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Chapter 1

INTRODUCTION

The purpose of this dissertation is to develop robust cohesive zone modeling approaches

based on continuum damage mechanics to simulate mixed-mode fracture or delamination

at anisotropic and/or dissimilar material interfaces in fiber-reinforced laminated compos-

ites, and hydrofracture in glaciers. In this work, a damage mechanics-based cohesive zone

model has been implemented within the finite element framework, modified to include

a stabilized Nitsche-based approach, and a poro-damage based augmented hydrofracture

model.

Damage mechanics is the study of fracture initiation and propagation in materials un-

dergoing mechanical loading. The fundamental concept is to characterize the presence of

microscopic defects, such as micro-cracks or micro-voids, within the macroscopic material

behavior. Consider, for example, a distribution of micro-voids within a material volume;

during loading the voids can gradually grow in size, thus weakening the material until they

coalesce into a macro-crack. From this perspective, damage is physically interpreted as the

ratio of the area of micro-defects to the total area of material along its principal planes,

that is, cross-sectional cuts of the material normal to each principal direction [6]. If the

size scale of damage zone with respect to the system is small, the damage front can be

represented as a sharp interface with zero thickness. The cohesive zone model (CZM),

projects damage onto a sharp interface, and so damage is characterized as an area repre-

senting micro-cracks across the interface. In the CZM framework, the state of damaged

or degraded material is generally characterized using a damage tensor Ds, however in the

simplified case of isotropic damage, a scalar variable Ds sufficiently describes the damaged

material state. Thus, for undamaged material Ds = 0, whereas for a fully damaged mate-

rial Ds = 1. Partially damaged material (i.e., where 0 < Ds < 1) becomes more stressed
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and compliant, which is accounted by the principle of effective stress [7, 8], and the hy-

pothesis of strain equivalence [9] or energy equivalence [10]. In practice, damage-induced

compliance is incorporated into a material’s constitutive behavior by reducing the stiff-

ness or viscosity with the factor (1-Ds). This implementation of damage is appropriate for

modeling fracture evolution in sharp interfaces, which is demonstrated through the work

presented in this dissertation.

Numerical simulation of fracture propagation in multi-dimensions is a challenging

problem, in part due to mixed-mode interactions and stiff anisotropic cohesive response

at arbitrarily shaped crack interfaces, particularly under compression. The cohesive zone

modeling approach has been widely used to analyze and predict mixed-mode fracture or

delamination propagation at anisotropic and/or dissimilar material interfaces, despite its

limitations. Typically, cohesive zone models (CZMs) are implemented in conjunction with

the finite element method by introducing zero-thickness interface elements along poten-

tial crack surfaces. The constitutive behavior of the interface is defined by a cohesive law

that relates the traction with the separation across the crack surface. In general, there are

two classes of cohesive laws, namely intrinsic or initially elastic cohesive laws, and extrin-

sic or initially rigid cohesive laws. On the one hand, the extrinsic cohesive zone models

consistently describe fracture initiation, but are difficult to implement in a legacy finite el-

ement software (e.g., [11]). On the other hand, intrinsic CZMs are fairly straightforward

to incorporate in a legacy finite element framework, but are plagued by numerical issues.

Specifically, when using “stiff” cohesive laws or an anisotropic CZM (i.e., different nor-

mal and tangential cohesive stiffness), intrinsic CZMs suffer from ill-conditioned discrete

systems that result in poor convergence and spurious oscillations in interfacial tractions

[12, 13, 14]. It bears emphasis that these issues can also arise with extrinsic CZMs when

analyzing stiff behavior under compressive loading or low-cycle fatigue loading, when the

unloaded and reloaded in the early stages of the softening regime of the traction-separation

law [15].
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The first objective of this dissertation is to address these numerical problems by in-

troducing a robust, stabilized formulation for treating cohesive laws with arbitrarily large

stiffness within the finite element method. To this end, A stabilized formulation is proposed

that generalizes Nitsche’s method [16] for cohesive fracture problems. Nitsche’s method

can be viewed as a variationally consistent penalty method, with the advantage that the

discrete system of equations are better conditioned provided the stabilization parameters

are chosen appropriately. As a result of the pioneering work of [17], the method has be-

come popular for a wide class of interface (contact) problems [18, 19, 20]. The proposed

formulation is a novel extension of the formulation presented in [21] to fracture mechanics

problems. It enables the implementation of extrinsic CZMs with the finite element frame-

work of intrinsic CZMs.

The second objective of this dissertation is to demonstrate the robustness of the sta-

bilized finite element method proposed by Ghosh et al. [22] for modeling delamination

growth in laminated fiber-reinforced composite materials with transversely isotropic elas-

tic behavior, which are widely used in the aerospace/automobile industry. To this end, the

parametric uncertainties, numerical instability, mesh dependence, and computational effi-

ciency issues associated with the commonly used standard finite element method for cohe-

sive fracture/delamination is investigated. The advantages of using the stabilized method

that address the issues with the standard method in the context of delamination analysis is

illustrated. While the stabilized finite element method for cohesive fracture/delamination

problems was fully developed in Ghosh et al. [22], it was tested only for isotropic linearly

elastic media using simplified patch tests and benchmark problems to verify accuracy and

illustrate convergence. Mode-I, mode-II, and mixed-mode crack growth in laminated cross-

ply composites is simulated by choosing standardized test configurations and validated the

results with experimental data, when available to achieve the second objective. Further-

more, the stability and accuracy of standard and stabilized methods with semi-structured or

perturbed meshes for delamination analysis is explored.
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The third objective of this dissertation is to develop a robust CZM approach for model-

ing hydrofracture and crevasse propagation in glaciers. The plausibility of rapid global sea-

level rise predominantly due to mass loss from glaciers and ice sheets due to hydrofractur-

ing of ice shelves and marine ice cliff instability highlights the urgent need for modeling and

understanding fracture/failure mechanisms in glaciers. However, the fracture mechanisms

associated with crevasse initiation and propagation, are complex and involve mechanical,

thermal and hydraulic fracture processes [23, 24, 25, 26]. For instance, when melt-water

infiltrates the surface crevasses or seawater infiltrates the basal crevasses, crevasse can prop-

agate deeper into the glacier; this hydraulic-pressure-driven fracture is commonly referred

to as hydro-fracture [27]. To simulate hydrofracturing of glacier crevasses, a poro-damage-

based approach that accounts for the effect of hydrostatic water pressure inside the dam-

aged ice by integrating principles of continuum damage mechanics and poro-mechanics

is developed. In the proposed formulation, damage is interpreted to represent the ratio of

isotropic void area to total area along the cohesive interface, assuming water can permeate

the damaged material and exert hydrostatic pressure along the interface.
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Chapter 2

A STABILIZED FINITE ELEMENT METHOD FOR ENFORCING STIFF

ANISOTROPIC COHESIVE LAWS USING INTERFACE ELEMENTS

This chapter is adapted from “A stabilized finite element method for enforcing stiff
anisotropic cohesive laws using interface elements” published in Computer Methods in
Applied Mechanics and Engineering and has been reproduced with the permission of the
publisher and my co-authors Ravindra Duddu and Chandrasekhar Annavarapu : Ghosh, G.,
Duddu, R., and Annavarapu, C. (2019). A stabilized finite element method for enforcing
stiff anisotropic cohesive laws using interface elements, Computer Methods in Applied
Mechanics and Engineering, 348: 1013-1038

2.1 Introduction

Numerical simulation of fracture propagation in multi-dimensions is a challenging

problem, in part due to mixed-mode interactions and stiff anisotropic cohesive response

at arbitrarily shaped crack interfaces, particularly under compression. The cohesive zone

modeling approach has been widely used to analyze and predict mixed-mode fracture or

delamination propagation at anisotropic and/or dissimilar material interfaces, despite its

limitations. Typically, cohesive zone models (CZMs) are implemented in conjunction with

the finite element method by introducing zero-thickness interface elements along potential

crack surfaces. The constitutive behavior of the interface is defined by a cohesive law that

relates the traction with the separation across the crack surface. There are broadly two

classes of CZMs: intrinsic with initially elastic cohesive laws and extrinsic with initially

rigid cohesive laws. Cohesive laws with large initial stiffness may be required for accurate

fracture analysis and contact enforcement in the intrinsic approach; however, stiff cohe-

sive laws may also need to be enforced during cycle-by-cycle fatigue analysis even in the

extrinsic approach (see Fig. 1). It is well-known that the standard (penalty-like) method

for enforcing stiff cohesive laws using interface elements suffers from a distinct numerical
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instability that is often manifested by spurious oscillations in crack-face tractions, which

may cause inaccuracies and convergence issues. The purpose of this paper is to introduce

a novel stabilized finite element method by generalizing Nitsche’s method for enforcing

stiff anisotropic cohesive laws that alleviates the numerical instability issue afflicting the

standard method.

(a) Intrinsic CZM (b) Extrinsic CZM

!

" "

!
St

iff

St
iff

!#$%

"#$% "#$%

!#$%

Figure 2.1: Illustration of stiff (red line) cohesive laws encountered in fracture analysis
under monotonic and cyclic loading. (a) In intrinsic CZMs, stiff cohesive laws may be pre-
scribed to define the linear elastic portion before damage initiation or no-interpenetration
(contact) condition; (b) In extrinsic CZMs, stiff cohesive laws may be encountered during
unloading/reloading immediately after damage initiation or contact enforcement during
cyclic loading.

In an extrinsic CZM, it is assumed that the interface separates only after the cohesive

traction exceeds a finite cohesive strength and then the maximum cohesive traction de-

creases monotonically with the increase in separation until an ultimate separation value is

reached (see Fig. 2.1b). Since their introduction in the seminal paper by Camacho and

Ortiz [28], the extrinsic CZM approach have been used to simulate dynamic fracture in a

wide-range of engineering materials [e.g., 29, 30, 31, 32, 33, 34]. In practice, the extrinsic

approach is implemented by adaptively inserting zero-thickness interface elements in a fi-

nite element mesh adjacent to the crack tip when a specified criterion for the onset of failure

is met. Consequently, the numerical implementation of extrinsic CZMs is computationally

efficient, but it requires sophisticated topology change algorithms to modify the associ-

ated finite element data structures consistently with the evolving fracture geometry, which

increases algorithmic complexity. Despite several algorithmic advances [35, 36, 37, 38],
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numerical implementation of extrinsic CZMs in a legacy finite element framework remains

non-trivial, compared to intrinsic CZMs that are much more straightforward to implement.

In intrinsic CZMs, it is assumed that the cohesive traction increases gradually with

separation till it reaches a finite cohesive strength in the linear elastic regime, and then it

decreases monotonically till the separation reaches an ultimate value, where complete de-

cohesion occurs (see Fig. 2.1a). Xu and Needleman [39] pioneered the intrinsic approach

using a potential-based traction-separation law to model dynamic fracture growth in brittle

solids. Several phenomenological and potential-based intrinsic CZMs with bilinear [40],

trapezoidal [41, 42], and polynomial shapes [43, 44] have been developed for specific ap-

plications. In practice, the intrinsic approach is implemented by inserting zero-thickness

interface elements in a finite element mesh along all potential crack paths a priori. This

approach has been extensively used to model both quasi-static and dynamic failure in a

variety of applications including particle-matrix interface debonding in metal-based com-

posites [45], delamination in laminated composite materials [46, 47, 48], and fiber-metal

laminate failure [49]. The intrinsic approach is relatively straightforward to implement in a

legacy finite element framework, but it has some shortcomings, including the well-known

“artifical complicance” [13, 50] and increased computational cost.

Despite their differences, the implementation of both extrinsic and intrinsic approaches

for stiff cohesive laws using the standard (penalty-like) method is prone to several numer-

ical issues during dynamic and quasi-static fracture analysis. The stiffness of the cohesive

law is often defined using a non-dimensional quantity M = α0h/E, where α0 is the initial

cohesive stiffness, E is the elastic modulus and h is the mesh size parameter [51]. For lam-

inated composites, Turon et al. [52] suggested using the sub-laminate thickness t, instead

of mesh size parameter h, to define the non-dimensional quantity M. For a given size-scale

parameter (i.e., h or t), choosing a large cohesive stiffness α0 relative to the elastic modu-

lus E leads to a stiff cohesive law with M > 1000. In dynamic fracture analysis, to avoid

the artificial compliance issue, it is required to assume an adequately large value for the
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initial cohesive stiffness in intrinsic CZMs [13, 53, 51], but that can lead to ill-conditioning

of the tangent stiffness matrices. This ill-conditioning issue may also arise in extrinsic

CZMs under cyclic loading, if the interface is unloaded immediately after crack initiation

when the elastic unloading/reloading slope could be large [28]. This issue can be resolved

to some extent by restricting the time step in an explicit finite element scheme to an ex-

tremely small value [50, 31], but this will result in an impractically high computation cost.

In quasi-static fracture analysis, intrinsic CZMs exhibit spurious traction oscillations along

the cohesive interface, especially near crack tips, if a large initial cohesive stiffness is spec-

ified [54, 12, 55, 52], or if the cohesive interface has a curved geometry and its behavior

under compressive loading is described by an anisotropic cohesive law with different values

for normal and tangential stiffness [14]. It has been argued in [14] that the issue of spurious

traction oscillations encountered in the standard (penalty-like) method for intrinsic CZMs

with stiff cohesive laws (using full or reduced integration) arises due to the violation of the

inf-sup or LBB condition.

In the traditional penalty method [56], a Dirichlet constraint at the interface is enforced

by introducing a spring-like tie constraint at the interface. A better approximation of the

Dirichlet constraint can be obtained by using a large value for the penalty parameter, which

can be interpreted as the stiffness of the spring (i.e., initial slope of the traction separa-

tion law). Thus, the standard finite element method for implementing an intrinsic CZM

is equivalent to the penalty method for stiff cohesive laws. Theoretically, the interfacial

constraint of zero separation before crack initiation (i.e., extrinsic CZM) can be achieved

if the initial cohesive stiffness approaches infinity, but using a very large cohesive stiffness

leads to ill-conditioning and numerical instability issues. Lagrange-multiplier-based mixed

formulations can alleviate instability issues associated with cohesive interface elements

[57, 58] or with embedded contact interfaces in the extended finite element method (XFEM)

[59, 60]. However, these approaches can be computationally costly and complicated to im-

plement, because it is difficult and non-trivial to find a stable Lagrange multiplier space
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that alleviates traction oscillations [61]. Another alternative is Nitsche’s method, which

was originally introduced in [16] to weakly enforce Dirichlet boundary conditions. Later,

it was extended to weakly enforce the continuity of the displacement field at the interior

boundaries [62]. We note that the discontinuous Galerkin (DG) method essentially orig-

inated from Nitsche’s method [11] and the latter has been referred to as the classical DG

method [63]. A comprehensive review of Nitsche’s method and its application to interface

problems can be found in [64, 65].

The Nitsche’s method can be interpreted as a variationally consistent penalty method

for weakly enforcing interfacial constraints. This method can eliminate the instability is-

sues associated with the penalty method by adding consistency terms [66, 67], and can

yield oscillation-free traction profiles at embedded interfaces [18]. In the recent decades,

Nitsche’s method has been utilized for solving a wide range of interface problems in an

efficient way [68, 69, 70, 71, 72, 73, 18, 74, 75, 76]. More recently, Nitsche-based meth-

ods have been developed for frictional-sliding on embedded interfaces [19, 77] and small-

sliding contact on frictional surfaces, including stick-slip behavior [20]. In this chapter,

we propose a stabilized finite element method for cohesive fracture problems, which is in-

spired by the Nitsche’s method for general boundary conditions developed by Juntunen and

Stenberg [78]. The proposed method ensures accurate recovery of crack-surface traction

even for large values of cohesive stiffness (e.g., 8–16 orders of magnitude more than bulk

stiffness). We further demonstrate the ability of the stabilized method to alleviate numerical

instability associated with the implementation of stiff, anisotropic cohesive laws with dif-

ferent interface properties in the normal and tangential directions. The main novelty of this

work is that it extends Nitsche’s method for cohesive fracture so that it is applicable to both

intrinsic and extrinsic approaches, including stiff elastic loading and unloading conditions.

The rest of this chapter is organized as follows: in Section 2.2, we introduce the governing

equations of the cohesive fracture problem and the weak forms corresponding to the stan-

dard and stabilized methods; in Section 2.3, we discuss the numerical implementation of
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the stabilized method in the commercial finite element software ABAQUS; in Section 2.4,

we present several numerical examples to compare the standard and stabilized methods

with a particular emphasis on the accuracy of evaluating crack-face tractions for stiff co-

hesive laws in quasi-static simulation, including mixed-mode fracture; in Section 2.5, we

conclude with a summary and closing remarks.

2.2 Model Formulation

In this section, we present details of the stabilized finite element method for enforcing

stiff cohesive laws. We first present the strong form of the governing equations followed by

a brief description of the interface cohesive law for mixed-mode loading. We next derive

the weak form for the standard (penalty-like) and stabilized (Nitsche-inspired) methods.

2.2.1 Strong Form

We consider the initial domain Ω⊂Rnd containing a linearly elastic solid with nd = 2 in

two dimensions, as shown in Fig. 2.2. The domain boundary Γ≡ ∂Ω is partitioned into two

disjoint parts such that ∂Ω = ΓD∪ΓN with ΓD∩ΓN = /0, where the Dirichlet and Neumann

boundary conditions are enforced. The domain Ω contains an internal cohesive interface

Γ∗, which divides Ω into two non-overlapping sub-domains Ω1 and Ω2. The outward unit

normal to the boundary ∂Ω is denoted by ne, and the unit normal vector associated with the

interface Γ∗ denoted by n points from Ω2 to Ω1. We use a rectangular Cartesian coordinate

system and the total Lagrangian description for variables with X denoting the position of the

material points. The displacement field u(X) is discontinuous across Γ∗, but continuous

in Ω1 and Ω2; therefore, it can be represented by two continuous functions u1 (X) and

u2 (X) in the respective sub-domains. For brevity, henceforth we will suppress the spatial

dependence of variables. Assuming small displacements, the Cauchy stress tensor can be

defined in Ω1 and Ω2 as

σm = Dm : εm, m = {1,2}, (2.1)
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Figure 2.2: A schematic of the domain for the quasi-static cohesive fracture problem.

where D denotes the fourth-order elasticity tensor and the small strain tensor ε= 1
2(∇u+

(∇u)T ) is defined by the symmetric part of the displacement gradient tensor and ∇ is the

spatial gradient operator with respect to the material coordinates X. The strong form of the

quasi-static boundary value problem in the absence of body force is:

∇ ·σm = 0 in Ω
m, m = {1,2}, (2.2)

u = ū on ΓD, (2.3)

σ ·ne = t̄ on ΓN , (2.4)

tc (δ) = σ ·n, on Γ∗, (2.5)

where t̄ is the prescribed traction or stress vector on the Neumann boundary ΓN , ū is

the prescribed displacement vector on the Dirichlet boundary ΓD, and the traction on the

cohesive interface tc is given by a function of the interface separation or displacement jump

as

δ = [[u]] = u2−u1 (2.6)

Note that the traction tc is continuous across the cohesive interface Γ∗ and is related to the

Cauchy stress tensor evaluated in the sub-domains Ω1 and Ω2 as

tc = σ ·n =−σ1 ·n1 = σ2 ·n2. (2.7)
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In the above two equations, we followed the notation convention used in [73] for defining

the displacement jump and outward normal, and use it to establish the weak form in Section

2.2.3.

2.2.2 Intrinsic cohesive law

For simplicity, we consider the bilinear intrinsic cohesive law with an initial (increas-

ing) linear elastic portion followed by a (decreasing) linear softening response. The corre-

sponding relation between crack-face traction and interface separation can be defined using

the damage mechanics framework as [47, 48, 79]

tc =− α δ, (2.8)

where α is the cohesive stiffness matrix including the effect of damage. Note that the crack-

face traction tc is the Newton’s third law pair to the cohesive traction. Thus, the negative

sign in the above equation indicates that tc causes a restoring force at the interface, which

is equal and opposite to the deforming force. To represent the mixed mode-I and mode-II

fracture behavior in two dimensions, we use the normal and tangential coordinate system.

Accordingly, the tangential tτ and normal tn components of the traction vector tc are related

to the tangential δτ and normal δn components of the interface separation δ as

tτ

tn

=−

(1−Ds)α
0
τ 0

0 (1−Ds)α
0
n


δτ

δn

 , (2.9)

where α0
n and α0

τ represent the initial cohesive stiffness in the normal and the tangential

directions, respectively. The scalar damage variable Ds describing interface degradation
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under quasi-static mixed-mode loading in two dimensions is given by

Ds =


0 if δe < δ c

e ,

δ u
e (δe−δ c

e )

δe(δ u
e −δ c

e )
if δ c

e ≤ δe < δ u
e ,

1 if δ u
e ≤ δe,

(2.10)

where δe =
√

δ 2
n +δ 2

τ is the equivalent separation, δ c
e and δ u

e are interface parameters

corresponding to critical and ultimate separations, respectively, defined as [5]

1
δ c

e
=

√(
α0

n cos I
σmax

)2

+

(
α0

τ cos II
τmax

)2

(2.11)

1
δ u

e
=

(
α0

n δ c
e (cos I)2

2 GIC

)
+

(
α0

τ δ c
e (cos II)2

2 GIIC

)
(2.12)

where the direction cosines cos I = δn/δe and cos II = δτ/δe, σmax and τmax are the pure

mode I and mode II cohesive strengths, and GIC and GIIC are the pure mode I and mode

II critical fracture energies (see Fig. 2.3a). For monotonic loading, when the equivalent

interface separation δe is less than the critical separation δ c
e , there is no damage in the

cohesive interface elements. After the critical separation is exceeded, damage starts to

accumulate till the separation reaches the ultimate value δ u
e , when the cohesive elements are

completely damaged (see Fig. 2.3b). The mixed-mode cohesive law described above was

previously proposed by Jiang et al. [5], wherein quadratic damage initiation and mixed-

mode failure criteria were used to obtain the equivalent critical and ultimate separations.

If the parameter values of cohesive stiffness, cohesive strength and fracture energy are

chosen to be the same for both normal and shear modes, then we get an isotropic cohesive

law, else we get an anisotropic cohesive law. For non-monotonic (cyclic) loading, we can

enforce irreversibility of damage evolution by ensuring that damage does not change during

unloading and reloading cycles, until the previous maximum damage is exceeded [80, 79].
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Figure 2.3: A schematic diagram of the mixed-mode bilinear cohesive law (redrawn from
[4]): (a) the traction-separation relationship for any arbitrary mode-mix ratio is defined in
terms of the pure mode I and mode II relationships; (b) the relationship between the static
damage variable ds and the equivalent separation. The magnitude of the traction vector
‖tc‖=

√
t2
n + t2

τ .

2.2.3 Weak Form

We follow the Galerkin method of weighted residuals to derive the weak forms correspond-

ing to the standard and stabilized methods. We define the space of trial functions U and the

space of test functions W, such that:

U = {u ∈ H1(Ω),u = ū on ΓD}, (2.13)

W = {w ∈ H1(Ω),w = 0 on ΓD}. (2.14)

By weighting Eq. (2.2) with the test function w, integrating by parts, applying the diver-

gence theorem, and using the traction continuity condition at the interface in Eq. (2.7), and

the constitutive relation in Eq. (3.1), we can derive the weak form as follows:

∫
Ω

∇
sw : D : ∇

su dΩ−
∫

Γ∗
(w2 ·σ2 ·n2 +w1 ·σ1 ·n1) dΓ−

∫
ΓN

w · t̄ dΓ = 0, (2.15)∫
Ω

∇
sw : D : ∇

su dΩ−
∫

Γ∗
[[w]] · tc dΓ =

∫
ΓN

w · t̄ dΓ, (2.16)
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Note that in Eq. (2.15) we considered the integrals on the two sides of the cohesive in-

terface, separately, and in Eq. (2.16) we defined the jump in the test function as [[w]] =

w2−w1.

2.2.3.1 Standard method

Substituting the traction-separation relation in Eq. (2.8) into the weak form in Eq.

(2.16) we get

∫
Ω

∇
sw : D : ∇

su dΩ+
∫

Γ∗
[[w]] · α δ dΓ =

∫
ΓN

w · t̄ dΓ. (2.17)

Thus, in the standard method the cohesive tractions are enforced as a Neumann boundary

condition on the interface. Because the cohesive tractions and separations are defined in

the normal and tangential directions, the weak form is implemented as,

∫
Ω

∇
sw : D : ∇

su dΩ+
∫

Γ∗
(1−Ds)

(
[[wn]]α

0
n δn +[[wτ ]]α

0
τ δτ

)
dΓ =

∫
ΓN

w · t̄ dΓ. (2.18)

If the initial cohesive stiffness parameters α0
n and α0

τ are taken to be sufficiently large

the standard method resembles the penalty method for enforcing displacement continu-

ity across the interface. However, for stiff cohesive laws, that is, if cohesive stiffness

is several orders of magnitude greater than the elastic modulus, the standard method be-

comes ill-conditioned leading to instability and/or convergence issues. In the limiting case

where α0
n → ∞ and/or α0

τ → ∞, that is, for a non-interpenetration (contact) constraint or

an extrinsic cohesive law, the standard method is not well defined. To circumvent the

above issues, discontinuous Galerkin or Nitsche-based methods have been proposed in

[15, 76, 81, 82, 83] based on the extrinsic approach, wherein the interface is perfectly

bonded until a certain stress threshold (i.e., interface separation tends to zero and cohesive

stiffness tends to infinity). While in [15] interface bonding prior to separation was enforced

using the interior penalty method, in [82] Riemann solutions were used to enforce interface
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conditions. In the following section, we will present an alternative stabilized finite ele-

ment method for cohesive fracture that is applicable for the whole range of values cohesive

stiffness αn,ατ > 0, so that it is applicable to both intrinsic and extrinsic approaches.

2.2.3.2 Stabilized method

The proposed method adopts the approach developed in [78, 73] and generalizes it to

cohesive fracture problems. By multiplying both sides of Eq. (2.8) with a stabilization

matrix S we obtain

Stc =−S α δ. (2.19)

After multiplying the above equation by the weighting function w and integrating over the

cohesive interface Γ∗ we get

∫
Γ∗
[[w]] ·Stc dΓ =−

∫
Γ∗
[[w]] ·Sα δ dΓ. (2.20)

By adding the above equation to the weak form in Eq. (2.16), we obtain

∫
Ω

∇
sw : D : ∇

su dΩ−
∫

Γ∗
[[w]] · (I−S)tc dΓ+

∫
Γ∗
[[w]] ·Sα δ dΓ =

∫
ΓN

w · t̄ dΓ, (2.21)

where I is the identity matrix. The interface traction can be defined as

tc = 〈σ〉γ ·n on Γ∗, (2.22)

where the weighted average of the stress tensors on both sides of the interface is given by

〈σ〉
γ
= (γ1σ1 + γ

2σ2) ∀ γ
1 + γ

2 = 1, γ
1 > 0, γ

2 > 0. (2.23)
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Choosing the weights γ1 = γ2 = 0.5, yields the mean of the stress tensors evaluated on both

sides of the interface. To complete the formulation, we define the stabilization matrix S as

S =


βτ

α0
τ (1−Ds)+βτ

0

0
βn

α0
n (1−Ds)+βn

 , (2.24)

where βτ ,βn are the stabilization parameters.

The stabilization parameters βτ ,βn and the weights γ1,γ2 play a key role in the numeri-

cal performance of the method. This so-called weighted Nitsche method [20] is particularly

advantageous for dissimilar material interfaces with large contrast in material properties or

for unstructured meshes with significant variations in mesh size. For constant strain trian-

gular (CST) and tetrahedral elements, Annavarapu et al. [18] provided estimates for the

stabilization parameters using a local coercivity analysis as given by

βn = βτ = 2

(
|D1|(γ1)2

meas(Ω1)
+
|D2|(γ2)2

meas(Ω2)

)
meas(Γ∗) (2.25)

where |D| denotes the two-norm of the elasticity tensor, meas(Ω) denotes the area of neigh-

boring bulk element in 2D, and meas(Γ∗) is the length of the interface element. With a ju-

dicious choice of the weights γ1,γ2, the stabilization parameters βτ ,βn scale as 1/h, where

h≈meas(Γ∗) is the mesh/element size parameter. For all h ∈ (0,∞), both the initial cohe-

sive stiffness α and the stabilization parameter β scale as 1/h; thus, the stabilized method

provides a well-conditioned discrete system, irrespective of the mesh size, by ensuring that

the cohesive stiffness terms and the bulk stiffness terms have the same scaling. For an

elaborate discussion on the appropriate choice of weights, we refer the reader to Ref. [18].

Note that, in this study, we used the estimates given in (2.25) to calculate the stabilization

parameters for bilinear quadrilateral elements; precise estimates can be derived as in [18],

but such analysis is beyond the scope of this paper. Finally, the weak form for the stabilized
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method can be written as

∫
Ω

∇
sw : D : ∇

su dΩ−
∫

Γ∗
[[w]] · (I−S)〈σ〉

γ
·n dΓ+

∫
Γ∗
[[w]] ·Sα δ dΓ =

∫
ΓN

w · t̄ dΓ.

(2.26)

In the above equation, the second and third terms on the left hand side ensure consistency

and stability of the proposed method, respectively. The stabilized method presented here

is unsymmetric and resembles the incomplete interior penalty method [65, 84]. It can

be proved that the displacement solution u of the strong form equations (2.2) – (2.5) is

satisfied by the solution to the weak form equation (2.26), which establishes consistency

for any value of cohesive stiffness; the mathematical procedure for proving this is similar

to that described in [78, Lemma 2.1]. As (1−Ds)α
0
n ,(1−Ds)α

0
τ →∞ (refer to Eq. (2.24)),

we recover the Nitsche-based method for frictional contact as [19]

∫
Ω

∇
sw : D : ∇

su dΩ−
∫

Γ∗
[[w]] · 〈σ〉

γ
·n dΓ+

∫
Γ∗
[[w]] · (βτ [[uτ ]]+βn[[un]]) dΓ =

∫
ΓN

w · t̄ dΓ.

(2.27)

As (1−Ds)α
0
n ,(1−Ds)α

0
τ → 0, we recover the weak form for a traction-free crack

surface as

∫
Ω

∇
sw : D : ∇

su dΩ =
∫

ΓN

δu · t̄ dΓ. (2.28)

Thus, the stabilized method remains well-defined for any arbitrarily values of the cohesive

stiffness terms, that is, for (1−Ds)α
0
n ,(1−Ds)α

0
τ ∈ [0,∞). Comparing the weak forms

in equations (2.16) and (2.26), we can obtain an alternative definition for crack-surface

traction as

tc = (I−S)〈σ〉
γ
·n−Sα δ. (2.29)
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Thus, the key idea of the Nitsche-inspired stabilized method for cohesive fracture is to eval-

uate the crack surface traction in terms of the weighted average stress in the bulk material

across the interface and the traction in the cohesive interface.

2.3 Numerical Implementation

In this section, we discuss the finite element approximation using matrix notation along

with the expression for the residual and tangent matrices for the bulk and interface elements.

We also present algorithms for implementing this stabilized method into the commercial

software ABAQUS using user defined subroutines for two-dimensional plane strain analy-

sis.

2.3.1 Finite element approximation

30

20

31

21

32

22 23

33

3

1 2

4

Cohesive
element

1 2

4 3

Bulk element

Local node numberingGlobal node numbering

Figure 2.4: Finite element discretization with bulk and zero-thickness cohesive elements

The sub-domains Ω1 and Ω2 are discretized by four-noded plane strain quadrilateral

bulk elements and zero-thickness four-noded interface elements are introduced at the co-

hesive interface Γ∗ (Fig. 2.4). The displacement field um
2×1 at any point X can be approxi-

mated as

um (X) = N(X) ūm, m = 1,2, (2.30)

where ūm =
[
u1

1,u
1
2, ...,u

4
1,u

4
2
]

8×1 is the nodal displacement vector for a bulk element in the

subdomain Ωm, N is the element shape function matrix given by
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N =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4


2×8

, (2.31)

and NJ (J = 1,2,3,4) are the standard finite element shape functions for the four-

noded quadrilateral element. Using Voigt notation, the small-strain strain tensor εm =

[ε11,ε22,ε12]
ᵀ
3×1 in the bulk element can be approximated as

εm = B ūm, m = 1,2, (2.32)

where the strain-displacement relationship matrix is defined as

B =


N1
,1 0 N2

,1 0 N3
,1 0 N4

,1 0

0 N1
,2 0 N2

,2 0 N3
,2 0 N4

,2

N1
,2 N1

,1 N2
,2 N2

,1 N3
,2 N3

,1 N4
,2 N4

,1


3×8

, (2.33)

and NJ
,i denotes the derivative of the shape function NJ with respect to material coordinate

Xi (i= 1,2) in two dimensions. The normal and tangential components of the displacement

jump or separation across the interface element can be approximated as

[[u]]2×1 = δ2×1 =

δτ

δn

= [[N]]û, (2.34)

where û =
[
û1

1, û
1
2, ..., û

4
1, û

4
2
]

8×1 is the nodal displacement vector for the four-noded inter-

face element in Γ∗ and [[N̂]] is the jump in the interfacial shape function matrix given by

[85]

[[N]] =

−CN̂1 −SN̂1 −CN̂2 −SN̂2 CN̂2 SN̂2 CN̂1 SN̂1

SN̂1 −CN̂1 SN̂2 −CN̂2 −SN̂2 CN̂2 −SN̂1 CN̂1


2×8

, (2.35)

20



and N̂J (J = 1,2) are the standard finite element shape functions for the one-dimensional

linear element, and C and S represent the cosine and sine, respectively, of the angle θ that

defines the orientation of the interface element with the global x1 coordinate axis (see Fig.

2.5). All the finite element shape functions are evaluated using the standard isoparametric

concept.

x1

x2

x'2
x'1

θ

x'1

x'2

1	(𝑢M$$, 𝑢M&$)

2	(𝑢M$&, 𝑢M&&)

3	(𝑢M$O, 𝑢M&O)𝛿𝜏

4	(𝑢M$Q, 𝑢M&Q)

𝛿𝑛

(a) (b)

Before crack opening After crack opening

Figure 2.5: Four-noded linear cohesive element: (a) the orientation θ of the local (normal-
tangential) coordinates with respect to the global Cartesian coordinates before crack open-
ing; (b) the relation between nodal displacements in global coordinates and interface sepa-
rations in local coordinates after crack opening.

2.3.2 Discretization and Linearization

By introducing the finite element approximation into the variational form in Eq. (2.26),

we write the discretized form of the equilibrium equations as

R(U) = fext− (fb
int(U)+ fc

int(U)) = 0, (2.36)

where R is the global residual vector, U is the global displacement vector, fext and fb
int

are the global external and internal force vectors, respectively, assembled from all the bulk

elements in the domain Ω, and fc
int is the internal force vector from all the cohesive elements

on the interface Γ∗. The solution to Eq. (2.36) in the generalized case can be obtained an

iterative solution procedure. Let k+1
j+1U be the global (nodal) displacement vector at an

applied load/displacement step j + 1 and iteration k+ 1. Using a Taylor’s expansion we
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can linearize the global displacement and the residual vectors as

R
(

k+1
j+1U

)
= 0 = R

(
k
j+1U+ k

j+1∆U
)
= R

(
k
j+1U

)
+

∂R
(

k
j+1U

)
∂ k

j+1U

 k
j+1∆U. (2.37)

Rewriting the above equation into a fully discretized and linearized system of equation, we

obtain

k
j+1K k

j+1∆U = R
(

k
j+1U

)
(2.38)

where K is the algorithmically consistent tangent matrix obtained by assembling the con-

tributions of the bulk (Kb) and cohesive (Kc) tangent matrices as

K =−∂R
∂U

=
∂ fb

int
∂U

+
∂ fc

int
∂U

= Kb +Kc, (2.39)

2.3.3 Bulk elements

The internal bulk force vector fb
int is assembled as

fb
int = ∑

e

∫
Ωm

e

Bᵀσm = ∑
e

∫
Ωm

e

BᵀDmB ūm dΩe for m = {1,2}, (2.40)

where ∑
e

indicates the matrix (or vector) assembly of the global system from the element

matrices (or vectors) in the entire computational domain, B is the strain-displacement rela-

tionship matrix defined in Eq. (2.33), σm = [σ11,σ22,σ12]
ᵀ
3×1 is the stress tensor in Voigt

notation containing only the in-plane components, and Dm is the 3×3 plane strain elasticity

matrix in Voigt notation. The corresponding bulk tangent matrix is

Kb = ∑
e

∫
Ωm

e

BᵀDmB dΩe for m = {1,2}, (2.41)
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Neglecting body forces, fext is obtained by assembling the element contributions from any

applied traction on the Neumann boundary

fext = ∑
e

∫
Γne

Nᵀt̄ dΓe (2.42)

Note that ABAQUS automatically handles the evaluation of fext, so simple traction bound-

ary conditions need not be defined using user defined subroutines.

2.3.4 Interface elements

The cohesive internal force vector fc
int has contributions from both the consistency and

stabilization terms in the variational form in Eq. (2.26) and can be assembled as

fc
int = fconsistency + fstabilized =∑

e

∫
Γ∗e

[[N]]ᵀ(I−S)Tσγ dΓe +∑
e

∫
Γ∗e

[[N]]ᵀSα δ dΓe, (2.43)

where [[N]] is the jump in shape function matrix in Eq. (2.35); S, α, I are the 2× 2 sta-

bilization, cohesive stiffness and identity matrices, σγ = [〈σ11〉γ ,〈σ22〉γ ,〈σ12〉γ ]
ᵀ
3×1 is the

weighted Cauchy stress for in-plane components in Voigt notation, and the 2× 3 stress

transformation matrix is

T =

−CS CS C2−S2

S2 C2 −2CS

 (2.44)

Thus, the matrix T defines the relation between the Cauchy stress tensor at any point on

a bulk element edge and the traction vector at that point on the cohesive interface based

on its orientation. The interface element’s tangent stiffness matrix consists of both the

consistency and stabilized terms and can be assembled as

Kc = Kconsistency +Kstabilized = ∑
e

∫
Γ∗e

[[N]]ᵀ(I−S)TDBγ dΓe +∑
e

∫
Γ∗e

[[N]]ᵀSα[[N]] dΓe.

(2.45)
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where Bγ denotes the weighted shape function gradient matrix defined as,

Bγ =

[
γ2B2

γ1B1

]
3×16

. (2.46)

In the above equation, B1 and B2 are matrices containing the gradient of the shape functions

calculated from the adjacent bulk elements at the position of an interface Gauss point of

the cohesive element. Note, by setting the matrix S = I in Eq. (2.45) we can revert to the

standard method.

2.3.5 ABAQUS Implementation

The proposed method is implemented in the commercial software ABAQUS, as illus-

trated in Figure 2.6. All the element force and stiffness matrices described in Section

2.3.3 and Section 2.3.4 have been evaluated via the user-element-material (UELMAT) and

user-element (UEL) subroutines for 4-noded bulk and 4-noded interface elements, respec-

tively. The bulk element force vector fb
int and the tangent matrix Kb are computed using

the UELMAT subroutine, because it allows for the usage of in-built constitutive models

via the material lib mech function. The cohesive element force vector fc
int and the

corresponding tangent matrix Kb are computed using the UEL subroutine, according to

Eqs. (2.43) and (2.45). Recall that fc
int and Kc contain the weighted average of stress σγ

and shape function derivative matrix Bγ , which are calculated using the nodal displace-

ment vectors and shape function matrices of the two neighboring bulk elements. To avoid

repetition of computations in our implementation, we calculate σγ and Bγ at the cohesive

element Gauss points lying on the bulk element edges in the UELMAT subroutine and pass

them to the UEL subroutine using global modules. The tangent matrix Kc is unsymmetric

owing to the consistency term Kconsistency in our formulation, whereas the stabilization term

Kstabilized is symmetric. The matrix Bγ defined in Eq. (2.46) has the dimension of 8×16,

where the number of rows correspond to the interfacial degrees of freedoms (DoFs) and
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the number of columns correspond to the interfacial and adjacent bulk element DoFs (see

Fig. 2.7). However, the UEL subroutine for the cohesive interface element allows access

to only its four nodes (i.e., eight DoFs), so we can only assemble an 8×8 element stiffness

matrix. To assemble the 8× 16 element stiffness matrix computed in the UEL subroutine

into the global stiffness matrix, we create “dummy” elements in the mesh (elements IV-VII

in Fig. 2.7). We partition the 8×16 element stiffness matrix as,

[
Kconsistency,e

]
8×16

=



[
KIV]

4×4

[
KVI]

4×4

[
KIII]

8×8

[
KV]

4×4

[
KVII]

4×4


. (2.47)

and assemble the 8× 8 matrix through the cohesive element and the four 4× 4 matrices

through the dummy elements using global modules into the global stiffness matrix. Note

that the dummy elements are only used for matrix assembly.

Abaqus Standard Solver 

UELMAT Subroutine 
Bulk Element 

UEL Subroutine 
Cohesive Element 

Kb, fb
int Kc, fc

int 

σm, Bm 

Figure 2.6: Flow chart showing the interaction between UELMAT and UEL subroutines
and the ABAQUS standard solver for implementing the stabilized method through user-
defined bulk and cohesive/interface elements.

Although the above implementation with dummy elements for the cohesive stiffness

matrix assembly seems convoluted, it is efficient and may even be advantageous when in-

terface elements are inserted along all element edges. This is because all bulk stress and

shape function matrices at interface Gauss points are computed once in the UELMAT sub-
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Figure 2.7: Assembly of the cohesive element matrix Kconsistency,e defined in Eq. (2.47)
into the global tangent matrix in ABAQUS requires the creation of four dummy elements
(IV-VII) for each cohesive element (III).

routine and stored in global modules, instead of recomputing it wherever needed in the UEL

subroutine. We found that our implementation of the stabilized method did not increase the

wall clock time of computation (compared to standard method) in all the numerical exam-

ples presented in Section 2.4. However, we note that alternative implementations of the

stabilized method in existing finite element codes are possible. For example, Versino et al.

[81] used ABAQUS UEL subroutine for a 8-noded interface element in 2D to implement a

discontinuous Galerkin based extrinsic cohesive zone model. This implementation may be

more advantageous when interface elements are inserted along simple (straight) interfaces

between laminate plies in composite materials.

The UELMAT and UEL subroutines are detailed in Algorithms 1 and 2, respectively.

As discussed in [79], we formulate the bilinear cohesive zone model within the damage

mechanics framework that allows us to automatically handle the unloading/reloading con-

ditions based on a previous maximum damage (history variable). Despite the bilinear shape

of the cohesive law, the damage variable is a nonlinear function of interface separation and

this nonlinearity is handled by Abaqus/Standard outside of the user subroutines. As de-

tailed in the Abaqus manual [86, Chapter 7: Analysis Solution and Control], Abaqus/-

Standard combines incremental and iterative (Newton-Raphson) procedures for solving

nonlinear problems. The total load/displacement is applied incrementally as smaller in-

26



crements (pseudo-time steps) and the user typically suggests the size of the first increment

and Abaqus/Standard automatically chooses the size of the subsequent increments. Within

each increment, Abaqus/Standard automatically performs iteration to find an equilibrium

solution based on a user-defined criteria for residual force and displacement correction. We

note that, in cohesive fracture simulations, the Abaqus/Standard default criteria may be too

small that numerical convergence may not be attainable. Therefore, we increase these tol-

erances appropriately so as to attain convergence and maintain adequate accuracy, to obtain

the results in Section 2.4.4 and Section 2.4.5.

Algorithm 1 : ABAQUS UELMAT subroutine for the bulk element

Given all the variables at the previous iteration of the current increment, at the next itera-
tion:

1. Compute the shape function derivative matrix B according to Eq. (2.33)

2. Determine the 3× 3 plane strain elasticity tensor D via the material lib mech
function

3. Compute and assemble the bulk element contributions to the tangent matrix and the
internal force vector using four-point Gauss integration

4. Determine σm and shape function derivatives Bm at the two interface Gauss integra-
tion points and store them in global modules

2.4 Numerical examples

In this section, we present four examples to demonstrate the numerical stability and

accuracy of the proposed stabilized method in two-dimensions. For all the simulations

we assumed bilinear quadrilateral plane strain elements with four-point Gauss integration

scheme and four-noded linear cohesive elements with two-point Gauss integration scheme.

Currently, the user element subroutines are written only for 2D plane-strain and plane-

stress elements in Abaqus software. Additional patch tests and benchmark problems have
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Algorithm 2 : ABAQUS UEL subroutine for the cohesive element

Given all the variables at the previous iteration of the current increment, at the next itera-
tion:

1. Compute the jump in the interfacial shape function matrix [[N]] according to Eq.
(2.35) and the interface separation vector [[u]] using Eq. (2.34)

2. Calculate equivalent separation δe, and equivalent critical δ c
e and maximum δ u sep-

arations according to Eq. (2.12), and static damage Ds using Eq. (2.10)

3. Calculate the stabilization matrix S according to Eq. (2.24)

4. Calculate the weighted stress 〈σ〉
γ

and shape function derivative matrix Bγ , accord-
ing to Eqs. (2.46) and using the information passed from the UELMAT subroutine

5. Compute and assemble the cohesive element contributions corresponding to the sta-
bilized part of the tangent matrix and the internal force vector using two-point Gauss
integration

6. Define the 3×3 plane strain elasticity tensor D and the stress transformation matrix
T.

7. Compute the cohesive element contributions corresponding to the consistency part
of the tangent matrix and the internal force vector using two-point Gauss integration

8. Partition
[
Kconsistency,e]

8×16 into one 8× 8 matrix
[
KIII] and four 4× 4 matrices[

KIV] ,[KV] ,[KVI] ,[KVII], as described in Eq. (2.47).

9. Assemble partitioned matrices into the global stiffness matrix using the cohesive
element (III) and four dummy elements (IV–VII) (see Fig. 2.7).
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been presented in [87, 88].

2.4.1 Square plate with horizontal interface

In this example, we assess the accuracy of the stabilized method in recovering normal

traction on a straight, horizontal interface with isotropic CZMs using a constant strain patch

test [89]. We consider a square plate of side length L = 1 mm with a horizontal interface at

mid-height (see Fig. 2.8a). Both vertical and horizontal displacements are constrained at

the bottom edge of the plate, whereas a uniform vertical displacement ∆ = 0.1 mm is ap-

plied at the top edge of the plate, and traction-free conditions are specified on the left and

right edges of the square plate. The Young’s modulus and Poisson’s ratio of the isotropic

linearly elastic material in the bulk elements are assumed as E = 1 N/mm2 and ν = 0.2,

respectively. We use a 10×10 structured square mesh with an element size of 0.1 mm and

the stabilization parameters βn = βτ = 14 N/mm3. The analysis is conducted under the

assumption of small deformations and no interface damage (i.e., ds = 0), although the bulk

applied strain is 10%. The normal traction profile along the horizontal interface obtained

from the standard and stabilized methods for different cohesive stiffness values is shown

in Fig. 2.9. For the smaller cohesive stiffness value of 100 N/mm3 both methods yield

oscillation-free traction profile at the cohesive interface. For the larger stiffness value of

1016 N/mm3, the standard method exhibits instability resulting in spurious traction oscilla-

tions; whereas, the stabilized method does not exhibit any instability.

To demonstrate the accuracy of stabilized method for stiff cohesive laws, we report

the relative l2-error (vector norm) in normal traction and separation for different values of

initial cohesive stiffness in Table 2.1. The relative l2-errors are calculated as

||εtn||2
||t∗n ||2

=

√
∑

NGP
i=1 (t

i
n− t∗in )2√

∑
NGP
i=1 (t

∗i
n )2

;
||δn||2
||u∗n||2

=

√
∑

NGP
i=1 (δ

i
n)

2√
∑

NGP
i=1 (u

∗i
n )

2
(2.48)

where NGP is the total number of Gauss (integration) points on the cohesive interface,
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Figure 2.8: Square plate with horizontal interface: (a) schematic diagram; (b) finite element
mesh

(a) (b)

Figure 2.9: Square plate with a horizontal interface: normal traction profiles obtained from
the standard and stabilized methods with (a) α0

n = α0
τ = 102 N/mm3 and (b) α0

n = α0
τ = 1016

N/mm3 .

interface separation δn and traction tn are evaluated using equations (2.6) and (2.29) re-

spectively, and the reference values of the traction t∗n and displacement u∗n at the horizontal

interface are calculated for the perfectly bonded interface case under the plane strain linear

elastic assumption as

t∗n =

(
∆

L

)
E

(1−ν2)
; u∗n =

∆

2
. (2.49)

In the above equation, the normal traction is calculated based on the engineering strain

(defined with respect to the initial length) under the assumption of small deformations and

E/(1− ν2) is the plane strain elastic modulus [90]. From Table 2.1 it is evident that the
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Table 2.1: Square plate with a horizontal cohesive interface: relative l2-error in normal
traction and separations from the standard and stabilized finite element methods for dif-
ferent cohesive stiffness. The bilinear isotropic CZM is used, wherein the tangential and
normal cohesive stiffness are taken to be equal.

Cohesive Stiffness Standard FEM Stabilized FEM

(N/mm3)
||εtn ||2
||t∗n ||2

||δn||2
||u∗n||2

||εtn||2
||t∗n ||2

||δn||2
||u∗n||2

102 1.4% 2.1×10−2 1% 2.1×10−2

108 2.5% 2.2×10−8 1×10−8 2×10−8

1015 4.6% 2.2×10−15 3.7×10−15 2×10−15

1016 25.7% 1.3×10−16 1.8×10−17 2.4×10−16

Table 2.2: Square plate with a horizontal cohesive interface: relative l2-error in normal
traction and separations from the standard and stabilized finite element methods for dif-
ferent mesh resolutions. The bilinear isotropic CZM is used, wherein the tangential and
normal cohesive stiffness are taken to be 10 8 N/mm3.

Mesh size Standard FEM Stabilized FEM

(mm)
||εtn ||2
||t∗n ||2

||δn||2
||u∗n||2

||εtn||2
||t∗n ||2

||δn||2
||u∗n||2

0.1 2.5% 2.2×10−8 1×10−8 2×10−8

0.04 2.5% 2.2×10−8 1×10−8 2×10−8

0.02 2.5% 2.2×10−8 1×10−8 2×10−8

stabilized method ensures accurate recovery of interface traction compared to the standard

method. As the cohesive stiffness is increased to a large value the interface separation tends

to zero (to machine precision) in both the standard and stabilized methods, but the error in

interface traction tends to zero (to machine precision) only in the stabilized method. We

also notice that the computational time with the standard and stabilized method is compara-

ble. We next investigate the effect of mesh refinement on the accuracy of traction evaluation

for structured meshes. For an initial cohesive stiffness of 108 N/mm3, we see that the trac-

tion error does not change with mesh refinement in both methods, as given in Table 2.2.

This further illustrates that the improvement in accuracy with the stabilized method ensues

from the consistent weak formulation in Eq. (2.26).
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2.4.2 Square plate with inclined interface

In this example, we assess the accuracy of the stabilized method in recovering normal

and tangential tractions on an straight, inclined interface with isotropic and anisotropic

CZMs using the constant strain patch test [89]. We consider a square plate of side length

L = 1 mm with a straight interface inclined at an initial angle of 140.4◦ with the global x1

(i.e., horizontal) axis, as shown in Fig. 2.10. We use a 13× 18 semi-structured mesh so

∆ ∆

(a) (b)

X1

X2

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Figure 2.10: Square plate with inclined interface: (a) schematic diagram; (b) finite element
mesh

that the interface is divided into 13 elements. The support conditions, loading and material

properties are identical to those discussed in Section 2.4.1, and the stabilization parameters

βn = βτ = 30 N/mm3. The analysis is conducted under the assumption of small deforma-

tions and no interface damage (i.e., ds = 0). The normal and tangential tractions along the

inclined interface obtained from the standard and stabilized methods for different cohesive

stiffness values are shown in Fig. 2.11. For the smaller cohesive stiffness value of 100

N/mm3 both methods yield oscillation-free traction profiles at the cohesive interface. For

the larger stiffness value of 1016 N/mm3, the standard method exhibits instability resulting

in spurious traction oscillations; whereas, the stabilized method does not exhibit such an

instability.

To illustrate the accuracy of the stabilized method for stiff isotropic CZMs, we report

the relative l2-error in normal and tangential tractions for different values of initial cohesive

stiffness using the isotropic bilinear CZM in Table 2.3. The reference value of the normal
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Figure 2.11: Square plate with an inclined interface: traction profiles obtained from the
standard and stabilized methods for isotropic cohesive zone models for two different cohe-
sive stiffness values.

and tangential tractions t∗n and t∗τ under the plane strain and perfectly bonded interface

assumptions can be evaluated as

t∗n =

(
∆

L

)
E

(1−ν2)
sin2

θ ; t∗τ =

(
∆

L

)
E

(1−ν2)
sinθ cosθ , (2.50)

where θ = 140.4◦ is the angle that the inclined interface makes with the global x1 axis

in the undeformed (initial) configuration. From Table 2.3, it is evident that the stabilized

method ensures accurate recovery of interface traction for large values of cohesive stiffness;

whereas, in the standard method the interface traction error increases with the cohesive

stiffness.

We next examine the performance of the standard and stabilized methods for anisotropic

CZMs, wherein the normal and tangential cohesive stiffness values are not equal. It can
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Table 2.3: Square plate with inclined interface: relative l2-error in normal and tangential
tractions from the standard and stabilized finite element methods for different cohesive
stiffness. The bilinear isotropic CZM is used, wherein the tangential and normal cohesive
stiffness are taken to be equal.

Cohesive Stiffness Standard FEM Stabilized FEM

(N/mm3)
||εtn ||2
||t∗n ||2

||εtτ ||2
||t∗τ ||2

||εtn||2
||t∗n ||2

||εtτ ||2
||t∗τ ||2

102 1.7% 1.8% 0.7% 0.8%
108 2.6% 2.6% 1.1×10−7 3.4×10−8

1014 3.0% 2.6% 8.3×10−10 1.1×10−10

1016 64.9% 80.2% 9.3×10−11 9.1×10−11

Table 2.4: Square plate with inclined interface: relative l2-error in normal and tangential
tractions from the standard and stabilized finite element methods for different cohesive
stiffness. The bilinear anisotropic CZM is used, wherein the tangential and normal cohesive
stiffness are taken to be different from each other.

Cohesive Stiffness Standard FEM Stabilized FEM

(N/mm3)
||εtn||2
||t∗n ||2

||εtτ ||2
||t∗τ ||2

||εtn||2
||t∗n ||2

||εtτ ||2
||t∗τ ||2

α0
n = 105, α0

τ = 102 2.2% 2.2% 0.3% 0.3%
α0

n = 1011, α0
τ = 107 2.6% 2.6% 1.1×10−7 4.9×10−8

α0
n = 1015, α0

τ = 1011 10.5% 2.6% 8.3×10−10 1.1×10−10

be seen from Fig. 2.12, that the standard method yields an oscillation-free traction profile

for smaller stiffness values, but it suffers from instability for larger values with spurious

oscillations in the normal traction profile. In contrast, the stabilized method yields an

oscillation-free traction profile regardless of the choice of cohesive stiffness. In Table 2.4

we report the accuracy of the stabilized and standard methods for the anisotropic CZM. We

observe that for the assumed normal and tangential stiffness values, the stabilized method

recovers crack-surface traction more accurately compared to the standard method; the error

in traction decreases close to machine precision in the stabilized method as the stiffness is

increased to a very large value.
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Figure 2.12: Square plate with an inclined interface: traction profiles obtained from the
standard and stabilized methods for anisotropic cohesive zone models for different cohesive
stiffnesses.

2.4.3 Square plate with semicircular interface

In the previous examples, we considered constant strain patch tests with straight inter-

faces described by isotropic and anistropic CZMs; in these cases traction oscillations do

not appear if full Gauss integration is used with the standard method, except if the initial

cohesive stiffness values is assumed to be very large (i.e., α0
n ≥ 1015 N/mm3). However,

Svenning [14] has shown that spurious tractions oscillations can appear with curved in-

terfaces described by an anisotropic CZM under compression, even for moderately large

values of cohesive stiffness (e.g., 2–4 orders of magnitude more than the Young’s mod-

ulus). Therefore, in this example, we demonstrate the ability of the stabilized method to

alleviate traction oscillations on a semicircular interface with an anisotropic CZM. We con-

sider a square plate of side length L = 100 mm with a cohesive interface of diameter 60

mm, as shown in Fig. 2.13. A horizontal compressive displacement of ∆ = 1 mm is applied
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Figure 2.13: Square plate with semicircular interface: (a) schematic diagram; (b) finite
element mesh.

on the right edge of the plate, the displacement at the left edge is constrained in both di-

rections, and traction-free condition is specified for the top and bottom edges of the plate.

We assume the plane strain condition and a linear elastic bulk material with a modulus of

elasticity E = 20 GPa, and a Poisson’s ratio ν = 0.2, following the example in [14]. The

analysis is conducted under the assumption of small deformations and no interface damage

(i.e., ds = 0).

(a) (b)

Figure 2.14: Square plate with semicircular interface: effect of mesh refinement on normal
traction profiles predicted by the standard method. (a) α0

n = α0
τ = 1011 N/mm3 and (b) α0

n =
1011 N/mm3 and α0

τ = 109 N/mm3.

We first examine the performance of the standard method for isotropic and anisotropic
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CZMs using unstructured meshes. We consider a coarse mesh with 240 elements and a

fine mesh with 1780 elements with bilinear quadrilateral elements. For the isotropic CZM

we take normal and tangential cohesive stiffnesses α0
n = α0

τ = 1011 N/mm3 and for the

anisotropic CZM we take α0
n = 1011 N/mm3 and α0

τ = 109 N/mm3. Fig. 2.14 shows the

normal traction profiles along the cohesive interface obtained from the standard method.

Fig. 2.14(a) indicates that the standard method yields a smooth traction profile with the

isotropic CZM if the mesh is adequately refined. However, mesh refinement cannot allevi-

ate spurious traction oscillations with the anisotropic CZM, as evident from Fig. 2.14(b).

This issue with the standard (penalty-like) method for anisotropic CZMs was previously

reported in [14].

(a) (b) (c)

Figure 2.15: Square plate with semicircular interface: Normal traction profiles obtained
from the standard and stabilized method for different cohesive stiffness. (a) isotropic
CZM with α0

n = α0
τ = 1011 N/mm3, (b) isotropic CZM α0

n = α0
τ = 1018 N/mm3 and (c)

anisotropic CZM α0
n = 1011 N/mm3 and α0

τ = 109 N/mm3

In Figure 2.15, we compare the performance of the standard and stabilized methods

for isotropic and anisotropic CZMs using the fine mesh (with 1780 elements). According

to Eq. (2.25), we take the stabilization parameters βn = βτ = 2× 105 N/mm3. Figure

2.15(a) and (b) show that for isotropic CZMs the standard method suffers from numerical

instability only for very large values of cohesive stiffness (i.e., 1018 N/mm3); whereas, the

stabilized method yields an oscillation-free traction profile. Figure 2.15(c) shows that the

stabilized method is able to alleviate the spurious oscillations in normal traction observed
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Table 2.5: Square plate with semicircular interface: accuracy of the standard and stabilized
finite element methods. We consider both isotropic and anisotropic CZMs and relative
l2-error in normal tractions is reported.

Cohesive Stiffness Standard FEM Stabilized FEM

(N/mm3)
||εtn||2
||t∗n ||2

||εtn||2
||t∗n ||2

α0
n =α0

τ = 108 2.9% 4.3×10−8

α0
n =α0

τ = 1011 2.9% 4.3×10−8

α0
n = 108, α0

τ = 106 117.1% 4.2×10−8

α0
n = 1011, α0

τ = 109 117.6% 1.3×10−7

with the standard method for the anisotropic CZM with α0
n = 1011 N/mm3 and α0

τ = 109

N/mm3. These results illustrate that the standard method is not robust when dealing with

stiff anisotropic cohesive laws, unlike the stabilized method.

We next evaluate the relative l2-error in interface traction from the standard and stabi-

lized methods. Assuming that the interface is perfectly bonded for large values of cohesive

stiffness α0
n > 108 N/mm3,α0

τ > 106 N/mm3, the exact value of the normal and tangential

tractions t∗n and t∗τ at interface Gauss points can be calculated using Eq. (2.50), wherein θ is

the local orientation of the interface element that varies along semicircular interface. Table

2.5 shows that the stabilized method ensures the accurate recovery of normal traction at

the interface for both isotropic and anisotropic CZMs, unlike the standard method. Even if

the cohesive stiffness α0
n = 108 N/mm3 and α0

τ = 106 N/mm3 are 2–4 orders of magnitude

larger than the Young’s modulus E = 20× 103 N/mm3, we see that the standard method

performs quite poorly with 117 % error in normal traction and exhibits spurious oscilla-

tions (results are identical to Fig. 2.14 (b)). Noting that in mode II fracture analysis, an

anisotropic cohesive laws with α0
n > α0

t is typically used to enforce the no inter-penetration

condition at the crack surface, the stabilized method can offer a significant advantage owing

to its stability and accuracy.
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2.4.4 Asymmetric double cantilever beam

In all the previous examples, we conducted linear elastic analysis under the assumption

of small deformations and no interface damage (i.e., ds = 0) to illustrate the accuracy of the

stabilized method in recovering crack-surface traction. In this example, we will examine

the accuracy of the stabilized method for analyzing mixed-mode delamination crack growth

in composite materials using the asymmetric double cantilever beam (DCB). While the

specimen geometry and test set-up shown in Fig. 2.16 resembles that in [91, 92], we

altered the applied load configuration. The fixed boundary condition is applied at the right

end of the beam, and vertical displacements ∆1 and ∆2 are applied at the upper and lower

nodes at the left end (with ∆2/∆1 = 0.095), to initiate the delamination process. Thus,

using a displacement-controlled simulation, we capture the softening portion of the load-

displacement curve due to the evolution of damage ds in the interface elements; however,

the mode-mix ratio between mode I and mode II fracture is not a constant, because the

applied loads are not constant. We now perform numerical convergence studies using a

structured square mesh with an element size of 0.125 mm, so that the cohesive process

zone is adequately resolved according to the guidelines described in [3]. The material

properties and cohesive parameters assumed for this test are listed in Table 2.6, and the

stabilization parameters βn = βτ = 2×106 N/mm3.

L

H

a0

P1,Δ1

P2,Δ2

Figure 2.16: Geometry and boundary conditions for the asymmetric double cantilever beam
test. The dimensions are: L = 100 mm, H = 4 mm and a0 = 25 mm

To solve this nonlinear quasi-static fracture problem, we need to linearize the dis-
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Table 2.6: Material properties and cohesive parameters for the asymmetric double can-
tilever beam. The cohesive parameters are assumed from [1] for mixed-mode loading con-
ditions.

E ν GIC GIIC σmax τmax
(N/mm2) (N/mm) (N/mm) (N/mm2) (N/mm2)

105 0.35 4.0 4.0 57 57

cretized equilibrium equation using the Taylor series expansion (see Eq. (2.37)) at a given

iteration and applied load/displacement step; in order to ensure accuracy it is necessary to

take the applied displacement increment small enough within a load/displacement step [93].

In ABAQUS, this can be achieved by prescribing a small displacement increment ∆̇ within

the default quasi-static pseudo-time stepping algorithm. Because the weak form and the

corresponding discretized equilibrium equation from standard and stabilized methods are

different, we investigate their accuracy in relation to the choice of displacement increment

along with the cohesive stiffness. In Fig. 2.17, we plot the load-displacement responses for

two different displacement rates (0.005 mm/step and 0.001 mm/step) and cohesive stiffness

values (α0
n = α0

τ = 108 N/mm3 and α0
n = α0

τ = 1012 N/mm3). For the smaller stiffness of

108 N/mm3 (see Fig. 2.17a), the standard and stabilized methods predict the same load-

displacement curve for ∆̇ = 0.001 mm/step; however, both methods are slightly inaccu-

rate for ∆̇ = 0.005 mm/step. We also used a smaller displacement increment ∆̇ = 0.0005

mm/step (results not shown) and observed that the load-displacement curves match exactly

with those obtained with ∆̇ = 0.001 mm/step. For the larger stiffness of 1012 N/mm3 (see

Fig. 2.17b), the standard and stabilized methods predict the same load-displacement curve

for ∆̇ = 0.001 mm/step, but the standard method is significantly inaccurate for ∆̇ = 0.005

mm/step and shows oscillations in the softening portion of the load-displacement curve. In

contrast, the load-displacement curve obtained from the stabilized method for ∆̇ = 0.005

mm/step is reasonably accurate without any oscillations in the softening portion.

To further explore the reason behind the inaccuracy in load-predictions for larger dis-
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placement rates, we plot the crack versus displacement curves in Fig. 2.18 for two cohesive

stiffness values considered above. For the smaller stiffness of 108 N/mm3 (see Fig. 2.18a),

the standard and stabilized methods predict the same crack growth behavior for the two

displacement rates. However, for the larger stiffness of 1012 N/mm3 (see Fig. 2.18b), the

standard method predicts slower crack growth for ∆̇ = 0.005 mm/step, which leads to the

inaccurate prediction of softening portion of the load-displacement response. In contrast,

the stabilized method predicts reasonably similar crack growth behavior for the two dis-

placement rates. We next examine the normal and tangential traction profiles along the

cohesive interface predicted by the standard and stabilized methods for the larger cohesive

stiffness of 1012 N/mm3. In Fig. 2.19, we plot the traction versus interface length at an ap-

plied displacement ∆= 6.4 mm for ∆̇= 0.005 mm/step and 0.001 mm/step. In Fig. 2.19(a),

the normal traction profiles from both methods match well for ∆̇ = 0.001 mm/step; but the

profile predicted by the standard method for ∆̇ = 0.005 mm/step shows traction oscillations

near the tension peak and plateau region near the compression peak. Because the crack

length predicted by the standard method is smaller, the corresponding traction profile lags

behind the other profiles. The tangential traction profiles in Fig. 2.19(b) also show similar

behavior. Notably, oscillations in tangential traction can be observed even for ∆̇ = 0.001

mm/step in the standard method. In summary, this study illustrates that the accurate recov-

ery of crack-surface traction by the stabilized method can enable computationally-efficient

and reliable prediction of delamination crack propagation and load-displacement curves.

2.4.5 Double cantilever beam

In this example, we investigate the accuracy of the stabilized method in recovering

crack-face traction for mode-I delamination crack growth using the double cantilever beam

(DCB). We also examine the sensitivity of load-displacement curves to interface cohesive

strength and mesh/element size. The specimen geometry and test set-up are identical to

that in the previous example shown in Fig. 2.16, except for the applied load configu-
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(a) (b)

Figure 2.17: Load versus displacement curves for the asymmetric double cantilever beam
test: (a) α0

n = α0
τ = 108 N/mm3 and (b) α0

n = α0
τ = 1012 N/mm3

(a) (b)

Figure 2.18: Crack versus displacement curves for the asymmetric double cantilever beam
test: (a) α0

n = α0
τ = 108 N/mm3 and (b) α0

n = α0
τ = 1012 N/mm3

ration. Specifically, at the left end of the beam we apply vertical displacements ∆1 and

∆2 on the upper and lower nodes with ∆1/∆2 = −1 to initiate the delamination process.

Thus, using a displacement-controlled simulation, we capture the softening portion of the

load-displacement curve due to the evolution of damage ds in the interface elements. The

material properties and cohesive parameters assumed for this test are listed in Table 2.7.

We choose the displacement increment ∆̇ = 0.0001 mm/step, cohesive stiffness α0
n = 108

N/mm3, and and the stabilization parameters βn = βτ = 2×106 N/mm3 for all the simula-

tions.

In Fig. 2.20, we plot the load-displacement responses for different interface strengths

and mesh sizes along with the linear elastic analytical solution given in [1]. For the fine
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(a) (b)

Figure 2.19: Traction versus interface length curves for the asymmetric double cantilever
beam test for α0

n = α0
τ = 1012 N/mm3: (a) normal traction and (b) tangential traction.

Table 2.7: Material properties and model parameters for the double cantilever beam. The
cohesive parameters are assumed from [1] for mode I loading conditions.

E ν GIC σmax
(N/mm2) (N/mm) (N/mm2)

105 0.35 0.28 57

mesh with 0.125 mm × 1 mm rectangular elements, Fig. 2.20(a) shows that the cohesive

strength effects the peak load prediction, and it is important to take the cohesive strength

adequately large to ensure a better match with the analytical solution. For smaller cohesive

strengths, the reduced peak load prediction is a consequence of crack initiation and prop-

agation at smaller applied displacements. Beyond a certain value of the interface strength

(σmax = 57 N/mm2) there is little effect from increasing the cohesive strength, as the load-

displacement curve converges to the analytical solution. However, increasing the cohesive

strength decreases the cohesive process zone size, so a smaller element size is required

to accurately recover the crack-face traction. Fig. 2.20(b) depicts the effect of mesh size

on the load-displacement response for cohesive strength σmax = 57 N/mm2. Choosing a

coarse mesh (e.g., h = 1 mm) yields a noisy load-displacement curve due to inaccuracies in

crack-face traction and episodic crack growth. Our study suggests that the interface element
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size h = meas(Γ∗) should be chosen smaller than 0.25 mm to better capture the softening

portion of the load-displacement curve. This is consistent with the guidelines described

in [3] that the the cohesive process zone needs to be resolved with at least three interface

elements to ensure sufficient accuracy. We next compare the normal traction profile along

the cohesive interface obtained from the standard and the stabilized method at an applied

displacement ∆ = 0.67 mm for coarse and fine meshes. In Fig. 2.21, the traction pro-

file obtained from the standard method shows spurious oscillations, whereas that obtained

from the stabilized method is free of oscillations. We also observe that the peak traction in

the coarse mesh (h = 1 mm) is less that the cohesive strength σmax = 57 N/mm2, whereas

that in the fine mesh (h = 0.125 mm) it is equal to the cohesive strength, which illustrates

that a finer mesh is required to accurately capture the crack-face traction. Thus, this study

demonstrates the superior stability of the Nitsche-based, stabilized method compared to the

standard method.

(a) (b)

Figure 2.20: Load versus displacement curves for the symmetric double cantilever beam
test: (a) different cohesive interface strength and (b) different mesh size

2.5 Conclusion

In this chapter, we proposed a stabilized finite element method for enforcing stiff isotropic

and anisotropic cohesive laws using zero-thickness interface elements. The stabilized

method generalizes Nitsche’s method to cohesive fracture problems and the key advan-
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(a) (b)

Figure 2.21: Normal traction versus interface length curves from the standard and stabilized
methods for the double cantilever beam test for α0

n = α0
τ = 108 N/mm3: (a) fine mesh (h =

0.125 mm) and (b) coarse mesh (h = 1 mm).

tage is that our method remains well defined for any arbitrarily large value of cohesive

stiffness. We presented several numerical examples demonstrating the stability and accu-

racy of the proposed method over the standard (penalty-like) method in two-dimensions.

We first determined the numerical accuracy of the stabilized method in recovering crack

surface traction at straight and semi-circular interfaces using constant strain patch tests.

We demonstrated that the traction error in the stabilized method (measured with respect

to the analytical solution for perfectly-bonded interface) approaches machine precision for

large values of cohesive stiffness; whereas, the error increased in the standard method

as the cohesive stiffness was increased. We next evaluated the numerical stability of the

proposed method in alleviating spurious traction oscillations along the interface for stiff

isotropic and anisotropic cohesive laws (i.e, with equal and unequal normal and tangential

stiffnesses). Our numerical results clearly showed the presence of spurious traction oscilla-

tions in the standard method when enforcing anisotropic cohesive laws on curved interfaces

under compression and sliding fracture; whereas, the stabilized method yielded oscillation-

free traction profiles and ensured accurate recovery of crack surface traction, regardless of

the choice of cohesive stiffness.

We next simulated mixed-mode delamination crack growth in an isotropic material us-
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ing the asymmetric double cantilever beam test configuration. For stiff isotropic cohesive

laws, we investigated the sensitivity of load-displacement curves predicted by the standard

and stabilized methods to applied displacement increment (or load step size) and cohesive

stiffness. If the displacement increment is taken small enough (∆̇ = 0.001 mm/step), then

both the standard and stabilized methods predict the same load-displacement curve. How-

ever, for the larger cohesive stiffness and displacement increment of ∆̇ = 0.005 mm/step,

the standard method is less accurate compared to the stabilized method (see Fig. 2.17).

Our results indicate that this discrepancy in the standard method potentially arises from the

inaccurate prediction of crack growth behavior (see Fig. 2.18) and crack surface traction

(see Fig. 2.19). In contrast, the stabilized method is sufficiently accurate in predicting peak

load and crack growth even for the larger displacement increment ∆̇ = 0.005 mm/step.

Thus, this study illustrated that stabilized method can improve computational efficiency

by allowing the use of larger displacement rates in mixed-mode fracture simulation. Fi-

nally, we investigated the effect of cohesive interface strength and mesh refinement on the

load-displacement response using the mode I double cantilever beam test. We illustrated

that the cohesive strength parameter affects the peak-load prediction and choosing a larger

value (σmax = 57 N/mm2) ensures a better match with the linear elastic analytical solution

obtained from beam theory. We also show that it is necessary to choose the interface el-

ement size small enough (according to the criteria in [52, 3]), in order to obtain accurate

load-displacement curve and crack-face traction profiles. These cohesive fracture simula-

tion studies clearly illustrate the superior stability of the proposed Nitsche-based, stabilized

finite element method compared to the standard finite element method.
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Chapter 3

ON THE ROBUSTNESS OF THE STABILIZED FINITE ELEMENT METHOD FOR

DELAMINATION ANALYSIS OF COMPOSITES USING COHESIVE ELEMENTS

This chapter is adapted from “On the robustness of the stabilized finite element method
for delamination analysis of composites using cohesive elements” published in Interna-
tional Journal for Computational Methods in Engineering Science and Mechanics and has
been reproduced with the permission of the publisher and my co-authors Ravindra Duddu
and Chandrasekhar Annavarapu : Ghosh, G., Duddu, R., and Annavarapu, C. (2021). On
the robustness of the stabilized finite element method for delamination analysis of compos-
ites using cohesive elements, International Journal for Computational Methods in Engi-
neering Science and Mechanics, DOI: 10.1080/15502287.2021.1896607

3.1 Introduction

In laminated fiber-reinforced composites, delamination is one of the most dominant

failure mechanisms, which involves progressive damage accumulation and fracture along

interlaminar interfaces [1]. Delamination under static and cyclic-fatigue loading has been

widely studied in the literature over the past 40 years [94, 95], because it causes localized

damage that is hard to detect and may lead to sudden structural collapse. The cohesive zone

modeling approach has been extensively used to analyze and predict mixed-mode delam-

ination propagation, despite its drawbacks and limitations. A particular drawback of the

standard finite element implementation of cohesive zone models (CZMs) is its occasional

numerical instability, which causes spurious traction oscillations at delamination/crack in-

terface [46]. Simple engineering solutions [52] may mitigate numerical issues with the

standard finite element method (FEM) on a case-by-case basis, but they are not robust and

introduce parametric uncertainty [79]. We recently illustrated that a Nistche-based stabi-

lized FEM is robust and accurate for enforcing stiff cohesive laws and simulating fracture

propagation in isotropic, homogeneous elastic materials [22]. The purpose of this article is
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to investigate the numerical stability and accuracy of standard FEM and weighted Nitsche-

based stabilized FEM for delamination analysis of composites using cohesive elements,

especially at anisotropic and dissimilar interlaminar interfaces.

The cohesive zone modeling approach, which is based on continuum damage me-

chanics [47], has been widely used to simulate mixed-mode delamination of composites

[96, 5, 97], including the growth of multiple delamination cracks extending into various

ply interfaces [98, 99]. Despite its success, the standard FEM implementation of CZMs

comes with certain outstanding challenges, including mesh dependence, parametric uncer-

tainty, computational efficiency, and numerical instability. Mesh dependence of the pre-

dicted crack path or directional mesh bias can be an issue with CZMs, as cracks can only

propagate along finite element edges. To allow the propagation of arbitrary cohesive cracks

and/or the inclusion of intra-element cohesive interfaces, various approaches based on the

partition of unity concept (including G/XFEM) or virtual/phantom nodes were proposed

[100, 101, 102, 21, 103, 104, 105, 106]. The performance of the standard FEM to simulate

cohesive cracks can be poor with distorted or low quality meshes, so mesh free methods

were proposed to alleviate such difficulties [107]. Recently, phase-field damage models

have also been proposed to simulate delamination of orthotropic laminates [108, 109].

Parametric uncertainty or sensitivity of CZMs to the choice of model parameters can af-

fect the accuracy of delamination analysis. Depending on the choice of cohesive stiffness,

cohesive/interface strength, and fracture toughness parameters, the accuracy of load and

interface traction prediction can vary significantly [79, 110]. Out of these three parameters,

only fracture toughness can be determined or well-constrained from experiments for a given

composite material. Notably, in the case of mixed-mode delamination at dissimilar inter-

faces in bi-materials, fracture toughness is also dependent on the mode mixity (loading)

[111]. In contrast, the cohesive strength is difficult to determine from experiments, and is

usually assumed based on mesh size considerations [47, 52, 3], as a compromise between

computational efficiency and numerical accuracy. The cohesive stiffness is generally re-

48



garded as a numerical penalty parameter in intrinsic CZMs that assume an initially elastic

response, and in extrinsic CZMs that assume initially rigid response and elastic unload-

ing/reloading response. The FEM implementation of extrinsic CZMs requires advanced al-

gorithms [37, 35, 38], which increases computational complexity; whereas, intrinsic CZMs

are relatively straightforward to implement within a legacy/commercial finite element code,

but the choice of cohesive stiffness can affect numerical stability and/or convergence. It is

noteworthy that extrinsic CZMs under fatigue and compressive loading scenarios also suf-

fer from numerical instabilities observed in intrinsic CZMs with large values of cohesive

stiffness.

In quasi-static fracture/delamination analysis, the standard FEM implementations using

intrinsic CZMs can exhibit spurious traction oscillations along the cohesive interface, espe-

cially near crack tips, if a large initial cohesive stiffness is specified [54, 112, 55, 12, 113,

52, 114]. Even with potential-based intrinsic CZMs, it is important to control the elastic

behavior through initial slope indicators to avoid instability [44]. Past studies indicate that

using the Gaussian full integration scheme [46, 54, 1, 55] can cause spurious oscillations

in the traction profile along cohesive interfaces. Although the Newton-Cotes integration

scheme was suggested as an alternative, some studies reported that it can result in an odd

wrinkling mode in thin laminates undergoing delamination process [115, 116, 117]. Im-

proved cohesive stress integration schemes for continuum CZMs [118] were developed to

further tackle the issues of stability and robustness. Alternatively, discrete CZMs were

developed [119, 120, 48, 121] that use spring-like elements to connect the finite element

nodes at delamination interfaces, instead of element edges, to alleviate numerical instability

and/or convergence issues. However, in discrete CZMs, when using non-uniform meshes,

or modeling interfacial kinks, relating force-displacement relations for the spring like el-

ements with interface traction is not straightforward. The issue of numerical instability

in the standard FEM implementation of intrinsic continuum CZMs, when using large co-

hesive stiffness and full/reduced Gauss integration schemes, arises due to ill-conditioning
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of discrete systems, as typical with penalty-like formulations [14]. Although Lagrange-

multiplier-based mixed or two-field formulations for intrinsic/extrinsic CZMs [57, 58] can

overcome numerical instability, they can be computationally expensive or cumbersome ow-

ing to the difficulty in determining a stable Lagrange multiplier space.

To broadly address the numerical instability issues with penalty-like formulations and

standard FEM for interface/contact problems, discontinuous Galerkin (dG) methods or

Nitsche-based methods were proposed in the last two decades [64, 11]. Several novel

dG approaches were developed for fracture problems, including dG interface [122, 81, 83],

space-time dG approaches [82, 123], and hybrid dG-CZM approaches [124, 125, 126, 127],

where the dG method is generally used before fracture initiation and CZMs are used for

simulating fracture propagation. A limitation, however, for the wider use of dG approaches

for fracture is the inherent complexity associated with their implementation, especially in

legacy/commercial finite element codes/software. Conversely, Nitsche methods were ad-

vocated by [17, 128] for modeling strong/weak discontinuities and elastic interface prob-

lems. Nitsche methods overcome the issue of numerical instability affecting penalty-like

formulations, by adding consistency terms [66, 67]. Nitsche’s method has been extended

for modeling frictional-sliding on embedded interfaces [77, 19] and small-sliding contact

on frictional surfaces, including stick–slip behavior [20]. Inspired by the work of [78],

we recently extended the Nitsche’s method to cohesive fracture problems, and developed

a stabilized FEM that alleviates traction oscillations with stiff, anisotropic cohesive laws

[22].

In this chapter, we illustrate the ability of the stabilized FEM of Ghosh et al. [22] in

alleviating traction oscillations at interlaminar interfaces in multi-directional orthotropic

composite laminates under different loading conditions. A specific aim is to illustrate its

robustness for composite delamination analysis, with regard to the choice of the cohesive

stiffness and the structure of the finite element mesh (e.g. uniform structured versus per-

turbed or semi-structured meshes), which has not been addressed before. The rest of this
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paper is organized as follows: in Section 3.2, we briefly describe the governing equations

of the cohesive fracture problem and the weak forms corresponding to the standard and

stabilized methods. In Section 3.3, we discuss the salient aspects of the numerical imple-

mentation and the selected model/material parameters. Specifically, we focus on the imple-

mentation via user element subroutines in commercial finite element software ABAQUS

[86], so that it can be utilized by the broader composite modeling community. In Sec-

tion 3.4, we present several benchmark numerical examples to compare the standard and

stabilized methods, with a particular emphasis on the accuracy of the interface traction field

and load–displacement curves. Finally, in Section 3.5, we conclude with a summary and

closing remarks.

3.2 Governing Equations and Weak Formulations

In this section, we briefly review the Nitsche-inspired stabilized finite element method

originally proposed in [22] for enforcing stiff cohesive laws. We will begin with a de-

scription of the strong form of the governing equations followed by the anisotropic bilinear

cohesive law for mixed-mode loading. Subsequently, we will discuss the weak form for the

standard and stabilized methods, and the choice of stabilization parameters and weights.

3.2.1 Strong Form of the Delamination/Debonding Problem

We define an initial domain Ω ⊂ R2, which is partitioned into two non-overlapping

bulk domains Ω(1) and Ω(2) separated by a pre-defined internal cohesive interface Γ∗, such

that Ω = Ω(1) ∪ Ω(2) (see Fig. 3.1). Throughout this chapter, we use the notation that

numbers within parentheses in the superscript identify the domain partitions. Dirichlet and

Neumann boundary conditions are enforced on two disjointed parts of the domain boundary

Γ≡ ∂Ω in such a way so that ∂Ω = ΓD∪ΓN with ΓD∩ΓN = /0. The outward unit normal

to the boundary ∂Ω is denoted by ne and unit normal vector associated with the interface

boundary Γ∗ is denoted by n and points from Ω(2) to Ω(1) (thus n =−n(1) = n(2)).
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Figure 3.1: A schematic of the undeformed domain for the quasi-static delamina-
tion/debonding problem. We choose X1 and X2 as the in-plane coordinates for the laminate
material, and X3 is the out-of-plane coordinate.

For delamination and debonding at sharp interfaces, we assume the bulk domains con-

sist of a homogeneous anisotropic linearly elastic material, thus intralaminar damage is

neglected and only interlaminar damage is considered. Assuming small displacements, the

Cauchy stress tensor can be defined in Ω(1) and Ω(2) as

σ(m) = D(m) : ε(m), m = {1,2}, (3.1)

where D denotes the fourth-order anisotropic elasticity tensor and the small strain tensor

ε= 1
2(∇u+(∇u)T ) is defined by the symmetric part of the displacement gradient tensor.

The governing elasto-static equilibrium equations in the absence of body forces are given

by:

∇ ·σ(m) = 0 in Ω
(m), m = {1,2}, (3.2)

u = ū on ΓD, (3.3)

σ ·ne = t̄ on ΓN , (3.4)

tc = −σ(1) ·n(1) = σ(2) ·n(2) on Γ∗, (3.5)

where ū is the prescribed displacement vector on the Dirichlet boundary ΓD and t̄ is the
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prescribed traction on the Neumann boundary ΓN . The interface traction tc is related to

the Cauchy stress tensor evaluated in the sub-domains Ω(1) and Ω(2) as given by (3.5),

and is continuous across the cohesive interface Γ∗ to satisfy the force equilibrium. The

cohesive traction t̂c is the Newton’s third law pair to the interface traction tc on a given

delamination/crack surface and can be defined as a function of the interface separation or

displacement jump as

t̂c =−tc =α(δ) δ, (3.6)

δ = [[u]] = u(2)−u(1), (3.7)

where the cohesive stiffness matrix α is usually a nonlinear function of the interface sepa-

ration.

Remark 1 In the case where the interlaminar interface delineates two dissimilar materials

(i.e., D(1) 6= D(2)), the Cauchy stress tensor evaluated at interface from either side can be

different (i.e., σ(1) 6= σ(2)), but the traction field must be continuous across the interface.

3.2.2 Anisotropic bilinear cohesive law

We consider an intrinsic bilinear traction–separation or cohesive law that consists of an

initial elastic region followed by a softening region. For mixed-mode delamination under

quasi-static loading in two-dimensions, we cast the bilinear cohesive law in the damage

mechanics framework as detailed in [79]. The tangential tτ and normal tn components of

the interface traction vector tc are related to the tangential δτ and normal δn components of

the interface separation δ as

tc =

tτ

tn

=−

(1−Ds)α
0
τ 0

0
(

1−Ds
〈δn〉
δn

)
α0

n


δτ

δn

 , (3.8)
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where α0
n and α0

τ represent the initial cohesive stiffness in the normal and the tangential

directions, respectively, and the scalar damage variable Ds is given by

Ds =


0 if δe < δ c

e ,

δ u
e (δe−δ c

e )

δe(δ u
e −δ c

e )
if δ c

e ≤ δe < δ u
e ,

1 if δ u
e ≤ δe,

(3.9)

and the equivalent separation δe =
√
〈δn〉2 +δ 2

τ . In the above equations, 〈·〉 denotes Macaulay

brackets, so that 〈δn〉= max(0,δn), which ensures that there is no damage growth or dam-

age effect on the normal cohesive stiffness response under compression or contact. The

critical and ultimate interface separation parameters δ c
e and δ u

e , respectively, defined as [5]:

1
δ c

e
=

√(
α0

n cos I
σmax

)2

+

(
α0

τ cos II
τmax

)2

, (3.10)

1
δ u

e
=

(
α0

n δ c
e (cos I)2

2 GIC

)
+

(
α0

τ δ c
e (cos II)2

2 GIIC

)
, (3.11)

where the direction cosines cos I = δn/δe and cos II = δτ/δe, σmax and τmax are the pure

mode I and mode II cohesive strengths, and GIC and GIIC are the pure mode I and mode

II critical fracture energies. For illustration, the normal and tangential traction profiles as a

function of the normal and tangential interface separations are shown in Fig. 2.3.

Remark 2 Although the anisotropic bilinear cohesive law is phenomenological, it can be

related to a potential function defined as

Ψ =−1
2

(
(1−Ds)α

0
τ δ

2
τ +

(
1−Ds

〈δn〉
δn

)
α

0
n δ

2
n

)
. (3.12)

The crack surface traction components can be defined based on the above potential function

as tτ =
∂Ψ

∂δτ

and tn =
∂Ψ

∂δn
. The expressions for (3.8) are approximations obtained by

neglecting the nonlinearity due to interface damage ds, which is a function of the interface
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separation.

Remark 3 The anisotropic bilinear cohesive law of Jiang et al. [5] has six independent

parameters, namely initial cohesive stiffness, maximum cohesive strength and critical frac-

ture energy of pure mode I and II loadings, to describe the traction-separation relationship.

If these parameter values are chosen to be the same for both normal and shear modes, then

we get an isotropic bilinear cohesive law with only three independent parameters.

(a) (b)

Figure 3.2: Traction-separation relations defined by the anisotropic, intrinsic bilinear cohe-
sive law of [5]: (a) normal traction field and (b) tangential traction field.

3.2.3 Standard weak form

We apply the Galerkin procedure of weighted residuals to derive the standard weak form,

which is detailed in [22]. By weighting the equilibrium equation in (2.2) by a test func-

tion w, integrating by parts, applying the divergence theorem, using the traction continuity

condition at the interface in (3.5), and the constitutive relation in (3.1), we obtain the weak

form as:

2

∑
m=1

∫
Ω(m)

∇
sw(m) : D(m) : ∇

su(m) dΩ−
∫

Γ∗
[[w]] · tc dΓ =

∫
ΓN

w · t̄ dΓ, (3.13)

where the jump in the test function is defined as [[w]] = w(2) −w(1). Substituting the

traction-separation relation in (2.8) into the weak form in (3.13) we obtain the standard

weak form as
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2

∑
m=1

∫
Ω(m)

∇
sw(m) : D(m) : ∇

su(m) dΩ+
∫

Γ∗
[[w]] · α(δ) δ dΓ =

∫
ΓN

w · t̄ dΓ. (3.14)

Because the cohesive traction and separation components are defined in the normal and

tangential directions, the standard weak form is implemented as,

2

∑
m=1

∫
Ω(m)

∇
sw(m) : D(m) : ∇

su(m) dΩ+
∫

Γ∗
(1−Ds)

(
[[wn]]α

0
n δn +[[wτ ]]α

0
τ δτ

)
dΓ =

∫
ΓN

w · t̄ dΓ.

(3.15)

Thus, in the standard weak formulation, the cohesive traction is simply enforced as a

mixed boundary condition on the interface.

Remark 4 If the initial cohesive stiffness parameters α0
n and α0

τ are taken to be large

enough, the standard weak form resembles the penalty method for enforcing displacement

continuity across the interface. However, for stiff cohesive laws, where cohesive stiffness

is several orders of magnitude greater than the elastic modulus, the standard weak form

becomes ill-conditioned leading to numerical instability and/or convergence issues. In the

limiting case of a non-interpenetration (contact) constraint or an extrinsic cohesive law,

where α0
n → ∞ and/or α0

τ → ∞, the standard weak form is not well defined.

3.2.4 Stabilized weak form

The stabilized FEM developed in [22] extended Nitsche’s method [78, 73] to cohesive

fracture problems, which we review here for the sake of clarity. The key idea is to evaluate

the interface traction in terms of a weighted average stress in the bulk material across the

interface and the traction in the cohesive interface as

tc = (I−S)〈σ〉
γ
·n−Sα δ, (3.16)
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where I is the second-order identity matrix, S is the stabilization matrix defined as,

S =


βτ

α0
τ (1−Ds)+βτ

0

0
βn

α0
n (1−Ds)+βn

 , (3.17)

βτ ,βn are the stabilization parameters, and 〈σ〉
γ

is the weighted average of the stress tensors

on both sides of the interface defined as

〈σ〉
γ
= (γ(1)σ(1)+ γ

(2)σ(2)) ∀ γ
(1)+ γ

(2) = 1, γ
(1) > 0, γ

(2) > 0. (3.18)

Substituting (2.29) into the weak form in (3.13) we obtained the stabilized weak form as

2

∑
m=1

∫
Ω(m)

∇
sw(m) : D(m) : ∇

su(m) dΩ−
∫

Γ∗
[[w]] · (I−S)〈σ〉

γ
·n dΓ

+
∫

Γ∗
[[w]] ·Sα(δ ) δ dΓ =

∫
ΓN

w · t̄ dΓ. (3.19)

In the above equation, the second and third terms on the left hand side ensure consistency

and stability, respectively. If the stabilization matrix is taken as the identity matrix, then

the stabilized weak form in (2.26) becomes identical to the standard weak form in (2.15).

Remark 5 The stabilized method presented here is unsymmetric and resembles the incom-

plete interior penalty method [65, 84]. It can be proved that the displacement solution u of

the strong form equations (2.2) – (3.5) is satisfied by the solution to the weak form equation

(2.26), which establishes consistency for any value of cohesive stiffness; the mathematical

procedure for proving this is similar to that described in [78, Lemma 2.1].

The stabilized weak form with the interface traction and separation components ex-

pressed in the normal and tangential coordinates is given by
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2

∑
m=1

∫
Ω(m)

∇
sw(m) : D(m) : ∇

su(m) dΩ −
∫

Γ∗
[[w]] · (I−S)〈σ〉

γ
·n dΓ

+
∫

Γ∗

(
[[wn]]

(1−Ds)α
0
n βn

α0
n (1−Ds)+βn

δn +[[wτ ]]
(1−Ds)α

0
τ βτ

α0
τ (1−Ds)+βτ

δτ

)
dΓ =

∫
ΓN

w · t̄ dΓ. (3.20)

Remark 6 As (1−Ds)α
0
n ,(1−Ds)α

0
τ → ∞, the stabilized weak form in (3.20) resembles

the Nitsche stabilized finite element method for frictional contact presented in [19]. Thus,

the stabilized weak form remains well-defined in the limiting case of a non-interpenetration

(contact) constraint or an extrinsic cohesive law, unlike the standard weak form in (2.16).

3.2.5 Choice of stabilization parameters and weight factor

The stabilization parameters βτ ,βn and the weights γ(1),γ(2) play a key role in the numer-

ical performance of a Nitsche-based stabilized FEM [18]. For instance, taking a small

value for the stabilization parameters may undermine the positive definiteness of the global

linear system of equations; whereas, taking a large value for the stabilization parameters

will essentially lead to a penalty-like method for enforcing the interface constraints [74].

Moreover, taking equal weights for dissimilar material interfaces may hamper numerical

performance, or may not alleviate traction field oscillations. For constant strain triangular

and tetrahedral elements, Annavarapu et al. [18] provided estimates for the stabilization

parameters using a local coercivity analysis as given by

βn = βτ = 2

(
|D(1)|(γ(1))2

meas(Ω(1))
+
|D(2)|(γ(2))2

meas(Ω(2))

)
meas(Γ∗). (3.21)

Here, we simply use the above estimate of stabilization parameters for bilinear quadrilat-

eral finite elements and conduct parametric sensitivity studies to illustrate their adequacy.

Equation (3.21) establishes a functional dependency between the stabilization parameter

and interface weights, and the weights are chosen so that it minimizes the stabilization pa-
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rameter while ensuring coercivity. Here, we simply use expression for interface weights

derived in [18]:

γ
(1) =

meas(Ω(1))

|D(1)|
meas(Ω(1))

|D(1)|
+

meas(Ω(2))

|D(2)|

;γ
(2) = 1− γ

(1), (3.22)

where |D| denotes the two-norm of the elasticity tensor, meas(Ω) denotes the area of neigh-

boring bulk element in 2D, and meas(Γ∗) is the length of the interface element.

Remark 7 For the weak form in (2.26), precise estimates for the stabilization parameter

can be derived for constant strain elements following the procedure described in [18]. For

higher-order elements, closed-form analytical estimates for the stabilization parameters

are yet to be derived. However, the stabilization parameters can be specified by solving a

local eigenvalue problem [129].

3.3 Numerical Implementation and Model Parameters

We implemented the stabilized FEM in the commercial software ABAQUS through

user-defined subroutines. In this section, we briefly present key details of ABAQUS im-

plementation and list the model parameters that are specific to delamination analysis. The

full details of the numerical implementation (omitted here), including the finite element

approximation, discretization and linearization of the standard and stabilized weak forms,

and the expressions for continuum and interface element force vectors and matrices can be

found in [22].

3.3.1 ABAQUS Implementation

We use bilinear quadrilateral four-noded plane stress continuum elements with four-

point Gauss integration scheme and four-noded linear zero-thickness interface elements
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with two-point Gauss integration scheme. Although our method can be implemented in 3-

D, we use the 2D plane stress approximation as it has been extensively used in prior studies

and has been validated with experimental data [3, 97, 44, 81]. We chose the finite element

mesh and interface element size so that there are at least three interface elements within

the estimated cohesive process zone; this is necessary for an accurate representation of the

numerical stress distribution within the process zone at the point of initial crack propaga-

tion, as elaborated in [3]. User-element subroutines in ABAQUS typically require the user

to provide the stiffness matrix (AMATRX) and the right hand side (RHS) force vector. In

our implementation, we utilize the UELMAT subroutine to provide the continuum element

force vector and stiffness matrix, and the UEL subroutine to provide the cohesive element

force vector and stiffness matrix. The UELMAT subroutine allows the user to access some

of the inbuilt material models through utility subroutines MATERIAL_LIB_MECH, unlike

the UMAT subroutine. Using global modules, we store and share the stress and shape

function derivative matrices calculated in the UELMAT subroutine to the UEL subroutine

for computing interface force vector and stiffness matrix. A detailed description of these

computations can be found in [22] for isotropic elasticity; whereas, here we use anisotropic

elasticity for composites. For the sake of verification or comparison in some simulation

studies, we used ABAQUS in-built 4-noded 2D cohesive elements (COH2D4) along with

4-noded plane stress 2D continuum elements (CPS4).

3.3.2 Secant stiffness and convergence

The anisotropic bilinear cohesive law described in Section 4.2.2 is highly nonlinear,

because the scalar damage variable is a complex nonlinear function of the normal and

tangential separations. The consistent tangent stiffness corresponding to this cohesive law
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can be derived from (3.8) as

Ktan =−

 ∂ tτ
∂δτ

∂ tτ
∂δn

∂ tn
∂δτ

∂ tn
∂δn

=

(1−Ds)α
0
τ −α0

τ δτ

∂ds

∂δτ

−α0
τ δτ

∂ds
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−α0
n δn
〈δn〉
δn

∂ds

∂δτ

(
1−Ds

〈δn〉
δn

)
α0

n −α0
n δn
〈δn〉
δn

∂ds

∂δn

 ,
(3.23)

Deriving and implementing a closed-form expression of the above consistent tangent is

arduous, and using it can cause numerical issues, as the diagonal terms become negative

in the softening portion of the cohesive law. In our previous work [48, 80, 79], we argued

that the secant stiffness is more advantageous with this cohesive law and demonstrated its

accuracy and convergence with an implicit scheme. The simpler secant stiffness matrix can

be derived from (3.8) as

Ksec =

(1−Ds)α
0
τ 0

0
(

1−Ds
〈δn〉
δn

)
α0

n

 , (3.24)

Although we include the simple, linearized secant stiffness terms in the AMATRX de-

fined in the UEL subroutine, the nonlinearity of the cohesive fracture problem is handled

in ABAQUS/Stan-dard outside of the user subroutines. As detailed in the user manual

[86, Chapter 7: Analysis Solution and Control], ABAQUS/Standard combines incremen-

tal and iterative (Newton-Raphson) procedures for solving nonlinear problems. Using the

secant stiffness necessitates smaller load/disp-lacement increments (pseudo-time steps) to

gradually reach the final applied load/displacement. The user typically suggests the maxi-

mum and minimum increment size and the size of the first increment, and ABAQUS/Stan-

dard automatically chooses the size of the subsequent increments. Within each increment,

ABAQUS/Standard automatically performs iteration to find an equilibrium solution based

on a user-defined criteria for residual force and displacement correction. In all of our sim-

ulations, we use sufficiently small increment size that most displacement steps converge

in a single iteration, except at certain time steps where more than one cohesive element
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fails. Also, in cohesive fracture simulations, the ABAQUS/Standard default criteria for

residual force tolerance may be too small that numerical convergence may not be attain-

able as cohesive elements fail. Especially, using the secant stiffness it becomes necessary to

increase these tolerances appropriately (sometimes by two orders of magnitude than the de-

fault value) to attain convergence. Therefore, we compare the predicted load–displacement

curves against analytical solutions, experimental data, other numerical model results to

ensure the accuracy of our simulations.

3.3.3 Bulk material Properties

We consider HTA/6376C unidirectional carbon-fiber-reinforced epoxy laminate as the

generic composite material. Here, we only consider delamination or debonding along 2D

straight interfaces between two HTA/6376C lamina with the fibers aligned either in the

X1 (in-plane horizontal) or X3 (out-of-plane) direction, as indicated in Figure 2.2. Ac-

cording to the standard notation used to define stacking sequences in multi-ply composites

laminates [130], “[0/0]” laminate denotes the two-ply specimen with fibers in the top and

bottom lamina oriented in X1 direction. Similarly, “[0/90]” laminate denotes the cross-ply

specimen with the fibers in the top lamina oriented in the X1 direction and fibers in the bot-

tom lamina oriented in the X3 direction. Usually, this notation implies that each laminate

layer has the same thickness and made of the same composite material (HTA/6376C in our

study). Unfortunately, experimental data from delamination tests is only available for [0/0]

laminates. The anisotropic (transversely isotropic) linear elastic material properties for the

0◦ ply HTA/6376C laminate are listed in Table 3.1, which is directly obtained from exper-

iments [2]. Using coordinate transformation relations we can easily obtain these material

properties for the 90◦ ply HTA/6376C laminate.
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Table 3.1: Material properties of carbon fiber/epoxy laminated composite HTA/6376C ob-
tained from [2]

.

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23
(N/mm2) (N/mm2) (N/mm2) (N/mm2)
1.2×105 1.05×104 5.52×103 3.48×103 0.3 0.51

3.3.4 Cohesive zone model parameters

The CZM parameters chosen in our simulation studies are listed in Table 3.2. The mode

I and mode II fracture energies for the 0◦ ply HTA/6376C laminate are taken from [2]. For

ensuring the accuracy and convergence of delamination analysis using the FEM with co-

hesive elements, two conditions must be satisfied [52]: (1) the element size must be less

than the cohesive (process) zone length, which is determined by fracture toughness and

cohesive strength; and (2) the cohesive stiffness must be large enough to avoid the intro-

duction of artificial compliance. The cohesive strength is often chosen based on cohesive

zone length and mesh size considerations [see Eq. (7) in Ref. 3], owing to computational

cost or limitations. Choosing a small cohesive strength may yield a poor peak load predic-

tion, but beyond a certain value choosing a larger cohesive strength will not improve model

fit with the load–displacement data from quasi-static delamination tests, but will severely

restrict the mesh size and increase computational cost. Here, we use the cohesive strength

values suggested in [3] to ensure numerical accuracy and efficiency. Due to the unavailabil-

ity of experimental data for the 90◦ ply HTA/6376C laminate, we assume the same CZM

parameters listed in Table 3.2.

The cohesive stiffness is generally considered to be a penalty parameter and various

guidelines have been proposed in the literature for selecting the stiffness. Although the

purpose of the cohesive stiffness in intrinsic/extrinsic cohesive zone models is to account

for the elastic loading, unloading and reloading response of the fracture/delamination in-

terface, it can contribute to the global deformation response and introduce artificial com-
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pliance or numerical instability issues. Based on 1D laminate model, the cohesive stiffness

necessary to avoid artificial compliance issue can be estimated as [52]

α
0 = E M/t, (3.25)

where E is the Young’s modulus of the material along the laminate thickness direction, t

is the sub-laminate thickness , and M is a non-dimensional number that is to be chosen

much larger than one. For cohesive interfaces in non-laminates t is not defined, so in (3.25)

it can be replaced by a certain length measure h of the bulk material [51] or the finite

element mesh size. Taking M = 100, E = E22 = 1.05× 104 N/mm2 and t = 1.55 mm for

the delamination tests (see Section 3.4), we estimate α0 ≈ 106 N/mm3. To demonstrate the

performance of the standard and stabilized methods, we assume three values of cohesive

stiffness in our studies, including values that are two orders of magnitude smaller and larger

than the above estimate. However, we note that for thin-ply laminates with t < 0.1 mm or

for small values of length measure h < 0.1 mm in non-laminates, the estimated cohesive

stiffness α0 > 107 N/mm3.

Table 3.2: Cohesive zone model parameters for the carbon fiber/epoxy laminated composite
HTA/6376C are taken from [3], except the cohesive stiffness values.

α0
n α0

τ GIC GIIC σmax τmax
(N/mm3) (N/mm3) (N/mm) (N/mm) (N/mm2) (N/mm2)

{104,106,108} {104,106,108} 0.26 1.002 30 60

3.4 Numerical Examples

In this section, we present several examples to demonstrate the ability of the Nitsche-

inspired stabilized formulation in alleviating oscillations in interface traction using constant

strain patch tests, and pure mode I, mode II and mixed mode delamination tests. Through

these tests, we specifically examine numerical stability at similar and dissimilar laminate
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interfaces defined by anisotropic and isotropic cohesive laws using perturbed, structured

and unstructured meshes.

3.4.1 Patch Tests

We assess the ability of the standard and stabilized formulations in alleviating traction

oscillations at horizontal and inclined straight interfaces using the constant strain patch test.

Under compressive loading, we assume a stiff elastic response in the normal direction to

enforce contact and a weak elastic sliding response in the tangential direction, which is

captured by the anisotropic CZM. We assign the square plate with a side length L = 1 mm

and the horizontal delamination interface at mid-height. To apply the compressive load, we

constrain both vertical and horizontal displacements at the bottom edge of the plate, and

prescribe a uniform vertical displacement ∆ = −0.1 mm at the top edge of the plate. We

specify traction-free conditions at the left and right edges of the square plate. The cohesive

parameters and material properties assumed for this test are listed in Tables 2.7 and 3.2,

respectively.

3.4.1.1 Square Plate with Horizontal Interface

To examine mesh sensitivity, we generate a 10× 10 structured square mesh with ele-

ment length of 0.1 mm (Fig. 3.3a) and perturb the interface nodes by ≈ 3% of the element

length (Fig. 3.3b). In Fig. 3.4, we show the normal traction profile versus the horizon-

tal coordinate along the [0/0] laminate interface obtained from the standard and stabilized

methods. We consider high stiffness-contrast with the anisotropic CZM, where α0
n = 108

N/mm3 and α0
τ = 101 N/mm3. According to (3.21), we take the stabilization parameters

βn = βτ = 3× 106 N/mm3. As shown in Fig. 3.4a, if the interface is perfectly flat, then

both standard and stabilized methods yield smooth traction profiles without any spurious

oscillations. However, we note that the standard FEM exhibits spurious traction oscillations

even with the unperturbed mesh, if the normal stiffness α0
n = α0

τ ≥ 1011 N/mm3 (results
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not shown here). From Fig. 3.4b, we can see that the standard FEM suffers from severe

numerical instability even with a slightly perturbed interface mesh, as evident from the

large amplitude traction oscillations. In contrast, our stabilized FEM is stable and allevi-

ates traction oscillations for anisotropic CZMs with high stiffness contrast between normal

and tangential directions.

(a) (b)

∆

x x x x x x x x x x x

∆

x x x x x x x x x x x

X1

X2

Figure 3.3: Boundary conditions and mesh used for the square plate with horizontal inter-
face: (a) straight interface; (b) perturbed interface. The nodes are perturbed by ≈ 3% of
the element size and a zoom of the interface undulations is shown in the inset.

(a) (b)

Standard
Stabilized

Figure 3.4: Traction profiles obtained from the standard and stabilized methods with the
anisotropic CZM (α0

n = 108 and α0
τ = 101 N/mm3) for the square plate made of [0/0]

laminate: (a) horizontal interface (b) perturbed interface.
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3.4.1.2 Square Plate with Inclined Interface

We consider a straight interface inclined at an initial angle of 140.4◦ with the horizon-

tal X1 axis embedded within the square plate of side length L = 1 mm (Fig. 3.5a). We

discretize the domain using a 13×18 semi-structured mesh with quadrilateral element, so

that the interface is divided into 13 elements (Fig. 3.5b). According to (3.21), we take the

stabilization parameters βn = βτ = 5×106,3×105 N/mm3 for [0/0] and [0/90] laminate in-

terfaces, respectively. We consider the anisotropic CZM with high stiffness contrast, where

α0
n = 108 N/mm3 and α0

τ = 101 N/mm3. In Fig. 3.6, we show the normal traction profile

versus the horizontal X1 coordinate of the integration points along the inclined interface for

[0/0] and [0/90] laminates obtained from the standard and stabilized methods. While the

standard FEM exhibits instability evident from the large amplitude traction oscillations, the

stabilized FEM is able to alleviate oscillations and yields a smooth traction profile. This

study illustrates the drawback of the standard formulation for semi-structured meshes and

potentially unstructured meshes when using anisotropic CZMs with high stiffness contrast.

Overall, the two patch tests highlight the robustness of our stabilized FEM, but in the fol-

lowing sections we will investigate its performance for benchmark delamination tests.

∆ ∆

(a) (b)

x
x
x
x
x
x
x
x
x
x
x
x
x
x

Figure 3.5: Boundary conditions and mesh used for the square plate with inclined inter-
face: (a) schematic diagram; (b) structured finite element mesh with quadrilateral (non-
rectangular) elements.
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(a) (b)

Standard
Stabilized

Figure 3.6: Traction profiles obtained from the standard and stabilized methods with the
anisotropic CZM (α0

n = 108 and α0
τ = 101 N/mm3) for the square plate with an inclined

interface: (a) [0/0] laminate (b) [0/90] laminate.

3.4.2 Double Cantilever Beam Test

We investigate the ability of the stabilized FEM in recovering oscillation-free interface

traction during mode-I delamination crack growth, using the double cantilever beam (DCB)

test. The specimen geometry and test set-up along with the finite element mesh are shown

in Fig. 3.7. To initiate the delamination process, a pre-crack is placed at the left end

of the beam, and equal and opposite vertical displacements (∆) are applied on the upper

and lower nodes. The corresponding load (P) is determined from the simulation using the

reaction force at the corresponding node. The fixed boundary condition is applied at the

right end of the beam.

In Fig. 3.8(a), we compare the load–displacement curves obtained from the stabilized

formulation for [0/0] laminate with experimental data from [131], to check that our choice

of strength and displacement increment is appropriate and to determine the sensitivity to

cohesive stiffness. Evidently, there is good agreement between the numerically predicted

load-displacement response and the experimental data. The slight mismatch in the pre-

dicted peak load and the initial slope of the load–displacement curves is plausibly due to

the idealization of boundary and loading conditions in the model, compared to the experi-

mental test setup. In Fig. 3.8(b), we compare the load–displacement curves obtained from
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the stabilized FEM for [0/90] laminate with those obtained from ABAQUS inbuilt cohesive

elements [86], as experimental data is unavailable. The perfect match of load–displacement

curves obtained with our user-defined and ABAQUS inbuilt (COH2D4) elements verifies

the correctness of our implementation. The load–displacement curves obtained from the

standard FEM exactly match with those from the stabilized FEM, so we do not show them

here. As the two methods differ primarily in their ability to recover interface traction fields,

we examine traction fields along the delamination interfaces obtained from standard and

stabilized methods for [0/0] and [0/90] laminates.

∆, P

∆, P

H
a0

L

Figure 3.7: Geometry and boundary conditions for the double cantilever beam test. The
dimensions are: L = 150 mm, H = 3.1 mm and a0 = 35 mm.

(a) (b)

Figure 3.8: Load versus displacement curves for the double cantilever beam test obtained
from the stabilized FEM: (a) [0/0] laminate and (b) [0/90] laminate.
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3.4.2.1 Traction at [0/0] Laminate Interface

From Fig. 3.9a, we find that for smaller values of stiffness α0
n = 104,106 N/mm3 the

normal traction profile from the standard FEM is smooth, but for the larger value of α0
n =

108 N/mm3 significant oscillations are observed in the traction profile. From Fig. 3.9b, it is

evident that the stabilized FEM is able to alleviate traction oscillations for the large value of

cohesive stiffness. We also notice that the location of the region of traction oscillations (i.e.

X1 ≈ 44 mm) coincides with the transition from tensile to compressive normal traction. To

further examine the effect of this instability on interface damage, we plotted the respective

damage profiles obtained from both methods in Figs. 3.9c and 3.9d. For α0
n = 108 N/mm3

at the location of traction oscillations, we also find an oscillation in the damage profile

with the standard FEM; whereas, there is no such oscillation in the damage profile with the

stabilized FEM. This study shows evidence of instability with the standard FEM even with

a perfectly flat interface and structured rectangular mesh.

We next examine the interface traction along the delamination interface recovered with

a perturbed rectangular mesh, where we change the coordinates of interface nodes by≈ 3%

of the element length. In Fig. 3.10a and 3.10b, we show the normal traction profiles ob-

tained from the standard FEM and a zoomed-in image showing evidence of spurious os-

cillations in the compression region of the traction. From Fig. 3.10c it is evident that the

stabilized FEM is able to alleviate the traction oscillations. This study demonstrates that

numerical instability with the standard FEM is more pronounced under contact conditions

(i.e. in the regions where the normal traction is negative) when using perturbed or unstruc-

tured finite element meshes, although the amplitude of the spurious oscillations in the mode

I DCB test is generally small.

3.4.2.2 Traction at [0/90] laminate interface

We now compare the interface traction fields recovered from standard and stabilized

methods at dissimilar material interfaces. Recall that the 0◦ laminate exhibits anisotropic
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(a) (b)

(c) (d)

↵0
n = 104 ↵0

n = 106
↵0

n = 108N/mm3 N/mm3 N/mm3

Figure 3.9: Normal traction and damage versus interface length curves from the double
cantilever beam test ([0/0] ply orientation) for different cohesive stiffness values: (a), (c)
standard FEM and (b), (d) stabilized FEM.

material behavior in the X1 and X2 plane; whereas, the 90◦ laminate exhibits isotropic

material behavior in this plane with an order of magnitude contrast in elastic modulus

(E11/E22 = 11.4). In Fig. 3.11, we show the normal traction along the delamination in-

terface recovered from the standard and stabilized methods for different values of initial

cohesive stiffness. We do find a minor oscillation in normal traction and damage profiles in

Figs. 3.11a and 3.11c with the standard FEM for α0
n = 108 N/mm3, which is not the case

with the stabilized FEM. Notably, there are minor differences in the traction and damage

curves for different stiffness values, unless stiffness is taken greater than 108 N/mm3.
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(a) (b)

Straight
Perturbed

(c)

Figure 3.10: Normal traction versus interface length for α0
n = 108 N/mm3 obtained from

DCB test ([0/0] ply orientation): (a) standard FEM, (b) zoom in of standard FEM near the
crack tip and (c) stabilized FEM.

3.4.3 End Notch Flexure Test

We investigate the ability of the stabilized FEM in recovering oscillation-free interface

traction during mode-II delamination crack growth, using the end notch flexure (ENF)

test. The specimen geometry and test set-up are shown along with the finite element mesh

in Fig. 3.12. To initiate the delamination process, a pre-crack is placed at the left end

of the beam and downward vertical displacement is applied at the middle of the simply

supported beam. In Fig. 3.13(a), we compare the load–displacement curves obtained from

the stabilized FEM for [0/0] laminate specimen along with the experimental data and the

corrected beam theory solution from [3] for different values of cohesive stiffness. In Fig.

3.13(b), we compare the load–displacement curves obtained from the stabilized FEM for

[0/90] laminate with those obtained from ABAQUS inbuilt cohesive elements [86], due to

the unavailability of experimental data or analytical solutions. The good match of load–

displacement curves, including the predicted peak load, obtained with our user-defined and

ABAQUS inbuilt (COH2D4) elements verifies the correctness of our implementation. The

load–displacement curves obtained from the standard FEM exactly match with those from

the stabilized FEM, so we do not show them here.

72



(a) (b)

(c) (d)

↵0
n = 104 ↵0

n = 106
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n = 108N/mm3 N/mm3 N/mm3

Figure 3.11: Normal traction and damage versus interface length curves from the double
cantilever beam test ([0/90] ply orientation) for different cohesive stiffness values: (a), (c)
standard FEM and (b), (d) stabilized FEM.

3.4.3.1 Traction at [0/0] Laminate Interface

From Fig. 3.14a, it is evident that the tangential traction profile obtained from the stan-

dard FEM is oscillation-free for smaller cohesive stiffness values α0
τ = 104,106 N/mm3, but

for the larger value α0
τ = 108 N/mm3 a significant oscillation can be seen. Also, the traction

field for α0
τ = 104 from the standard FEM does not match with that for larger stiffness val-

ues, which emphasizes the importance of choosing a large enough cohesive stiffness. The

traction profile obtained from the stabilized FEM shown in Fig. 3.14b does not exhibit any

oscillations for all cohesive stiffness values, thus demonstrating stability and robustness.

We also plot the respective damage profiles obtained from both the methods in Figs. 3.14c
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H
a0

L

Figure 3.12: Geometry and boundary conditions for the end notch flexure test. The dimen-
sions are: L = 100 mm, H = 3.1 mm and a0 = 35 mm.

(a) (b)

Figure 3.13: Load versus displacement curves for the end notch flexure test obtained using
the stabilized FEM: (a) [0/0] laminate and (b) [0/90] laminate.

and 3.14d, which show a corresponding oscillation in the damage profile for the standard

FEM for α0
τ = 108 N/mm3, but no such oscillation exists in the damage profile with the sta-

bilized FEM. These results indicate that even though the standard and stabilized methods

capture the load displacement curves well, numerical instability can corrupt the tangential

traction and damage field at the interlaminar interface.

We next examined the tangential traction along the delamination interface recovered

with a perturbed rectangular mesh, where we change the coordinates of interface nodes

by ≈ 3% of the element length. In Fig. 3.15a and 3.15b, we show the tangential traction

profiles obtained from the standard FEM and a zoomed-in image showing clear evidence of

spurious oscillations. From Fig. 3.15c it is evident that the stabilized FEM is able to allevi-

ate the large amplitude oscillations. This study demonstrates that numerical instability with
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↵0
⌧ = 104 N/mm3 ↵0

⌧ = 106 N/mm3 ↵0
⌧ = 108 N/mm3

Figure 3.14: Tangential traction and damage versus interface length curves from the end
notch flexure test ([0/0] ply orientation) for different cohesive stiffness values: (a), (c)
standard FEM and (b), (d) stabilized FEM.

the standard FEM can corrupt tangential traction (i.e. shear stress at the interface) when

using perturbed or unstructured finite element meshes, and the amplitude of some spurious

oscillations in the mode II ENF test can be large (as much as 50% local error). There-

fore, we recommend using the stabilized FEM to improve accuracy and avoid convergence

issues with stiff cohesive laws.

3.4.3.2 Traction at [0/90] Laminate Interface

We now examine the interface traction fields obtained from both standard and stabilized

methods for the [0/90] laminate interface. Although we expect a similar response to the
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Figure 3.15: Tangential traction versus interface length for α0
τ = 108 N/mm3 obtained

from ENF test ([0/0] ply orientation): (a) standard FEM , (b) zoom in near the crack tip for
standard FEM and (c) stabilized FEM.

[0/0] laminate interface case, we present the results here for completeness. In Fig. 3.16, we

show the tangential traction along the delamination interface recovered from the standard

and stabilized methods for different values of initial cohesive stiffness. We do find large

amplitude oscillations in the tangential traction for α0
τ = 108 N/mm3 in Fig. 3.16a, and in

the corresponding damage profile in Fig. 3.16c with standard FEM, whereas no traction

oscillations are seen with the stabilized FEM.

3.4.4 Fixed Ratio Mixed Mode Test

We also investigated the ability of the stabilized FEM in recovering normal and tan-

gential traction fields during mixed-mode delamination crack growth using the fixed ratio

mixed mode (FRMM) test. The specimen geometry and test set-up along with the finite

element mesh are shown in Fig. 3.17. To initiate the delamination process, a pre-crack is

placed at the left end and vertical displacement is applied only at the upper corner node.

The fixed boundary condition is applied at the right end of the beam.

In Fig. 3.18a, we compare the load–displacement curves from the stabilized FEM with

the corrected beam theory solution from [3] for [0/0] laminate, due to the lack of experi-
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⌧ = 106 N/mm3 ↵0
⌧ = 108 N/mm3

Figure 3.16: Tangential traction and damage versus interface length curves from the end
notch flexure test ([0/90] ply orientation) for different cohesive stiffness values: (a), (c)
standard FEM and (b), (d) stabilized FEM.

mental data. In Fig. 3.18b, we compare the load–displacement curves from the stabilized

FEM with the ABAQUS inbuilt cohesive elements for [0/90] laminate, due to the lack of

experimental data or analytical solutions. Because the ABAQUS inbuilt cohesive elements

use a different mixed-mode criteria proposed in [96], the predicted peaks loads and soften-

ing portions of the load–displacements are different in Fig. 3.18b. However, by choosing

different cohesive strengths with different mixed-mode criteria it is possible to match the

load–displacement curves obtained from stabilized FEM and inbuilt ABAQUS elements.
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Figure 3.17: Geometry and boundary conditions for the fixed ratio mixed mode test. The
dimensions are: L = 50 mm, H = 3.1 mm and a0 = 35 mm.

(a) (b)

Figure 3.18: Load versus displacement curves for the fixed ratio mixed mode test obtained
from the stabilized FEM: (a) [0/0] orientation and (b) [0/90] orientation.

3.4.4.1 Traction at [0/0] Laminate Interface

In Figs. 3.19a and 3.19b, we show the normal and tangential traction profiles for [0/0]

laminate from the standard FEM. We find that for the large cohesive stiffness α0
n = α0

τ =

108 N/mm3, large amplitude oscillations appear in the tangential traction, but a few small

amplitude oscillation appears in the normal traction profile. The stabilized FEM alleviates

oscillations in both normal and tangential traction fields, as evident from Figs. 3.19c and

3.19d. Notably, for the smaller stiffness value of 104 N/mm3, the peak tangential traction

value is considerably smaller than the other two cohesive stiffness cases (i.e., 106 N/mm3

and 108 N/mm3) from both methods, which also happens with ABAQUS in-built cohesive

elements. This suggests that it is important to take the cohesive stiffness large enough to

accurately recover the interface traction for mixed mode loading.
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n = 108N/mm3

Figure 3.19: (a) Normal and tangential traction fields versus interface length from the fixed
ratio mixed mode test ([0/0] ply orientation) for different cohesive stiffness values: (a), (b)
standard FEM and (c), (d) stabilized FEM.

3.4.4.2 Traction at [0/90] Laminate Interface

In Figs. 3.20a and 3.20b, we show the normal and tangential traction profiles for [0/90]

laminate from the standard FEM. We find that for α0
n = α0

τ = 108 N/mm3, large amplitude

oscillations appear in both normal and tangential traction profiles. The stabilized FEM

alleviates these oscillations, as evident from Figs. 3.20c and 3.20d. We also notice for the

smaller stiffness value of 104 N/mm3, the peak tangential traction value is considerably

smaller than the other two cohesive stiffness cases (i.e., 106 N/mm3 and 108 N/mm3).

Once again, this indicates the importance of taking a larger value for cohesive stiffness to

accurately recover the interface traction.
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↵0
n = 104 N/mm3 ↵0
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n = 108N/mm3

Figure 3.20: Normal and tangential traction fields versus interface length from the fixed
ratio mixed mode test ([0/90] ply orientation) for different cohesive stiffness values: (a),
(b) standard FEM and (c), (d) stabilized FEM.

3.5 Conclusion

In this chapter, we demonstrated the applicability of the stabilized finite element method

proposed by Ghosh et al. [22] for modeling delamination growth in laminated fiber-

reinforced composite materials with transversely isotropic elastic behavior, which are widely

used in the aerospace/automobile industry. To achieve Our main objectives are twofold:

(1) to highlight the parametric uncertainties, numerical instability, mesh dependence, and

computational efficiency issues associated with the commonly used standard finite ele-

ment method for cohesive fracture/delamination; and (2) to illustrate the advantages of

using the stabilized method that address the issues with the standard method in the context
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of delamination analysis. While the stabilized finite element method for cohesive frac-

ture/delamination problems was fully developed in Ghosh et al. [22], it was tested only

for isotropic linearly elastic media using simplified patch tests and benchmark problems to

verify accuracy and illustrate convergence. In this chapter, we simulated mode-I, mode-II,

and mixed-mode crack growth in laminated cross-ply composites by choosing standard-

ized test configurations and validated the results with experimental data, when available.

Furthermore, we explored the stability and accuracy of standard and stabilized methods

with semi-structured or perturbed meshes for delamination analysis. The key results and

findings are listed below:

1. Constant strain patch tests: We illustrated that numerical instability with standard

FEM causes spurious oscillations in the interface traction fields at both similar and

dissimilar composite material interfaces. We found that perturbed, semi-structured

and potentially unstructured meshes can aggravate the numerical instability with

standard FEM, especially with anisotropic CZMs where the contrast between normal

and tangential stiffness is high. We demonstrated the ability of a stabilized method

in alleviating spurious traction oscillations at the delamination interface. Thus, these

studies illustrated the stabilized method is mesh agnostic, which is advantageous

when using non-uniform and semi-structured finite element meshes for delamination

analysis.

2. Benchmark delamination tests: We examined the traction and damage profiles re-

covered from the standard and stabilized methods using standardized delamination

tests (i.e., DCB, ENF and FRMM tests) to identify numerical instability. We found

that the traction oscillations (instability) coincide with an abrupt change in interface

damage for an inappropriate choice of cohesive stiffness parameter. Although we

observed spurious oscillations in normal and tangential traction fields for a moder-

ately large choice of the cohesive stiffness parameter (i. e., three orders of mag-

nitude larger than the bulk stiffness), these oscillations did not affect the predicted
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load–displacement curves from both standard method. Taking a small cohesive stiff-

ness parameter can alleviate oscillations with the standard method, but it can lead

to inaccurate evaluation of the traction field, especially under mixed-mode loading.

These studies established the stabilized method as an robust alternative to the stan-

dard FEM, so that ad hoc guidelines for stiffness selection are no longer needed.

To conclude, in the standard FEM for delamination modeling the choice of cohesive

stiffness is non-trivial and involves a precarious trade-off – prescribing a value that is larger

than necessary results in numerical instabilities, whereas prescribing a value that is smaller

than necessary results in inaccurate traction recovery. The “appropriate” choice of cohesive

stiffness for a given multi-directional multi-ply composite laminate requires trial-and-error

procedure and/or conducting sensitivity studies based on 1D model estimates. In contrast,

the proposed stabilized FEM is robust and stable for a wide range of cohesive stiffness

values. Because the stabilized FEM does not increase the computational cost compared

to the standard FEM, it can be advantageous for composite delamination analysis using

cohesive/interface elements.
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Chapter 4

A PORO-DAMAGE MECHANICS-BASED COHESIVE ZONE APPROACH FOR

MODELING CREVASSE PROPAGATION IN GLACIERS

This chapter is adapted from “A poro-damage mechanics-based cohesive zone approach
for modeling crevasse propagation in glaciers” which will be submitted to Cold Regions
Science and Technology and has been reproduced with the permission of my co-authors
Yuxiang Gao, Xiangming Sun, Stephen Jiménez, and Ravindra Duddu: Gao, Y∗., Ghosh,
G∗., Sun, X., Jiménez, S., and Duddu, R. A poro-damage mechanics based cohesive zone
approach for modeling crevasse propagation in glaciers, In Preparation (∗: Denotes Co-
First Author)

4.1 Introduction

The plausibility of rapid global sea-level rise predominantly due to mass loss from

glaciers and ice sheets due to hydrofracturing of ice shelves and marine ice cliff instability

highlights the urgent need for modeling and understanding fracture/failure mechanisms in

glaciers. [132, 133, 134, 135, 136] have highlighted the growing need for a better under-

standing of the glacier fracture/failure mechanisms [137]. In pursuit of this, researchers

have fundamentally associated the presence and propagation of crevasses with the key

detrimental factors for failure of glaciers like: mass loss, surface ablation, basal sliding,

iceberg calving [138]. However, the fracture mechanisms associated with crevasse initia-

tion and propagation, are complex and involve mechanical, thermal and hydraulic fracture

processes [23, 24, 25, 26]. For instance, when melt-water infiltrates the surface crevasses

or seawater infiltrates the basal crevasses, and the corresponding water pressure on the

crevasse walls exceeds the fracture toughness of ice, crevasse propagates deeper into the

glacier; this hydraulic-pressure-driven fracture is commonly referred to as hydro-fracture

[27]. In this work, we develop a poro-damage mechanics based cohesive zone modeling ap-

proach to better understand the complex hydro-fracture process, and the resulting crevasse
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propagation in glaciers.

There are three broad class of models available in the literature for modeling crevasse

formation [138]: the zero stress model, the linear elastic fracture mechanics model, and the

continuous damage mechanics model. Here we will briefly review each of these models and

talk about their advantages and disadvantages. The zero stress model is based on the notion

that crevasses penetrate to the glacier depth at which the ice overburden pressure equals the

tensile stress. After being first proposed by [139], the zero stress model has been modified

and extensively used by several reserachers [140, 141, 142, 143] for estimating the depth

of water-filled crevasses. This model suffers from issues like over-simplistic assumptions

or not accounting for the finite glacier thickness, thus limiting it’s applications. To address

the issues with the zero stress models, fracture mechanics based models were developed

based on the notion that glacier ice contains innumerable preexisting minute cracks, in

which both sides of the fracture are touching, that permit the propagation of crevasses

[144]. Under the linear elastic material assumption, the fracture mechanics model infers

that a crevasse propagates downward as long as the intensity factor at the crevasse tip is

larger than the fracture toughness of the surrounding ice [145, 144]. The LEFM model

does a better job of capturing the physics of crevasse formation compared to the zero stress

model and has been used by several researchers [146, 147, 148, 149, 150] to understand

critical tensile stress, crevasse water depths, role of multiple crevasses, etc. The fracture

mechanics approach suffers from the following limitations: (i) it relies on critical parame-

ters, such as crevasse spacing and ice fracture toughness, which must be prescribed a priori

and are not readily available in most numerical flow models; (ii) the widely adopted coef-

ficients of the fracture mechanics model are not suitable for application to crevasse fields

in which crevasse spacing influences depth and (iii) assuming a linear elastic rheology in

place of the true nonlinear rheology of glacier ice is a fundamental approximation of the

contemporary fracture mechanics approach [138]. In last two decades, the continuum dam-

age mechanics-based approach has been developed and used for predicting crevasse depth
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[151, 152, 153, 154, 155]. The continuum damage mechanics model has following advan-

tages: (i) easy to implement and does not need complex algorithms to track the crevasse

propagation; (ii) it does not need a pre-crack unlike the LEFM model to initiate crevasse

propagation. It suffers from the issues like: (i) this model involves several empirical param-

eters that may not be uniquely calibrated from existing experiments or observations, and

this parametric uncertainty can affect its predictive capability and (ii) this model within a

full Stokes numerical formulation is computationally expensive for investigating crevasse

propagation in real glaciers or ice shelves.

In last few decades, non-linear models have gained particular interest in modeling

glacier and ice sheet evolution. The presence of large distributed zone of cracking, known

as the fracture process zone in the context of quasi-brittle fracture mechanics, leads to non-

linearity into the fracture scaling, necessitating either a quasi-brittle (nonlinear) representa-

tion of the fracture or the use of a non-local damage model [156, 157]. Among the available

models, the non-linear Stokes equations provide an accurate and complete description of

momentum balance for modeling the flow of land ice [158, 159] compared to other ap-

proaches. More recently, researchers have used higher-order finite element discretization,

scalable solvers and updated-Lagrangian formulation for the solution of Stokes equations

[160, 161, 162, 155]. The other popular approaches developed in last two decades include:

a non-linear visco-elastic/visco-plastic approach to model uniaxial deformation of sea-ice

[163, 164]; discrete particle-based simulation model where ice body is made of discrete

particles linked to each other by bonds that can break off when undergoing a too high stress

[165, 166]; discrete element methods have been conducted to simulate the brittle failure of

ice [167, 168, 169, 170]; a probabilistic approach-based study where a logistic regression

algorithm has been developed to predict the fracture locations in an ice shelf [171].

Recently, a poro-damage based approach has been proposed by [172] which incor-

porates the effects of water pressure in crevasses, based on the principles of continuum

damage mechanics and poro-mechanics. This new approach considers the effect of water
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pressure inside damaged ice in the crevasse as an additional damage effect. Extending the

concept of this model and the continuum damage approach proposed by [155], a non-local

continuum poro-damage mechanics (CPDM) model has been proposed by [173] to simu-

late hydro-fracture in glaciers. The CPDM model alleviates spurious mesh-size sensitivity

and artificial diffusion of damage in crevasse propagation simulations and accounts for the

feedback between viscous (or elastic) and damage processes at the crevasse tip. On the

other-hand, cohesive zone modeling approach is another popular numerical tool for simu-

lating hydraulic fracture in the poro-elastic medium [174, 175, 176, 177]. In this approach,

a zero-thickness interface element is placed along the potential crack path and it’s behavior

is governed by a cohesive law. Although this approach has been extensively used in mod-

eling hydro-fracture in rocks [178, 179, 177], to authors’ knowledge no such study exists

for ice.

In this work, we present a cohesive zone modeling approach for simulating hydro-

fracture and crevasse propagation in glaciers by using the poro-damage mechanics formu-

lation proposed by [172]. In our formulation, we interpret damage to represent the ratio

of isotropic void area to total area along the cohesive interface, we assume that water can

permeate the damaged material and exert hydrostatic pressure along the interface. The rest

of the article is organized as follows: in Section 4.2, we present the strong form of the

governing equations of the poro-damage based CZM model for hydro- fracture; in Sec-

tion 4.3, we present a concise discussion of the key points in implementation and choice of

model parameters; in Section 4.4, we present a concise discussion of the key points in im-

plementation and choice of model parameters, and several idealized simulation results for

ice fracture and calving for real glaciers; and in Section 4.5, we conclude with a summary

and closing remarks.

86



4.2 Model Formulation

In this section, we present a detailed description of the poro-damage mechanics based

extension of an existing mixed mode cohesive zone model for modeling quasi-static hy-

drofracturing. We then present the linear elastic, linear/nonlinear viscoelastic constitutive

models for glacier ice, and the strong form of the governing equations of static equilibrium.

4.2.1 Cohesive Zone Modeling Approach

The cohesive zone modeling approach represents a nonlinear fracture/damage process

based on the concept of bounded stress within the cohesive zone at the crack tip , unlike

linear elastic fracture mechanics (LEFM) where the stress is singular at the crack tip. The

major advantage of this approach is its ability to describe crack initiation and propagation

within the framework of the finite element method. Generally, the cohesive zone model

(CZM) is implemented by inserting a zero-thickness interface/cohesive elements along po-

tential crack interfaces between bulk finite elements in the undeformed mesh configuration.

(Fig. 4.1). Under the action of tensile and shear stresses in the bulk finite elements, the co-

hesive element stretches and thus simulating crack opening and sliding in the deformed

mesh configuration (e.g. see Fig. 4.5b). This crack interface separation is defined by the

nodal displacements of the cohesive element as

∆= [[u]] = u(2)−u(1), (4.1)

The interface traction vector tc can be defined as

tc =α(∆)∆, (4.2)

where the cohesive stiffness matrix α is usually a nonlinear function of the interface separa-

tion. The above equation is the so-called cohesive law or traction-separation law describing

87



the constitutive behavior of the cohesive elements.

𝑡̅
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𝐧x2
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Figure 4.1: A typical mesh for the glacier with cohesive interface elements placed at the
interface. The crack is represented by a red line, where the cohesive elements have failed.

4.2.2 Bilinear Cohesive Law

The cohesive law generally features an initial elastic response to resist crack open-

ing followed by an irreversible damage-induced softening response. In this study, we

have assumed a bilinear cohesive law consisting an initial (increasing) linear elastic region

followed by a (decreasing) linear softening region. For mixed-mode delamination under

quasi-static loading in two-dimensions, we cast the bilinear cohesive law in the damage

mechanics framework as detailed in [79]. The tangential tτ and normal tn components of

the interface traction vector tc are related to the tangential ∆τ and normal ∆n components

of the interface separation ∆ as

tc =

tτ

tn

=

(1−Ds)α
0
τ 0

0
(

1−Ds
〈∆n〉
∆n

)
α0

n


∆τ

∆n

 , (4.3)
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where α0
n and α0

τ represent the initial cohesive stiffness in the normal and the tangential

directions, respectively, and the scalar damage variable Ds is given by

Ds =


0 if ∆e < ∆c

e,

∆u
e(∆e−∆c

e)

∆e(∆u
e−∆c

e)
if ∆c

e ≤ ∆e < ∆u
e ,

1 if ∆u
e ≤ ∆e,

(4.4)

and the equivalent separation ∆e =
√
〈∆n〉2 +∆2

τ . In the above equations, 〈·〉 denotes

Macaulay brackets, so that 〈∆n〉 = max(0,∆n), which ensures that there is no damage

growth or damage effect on the normal cohesive stiffness response under compression or

contact. The critical and ultimate interface separation parameters ∆c
e and ∆u

e can then be

defined as [5]:

1
∆c

e
=

√(
α0

n cos I
σmax

)2

+

(
α0

τ cos II
τmax

)2

, (4.5)

1
∆u

e
=

(
α0

n ∆c
e(cos I)2

2 GIC

)
+

(
α0

τ ∆c
e(cos II)2

2 GIIC

)
, (4.6)

where the direction cosines cos I = ∆n/∆e and cos II = ∆τ/∆e, σmax and τmax are the pure

mode I and mode II cohesive strengths, and GIC and GIIC are the pure mode I and mode II

critical fracture energies. A schematic diagram of the bilinear traction-separation relation-

ship and the damage-separation relationship are shown in Fig. 2.3.

4.2.3 Extension of Cohesive Law Based on Poro-damage Mechanics

Herein, we present an augmented traction-separation law that incorporates hydraulic

fracture. As we interpret damage to represent the ratio of isotropic void area to total area

along the cohesive interface, we assume that water can permeate the damaged material

and exert hydrostatic pressure along the interface. Our implementation is based on the

poro-mechanics approach proposed in [172, 180, 173] for hydraulic fracture within ice
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Figure 4.2: A schematic diagram of the bilinear cohesive zone model: (a) the traction-
separation relationship; (b) the relationship between the static damage variable Ds and the
equivalent separation. The magnitude of the traction vector ‖tc‖=

√
t2
n + t2

τ .

sheets based on continuum damage mechanics, which extends Biot’s theory of poroelas-

ticity [181] by considering damage to have the same effect on the material behavior as

porosity. Poroelasticity theory states that the Cauchy stress tensor σi j in a porous media

can be written as,

σi j = (1−φ)σ̃i j−φ pwδi j, (4.7)

where σ̃i j is the effective Cauchy stress tensor, φ is the material porosity, and pw is the

hydraulic pressure within the crack. The above equation can be simply recast as a damage

mechanics formulation by replacing the porosity φ with the damage variable Ds (we assume

that damage and porosity are equivalent in isotropically damaged ice):

σi j = (1−Ds)σ̃i j−Ds pwδi j. (4.8)

The poro-mechanics approach to simulate hydraulic fracture can be similarly applied to

the CZM by introducing a new term to the traction-separation law in Eq. 3.8, which is able

to account for hydraulic pressure in the damaged zone. The augmented traction-separation

law can then be extended as,
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tc =

tτ

tn

=

(1−Ds)α
0
τ 0

0
(

1−Ds
〈∆n〉
∆n

)
α0

n


∆τ

∆n

−Ds pw

0

1

 . (4.9)

As shown in Fig. 4.5(a), we consider a rectangular ice slab with water-filled surface.

We use the Cartesian coordinate system with (x1,x2,x3) = (x,y,z), where x and z represent

in-plane horizontal and vertical coordinates, respectively; and the direction of y-axis must

point into the x-z plane to obey the right-handed rule. The hydraulic pressure can then be

defined as,

pw(z) = ρfg〈hs− (z− zs)〉 (4.10)

where ρ f , g, hs, and zs denote the density of freshwater, acceleration due to gravity, wa-

ter height in the surface crevasse, and vertical coordinate of the surface crevasse tip, re-

spectively. Because hydrostatic pressure only acts in the direction normal to the cohesive

interface, we apply pw in Eq. 4.9 to the normal traction component (tn) only.

A schematic illustration of the poro-damaged based cohesive zone modeling approach

is shown in Fig. 4.3. In the figure, two adjacent bulk elements are initially in a perfectly

bonded condition, and a zero-thickness cohesive element is present in between them. As

the tensile stress at the crack tip exceeds the maximum cohesive strength and a critical

separation is reached, damage starts to propagate under hydrostatic pressure. Therefore,

Ds = 0 accounts for perfectly bonded condition, and Ds = 1 accounts for completely opened

crack after failure. For the case of 0 < Ds < 1, the crack is filled with air and/or water and

starts to contribute in the normal traction component as given by Eq. 4.9.
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Figure 4.3: Schematic illustration of poro-damage mechanics based cohesive zone model.

4.2.4 Constitutive Model for Bulk Ice

The mechanical response of ice over shorter time scales (seconds to hours) is often

described by linear elastic or visco-elastic constitutive models [182], whereas glacier and

ice-sheet flow over longer times scales (days to centuries) is best described by a non-linear

viscous constitutive model known as Glen’s law [183].

Assuming small strains, the additive decomposition of the total strain tensor into its

components is assumed as,

ε= εe +εv, (4.11)

where εe, and εv denote the elastic strain tensor (time independent and recoverable com-

ponent), and the viscous strain tensor (time-dependent and irrecoverable component), re-

spectively [184, 185]. The elastic stress–strain relation is given by the generalized Hooke’s

law,

σi j =Ci jklε
e
kl, (4.12)

where σi j denotes the components of Cauchy stress tensor, εe
kl denotes the components of

elastic small strain, and Ci jkl denotes the components of fourth-order isotropic elasticity
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tensor. The elastic strain tensor is given by the following expression:

ε
e
kl =

1
E
[σkl−ν(σiiδkl−σkl)], (4.13)

where E is the elasticity modulus, ν is the Poisson’s ratio, δkl is the Kronecker’s delta and

repeated indices mean summation. The fourth order elasticity tensor Ci jkl can be expressed

as:

Ci jkl =
E

2(1+ν)
(δilδ jk +δikδ jl)+

Eν

(1+ν)(1−2ν)
δi jδkl, (4.14)

The permanent viscous strain rate, ε̇v
kl , is generalized by the power-law creep equation

[185] as,

ε̇
v
kl =

3
2

KN(
3
2

σ
dev
mn σ

dev
mn )(N−1)/2

σ
dev
kl , (4.15)

where KN and N are viscous parameters. The power exponent, N, is determined to be

around 3 in most experimental and field investigations.

4.2.5 Strong Form of the Cohesive Fracture Problem

To model the cohesive fracture problem in glaciers, we consider an ice domain Ω (as

shown in Fig. 4.4), which is composed of two undamaged non-overlapping bulk domains

Ω(1) and Ω(2) separated by a pre-defined internal cohesive interface Γ∗ along the potential

crevasse path. Dirichlet and Neumann boundary conditions are enforced on two disjointed

parts of the domain boundary Γ ≡ ∂Ω. The outward unit normal to the boundary ∂Ω is

denoted by n.

Assuming small deformations, the governing static equilibrium in presence of body

force can be described by the standard boundary value problem:
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Figure 4.4: A schematic of the domain for the quasi-static cohesive fracture problem.

σi j, j +bi = 0 in Ω
(m), m = {1,2}, (4.16)

ui = ūi on ΓD, (4.17)

σi jn j = t̄i on ΓN , (4.18)

where bi is the body force vector, ūi is the prescribed displacement vector on the Dirichlet

boundary ΓD corresponding to free slip or zero slip, and t̄i is the prescribed traction on the

Neumann boundary ΓN corresponding to seawater pressure on the domain boundary.

4.3 Numerical Implementation

In this section, we implement the extended cohesive zone model based on poro-damage

mechanics in the commercial software ABAQUS through user-defined subroutines. We

first briefly present key details of ABAQUS implementation and then list the model pa-

rameters that are specific to modeling of glacier crevasses propagation. Next, we briefly

describe the effect of compressibility on glacier ice followed by a discussion on the model

geometry and boundary conditions for the two scenarios considered in our study, namely

grounded glacier and floating ice shelf.
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4.3.1 ABAQUS Implementation

We implement the extended cohesive zone formulation in the commercial software

ABAQUS and utilize the User Element (UEL) subroutine for modeling four-noded lin-

ear zero-thickness cohesive elements with two-point Gauss integration scheme; whereas,

the bulk (i.e., non-interface) elements are modeled using bilinear quadrilateral four-noded

plane strain continuum elements with four-point Gauss integration scheme. We choose in-

terface element sizes in such a way so that there are at least three interface elements within

the estimated cohesive process zone; this is necessary for an accurate representation of the

numerical stress distribution within the process zone at the point of initial crack propaga-

tion, as elaborated in [3]. User-element subroutines in ABAQUS typically require the user

to provide the stiffness matrix (AMATRX) and the right hand side (RHS) force vector. In

our implementation, we utilize the UEL subroutine to provide the cohesive element force

vector and stiffness matrix.

4.3.2 Ice properties and model parameters

The material properties for incompressible, linear elastic ice are taken as follows: the

elastic modulus E = 9500 MPa, the Poisson’s ratio ν = 0.4995, and the density as ρi= 917

kg/ m3. The CZM parameters chosen in our simulation studies are listed in Table 4.1. The

mode I and mode II fracture energies for the ice are taken from [186, 147]. For ensuring

the accuracy and convergence of crack analysis using the FEM with cohesive elements, two

conditions must be satisfied: (1) the element size must be less than the cohesive (process)

zone length, which is determined by fracture toughness and cohesive strength; and (2) the

cohesive stiffness must be large enough to avoid the introduction of artificial compliance.

An approximate value of the cohesive strength (σc) can be obtained by using the following

formula [187]
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lc ≈
EGIC

σ2
c

=
K2

IC(1−ν2)

σ2
c

, (4.19)

where lc is the length scale parameter and an indicator of the length of the fracture process

zone (FPZ) ahead of the crack tip, GIC is the Griffith fracture energy, and KIC is the fracture

toughness of the glacier ice. Based on the previous studies [147, 151] we have considered

cohesive strength in the range of 35-350 kPa and chose the length scale accordingly.

Table 4.1: Cohesive zone model parameters for ice.

α0
n α0

τ GIC GIIC σmax τmax
(N/m3) (N/m3) (Pa.m) (Pa.m) (kPa) (kPa)

1010 1010 12.63 12.63 {35-350} {35-350}

4.3.3 Compressibility of Glacier Ice

It is important to mention here that there is an ambiguity in the glaciological commu-

nity regarding the Poisson’s ratio for ice. This discussion has it’s roots in the fundamental

question: whether ice is an incompressible material or a compressible material. It has been

found that in laboratory conditions, ice shows a compressible behavior and researchers have

suggested that we should take 0.35 as Poisson’s ratio [188]; on the contrary the researchers

conducting field experiments on glaciers found that ice behaves as an incompressible ma-

terial and we should take 0.5 as Poisson’s ratio [183]. The compressible behavior can

be explained from the context of the fact that without initial overburden pressure, the ice

shelf experiences an initial volumetric contraction ∼ p0/K with bulk modulus K; whereas

this volumetric contraction does not occur in real ice shelves because ice can be well ap-

proximated as being incompressible at timescales longer than the Maxwell time [189]. To

address this issue, [190] accounted for an initial hydrostatic stress in a manner following

[191] wherein the equations of elasticity are solved for a perturbation stress tensor σ
′
i j de-

fined as the total (Cauchy) stress tensor plus the initial overburden pressure,
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σ
′
i j = σi j + p0δi j (4.20)

where the overburden pressure is as follows:

p0 = ρig(H− z) (4.21)

The inclusion of perturbation stress tensor is necessary to explain the physical behav-

ior of ice as described earlier. In this study, for both the grounded glacier and floating

ice shelves, we have addressed this issue and provided an observation-based guideline on

whether one should consider ice as compressible/incompressible material in A.

4.3.4 Model Geometry and Boundary Conditions

We perform a series of numerical studies using the augmented cohesive zone model

(CZM) to predict the evolution of water-filled surface crevasses in grounded glaciers and

floating ice-shelves. For the grounded glacier example, we consider an idealized rectangu-

lar glacier of length L = 500 m and height H = 125 m. For simplicity, we neglect lateral

shear and restrict the domain to a flow line near the terminus of a grounded glacier. The

glacier is grounded on a rigid, frictionless (free-slip) bed and terminates at either ground

or ocean depending on the seawater depth hw, as depicted in Fig. 4.5 . To discount the free

translation motion of the glacier, we apply a boundary condition to enforce zero horizontal

displacement at the left edge of the domain. The hydrostatic pressure from seawater is ap-

plied as a traction (Neumann) boundary condition normal to the right edge of the ice slab

with magnitude −ρsg〈hw− z〉. This loading configuration has glaciological significance

as it represents a land or marine-terminating glacier resting over a free-slip surface and

deforming under its self-weight.

For the floating ice shelf example, we consider an idealized, rectangular domain with

length L = 5000 m and height H = 125 m under plane strain assumptions, as depicted in
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Figure 4.5: (a) Loading configuration for the grounded glacier with height H =125 m and
length L =500 m and a no-slip boundary condition at the base. (b) Finite element mesh
used for discretizing the domain.

Fig. 4.6 for all the finite element simulations. A free-slip (roller) boundary condition is

applied to the left edge to prevent horizontal motion. A Robin-type boundary condition is

applied to the bottom domain edge in order to simulate buoyancy of the floating ice shelf

in seawater. Hydrostatic pressure is applied as a Neumann boundary condition to the right

domain edge with seawater level hw/H=ρi/ρs, which is the floating depth of ice.
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Figure 4.6: (a) Loading configuration for the floating ice shelf with height H =125 m and
length L =5000 m. (b) Finite element mesh used for discretizing the domain.

4.4 Numerical Examples

In this section, we present several examples to demonstrate the ability of the poro-

damage mechanics based augmented cohesive zone formulation in predicting crevasse

depth for grounded glaciers and floating ice shelves with surface crevasses. We also ad-

dress how the rheology, elastic modulus, and density parameters can affect the predicted

crevasse depth and what are their implications in real glaciers.
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4.4.1 Effect of Visco-elastic Rheology on Crevasse Depth Prediction

Researchers have shown that the material response of ice can be highly non-linear and

visco-elastic [192] and the rheology plays an important role in understanding the glacier

dynamics and making reliable predictions. Also, the tensile strength of ice is an important

parameter in determining crevasse depth or predicting calving events, but there is a great

uncertainty in estimating the correct value of it. A huge range of strength values have been

proposed by the researchers e.g.,0.7-3.1 MPa for laboratory and lake ice [193], 0.09-0.32

MPa for glacier ice [194], 0.03-0.08 MPa for single crevasses to be formed [148]. Thus,

in this section, we investigate and try to gain a better insight into the role of ice rheology

in predicting the crevasse depth for a grounded glacier and a floating ice shelf, respectively

while varying the cohesive strength in the range of 35-220 kPa. In order to achieve this

goal, we first modeled ice as a linear elastic material in case of a near flotation grounded

glacier and an ice shelf, and compared the predicted crevasse depth with the analytical

LEFM solution for different cohesive strength values as shown in Fig. 4.7 (a) and (c),

respectively. The key observations are as follows:

1. If we choose a lower cohesive strength of 35 kPa, the predicted crevasse depth shows

an excellent match with the LEFM solution in both the grounded glacier and the

floating ice shelf. Here, for small deformation, both the grounded glacier and floating

ice shelf matches well with the linear elastic solution.

2. For a higher cohesive strength of 220 kPa, the crevasse fails to propagate in both

grounded glacier and floating ice shelf. Whereas, for a cohesive strength of 110 kPa,

although the grounded glacier still don’t have any crevasse propagation, crevasse

suddenly starts to propagate in the floating ice shelf once the melt-water reaches

around 90%. This behavior can be explained from the fact that the stress state in a

near flotation grounded glacier is such that it is less likely to propagate a crevasse

than that in case of an ice shelf. In other words, a smaller threshold is enough to
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arrest the crack propagation in the near flotation grounded glacier.

3. The difference between the LEFM and cohesive zone model solution can be ex-

plained form the fact that in LEFM, there is no concept of finite cohesive strength at

the crack tip and essentially a stress singularity occurs there due to the presence of

infinite stress. Whereas, in reality the material has a plastic zone at the crack tip and

there is no such infinite stress present, cohesive zone model with a finite cohesive

strength is more appropriate to capture the non-linearity.

(a) (b)

(c) (d)

Figure 4.7: Surface crevasse depth ds normalized with the domain height H vs fresh water
levels hs normalized with the Surface crevasse depth ds using CZM for different cohesive
strength considering (a) linear elastic rheology of ice at near flotation grounded glacier, (b)
non-linear visco-elastic rheology of ice at near flotation grounded glacier, (c) linear elastic
rheology of ice at floating ice shelf, and (d) non-linear visco-elastic rheology of ice at
floating ice shelf. The results are compared with the analytically obtained LEFM solution.
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Now, we consider the effect of viscous strain in predicting the crevasse depth in addition

to the elastic strain. In order to do so, we followed the linear viscoelastic formulation

proposed by [152] for poly-crystalline ice, and implemented it in ABAQUS using a user-

defined material subroutine (UMAT). We assumed the viscosity coefficient parameter as

1.58825× 10−7 Pa-s, and the viscosity exponent parameter as 3 for non-linear visco-elastic

rheology. The results from near flotation grounded glacier and floating ice shelf are plotted

in Fig. 4.7 (b) and (d), respectively. The key observation is as follows:

1. unlike the linear elastic case, here if the crevasse is almost 100% filled with melt-

water, it propagates even for the higher cohesive strength values in the near flota-

tion case. For the floating ice shelf also, we see a similar behavior. Which can

be explained form the fact that the inclusion of viscous effects facilitated the crack

propagation by making sure the crack-separation in the cohesive zone exceeds the

maximum separation. As our damage model is developed on the separation-based

criteria, once the equivalent separation exceeds the maximum separation, the cohe-

sive elements fail and crack propagation occurs.

So, the extending question from this discussion is: why do we see crack propagation in

an ice shelf even for higher cohesive strength values considering ice as a non-linear visco-

elastic material unlike in the case when it is considered as linear elastic? To explain these

observations, we have performed a study on crack opening vs time and crevasse depth vs

time in an element near the crack tip for floating ice shelf. In Fig. 4.8 (a) and (b), how the

equivalent crack separation evolves over time in a crack tip element for linear elastic and

non-linear visco-elastic rheology, respectively have been plotted. The key observations are

as follows:

1. In the linear elastic case, we see that although for lower cohesive strength values,

the equivalent separation exceeds the maximum separation values (shown by dashed

lines) corresponding to respective cohesive strengths, for the 220 kPa case, it fails to
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reach that limit. As a result, for lower cohesive strengths, non-linearity gets intro-

duced in the model, and progressive damage accumulation happens, which further

facilitates crack propagation and complete failure of a cohesive element. Whereas,

in the 220 kPa case, the equivalent separation never reaches the maximum separation

limit, which is essential for a complete failure of an element and crack propagation;

thus we observe a crack arrest as shown in Fig. 4.7 (c). It is important to note that in

our model, we didn’t account for ice strengthening mechanisms, which can further

arrest cracks. In a future work, we can modify our present damage model to include

such effects.

2. Whereas, when we consider ice as a non-linear visco-elastic material, the equivalent

separation exceeds the corresponding maximum separation at the crack tip element

for all three cohesive strengths (see Fig. 4.8 (b)), and as result of that we observe

crack propagation in all three cases (see Fig. 4.7 (d)). The inclusion of time de-

pendent viscous strain into the model helps to increase the crack driving force and

once the separation exceeds the maximum separation limit, damage nucleation starts,

which culminates into the crevasse propagation in the ice shelf.

Another important point in this discussion is whether the crevasse propagation is a

time dependent effect and how the rate of crack propagation affects calving events? To

answer that, we have plotted the crack propagation vs time data for a crack tip element

in Fig. 4.8 (c) and (d). It can be clearly observed from Fig. 4.8 (d), for a non-linear

visco-elastic rheology, there is a delayed effect in the crack propagation depending on the

choice of cohesive strengths, but eventually in all the cases crevasse penetrates the whole

ice shelf, i.e., calving occurs. So, the effect of non-linearity is important to capture the time

dependent event, which can lead to periodic calving in the ice shelf.
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(a) (b)

(c) (d)

Figure 4.8: Equivalent Crack separation evalution over time in a crack tip element of a
floating ice shelf using CZM for different cohesive strength considering (a) linear elastic
rheology of ice, and (b)non-linear visco-elastic rheology of ice; Rate of crevasse propaga-
tion in a crack tip element of a floating ice shelf using CZM for different cohesive strength
considering (a) linear elastic rheology of ice, and (b)non-linear visco-elastic rheology of
ice

4.4.2 Effect of Elastic Modulus on Crevasse Depth Prediction

Now, we try to address the uncertainty regarding the choice of Young’s modulus value

for glacier ice. This is important because it has been established in the literature [195]

that the elastic stress is dependent on the modulus of elasticity and thus can directly affect

one’s choice of tensile strength/cohesive strength parameter for reliable simulations. We

have found that the researchers have considered a range of values as elastic modulus of ice

(e.g., 4-10 GPa [196], 1-10 GPa [197]). In this work, we have chosen two representative
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elastic modulus values (1 GPa and 9.5 GPa, respectively), and test the sensitivity effects by

varying cohesive strengths in the range of 35-220 kPa for near flotation grounded glacier

and floating ice shelf, considering non-linear visco-elastic rheology. We plot the crevasse

depth ratio vs freshwater depth ratio data obtained from the CZM model for grounded

glacier and floating ice shelf in Fig. 4.9. The key observations are as follows:

1. For both the near flotation grounded glacier and the floating ice shelf, the predicted

crevasse depth is sensitive to the choice of elastic modulus for higher cohesive strength

values. Whereas, for a low cohesive strength, the crevasse depth is insensitive to

the elastic modulus of ice. This observation highlights the fact that the researchers

should be careful while choosing the elastic modulus of ice for modeling purpose,

as depending on the choice of tensile strength/cohesive strength, the crevasse depth

prediction can vary.
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Figure 4.9: Surface crevasse depth ds normalized with the domain height H fresh water
level hs normalized with the Surface crevasse depth ds obtained from the CZM solution for
varying elastic modulus: Near flotation grounded glacier (a) 35 kPa, (b) 110 kPa, and (c)
220 kPa; Floating ice shelf (d) 35 kPa, (e) 110 kPa, and (f) 220 kPa.
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In Fig. 4.10, we plotted the crevasse depth ratio vs fresh water depth ratio data for the

near flotation glacier and floating ice shelf considering non-linear visco-elastic rheology of

ice and elastic modulus values as 1 GPa and 9.5 GPa, respectively. From this figure, we

observe the following:

1. If we choose the elastic modulus as 1 GPa, for both near flotation grounded glacier

and floating ice shelf, the crevasse depth prediction is insensitive towards the choice

of cohesive strength. In all the cases, the crevasse propagates and we don’t ob-

serve any crack arrest phenomena. Whereas, if we choose the elastic modulus as 9.5

GPa, as we have discussed earlier there is sensitivity towards the choice of cohesive

strength as well as the boundary condition.

4.4.3 Effect of Variation in Density and Temperature with Depth on Crevasse Depth Pre-

diction

In this section, we investigate the role of variation in density with the height in pre-

dicting crevasse depth, i.e., whether one should consider a constant density all through

the depth of the glacier ice, or change it along the depth? This issue stems from the fol-

lowing discussion: in the models of [146, 145] the ice density is assumed constant and

the compressive overburden stress increases linearly with depth below the surface. How-

ever as pointed out by [144], the near-surface density of firn is considerably smaller (≈

350 kg/m3) than that of solid ice (≈ 917 kg/m3). Consequently, the crevasse-closure ef-

fect from ice overburden may be over-estimated in prior models, in particular for shallow

crevasses. A more appropriate approach is to explicitly include a density–depth profile to

account for the lower densities in the upper firn layers. In order to do so, we followed

the approach proposed in the work of [147], and considered the empirical relationship pro-

posed by [186] to describe the variation of ice density with the depth. In Fig. 4.11, we

have plotted the crevasse depth predicted by the CZM approach for constant and variable
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(a) (b)

(c) (d)

Figure 4.10: Surface crevasse depth ds normalized with the domain height H vs fresh water
level hs normalized with the Surface crevasse depth ds obtained from the CZM simulation
considering nonlinear visco-elastic rheology of ice : (a) E=1 GPa at near flotation grounded
glacier, (b) E=9.5 GPa at near flotation grounded glacier, (c) E=1 GPa at floating ice shelf,
and (d) E=9.5 GPa at floating ice shelf. The results are compared with the analytically
obtained LEFM solution.

density cases by varying cohesive strength and freshwater present inside the crevasse in a

near flotation grounded glacier. The key observations are as follows:

1. If we don’t consider the variation in density with the depth, we tend to significantly

overestimate the crevasse depth. This can be explained from the fact that when we

consider the density is varying along the depth, the glacier is subjected to a smaller

gravity load, and correspondingly the acting overburden stress is smaller, which leads

to lesser number of cohesive elements exceeding the maximum crack separation
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criteria unlike in the constant density case. When freshwater is present inside the

crevasse and the cohesive strength is low, for a higher seawater cases, we even don’t

see any crack propagation in the variable density case, whereas the constant den-

sity case still has crack propagating. It can be explain from the fact that, when the

cohesive strength is lower, the equivalent crack separation can cross the maximum

separation threshold in the constant density case and the damage accumulation cul-

minates into the crevasse propagation. Whereas, for a higher cohesive strength, the

separation in a crack tip element fails to exceed the maximum separation threshold

and subsequently we see crack arrest when the seawater depth is around 90%.

Now, as an extending discussion, we try to answer what is the possible effect of variable

temperature and density, when combined on the crevasse depth prediction in a floating ice

shelf. This is important to study because it is found that there can be water present at the

base of the Antarctic ice shelves, while the top surface of the ice shelf can have much

lower temperature, creating a poly-thermal ice shelf. In order to capture such polythermal

behavior, we have considered the viscosity coefficient (KN) to be dependent on temperature

in the non-linear visco-elastic model. The viscosity coefficient is given by an Arrhenius

type relation [198]

KN(T ) = KN(Tm)exp(
−Q
R

(
1
T
− 1

Tm
)), (4.22)

where Q is the creep activation energy, R is the universal gas constant, and KN(Tm) is

the viscosity coefficient at a reference temperature Tm. Here, we have conducted a set

of simulations by varying the freshwater present in the crevasse (0% and 90%) and the

cohesive strength in the range of 35-220 kPa. The final crevasse depth ratio values are

listed for both the cases in Tables 4.2 and 4.3, and the key observations are as follows:

1. For the dry crevasse, when the temperature and density, both are constant along the

depth, there is crack arrest in the floating ice shelf, unlike the variable temperature

and variable density case. So, this shows that the variation of temperature and density
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(a) (b)

(c) (d)

Figure 4.11: Surface crevasse depth ds normalized with the domain height H for varying sea
water levels hw normalized with the domain height H obtained from the CZM solution of
grounded glacier for constant and variable density of ice over the depth: (a) dry crevasse for
cohesive strength of 35 kPa, and (b) 90% freshwater in the crevasse for cohesive strength
of 35 kPa (c) dry crevasse for cohesive strength of 220 kPa, and (d) 90% freshwater in the
crevasse for cohesive strength of 220 kPa

along the depth of the ice shelf provides an additional crack driving force, which

helps in propagating crevasse, and as the cohesive strength increase the maximum

crevasse depth increases.

2. When there is 90% freshwater present in the crevasse, if the temperature and density

both varies, complete penetration/calving can occur in the ice shelf, unlike the con-

stant density and temperature case. In the constant density and temperature case, as

the cohesive strength is increased the extent of crevasse propagation decreases, sug-
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gesting the stress state in the ice shelf gradually becoming suitable for crack arrest.

Table 4.2: Effect of density and temperature on final crevasse depth ratio in floating ice
shelf with a dry crevasse.

Cohesive Strength (kPa) Constant Temperature and Density Variable Temperature and Density
35 0.08 0.116

110 0.08 0.209
220 0.08 0.225

Table 4.3: Effect of density and temperature on final crevasse depth ratio in floating ice
shelf with 90% freshwater present in the crevasse.

Cohesive Strength (kPa) Constant Temperature and Density Variable Temperature and Density
35 0.816 1

110 0.68 1
220 0.08 1

4.5 Conclusions

We have proposed a poro-damage mechanics based cohesive zone approach for mod-

eling hydro-fracture and crevasse propagation in glaciers. In our formulation, we interpret

damage to represent the ratio of isotropic void area to total area along the cohesive interface,

we assume that water can permeate the damaged material and exert hydro-static pressure

along the interface. The proposed model has been implemented in the commercial software

ABAQUS through user-defined subroutines. In this work, we investigate the influence of

ice rheology and the tensile strength on crevasse penetration in glaciers and ice shelves by

performing a series of numerical studies using the augmented cohesive zone model (CZM).

We also address the effect of variation of density and temperature along the depth on ac-

curate prediction of crevasse depth in grounded glaciers and floating ice-shelves. The key

findings from our study can be summarized as follows:

1. If the ice is modeled as a linear elastic material, the predicted crevasse depth from

the nonlinear CZM model shows an excellent match with the analytical LEFM solu-
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tion in both glaciers and ice shelves. We also observe that the threshold strength for

crack arrest in the grounded glacier is much lower than the ice shelf, indicating the

ice shelves are more vulnerable to the calving events. Whereas, if we model ice as a

non-linear visco-elastic material, the threshold strength for crack arrest in grounded

glacier increases significantly. To support this observation, we investigated the evolu-

tion of crack separation in a crack tip element, and saw that the inclusion of viscous

effects into the model facilitates failure of more cohesive elements, increasing the

risks of crevasse propagation.

2. The choice of elastic modulus can significantly affect the predicted crevasse depth in

both grounded glaciers and floating ice shelf. Our study finds that a lower elastic

modulus value is insensitive to the choice of cohesive strength unlike the higher

elastic modulus value. It shows that a choice of lower elastic modulus is more likely

to cause a calving event in comparison to the higher elastic modulus case.

3. If we consider a variable density profile along the height of a glacier, the predicted

crevasse depth gets lowered significantly in comparison to a constant density case.

Whereas, in the ice shelf, as we vary both temperature and density along the height to

represent real scenario, the chances of calving increases significantly in comparison

to the constant temperature and density model.
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Chapter 5

CONCLUSIONS

This dissertation presented robust damage mechanics-based cohesive zone modeling

approaches and their applications to composite delamination and hydrofracturing of glaciers.

A stabilized Nitsche-based finite element approach is developed and it’s accuracy, stability

for composite delamination analysis through numerical validation and verification stud-

ies is established. A poro-damage mechanics-based cohesive zone modeling approach for

simulating hydrofracture in glaciers is also developed in thus study.

In Chapter 2, A stabilized finite element method that generalizes Nitsche’s method

for enforcing stiff anisotropic cohesive laws with different normal and tangential stiff-

ness is presented. For smaller values of cohesive stiffness, the stabilized method resem-

bles the standard method, wherein the traction on the crack surface is enforced as a Neu-

mann boundary condition. Conversely, for larger values of cohesive stiffness, the stabilized

method resembles Nitsche’s method, wherein the cohesive law is enforced as a kinematic

constraint. Several numerical examples, in two-dimensions, are presented to compare the

performance of the stabilized and standard methods. The results illustrate that the stabilized

method enables accurate recovery of crack-face traction for stiff isotropic and anisotropic

cohesive laws; whereas, the standard method is less accurate due to spurious traction os-

cillations. Also, the stabilized method could improve computational efficiency by allowing

the use of larger displacement increment in mixed-mode fracture simulation owing to its

stability and accuracy.

In Chapter 3, the ability of a stabilized finite element method, inspired by the weighted

Nitsche approach is demonstrated to alleviate spurious oscillations in the traction fields at

interlaminar interfaces in multi-ply multi-directional composite laminates. This is achieved

by defining a weighted interface traction such that it allows a gradual transition from the
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penalty-like method for soft elastic contact to the Nitsche-like method for rigid contact. To

investigate numerical stability, several simulation studies involving constant strain patch

tests and benchmark delamination tests under mode-I, mode-II and mixed-mode loadings

are conducted. The results show clear evidence of traction oscillations with the standard

method with structured and perturbed finite element meshes, and that the stabilized method

alleviates these oscillations, thus illustrating its robustness.

In Chapter 4, hydrofracture-driven crevasse propagation in idealized glaciers and ice

shelves using cohesive zone models based on the notion of poro-damage mechanics is in-

vestigated. The poro-damage cohesive zone model describes nonlinear fracture initiation

and propagation along the potential crevasse interface, including the effect of hydrostatic

pressure for a water-filled crevasse. Two commonly used rheological models for glacier

ice, namely linear elastic and nonlinear viscoelastic, are considered and their predictions

of crevasse depths are compared. Also the parametric sensitivity of crevasse depth pre-

dictions with respect to elastic modulus and tensile (cohesive) strength parameters are ex-

plored, and its implications for calving from glaciers and ice shelves are discussed. Finally,

the consequences of varying density and temperature profiles on crevasse penetration are

investigated. The major finding is that non-linear visco-elastic ice is more prone to calv-

ing than when modeled as a linear elastic one. It is also observed that depending on the

choice of elastic modulus, there can be a significant sensitivity towards the choice of tensile

strength. As a future work on this topic, the proposed model can be validated with relevant

experiments.
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Appendix A

Effect of Poisson’s Ratio on Glacier Ice

For decades, there have been many studies and discussions on determining the com-

pressibility of ice [199, 188] as it is an important property to be known to get an accurate

numerical model, which can capture the physics of the problem. So, here we investigate

for a grounded glacier, whether ice should be considered as an in-compressible material

or a compressible material? To answer this question, we ran a couple of test cases with

varying sea-water level to compare the different stress-components arising in the grounded

glacier for two scenarios: (i) assumed ice as an in-compressible elastic material; and (ii)

assumed ice as a compressible material and considered Cathles’s theory to account for the

initial overburden pressure correction as suggested by [190]. In Tables A.1 and A.2, the

normalized root mean square (NRMS) error of each stress components between the above

mentioned scenarios has been listed for varying seawater levels (0% and 90%) at the right

terminus, respectively. The normalized error norm is calculated as

||εSi j ||2
||S∗i j||2

=

√
∑

NGP
k=1

(
Sk

i j−S∗ki j

)2

√
∑

NGP
k=1

(
S∗ki j

)2
; (A.1)

where NGP is the total number of Gauss (integration) points in the bulk elements, Si j is

the stress component obtained from Cathles’s theory, and the reference stress component

from incompressible elastic theory is denoted by S∗i j, respectively. The results clearly in-

dicate that for a range of Poisson’s ratio values varying from 0-0.495, the stress solutions

from incompressible elastic material assumption agrees extremely well with the compress-

ible elastic material consideration accounting for the Cathles’s theory based corrections.
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Thus, it can be safely concluded that we can assume ice as an incompressible material for

simulating the grounded glacier and don’t have to account for the Cathles’s theory to get

accurate predictions.

Table A.1: NRMS error of each stress component for grounded glacier for zero seawater
level.

Poisson’s Ratio
||εS11||2
||S∗11||2

||εS12||2
||S∗12||2

||εS22||2
||S∗22||2

0 0.0053 0.0056 0.0015
0.1 0.0053 0.0056 0.0018
0.2 0.0053 0.0056 0.0018

0.35 0.0053 0.0056 0.0018
0.495 0.0051 0.0055 0.0009

Table A.2: NRMS error of each stress component for grounded glacier for 90% seawater
level.

Poisson’s Ratio S11 S12 S22
||εS11||2
||S∗11||2

||εS12 ||2
||S∗12||2

||εS22||2
||S∗22||2

0 0.0045 0.0271 0.0009
0.1 0.0045 0.0271 0.001
0.2 0.0045 0.0271 0.001
0.35 0.0045 0.0271 0.0009

0.495 0.0045 0.0272 0.0009

We conducted a similar study for the floating ice shelf. The results follows a similar

trend as observed in the grounded glacier case as evident from Table A.3, and we can thus

safely assume ice as an in-compressible material for all the simulations.
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Table A.3: NRMS error of each stress component for floating ice shelf.

Poisson’s Ratio S11 S12 S22
||εS11||2
||S∗11||2

||εS12||2
||S∗12||2

||εS22||2
||S∗22||2

0 0.0004 0.0029 0.0003
0.1 0.0004 0.0029 0.0004
0.2 0.0004 0.0029 0.0004

0.35 0.0004 0.0029 0.0004
0.495 0.0002 0.0017 6.2×10−5
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