidirectional 

Encoder Representations from Transformers (BERT), developed by Google, has shown promise for 

clinical texts61. We aim to use such techniques to capture unstructured information about significant 

patient events that may not exist in any structured fields, such as patient deterioration and resuscitation.  

6.9.3. Making MOSS Accessible to Others 

In designing MOSS as a platform to facilitate the generation of clinical prediction models for CDS, our 

goal has been to make the process approachable and accessible to others. Next steps include developing 
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MOSS into a user-friendly R package and providing MOSS to other researchers and personnel at our 

institution.  

6.9.4. Integration of MOSS into the EHR 

By making predictive modeling more approachable for clinicians, MOSS may lead to more clinically-

relevant models that are amenable to implementation as CDS. Due to the design of MOSS, which centers 

around the process of medication ordering, MOSS models are set up to be integrated as CDS which may 

alert users at the time of ordering a medication. In our next stage of work, we aim to build out the MOSS 

pipeline to facilitate integration into the EHR. Building of effective CDS is not a simple task. Studies 

evaluating the effectiveness of CDS to improve clinical care have often found mixed results62,63. In the 

“Ten Commandments” for CDS, Bates et al. discussed strategies for  CDS, such as improving the speed 

of systems, bringing information to the clinician at the right time in the workflow, monitoring the use of 

systems, keeping knowledge bases used to generate CDS up to date64. One way to facilitate this process 

will be to add an alert design module within MOSS that helps the user determine how often an alert 

would fire per day at any given threshold. Additionally, the ease of use of MOSS for generating 

prediction models would hopefully translate to more frequent updating and recalibration of models.  

6.10. Portability of MOSS 

It is our hope that as we further optimize MOSS for generating machine learning-based CDS at our 

institution, we will also find ways to replicate MOSS outside of our institution. This will be especially 

possible at other Epic sites, although small differences in each Epic site’s instantiation of Clarity may 

require some adjustments to the queries which underly many MOSS functions. Translating MOSS to a 

different vendor system would likely take additional work. The use of OMOP CDM may be another 

strategy for improving the portability of MOSS43.  However, using mapping may further distance MOSS 

models from the underlying clinical data, potentially affecting the performance of CDS. Overall, while 

adapting each one of the many MOSS functions for use at another institution may require some work, we 
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hope that the architecture and design of MOSS may prove useful to other institutions seeking to catalyze 

the process of generating machine learning-based CDS. 

6.11. Conclusion 

The MOSS pipeline demonstrates an effective platform for using EHR data to build predictive models 

around medication safety. As designed, MOSS is an example of a system that combines self-service query 

tools for researchers with machine learning tools that are modular and flexible. Such tools can be used to 

remove technical barriers and capitalize upon the vast number of clinicians and institutional personnel 

who are otherwise poised to make contributions to the grand challenge of learning from clinical data to 

improve CDS. 
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