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CHAPTER I 

 

INTRODUCTION 

 

In the age of data-driven medicine, drug development benefits from analysis of post-

market surveillance data, such that problematic use of existing drugs may inspire new design 

strategies to optimize the use of these therapeutics1–3. This is especially relevant in cancer, a 

spectrum of diseases for which pharmacological intervention may be within the first line of 

therapeutic remediation. Most anti-cancer treatment modalities act through promoting death of 

rapidly dividing cells, such that they may suppress tumorigenesis but can also generate 

significant “off-target” effects from loss of epithelial cell volume across a patient’s organ 

systems4–6. Phenotypes emerging from this widespread apoptosis may include nausea and 

vomiting, loss of appetite, hair loss, and the potential for development of an 

immunocompromised state, given the high replication rates of innate and adaptive immune 

cells7–9. Therefore, non-adherence to anti-cancer treatment remains high among neoplastic 

patients, as patients seek to avoid severe side effects of their drug regimens10–12. This problem 

speaks to the ongoing need for new therapeutic strategies that may allow for suppression of these 

“off-target” effects, consequently improving the therapeutic index of anti-cancer drugs by 

reducing dose-limiting toxicity. 

Enteric processing of anti-cancer drugs to urine-excretable metabolites forms non-toxic 

drug-glucuronides by uridine 5’-diphospho-glucuronosyltransferase (UGT)-mediated 

metabolism in the liver. In turn, β-glucuronidase enzymes (GUS) among commensal gut 

microbiota act on the drug-glucuronides to cleave their sugar moieties for nutrition, releasing 
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reactivated drug molecules in the presence of vulnerable enterocytes. Consequently, the 

microbiome-dependent reactivation of small-molecule anti-cancer drugs in the presence of 

vulnerable enterocytes may be responsible for gastrointestinal (GI) serious, adverse events 

(SAEs), reducing patient adherence to their anti-cancer treatment regimens13–15. Indeed, this 

pattern of drug metabolism and pharmacokinetics (DMPK) is associated with at least 279 unique 

strains of GUS within the diverse microbial flora of the human gut16. I note that though humans 

also contain an endemic analog of GUS that is structurally heterogeneous to those in their 

microbiomes, the high density of bacterial GUS analogs renders the human analog minimally 

active, compared to that within resident gut bacteria17. For the remainder of this article, I will 

distinguish bacterial GUS and human GUS analogs as bGUS and hGUS, respectively. 

As Ervin et al. discuss, a bGUS-inhibitory prodrug may increase the safety and 

tolerability of first-line anti-cancer agents: these investigators unpacked the metabolic fate of the 

anti-neoplastic agent regorafenib in the liver and GI tract18. In turn, they found that raloxifene, a 

drug approved by United States Food and Drug Administration for the treatment and prevention 

of osteoporosis in post-menopausal women19, is a potential inhibitor of the bGUS enzymes that 

re-activate regorafenib in the GI tract. Herein, the results of this study suggest that delivering a 

therapeutic adjunct capable of bGUS blockade could potentially reduce the burden of patient 

SAEs associated with small-molecule anti-cancer therapy20. 

The mechanism of action (MOA) of bGUS in cleaving glucuronic acid moieties from 

glucuronidated compounds is well-described within the relevant biochemical literature and 

resembles that classically implicated in peptic ulceration upon excessive patient exposure to non-

steroidal, anti-inflammatory drugs (NSAIDs)21. Therefore, given that this article does not seek to 

probe the mechanistic details of the bGUS enzyme’s function, I refer readers with an interest in 
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deep discussion of this information to work of Wallace et al., Ervin et al., and Awolade et al., 

who present a thorough description of bGUS MOA18,22,23. These authors also describe the protein 

biochemistry that underlies the nature of modulatory effects on this class of enzymes; I will 

present the relevance and validation of this information—within the scope of the present study—

in an ad hoc fashion throughout my thesis, as I focus on the application of in silico high-

throughput screening (HTS) as a method of novel and previously-unattempted discovery for 

precision inhibitors of homologous bGUS analogs, rather than on the granularity of the 

established biochemistry that underlies these interactions. Indeed, these interactions are critical 

to understanding the relevance of our efforts to GI physiology but are most relevant to this study 

as validative information for our models. 

Orthologs of bGUS exhibit a wide range of catalytic efficiencies for glucuronide 

substrates, driven by key structural differences among homologous enzymes16,24–26. Despite this 

structural and functional heterogeneity, previous drug screening efforts have focused solely on 

characterizing the bGUS ortholog encoded by gut commensal E. coli. This is a major weakness 

of the existing literature because most bGUS orthologs share < 25% amino acid identity with E. 

coli GUS16. 

Therefore, the goal of the present study is to develop a robust HTS platform that can 

identify inhibitors of common bGUS analogs in the human microbiome. While broad-spectrum 

antibiotics, such as cephalosporins, fluoroquinolones, and tetracyclines, offer the ability to 

suppress microbial action on glucuronidated drugs, these drugs can also suppress the beneficial 

activity of the gut microbiome27–29. Therefore, since such modulation could generate SAEs 

similar to—or potentially in augmentation to—those resulting from exposure to anti-cancer 

therapies30, a precision inhibition strategy that affects only bGUS, while maintaining the 



 4 

beneficial activity of the human microbiome, is critical to the development of a drug within this 

space. This necessary precision specifies a difficult drug design task, which requires 

consideration of a very large set of potential inhibitors to identify agents with the most optimal 

activity profiles. 

Virtual high-throughput drug screening (vHTS) has emerged as an efficient method of 

targeted drug discovery, as it allows for simulation of a drug’s mode of binding to a specified 

target and thereby generates binding energy parameters that may act as predictive hypotheses of 

efficacy31–33. When the structure of a target is available or feasibly predictable, this technique is 

an efficient method of prioritizing compounds for further interrogation as potential hits: though a 

standard HTS approach allows for fast, combinatorial screening of compounds of interest 

towards a specific target, the combinatorial dimensionality of this technique results in significant 

material and labor costs and has low efficiency34. Therefore, in contrast to the ~1% hit rate that 

most HTS panels achieve, vHTS—with follow-up testing in vitro of only compounds with the 

highest predicted activity—can achieve nearly an order of magnitude more success, as evidenced 

by hit rates ~3-4% and significantly less material costs in the interrogation of promising hits35. 

Figure 1 below presents the limiting tradeoff of scale and discovery inherent to HTS, which 

vHTS seeks to bridge. 
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 Therefore, given the well-defined target rationale of our drug design task—as well as the 

challenge of establishing precision blockade of bGUS—we established a first-in-kind vHTS 

platform to discover inhibitors of bGUS and identify hits towards the development of a potential 

therapeutic adjunct to reduce the frequency of SAEs associated with first-line anti-cancer drugs. 

As I describe in the remainder of this thesis, this screen harnessed nearly 400,000 compounds 

across the chemical libraries of the National Center for Advancing Translational Sciences 

(NCATS) of the National Institutes of Health (NIH)36. We identified novel inhibitors with 

diverse structural scaffolds and single-digit µM potency in our bGUS biochemical assay. 

 

Figure 1:  While HTS can promote of new hits via fully agnostic screening, it is resource-intensive 
and, attributable to its expansive scale, results in low hit discovery rates. 
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CHAPTER II 

 

VIRTUAL HIGH-THROUGHPUT SCREENING FOR DISCOVERY OF MICROBIOME 
ENZYME INHIBITORS TO ALLEVIATE CANCER DRUG TOXICITY 

 
 

Summary 

 I present a holistic, first-in-kind application of vHTS of the 399,423 compounds within the 

NCGC chemical libraries towards discovery of a bGUS-inhibitory prodrug to improve the 

tolerability of standard-of-care (SOC) anti-cancer drugs among neoplastic patients. Herein, our 

virtual screening platform—with validation via a biochemical bGUS assay in vitro—revealed 

sixty-nine (69) compounds that associate to common scaffolds for the potential development of 

this adjuvant, all of which have significantly inhibitory activity for bGUS and do not cause 

eubacterial death. Potency analysis of our approach revealed a hit rate that is enriched 23-fold for 

a comparative non-virtual HTS task and confirmed a top-ranking hit with IC50 = 3.8 µM that may 

suggest an early signal for drug repurposing. Therefore, our results are highly translational and 

could inform the successful downstream development of a supplement to SOC chemotherapy 

that targets the human microbiome to prevent SAEs associated with first-line cancer treatments. 

 

Methods 

1. Identification of a representative bGUS analog 

To develop a vHTS platform for discovering inhibitors of bGUS, we first identified an 

ortholog of bGUS against which we could screen the NCATS chemical library. Herein, we 

focused our vHTS efforts on “H11G11-BG,” a representative bGUS ortholog implicated in the 

processing of regorafenib, a kinase inhibitor used to treat metastatic colorectal cancer, 
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hepatocellular carcinomas, and gastrointestinal stromal tumors17,18,25. The H11G11-BG protein 

was first identified as a bGUS gene encoded by the human fecal metagenome17. 

We isolated the H11G11-BG genetic sequence (NCBI Accession: CBJ55484) and 

purified the recombinant protein for biochemical hit validation, per the procedure of Wallace et 

al22. Briefly, we optimized the nucleotide sequence for translation in E. coli and inserted the gene 

into a pLIC-His vector with ampicillin resistance and linkage to an N-terminal 6x-Histidine 

affinity tag for downstream purification. We then transformed competent cells (E. coli BL21-

DE3), grew them to an OD600 of 0.6, and induced gene expression with IPTG. Then, we 

centrifuged the cells and resuspended them in buffer. We poured cell lysate into a column pre-

loaded with 5 mL His-NTA resin and collected the resulting fractions. We employed size 

exclusion as a final purification step and eluted protein isolate into 20 mM HEPES, pH 7.4, and 

50 mM NaCl for biochemical activity assays. Then, we assessed purity by SDS-PAGE gel 

separation and gel filtration elution (>90% purity); we determined protein concentration using a 

spectrophotometer at a 280 nm absorption setting, using a standard combination of molecular 

weight, extinction coefficient, and Beer-Lambert Law calibration data to calculate concentration. 

The 754-residue amino acid (AA) sequence of H11G11-BG is cataloged in Universal Protein 

resource (UniProt) (https://www.uniprot.org/)37 as D5GU7138. 

 

2. Development of a single-template homology model for bGUS 

Having isolated a representative sequence of bGUS in FASTA format, I developed 

homology models to predict representative quaternary structures of this target before executing 

vHTS against it. To perform this modeling, I used the Molecular Operating Environment (MOE) 

(https://www.chemcomp.com/Products.htm)39, a suite of industry-grade chemical computing 
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software for computer-aided molecular design and visualization of target structures, and 

imported the AA sequence of the protein into the Sequence Editor (SE) of MOE. To guide the 

selection of a template for homology modeling, I queried the H11G11-BG FASTA sequence in 

the Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi)40; 

this search gave the closest relatives of bGUS to be H11G11-BG homologs and homologs of β-

galactosidase. At an arbitrary benchmark of 80% identity, there were nine (9) potential 

templates. I used this list of potential guides from BLAST to prioritize a shortlist of templates 

from suggested sequence alignments in MOE, adding the top five (5) hits of lowest p-value from 

two-sample similarity testing, as provided within the alignment window of the MOE user 

interface (UI) and that compared an input sequence with all available AA sequences from the 

most recent versions of the Protein Data Bank (PDB) (https://www.rcsb.org/)41 and UniProt (as 

were available when I completed this study in Summer 2019). The five (5) hits I curated from 

MOE were also β-glucuronidases and β-galactosidases, in accordance with the BLAST results 

that I observed. Therefore, after selecting the top five (5) hits from MOE, along with those with 

overlap with the BLAST results and available from the UI, I aligned these prospective templates 

along the reference frame of our primary sequence within the MOE SE to allow for a more 

granular view of template similarity at each AA residue along the H11G11-BG chain. I then 

generated a point accepted mutation (PAM) matrix to identify the template chain with highest 

residue similarity to our sequence of H11G11-BG; this information facilitated my decision of a 

template for generation of a homology model, which I selected as a function of low p-value from 

the MOE UI, highest % identity and residue similarity from the PAM matrix, and homology 

between template length and the length of our bGUS sequence to allow for prospective coverage 

of the span of our target structure. Using these heuristics, I selected 6MVH (a flavin 
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mononucleotide-binding β-glucuronidase isolated from Roseburia hominis; 

https://www.rcsb.org/structure/6MVH)42 as the most optimal template for bGUS; 6MVH 

presented 58.5% sequence identify to our query sequence, which is nearly double the benchmark 

30% necessary for the confident generation of a predictive quaternary structure43. Therefore, 

Igenerated ten (10) putative homology models using 6MVH as a guide and the implementation 

of the Assisted Model Building with Energy Refinement force field that is inbuilt within MOE to 

provide property methods for the thermodynamic calculations that underlie standard, one-

template homology modeling39,44.  

Upon studying the homology model of the highest rank from MOE, I identified the 

putative binding site in this model, per the co-localization of key active site residues for bGUS, 

harmonically identified by Wallace et al. as Tyr433, Tyr437, Phe448, Glu464, Lys563, 

Arg56422. Indeed, the observation of these residues or those of similar biochemical profile at 

these positions validated the strength of this homology model. Also supportive of the consistency 

of my approach with existing knowledge on bGUS was my observation that—upon alignment—

the primary sequences of 6MVH and my homology model are highly similar for the 441 residues 

of closest adjacency to the template active site. However, for the remaining 313 residues of 

6MVH, the homology model is strikingly dominated by extraneous alpha helices and turns that 

are not in keeping with the selected template. While these structures likely account for empirical 

reductions in similarity between my template and my homology model, I noted that they appear 

insignificant in the scope of a downstream vHTS task, as this mode of compound screening 

considers rigid docking of hit candidates only to a specified ligand binding site. Therefore, 

though this rationale may appear to neglect the dynamism and the structural importance of non-

active site domains within our target, I assert that the high similarity of 441 residues near the 
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bGUS active site could—within the framework allowed by vHTS, which requires specification 

of a granular region of a target structure against which to screen compounds34—provide us hints 

at the dynamism that occurs upon ligand binding at the site where this flexibility may most 

significantly affect efficacy of competitive inhibition. However, I note—as is standard across 

most of the vHTS literature31,32,34—that the drug discovery task I report in this thesis involves 

thoroughly rigid docking. Finally, to confirm that this homology model was of sufficiently high 

quality to warrant vHTS, I generated a Ramachandran plot to note potential steric strain within 

the target structure. From MOE’s Ramachandran plot, I found that my model produced an 

acceptably low number of residues (12) with outlying levels of angle strain. Then, I annotated 

the outliers on the ribbon structure of my homology model to observe the location of these 

residues. In doing this, I noted that most of these residues fell within a variable section of the 

target (i.e., in a loop or other functionally dynamic domain), suggesting that the few loci with 

excessive strain in my structure are of little consequence to the robustness of my model, as these 

regions may adopt allowable conformations to mitigate the strain in a true, functional in vivo 

system. Nonetheless, I note that that action site of my homology model—as well as its bGUS 

template—appears to be surrounded by several loops. While this suggests that the active site may 

be dynamic, I again affirm that our vHTS investigation is not compromised by this structural 

motif, as vHTS employs rigid docking. 

 

3. Development of a multiple-template homology model for bGUS 

The strength of a homology model is of paramount importance in developing a 

compelling vHTS platform—especially for tasks of precision drug design, such as that which I 

report in this thesis. Therefore, while I trusted the strength of the homology model I generated 
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from MOE, I also wished to develop the most biologically-representative model as I could. I note 

that MOE can only generate homology models from a single template; it cannot harness the 

power of newer ab initio methods, which can achieve harmonization of domain-specific 

modeling across several templates of high domain identity within a target AA sequence45–47. By 

selecting a combination of highly-representative guide structures, this “threading” approach has 

the potential to generate more accurate homology models than may be available through MOE, 

as it employs an ensemble of high-ranking structure guides, rather than one (1) holistic template 

that may not represent all domains of a target structure well. Indeed, for our first-pass attempt to 

discover competitive inhibitors of bGUS by vHTS, this rationale is especially relevant for our 

target’s active site. 

Therefore, recognizing the benefits that an ab initio approach to predicting the structure 

of bGUS could hold, I generated a second homology model of this target via “threading.” While 

a discussion of the mechanistic details of this method is beyond the scope of this thesis, I used an 

open-source, “out-of-box” server to generate an ab initio homology model of bGUS, treating the 

quantum methods to generate this model as a “black box.” I therefore assigned the AA sequence 

of H11G11-BG to the Iterative Threading ASSEmbly Refinement (I-TASSER) server, hosted by 

the Yang Zhang laboratory at University of Michigan (https://zhanglab.ccmb.med.umich.edu/I-

TASSER/)48 to generate a “threaded” model through similar querying and alignment of the target 

sequence with available structures from PDB and UniProt as I describe above. Following receipt 

of this homology model—as generated from six (6) domain-specific glucuronidase and 

glycosidase templates—I loaded the model into MOE for visualization. I noted that the strength 

of this model was apparent from the high degree of conservation between the active site residues 

that the I-TASSER server identified as a putative binding site within its self-generated homology 



 12 

model and the active site residues as reported by Wallace and colleagues. Therefore, taking the 

domain of the H11G11-BG model that I-TASSER reported as its active site, I noted the 

following key residues: Trp510, Glu464, Tyr433, Lys531, Asn529, Asp132, His315, Glu376, 

Asp375. Further reflecting on the results returned by the I-TASSER server, I noted that this 

putative active site falls within the domain of a bGUS analog from Rumnicoccus gnavus (6MVG; 

https://www.rcsb.org/structure/6MVG)49. Additionally, I-TASSER provided us with quantitative 

metrics that cemented the similarity of my homology model and this top-ranking template, such 

that I could confidently extrapolate the template’s active site to be homologous with that of my 

model: I-TASSER’s confidence score (C-score) for the model’s active site was 0.02, per a scale 

of C-score ϵ [-2, 5] (5 is most confident50), and the template modeling score (TM) was 72 ± 11%, 

per a range of TM ϵ [0, 100]% (100% is a perfect match between a model and an ensemble of 

guide structures).  

Visualizations of MOE and I-TASSER homology models that I generated for H11G11-

BG are available within Figure 2, below. Structure files for these models—along with our 

primary sequence of H11G11-BG, the template search and threading results from the I-TASSER 

server, and a Ramachandran plot for my MOE model—are available in the “Appendix” section 

of this thesis.  
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Figure 2:  I developed homology models for bGUS using both MOE and the I-TASSER server. Panel 
A shows the single-template homology model I generated in MOE with an enlarged view of the 
model’s predicted active site (red: MOE model, blue: 6MVH template). Panel B shows the threaded 
model I obtained from I-TASSER, superimposed on the homology model I generated in MOE and 
with an enlarged and residue-labeled view of the models’ predicted active sites when occupied by an 
analog of glucose (gold: I-TASSER model, red: MOE model, blue: 6MVH template). 
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4. Docking analysis 

Having generated robust homology models for bGUS and identified their putative active 

sites, I next sought to analyze the binding modes of common bGUS ligands available from the 

literature, both to understand key ligand binding interactions—whose presence I could use to 

gauge the success of a downstream vHTS platform—and to further confirm that the binding 

modes reported in the literature hold for the homology models I generated, as a further attempt at 

quality assurance for my target structures. In doing this, I first attempted to bind a known bGUS 

substrate, following by binding of known active site ligands, to discover and elucidate potential 

modulatory binding modes within my target model. 

From PDB, I first downloaded the glucaro-d-lactam ligand (3K4D; 

https://www.rcsb.org/structure/3K4D)51 and uronic isofagamine (5Z1A; 

https://www.rcsb.org/structure/5Z1A)52 inhibitor to ensure reproducibility of these binding 

poses, as given in the PDB template entries via interaction of the ligand with the key residues 

outlined above. Noting the maintenance of the associated key residues (per Wallace and 

colleagues)—including hydrogen bonding with residues like Lys563 and Tyr433, as well as 

proximity for nucleophilic attack at Glu464—I then queried PDB by the term “glucuronidase” 

and downloaded all nine (9) unique ligands that resulted from this search, noting similar results 

as above. 

Armed with the maintenance of these interactions, I prepared for virtual screening. Since 

both homology models appeared to provide a high degree of fidelity—and because I sought to 

perform screening against ~400,000 compounds—I decided to move forward with the I-

TASSER model for our drug discovery analysis. Given the inherent strength of this model’s ab 

initio design—as well as the satisfactory degree of homology I established between the model 
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and its highest-ranking bGUS template—I decided to optimize the efficiency of our vHTS 

approach by screening solely against my I-TASSER structure, instead of adopting the 

computationally-intensive task of screening against both homology models in parallel.  

It is important to note that vHTS requires coordinated learning between both a user and 

his/her machine. The user must specify a binding mode that screening candidates should 

replicate in order for them to rank highly on a list of hits, and he/she must also create a “gridbox” 

containing the target residues that maintain the key interactions that ligands interacting in this 

binding mode should maintain. Therefore, before a user begins virtual drug screening, it is 

essential for him/her to identify the specific form of the target structure against which he/she 

wishes to screen and to select a docked ligand that has an appropriate binding mode to guide the 

identification of vHTS hits. In this regard, it is also of paramount importance to consider the 

differences between vHTS on apo and holo target structures if there is evidence of cooperative 

binding within the previous literature about the target, as the bound and unbound configurations 

of the target are likely to vary non-trivially. 

Therefore, as a preliminary attempt at preparing our target structure for drug screening, I 

considered the most optimal binding mode for vHTS to be that which maintains the key 

interactions I noted from the literature, while also demonstrating a depth of interaction with the 

bGUS active site that appears to cover a maximum of its surface area. Furthermore, while the 

above steps centered around the development of an apo model, I also undertook a systematic 

search of the bGUS literature to determine the relevance of vHTS against a holo representation 

of our target structure. 

Following a review of available knowledge on cooperative bGUS MOA, I identified 

literature demonstrating that the bGUS strain from Bifidobacterium dentium (Bifd) is known to 
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bind competitive inhibitors cooperatively and in a substrate-dependent manner, with inhibitors 

binding at a site immediately adjacent to the active site while maintaining key stabilizing and 

reactive interactions with the active site residues I identified18. This suggested to us that I should 

specify a holo binding mode to generate accurate vHTS results. Therefore, I prepared my bGUS 

homology model using both a sugar substrate and a large ligand capable of low-energy binding 

at a site immediately adjacent to the active site of bGUS. 

To generate this representation, I downloaded a β-(D)-glucuronic acid substrate molecule 

from the library of available ligands in PDB. Then, in MOE, I docked this molecule to my I-

TASSER model to generate the appropriate target structure against which I could screen 

candidate inhibitors in a substrate-dependent manner. Next, to generate an optimal binding pose 

for application in virtual screening, I curated a library of potential inhibitors, so I could select a 

template from among these compounds. To do this, I first reflected on previous in vitro assays 

that our group at NCATS had attempted to discover a battery of bGUS inhibitors. I downloaded 

the ~35 SDF files of all compounds that we previously screened against other non-H11G11-BG 

bGUS strains and which demonstrated inhibitory activity (IC50 < 20 µM, efficacy < -50%, curve 

class (CC) ϵ [-1.1, -1.2, -1.3, -1.4]) and loaded them as a library into MOE. I then harmonized 

this set of compounds with the ligands I queried from PDB and enabled MOE to dock these 

compounds to our holo target structure. Then, to prioritize these ligands for generation of the 

most optimal binding pose, I ranked the compounds by compatibility with the holo target, 

ordering the hits by ascending, MOE-generated docking score (a proxy for the predicted 

energetic change of the target system upon docking of each compound).  

Upon prioritization of my docking hits, I observed that the compound with the lowest 

MOE docking score was a sulfonated glucose molecule; however, given that this compound 
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closely mimics bGUS substrate—and presents with small surface area around the bGUS active 

site—I decided to probe compounds with larger surface area and slightly higher binding energy 

differentials in selecting a template binding mode. Doing this, I determined that the lowest 

binding energy ligand that also met my requirements for coverage of key residues was 1-((6,8-

dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)-1-(2-hydroxyethyl)-3-(4-

hydroxyphenyl)thiourea, a ligand I extracted from PDB and that corresponds to a known 

inhibitor of Escherichia coli bGUS (5CZK; https://www.rcsb.org/structure/5czk)53. Re-docking 

this ligand to our holo target structure and using MOE’s Protonate3D functionality to obtain the 

least sterically-encumbered conformation for all target residues with rotatable bonds, I captured 

the resulting binding pose as my template for virtual screening. I noted that this pose appears to 

maintain the key interactions for our bGUS target. For my readers’ review, I include a 

visualization of this pose as Figure 3, below. I generated Figure 3 via the open-source structure 

visualization software Chimera, which is hosted by the University of California, San Francisco 

(https://www.cgl.ucsf.edu/chimera/)54. 

Generally, it is important to note that this docking exercise was not deterministic and that 

other binding poses may have also been appropriate templates for vHTS. Therefore, my intent in 

applying the heuristics I employed and describe above was to discover one of these appropriate 

binding poses through strategic application of foundational biochemistry and computational 

design. To aid comprehension of the target modeling methods I describe above, I provide a 

graphic summary of my approach in Figure 4, below. 
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Glu464 

Tyr433 

Figure 3: From my docking experiments, I developed a holo template of bGUS bound to 1-((6,8-
dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)methyl)-1-(2-hydroxyethyl)-3-(4-hydroxyphenyl)thiourea for 
development of my gridbox and subsequent vHTS. This template inhibitor appears to exhibit mixed-
mode inhibition, as its most favorable binding pose occupies a site tangent to the bGUS active site but 
maintains several of the key interactions that I would expect to observe under competitive inhibition. 
Constraining residues that I specified in my gridbox are labeled, and both the substrate glucose analog 
and the template inhibitor—with its solvent side exposed—are colored green. 
 

Figure 4: A summary of the homology modeling approach I developed to predict a 3D structure for our H11G11-BG 
analog of bGUS, which considers both structure prognostication and validation via docking experiments 
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5. vHTS 

Next, I prepared to screen the 399,423 compounds within the NCGC chemical libraries 

against the holo representation of my homology model that I prepared via my docking 

experiments. Compound prioritization in a vHTS platform hinges on the replication of a user-

specified binding mode in establishing a definition of energetic favorability; therefore, to prepare 

for vHTS against bGUS, I defined the active site-adjacent ligand binding region I observed as a 

guide for my screens, ensuring to include the key residue interactions with my template inhibitor 

as constraints for the calculation of binding energy and the prioritization of screening hits. To 

prepare our target structure accordingly, I employed version 3.3.1 of the OEDocking package, 

which is available through OpenEye Scientific Software 

(https://www.eyesopen.com/oedocking)55.  

Therefore, using the MakeReceptor method within this package, I defined a gridbox to 

include the key residues within the configuration of the I-TASSER homology model that resulted 

from binding of substrate to the bGUS active site; I removed the substrate molecule itself before 

screening to avoid steric penalties from artifactual binding patterns that could result in collisions 

between the ligand and substrate molecules (OEDocking tests several hundreds of binding poses 

in the virtual screening of each candidate in a library against a target). Indeed, the first stage in 

vHTS is to discover the most favorable binding position for each screening candidate; then, the 

most energetically-favorable hits may be prioritized by binding energy. The key residues—and 

their associated interactions—that I included in the gridbox were the following and were in 

accordance with existing literature on bGUS MOA that I discussed in earlier sections of this 

thesis; residues that I specified as constraints are bolded. 
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• Glu464 (This residue allows H-bonding & nucleophilic attack, depending on the ambient 

pH of the target-ligand ensemble.) 

• Tyr433 (Given the relative positioning of phenyl rings within this residue and within my 

template inhibitor, meta-stabilization via π-π stacking is possible if rotation of the Tyr R 

group places its phenyl ring parallel to the candidate’s phenyl ring. Indeed, I observed 

this positioning in my MOE and MakeReceptor visualizations.) 

• Tyr437 (This residue allows for stabilization of the target-ligand assembly via H-bonding 

to the residue’s free hydroxy group.) 

• Lys563 (This residue allows for stabilization of the target-ligand assembly via H-bonding 

to its charged R group.) 

• Arg564 (This residue allows for stabilization of the target-ligand assembly via H-bonding 

to its charged R group.) 

• Phe448 (This residue appears to provide steric hinderance to inhibitor binding in the apo 

configuration of bGUS, but substrate binding facilitates its retrograde movement, such 

that this configurational change allows ligands to access the inhibitor binding site that lies 

adjacent to the target’s active site.) 

 

Then, from the command line, I harmonized the 399,423 compounds within the NCGC 

chemical libraries with my docking collection of ligands I extracted from PDB and the most 

active compounds from our previous bGUS assays. I intentionally designed this list to contain 

redundancy (as our self-selected docking library is an inherent subset of the NCGC libraries) to 

facilitate a “sanity check” on my vHTS results: if vHTS executes correctly, redundant 

cherrypicks and PDB ligands should be listed repeatedly and at the top of the list of hits. 
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Next, I executed vHTS from the command line, using the FRED method within OEDocking. 

This protocol allows for the generation of several hundreds of conformers of each screening 

candidate and fast and rigid docking of these conformers to the target gridbox that I previously 

defined. Therefore, given the ostensibly high dimensionality and time complexity of this 

screening task, I ran vHTS within a high-performance computing cluster on Biowulf, a NIH 

server capable of supercomputing56. To optimize the efficiency of candidate screening via 

FRED, I converted all drug structure files to the file format OEB.gz before executing vHTS on 

Biowulf. 

I present our vHTS outcomes in the succeeding “Results and Discussion” section of this 

thesis.  In this section, I also include summary graphics of the above methods that present key 

numbers from—and the relative positionioning of—these workflows within the overall 

framework of our investigation. 

 

6. Validation of vHTS results in vitro 

To confirm the activity of our 291 cherrypicks, we performed a biochemical validation 

assay and a subsequent counterscreen, using a strain of bGUS that is homologous to H11G11-

BG. This test employed the standard 4-methylumbelliferyl-β-D-glucuronide hydrate (4MUG) 

bGUS inhibitory assay, which allows for determination of candidate inhibitors’ IC50 values by 

spectroscoptic titration, during which the intensity of fluorescent 4MUG substrate under different 

inhibitor dose conditions permits quantification of unconverted substrate concentration (a proxy 

for enzyme functionality) as a function of inhibitor concentration57,58. Before testing our 

cherrypicks, we purchased 4MUG (type # M913059) from Sigma-Aldrich, Inc. (St. Louis, MO, 

USA) and validated the above assay in-house with a collection of 174,602 compounds within our 
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chemical libraries, screening all compounds through robot-assisted HTS in a five-point dose 

response series at concentrations between 0.5 µM and 114.0 µM and working conditions of 0.5 

nM bGUS concentration and 100.0 µM 4MUG per well. Before inhibitor testing, we allowed 

both enzyme and substrate to incubate for 1 hour in a standard mixture of 50 mM HEPES buffer 

(pH 7.5) and 0.01% Triton X-100 detergent solution. During each titration, we used a ViewLux 

spectrophotometer60 to obtain 4MUG intensity data from each of our 1,536-well plates. Then, 

after confirming high signal-to-background ratio (S:B) and Z’-factor for this workflow, we 

replicated the assay on our cherrypicks, several of which we did not originally screen through 

our rapid assay validation procedure. 

In the following “Results and Discussion” section of this thesis, we discuss the results of 

our validation assay for our top vHTS hits and dissect the significance of these outcomes when 

taken in complement with the informatics workflow we present above.   

 

Results and Discussion 

1. Results from virtual screening 

Biowulf required three (3) days to complete the vHTS job I describe in “Methods,” which 

received top priority in the queue for server access. Upon receiving 2,500 low-binding energy 

hits from Biowulf, I noted replication of PDB and HTS client cherrypicks, as I expected, and 

therefore proceeded in applying a series of biochemical heuristics to prioritize the top hits for 

further interrogation. First, armed with the list of hits ranked ascendingly by binding energy, I 

arbitrarily selected the top 1,000 compounds for manual curation (a sample set of these 

compounds is available within the Supplement). Then, as a mechanism of “quality control,” I 

removed all compounds resembling broad-spectrum antibiotics, such as cephalosporins, 
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fluoroquinolones, and tetracyclines, given our interest in discovering precision bGUS inhibitors 

and the relevance of this goal to the immunological manifestations of neoplasia, as I describe in 

the “Introduction” section of this thesis. Additionally, I removed lower-ranking compounds with 

bulky moieties, given my concerns about potential steric hinderance at the inhibitor binding site, 

as I discovered through docking experiments on our holo target model. I also parsed compounds 

with problematic chemistry, such as hits with several cyclopropane functionalities (given their 

associated angle strain and instability) and hits with trifluorinated aromatic moieties (given the 

strong electron-withdrawing effects of these groups and their potential impacts on efficacy). I 

also eliminated other hits with functionalities that are strongly associated with cytotoxicity on an 

ad hoc basis and per the expertise of our study team. 

Next, to arrive at a list of high-priority hits for validation within a relevant biochemical 

assay, we circulated the list among the computational chemists and biologists within our study 

team to select chemical series within this list that appeared promising for further interrogation of 

efficacy and potency; I harmonized their selections, resulting in 291 cherrypicked compounds 

with low binding energy for our holo target model. I then compiled a library of structure files for 

these compounds and imputed them to MOE for re-docking to my homology model, to ensure 

that these cherrypicks maintained the key interactions I specified in the creation of my vHTS 

gridbox. In doing this, I noted that our prioritized hits interacted with the key stabilizing and 

nucleophilic residues I identified within the bGUS active site and demonstrated extensive surface 

area coverage of this domain, as several top-ranking compounds contained multiple six-

membered rings. This motif promoted jutting of the ligand towards the solvent side of the target, 

as appears common with many of the effectual ligands for homologous strains of GUS that I 

found in PDB’s ligand library.  
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By visual inspection, I also noticed the recurrence of three (3) distinct motifs, at large, 

within our high-ranking cherrypicks: a pyrazole group, a benzoimidazole derivative, and 

multiple electron-donating halogens substituted and distributed across component benzyl rings of 

these ligands. 

Nonetheless, I did not observe the presence of a π-π stacking interaction with Tyr433 

across the optimal binding poses of our top-scoring candidate inhibitors. This might be the 

outcome of flexible, rotatable bonds at the residue-aligned sites within the ligand structures; 

alternatively, this phenomenon could have resulted from an inbuilt limitation in the sensitivity of 

detecting a π-π stacking within OpenEye’s constraint recognition system, as the presence of 

several atoms in appropriate proximity and approximately parallel to Tyr433 might have 

triggered faulty recognition of this interaction in the generation of our list of hits. Nonetheless, I 

maintained our list of 291 top-ranking cherrypicks without prejudice, to evaluate their 

comparative performance in biochemical validation assays in vitro. 

 

2. Results from validation assays in vitro 

We observed strong performance for the bGUS 4MUG assay that we validated in high-

throughput form, as we obtained S:B = 123 ± 9 and Z’-factor = 0.93 ± 0.04 (Z’ ϵ [0,1]; Z’=1 

gives the highest possible HTS assay performance61) from our in-house testing. In analyzing the 

results of this assay and its counterscreen for our vHTS cherrypicks, we identified potency for 

sixty-nine (69) of our 291 trial compounds (i.e., CC ≠ 4 and CC < 0), giving a 24% hit rate for 

our drug discovery exercise. Among these potent compounds, we observed few singleton hits. 

Additionally, we uncovered thirteen (13) potent compounds with activity heuristically defined as 

“industry-grade” for future drug development (i.e., IC50 < 10 µM, efficacy < -50%)62.  
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3. Discussion of key results 

From our coupling of vHTS and biochemical assays to predict bGUSi efficacy, I 

uncovered sixty-nine (69) potent and efficacious compounds with inhibitory action on bGUS, 

predicting a new structure of a bGUS homolog resident to the human gut microbiome and then 

screening a large compound library in silico against this homology model to identify series with 

logical chemistry and the highest alignment with the target’s rationale. We then validated our 

drug efficacy hypotheses in a representative system in vitro. Thirteen (13) of our hits map to 

scaffolds that demonstrate “industry grade” bioactivity. A visual summary of this protocol—as 

well as the numerical results arising from its execution—are available in Figure 5, below. 

I believe that the results I present here represent a major stride in evaluation of the 

druggability of a target implicated in adverse reactions to high-use, first-line anti-cancer drugs, 

as we obtained a 24% hit rate resulting from our drug discovery experiments. Given that most 

assays performed under HTS conditions result in hit rates ~1%, our much higher rate suggests 

that our approach to discovery of a bGUS inhibitor presents with nearly 23-fold enrichment over 

a similar method of non-virtual drug discovery. 

It is important to note that manual evidence synthesis is an important component of 

virtual drug discovery. While the “automated” components of our drug discovery process 

provided the edifice upon which I could specify the minimum biochemical specifications to 

define a “hit” (and thereby eliminate the majority of our large screening library from 

consideration), the procedure for ensuring practicality and efficiency of our platform (i.e., our 

prioritization of the most relevant hits for downstream testing) relied on our ability to curate 

expert knowledge. vHTS is a hypothesis-generation tool that allowed us several machine-defined 

actives to consider manually for signals of efficacy. However, the strength of our platform—as 
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evidenced by its high hit rate and inbuilt bGUS specificity—is holistically associated to our 

power to identify the most promising hypotheses of drug activity from our vHTS results and our 

biochemical reasoning. This information allowed for us to observe activity for a high percentage 

of our prioritized predictions within our validation assay. Therefore, I believe that our hit rate is 

neither artifact nor artificially-inflated. Instead, it speaks to our selection of powerful heuristics 

for prioritizing vHTS hypotheses.  

I similarly affirm that the best application of evidence synthesis to vHTS results is neither 

arbitrary nor deterministic, as the use of strong conceptual logic and ad hoc decision-making in 

evaluation of each listing on an automated bioactives list speaks to a design-oriented approach to 

drug discovery. 
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Within our list of sixty-nine (69) hits with confirmed activity in vitro, I further prioritized 

this library by observations of “industry-grade” bioactivity (IC50 < 10 µM, efficacy < -50%); in 

Figure 6, below, I present the structure, binding mode, and dose-response behavior of the top 

three (3) hits from this shortlist. We generated dose reponse curves using version 8.2.0 of 

Figure 5: A visual summary of the workflow we employed to discover bGUS inhibitors via vHTS and a 
validative biochemical assay, accompanied by quantification of this platform that supports our claims of 
systematic and high-throughput drug screening, sensitive heuristics for prioritization of vHTS hypotheses, and a 
high hit rate 
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Prism63. I note adherence of the binding modes among these compounds to my core criteria in 

selecting inhibitor templates through my docking experiments, which served as preliminary 

proof-of-concept of the efficacy of our approach and a further “sanity check” in confirming the 

validity of our results. 

Because I assert that our sixty-nine (69) top hits cluster among representative chemical 

series (and therefore present few singletons), here, I discuss the most potent compounds within 

each of three (3) highest-ranking series. 

As Figure 6 shows, NCGC00253873—our top hit and a representative compound of the 

most potent chemical series within our results—shows maintenance of key interactions with the 

“constraining” residues that I specified in my vHTS gridbox when I re-docked it to my I-

TASSER homology model. It demonstrates IC50 = 3.8 µM for the physiologically-relevant strain 

of bGUS that we employed in our biochemical assay, with efficacy = -71%, CC = -1.2, and a 

clearly-defined, logistic dose-response curve. This compound is an analog of the RUC-2 

inhibitor—a variant of the series of RUC-4 inhibitors (RUC-4i), which have garnered recent 

interest for their anti-thrombogenic inhibition of glycoprotein IIb/IIIa64–66. To date, RUC-4i has 

completed a phase I randomized, controlled trial of dose tolerability 

(https://clinicaltrials.gov/ct2/show/NCT03844191?term=ruc-4&draw=2&rank=2)67 and is now in 

the beginning stages of a phase II open label trial for pharmacodynamic and pharmacokinetic 

characterization of efficacy in reducing disease severity among patients with sinus tachycardia-

elevation myocardial infarction (https://clinicaltrials.gov/ct2/show/NCT04284995?term=ruc-

4&draw=2&rank=1)68. Therefore, this result might provide an early signal for a drug 

repurposing opportunity within the therapeutic space I describe in this thesis. Additionally, our  
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finding may be especially timely for further evaluation, given the present interest in treatments of 

coagulopathy69–71 like the RUC-4i series. 

A representative of our second highest-ranking series—5-(2,3-dichlorophenyl)-N-(3-

(oxazolo[4,5-b]pyridine-2-yl)phenyl)furan-2-carboxamide (NCGC00099510)—showed IC50 = 

9.6 µM for bGUS, with logistic dose-response behavior, CC = -1.2, and efficacy = -70%. A third 

series-representative hit compound I present in Figure 6—4-(cyclopropylmethyl)-N-phenyl-

2,3,4,5-tetrahydro-1H-pyrido[4,3-e][1,4]diazepin-8-amine (NCGC00411059)—also 

demonstrated logistic dose-response behavior, with IC50 = 11.1 µM, efficacy = -72%, and CC = -

2.2. The inclusion of this compound in our list of top-ranking compounds speaks to the power of 

vHTS in providing an additional layer of “quality control” to standard HTS workflows, as, in our 

former non-virtual, HTS probes of bGUS analogs similar to H11G11-BG, we screened this 

compound against bGUS in triplicate and with a five (5)-point titration series to develop a full 

dose-response curve, but we did not observe its bioactivity. Therefore, we had de-prioritized 

NCGC00411059 from future consideration as a potential bGUS inhibitor, but the strength of our 

vHTS results now suggest to us that we should re-examine this candidate as it may have more 

therapeutic potential than our previous assessments of its activity revealed. We regard the 

observation of compound efficacy in our biochemical bGUS assay as powerful, since the 

significantly reduced scale of this probe compared to that of the HTS platform at NCATS72 

suggests that its results may be viewed as more definitive and less “hypothesis-generating” than 

would otherwise arise from a standard HTS workflow. Furthermore, the situation I present of 

newfound observations of compound activity speaks to the power of vHTS in rescuing “false 

negatives” from a high-throughput drug discovery platform and therefore increasing its 

sensitivity. This is a pattern that is only scarcely observed in previous literature73, but I believe it 
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to be an important attribute of the vHTS approach and therefore a notable aspect of the results i 

present. 

I again note that nearly all of our screening hits demonstrated common, salient 

chemotypes, such that our sixty-nine (69) actives presented with few component singleton hits. 

The screening data from our bGUS biochemical assay for these compounds are available within 

the “Appendix” section of this thesis. 

Finally, in importing our bioactive hits to MOE and re-docking them to my I-TASSER 

target model, I observed that these compounds all exhibited mixed-mode inhibition, as they 

bound to our bGUS homolog at a location adjacent to the active site while still maintaining 

interactions with key active site residues, as with the inhibitors I display in Figure 6. These 

observations foment the conclusions I describe above and present an interesting exploration of a 

new, substrate-dependent mode of bGUS inhibition that allowed us to discover several 

prospectively inhibitory series of precise therapeutic adjuncts. Therefore, the results I present in 

this thesis have potential application towards downstream development of a bGUS-inhibitory 

drug to accompany small molecule anti-cancer therapies and reduce the incidence of associated 

SAEs. 
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Figure 6: Representatives of chemical series among our top validated vHTS hits include RUC-2i 
(Panel A) and 5-(2,3-dichlorophenyl)-N-(3-(oxazolo[4,5-b]pyridine-2-yl)phenyl)furan-2-carboxamide 
(Panel B). Panel C provides an example of false negative rescue of 4-(cyclopropylmethyl)-N-phenyl-
2,3,4,5-tetrahydro-1H-pyrido[4,3-e][1,4]diazepin-8-amine via vHTS. In each delineation of inhibitor 
binding mode, the substrate molecule is not visible (for ease of visualization), the ligand is colored 
green, and the binding pocket is shaded grey. Additionally, key active site residues are annotated; 
Phe448, Lys563, and Arg564 are in retrograde in the inhibitor binding modes I discovered. 
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Conclusions 

SOC for patients with non-excisable neoplasia is prescription of an anti-cancer regimen; 

although most small-molecule anti-cancer drugs are well-established and demonstrate potency 

for their targets, patient non-adherence to these medications due to their associated SAEs 

remains a significant barrier to their efficacy. Gut commensal bGUS enzymes can reverse 

compound inactivation catalyzed by host phase II glucuronidation by cleaving drug-glucuronide 

conjugates and forming toxic levels of reactivated drug in the gastrointestinal tract. Thus, 

microbiota bGUS has been implicated as a novel drug target to prevent the gastrointestinal 

toxicities of existing therapeutics, including the anti-cancer drugs irinotecan and 

regorafenib18,21,22,74–76. However, as the gut microbiome provides immunological and digestive 

benefits to neoplastic patients who are often immunocompromised and present with iatrogenic 

epithelial cytopenia in their GI tracts, broad-spectrum antibiotics have a minimal therapeutic 

index for this population. This suggests that there is an unrequited need for a precision, bGUS-

inhibitory adjunct therapy to be delivered alongside SOC anti-cancer drugs to ensure that 

neoplastic patients can better tolerate their treatment. Such a therapy could maximize the 

therapeutic value of existing anti-cancer agents, while simultaneously minimizing the safety risks 

of these drugs. 

The work I present in this thesis presents a holistic, multilayered, and first-in-kind 

attempt at systematic discovery of hits for a bGUS inhibitor, which we attempt via the powerful 

approach of vHTS with downstream biochemical assay validation in vitro. The results that I 

present from analysis of ~400,000 compounds suggest success of this approach, as they center 

around a hit rate that is 23-fold enriched compared to standard HTS drug discovery initiatives, 

sixty-nine (69) hits that map to common scaffolds for bGUS inhibitor design (with thirteen (13) 
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hits demonstrating “industry-grade” bioactivity), and an opportunity to consider drug 

repurposing with a class of agents that is of increasing interest for its potential application in 

treating coagulopathy. 

In the future, we hope to further develop our bGUS drug design platform by more 

detailed interrogation of druggable sites within our target model. While, in the work I present 

here, Iidentified candidates for inhibitor design through probes of candidate binding near the 

bGUS active site, we are curious to attempt our methods towards discovery of potential allosteric 

modulators of this target and, if an allosteric binding site appears plausible, to test the 

compounds we identified as hits from our current work to identify the potential for multimodal 

inhibition of this target. We also plan to further develop our testing platform of top candidates 

from our list of validated bioactives, as this will allow us to continue prioritizing our sixty-nine 

(69) hits. We are currently considering the development of biomarker discovery studies for 

bGUS inhibition and may consider testing our compounds in more representative in vitro 

systems, such as 3D human tissue culture, to better simulate their effects on the diverse 

microenvironments of human gut. We are also interested in developing appropriate mechanistic 

and enzyme kinetics probes to confirm our hypotheses on the modes of hit action that we 

developed through docking experiments and interpretation of the signals from our biochemical 

assay. Indeed, if the results that we present here hold true in these future screens, we believe that 

our platform could have strong potential in catalyzing the pace of drug discovery for a precision 

therapeutic that has application to improving health outcomes for millions of prospective 

patients77. 
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APPENDIX A 

 

SUPPLEMENTAL SCREENING DATA AND STRUCTURE FILES 

 

To promote the reproducibility of the work we present in this thesis, I have created an 

online repository with our primary sequence of H11G11-BG, a Ramachandran plot of my MOE 

model, my template search and threading results from I-TASSER, and my MOE and I-TASSER 

homology models. This database also includes the top 500 vHTS results from our holo GUS 

screen and relevant screening data for all 69 bioactive compounds we identified from our 

biochemical validation assay. 

At the request of Symberix, Inc., the industrial co-sponsor of our research, we are unable 

to release our data repository publicly at this time. Requests for the data elements above may be 

emailed to the author at anup.p.challa@vanderbilt.edu and will be reviewed by Symberix, Inc. 

for feasibility of fulfillment. 

Upon public release of our online repository, I encourage readers interested in the above 

information to visit this resource. We also plan to deposit our homology models in a community-

wide protein structure databank and hope our readers find these data helpful in replicating the 

reseach in this thesis. 

 


