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CHAPTER 1

Introduction

1.1 A Mathematical Theory of Compression

Digital data is doubly finite. Not only are we constrained to store finite length sequences, each element

in the sequence can only take one of finitely many values. So, while signals are typically understood to

exist as vectors in some vector space, only a finite subset of that vector space is accessible. The problem

of data compression is, at its core, finding efficient representations of large classes of signals in a way that

maximizes our finite allotment of memory.

Every digitally stored signal is accompanied with an understanding of what the doubly finite sequence

represents. The process of converting from stored digital data to a meaningful object is called reconstruc-

tion. In the simplest case, one may understand the sequence of numbers to represent the coefficients in a

basis expansion of a vector space. However, one could consider other - e.g. non-linear or redundant lin-

ear - reconstruction methods for our stored data. In these alternate settings, the mathematical theory of

compression is extremely rich and presents many avenues for finding highly condensed representations.

One of the central objects of study is the quantization alphabet. Recalling that each element in our

sequence can take only one of finitely many values, the quantization alphabet is the set of these possible

values. For example, if we are working with binary data, the quantization alphabet is the set A � t0, 1u.
Every element in a binary sequence must either be a 0 or a 1.

Now, if V is some vector space, reconstruction of a signal from stored digital data is a rule that maps

ϕ : Am Ñ V . In this language, non-linear and redundant linear reconstruction refer to properties of the

reconstructing function ϕ. We study non-linear and redundant linear representations throughout this thesis.

This thesis is divided into three main parts. In the first two Chapters we discuss compression of an

already attained signal while in the final Chapter we discuss the design of the acquisition process when the

signal is known to already be compressed. In Chapter 2 we study compression with non-linear reconstruction

in order to quantize neural networks. In Chapter 3 we study compression with redundant linear quantization

by developing theory of the existence of highly structured frames. In Chapter 4 we turn our attention away
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from finding compressed representations to investigate a new technique for acquiring a signal that is known

to be sparse.

The focus of Chapter 2 is the study of quantization of neural networks. The stored parameter vector

for a neural network is a list of the weights and biases that define the network’s action. Neural networks

historically have been trained with stochastic gradient descent which results in networks whose weights are

floating point. However, it is generally understood that neural networks are heavily over parameterized

meaning most of the weights are redundant or otherwise superfluous. Because of this fact, we are motivated

to study ways to compute highly compressed neural networks. This research direction is not novel - many

researchers have proposed various neural network quantization algorithms - but our approach to the problem

is. We propose a gradient descent alternative for lattice constrained optimization of differentiable functions:

stochastic Markov gradient descent (SMGD). In addition to achieving experimental success in quantizing

neural networks, SMGD is among the first such algorithms to have theoretical convergence analysis.

Frame theory and quantization of redundant linear representations is the content of Chapter 3 of this

thesis. While frames are precisely defined objects, finite frames for Rd are nothing more than finite spanning

sets. If f1, . . . , fm P Rd,m ¡ d are the frame vectors, the map

px1, . . . xmq ÞÑ
m̧

i�1

xif
i

is a redundant linear representation of a vector in Rd. If we wish to find quantized representations, our

goal is to find px1, . . . , xmq in Am, the finite set of digital signals, which is close to a fixed signal after

reconstruction. Many techniques to solve this problem use error diffusion to exploit the inherent linear

structure. We analyze the frames directly and show that a highly structured class of frames exists that allows

for extremely efficient error diffusion.

Finally, in Chapter 4 we turn our attention to the very closely related problem of efficient acquisition of

compressed signals. This work belongs to the field of compressed sensing. A vector is sparse with respect

to a basis if most of the coefficients are zero when expanded in that basis. Sparse signals are important

because they are a naturally compressed representation - we need only store the locations and values of the

non-zero entries - and because many important real world signal classes are naturally sparse when expanded

in the correct basis. Sparse signals have advantageous properties when it comes to signal acquisition. In

general, a vector in Rm requires m linear measurements to acquire/recover. However, if we know the vector
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we are measuring is sparse, we may use far fewer than m measurements to determine the vector uniquely.

We introduce a new tool to be used in compressed sensing that allows for more accurate ad efficient signal

acquisition.
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CHAPTER 2

Compression of Neural Networks

2.1 Introduction

Our first topic of study is the quantization of neural networks. Neural networks are a widely used tool

for classification and regression tasks, [25, 24]. Given training data txjumj�1 � Rd and a set of labels

tljumj�1 � R, the general goal is to learn a function y that explains the training set by

ypxjq � lj .

Neural networks address this by using a specially structured output function ypxq � ypx,wq that is

parametrized by a high-dimensional vector w P Rn of weights and biases. In a standard feedforward

neural network, y is an iterated composition of nonlinear activations and affine maps [17]. More generally,

when the training data consists of objects with particular structure, such as images or time series, the output

function y may incorporate additional components such as convolutional neurons [25] or feedback [20].

The universal approximation Theorem [10] and later advances, e.g., [11, 34, 36, 37], provide a theoreti-

cal foundation for neural networks, and show that weight parameters w can be selected so that the network

output y expresses a wide class of input-output relationships. While neural networks enjoy approximation-

theoretic power, the large size of the network weight set w creates nontrivial practical challenges during

implementation:

• Nonconvexity of the cost function leads to non-unique minima during training.

• Slow training times can occur due to the large number of network parameters.

• Large networks yield slow signal propagation and consequently slow classification.

• Large amounts of memory are needed to store the network parameters.

These computational burdens have motivated the study of quantized neural networks. In a standard neu-

ral network, the weight parameters w are full-precision floating point numbers. Instead, quantized neural
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networks use weight parameters that are intentionally represented using only a small number of bits. For ex-

ample, in the extreme case of binary neural networks, each weight only contains a single bit of information

and so is constrained to take one of only two possible values.

It has been shown recently, [9, 38, 31], that quantized neural networks can match the state-of-the-art

performance obtained by comparably-sized full-precision neural networks. Somewhat paradoxically, over-

parametrization creates computational challenges for implementing neural networks, but it also provides

flexibility which allows heavily quantized, even one-bit, networks to perform well. Moreover, the use of

low-bit neural networks reduces the memory requirements needed to store network parameters, can be used

to speed up signal propagation through networks [31], and can also be viewed as having a regularizing effect.

In this work, we address two aspects of the neural network quantization program. First, we introduce a

method, stochastic Markov gradient descent (SMGD), that produces neural networks that are low-memory

during training as well as at run-time. For comparison, in [22] network weights are quantized at run-time

but the method requires storage of full-precision auxiliary weights for the parameter update step during

training which results in increased train-time memory requirements. Later works, [38], produce smaller

run-time memory requirements by quantizing gradients and activations. Moreover, this has the effect of

faster training because quantized gradients and activations allow access to bitwise operations during both

the forward and the backward pass. We place particular emphasis on the memory requirements during the

training phase since existing quantization methods typically require increased memory requirements during

network learning. Our method is the first to our knowledge that allows training of highly-accurate networks

while memory is constrained at both train and run-time.

Secondly, the theoretical understanding of quantized neural networks is still being developed. The prob-

lem of neural network quantization forces one to solve a discrete optimization problem in extremely high

dimensions rather than a continuous problem. This high dimensionality disallows the use of many standard

discrete optimization techniques. Therefore, existing methods often involve an ad hoc blend of gradient-

based methods and discrete optimization techniques. For example, [16] uses k-means to cluster similar

weights together before quantization. The algorithm in [9] quantizes weights during the forward pass while

applying the gradient descent update to full-precision, pre-quantized weights. More recent methods [38, 22]

generally involve a mild variation on this last idea to achieve goals including quantized gradients, activa-

tions, or to apply these ideas to recurrent neural networks. The work in [35] quantizes neural networks using

an approach based on blended coarse gradient descent. Towards a more theoretically robust understanding,
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the work in [21] incorporates quantization error directly into the cost function. Our approach is based on a

simple probabilistic variation of stochastic gradient descent, and proves theoretical performance guarantees

which are highly coincident with their counterparts in traditional stochastic gradient descent. These results

give us intuition for how the networks learn and yield evidence for the effectiveness of stochastic Markov

gradient descent as a tool for quantizing neural networks.

The main contributions of this Chapter are:

• We introduce stochastic Markov gradient descent (SMGD) for producing neural networks whose

weights are fully quantized during both training and at run-time, allowing one to learn accurate net-

works in low-memory environments, see Section 2.3.

• We prove theoretical performance guarantees for SMGD in a general setting and draw strong compar-

isons to comparable results for stochastic gradient descent, see Theorems 2.4.1 and 2.5.1.

• We numerically validate the SMGD algorithm and show that it performs well on various benchmark

sets for image classification, see Section 2.7

• We highlight the setting where memory is constrained during training, and show there are instances

where networks trained by SMGD can outperform full-precision networks in a bit-for-bit comparison.

The remainder of the Chapter is organized as follows. Section 2.2 covers some necessary background

information on gradient descent and neural network training. Section 2.3 introduces the SMGD algorithm

and gives a brief discussion of intuition for why the algorithm works. Section 2.4 proves our first main

results on the behavior of the cost function fpxtq under iterations of SMGD, see Theorem 2.4.1. Section

2.5 proves our next main results on rates of convergence for the iterates xt of SMGD in the special case of

strongly convex cost functions f , see Theorem 2.5.1. Section 2.6 collects several corollaries of our main

results to illustrate the performance of SMGD in the non-stochastic setting, i.e., when we have access to

the gradient itself. Section 2.7 contains numerical results which show that SMGD performs well in various

settings.
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2.2 Background: stochastic gradient descent

Neural network training is the process of using labelled training data tpxj , ljqumj�1 to determine a good

choice of network parameters w. Training is typically formulated as a minimization problem

min
wPRn

fpwq, (2.1)

where f : Rn Ñ R is a cost function associated to the network and training data. In machine learning in

particular, f is often of the form

fpwq � 1

m

m̧

i�1

f ipwq, (2.2)

where f ipwq measures an error between the label li and the network output ypxi, wq for the ith piece of

training data.

The backpropogation algorithm allows efficient computation of ∇f ipwq, a portion of the gradient of

our cost function, which in turn opens the toolbox of gradient-based methods for model selection. Standard

gradient descent is an iterative method which addresses (2.1) by making updates in the direction of the

negative gradient. However, because of the form (2.2), even if ∇f i may be efficiently computed, it may be

slow to compute the entirety of ∇f if m is relatively large. In practice, m is often extremely large as we

have access to larger and larger data sets to learn from.

Given a differentiable function f : Rn Ñ R, we say that a stochastic function G : Rn Ñ R is an

unbiased estimator of ∇f if ErGpxqs � ∇fpxq where the expectation is with respect to the realization of

G. In the case when f is of the form (2.2), typical examples of unbiased estimators G are:

• Uniform. Draw i uniformly at random from t1, � � � ,mu and let Gpxq � ∇f ipxq.

• Mini-batch estimates. Draw k distinct integers i1, � � � , ik uniformly at random without replacement

from t1, � � � ,mu, and let Gpxq � 1
k

°k
j�1 ∇f ij pxq.

Stochastic gradient descent (SGD) addresses the minimization problem (2.1) by updating the parameter

vector wt at step t with the following the iteration

wt�1 � wt � λ Gtpwtq, (2.3)

whereGtpwtq is an unbiased estimate of ∇fpwtq at iterate t of SGD. We consider the case when the learning

7



rate λ P p0,8q is constant, but it is also common to vary the learning at each iteration. Convergence

properties of stochastic gradient descent are well-studied, especially for machine learning, e.g., [13, 23, 27,

28].

2.3 Stochastic Markov Gradient Descent

In this Chapter, our goal is to minimize a differentiable function f : Rn Ñ R constrained to a scaled

lattice αZn given access to unbiased estimators of the gradient ∇f . Our approach, stochastic Markov gradi-

ent descent (SMGD), generalizes the least squares Markov gradient descent algorithm that was introduced

for digital halftoning in [33], and is a variant of SGD where additional randomness is employed to allow

the iterates to remain on the lattice. Throughout the remainder of this work, we let Gt denote an unbiased

estimator of the gradient at step t. We generally use subscripts to denote coordinates of vectors, so that

xti denotes the ith coordinate of xt P Rn and Gtpxtqi denotes the ith coordinate of the unbiased estimator

Gtpxtq of ∇fpxtq.
The stochastic Markov gradient descent algorithm is described below.

Stochastic Markov Gradient Descent (SMGD)
Input: f : Rn Ñ R, stepsize α, initial x0 P αZn, number of iterations T , normalizer η ¡ 0
Output: xT P αZn, an estimate of the minimizer

for t � 1, . . . , T iterations do
Compute an unbiased estimator Gtpxtq of the gradient vector ∇fpxtq
for each coordinate xti do

Let ∆t
i be a Bernoulli random variable with Pr∆t

i � 1s � minp��Gtpxtqi�� {η, 1q
Update xt�1

i � xti � α � sgnpGtpxtqiq∆t
i

end for
end for

We shall make the following probabilistic assumptions for SMGD throughout the Chapter:

• We assume that G is an unbiased estimator for ∇f , and that tGtuTt�1 are independent identically

distributed versions of G.

• We assume that each unbiased estimator Gt is independent of xt, so that

ErGtpxtq|xts � ∇fpxtq. (2.4)

Our analysis will require a slightly stronger independence assumption than (2.4). Let E t denote the

8



event }Gtpxtq}8 ¤ η. We assume further that

ErGtpxtq|xt, E ts � ∇fpxtq. (2.5)

• We assume that the conditional distribution of ∆t
i given Gt and xt is a Bernoulli distribution with

Pr∆t
i � 1 |Gt, xts � minp��Gtpxtqi�� {η, 1q. (2.6)

Standard stochastic gradient descent (2.3) makes updates that move non-discretely in the negative gra-

dient direction �∇fpxtq in expectation. However, SGD does not in general produce solutions xt that are

constrained to the lattice αZn. To remain constrained to the lattice αZn, one should only make discrete

updates in each direction. Therefore, SMGD instead updates each coordinate of xt by a fixed amount with

some probability chosen so that the expected update remains in the same direction as SGD. To see this, note

that if E t is the event that }Gtpxtq}8 ¤ η then, by (2.5) and (2.6), one has

Erxt�1
i |xt, E ts � Erxti � α � sgn

�
Gtpxtqi

�
∆t
i |xt, E ts

� E
�
Erxti � α � sgn

�
Gtpxtqi

�
∆t
i |xt, Gt, E ts

���xt, E t�
� E

�
xti � α � sgn

�
Gtpxtqi

� |Gtpxtqi|
η

���xt, E t�

� xti �
α

η
E
�
Gtpxtqi

���xt, E t�

� xti �
α

η

Bf
Bxi px

tq. (2.7)

In view of (2.7), SMGD can be seen as a modification of SGD that keeps iterates xt on αZn by introduc-

ing extra noise at each update step. For this reason, the majority of our error analysis will occur conditioned

on the event E t which led to the interpretation (2.7). There are similarities between the lattice resolution α

in SMGD and the learning rate in standard SGD; we shall see that some convergence properties of SMGD

rely on α in the same way that SGD relies on the learning rate, e.g., see Theorem 2.5.1.

Stochastic Markov gradient descent follows the nomenclature used for least squares Markov gradient

descent in [33]. In particular, since the estimators Gt are independent, SMGD generates a random walk on

αZn that is a Markov process.
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2.4 Error estimates: cost function bounds

This Section presents Theorems that control how much the cost function f decreases at each iteration

of SMGD. Our first main Theorem, Theorem 2.4.1, provides an upper bound on the expected value of

fpxt�1q in terms of gradient information. We assume that the gradient of f is L-Lipschitz continuous, i.e.,

}∇fpxq �∇fpyq} ¤ L}x� y}.

Theorem 2.4.1. Suppose the cost function f : Rn Ñ R has L-Lipschitz gradient ∇f . Suppose Gt are

independent versions of an unbiased estimator G for ∇f . Let E t denote the event that }Gtpxtq}8 ¤ η. The

iterate xt�1 of SMGD satisfies

E
�
fpxt�1q |xt, E t� ¤ fpxtq � Lα2

2η
E
�}Gpxtq}1 |xt, E t�� α

η
}∇fpxtq}22. (2.8)

The proof of Theorem 2.4.1 is given in Section 2.4.1. Section 2.4.2 gives further insight into Theorem

2.4.1 in the special case of gradient estimators using mini-batches.

2.4.1 Proof of first main theorem

Gradient-based methods implicitly approximate cost functions by linear surrogates and use this approx-

imation to move towards a minimum. Lipschitz continuity of the gradient is a frequent assumption in SGD

literature because it controls the quality of linear approximation. We shall use the following standard lemma,

e.g., [30].

Lemma 2.4.2. Let f : Rn Ñ R be differentiable and suppose that ∇f : Rn Ñ Rn is L�Lipschitz. If

Dpfpxq denotes the directional derivative of f in the direction p at x, then

��fpxq � }p}2Dp{}p}2fpxq � fpx� pq�� ¤ L}p}22
2

. (2.9)

We use a specific case of Lemma 2.4.2 where p is of a form applicable to SMGD. Recall that the SMGD

iterates xt are defined component-wise by

xt�1
i � xti � α sgnpGtpxtqiq∆t

i. (2.10)

Since each ∆i P t0, 1u is a Bernoulli random variable, let Ωt � ti P t1, 2, � � � , nu : ∆i � 0u denote
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the set of indices for which ∆i is nonzero. Namely, Ωt contains the indices of the coordinates in which xt

undergoes an update, and (2.10) can be written in vector form as xt�1 � xt � ut, where

ut � �α
¸
iPΩt

sgn
�
Gtpxtqi

�
ei (2.11)

and teiuni�1 is the canonical basis for Rn.

Corollary 2.4.3. Let f : Rn Ñ R be differentiable everywhere and suppose that ∇f : Rn Ñ Rn is

L�Lipschitz. The iterates xt of SMGD satisfy

fpxt�1q ¤ fpxtq � Lα2|Ωt|
2

� α
¸
iPΩt

sgn
�
Gtpxtqi

� Bf
Bxi px

tq. (2.12)

Proof. Apply Lemma 2.4.2 with x � xt and p � ut and note that }ut}22 � α2|Ωt|.

For the proof of Theorem 2.4.1, we need two lemmas that compute conditional expectations of the terms

in (2.12).

Lemma 2.4.4. Let f : Rd Ñ R be a cost function and suppose Gt are unbiased estimators of ∇f . Let E t

denote the event that }Gtpxtq}8 ¤ η. Then SMGD satisfies

E
�|Ωt| | xt, E t� � 1

η
E
�}Gtpxtq}1 | xt, E t� .

Proof. Let ∆t
i be the Bernoulli random variable with parameter 1

η

��Gtpxtqi��, as in the definition of SMGD.

Observe that |Ωt| � °n
i�1 ∆t

i, so that by (2.5) we may expand

E
�|Ωt| ��xt, E t� � ņ

i�1

E
�
∆t
i

�� xt, E t� � ņ

i�1

E
�
Er∆t

i | Gt, xts
��� xt, E t�

�
ņ

i�1

E

�
1

η

��Gtpxtqi�� ��� xt, E t
�

� 1

η
E

�
ņ

i�1

��Gtpxtqi�� ��� xt, E t
�

� 1

η
E
�}Gtpxtq}1 �� xt, E t� .

11



Lemma 2.4.5. Let f : Rd Ñ R be a cost function and suppose Gt are unbiased estimators of ∇f . Let E t

denote the event that }Gtpxtq}8 ¤ η. Then

E

�¸
iPΩt

sgn
�
Gtpxtqi

� Bf
Bxi px

tq
��� xt, E t

�
� 1

η
}∇fpxtq}22. (2.13)

Proof. Let ∆t
i be the Bernoulli random variable with parameter 1

η

��Gtpxtqi��, as in the definition of SMGD.

Recall that |Ωt| � °n
i�1 ∆t

i, and compute

E

�¸
iPΩt

sgn
�
Gpxtqi

� Bf
Bxi px

tq
���xt, E t� � E

�
E

�¸
iPΩt

sgn
�
Gtpxtqi

� Bf
Bxi px

tq
��� Gt, xt, E t

� ���xt, E t
�

� E

�
E

�
ņ

i�1

∆t
i � sgn

�
Gtpxtqi

� Bf
Bxi px

tq
��� Gt, xt, E t

� ��� xt, E t
�

� E

�
ņ

i�1

�
sgn

�
Gtpxtqi

� Bf
Bxi px

tq


Er∆t

i |Gt, xt, E ts
��� xt, E t

�

� E

�
1

η

ņ

i�1

Gtpxtqi BfBxi px
tq
��� xt, E t

�

� E
�

1

η
xGtpxtq,∇fpxtqy

��� xt, E t�

� 1

η
xErGtpxtq|xt, E ts,∇fpxtqy

� 1

η
x∇fpxtq,∇fpxtqy � 1

η
}∇fpxtq}2. (2.14)

To reach step (2.14), recall that ErGtpxtq|xt, E ts � ∇fpxtq by the assumption (2.5).

We are now ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. We have E
�}Gtpxtq}1 | xt, E t� � E

�}Gpxtq}1 | xt, E t� since Gt are identically

distributed versions of G. Take conditional expectations on both sides of (2.12) in Corollary 2.4.3, and then

apply Lemmas 2.4.4 and 2.4.5 to obtain

Erfpxt�1q | xt, E ts ¤ E

�
fpxtq � Lα2|Ωt|

2
� α

¸
iPΩt

sgn
�
Gtpxtqi

� Bf
Bxi px

tq
����� xt, E t

�

¤ fpxtq � Lα2

2η
E
�}Gtpxtq}1 | xt, E t�� α

η
}∇fpxtq}2

� fpxtq � Lα2

2η
E
�}Gpxtq}1 | xt, E t�� α

η
}∇fpxtq}2.
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2.4.2 Cost function bounds for mini-batch estimators

Theorem 2.4.1 depends heavily on the expected `1 norm of the gradient estimator Er}Gtpxtq}1 |xt, E ts,
where E t is the event that }∇Gtpxtq}1 ¤ η. This Section studies the quantity Er}Gtpxtq}1 |xt, E ts for the

special case whenGt are minibatch gradient estimators. For simplicity, we focus on the case when E t occurs

almost surely, so that Er}Gtpxtq}1 |xt, E ts � Er}Gtpxtq}1 |xts. Since Gt is independent of xt, we proceed

by deriving estimates for Er}Gtpxq}1s with fixed x P Rn.

Mini-batch estimates are a commonly used technique to improve neural network training [24, 9, 22].

This Section only considers cost functions of the special form f � 1
m

°m
i�1 f

i where each f i is differ-

entiable. A mini-batch estimator of size k selects k distinct indices tijukj�1 uniformly at random from

t1, 2, � � � ,mu and then defines G � 1
k

°k
j�1 ∇f ij as an unbiased estimator of ∇f . With slight abuse of

notation, let Gk denote a minibatch estimator of size k.

The following Theorem provides bounds on Er}Gtpxq}1s for mini-batch estimates. It will be convenient

to introduce some notation for the proof. Let rms denote the set t1, . . . ,mu, and letAk denote the collection

of all subsets of size k of a given subset A � rms. For example, rmsk consists of all subsets of t1, . . . ,mu
containing k elements. We also let Ac denote the complement of A in rms.

Theorem 2.4.6. Fix a cost function f � 1
m

°m
i�1 f

i where each f i is differentiable. LetGk � 1
k

°k
j�1 ∇f ij

be the mini-batch estimator of size k for ∇f . Let } � } be any norm on Rn. Given x P Rn, E r}Gkpxq}s is

non-increasing in k and satisfies the bound

E r}Gkpxq}s ¤ m

k
}∇fpxq} � m� k

k
E r}Gm�kpxq}s . (2.15)

Proof. We first show that E r}Gkpxq}s is non-increasing in k, by showing that E r}Gkpxq}s ¤
E r}Gk�1pxq}s. By the definition of mini-batch estimates one has

E r}Gkpxq}s � 1�
m
k

� ¸
APrmsk

�����1

k

¸
iPA

∇f ipxq
����� .

13



Fix any A P rmsk and notice

¸
iPA

∇f ipxq �
¸

BPAk�1

¸
iPB

1

k � 1
∇f ipxq

because for each index i P A, there are exactly k � 1 subsets B P Ak�1 containing i. Therefore,

E r}Gkpxq}s � 1�
m
k

� ¸
APrmsk

�����1

k

¸
BPAk�1

¸
iPB

1

k � 1
∇f ipxq

�����
¤ 1�

m
k

� 1

k

¸
APrmsk

¸
BPAk�1

�����
¸
iPB

1

k � 1
∇f ipxq

����� . (2.16)

One has that

¸
APrmsk

¸
BPAk�1

�����
¸
iPB

1

k � 1
∇f ipxq

����� � pm� k � 1q
¸

BPrmsk�1

�����
¸
iPB

1

k � 1
∇f ipxq

����� . (2.17)

To see this, note that the double sum
°
APrmsk

°
BPAk�1 sums over each set B of size k � 1 once for each

size k set A which contains B. There are m� pk � 1q elements of rms that can be added to B to get a size

k set. Therefore, each B shows up m� k � 1 times in this double summation, and (2.17) follows.

Combining (2.16) and (2.17), gives

E r}Gkpxq}s ¤ m� k � 1

k
�
m
k

� ¸
BPrmsk�1

�����
¸
iPB

1

k � 1
∇f ipxq

�����
� pm� k � 1q� m

k�1

�
k
�
m
k

� E r}Gk�1pxq}s .

A computation shows that
pm�k�1qp m

k�1q
kpmk q � 1 and the desired bound E r}Gkpxq}s ¤ E r}Gk�1pxq}s follows.

It remains to prove the bound (2.15). Using the triangle inequality and f � 1
m

°m
i�1 f

i gives

E r}Gk}s � 1�
m
k

� ¸
APrmsk

�����1

k

�¸
iPA

∇f ipxq
������

¤ 1�
m
k

� ¸
APrmsk

�����1

k

�
m∇fpxq �

¸
iPA

∇f ipxq
������� m

k
}∇fpxq}

� 1�
m
k

� ¸
APrmsk

�����1

k

¸
iPAc

∇f ipxq
������ m

k
}∇fpxq}
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� m� k

k
� 1�

m
k

� ¸
APrmsk

����� 1

m� k

¸
iPAc

∇f ipxq
������ m

k
}∇fpxq}. (2.18)

Since
�
m
k

� � �
m

m�k
�

one has

E r}Gm�kpxq}s � 1�
m

m�k
� ¸
APrmsm�k

����� 1

m� k

¸
iPA

∇f ipxq
�����

� 1�
m
k

� ¸
APrmsk

����� 1

m� k

¸
iPAc

∇f ipxq
����� . (2.19)

Combining (2.18) and (2.19) gives (2.15) and completes the proof.

While the above Theorem may be difficult to parse, we offer two main insights related to Theorem 2.4.6.

Recall that the quantity we are bounding controls the performance of SMGD so a smaller value for E r}Gk}s
conceivably implies better algorithm performance. With this in mind, because the expected value is non-

increasing in k, choosing a larger mini-batch never worsens the performance. Second, as k approaches m

the value E r}Gk}s approaches }∇f}, the optimal value.

2.5 Error estimates: rates of convergence

In this Section we analyze the rate of convergence for SMGD when the cost function is assumed to be

strongly convex. A differentiable function f : Rn Ñ R is strongly convex with parameter µ, or simply

µ�strongly convex, provided that, for every x, y P Rn,

x∇fpxq �∇fpyq, x� yy ¥ µ}x� y}22. (2.20)

It follows from the Cauchy-Schwartz inequality that a µ-strongly convex differentiable function f satisfies

}∇fpxq �∇fpyq}2 ¥ µ}x� y}2. (2.21)

Strongly convex functions are well-studied in optimization and it is known that a differentiable strongly

convex function attains a unique minimum, see e.g., [27].

Our next main result provides bounds on how fast the iterates of SMGD xt approach the minimizer x�

of the cost function.
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Theorem 2.5.1. Suppose the cost function f : Rn Ñ R is µ-strongly convex and has L-Lipschitz gradient

∇f . Suppose Gt are independent versions of an unbiased estimator G for ∇f , and that G is L-Lipschitz

continuous almost surely. Let E t denote the event that }Gtpxtq}8 ¤ η. The iterates xt of SMGD satisfy

E
�}xt�1 � x�}22 |xt, E t

� ¤ �
1� 2αµ

η



}xt � x�}22 �

Lα2?n
η

}xt � x�}2 � α2

η
E
�}Gtpx�q}1 |xt, E t� .

(2.22)

Proof. Let ut � °n
i�1�α � sgn

�
Gtpxtqi

�
∆t
i be the random vector defined in (2.11), so that the SMGD

iteration may be written as xt�1 � xt � ut. Thus,

Er}xt�1 � x�}22 |xt, E ts � Er}xt � x� � ut}22 |xt, E ts

� }xt � x�}22 � 2Erxxt � x�, uty |xt, E ts � Erxut, uty |xt, E ts. (2.23)

Note that

Erxxt � x�, uty |xt, E ts �
ņ

i�1

pxt � x�qi Eruti |xt, E ts

� �α
ņ

i�1

pxt � x�qi ErsgnpGtpxtqqiq∆t
i |xt, E ts. (2.24)

Recalling the definition of ∆t in (2.6) and using (2.5) gives

ErsgnpGtpxtqiq∆t
i |xt, E ts � ErErsgnpGtpxtqiq∆t

i |xt, E t, Gts |xt, E ts

� ErsgnpGtpxtqiq |G
tpxtqi|
η

|xt, E ts

� 1

η

Bf
Bxi px

tq. (2.25)

Combining (2.24) and (2.25) gives

Erxxt � x�, uty |xt, E ts � �α
η
xxt � x�,∇fpxtqy. (2.26)
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Next note that

Erxut, uty |xt, E ts � ErErxut, uty |xt, Gt, E ts |xt, E ts

� α2
ņ

i�1

ErErp∆t
iq2 |xt, Gt, E ts|xt, E ts

� α2
ņ

i�1

Er |G
tpxtqi|
η

|xt, E ts

� α2

η
Er}Gtpxtq}1 |xt, E ts. (2.27)

Combining (2.23), (2.26), (2.28), and using that ∇fpx�q � 0 gives

Er}xt�1 � x�}22 |xt, E ts � }xt � x�}22 �
2α

η
xxt � x�,∇fpxtqy � α2

η
Er}Gtpxtq}1 |xt, E ts

� }xt � x�}22 �
2α

η
xxt � x�,∇fpxtq �∇fpx�qy � α2

η
Er}Gtpxtq}1 |xt, E ts

¤ }xt � x�}22 �
2α

η
xxt � x�,∇fpxtq �∇fpx�qy

� α2

η
Er}Gtpxtq �Gtpx�q}1 |xt, E ts � α2

η
Er}Gtpx�q}1 |xt, E ts. (2.28)

Applying strong convexity and Hölder’s inequality in (2.28) gives

Er}xt�1 � x�}22 |xt, E ts ¤ }xt � x�}22 �
2αµ

η
}xt � x�}22

� α2?n
η

Er}Gtpxtq �Gtpx�q}2 |xt, E ts � α2

η
Er}Gtpx�q}1 |xt, E ts. (2.29)

Finally, since G is L-Lipschitz, (2.29) yields

Er}xt�1 � x�}22 |xts ¤
�

1� 2αµ

η



}xt � x�}22 �

α2?nL
η

}xt � x�}2 � α2

η
Er}Gtpx�q}1 |xt, E ts.

Theorem 2.5.1 can be viewed as an analogue for SMGD of the convergence results for SGD in [28].

Changing notation to match our own, the work in [28] shows that, under similar assumptions as Theorem
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2.5.1, standard SGD with learning rate of γ satisfies

Er}xt�1 � x�}22|xts ¤ p1� 2γµq}xt � x�}22 � 2γ2L}xt � x�}22 � 2γ2Er}Gpx�q}22s. (2.30)

This illustrates that the learning rate γ for SGD plays an analogous role as the lattice resolution α for SMGD.

It is also worth noting some differences between (2.22) and (2.30). The middle term in (2.22) is a squared

norm }xt�x�}22 whereas the middle term in (2.30) is not squared; unlike SGD this means that SMGD errors

will generally not decrease exponentially fast until saturation. Moreover, the third terms in (2.22) and (2.30)

reflect the different dependences of SMDG and SGD on the choice of unbiased estimator for ∇f .

2.6 Error bounds: the non-stochastic setting

In this Section we consider the special case of SMGD where the unbiased gradient estimator Gt is the

non-stochastic estimate G � ∇f . We shall refer to this special case of SMGD as Markov gradient descent

(MGD).

The following result is a corollary of Theorem 2.8.

Corollary 2.6.1. Suppose the cost function f : Rn Ñ R has L-Lipschitz gradient ∇f . Let E t denote the

event }∇fpxtq}8 ¤ η. The iterate xt�1 of MGD satisfies

E
�
fpxt�1q |xt, E t� ¤ fpxtq � Lα2

2η
}∇fpxtq}1 � α

η
}∇fpxtq}22.

The following consequence of Corollary 2.6.1 shows that iterates fpxt�1q of the cost function decrease

in expectation when the gradient ∇fpxtq has sufficiently large norm.

Corollary 2.6.2. Suppose the cost function f : Rn Ñ R has L-Lipschitz gradient ∇f . Let E t denote the

event }∇fpxtq}8 ¤ η. If x P Rn satisfies Lα
2 }∇fpxq}1   }∇fpxq}22, then the iterate xt�1 of MGD satisfies

E
�
fpxt�1q |xt � x, E t

�   fpxq. (2.31)

In particular, if x P Rn satisfies }∇fpxq}2 ¡ Lα
?
n

2 , then (2.31) holds.
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Proof. It suffices to note that if }∇fpxq}2 ¡ Lα
?
n

2 , then the Cauchy-Schwarz inequality implies

Lα

2
}∇fpxq}1 ¤ Lα

?
n

2
}∇fpxq}2   }∇fpxq}22.

The next result gives conditions for expected decrease of the cost function under the assumption of

strong convexity.

Corollary 2.6.3. Suppose the cost function f : Rn Ñ R is µ�strongly convex and hasL�Lipschitz gradient

∇f . Let x� denote the unique minimizer of f . Given a tolerance level ε ¡ 0, suppose that

α  
�

4εµ

L2n


1{2
. (2.32)

Let E t denote the event }∇fpxtq}8 ¤ η. If x P Rn satisfies fpxq � fpx�q ¡ ε, then the iterate xt�1 of

MGD satisfies

E
�
fpxt�1q |xt � x, E t

�   fpxq.

Proof. Assume that x P Rn satisfies fpxq � fpx�q ¡ ε. It suffices to prove that }∇fpxq}2 ¡ Lα
?
n

2 , since

the result then follows from Corollary 2.6.2. We consider two cases depending on whether }x�x�} is large

or small.

Case 1. Suppose that }x� x�}2 ¡ Lα
?
n

2µ . Applying (2.21) and ∇fpx�q � 0 yields

}∇fpxq}2 � }∇fpxq �∇fpx�q}2 ¥ µ}x� x�}2 ¡ Lα
?
n

2
.

Case 2. Suppose that }x � x�}2 ¤ Lα
?
n

2µ . Define the function gprq � fpx� � r x�x�
}x�x�}q, the restriction of

f to the line containing both xt and x�. Observe that g is a strictly convex function of the single variable r

with unique minimizer at r � 0. Moreover, observe that g1prq is the directional derivative of f at the point

x�� ru in the direction u � x�x�
}x�x�}2 . Because g is convex, we know that this directional derivative is larger

than the slope of the secant line of g between 0 and r. Thus, using the Cauchy-Schwarz inequality, we have

}∇fpxq}2 ¥ x∇fpxq, uy � Dufpxq ¡ fpxq � fpx�q
}x� x�} ¡ 2µε

Lα
?
n
. (2.33)
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Rewriting (2.32) in terms of ε gives

ε ¡ L2α2n

4µ
. (2.34)

Combining (2.33) and (2.34) gives }∇fpxq}2 ¡ Lα
?
n

2 .

The remainder of this Section address rates of convergence for MGD. The next result is a corollary of

Theorem 2.5.1, and holds since ∇fpx�q � 0.

Corollary 2.6.4. Suppose the cost function f : Rn Ñ R is µ�strongly convex and hasL�Lipschitz gradient

∇f . Let E t denote the event }∇fpxtq}8 ¤ η. Let x� denote the unique minimizer of f . The iterate xt�1 of

MGD satisfies

E
�}xt�1 � x�}22 |xt, E t

� ¤ �
1� 2αµ

η



}xt � x�}22 �

Lα2?n
η

}xt � x�}2. (2.35)

Corollary 2.6.4 can be used to provide conditions under which the error }xt�1�x�} for MGD decreases

in expectation.

Corollary 2.6.5. Suppose the cost function f : Rn Ñ R is µ�strongly convex and hasL�Lipschitz gradient

∇f . Let E t denote the event }∇fpxtq}8 ¤ η. Let x� denote the unique minimizer of f . If x P Rn satisfies

}x� x�}2 ¡ Lα
?
n

2µ , then the iterate xt�1 of MGD satisfies

E
�}xt�1 � x�}22 |xt � x, E t

�   }x� x�}22.

Proof. By Corollary 2.6.4, we have

E
�}xt�1 � x�}22 |xt � x, E t

� ¤ }x� x�}22
�

1� 2αµ

η
� Lα2?n
η}x� x�}2



.

In particular, E
�}xt�1 � x�}22 | xt � x, E t

�   }x� x�}22 holds whenever

2αµ

η
¡ Lα2?n
η}x� x�}2 . (2.36)

Since (2.36) is equivalent to }x� x�}2 ¡ Lα
?
n

2µ , this completes the proof.
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The following example shows that the conditions }∇fpxtq} ¡ Lα
?
n

2 and }xt � x�}2 ¡ Lα
?
n

2 in

Corollaries 2.6.2 and 2.6.5 cannot be weakened.

Example 1. Fix a lattice αZn. Define the function f : Rn Ñ R by fpx1, . . . , xnq �
°n
i�1pxi � α

2 q2. The

unique minimizer of f is x� � pα2 , . . . , α2 q. Since ∇fpx1, . . . xnq � p2x1 �α, � � � , 2xn�αq, it follows that

∇f is 2�Lipschitz and f is 2�strongly convex.

Define S � tpx1, � � � , xnq P αZn : each xi P t0, αuu. Note if x P S then fpxq � nα2

4 . Further note

that if xt � 0, then the next iterate of Markov gradient descent satisfies xt�1 P S because Bf
Bxi p0q   0 for all

i. Therefore, E
�}xt�1 � x�}22 |xt � 0

� � }xt � x�}22 and E
�
fpxt�1q � fpxtq |xt � 0

� � 0. This shows

that the conclusions of Corollaries 2.6.2 and 2.6.5 do not hold. However, observe that

}∇fp0q}2 �
�

ņ

i�1

p�αq2
�1{2

� α
?
n � Lα

?
n

2

and

}xt � x�}2 �
�

ņ

i�1

α

2

2
�1{2

� α
?
n

2
� Lα

?
n

2µ
.

In particular, the conditions }∇fpxtq} ¡ Lα
?
n

2 and }xt � x�}2 ¡ Lα
?
n

2 in Corollaries 2.6.2 and 2.6.5 are

tight.

2.7 Experiments and Numerical Validation

In this Section we validate the use of SMGD for training quantized neural networks with three ex-

periments. First, we demonstrate the accuracy of SMGD-trained networks on the standard MNIST and

CIFAR-10 datasets. Second, we compare SMGD to SGD while holding the amount of memory constant

during training. Finally, we show the effect that the quality of gradient estimators has on SMGD training by

altering minibatch sizes.

2.7.1 Performance of SMGD on MNIST and CIFAR-10

Our first experiment uses SMGD to train quantized networks with identical architectures as in [9]. These

experiments validate that SMGD can perform well on some data sets but may not be optimal in other settings.
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Method MNIST CIFAR-10
Binary Connect 0.96 11.4
SMGD (4-bit) 1.59 27
SMGD (1-bit) 6.97 -

Table 2.1: Test errors of SMGD versus BinaryConnect on MNIST and CIFAR-10.

We compare 1-bit and 4-bit versions of SMGD for neural network quantization to the performance of

the 1-bit BinaryConnect method [9] on the MNIST and CIFAR10 datasets. For the MNIST dataset, we

use a feed-forward neural network with 3 hidden layers of 4096 neurons. We use no preprocessing, the

ReLU non-linearity, and the softmax output layer. We note that BinaryConnect uses an L2-SVM output

layer, batch normalization, and dropout to improve performance while we omit these because the effects of

these techniques are not included in our theoretical results. Including these techniques would likely further

improve the competitiveness of SMGD. The first column in Table 2.1 shows the test errors for the MNIST

dataset. It is important to emphasize that since SMGD is memory-constrained during training, it is expected

that BinaryConnect will outperform SMGD, but the performance of SMGD becomes competitive when

more bits are allowed.

On the CIFAR-10 dataset, we use a convolutional architecture which is identical to that in [22]. We

observe that while SMGD can perform well on MNIST, it struggles on CIFRAR-10. This could be improved

by incorporating advanced techniques such as dropout and SVM output during training, but we suspect that

SMGD generally performs worse than other quantization algorithms in this setting. In particular, we failed

to find a good parameter configuration of α, η to successfully train a 1-bit SMGD network on CIFAR-10.

However, we again emphasize that SMGD weights are quantized during training so a true apples-to-apples

comparison does not highlight the usefulness of SMGD. The results of our first set of experiments are

summarized in Table 2.1.

2.7.2 Performance of SMGD: memory utilization during training

Our second experiment highlights the motivation for using SMGD: the network is compressed during

training as well as at run time. This is in contrast to the existing techniques that we are aware of which

require full precision during training. Moreover, many other neural network quantization techniques, e.g.,

[9], require more memory during training than a full precision network trained with SGD. To study this
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issue, we compare a quantized network trained with SMGD and a full precision network trained with SGD

where the memory during training is held approximately constant.

Training a network requires the storage of the weights and intermediate neural outputs as well as compu-

tation and storage of partial derivatives. The weights and partial derivatives take up an overwhelming amount

of this memory, so let us compute how much savings SMGD provides in this area. SMGD requires q bits

per weight and 2 bits to store each partial derivative after quantization. Computing the partial derivatives

takes an additional 32 bits per weight when we use mini-batches as we must aggregate the full-precision

gradient over many input signals before quantization. However, in the online setting where we process only

one image at a time, we can compute the partial derivatives one-by-one. So, in the setting without mini

batches we require only 2� q bits-per-weight to train our network. When we use mini batches this number

is 32� q.

Full-precision networks, on the other hand, require full-precision for weights and partial derivatives

leading to 64 bits-per-weight. We recall that other quantization methods typically require more memory

because they store both auxilliary and quantized weights. Therefore, other methods generally require at

least 64
2�q times more memory during online training than an SMGD network. Therefore, for a fixed amount

of memory, one can use a network that is approximately 64
2�q times larger than the full-precision networks

which allows for better accuracy in a memory-constrained environment.

The details of our second experiment are as follows. First, we trained a full-precision neural network

with a batch size of 1 on the MNIST data set to determine a baseline performance. Then, we compute the

size of the SMGD-trained network that requires the same amount of memory and train that network for the

same number of epochs as the full-precision network. The results of these experiments for q � 4, 5, 6 bit

quantization are shown in Figure 2.1. While not included in the figure, the result for q � 3 bits is still

favorable, but the results degrade for q � 2 and q � 1 bit networks on these small architectures.

The motivation for SMGD is consistent with the fact that training neural networks is not a one size fits

all problem. The choice of training method should be dependent on the setting in which the learning occurs.

We offer that SMGD may be best implemented in the ‘memory-constrained during training’ environment

while other quantization methods are better in other constrained settings. Table 2.2 itemizes some recom-

mendations regarding best training practices under various constraints on the resulting network and training

process.
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Figure 2.1: Comparison of test accuracy of various training methods each using approximately the same
memory to store the weights.

Constraints Methods
None SGD, AdaGrad [13], Adam [23]

Unconstrained during training; memory constrained at run-time BinaryConnect [9], QNN [22]
Time constrained during both run and test-time XNOR [31], QNN [22]

Memory constrained during training SMGD

Table 2.2: Network training methods that are suitable under different constraints.

2.7.3 Effect of minibatch size on SMGD

Our final experiment highlights the effect of increased minibatch size and illustrates the improvements

suggested by Theorem 2.4.6 together with Theorem 2.4.1. We trained a network using SMGD and with

increasing mini-batch sizes. The experiment illustrates that as mini-batch size increases SMGD achieves

better training error until it saturates. Moreover, we see that while increasing the mini-batch size improves

the performance of SMGD, there are diminishing returns as the batch size grows. The results of this experi-

ment are contained in Figure 2.2.
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Figure 2.2: Training errors for various batch sizes trained with SMGD on identical network architectures
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CHAPTER 3

Compression of Sampled Signals

3.1 Quantization in Frame Theory

In this Chapter we turn our focus to signals that are measured and reconstructed using a redundant linear

representation system. In particular, we use the language of and prove results in finite frame theory in order

to develop highly accurate and efficient quantization schemes in this setting. Frames for Hilbert spaces are

collections tf iuiPΩ of vectors that generalize bases. Informally, frames are redundant representation systems

that trade the linear independence of bases for more flexibility in our choice of representation.

For a fixed frame tf iuiPΩ, knowledge of the sequence of inner products,
�xv, f iy�

iPΩ
, is enough to

reconstruct the vector v perfectly. Thus, one may store v by storing this sequence of inner products. Because

our focus is digital signals, we consider only the case where |Ω| is finite. Here, a finite frame for H � Rd is

nothing more than a (generally over-complete) spanning set.

This redundancy is what gives frames many of their desirable properties and allows them to be applied

throughout signal processing and harmonic analysis in advantageous ways. For instance, frame represen-

tations are superior to basis expansions when we may expect erasures [18], when we must quantize the

coefficients [2] into a fixed alphabet, or if any other distortions of the stored coefficients are likely.

One is naturally led to ask: given a frame tf iuNi�1, how can we realize the reconstruction map�xv, f iy�N
i�1

ÞÑ v. It is known that a dual frame - a set tgiuNi�1 so that v � °N
i�1xv, f iygi - always ex-

ists. In this setting, the frame tf iuNi�1 is called the analysis frame and tgiuNi�1 is called the synthesis frame.

If the frame tf iuNi�1 is redundant, there are infinitely many choices of sets tgiuNi�1 that we can use for

reconstruction.

In this Chapter, we study the existence of a class of highly structured frames - called dynamical frames

- and show their utility in the quantization problem. We prove two main results in this Chapter. First,

we show that every finite, redundant frame for Rd has infinitely many dual frames that are dynamical.

Second, we show that when these frames are used in an error-diffusion quantization scheme, we can expect

reconstruction errors on the order of ρN where N is the frame size and ρ   1.
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This Chapter is organized as follows. First, we develop the necessary background information for frame

theory in Section 3.2. Then, we spend Sections 3.3 and 3.4 characterizing dynamical duals and showing

every finite frame has infinitely many dynamical dual frames. Finally in Section 3.5 we develop our quanti-

zation scheme, prove error bounds, and show experiments verifying our result.

3.2 Background: frame theory

A frame for a Hilbert space H is any collection of vectors tf iuiPΩ for which there exist constants

A,B ¡ 0 so that

A}v}22 ¤
¸
iPΩ

|xv, f iy|2 ¤ B}v}22

for every vector v P H. In the case where H is finite dimensional and Ω is finite, a frame is nothing more

than a spanning set of vectors. It is common to identify a frame in this setting with the full rank matrix F

whose columns are f1, . . . , fN .

In the matrix terminology, a dual frame is simply a frame tgiuNi�1 whose matrix G satisfies GF � � I

where F � denotes the transpose of F . We often refer to the canonical dual frame to F which is the Moore-

Penrose inverse of F given by the formula pFF �q�1F . When the frame F is redundant - when it is not

just a basis - there are infinitely many choices of frames G that are dual to F . It is precisely this fact that

allows us to study advantageous dual synthesis frames for use in quantization. For reference, given two dual

frames F and G, when we write the relation v � °N
i�1xv, f iygi, we say F is the analysis frame while G is

the synthesis frame.

3.2.1 Frame Quantization

In a very general sense, a quantizer is a function Q : RN Ñ AN for some quantization alphabet

A � R. Then, for analysis and synthesis frames F and G (resp.), the process of measuring a signal,

quantizing the measurements for storage, and reconstruction is realized by the composition GQF �. The

goal in quantization is to pick the quantizer so that GQF � is as close to the identity as possible.

In general the method of measurement - the matrix F - is fixed. However, one is generally free to choose

both the method of reconstruction and the method of quantization. Ideally, the function Q and the matrix G

will be chosen in conjunction with one another in a way that propagates as little error as possible.

In addition to the quantizer Q and the synthesis frame G needing to behave well together, it is also
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important that the output of Q may be realizable relatively quickly. The simplest possible Q operates by

rounding each coefficient to the nearest entry in the quantization alphabet A. This is called memoryless

scalar quantization or pulse code modulation and is very well studied. Here, Q is very quick to compute but

the error induced can be quite large.

At the other extreme, given a synthesis frameG one could defineQpvq to be the minimizer of }v�Gx}2
over all vectors x P AN . This Q requires solving a discrete optimization problem at each step and so is

quite impractical. Though Q is slow to compute here, the induced error is very small.

A good goal would be to find a compromise between these two extremes: a quantization scheme Q

that is both easy to compute and that has good error properties. One of the most commonly used ideas is

error-diffusion and Σ∆ quantization. In general, these techniques operate by rounding a coefficient with a

scalar quantizer then propagating some portion of the induced error onto the not yet quantized coefficients.

Error diffusion has been known for some time to achieve small quantization error for specific types of

frames. However, recently it was discovered how to choose a synthesis frame G (given a fixed analysis

frame F ) that interacts in an extremely efficient way with an error-diffusion quantizer [2, 19]. In addition to

sporting high-quality quantization in a variety of settings, these so-called Sobolev dual frames have helped

motivative the search for synthesis frames with structure. This Chapter introduces another entirely different

class of structured dual frames - the dynamical dual frames - that enjoy success in reconstructing signals

that have been quantized using an error-diffusion scheme.

3.2.2 Dynamical Sampling

Dynamical Sampling is the process of recovering a time-varying signal via samples over both space and

time. In this field, frames are of the form tT if0uiPΩ where T : H Ñ H is a linear operator. We will refer to

frames that can be written in this way as dynamical frames or dynamical dual frames, depending on context.

Traditionally, research in dynamical sampling has concerned itself with questions about the properties

T and Ω must have for tT if0uiPΩ to be a frame for H, [1]. Complete answers to these questions are known

for finite dimensional H and partial answers exist in general. Recently, though, the authors in [6, 7, 8] have

been interested in the reverse question: Given a frame tf iuNi�1 for an infinite dimensional and separable H

can we determine whether or not there exists a T, f0 so that f i � T if0 for every i P Ω. That is, can we tell

if a frame is a dynamical frame without knowing a priori what linear operator generated the frame vectors.
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We study the finite dimensional analogue of this question in this Chapter. What properties must a finite

frame F � tf iuNi�1 for Rd have in order for us to guarantee (and construct!) the existence of a T and f0 so

that T if0 � f i. Moreover, because we are interested in quantization, we care to determine, given a frame

F , whether we can find a dual frame to F that is a dynamical frame.

3.3 Characterization of Dynamical Frames

Our eventual characterization of dynamical frames relies on a property that the kernel of their frame

matrix must have. In the coming analysis, we use the rank-nullity theorem and consequences time and time

again. Recall that the dimension of a matrix’s kernel plus the dimension of the matrix’s image must equal

the dimension of the domain. Throughout this Section, we will freely refer to the kernel of a frame to mean

the kernel of the synthesis frame matrix. The first results we need are some technical facts about dynamical

frames.

Lemma 3.3.1. Let T : Rd Ñ Rd be linear and tT if0uNi�1 be a frame for Rd. Then every d consecutive

frame vectors is a basis for Rd. Moreover, none of the frame vectors are 0.

Proof. First notice that every frame vector is in the range of T so that the range of T spans Rd and T is

invertible. Thus, it suffices to show that Tf0, . . . , T df0 is a basis for Rd because every set of d consecutive

frame vectors is translation of this set by Tn which is invertible. Because T is invertible, each frame vector

is non-zero. Now, let k ¥ 1 be the maximal index so that Tf0, . . . , T kf0 is linearly independent. Let

S � spantTf0, . . . , T kf0u. We will show first that S is invariant under T , that T pSq � S. Notice that by

choice of the index k, we can find coefficients α1, . . . , αk�1 so that

k�1̧

i�1

αiT
if0 � 0.

Because T 1f0, . . . T kf0 are linearly independent, then the coefficient αk�1 is non-zero so that T k�1f0 is in

the set S, the span of Tf0, . . . T kf0. Therefore, for any v P S, we can find pβiqNi�1 so that

Tv � T

�
ķ

i�i
βiT

if0

�
�

ķ

i�i
βiT

i�1f0

which, because Tf0, . . . T k�1f0 are all in the subspace S, shows that Tv is in S. Thus, T pSq � S.
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However, because T is invertible it preserves dimension of subspaces, so T pSq � S implies that T pSq � S.

It follows from T pSq � S that TnpSq � S so that every frame vector T if0 is in S. Therefore, S � Rd and

the set Tf0, . . . T kf0 must be a basis with k � d.

For a vector x, we let xi refer to coordinate i. In our characterization of dynamical frames, we often

need to make use of vectors in a very particular form. Therefore, we give these vectors a name here.

.

Definition 3.3.2. A vector x P RN is said to be d-suitable in RN provided x1 � 0, xd�1 � 0 and xi � 0

for every i � d� 2, . . . , N .

d�Suitable vectors are ones whose support is t1, d � 1u Y Ω where Ω � t2, . . . du. We point out that

Lemma 3.3.1 proves that there are d�suitable vectors in the kernel of F . We will show that the kernel is

actually the linear span of d�suitable vectors and their right-shifts. Moreover, if a frame’s kernel has this

property, we will show later this implies the frame is dynamical. Throughout the remainder of this Chapter,

we let L and R be the left and right shift operators given by

Rpvq � p0, v1, . . . , vN�1q�

Lpvq � pv2, . . . , vN , 0q�

Now, Rj is the j�fold composition of R and R0 is the identity map. First, some technical facts working

towards the goal of characterizing dynamical frames by their kernels.

Lemma 3.3.3. Let F � tf iuNi�1 be a frame for Rd with N ¡ d. Let b P RN be d�suitable and Ker

F � spantRi�1b : 1 ¤ i ¤ N � du.

1. If v P Ker F has vN � 0, then the right shift Rv of v is also in Ker F . If v1 � 0, then the left-shift

Lv of v is in Ker F .

2. Every d consecutive frame vectors form a basis.

3. If 1 ¤ i   j   N and f i � f j then f i�1 � f j�1.

Proof. Statement 1) Because b is d�suitable, the only vector in tRi�1b : 1 ¤ i ¤ N � du whose support

contains N is RN�d�1b and the only vector whose support contains 1 is R0b � b. Suppose that v P Ker
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F and that vN � 0. Note that tRi�1b : 1 ¤ i ¤ N � du is a basis for KerF because it spans the kernel

and the kernel, by rank-nullity, must be N � d dimensional. Then, expanding b in terms of the kernel basis

tRi�1b : 1 ¤ i ¤ N � du, the basis coefficient on RN�d�1b must be 0 so that we may write

Rv � R

�
N�d�1¸
i�1

αiR
i�1b

�

�
N�d�1¸
i�1

αiR
ib

�
N�ḑ

i�2

αi�1R
i�1b P Ker F.

For the closure under the left shift, we suppose v P KerF and v1 � 0. Then, identically, expanding v in

terms of tRi�1b, 1 ¤ i ¤ N � du forces the coefficient on R0b to be 0.

Lv � L

�
N�ḑ

i�2

αiR
i�1b

�

� LR
N�d�1¸
i�1

αi�1R
i�1b.

Notice that L is a left-inverse to R on the subspace of vectors with last coordinate 0. Notice further that°N�d�1
i�1 αi�1R

i�1b is in this subspace so that Lv remains in Ker F .

Statement 2) We start by showing f1, . . . , fd is a basis. Let S � spantf1, . . . , fdu. Because b is in the

kernel of F and bd�1 � 0, we have the formula

fd�1 � �1

bd�1

ḑ

i�1

bif
i

so that fd�1 is in S. Then, because Rb P Ker F by Statement 1, we can represent

fd�2 � �1

bd�1

ḑ

i�1

bif
i�1

which remains in S because fd�1 P S. Repeating this process for each shift Ri�1 of b shows that every

frame vector is in S so that S � Rd and f1, . . . fd is a basis.

We now show this is true for every d consecutive frame vectors. Fix an index k and a vector v supported

on a subset of tk, . . . , k � d � 1u so that
°d
i�1 vif

k�1�i � 0. By part 1 of this Theorem, Lk�1v remains
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in Ker F and its support is now contained in t1, . . . , du. However, because f1, . . . fd is a basis, v � 0.

Therefore fk, . . . , fk�d�1 is also a basis.

Statement 3) Let δ1, . . . , δN denote the canonical basis for RN . Suppose that there exists 1 ¤ i   j  
N so that f i � f j . Then v � δi � δj P Ker F and observe that vN � 0. Thus by part 1 of this Lemma,

Rv � δi�1 � δj�1 P Ker F and so f i�1 � f j�1.

With these technical Lemmas in hand we may prove that the dynamical frames may be characterized by

their kernels.

Theorem 3.3.4. Let F � tf iuNi�1 be a frame for Rd withN ¡ d. There exists a T and f0 so that T if0 � f i

if and only if KerF � spantRi�1b : 1 ¤ i ¤ N � du for some d�suitable b.

Proof. pñq Consider a frame tT if0uNi�1. Because by cardinality T 1f0, . . . T d�1f0 cannot be linearly in-

dependent in Rd, we can find a non-zero vector b in Ker F supported on a subset of t1, . . . d� 1u.
Observation 1: b1, bd�1 � 0. This follows from Lemma 3.3.1. If b1 were 0, then there would exist a

non-trivial linear combination of f2, . . . fd�1 that is zero. The same argument shows bd�1 cannot be zero.

Observation 2: The set tRi�1buN�d
i�1 is linearly independent. Notice that bd�1 � 0 but bi � 0 for

i ¡ d� 1. Then, Ri�1b cannot be in the span of tRj�1buj i so long as i ¤ N � d.

Now we show that eachRi�1b is in Ker F for each i P t1, . . . N�du. Notice that, writing F as a matrix,

FRi�1b �
d�1̧

k�1

bkT
k�i�1f0 � T i�1

�
d�1̧

k�1

bkT
kf0

�

� T i�1 pFbq � 0.

Notice thatF is a frame matrix so its kernel has dimensionN�d. Then, because tRi�1b, 1 ¤ i ¤ N�du
is linearly independent and each is in the kernel, these vectors span the entire kernel of F .

pðq Suppose F is a frame and the associated matrix has kernel given by Ker F � spantRi�1b : 1 ¤ i ¤
N � du where b is d�suitable. Define the map T0 : tf1, . . . fN�1u Ñ Rd by T0fi � fi�1 and observe that

this is well-defined because Lemma 3.3.3 provides that fi � fj guarantees fi�1 � fj�1. Again by Lemma

3.3.3, f1, . . . fN�1 must span Rd because N � 1 ¥ d. We show that this T0 extends to a well-defined linear
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map over all of Rd. In particular, we want

N�1̧

i�1

aif
i �

N�1̧

i�1

bif
i ñ

N�1̧

i�1

aif
i�1 �

N�1̧

i�1

bif
i�1

Towards this end, define ci � ai � bi for 1 ¤ i ¤ N � 1 and cN � 0. Then, the vector c � pciqNi�1 is in

Ker F . By Lemma 3.3.3 the right shift Rc remains in the kernel of F because cN � 0. Thus,

N�1̧

i�1

pai � biqf i�1 �
N�1̧

i�1

cif
i�1 � FRc � 0.

Therefore T0 can be extended to the linear map T defined on Rd. Because f2, . . . fN are in the range of

T and f2, . . . fN span Rd (by Lemma 3.3.3 and N ¥ d � 1), T is invertible. So, define f0 � T�1f1.

Therefore f i � T if0 for each i and so the frame F is dynamical.

We have shown a characterization Theorem for dynamical frames. Our next goal is to study when a

given frame has a dynamical dual frame. However, before turning to that question we will continue a bit

longer down this path to explore dynamical frames a bit longer.

First, we have an Opd2Nq algorithm to compute whether a given input frame is dynamical or not. Other

than this algorithm, one could also compute the candidate linear operator T by looking at the first d � 1

columns of F and then seeing if the remaining columns are generated by T . Both have the same complexity.

The basis for the following boxed algorithm is that, if a frame is dynamical, we know what its kernel

must look like. The kernel must be translates of of a d�suitable vector. In this algorithm, first we compute

what b, the d�suitable vector must be by expanding fd�1 � °d
i�1 bif

i. Then, we verify if each of the right

translates Ri�1b of b remains in the kernel by verifying that fd�k � °d
i�1 bif

k�i�1.

Input: Frame vectors f1, . . . , fN

Output: Yes, if F � tf iuNi�1 is a dynamical frame, No otherwise
IF f1, . . . , fd are linearly dependent, output NO
ELSE compute bi so that fd�1 � °d

i�1 bif
i

IF each bi � 0, output NO
ELSE verify that fd�k � °d

i�1 bif
k�i�1 for every 2 ¤ k ¤ N � d. If this is true, output YES.

Otherwise, output NO

We can also prove easily that the canonical dual of a dynamical frame is dynamical.

Corollary 3.3.5. If F is a dynamical frame, then the canonical dual to F is a dynamical frame.
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Proof. The canonical dual to F has the form pFF �q�1F . Therefore the canonical dual and F have the same

kernel. Because dynamical frames are characterized by their kernels by Theorem 3.3.4, F being dynamical

forces its canonical dual to be dynamical.

If F is a dynamical frame generated by the matrix T and the vector f0 and S � FF � is the frame

operator, then the frame with columns generated by the operator S�1TS and vector g0 � S�1f0 is the

canonical dual to F and is dynamical. To see why, simply consider the canonical dual frame, G, which

has the formula G � S�1F . Then, the columns of G are S�1Tf0, S�1T 2f0, . . . S�1TNf0. Notice that�
S�1TS

�n � S�1TnS so that
�
S�1TS

�n
g0 � S�1TnSg0 � S�1Tnf0. Therefore the matrix with

columns pS�1TSqg0, . . . , pS�1TSqng0 is precisely the canonical dual, G, to F .

3.4 All Redundant Frames have Infinitely Many Dynamical Dual Frames

The following Theorem is a general case of the classification of frames with dynamical duals. Whenever

we have a class of frames that is characterized by their kernels, we may determine the existence of a dual

frame by searching for a subspace satisfying two conditions. This Theorem is not much more than an

application of the relationship between a linear operator’s range and the kernel of its adjoint.

Theorem 3.4.1. Suppose there exists properties P1, P2 so that a frame F of size N for Rd has property P1

if and only if its kernel satisfies property P2. A frame F of size N for Rd has a dual frame with property P1

if and only if there exists a subspace V of RN that satisfies both of the following

1. RN � V � Range F � and V X Range F � � t0u

2. V has property P2

Proof. pñq Let G be a dual satisfying P1. Then V � Ker G satisfies P2. Since both G and F are frames,

dim Ker G � N � d and dim RangeF � � d. Since GF � � Id, it follows that Range F � X Ker G � t0u.
Then Ker G� Range F � � RN .

pðq. Let P be the projection onto V K. Notice that Ker P � pV KqK � V � V because V is finite

dimensional. Because V X Range F � � t0u by assumption and Ker F � � t0u, the map PF � is injective

from Rd Ñ RN . Thus, let A : RN Ñ Rd be a left inverse to PF �. We define G � AP to be the candidate

dual frame to F . Notice that GF � � I . Using rank-nullity we see that the dimension of the kernel of G
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is the same as the dimension of P . Now, because Ker P � Ker G it follows that Ker G � Ker P � V .

Therefore G has property P1.

Now, the characterization of those frames which have dynamical dual frames follows as a direct corollary

of Theorem 3.4.1 and 3.3.4.

Corollary 3.4.2. Let F be a frame of size N ¡ d for Rd. Then F has a dynamical dual frame if and only if

there exists a subspace V of RN so that

1. RN � V� Range F � and V X Range F � � t0u.

2. V � spantRi�1b : 1 ¤ i ¤ N � du for some d�suitable vector b.

We remark, yet again by rank-nullity, that V XRange F � � t0u for free because V isN�d dimensional,

F is rank d, and together they span RN . This Theorem is constructive. Knowing the subspace V , we may

construct the dynamical dual frame to F by following the steps outlined in the proof of Theorem 3.4.1. Let

PV K be the projection onto V K. Then notice that

pFPV KF �q�1 FPV K (3.1)

is a dual frame to F with kernel V . For us, though, we know more about the space V . Let b be a d�suitable

vector that generates the kernel of F . Then, lettingNb be the matrix whose columns are b, Rb, . . . RN�d�1b,

the matrix NbpN�
b Nbq�1N�

b is the projection onto the range of Nb. In particular, NbpN�
b Nbq�1N�

b � PV

because it is self-adjoint, idempotent, and has the desired range. Finally, because PV � PV K � I , we can

write PV K � I �NbpN�
b Nbq�1N�

b . Therefore, knowing the d�suitable vector b, the dynamical dual frame

associated to this b is given by

�
F pI �NbpN�

b Nbq�1N�
b qF ���1

F pI �NbpN�
b Nbq�1N�

b q. (3.2)

Now, the existence of dynamical duals boils down to: when does a d�suitable b exist so that

V �spantRi�1b : 1 ¤ i ¤ N � du together with Range F � span RN? In particular, We define the N �N

matrix MF,b whose first d columns are F � and the next N � d columns are tRi�1b : 1 ¤ i ¤ N � du.
If we can find a d�suitable vector b P RN so that MF,b is invertible, then F has a dynamical dual frame.

This follows because the invertibility of MF,b is equivalent to its columns spanning RN . This forces Range
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F � and tRi�1b : 1 ¤ i ¤ N � du to satisfy Corollary 3.4.2. Moreover, we can use this b to compute the

dynamical dual with formula (3.2).

The question of whether or not a d�suitable x always exists is almost answered by Theorem 1 of [32].

We restate that result here in the language we use for completeness.

Lemma 3.4.3. Let F � tf iuNi�1, N ¡ d be a frame for Rd. Then, there exists an x supported on a subset of

t1, . . . , d� 1u so that MF,x is invertible.

We point out that this is quite close to what we need, but this result does not force x to be nonzero in

coordinates 1 and d� 1. However, a simple appeal to measure theory lets us show that, not only can we find

a d�suitable x for which MF,x is invertible, in fact we can find uncountably many of them.

Theorem 3.4.4. Let d P N, N ¡ d and F be a frame of size N for Rd. Then F has infinitely many distinct

dynamical dual frames.

Proof. First, define

ι : Rd�1 Ñ RN by ι : px1, . . . , xd�1q ÞÑ px1, . . . , xd�1, 0, . . . , 0q

and

ϕ : Rd�1 Ñ R by ϕ : px1, . . . , xd�1q ÞÑ detpMF,ιpxqq.

Notice that the result in Lemma 3.4.3 guarantees the existence of some x0 so that ϕpx0q � 0. We observe

that ϕ is a polynomial in the variables x1, . . . xd�1. The zero-set of a polynomial has Lebesgue measure 0

so A � tx : ϕpxq � 0u is a Lebesgue co-null subset of Rd�1. Moreover, the set U � tx : x1, xd�1 � 0u is

also co-null so that the intersection S � UXA is co-null. Moreover, each vector x P S induces a d�suitable

vector ιpxq so that MF,ιpxq is invertible. Thus, F has a dynamical dual. All that is left to show that there are

infinitely many dynamical duals.

Let u, v be d�suitable in RN not co-linear so that MF,u and MF,v are invertible. We let Gu

and Gv be the two dynamical frames dual to F with kernels given by spantu,Ru, . . . , RN�d�1uu and

spantv,Rv, . . . , RN�d�1vu, respectively. Showing that Gu and Gv are distinct proves there are infinitely

many dynamical duals to F because there are infinitely many choice of u and v. If we can simply demon-
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strate that u R Ker Gv, then we are done because Gu, Gv having different kernels suffices. Suppose that

u �
N�ḑ

i�1

αiR
i�1v P Ker Gv.

Notice that u1 � 0 because it is d�suitable. Because for i ¡ 1, the first coordinate of Ri�1v is zero, we

have that α1 � 0. We argue the remaining αi must be 0. The only vector of tRi�1v : i ¤ i ¤ N � du
supported in coordinate N is i � N � d. Since uN � 0, this implies αN�d � 0. We can repeat the same

argument to show that α2, . . . αN�d � 0. Therefore, u � α1v. But, this is a contradiction because we

assumed u and v were not co-linear. Therefore u R Ker Gv and so Gu � Gv.

In light of the proof of the above Theorem, we can construct a dynamical dual of a given frame very

quickly almost surely. Indeed, select a random v P Rd�1 according to any probability measure that is

absolutely continuous with respect to Lebesgue measure. Then, MF,ιpvq is almost surely invertible. Then,

use formula (3.2) to quickly compute a dynamical dual to F .

3.5 Quantization with Dynamical Duals

Having shown that every frame has a rich space of dynamical dual frames, we turn our eye to explore

the application of dynamical dual frames to the frame quantization problem so we may explore the utility of

these objects for digital data storage.

Throughout this Section we let F be a fixed finite analysis frame for Rd and G � tT ig0uNi�1 be a

dynamic dual (synthesis) frame to F . The quantization problem for frames is as follows. Fix a finite (often,

very small) subset A of R. Given a vector x P RN , we compute a new vector Qpxq P AN so that the

reconstruction error }GQpxq � Gx}2 is as small as possible. That is, we want to be able to store a full-

precision vector using a finite amount of information while distorting the reconstructed signal as little as

possible.

We denote the measurements of the signal s as F �s � x � pxiqNi�1. The main idea of a Σ∆ quantization

scheme is dispersal of quantization error. The action of moving, e.g., x1 from R into A induces an error

when we reconstruct the signal using G in the direction of g1. In general, some of this error is in the span of

the next synthesis frame vector. Therefore, by adjusting x2 to absorb some of this error we can reduce the

total quantization error. An order-r Σ∆ scheme will seek to recoup more of the error by dispersing it onto
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the next r frame vectors instead of just the next 1.

The first reason for using dynamical synthesis frames is that the quantization error may be perfectly

dispersed precisely because consecutive frame vectors form a basis for the ambient space. After quantizing

a coefficient, we may perfectly disperse the error onto the next d frame vectors because they are guaranteed

to be a basis. This perfect dispersal property is precisely the result of Lemma 3.3.1.

Dynamical frames are not the only frames for which every d consecutive vectors are a basis; there are

others frames that allow perfect dispersal. However, in general dispersing error requires the computationally

expensive task of matrix inversion. For most frames, we would have to do this matrix inversion at every step.

The second reason for using dynamical frames is that, because of their special structure, we only need to

perform the matrix inversion once before we perform any quantization.

Let us develop this idea a bit more formally. If rds � t1, . . . , du, then we use Grds to denote the

submatrix of G containing only the first d columns. Because G is dynamical, Grds is invertible. Recalling

that g0 is the generating vector so that gi � T ig0, we define the vector pαiqdi�1 by

G�1
rdsg

0 � α. (3.3)

Now, the error generated by quantizing coefficient i is a vector in the direction of T ig0. So, to disperse

the quantization error from coefficient i, we need to represent T ig0 in terms of T i�1g0, . . . , T i�dg0. Now

observe by (3.3),

ḑ

j�1

αiT
i�jg0 � T i

�
ḑ

j�1

αiT
jg0

�
� T i

�
Grdsα

� � T ig0. (3.4)

That is, the parameter vector α tells us how to represent T ig0 in terms of T i�1g0, . . . T i�dg0 and that

we can use the same α for each dispersal problem. So, if the quantization error is βT ig0, then adding βαj to

coefficient xi�j results in perfect dispersal. Below, we present formally the dynamical quantization scheme

based on the preceding discussion.

In the following, the state variables w1, . . . , wd contain the accumulated dispersal of prior errors. More-

over, we let Q1 : R Ñ A be the scalar quantizer, mapping a real number to the nearest element of A (with

ties broken arbitrarily).
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Dynamical Quantization Scheme (DQ)

Input: Measurement vector pxiqNi�1, dispersal vector pαiqdi�1

Output: Quantized representation pqiqNi�1

Initialize wi � 0 for each i � 1, . . . , d.

Set q1 � Q1px1q
for i � 1, . . . , d do

Set wi � px1 � q1q � αi
end for

for j � 2, . . . N do

Set qj � Q1pxj � w1q
for i � 1, . . . , d� 1 do

Set wi � wi�1 � pxj � w1 � qjq � αi
end for

Set wd � pxj � w1 � qjq � αd
end for

The remainder of this Section is a discussion of error bounds for this quantization scheme. Our main

result is that, under conditions only on the number of levels in the quantization alphabet and the function

T , we can achieve error bounded above by a constant times }T }Nop where N is the frame size and T is the

operator generating the dynamical frame. Thus, for frames with }T }op   1, we can achieve quite small

error.

3.5.1 Analysis of Error

The first Lemma is the formal proof that the quantization scheme results in perfect dispersal. The vector

Sk below resembles the reconstruction after iteration k but includes terms corresponding to what would be

the N � 1, . . . , N � d � 1 dynamical dual frame vectors. The reason for including these extra terms is to

ease the analysis later in this Section. For clarity and ambiguity, we introduce an additional index on the

state variables wi. Specifically, we let wji denote the value of state variable i at the completion of the loop

iteration in which xj is quantized. Then, the update of the state variables in the DQ algorithm looks like

wji � wj�1
i�1 � pxj � wj�1

1 � qjq � αi (3.5)
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wjd � pxj � wj�1
1 � qjq � αd (3.6)

where wji is interpreted to be 0 for j ¤ 0.

Lemma 3.5.1. Fix a frame F with dynamical dual tT ig0uNi�1. Define pxiqNi�1 � F �s and for N   i  
N � d� 1 define xi � 0. Define the partially quantized reconstruction

Sk �
ķ

i�1

qiT
ig0 �

k�ḑ

i�k�1

pxi � wki�kqT ig0 �
N�d�1¸
i�k�d�1

xiT
ig0.

Then, for every k � 1, . . . , N we have Sk � s.

Proof. We will show this is true by inducting on k. Let k � 1. Then, w1
i � px1 � q1q � αi. Expanding the

formula for S1 we see

S1 � q1Tg
0 �

d�1̧

i�2

�
xi � w1

i�1

�
T ig0 �

N�d�1¸
i�d�2

xiT
ig0

� q1Tg
0 �

d�1̧

i�2

w1
i�1T

ig0 �
Ņ

i�2

xiT
ig0

because xN�1, . . . xN�d�1 � 0. Then,

S1 � q1Tg
0 �

ḑ

i�1

px1 � q1qαiT i�1g0 �
Ņ

i�2

xiT
ig0

� q1Tg
0 � px1 � q1qT 1g0 �

Ņ

i�2

xiT
ig0 (3.7)

�
Ņ

i�1

xiT
ig0 � s

where equation (3.7) is by equality (3.4). Now, fix k P t2, . . . , Nu. For this Lemma, it suffices to show the

equality Sk � Sk�1. Notice that their difference can be expressed

Sk � Sk�1 �
ķ

i�1

qiT
ig0 �

k�ḑ

i�k�1

pxi � wki�kqT ig0 �
N�d�1¸
i�k�d�1

xiT
ig0

�
k�1̧

i�1

qiT
ig0 �

k�d�1¸
i�k

pxi � wk�1
i�k�1qT ig0 �

N�d�1¸
i�k�d

xiT
ig0

� qkT
kg0 � pxk�d � wkdqT k�dg0 � pxk � wk�1

1 qT kg0
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�
k�d�1¸
i�k�1

pwki�k � wk�1
i�k�1qT ig0 � xk�dT k�dg0

� pqk � xk � wk�1
1 qT kg0 �

d�1̧

i�1

pwki � wk�1
i�1 qT k�ig0 � wkdT

k�dg0 (3.8)

Now, notice that for i P t2, . . . , d � 1u, using equation (3.5) gives wki � wk�1
i�1 � pxk � wk�1

1 � qkq � αi.
Moreover, wkd � pxk � wk�1

1 � qkq � αd. Substituting these into (3.8) we can continue,

Sk � Sk�1 � pqk � xk � wk�1
1 qT kg0 �

ḑ

i�1

pxk � wk�1
1 � qkq � αiT k�ig0

� pqk � xk � wk�1
k qT kv0 � pxk � wk�1

k � qkqT k
�

ḑ

i�1

αiT
ig0

�

� 0

because
°d
i�1 αiT

ig0 � g0 by equation (3.5.1).

The vector SN has a close relationship to the vector we reconstruct after quantization. We care about

minimizing the error between the original signal s and the reconstruction GQF �s. In particular, because

SN � s by Lemma (3.4),

s�GQF �s � SN �
Ņ

i�1

qiT
ig0 �

N�ḑ

i�N�1

pwNi�N qT ig0. (3.9)

Our main result, Theorem 3.5.2, argues that if }T }op   1, then this error will be quite small. This seems

clear and indeed if we can argue that the state variables stay small in magnitude, then this fact is immediate.

The main work in Theorem 3.5.2 is showing that if the quantization alphabet A is big enough, then this is

indeed the case.

Theorem 3.5.2. Let F be a frame for Rd with dynamical dual frame tT ig0uNi�1 and let α be defined as

in (3.3). Suppose that the original signal s is such that }F �s}8   r and that A � t�m, . . . ,mu so that

m ¥ r � }α}1
2 . Suppose that }T }op   1. Then, the dynamic quantizer Q : RN Ñ AN gives reconstruction

error bounded above by

}s�GQF �s}2 ¤
�
d

2
}g0}2 � }α}1



}T }N�1

op . (3.10)
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Proof. The proof technique is to show that the variableswki are uniformly bounded so that we may substitute

this upper bound into (3.9). Fix a measurement vector x � F �s as above. We will show by induction over

k that

|wki | ¤
1

2

ḑ

`�i
|α`| (3.11)

Start with k � 1. We first point out if v P r�m � 1
2 ,m � 1

2 s and Q1 : R Ñ A is the scalar quantizer

associated to A, then |Q1pvq � v| ¤ 1
2 . Therefore, |x1 � q1| ¤ 1

2 . Then, by definition

|w1
i | � |px1 � q1q � αi| ¤ 1

2
|αi| ¤ 1

2

ḑ

`�i
|α`|.

Now we let k be arbitrary and assume (3.11) holds for wji with j   k. Notice first that |xk � wk�1
1 | ¤

r � }α}1
2 because }x}8 � }F �s}8   r so that

|xk � wk�1
1 �Q1pxk � wk�1

1 q| � |xk � wk�1 � qk| ¤ 1

2

Then, by using the formulas in (3.5) and (3.6), we can see that, for i P t1, . . . d � 1u, the following

inequalities hold

|wki | ¤ |wk�1
i�1 | � |xk � wk�1

1 � qk| � |αi| ¤ 1

2

ḑ

`�i�1

|α`| � 1

2
|αi| ¤ 1

2

ḑ

`�1

|α`|

|wkd | ¤ |xk � wk�1
1 � qk| � |αd| ¤ 1

2
|αd|.

Thus, the state variables are uniformly bounded. We then use (3.9) to compute:

}s�GQF �s}2 � }
ḑ

i�1

wNi T
N�ig0}2

� }TN
�

ḑ

i�1

wNi T
ig0

�
}2

¤ }TN}op � }α}1
2

� }
ḑ

i�1

T ig0}2

¤ }T }Nop �
}α}1

2

ḑ

i�1

}T ig0}2. (3.12)
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Now, because }T }op   1 we know that }T ig0}2   }T }op}g0}2 for every i. Thus, we can replace°d
i�1 }T ig0}2 ¤ d}T }op}g0}2. Substituting this into (3.12) completes the proof.

The above Theorem is not as general as possible in terms of the alphabet A used. Indeed, the same proof

technique will show that, using an alphabet A � δ � t�m,�m � 1, . . . ,mu, then if δm ¥ r � δ}α}1
2 the

bound (3.10) holds with d
2 replaced by dδ

2 .

One of the key assumptions of Theorem 3.5.2 is that T , the matrix generating the dynamical dual frame

to F , satisfies }T }op   1. From a computational perspective, it would be desirable not only that every F had

a dual with this property but that we could find those duals quickly. However, the following counterexample

exhibits a frame F for which every dynamical dual frame is generated by T with }T }op ¡ 1.

Example 2. Let teiudi�1 be the canonical basis for Rd. Define F � tf iuNi�1 in the following way. Let

f1, . . . fN�d each be the zero vector. Then, we let fN�d�1, . . . , fN be the vectors 10e1, e2, . . . , ed, respec-

tively. Then, if G is a dual frame to F , we may see from the relation GF � � Id that the final d columns of

G must be the vectors 1
10e

1, e2, . . . ed. Thus, if T generates a dynamical dual to F , then we must have that

T p 1
10e

1q � e2 so that }T }op ¥ 10.

While this counterexample may preclude us from using dynamical quantization for arbitrary frames,

hope is not lost. Recall that frames are not, in general, inherently ordered objects. However, when we

enforce a dynamical structure on a frame we also enforce an ordering. The prior example required a very

particular frame in a very particular order to go through. We are motivated, then, to ask whether every frame

admits an ordering so that it has a dynamical dual frame arising from an operator with }T }op   1.

Moreover, we would like to know whether Example 2 is typical or atypical. Does almost every frame

have dynamical duals that are useful in quantization? If not almost every, then do most? Finally, we want to

better understand the relationship between the d�suitable vectors b P RN that we use to generate dynamical

frames and the operator norm of the matrix T that generates the dynamical frame. Understanding this

relationship will likely help answer the two previously posed questions.

3.5.2 Numerical Verification

While the previous Section showed that not every frame allows us to use dynamical quantizaton effec-

tively, we still can show it works in some cases. We ran the following experiment and show the outcome
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below. We began by generating random operators T until one had operator norm less than 1. Then, we

selected a random vector v0 and for each frame size between 3 and 300 generated the frame G � tT iv0uNi�1

and used as measurement matrix the canonical dual to G (which is also dynamical!). Then, we performed

quantization on the vector pπ, eqT . Shown below is a log plot containing four data sequences: the theoretical

error upper bound (including constants) from Theorem 3.5.2 and the real reconstruction error along with the

lines corresponding to 1
n and 1

n2 decay.

Figure 3.1: Reconstruction Error for the Dynamical Quantization Algorithm

We see that our algorithm does indeed achieve exponential error decay at a rate very close to (but never

larger than!) the theoretical upper error bound.

3.5.3 Commentary

While this new line of research into dynamical dual frames does indeed have applications to quanti-

zation, we are obliged to highlight some potential shortcomings. One of the most glaring issues is that

our algorithm is not flexible in the sense that we are not free to choose the memory requirements of our

algorithm.

Traditional Σ∆ algorithms allow specification of the order r that determines memory requirements.

While in a computer having relatively large r is not strictly prohibitive, many Σ∆ applications are actually

accomplished with circuitry. The order of dynamical quantization is the dimension of the ambient space.
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For many applications - such as images and audio signals - this ambient dimension can be extremely large.

Ideally one could define an alternate quantization scheme using dynamical frames that allows flexibility in

selecting the order.
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CHAPTER 4

Recovery of Compressed Signals

4.1 The Compressed Sensing Problem

The two preceding Chapters were primarily focused on finding compressed representations when the

original was known to arbitrary precision. However, it is crucially important in the design of acquisition

system we to study the problem of how to efficiently measure signals that we know are compressible.

Real world signals often contain relatively small amounts of information compared to their dimension.

This property manifests in the following widely observed fact: many signal classes, when expanded in the

appropriate basis, are very sparse. Sparse signals inherently are simpler to store, transmit, and process than

dense ones. Because of the utility of sparse signals, it is of particular interest to find sparse representations

in useful bases when they exist.

The field of Compressed Sensing (CS) was developed precisely to study the concepts of representation,

acquisition, and recovery of sparse signals. One central question in CS is this: Given a vector of possibly

noisy measurements, how may we find the sparsest signal that explains these measurements (up to, perhaps,

some error tolerance level). More precisely, letting }x}0 denote the number of non-zero elements of the

vector x, then given a tolerance ε, we wish to solve

min
xPCd

}x}0 subject to }Ax� y}2   ε (4.1)

when given both A and y.

While the field of CS is mainly concerned with finding the sparse representations, it is necessary to study

closely related questions. For instance, it is well known that (4.1) is NP-Hard for general matrices A and

every ε ¥ 0 [15]. However, with additional structure forced uponA, namely the restricted isometry property

(RIP), the problem is actually tractable.

With this knowledge that the problem can be solved, research quickly turned to the question of how

to solve (4.1). The list of techniques includes, yet is not limited to, iterative hard thresholding (IHT) [4,

5], (orthogonal) matching pursuit [12], hard thresholding pursuit [14], and CoSaMP [29]. Each of these
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algorithms solve (4.1) provided A has sufficiently strong RIP.

Many of the above techniques, particularly those which are thresholding based, rely crucially on the

action of the hard thresholding operator. For instance, IHT simply alternates a gradient descent step followed

by hard thresholding. The hard thresholding operator acts by taking in an arbitrary vector and returning the

nearest s�sparse vector. However, doing so makes no use of y, the measurement vector. This leads us to

ask: Can we find a better thresholding technique?

In this Chapter, we answer this question in the affirmative. We propose the Look Ahead Thresholding

(LAT) technique which will be shown in a variety of settings to achieve better results than simply using hard

thresholding. In particular, we modify IHT to use our new thresholding rule and propose the Iterative Look

Ahead Thresholding (ILAT) algorithm. We prove that ILAT has comparable worst case performance to IHT

in terms of the required RIP to converge. Moreover, we show both experimentally and theoretically that

look ahead thresholding excels when used in compressed sensing.

The remainder of this Chapter is organized as follows. Section 4.2 will present the necessary background

information for compressed sensing, develop our new thresholding rule, and present the ILAT algorithm.

Section 4.3 analyzes the worst-case behavior of ILAT in relation to the RIP of the sensing matrix. Section

4.4 contains an average case analysis showing the power of look ahead thresholding. Finally, Section 4.5

shows in a few different experiments that this technique performs exceedingly well in practice.

4.2 Background: compressed sensing

Let us begin with the necessary priors from compressed sensing while simultaneously standardizing our

notation. A vector x P Rd is said to be s�sparse if it has at most s non-zero entries. We note that most

signals of interest are only sparse in a particular basis so one may similarly define sparsity with respect to

some other orthonormal basis such as wavelets, fourier, etc.

The process of ‘taking a measurement’ is computing an inner product against a known vector. So, the

transformation from signal to a vector of measurements is realized by matrix multiplication. We let x� P Rd

be the s�sparse signal to recover. Given access to the vector of measurements y � Ax� in Rm, the goal is

to recover quickly and uniquely the s�sparse vector x�. Notice that if m ¥ d and A is invertible, we can

recover x� perfectly from y. In practice, we want to minimize the necessary number of measurements so

we study at length the case when m   d.
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At the other extreme, notice that if we knew the support of x�, then s linearly independent measurements

would suffice to recover x�. While we cannot know the support of every measured signal, knowing that the

signal is sparse inherently reduces the complexity of x�. Therefore, we hope to still be able to get away with

using m measurements with s   m   d.

Two of the main questions, then, in compressed sensing are:

1. What does the matrix A need to look like for x� to be uniquely determined amongst all s�sparse

vectors by y � Ax�?

2. Knowing A and y, how can we procedurally reconstruct the solution x�?

The first question is very well-studied and traditionally answered by enforcing A to have the restricted

isometry property.

Definition 4.2.1. A matrixA has sth restricted isometry constant δs � δspAq provided that δs is the smallest

δ ¥ 0 so that for every s�sparse vector x we have

p1� δq}x}22 ¤ }Ax}22 ¤ p1� δq}x}22.

We say informally thatA has the restricted isometry property (RIP) if δs is relatively small for s relatively

large. Essentially, though A cannot possibly be an isometry when m   d, if A has RIP of order s then every

subset of s columns of A form an approximate isometry.

We let } � }op be the operator norm of a matrix relative to the Euclidean norms on both the domain and

range. Every matrix A trivially has δspAq ¤ maxt1, }A}2op � 1u so we need to ask: How strong does the

RIP of A need to be to guarantee that x� is uniquely determined by y? In theory, recovery is possible if the

matrix A is injective on the set of s�sparse vectors. Notice that if x, y are both s�sparse, their difference is

2s�sparse. Then, if δ2s   1, it follows that Apx� yq � 0 by definition. So, in fact the condition δ2s   1 is

sufficient for the map x� ÞÑ Ax� to have an inverse on the s�sparse signal space.

While δ2s   1 is sufficient in theory for recovery of s�sparse vectors, in practice this is not enough.

Notice that the set of sparse vectors is not a subspace of Rd, so the inverse mapAx� ÞÑ x� is not linear. Thus,

most compressed sensing techniques require much stronger versions of the restricted isometry property in

order to be able to find x� quickly, robustly, and stably.
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Unfortunately, the restricted isometry property is a delicate thing. Constructing matrices of a given

size and with suitable RIP is difficult or impossible to do deterministically. Luckily, though, large enough

random matrices with entries chosen i.i.d. from a Bernoulli or other sub-Gaussian distribution tend to have

sufficiently strong RIP [15]. That is, we do not know necessarily how to construct RIP matrices but we do

know that using random matrices with sufficiently many rows will suffice with high probability.

Having answered question p1q above, we can now turn our attention to question p2q: how exactly can

we perform the non-linear inversion of the matrix A on the set of s�sparse vectors? There are countless

techniques and algorithms, one of which we discuss in depth in the next Section.

4.2.1 Iterative Hard Thresholding

Iterative Hard Thresholding was first introduced by Blumensath and Davies in [4] as a method of sparse

dictionary approximation and by the same authors shortly after in [5] for compressed sensing. There are

many ways to interpret IHT but we prefer to understand it as alternating a gradient descent step followed by

a hard thresholding step.

To develop the gradient descent setting, given the measurements y and matrixA, define the cost function

Cpxq � }y �Ax}22 � }Apx� � xq}22 (4.2)

to describe how well the vector x explains the observed measurements y. A routine calculation shows the

gradient of C is ∇Cpxq � �2A�py�Axq � �2A�Apx��xq. In general, a thresholder is any function that

outputs some s�sparse projection of the input vector. In particular, we defineHs to be the hard thresholding

operator which acts on a vector by retaining only the s largest entries in magnitude while setting the rest to

zero (ties can be broken arbitrarily). Then, given a starting point x0 and using a ‘step-size’ of 1{2, IHT is

defined by the iteration

1. at�1 � xt � 1
2∇Cpxtq � xt �A�py �Axtq

2. xt�1 � Hspat�1q.

The inspiration here is that gradient descent helps move towards a zero of C while the thresholding

ensures that our iterates are actually sparse. And, under the conditions δ2s   1 the only point having both

these properties is x�. However, because it is possible that Hs ‘undoes’ enough of the progress of the
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gradient step, we are not necessarily guaranteed to converge to a point where ∇Cpxtq � 0. If we specify a

stronger RIP, though, we can guarantee convergence.

For IHT to work, we need xt to stay about as close to x� as at is. That is,Hs needs to not undo too much

of the gradient progress. The following crucially important fact from [5] gets us most of the way there:

}x� � xt}2 � }x� �Hspatq}2 ¤ 2}x� � at}2. (4.3)

Then, because x� � at � pI � A�Aqpx� � xt�1q and noting that the RIP forces A�A to be close to the

identity when applied to sparse vectors (see Lemma 4.3.2), we can show }x� � xt}2 ¤ ρ}x� � xt�1}2 for

ρ   1 so that pxtq converges to x�.

This fact generalizes. Suppose we have an algorithm that alternates at � xt�1 � A�py � Axt�1q then

chooses xt to be some thresholding of at (not necessarily using Hs). Then, if

}x� � xt}2 ¤ k}x� � at}2 (4.4)

for some universal k, the same Lemma 4.3.2 lets us specify which RIP of A (namely δ2s   1{k2) suffices

to prove convergence when normalizing }A}op � 1. This is the proof technique we pursue in Section 4.3.

Here is a final thought to motivate our campaign for alternative thresholding. If P� is the projection onto

the support of x�, then

}x� � P�at}2 ¤ }x� � at}2.

That is, inequality (4.4) is satisfied for k � 1. Comparing this to the hard thresholding requirement k �
2, this leaves quite a bit of room for improvement. While we cannot use P� because the support is in

general unknown, maybe we can use some of the information content from the measurements y to pick a

thresholding that does better than k � 2.

4.2.2 Look Ahead Thresholding

In this Section we will describe how our novel look ahead thresholder chooses which coordinates to

keep and which to kill. Along the way, we will show the thought process that led to the definition of look
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ahead thresholding.

Fix a vector z P Rd. Then, Hspzq is the s�sparse vector Hpzq minimizing }z � Hpzq}2. However,

per the discussion preceding inequality (4.4), the ideal thresholder H for sparse recovery is the one which

minimizes }x� � Hpzq}2. That is, it is preferable to threshold a vector z in a way so that the result is as

close to the solution x� as possible. While we cannot minimize }x� �Hpzq}2 directly because we do not

know x�, we develop look ahead thresholding to get a good approximation.

Notice that the value of the cost C at a particular thresholding Hpzq of z is

CpHpzqq � }y �ApHpzqq}22 � }Apx� �Hpzqq}22.

Then, because x��Hpzq is 2s�sparse, if A has RIP it is an approximate isometry so that CpHpzqq is close

to }x� �Hpzq}22. Moreover, C is something we can work with unlike }x� �Hpzq}22.

Unfortunately, C is a non-separable quadratic and there are
�
d
s

�
possible s�sparse projections of a point

z. It is computationally intractable to find the Hpzq minimizing C. We address this issue by introducing

a surrogate fη,z which is a separable quadratic related closely to the Taylor series of C at z. The idea for

using fη,z was inspired by the work in [26] which searched for sparse representations for neural networks.

First let us simply define the surrogate

fη,zpxq � Cpzq �
ḑ

i�1

�
2η
BC
Bxi pzqpxi � ziq � pxi � ziq2



. (4.5)

We claim this function is quite closely related to the Taylor series for C at z. Indeed, first assume we have

normalized the columns of A to have }Ai}2 � 1 so that B2C
Bx2

i
� 1. Then the function fη,z is formed from the

Taylor series for C by first ignoring the off-diagonal terms of the Hessian then multiplying the linear terms

by a tunable constant. Ignoring the off-diagonal terms is necessary for separability and adding the weight to

the gradient term lets us control the algorithm’s performance more carefully.

Now we can define the look ahead thresholding rule. If z is the point to threshold, we pick the threshold-

ing of z that minimizes fη,z . More precisely, first let PΩ be the projection onto the coordinate axes indexed

by Ω � t1, . . . , du. Then, the look ahead thresholding function Hs,η has the action defined by

Hs,ηpzq � argmin
PΩz,|Ω|�s

fη,zpPΩzq. (4.6)
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We recall that the original problem (4.1) can be solved exactly if given unlimited time. Therefore, it is

important to emphasize that the action defined in (4.6) can be computed quickly. Notice that, for a particular

projection PΩpzq, the function fη,z takes the value

fη,zpPΩpzqq � Cpzq �
¸
iRΩ

�
2η
BC
Bxi pzqp�ziq � p�ziq2



. (4.7)

Then we observe that the solution to (4.6) can be computed by picking Ω to contain precisely the s

coordinates for which the values

2η
BC
Bxi pzqp�ziq � pziq2 (4.8)

are largest. Because computation of BC
Bxi pzq is by far the most expensive step of (4.8), the cost to compute

Hs,ηpzq is essentially the cost of computing the gradient ∇Cpzq.
Now, we promised a second motivation for the definition of the thresholding rule (4.6). This reformula-

tion ofHs,η is the basis for the name look ahead thresholding. Because this reformulation is used throughout

the proofs in Sections 4.3 and 4.4, Lemma 4.3.3 proves this reformulation is correct. Moreover, this refor-

mulation also lets us see that hard thresholding is a special case of look ahead thresholding with the weight

η chosen to be zero.

Define the look ahead point `η � z � η∇Cpzq, the point that would be the next gradient descent step

from z with step-size η. Then, look ahead thresholding defined by (4.6) picks the s�sparse projection of

z that is closest to `η. Because for specific values of η, the point `η is provably closer to x� than z is, we

might expect this thresholding to find better projections. Indeed, this is the case.

To show how look ahead thresholding may be applied in practice, we define the Iterative Look Ahead

Thresholding algorithm as an example. The only difference between ILAT and IHT is that the thresholding

step is done usingHs,η instead ofHs. That is, we use look ahead thresholding instead of hard thresholding to

hopefully retain as much of the progress made by the gradient updates as possible while remaining s�sparse.

In Section 4.3 we show that this algorithm is guaranteed to converge under some RIP conditions that

are, perhaps surprisingly, more restrictive than the conditions for IHT. However, convergence guarantees

are worst case analyses and we argue for the use of look ahead thresholding both theoretically in Section

4.4 and experimentally in Section 4.5 by appealing to the average case. Let us end this Section by formally

52



presenting Iterative Look Ahead Thresholding.

Iterative Look Ahead Thresholding
Input: Matrix A, measurements y, sparsity s, iterations T
Output: Estimate xT of s�sparse solution x�.
Set x0 � 0 P Rd
for 1 ¤ t ¤ T do

Set at � xt�1 �A�py �Axt�1q
for 1 ¤ i ¤ d do

Compute si � 2ηp�atiq BCBxi patq � patiq2
end for
Set Ω � t1, . . . , du the indices of the s largest values of si.
Set xt � PΩa

t.
end for

4.3 Iterative Look Ahead Thresholding Converges with Suitable RIP

As is typical for compressed sensing, we present theorems of the form ‘for sufficient restricted isometry

constants, our algorithm is guaranteed to recover the solution x�’. We prove theorems of this sort both in a

noiseless environment and a corresponding result when the measurements may be corrupted. We begin first

with a few technical facts that show up in our analysis time and again.

4.3.1 Technical Lemmas

We point out that in our analysis, we require that the measurement matrix A is normalized to have

operator norm 1. This is slightly different from traditional CS literature which normalizes the columns of A

to have expected squared length 1. However, in some settings normalizing via the operator norm has been

observed to yield superior performance [3].

Lemma 4.3.1. If A is an m � d matrix and }A}op � 1, then }I � 2ηA�A}op ¤ 1 whenever η P r0, 1s.
Moreover, if m   d then }I � 2ηA�A}op � 1.

Proof. We build a singular value decomposition for I � 2ηA�A from an svd for A itself. Let the svd for A

be A � V ΣU . Then notice that I � 2ηA�A � U�pI � 2ηΣ�ΣqU . Notice first that because }A}op � 1, the

diagonal of Σ�Σ is in r0, 1s. Thus, the diagonal of D � I � 2ηΣ�Σ is in r�1, 1s. Now, form D̃ and Ũ by

first replacing the negative entries in D by their absolute values then multiplying the corresponding row in

U by �1.
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We point out three things. First, that we can write I � 2ηA�A � U�D̃Ũ . Second, the matrix Ũ remains

a unitary. Finally, D̃ is a diagonal matrix with positive entries in r0, 1s. Therefore UD̃Ũ is an svd for

I � 2ηA�A so }I � 2ηA�A}op ¤ 1.

Now, because m   d we can pick a nontrivial v in the kernel of A so pI � 2ηA�Aqv � v. Therefore

}I � 2ηA�A}op � 1.

The prior Lemma controlled the operator norm of I � 2ηA�A over the entirety of its domain. The

following Lemma controls the operator norm of I � A�A when restricted to s�sparse vectors. In this case

we get much better performance in terms of the restricted isometry constants of A.

Lemma 4.3.2. If x P Rd is s�sparse and }A}op � 1, then }pI �A�Aqx}2 ¤
?
δs}x}2.

Proof. Simply expand

}pI �A�Aqx}22 � }x}22 � }A�Ax}22 � 2xx,A�Axy

� }x}22 � }Ax}22 � }A�Ax}22 � }Ax}22. (4.9)

Now, because A� has norm 1, }A�pAxq}22 � }Ax}22 ¤ 0. By re-arranging the RIP condition we may also

see

}Ax}22 ¥ p1� δsq}x}22 ñ δs}x}22 ¥ }x}22 � }Ax}22. (4.10)

Then, substituting the reformulation in (4.10) into (4.9), our result follows by taking a square root.

We remark that Lemma 4.3.2 is similar to the following reformulation of δs whose proof can be found

in [15]. If AΩ is the matrix formed from A by taking the columns indexed by Ω, then

δspAq � sup
|Ω|�s

}I �A�
ΩAΩ}2op. (4.11)

Finally, we will show that using the decision rule (4.6) to threshold a vector z is equivalent to picking the

s�sparse thresholding of z which is closest to the look ahead point `η.

Lemma 4.3.3. Fix a vector z P Rd, η ¡ 0, measurement vector y P Rm, and an m � d matrix A. Let

Cpzq � }y � Az}22 and define `η � z � η∇Cpzq. Then, the vector Hs,ηpzq is the closest s�sparse
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thresholding of z to `η.

Proof. Notice that for a generic vector x,

}x� `η}22 �
ḑ

i�1

�
xi �

�
zi � η

BC
Bxi pzq



2

�
ḑ

i�1

�
pxi � ziq � η

BC
Bxi pzq


2

�
ḑ

i�1

�
2η
BC
Bxi pzqpxi � ziq � pxi � ziq2



� η2}∇Cpzq}22. (4.12)

For an arbitrary index set Ω and projection PΩz we have that

}PΩz � `tη}22 �
¸
iRΩ

�
2η
BC
Bxi pzqp�ziq � pziq2



� η2}∇Cpzq}22.

Now notice that, no matter the choice of Ω, the value

¸
iRΩ

�
2η
BC
Bxi pzqp�ziq � pziq2



�
¸
iPΩ

�
2η
BC
Bxi pzqp�ziq � pziq2



� η2}∇Cpzq}22

is a constant. So, minimizing the sum indexed over i R Ω is equivalent to maximizing the sum indexed over

i P Ω. Selecting Ω in this way is precisely the decision rule for Hs,ηpzq given by (4.8).

4.3.2 Noiseless Convergence

In this Section we prove that Iterative Look Ahead Thresholding recovers exactly the exactly s�sparse

solution x� from the noiseless measurements y � Ax provided δ2spAq is sufficiently small. Per the discus-

sion preceding (4.4), if we can establish a universal k so that

}x� � xt}2 � }x� �Hs,ηpatq}2 ¤ k}x� � at}2 (4.13)

then invoking Lemma 4.3.2 and expanding the definition of at, it follows that

}x� � xt}2 ¤ k
a
δ2s}x� � xt�1}2.
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Then, we may specify an RIP constraint so that we recover x� in the limit. The first step is to determine

a suitable constant k.

Lemma 4.3.4. Suppose we are given an n � d matrix A with }A}op � 1 and y � Ax� for some s�sparse

x� P Rd. Let 0 ¤ η ¤ 1 and the sequences pxtq, patq be defined by Iterative Look Ahead Thresholding with

parameter η. Then,

}x� � xt}2 ¤ p1�
a

1� 4η2q}x� � at}2.

Proof. Let `η � at � η∇Cpatq, the look ahead point from at. Let P be the projection onto the support of

a best s�term approximation of `η. Because xt � Hs,ηpatq is the closest s�sparse thresholding of at to `η,

it follows that }xt � `η}2 ¤ }Pat � `η}2. Then we write

}x� � xt}2 ¤ }x� � `η}2 � }xt � `η}2
¤ }x� � `η}2 � }Pat � `η}2. (4.14)

Notice first that }x�� `η}2 � }pI � 2ηA�Aqpx�� atq}2. Because 0 ¤ η ¤ 1 and through Lemma 4.3.1 we

can say

}x� � `η}2 ¤ }x� � at}2. (4.15)

Dealing now with the second term of (4.14) we see

}Pat � `η}22 � }Pat � P`η}22 � }P`η � `η}22
¤ }at � `η}22 � }x� � `η}22 (4.16)

¤ }at � `η}22 � }x� � at}22. (4.17)

Above, inequality (4.16) is because projection is norm 1 and because P`η is a better s�term approximation

of `η than x� is. Now again because of the normalization }A}op � 1,

}at � `η}2 � }η∇Cpatq}2 � }2ηA�Apx� � atq}2 ¤ 2η}x� � at}2.
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We finish working with inequality (4.17) by substituting to yield:

}Pat � `η}22 ¤ p1� 4η2q}x� � at}22. (4.18)

Finally, substituting (4.15) and (4.18) into (4.14) we see

}xt � x�}2 ¤ }x� � at}2 �
a

1� 4η2}x� � at}2

which is precisely the inequality given in the Lemma statement.

Now, as argued above, the proof of our first main Theorem requires just an algebraic manipulation after

appealing to Lemmas 4.3.4 and 4.3.2.

Theorem 4.3.5. Suppose we are given an m�d matrix A with }A}op � 1 and y � Ax� for some s�sparse

x� P Rd. Let 0 ¤ η ¤ 1 and the sequences pxtq, patq be defined by Iterative Look Ahead Thresholding using

with parameter η. If the restricted isometry constant δ2s of A satisfies δ2s   1�
1�
?

1�4η2
	2 , then

}xt � x�}2 ¤ ρt}x0 � x�}2

where ρ � ?
δ2s

�
1�

a
1� 4η2

	
  1. In particular, pxtq converges to x�.

Proof. Because the conditions of Lemma 4.3.4 are satisfied, we have that }xt�x�}2 ¤ p1�
a

1� 4η2q}at�
x�}2. Then,

}xt � x�}2 ¤ p1�
a

1� 4η2q}at � x�}2
� p1�

a
1� 4η2q}xt�1 � x� �A�Apx� � xt�1q}2

� p1�
a

1� 4η2q}pI �A�Aqpxt�1 � x�q}2
¤ p1�

a
1� 4η2q

a
δ2s}xt�1 � x�}2

where the final inequality follows from Lemma 4.3.2 because xt�1 � x� is 2s-sparse and }A}op � 1.

Therefore, by iteration we have that }xt�x�}2 ¤ ρt}x0�x�}2 for ρ   1 so convergence is guaranteed.
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4.3.3 Noisy Convergence

Let us now turn our attention to the case where there is noise present. In particular, the signal x� is no

longer required to be exactly s�sparse and the measurements look like y � Ax�� e for e some noise term.

We define the following auxiliary noise term which describes how much y is corrupted from the noiseless

measurements of the best s�term approximation of x�.

Definition 4.3.6. For a vector x� P Rd, Hspx�q its best s�term approximation, and a corrupted measure-

ment vector y � Ax� � e, we define the error term ẽ � y �ApHspx�qq � Apx� �Hspx�qq � e.

We have the following useful relation for the gradient at a point in terms of ẽ:

η∇Cpzq � �2ηA�py �Azq � �2ηA�pAx� � e�Azq

� �2ηA�ApHspx�q � zq �A�pApx� �Hspx�qq � eq

� �2ηA�ApHspx�q � zq � 2ηA�ẽ. (4.19)

Before proving our noisy convergence Theorem, which proceeds very similarly to the previous Section,

let us offer a comment on what convergence actually means here. Because the signal x� is not exactly

s�sparse and our algorithm returns sparse signals, at best we hope to recover the signal Hspx�q. However,

because our measurements are corrupted by noise, even this cannot be expected. We do show, however, that

pxtq will converge to some small neighborhood of Hspx�q and the size of the neighborhood depends only

on δ2s, }ẽ}2 and η.

Lemma 4.3.7. Suppose we are given an m � d matrix A with }A}op � 1 and y � Ax� � e for some

x� P Rd. Let 0 ¤ η ¤ 1 and the sequences pxtq, patq be defined by Iterative Look Ahead Thresholding with

parameter η. Then,

}xt �Hspx�q}2 ¤ p2� 2ηq}at �Hspx�q}2 � 6η}ẽ}2.

Proof. Let `η � at � η∇Cpatq. First we will derive two bounds based on the equality (4.19). Because

Lemma 4.3.1 guarantees }I � 2ηA�A}op ¤ 1,

}Hspx�q � `η}2 � }Hspx�q � at � η∇Cpatq}2 � }pI � 2ηA�AqpHspx�q � atq � 2ηA�ẽ}2
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¤ }Hspx�q � at}2 � 2η}ẽ}2. (4.20)

Second, directly from (4.19) we have

}at � `η}2 � }η∇Cpatq}2 ¤ 2η}Hspx�q � at}2 � 2η}ẽ}2. (4.21)

Next we use the triangle inequality:

}xt �Hspx�q}2 ¤ }xt � `η}2 � }Hspx�q � `η}. (4.22)

Because the second term on the right of (4.22) is bounded by (4.20), let us work with the first term on the

right. If P is the projection onto the support of Hsp`ηq, then because xt is the closest s�sparse thresholding

of at to `η, we also have that

}xt � `η}2 ¤ }Pat � `η}2 ¤ }Pat � P`η}2 � }P`η � `η}2
¤ }at � `η}2 � }Hspx�q � `η}2, (4.23)

where the last term is because P`η is a better s�term approximation of `η than is Hspx�q. Substituting

(4.23) into (4.22) yields

}xt �Hspx�q}2 ¤ 2}Hspx�q � `η}2 � }at � `η}2. (4.24)

Now, we again substitute (4.20) and (4.21) directly into (4.24) achieves the stated bound in this Lemma.

Again, our second main Theorem follows from Lemma 4.3.7 with some simple algebra.

Theorem 4.3.8. Suppose we are given an m� d matrix A with }A}op � 1 and y � Ax� � e for x� P Rd.

Let 0 ¤ η ¤ 1 and the sequences pxtq, patq be defined by Iterative Look Ahead Thresholding with parameter

η. If the restricted isometry constant δ2s of A satisfies δ2s   1
p2�2ηq2 , then the sequence pxtq satisfies the

recurrence relation

}Hspx�q � xt}2 ¤ ρ}Hspx�q � xt�1}2 � p2� 8ηq}ẽ}2
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for ρ � p2� 2ηq?δ2s   1.

Proof. By Lemma 4.3.7, we have }Hspx�q � xt}2 ¤ p2� 2ηq}Hspx�q � at}2 � 6η}ẽ}2. But notice that

}Hspx�q � xt}2 ¤ p2� 2ηq}Hspx�q � at}2 � 6η}ẽ}2
� p2� 2ηq}Hspx�q � xt�1 �A�py �Axt�1q}2 � 6η}ẽ}2
� p2� 2ηq}Hspx�q � xt�1 �A�pApHspx�q � xt�1 � x� �Hspx�qq � eq}2 � 6η}ẽ}2
¤ p2� 2ηq �}pI �A�AqpHspx�q � xt�1q}2 � }A�pẽq}2

�� 6η}ẽ}2
¤ p2� 2ηq

a
δ2s}Hspx�q � xt�1}2 � p2� 8ηq}ẽ}2 (4.25)

where the last line is because of Lemma 4.3.2.

4.4 Average Case Analysis

Our goal in defining a better thresholding rule H given an s�sparse vector to recover x� is to minimize

the distance }Hpzq � x�}2. Moreover, we are interested in measuring the size of }Hpzq � x�}2 relative

to }z � x�}2. Recall that in the case of H � Hs, the hard thresholding operator, at best we can say that

}Hspzq � x�}2 ¤ 2}z � x�}2 (see, e.g., inequality p21q of [5]). Even if we take the expected value of

}Hspzq � x�} over a random choice of measurement matrix A, this upper bound does not improve because

Hs is independent of A.

However, for look ahead thresholding the average case is much better. In this Section we will show that

taking expectation over random A with entries chosen i.i.d. from a Gaussian,

E r}Hs,ηpzq � x�}2s ¤ ρ}z � x�}2 (4.26)

and that ρ can be taken strictly smaller than 2 for a range of η values. Now, during the proof of Lemma

4.3.4 we derive the following important inequality which is the basis of this Section’s analysis. We recreate

it here in the precise form we need for completeness.

Lemma 4.4.1. Let z P Rd be a vector, x� P Rd be s�sparse and A some m � d measurement matrix. Let
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Cpzq � }Apx� � zq}22 and define `η � z � η∇Cpzq to be the look ahead point from z. Then,

}Hs,ηpzq � x�}2 ¤
b
}z � `η}22 � }`η � x�}22 � }`η � x�}2. (4.27)

Proof. Let P be the projection onto the support of a best s�term approximation of `η. Then, because x� is

a worse s�term approximation of `η than P`η is,

}Pz � `η}22 � }Pz � P`η}22 � }`η � P`η}22
¤ }z � `η}22 � }`η � x�}22.

Now, by choice Hs,ηpzq is at least as close to `η as Pz is. So, a triangle inequality leaves

}Hs,ηpzq � x�}2 ¤ }Hs,ηpzq � `η}2 � }`η � x�}2
¤ }Pz � `η}2 � }`η � x�}2
¤
b
}z � `η}22 � }`η � x�}22 � }`η � x�}2.

The reason this upper bound is useful is because we can write each term on the right hand side of (4.27)

as a transformation of a common vector:

z � `η � �2ηA�Apx� � zq (4.28)

x� � `η � pI � 2ηA�Aqpx� � zq. (4.29)

Then, controlling the random behavior of A and the related matrices I � 2ηA�A and 2ηA�A gives us our

result. In the rest of this Section we compute the expected size of }z� `η}22 and }x�� `η}22 over the random

draw of A.

We first desire to answer: For random V , in what ways does the average size of }V y}22 depend on both

}y}22 and on V ? It turns out that under some mild constraints which are satisfied in our setting (see Lemma

4.4.6), the important quantity is the expected Frobenius norm of the matrix in question.

Lemma 4.4.2. Fix a vector y P Rd and let V be an m� d random matrix with entries satisfying
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1. The columns Vi, 1 ¤ i ¤ d of V all have the same expected squared length.

2. Two distinct entries Vi,j , Vi,k from the same row have E rVi,jVi,ks � 0.

Then, the expected value of }V y}22 is scaled by the Frobenius norm like:

E
�}V y}22� � 1

d
� E �}V }2F � � }y}22.

Proof. We begin by expanding the random variable of concern:

}V y}22 �
m̧

i�1

�
ḑ

j�1

Vi,jyj

��
ḑ

k�1

Vi,kyk

�

�
m̧

i�1

ḑ

j�1

ḑ

k�1

Vi,jVi,kyjyk. (4.30)

If j � k, then E rVi,jVi,kyjyks � 0 because of the assumption p2q on V . Therefore taking the expectation

of both sides of (4.30) we are only left with

E
�}V y}22� � m̧

i�1

ḑ

j�1

E
�
V 2
i,jy

2
j

�

�
ḑ

j�1

y2
j

m̧

i�1

E
�
V 2
i,j

�
. (4.31)

Then, by the assumption p1q on the random matrix V , the terms
°m
i�1 EpV 2

i,jq are constant for each

column j. Letting this common squared expected length be denoted c, then we can continue (4.31) by

E
�}V y}22� � c

ḑ

j�1

y2
j � c}y}22. (4.32)

Finally, it remains to show that the the constant c is equal to the expected squared Frobenius norm divided

by the dimension of y. Well, the expected Frobenius norm can be written

E
�}V }2F � � ḑ

j�1

m̧

i�1

V 2
i,j �

ḑ

j�1

c � cd

which completes the proof
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We remark that the probabilistic setting above is quite mild and is satisfied by most random matrix

ensembles including any matrix with entries selected i.i.d. from a zero mean distribution. For the remainder

of this Section we will work with A whose entries are drawn i.i.d. from a Gaussian normalized so the

expected squared column length is 1. Before computing the expected Frobenius norms, though, we will

isolate a few key probabilistic facts. Throughout the remainder of this Chapter we let Npµ, σ2q denote the

normal distribution with mean µ and variance σ2.

Lemma 4.4.3. Let A1, A2, A3 P Rm be random vectors with entries selected i.i.d. from Np0, 1
mq. Then,

E
�xA1, A2y2

� � 1

m
(4.33)

and for p � 3 or p � 1 we have

E rxA1, A2yxA1, Apys � 0. (4.34)

Moreover, the fourth moment of }Ai}2 behaves like

E
�}Ai}42� � 1� 2

m
. (4.35)

Proof. We expand the first expectation like

E
�xA1, A2y2

� � E

��
m̧

k�1

pA1qkpA2qk
�
�
�

m̧

`�1

pA1q`pA2q`
��

� E

�
� m̧

k,`�1

pA1qkpA2qkpA1q`pA2q`

�
� . (4.36)

First notice that when k � `, the four terms are distinct and chosen mutually independently so expectation

commutes with taking their product. Then, since they are each zero mean, the product of the four terms

has zero expected value. Therefore, after taking the expectation of both sides of (4.36) the only terms

contributing are k � `. Therefore,

E
�xA1, A2y2

� � m̧

k�1

E
�pA1q2kpA2q2k

�
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�
m̧

k�1

E
�pA1q2k

�
E
�pA2q2k

� � 1

m

where the last line is because pA1qk and pA2qk are independent.

Now for the second part of this Lemma. Identically to the previous part,

E rxA1, A2yxA1, Apys �
m̧

k,`�1

E rpA1qkpA2qkpA1q`pApq`s .

Now, because the entries are mutually independent and pA2qk is always distinct from pA1qk, pA1q` and

pApq` no matter if p � 1 or p � 3, then for every k, ` we have

E rpA1qkpA2qkpA1q`pApq`s � E rpA1qkpA1q`pApq`sE rpA2qks � 0

which finishes the second part of this Lemma.

Finally we will compute the fourth moment of }Aj}2

}Aj}42 �
�

m̧

i�1

pAjq2i
��

m̧

k�1

pAjq2i
�

�
m̧

i�1

pAjq4k �
m̧

i�1

¸
k�i

pAjq2i pAjq2k. (4.37)

Now because pAjqi, pAjqk are independent when i � k, taking expectations of both sides of (4.37) leaves

us with

E
�}Aj}42� � m̧

i�1

E
�pAjq4i �� m̧

i�1

¸
k�j

E
�pAjq2i �E �pAjq2k�

� m

�
3

m2



� pm2 �mq

�
1

m2




where the last equality is in part because the fourth moment of a zero mean Gaussian is 3σ4. Cleaning up

this expression finishes the proof.

With all our tools ready, we can now compute the expected Frobenius norm of the matrix I � 2ηA�A.

Lemma 4.4.4. Let A be an m � d random matrix with entries Ai,j selected i.i.d. from Np0, 1
mq and let

64



η ¡ 0. Then the squared Frobenius norm of I � 2ηA�A has expected value

E
�}I � 2ηA�A}2F

� � 4d

��
d�m� 1

m



η2 � η � 1

4

�
.

Proof. The off diagonal entries of I � 2ηA�A, of which there are d2 � d, all have the form �2ηxAi, Ajy
for i � j. Then, by Lemma 4.4.3 the expected squared size of each off diagonal term is 4η2

m . Therefore the

off-diagonal contribution to the squared Frobenius norm is pd2 � dq4η2

m .

The diagonal entries of I � 2ηA�A are of the form 1� 2η}Ai}22. So their squared expectation again by

the Lemma 4.4.3 is

E
�p1� 2η}Ai}22q2

� � 1� 4ηE
�}Ai}22�� 4η2E

�}Ai}42�
� 1� 4η � 4η2

�
1� 2

m




so the diagonal contribution to the expected squared Frobenius norm is d
�
1� 4η � 4η2

�
1� 2

m

��
. Com-

bining the diagonal and off-diagonal terms we get

E
�}I � 2ηA�A}2F

� � d

�
1� 4η � 4η2 � 8η2

m



� pd2 � dq4η

2

m
� 4d

��
d�m� 1

m



η2 � η � 1

4

�
.

In much the same way we now compute the expected Frobenius norm of 2ηA�A.

Lemma 4.4.5. Let A be an m � d random matrix with entries Ai,j selected i.i.d. from Np0, 1
mq and let

η ¡ 0. Then the squared Frobenius norm of 2ηA�A has expected size

E
�}2ηA�A}2F

� � 4d

��
d�m� 1

m



η2

�
.

Proof. We will compute the expected squared Frobenius norm for A�A and pick up the 4η2 by linearity.

The d2 � d off-diagonal entries of A�A are precisely xAi, Ajy for i and j distinct. Thus, by Lemma 4.4.3

these terms each contribute 1
m . Moreover, the diagonal terms are }Ai}22 which have expected squared size
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1� 2
m . Thus we have

E
�}A�A}2F

� � pd2 � dq
�

1

m



� d

�
1� 2

m



� d

�
d�m� 1

m

�
.

Finally, in order to use Lemma 4.4.2, we need to verify that the matrices 2ηA�A and I � 2ηA�A satisfy

its conditions. This Lemma does precisely that.

Lemma 4.4.6. Let A be an m � d random matrix selected i.i.d. from Np0, 1
mq. Then the matrices 2ηA�A

and I � 2ηA�A each satisfy

1. The columns of each matrix have the same expected squared length, and

2. For V � 2ηA�A or V � I � 2ηA�A, two distinct entries Vi,j and Vi,k from the same row of V have

E rVi,jVi,ks � 0.

Proof. It is straightforward to see that both I � 2ηA�A and 2ηA�A have columns with the same expected

squared length by their definition. Let us verify condition p2q directly for each matrix.

Let us begin with V � 2ηA�A. Two distinct entries from row i of V are either

• xAi, Ajy and xAi, Aky for j � k and neither equal to i, or

• xAi, Ajy and }Ai}22 for j � i.

In both of these situations, the expectation of their products are handled by equation (4.34) of Lemma 4.4.3

taking first p � k then p � i.

Now, let V � I � 2ηA�A. Akin to when V � 2ηA�A, two distinct entries from a row of V look like

either

• �2ηxAi, Ajy and �2ηxAi, Aky for j � k and neither equal to i, or

• 1� 2η}Ai}22 and �2ηxAi, Ajy for j � i.

Again, the first of these two possibilities is handled by equation (4.34) of Lemma 4.4.3. Now all that is left

to observe is that:

E
��

1� 2η}Ai}22
� � xAi, Ajy� � E rxAi, Ajys � E

�
2η}Ai}22xAi, Ajy

� � 0.
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The first term is 0 by a simple expansion while the second term is zero again by Lemma 4.4.3.

Finally we can combine all the previous results from this Section to be able to say that in the average

case, look ahead thresholding outperforms hard thresholding on arbitrary vectors.

Theorem 4.4.7. Fix vectors z, x� in Rd with x� s�sparse and let A be an m� d random matrix with i.i.d.

Np0, 1
mq entries. Then,

E r}Hs,ηpzq � x�}2s ¤ ρ}z � x�}2 (4.38)

for ρ   2 whenever 0   η   1
2

m
m�d�1 .

Proof. From Lemma 4.4.1, we have that

E r}Hs,ηpzq � x�}2s ¤ E
�b

}z � `η}22 � }`η � x�}22 � }`η � x�}2
�
. (4.39)

First we will deal with the square root term. By substituting from Lemmas 4.4.4 and 4.4.5 and using Jensen’s

inequality we get

E
�b

}z � `η}22 � }`η � x�}22
�
¤ �

E
�}z � `η}22 � }`η � x�}22

��1{2

� �
E
�}2ηA�A}2F � }I � 2ηA�A}2F

��1{2 � }z � x�}2

�
�

8pd�m� 1q
m

η2 � 4η � 1


1{2
� }z � x�}2. (4.40)

Now the second term of (4.39) can be handled with just Lemma 4.4.5 to yield:

E r}`η � x�}2s ¤
�
E
�}pI �A�Aqpx� � zq}22

��1{2

�
�

4pd�m� 1q
m

η2 � 4η � 1


1{2
}z � x�}2. (4.41)

Noticing that (4.41) is dominated by (4.40) for every value of η, we can make the greatly simplifying
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substitution that

E r}Hs,ηpzq � x�}2s ¤ 2

�
8pd�m� 1q

m
η2 � 4η � 1


1{2
}z � x�}2

and it is easy to verify that 8pd�m�1q
m η2 � 4η � 1 is less than 1 for precisely the specified values of eta.

We have two comments related to the analysis in this Section. First, after equation (4.41) we make a

simplifying substitution to reduce the complexity greatly. If desired, we could use numerical software to

expand the range of η values that give better average case performance.

Second, the result in Theorem 4.4.7 is an attempt to say that, when compared to hard thresholding, look

ahead thresholding returns sparse vectors that are closer to the desired solution on average. However, when

Hs,η is used in practice, e.g. as a step in ILAT, the points to threshold are far from arbitrary. In fact, they

rely quite heavily on the draw of the random matrix A. Perhaps surprisingly, the experimental results of

the following Section seem to suggest that this interaction actually improves the performance of look ahead

thresholding relative to hard thresholding. That is, the range of values of η for which ILAT outperforms IHT

is much larger than predicted by Theorem 4.4.7. Certainly there is more to be understood here.

4.5 Experiments

While the last Section was theoretical justification for the use of look ahead thresholding over hard

thresholding, this Section is experimental justification.

We perform three main experiments to support our claims. First, we show how well ILAT performs

relative to IHT when the algorithms’ iterations are held constant. Second, because ILAT takes extra compu-

tational power, we show that even when holding computations approximately constant we outperform IHT.

Finally, we validate directly Theorem 4.4.7 by testing the thresholders’ performances outside the framework

of iterative algorithms.

For our first experiment, we record the percentage of exact recoveries for a range of sparsity values for

both IHT and ILAT with a variety of η values. The measurement matrix we use is 128� 256 i.i.d. Gaussian

scaled to have operator norm 1. Figure 4.1 shows ILAT outperforming IHT for a range of η values.

We also tested our algorithm in the case where our measurements are corrupted by random noise. The

performance metric used here is Euclidean distance between the true solution and the algorithm’s output
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Figure 4.1: Percentage of signals perfectly reconstructed using IHT (dashed) and ILAT (solid, η increases
to the right) using the same number of iterations

after 1000 iterations. We performed these experiments in the same settings as the above example. For

Figure 4.2a, our measurements had a 30 dB SNR and in Figure 4.2b a 0 dB SNR. As above, Figure 4.2 show

ILAT achieves smaller error than IHT.

The two previous experiments held the number of iterations constant. Since look ahead thresholding is

more costly than hard thresholding, we need to ask whether ILAT is superior to IHT when we hold constant

the amount of computations or run-time. Notice that the expensive step is the gradient computation and that

ILAT requires two gradients per iteration while IHT requires only one. With this in mind, we compared the

percentage of perfect recoveries for IHT against ILAT when IHT is allowed twice the number of iterations.

On the left in Figure 4.3a, IHT is given 100 iterations for recovery while ILAT is given 50 iterations for

recovery. On the right in Figure 4.3b, the algorithms are given 500 and 250 iterations, respectively. Again,

the entirety of Figure 4.3 shows ILAT exceeding the recovery ability of IHT for appropriately chosen values

of η.
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(a) Error with 30dB SNR (b) Error with 0dB SNR

Figure 4.2: Reconstruction Error of IHT (dashed) and ILAT (solid, η increasing to the right)

(a) 100 Gradient Computations (b) 500 Gradient Computations

Figure 4.3: Percentage of signals perfectly reconstructed using IHT (dashed) and ILAT (solid, η increasing
to the right). Here, IHT is allowed twice as many iterations as ILAT

For our final experiment, we compare look ahead thresholding directly to hard thresholding when they

are not simply a step in another algorithm. This lets us directly validate the conclusions of Theorem 4.4.7.

In the following, we generate a random sparse signal x� where the support is chosen uniformly at random

and the entries on that support are i.i.d. Np0, 1q. Morevoer, we pick a dense vector z from Np0, Iq and the

matrix A has entries chosen i.i.d. from Np0, 1q then normalized to have }A}op � 1. Then, we measure how

close the thresholdings Hspzq and Hs,ηpzq are to x�.

In light of the statement of 4.4.7, Figure 4.4 below shows the plots for }Hs,ηpzq � x�}2{}z � x�}2 and
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}Hspzq � x�}2{}z � x�}2. Note: here we only use η � 0.5, 1 because for η � 2, 8, 16, the performance is

indistinguishable from the η � 1 case. Finally, on the left we use a 128 � 256 matrix while the right figure

uses only a 64� 256 measurement matrix to define Hs,η.

(a) Thresholding Error with 128 Measurements (b) Thresholding Error with 64 Measurements

Figure 4.4: Distance from output Hspzq (dashed) and Hs,ηpzq (solid, η increasing to the right) to solution
x� divided by distance from z to x�

4.6 Commentary

The main contribution of this Chapter is the introduction of an alternative thresholding rule to hard

thresholding for compressed sensing. Our thresholder uses specific problem instance information, namely

the vector of measurements and measurement matrix, to help choose which entries to retain. This stands

in stark contrast to hard thresholding which makes no use of such information and, as we have shown, is

therefore suboptimal.

Our thresholding rule is meant to act as a tool for use throughout compressed sensing. We investigated

in-depth one of these cases by defining Iterative Look Ahead Thresholding, a variation on Iterative Hard

Thresholding, which uses our new thresholding rule. We showed that the worst case performance of ILAT

is comparable to IHT while the average case performance and experimental results exhibit greatly improved

signal recovery. Even better, though our thresholding rule requires extra computational complexity, the

amount of additional time is small and we have shown that even when computations are held approximately

constant ILAT still excels.

There are still outstanding questions related to look ahead thresholding. First, our theoretical analysis
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of Section 4.4 and experimental results of Section 4.5 both suggest improved performance relative to hard

thresholding. However, the experimental results are stronger than the theoretical results, i.e. look ahead

thresholding works for a much larger range of η values than predicted. Moreover, after explaining this

disparity, we would like to understand how to pick the optimal value of η given the ambient dimension,

number of measurements, sparsity level, and perhaps a signal model.

In addition to the questions we have about ILAT, we also encourage others to explore the utility of

look ahead thresholding in a variety of different CS algorithms. In particular, we are aware that CoSaMP

makes critical usage of a thresholding step so perhaps a more accurate thresholding rule could increase the

algorithm’s accuracy.
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