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CHAPTER 1 

Introduction 

 

Cancer Oncogene Addiction and Targeted Therapies 

Cancer is among the leading causes of death worldwide1. For decades, traditional cancer 

treatments, such as chemotherapy and radiation, sometimes increased patient life expectancy while 

sacrificing quality of life2. The outcomes of these traditional therapies have improved slowly over the last 

several decades through minor modifications to dosing and timing, but patients still succumb to the 

disease. Over this time, accumulating research identified a subset of cancers that were reliant on specific 

genes for growth and survival, which became known as “oncogene addiction”3,4. Because these cancer 

types signaled strongly through specific genes, direct inhibition of these genes were believed to quell the 

disease. These observations served as a paradigm shift for how the community viewed these cancer types, 

and sparked a revolution of small molecule generation to block oncogenes5,6. These cancer types, which 

included EGFR- and ALK-mutant NSCLC, BRAF-mutant melanoma, HER2-mutant breast cancer, and BCR-

ABL mutant chronic myeloid leukemia, became the diseases we find somewhat treatable today. 

 Although the mechanism of oncogene addiction is not entirely clear, targeting oncogenes has 

proven effective in the clinic. In many clinical studies, tumor size is reduced greatly (>30%), as defined by 

the RECIST criteria7. These targeted therapies were proved significantly more efficacious than traditional 

therapies for oncogene-addicted cancers in short-term studies8–10. However, long-term studies show that 

while many of these patients showed increased life expectancy with fewer side effects than traditional 

chemotherapies and radiation, the disease largely returned11. The drug evasion mechanism for many of 

these tumors were attributed to pre-existing or acquired mutations12,13, some of which had greater fitness 

in treatment and sparked a resistant tumor. This theory of tumor clonal selection14 (FIG. 1), where cells 

have an initial decline in response to targeted therapy followed by a rebound attributed to drug 
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resistance, dominated the field, arguably still to this day. Under this view, identification of all resistance-

conferring mutations would solve the problem of tumor recurrence, as the community could develop new 

drugs specific for these mutations. 

 

 

Figure 1 | Clonal selection in cancer. 
Prior to drug treatment, the tumor is composed of heterogeneous clonal populations with differential fitness in 
drug treatment (left). After initial treatment, the tumor shrinks but clones with better in-drug fitness make up a 
larger proportion of the population (middle). In continued treatment, the most fit clones (red) overtake the tumor, 
leading to relapse. 

 

 An interesting case study for these ideas is EGFR-mutant NSCLC, which is driven by an exon 19 

deletion in the EGFR protein that confers resistance to 1st and 2nd generation EGFR inhibitors (EGFRi). A 

specific point mutation (EGFR T790M) was identified in multiple resistant tumors, and led medicinal 

chemists to develop 3rd generation inhibitor Osimertinib15, an EGFRi that specifically targets the point 

mutation. However, patient tumors eventually acquire resistance to Osimertinib, and the cycle continues. 

Other cancer types have moved towards combinations of targeted therapies to combat tumor resistance. 

In BRAF-mutant melanoma, a combination treatment of BRAF inhibitor (BRAFi) Vemurafenib and MEK 

inhibitor (MEKi) Trametinib was used to treat the disease16. Although few patients exhibited increased 

survival with this combination, tumors still invariably recurred17.  

Here inlies the problem: tumors have seem to have unrestrained ways to evade treatment. So, 

how can the disease be treated? Part of the answer lies in understanding the types of heterogeneity and 

Figure 44
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plasticity that plague treatment. Another aspect is developing tools to identify and separate variabilities. 

Finally, a method is necessary to quantify the outcomes targeting variability. Each of these aspects will be 

addressed in the sections below. 

 

Tumor Variability 

Tumor variability can be broadly separated into two categories: heterogeneity and plasticity18. 

Heterogeneity corresponds to variability at a single point in time, while plasticity refers to variability over 

time. Importantly, understanding both types of variability is key to understanding cancer drug sensitivity 

and potential escape mechanisms. Clinical responses are variable in response of oncogene addicted 

cancers to targeted therapies, with some studies showing early signs of resistance to treatments19,20, while 

others show a form of drug tolerance after therapy that leads to eventual recurrence12,21. Analyses of 

post-resistant tumors or cells provide most of our current knowledge of tumor recurrence, usually 

attributed to rare, resistance conferring genetic alterations that either preexist or develop during 

therapy22. Although genetic alterations are the focus of a traditional view of tumor variability, variability 

has been derived from a variety of sources, and are discussed in a later section. 

 Heterogeneity can be further subdivided into intertumoral and intratumoral heterogeneity. 

Intertumoral heterogeneity, or variation between tumors, is often attributed to different genetic 

backgrounds, but tumors with similar genetic backgrounds also display a wide range of responsiveness to 

targeted therapies23,24. While effective targeted therapies induce clinical responses in the majority of 

patients, responses can vary greatly depending on the study25. Furthermore, cancer cell lines, derived 

from different patients, show remarkable variability in drug response phenotypes. Even different tumors 

derived from the same patient can respond very differently to therapy12,26. Intratumoral heterogeneity, 

or variation within a single tumor, is slightly more complex. While genetic variation has been identified 

within tumors across long timescales, non-genetic variation has become more appreciated as a 
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contributor to intratumoral heterogeneity at shorter timescales. Single-cell approaches have shown 

substantial variation within individual cell lines and tumors, which have been tied to variable 

outcomes27,28. 

 Tumor plasticity has also been tied to poor patient outcomes29,30. As with heterogeneity, plasticity 

can arise from a variety of sources, but is largely shown in response to treatments. In studies of post-

resistant tumors, it is difficult to discern between heterogeneity and plasticity. Therefore, much of the 

community knowledge on plasticity has come from time-series studies, specifically using single-cell 

approaches and lineage tracing technologies31–33. Acquired resistance mutations during drug treatment 

are the most prevalent examples of plasticity12,13. However, recent studies have shown epigenetic 

treatment evasion strategies where cells dynamically transition to more fit phenotypic states34–36. 

Therefore, it is likely that cancer cells employ a variety of these strategies to evade treatment, and while 

many fail, some are successful and lead to tumor recurrence37–40. 

Implicit in our understanding of tumor variability is that external influences will have an effect on 

drug-response phenotypes. For example, the tumor microenvironment has a large effect on treatment 

response and durability41,42. The heterogeneous population of cancer cells, immune infiltrate, secreted 

factors, and extracellular matrix is known to modify both treatment responses and metastatic 

resistance43. Furthermore, there are physiological influences on tumors that impact phenotype. Nutrient 

deprivation often leads to hypoxic conditions in the center of solid tumors, resulting in an expanding outer 

layer and necrotic core44. Adjacently, vascularity and angiogenesis create differential blood (i.e. nutrient) 

flow into tumors that further complicates our understanding of variability45. Some treatments have been 

developed to counteract these external forces46,47. While these forces are important, our cell line systems 

do not take them into account and therefore we do not consider their influences on our view directly. 

However, in the context of this framework, we can consider these external influences as boundary 
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conditions on the epigenetic landscape, potentially restricting or guiding cells into a region of the 

landscape. 

 

Genetic, Epigenetic, and Stochastic Sources of Tumor Heterogeneity 

Genetic differences among cancer cells within and across tumors have long been appreciated48–

52. Indeed, genomic instability is a hallmark of cancer53,54 and is considered to be the primary source of 

this genetic heterogeneity. However, it is becoming increasingly apparent that genetics alone cannot fully 

explain the wide ranges of responses observed in patient populations to anticancer therapies55,56. 

Epidermal growth factor receptor (EGFR) inhibitors, for instance, are not equally effective across EGFR-

mutant lung cancer patients and in almost all cases tumors eventually acquire resistance and 

recur22,57.Researchers, therefore, are increasingly looking to non-genetic sources of tumor heterogeneity 

for explanations. Broadly speaking, non-genetic heterogeneity comes in two forms: epigenetic23,27,29,58–60, 

which is heritable (at least for a few generations), and stochastic61–65, which is not heritable and arises due 

to intrinsic factors such as gene expression noise and asymmetric cell division66,67. Non-genetic 

heterogeneity has been linked to drug tolerance and decreased drug sensitivity in vitro12,13,36,68,69 , in 

vivo13,68,70, and clinically71,72.  

Prior work has shown heterogeneity as comprising genetic, epigenetic, and stochastic 

components that are broadly distinguished based on characteristic timescale of change: functional genetic 

mutations are acquired on the order of weeks to months73,74, transitions between epigenetic states occur 

on the order of hours to weeks75, and stochastic fluctuations in protein concentrations, and other sources 

of intracellular noise, operate on the order of seconds to minutes76. Separating processes based on 

characteristic timescale is a common approach in physics77, and has a long history in biology78. Below, a 

detailed description of each level is provided, with precise definitions of terms that will be important for 
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later analyses. A simple visual illustration of these levels, and connections between them, are provided 

(FIG. 2). 

 

 

Figure 2 | Multiple levels of heterogeneity are believed to operate within tumors. 
(left) The genetic “axis” defines mutational differences that have an effect on phenotype, e.g., drug sensitivity. 
(middle) Each genetic clone has an associated epigenetic landscape, where cells are distributed across basins, known 
as “attractors”. The topography of the epigenetic landscape is defined by the dynamical biochemical network that 
controls cell fate and function. Molecular state (labeled as x) lies along the x-axis and the quasi-potential energy 
(labeled as U(x)) lies along the y-axis. (right) Cell states fluctuate within epigenetic basins due to intrinsic (e.g., gene 
expression) and extrinsic sources of noise. Most fluctuations are minor and do not significantly change the cell state 
but occasionally a large fluctuation results in a barrier crossing, i.e., a phenotypic state change.  

 

Genetic (Level 1): 

Genomic instability is a hallmark of cancer53,54. For cancer cells in culture, it has been estimated 

that approximately five million cell divisions are necessary to acquire at least one mutation per gene73. 

With more than 20,000 genes in the genome, this amounts to one mutation every two weeks on average. 

While mutations in the genome are relatively frequent, many do not have functional consequence, so-
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called “passenger” mutations58. Therefore, we make a distinction between the genomic state of a cell and 

the genetic state: the genomic state is the full sequence of nucleotides that make up the DNA whereas 

the genetic state is the subset of this sequence that contributes to a specific cellular phenotype79,80. In 

other words, two cells may differ genomically but be genetically identical if the mutations that 

differentiate them occur in portions of the genome that have no functional consequence on the phenotype 

of interest (FIG. 3). As such, the timescale for generating genetic heterogeneity within a population of 

cancer cells can be quite slow (much slower than the acquisition of genomic heterogeneity), on the order 

of weeks to months73,74. Note that enumerating the subset of the genome that defines the genetic state 

can be difficult (if not impossible) in practice and depends on the phenotypic context81. As mentioned in 

previous sections, drug response is the phenotype of interest. Thus, the genetic state is, in principle, 

defined over all genes associated with drug response, which includes those involved in stress response, 

metabolism, cell cycle regulation, and many others. 

 

 

Figure 3 | Difference between genomic and genetic variability. 
Cartoon illustration of two genomes that are genomically distinct but genetically identical with respect to phenotype 
(e.g., drug-response sensitivity). Functional genomic regions (solid black box) are those that have an impact on 
phenotype, while non-functional regions (dashed black box) do not. 
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 Mutational events, by definition, are changes in the structure of a gene. However, these changes 

can take many different forms. The first scheme to categorize mutations is variant classification. Variant 

classification falls into two primary forms, sequence variants and structural variants. Sequence variants 

pertain to mutations of one or a few nucleotides, while structural variants deal with modification of larger 

genomic regions. Within the sequence variant category, there is a further breakdown into substitutions 

and indels. Substitutions are alterations where the length of the variant change is the same as the 

reference region. Substitutions can occur in a range of nucleotide lengths, but most occur as single 

nucleotide substitutions, called single nucleotide polymorphisms (SNPs). SNPs are the most common form 

of sequence variation, and heavily outweigh other length substitutions.  The other type of sequence 

variation, indels, are broken down into insertions, deletions, and combinations (also referred to as indels). 

As the name suggests, insertions are an insertion of one or many nucleotides, while deletions are a 

deletion of one or several nucleotides. In the structural variant category, there are inversions, 

translocations, and copy number variants (CNVs). Inversions are nucleotide sequences that have been 

inverted but in the same position as prior to the mutation, while translocations are regions of the 

nucleotide sequence that has moved to a new position. By far, CNVs are the most measured types of 

structural variants, and correspond to duplications (also called amplifications; copy number gain 

compared to reference) and deletions (copy number loss where a contiguous region was removed). 

A second categorization scheme is variant consequence. Variants of any classification can encode 

for any consequence. Variant consequence can initially be separated into synonymous and 

nonsynonymous mutations. Synonymous mutations, otherwise known as silent mutations, are changes in 

the DNA structure that encode for the same amino acid as the reference versions of the gene. Therefore, 

these genes are considered to have no impact on phenotype. Nonsynonymous mutations, conversely, are 

the class of all other mutations that encode for a different amino acid than the reference gene. These 

mutations can have an impact on phenotype, depending on the type of mutation and aforementioned 
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phenotypic context. Nonsynonymous mutations can be further broken down into missense and nonsense 

mutations. Missense mutations encode for a different amino acid compared to the reference, while 

nonsense mutations encode specifically for a start or stop codon where one was not encoded in the 

reference. Missense mutations can be further subdivided into conservative (same amino acid type – e.g. 

polar) and non-conservative (different amino acid type – e.g. polar changing to non-polar). In terms of 

impact, the general rankings of variant consequence (from low to high) is: synonymous/silent, 

conservative missense, non-conservative missense, and nonsense mutations. But, depending on the 

phenotypic context, these rankings can be variable. For example, the canonical EGFR T790M mutation 

that encodes for resistance to EGFRi, is a missense mutation that has profound impact.  

Tools such as Ensembl Variant Effect Predictor82 (VEP) and SnpEff83 utilize variant annotations, 

such as classification and consequence, to predict the severity of variant consequence. In this work, we 

quantify the mutational landscape using whole exome sequencing (WES) to identify sequence variants 

and single-cell RNA sequencing (scRNA-seq) to predict one type of structural variants, CNVs. Sequence 

variants are annotated using the classification and consequence categorizations, and predicted effect is 

calculated to determine the overall impact of each mutation. CNVs, since they correspond to genomic 

regions rather than specific genes, were not subjected to predicted effect calculations. Together, these 

analyses provide sufficient coverage of the genomic landscape, insofar as their relationship to phenotype 

(i.e. DIP rate). 

 

Epigenetic (Level 2):  

Conceptualized as a quasi-potential energy surface where local minima, or “basins of attraction,” 

correspond to cellular phenotypes, epigenetic landscapes were first proposed by Waddington as an 

abstract tool for understanding phenotypic plasticity and cellular differentiation during development84. 

The genetic state of a cell sets the topography of the landscape24,85 and intrinsic (e.g., gene expression61) 
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or extrinsic28,86 sources of noise drive transitions between phenotypes. Phenotypic state transitions 

(between epigenetic basins) have been observed to occur on the order of hours to weeks21,36, meaning 

epigenetic diversification occurs on a much faster timescale than genetic diversification. From a molecular 

perspective, the epigenetic landscape is the consequence of the complex biochemical interaction 

networks underlying cellular function87,88. Complex dynamical networks can harbor multiple stable states, 

termed “attractors”, towards which a system will tend to return (relax back) in response to small 

perturbations89,90. This property underlies epigenetic heritability: daughter cells inherit similar molecular 

contents to their parent91; hence, they tend to remain within the region of influence of the parental 

attractor92. Larger perturbations, however, can move a system into the region of influence of a 

neighboring attractor, resulting in a spontaneous phenotypic state change. This explains why epigenetic 

inheritance is often short lived93,94.  

 From a molecular standpoint, the Waddington epigenetic landscape is a consequence of the 

complex biochemical interaction networks underlying cellular function87,88. An “epigenetic state” within 

this definition is thus simply the molecular state of the associated attractor. Here, we use the 

transcriptional state of a cell, revealed through single-cell transcriptomics, as a proxy for the epigenetic 

state, with the understanding that mRNA is only one lens through which to view epigenetics. Indeed, this 

definition of an epigenetic state, i.e., as a stable state of a complex biochemical network, differs from the 

traditional molecular biology definition in terms of “epigenetic marks”95 (e.g., DNA methylation, regions 

of open chromatin). The two are related, however, in the sense that the same biochemical network that 

defines the epigenetic landscape also sets the epigenetic marks on the DNA60. It is important to recognize 

that each modality serves only as one possible view, i.e., a proxy, for the epigenetic state. In molecular 

biology, for example, epigenetic states are usually discussed in terms of chromosomal changes96, e.g., 

DNA methylation and histone modification. Systems biologists have often utilized single-cell 

transcriptomics to identify epigenetic states, where clusters correspond to stable network states. Both 
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epigenomics and transcriptomics views of the epigenetic landscape are utilized in this work, and can 

simply be seen as different views of the same epigenetic states since the biochemical network that defines 

the Waddington landscape also regulates the epigenetic marks on the DNA60.  

 

Stochastic (Level 3):  

Fluctuations, or noise, in intracellular species concentrations have long been recognized as a 

source of non-genetic heterogeneity in isogenic cell populations, first in bacteria38,76 and then in yeast97,98 

and mammalian cells21,99,100. Intracellular noise can be “intrinsic”, i.e., due to the probabilistic nature of 

biochemical interactions101, or “extrinsic”102, affecting the rates of interactions, synthesis, and degradation 

within a biochemical network. Intrinsic sources of noise include transcriptional bursting103,104, translational 

bursting105, and randomness in mRNA/protein degradation106, oligomerization107, and post-translational 

modification108. Extrinsic noise includes randomness in the distribution of molecular contents upon cell 

division67,109, environmental factors such as inhomogeneities in cell culture media110, fluctuations in 

temperature111 and pH112, and spatial variations in the microenvironment113. Importantly, fluctuations at 

the molecular level can drive probabilistic cell fate decisions61,62,114–116, including division and death117,118, 

at the single-cell level and phenotypic diversification at the epigenetic (population) level99,119. 

Experimentally, at the intracellular level, intrinsic and extrinsic noise are difficult to distinguish, generally 

requiring multiple fluorescent reporters and the ability to fine-tune the external environment102. 

Theoretically, the chemical Master Equation120,121 (CME) is the construct upon which stochastic dynamical 

analyses are based. Since the CME is difficult to solve in general, a number of stochastic algorithms have 

been developed for simulating fluctuations at both the single cell and cell population levels101,122.  

In this work, SSA simulations of population dynamics are utilized to quantify stochastic variability 

in epigenetic states, with stochastic cell division and death used to model intrinsic noise associated with 

cell fate decisions. This stochasticity is analogous to transcriptional heterogeneity noted in various 
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systems, where cells exhibit small variations (shown by techniques such as single-molecule RNA-FISH) that 

do not correspond to a new steady state of the system (i.e. epigenetic state)93. Importantly, intrinsic 

stochasticity is not thought to be inherited between generations, which further distinguishes it from 

epigenetic heterogeneity. However, intrinsic stochasticity is thought to play a role in cellular plasticity, 

reversibly transitioning cells between basins in the epigenetic landscape. 

 

Together, we utilize this three-tiered view of tumor heterogeneity (FIG. 2) to disentangle genetic, 

epigenetic, and stochastic sources of variability in cancer. Typical tumors comprise numerous genetic 

states and are thus expected to harbor numerous overlapping epigenetic landscapes, each of which is 

subject to noise-induced phenotypic transitions. Note that the epigenetic landscape was originally devised 

as a way to explain cellular differentiation during development. In fact, a developmental hierarchy is a 

special type of epigenetic landscape, where successive basins are lower in quasi-potential energy, causing 

cells to descend from one state to the next. In cancer, rather than a well-defined hierarchy, multiple basins 

of comparable depth coexist. A population of cancer cells is thus expected to spread out across these 

basins, resulting in a highly heterogeneous population. This may confer a survival benefit to the population 

in the face of future stressors, such as drug treatments. 

 An obvious complication to this view is the overlap between levels of heterogeneity. Cellular 

variation does not happen in independent level vacuums, and variations at each level may have effects 

on other levels. For instance, genetic mutations often have an effect on transcription123, which is reflected 

in modified epigenetic landscapes. The next section attempts to better understand the genetic-to-

epigenetic connection. However, there are also cases where epigenetic variation, such as open regions of 

chromatin, can have an effect on the likelihood of a mutation124. In these cases, there would be feedback 

and dependencies between the genetic and epigenetic levels that complicate our view of cancer 

heterogeneity. Stochasticity, as a property of biological systems, does not inherently have an effect on 
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other levels, but can induce different influences on specific epigenetic landscapes, which are defined by a 

single genetic state. For example, one genetic state may emanate an epigenetic landscape with low barrier 

heights between basins, while another may have deep basins. In the landscape with low barrier heights, 

stochasticity will have a greater effect because transitions are more likely to traverse cells between basins, 

a property known as epigenetic plasticity. A landscape with deeper basins will take longer for cells to 

transition between basins and be reflected as a more stable landscape. Regardless of how one views these 

levels, it is clear that we cannot currently quantify all of the complexity associated with the overlap 

between levels. From a theoretical perspective, we can expect that most tumors are composed of multiple 

genetic states, and therefore many overlapping epigenetic landscapes. This work provides a first step to 

disentangle the web of complexity found in heterogeneous tumors. 

 

The Genetic-to-Epigenetic Connection 

In the genetic/epigenetic/stochastic view of tumor heterogeneity that we utilize in this work (FIG. 

2; see also “Genetic, epigenetic, and stochastic sources of tumor heterogeneity” above), genetics are 

fundamentally tied to epigenetics. To understand how, recall that an epigenetic landscape quantifies, in 

terms of a quasi-potential energy, the accessible molecular states that cells can occupy. The topography 

of the landscape depends on the molecular species present (the axes of the state-space), the biochemical 

processes that can occur, and the parameters that quantify the rates at which these processes proceed. 

The latter means that changes to the rate parameters can change the topography of the landscape, i.e., 

the depths of basins, heights of barriers, etc. For processes such as protein-protein interactions, the rate 

parameters are directly dependent on protein structure, which is encoded in the DNA. Thus, mutations to 

the DNA that, e.g., alter the accessibility of a binding domain, change the values of rate parameters and, 

hence, the epigenetic landscape as a whole. In this way, each genetic state can be thought of as having an 

associated epigenetic landscape, which may have multiple basins, or cell phenotypes.  
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 A consequence of this final point is that phenotypic differences at the transcriptomic level do not 

always indicate differences at the genetic level. In other words, cells can be genetically identical yet differ 

transcriptomically if they occupy different basins within a common epigenetic landscape. In theory, we 

should be able to distinguish between cases in which transcriptomic differences are tied to genetic 

variations and those in which they are not by simply comparing across samples parts of the genome that 

are relevant to the phenotype of interest (e.g., drug response). However, in practice we do not have a full 

accounting of all phenotypically-relevant parts of the genome, we only have the full genomic sequences, 

which will invariably have differences. The question is whether those differences are functionally relevant 

to the phenotype of interest (FIG. 3). If not, we can consider the samples to be genetically identical, even 

though they are genomically distinct (see “Genetic, epigenetic, and stochastic sources of tumor 

heterogeneity: Genetic” above).  The functional relevance of genomic mutations makes comparison across 

the levels of heterogeneity more difficult, and we utilize approaches in this work in an attempt to identify 

functional relevance.  

 

Understanding Drug Response Phenotypes with the DIP Rate 

Cellular phenotypes are directly tied to context. In the case of cancer therapies, the most apt 

measure of phenotype is drug sensitivity. Traditional metrics of drug sensitivity, such as cell viability125 

and clonogenic assays126, have minimal resolution and have a variety of problems and biases that make 

them poor prognosticators of phenotype. To combat these insufficiencies, the laboratory previously 

created the drug-induced proliferation (DIP) rate117,118, an unbiased metric to quantify drug effect in vitro. 

This metric measures the stable cell proliferation rate of a cell population achieved during prolonged 

treatment, similar to traditional cell viability assays but designed to capture data across the drug response 

time series, and thus, more accurate data. However, the metric only captures the stable proliferation rate 

of the population, which corresponds to the most fit clones in the treated population. Therefore, to 
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supplement the standard DIP rate assay (indicated hereafter as population-level), we developed a single-

cell DIP rate assay. Originally published as the clonal fractional proliferation (cFP) assay127, this approach 

tracks the DIP rates of many single-cell derived colonies of a cell population to generate a distribution of 

rates. This method captures colony proliferation in a much more quantitative way than the clonogenic 

assay, and removes some of the subjective aspects such as influence of other cell types 

(microenvironment, signaling, etc.) on clonal proliferation. The resulting single-cell distribution of DIP 

rates, specifically the variance of the distribution, shows the extent of drug-response heterogeneity 

present in a population. Both the population-level and single-cell assays quantify cellular fitness in a way 

that can be tied to phenotype. 

 The DIP rate is rooted in theory, derived from the probabilities of cell division and death (DIP rate 

=~ division rate – death rate). As such, population dynamics models of cell proliferation can provide 

further insight into cell division and death in drug treatment (see “Genetic, Epigenetic, and Stochastic 

Sources of Tumor Heterogeneity: Stochastic”), key components of phenotype, as defined by the DIP rate. 

As we expand to multiple cell phenotypes, the DIP rate can be used to identify phenotypic heterogeneity, 

corresponding to states with distinguishable DIP rates, each with distinct division and death rate 

probabilities. Transitions between cellular states can be measured by changing DIP rates over time, an 

important aspect of cellular plasticity. Together, the DIP rate provides a metric to understand drug 

response dynamics reflective of various biological processes.  

 

Building in vitro Models to Mimic Tumor Variability 

To provide experimental evidence for heterogeneity, an experimental system was needed that 

could explain both an independent level of heterogeneity and other levels dependent upon it (if 

necessary). Conversely, another experimental system was required to explain plasticity, both in the 
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absence or presence of perturbations (i.e. drugs). With this in mind, two separate systems were 

established for heterogeneity and plasticity.  

For the heterogeneity model, a family of cell line ‘versions’ and ‘sublines’ that could capture 

different levels of heterogeneity were generated (FIG. 4). This cell line family can be viewed as a proxy for 

a heterogeneous tumor composed of multiple genetic states, each of which has multiple epigenetic states, 

within which stochastic fluctuations occur and occasionally drive phenotypic state changes. Based on 

these needs, NSCLC cell line PC912,13,21 was identified as a promising candidate to quantify heterogeneity. 

In addition to fulfilling the requirements above, PC9 has a mutation (exon 19 deletion) in the EGFR gene 

that makes it sensitive to EGFRi128,129, a common treatment for NSCLC. Consequently, response to EGFR 

inhibition (i.e. DIP rate in EGFRi) was a natural way to identify phenotypic changes, which we measure in 

terms of drug response to EGFRi erlotinib. We first identified two versions of the PC9 cell line cultivated 

at different academic institutions (Massachusetts General Hospital–MGH13,21,129; Vanderbilt University–

VU118,130) in an effort to capture genetic heterogeneity. The extended period of separate evolution in cell 

culture likely allowed for extensive genomic evolution. PC9-BR1, a resistant cell line derived from PC9-VU 

through dose-escalation therapy in EGFRi afatinib130, would serve as a positive control for genetic 

heterogeneity. Multiple single-cell derived clones of cell line version PC9-VU were then derived to avoid 

genetic heterogeneity completely, designed to identify individual epigenetic basins in the underlying PC9-

VU epigenetic landscape. Variability within the sublines themselves would be utilized to understand 

stochastic variability. In this way, a system was built to capture multiple levels of heterogeneity: genetic, 

epigenetic, and stochastic. 
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Figure 4 | The PC9 cell line family tree. 
Two versions the PC9 cell line were maintained separately in culture at two different institutions (VU – Vanderbilt 
University; MGH – Massachusetts General Hospital). A resistant cell line (PC9-BR1) was derived from PC9-VU by dose 
escalation in the EGFR inhibitor afatinib. Several discrete sublines (DS) were also single-cell isolated from PC9-VU. 
Colors are consistent with data visualizations. 

 

In the case of plasticity, a model system was needed that would not acquire functional genetic 

mutations across short time scales (i.e. weeks), but still exhibit epigenetic heterogeneity and plasticity. 

BRAF-mutant melanoma became an interesting option, as it is characterized by multiple epigenetic states, 

and known to show epigenetic adaptation to treatments35,131,132 (i.e. multiple shallow basins in a common 

epigenetic landscape). BRAF-mutant melanoma cell line SKMEL5 was chosen as a model system of 

plasticity36,133,134. Like PC9, SKMEL5 harbors a mutation in an oncogene, BRAFV600E, that makes it 

susceptible to BRAF inhibition (BRAFi). As such, BRAFi could be used to quantify phenotypic differences 

among single-cell derived clonal derivatives (i.e. epigenetic states; distinct short-term DIP rates) and 

plasticity in the population itself (i.e., changing DIP rates). Therefore, this system was designed to 

complement the processes that PC9 could not, namely epigenetic plasticity in the presence or absence of 

drug treatment. 
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Chapter Motivation 

Variability plays a key role in cancer treatment insensitivity and eventual resistance9,11. The vast 

majority of studies consider cancer variability as a monolith, chalking up poor patient outcomes to pre-

existing or acquired genetic mutations. But, cancer variability is itself variable. Broadly speaking, cancer 

variability can be further segmented into heterogeneity, a snapshot of variability at a single point in time, 

and plasticity, variability as it evolves over time18,131. Additionally, variability can be derived from different 

sources, including (but not limited to) genetics48,49, epigenetics58,135,136, stochastic fluctuations38,99,137, 

environmental44 and pharmacologic effects29, and many more24. Given these sources, identifying and 

tracking cancer variability is a difficult task. Currently, seminal studies aim to perform as many types of 

experiments as possible on patient-derived material in hopes of finding the magic bullet to cure 

cancer68,132,138. However, we must be open to the idea that there are multiple needles in the proverbial 

haystack, with different levels of importance at different times. Established methods to find these needles 

and interpret how they work together are only in the infancy stage92,139. With such a wide range of data 

modalities and potential findings, a clarifying lens is needed to help researchers sort through the haystack. 

This work uses in vitro model systems of heterogeneity and plasticity to study cancer variability across 

multiple sources. By combining quantitative experimentation, bioinformatic analyses, and mathematical 

modeling, it shows how the iterative loop of systems biology can create new insights for old problems. It 

highlights the staggering amount of complexity present in these systems, and creates a high-level view for 

how variability contributes to numerous treatment outcomes in cancer. Although we do not fully 

understand the implications of all types of variability on cancer disease progression, this work is a step to 

quantify the disease in nontraditional ways, and use that knowledge to create novel treatments. 

Differentiation between types of tumor variability is crucial to develop novel therapy regimens to 

combat tumor recurrence. While many studies have aimed to quantify individual aspects of tumor 

variability, we hypothesized that a common heterogeneity framework, paired with the right experimental 
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systems, could shed light on how current treatment paradigms are failing to eradicate the disease. 

Chapter II uses an in vitro model of tumor heterogeneity to disentangle various sources of tumor 

heterogeneity: genetic, epigenetic, and stochastic. Using extensive drug response profiling, followed by 

genomic and transcriptomic characterization and mathematical population dynamics modeling, we verify 

that the versions a commonly used NSCLC cell line are genetically distinct and argue that all but one of 

recently single-cell derived sublines are genetically indistinct but differ epigenetically, i.e., they 

correspond to basins within a common epigenetic landscape. We detail one case where our analyses 

suggest that a subline harbors a distinct genetic state that appears to have emerged in the absence of 

selective pressures. Chapter III identifies the existence of a novel population ‘idling’ state in BRAF-mutant 

melanoma, achieved through phenotypic plasticity in response to drug treatment. We show that the idling 

state is characterized by a net-zero proliferation state in BRAF inhibition (BRAFi), achieved by various 

clones with differential short-term (<100 hours) proliferation rates but eventually adopt the net-zero rate. 

A mathematical population dynamics model, fit to drug-response data, suggests that idling is a population 

state, meaning that multiple states co-exist to reflect the net-zero proliferation rate in BRAFi. 

Furthermore, we show that epigenetic plasticity is not limited to drug treatment, that cell populations 

diversify in the absence of selective pressure that change drug response phenotypes. In Chapter IV, we 

characterize the idling cells using various single-cell technologies to determine exactly how BRAF-mutant 

melanoma cells achieve the population state. We observe that idling is a property of nearly all BRAFi 

treated lineages, which adopt a new convergent epigenetic landscape over which the population 

equilibrates after treatment with BRAFi. This shift is tied to ion channel signaling and membrane potential 

imbalance, which can be targeted to enhance idling cell death. Ultimately, our results highlight the need 

to understand tumor heterogeneity and plasticity, which both contribute to poor patient outcomes and 

the inability to win the war on cancer. 
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CHAPTER 2 

Disentangling Genetic, Epigenetic, and Stochastic Sources of Cell State Variability in an in vitro 

Model of Tumor Heterogeneity1 

 

Introduction 

Tumor heterogeneity is a primary cause of treatment failure and acquired resistance in cancer 

patients. Even in cancers driven by a single mutated oncogene, variability in response to targeted 

therapies is well known. The existence of additional genomic alterations among tumor cells can only 

partially explain this variability. As such, non-genetic factors are increasingly seen as critical contributors 

to tumor relapse and acquired resistance in cancer. Here, we show that both genetic and non-genetic 

factors contribute to targeted drug-response variability in an experimental model of tumor heterogeneity. 

We observe significant variability to EGFR inhibition among and within multiple versions and clonal 

sublines of PC9, a commonly used EGFR-mutant non-small cell lung cancer cell line. We disentangle 

genetic, epigenetic, and stochastic components of this variability using a theoretical framework in which 

distinct genetic states give rise to multiple epigenetic “basins of attraction”, across which cells can 

transition driven by stochastic noise. Using mutational impact analysis, single-cell differential gene 

expression, and correlations among gene ontology terms to connect genomics to transcriptomics, we 

establish a baseline for genetic differences driving drug-response variability among PC9 cell line versions. 

Applying the same approach to clonal sublines, we conclude that drug-response variability in all but one 

of the sublines is due to epigenetic differences; in the other, it is due to genetic alterations. Finally, using 

a clonal drug-response assay together with stochastic simulations, we attribute subclonal drug-response 

                                                
1Adapted with permission from Hayford et al. Disentangling genetic, epigenetic, and stochastic sources of cell state 
variability in an in vitro model of tumor heterogeneity In review (2021). 
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variability within sublines to stochastic cell fate decisions and confirm that one subline likely contains 

genetic resistance mutations that emerged in the absence of selective pressures. 

 

Results 

Cell line versions and single cell-derived sublines exhibit drug-response variability at the cell population 

level 

We chose commonly-used NSCLC cell line PC9128 as a model system for tumor heterogeneity. The 

PC9 cell line is characterized by an EGFR-ex19del mutation, making it sensitive to inhibition of the mutant 

EGFR protein. We utilize three versions of the cell line: PC9-VU, originating from Vanderbilt University130; 

PC9-MGH, maintained at Massachusetts General Hospital21,129; and PC9-BR1, derived from PC9-VU and 

containing a known secondary resistance mutation (EGFR-T790M) obtained through dose escalation 

therapy in the EGFR inhibitor (EGFRi) afatinib130. Although it is unclear when the PC9-VU and PC9-MGH 

versions (originating from a common founder cell population) were independently established (FIG. 4), 

both maintain the oncogenic mutation in the EGFR gene and display sensitivity to EGFR inhibition21,118. In 

the absence of drug, PC9-VU and PC9-BR1 have essentially identical proliferation rates, while PC9-MGH 

grows at a slightly lower rate (FIG. 5A). However, in response to the EGFRi erlotinib, the three cell line 

versions display drastically different drug sensitivities (FIG. 5A): PC9-MGH exhibits substantial cell death 

after an initial equilibration phase (~72h), PC9-VU settles into a near-zero rate of growth, and PC9-BR1 

displays insensitivity to EGFRi (as expected). These observations are consistent with the high sensitivity of 

PC9-MGH to erlotinib reported in Sharma et al.21 and the lower sensitivity of PC9-VU that we reported 

previously117,118. 
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Figure 5 | Phenotypic differences among PC9 cell line versions quantified in terms of drug response. 
(A) Population growth curves for three cell line versions treated with 3µM erlotinib for approximately three weeks, 
plus vehicle (DMSO) control. (B) Drug-induced proliferation (DIP) rate distributions compiled from single-colony 
growth trajectories under erlotinib treatment (3uM) in a clonal Fractional Proliferation (cFP) assay. DIP rates are 
calculated from the growth curves 48h post-drug addition to the end of the experiment. Dashed black lines signify 
zero DIP rate, for visual orientation. In A, dots are the means of six experimental replicates at each time point; solid 
lines are best fits to the drug response trajectories with point-wise 95% confidence intervals. In B, DIP rate 
distributions are plotted as kernel density estimates. 

 

We also quantified clonal drug response variability within the cell line versions using clonal 

Fractional Proliferation127 (cFP), an assay that tracks the growth of many single cell-derived colonies over 

time and quantifies drug sensitivity for each colony in terms of the drug-induced proliferation (DIP) 

rate117,118, defined as the stable rate of proliferation achieved after extended drug exposure (see 

Methods). We performed cFP on each cell line version under erlotinib treatment and observed wide 

ranges of drug responses across colonies and substantial differences in the response distributions across 

versions (FIG. 5B). The distribution of DIP rates for PC9-BR1 lies almost entirely in the positive DIP rate 

range and is clearly distinct from the others. The PC9-VU and PC9-MGH distributions have significant 

overlap but the PC9-MGH distribution has a marked shoulder in the negative DIP rate region, while the 

PC9-VU distribution extends further into the positive range. These distributions are consistent with and 
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explain the differential drug responses observed among the cell line versions (FIG. 5A): PC9-BR1 is 

resistant to EGFRi because its DIP rate distribution is entirely in the positive range, PC9-VU goes into a 

near-zero (slightly positive) growth phase because its DIP rate distribution is centered near zero, and the 

large shoulder in the PC9-MGH distribution explains why it exhibits significant cell death in the period 

immediately following drug treatment. 

In addition, several single cell-derived discrete sublines (DS1, DS3, DS4, DS6, DS7, DS8, DS9) were 

isolated from PC9-VU and subjected to the same analyses as above. In the absence of drug, all sublines 

grow at almost equal rates in culture (FIG. 6A). However, in the presence of EGFRi, the sublines exhibit a 

wide range of responses, from positive to negative growth (FIG. 6A). When overlaid with the cFP results 

for PC9-VU, the subline responses broadly recapitulate the observed variability seen in the parental line. 

A notable exception is DS8, which is essentially resistant to EGFRi, having only a slightly lower proliferation 

rate than the fully resistant PC9-BR1 (cf. FIG. 5A). We also performed cFP assays on the sublines under 

erlotinib treatment (FIG. 6B) to quantify subclonal drug response variability. Interestingly, similar to the 

cell line versions, we found that the sublines also exhibit distributions of DIP rates, albeit narrower than 

those for the cell line versions. The subline distributions have a large degree of overlap with one another 

but the medians of the distributions are statistically distinct (p < 0.001, Mood’s median test). DS8 is again 

an exception, exhibiting a bimodal DIP rate distribution with a major mode centered close to zero and a 

large shoulder in the positive DIP rate range.  
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Figure 6 | Phenotypic differences among PC9 discrete sublines quantified in terms of drug response. 
(A) Seven discrete sublines (DS) derived from PC9-VU were treated with 3µM erlotinib for three weeks, along with 
vehicle control. Parental PC9-VU is included for reference. (D) DIP rate distributions from a cFP assay of the sublines 
in 3µM erlotinib. Parental PC9-VU is included for reference. In A, dots are the means of six experimental replicates 
at each time point; solid lines are best fits to the drug response trajectories with point-wise 95% confidence intervals. 
In B, DIP rate distributions are plotted as kernel density estimates. 

 

Cell line versions differ significantly at the genetic and transcriptomic levels 

Given that the PC9-VU and PC9-MGH cell line versions have been maintained separately for many 

years, it is virtually certain that they differ genetically26. We also know that PC9-BR1 contains a known 

genetic resistance mutation and likely numerous additional mutations acquired during dose escalation. 

Thus, we perform bulk whole exome sequencing (WES) and single-cell RNA sequencing (scRNA-seq) on 

the cell line versions in order to establish a benchmark for genetic variation against which we can compare 

the sublines.  

From WES, we identify mutations (SNPs and InDels) in each cell line version that pass a specified 

threshold for variant detection (see Methods) and calculate the number of mutations per chromosome 

(FIG. 7A). We see a large amount of variability in the number of called variants between the cell line 

versions (average coefficient of variation (CV) per chromosome = 12.84). We also identify mutations 

unique to each cell line version and calculate the proportionality of unique mutations compared to the 

total number of mutations (FIG. 7B). Although a majority of the mutations are shared between versions, 
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a significant number are unique: PC9-BR1 has the largest proportional representation of unique 

mutations, followed by PC9-MGH and then PC9-VU. Furthermore, we annotate unique mutations within 

each cell line version with an IMPACT score, a variant severity classifier calculated by the Ensembl Variant 

Effect Predictor82 (VEP). The IMPACT score differentiates mutations based on a variety of factors that 

predicts whether a mutation is likely to have a phenotypic effect (see Methods). Categorizing mutations 

into low, moderate, and high IMPACT score reveals that PC9-BR1 has many more potentially impactful 

mutations than PC9-MGH and PC9-VU, which have similar numbers to each other (FIG. 7C). However, as 

a percentage, only 1% of PC9-MGH unique mutations are predicted to be impactful, compared to 11% in 

PC9-VU, suggesting that PC9-MGH harbors a large number of passenger mutations.  

 

 

Figure 7 | Genomic characterization of PC9 cell line versions. 
(A) Mean-centered mutation count by chromosome for all cell line versions. For each chromosome, versions with 
fewer mutations than the mean have a bar pointing inwards, while those with more mutations than the mean point 
outwards. Chromosome numbers are noted on the outside edge of the circle. Average coefficient of variation (CV) 
across all chromosomes is noted. (B) Proportions of unique mutations for all cell line versions. (C) Numbers of 
IMPACT mutations unique to each cell line version, stratified by IMPACT classification (low, moderate, high). 
Percentage of unique IMPACT mutations relative to the total number of unique mutations for each cell line version 
is denoted above each bar. 

 

We also perform a mutational significance analysis on the unique mutations. Based on 

nonsynonymous-to-synonymous mutational load, genes are selected to create a mutational signature of 
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genetic differences within each cell line version (see Methods) and displayed as a heatmap. This signature 

does not reflect all mutated genes in the cell line versions but rather those of predicted importance, 

similar to the VEP IMPACT score analysis. We see that many mutations in the signature distinguish the cell 

line versions (FIG. 8A). Additionally, we generate a literature-curated, cancer-associated gene signature 

that includes mutations predicted to be implicated in cancer12,140 (see Methods). Only PC9-BR1, which has 

a known resistance mutation (EGFR-T790M, noted as a missense mutation in the heatmap), harbors 

significant mutational load in the cancer-associated gene signature (FIG. 8B). Breakdowns of mutations by 

type provide additional evidence that PC9-VU mutation representation is distinct and proportionally 

impactful (FIG. 8C). 
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Figure 8 | Mutational significance of PC9 cell line versions. 
(A) Quantification of mutational differences between cell line versions based on a signature of genes with a high 
nonsynonymous mutational load. Heatmap elements are colored based on type of mutation (see Methods). Total 
numbers of mutations (stratified by mutation type) across genes and cell line versions are shown as bar plots to the 
right and above of the heatmap, respectively. (B) Mutational differences between cell line versions for a literature-
curated set of cancer-associated genes implicated in lung cancer (see Methods). Heatmap elements are colored 
based on type of mutation. (C) Mutation class pie charts. SNV: single nucleotide variant; indel: combination of 
insertion and deletion. 

 

In addition to traditional variant analyses, we also perform copy number variant (CNV) detection 

at the single-cell level. By exploring the gene expression intensity across positions of the genome, CNVs 

are detected as gains (red) or deletions (blue) in large chromosomal regions, making it clear which regions 
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of the genome have different relative abundances (see Methods). For the cell line version analysis, the 

background abundance is an average of the three cell lines. We identity several key regions that 

differentiate the cell line versions (FIG. 9): PC9-MGH has multiple clear amplifications (chromosomes 6, 

11, and 22) and deletions (chromosomes 16 and 19), while PC9-VU and PC9-BR1 are mostly concordant. 

This result fits with expectation, as PC9-BR1 was derived from PC9-VU and therefore likely had fewer 

opportunities to acquire large-scale chromosomal changes than PC9-MGH. Together, these genomic data 

(FIGS. 7-9) starkly illustrate the genetic differences among the cell line versions. Namely, PC9-BR1 is 

differentiated predominately by single-nucleotide and indel variants and PC9-MGH is differentiated by 

copy number variants. 

 

 

Figure 9 | Copy number Variant (CNV) detection for cell line versions. 
Red corresponds to amplifications, blue to deletions. 

 

At the transcriptomic level, we use scRNA-seq to identify gene expression differences among the 

cell line versions (see Methods). After feature selection, we use Uniform Manifold Approximation and 

Projection141,142 (UMAP) to project the transcriptional states for each cell into two-dimensional space (FIG. 

10A). We see a clear separation of cell line versions in the UMAP space, with minimal overlap (FIG. 10B-

C). Pairwise distances between the centroids of the single-cell clusters (FIG. 10D) show that PC9-VU and 
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PC9-BR1 are more similar to each other than either is to PC9-MGH, which is unsurprising given that PC9-

BR1 was derived from PC9-VU.  

 

 

Figure 10 | Transcriptomic characterizations of PC9 cell line versions. 
(A) Uniform Manifold Approximation and Projection (UMAP) visualization of single-cell transcriptomes for cell line 
versions. For comparison purposes, the UMAP space is defined over all eight PC9 samples (including cell line versions 
and PC9-VU sublines; see Methods). (B) Clustering of cell line versions. Number of clusters (three) was defined based 
on majority rule from a consensus of 30 indices. Ward’s minimum variance method was used. (C) Quantification of 
cluster fraction by cell line version. (D) Distance between cell line version centroids in UMAP space. Centroids were 
calculated as the mean across each UMAP axis using a Euclidian distance metric. 

 

To quantify how predictive variations in the genomic states of cell line versions are of differential 

gene expression at the transcriptomic level, we compare Gene Ontology143,144 (GO) terms associated with 

high consequence genetic variants (low, moderate, and high IMPACT scores) and GO terms associated 

with significantly differentially expressed genes (DEGs; adjusted p<0.05). We visualize these terms based 

on relative statistical significance (negative log of p-value for significant GO terms) and quantify the 

correlation (Spearman) between the genomics- and transcriptomics-derived terms (FIG. 11). Both PC9-
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BR1 and PC9-MGH have a positive correlation between terms, indicating that terms shared between data 

modalities tend to agree with each other. Obvious exceptions exist that are more statistically significant 

for one data modality (top-left and bottom-right corners of the plot) but both the existence of terms for 

both modalities and the moderate correlation indicate the connection. Notably, PC9-VU has a slightly 

negative correlation.  

 

 

Figure 11 | Gene Ontology comparison analysis of unique IMPACT mutations and differentially expressed genes 
(DEGs) for cell line versions. 
A correlation coefficient (Spearman) was calculated for each sample. Terms with a value greater than two on either 
axis are highlighted.  

 

One PC9-VU subline is genetically distinct, while all others are transcriptomically distinct from each other 

We perform the same genomic and transcriptomic analyses as above on five PC9-VU sublines 

(DS3, DS6, DS7, DS8, DS9) that exhibit differential responses to EGFRi as evidenced by their DIP rate 
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distributions (see FIG. 6B): DS3 has a peak in the negative DIP rate range, DS6 has a peak close to zero, 

DS7 and DS9 have peaks in the positive DIP rate range and nearly overlapping distributions, and DS8 stands 

out as an obvious outlier with a bimodal DIP rate distribution. Analysis of the total numbers of mutations 

by chromosome (FIG. 12A) shows significantly less variability in the variant count for the sublines relative 

to the cell line versions (average CV per chromosome = 6.27 vs. 12.84; cf. FIG. 6A). Additionally, unlike the 

cell line versions, most sublines exhibit similar proportions of unique mutations (FIG. 12B) and numbers 

of IMPACT mutations (FIG. 12C). The clear exception is DS8, which has more unique mutations and more 

than twice the number of predicted impactful mutations compared to the other sublines.  

 

 

Figure 12 | Genomic characterization of PC9-VU discrete sublines. 
(A) Mean-centered mutation count by chromosome for five (of the seven) sublines. Average coefficient of variation 
across all chromosomes is noted. (B)  Proportions of unique mutations in each subline. (C) Numbers of IMPACT 
mutations unique to each subline, stratified by IMPACT classification (low, moderate, high). Percentage of unique 
IMPACT mutations relative to the total number of unique mutations in each subline is denoted above each bar. 

 

Mutational significance analysis (using the same genomic signature as for the cell line versions; 

see FIG. 8A) shows similar numbers of total and impactful mutations in the sublines (FIG. 13A), while DS8 

has the largest number of these mutations and most diverse types. This is true for the cancer-associated 

genes as well (FIG. 13B). The sublines also exhibit a nearly identical mutation class distribution (FIG. 13C).  
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Figure 13 | Mutational significance of PC9 discrete sublines.  
(A) Quantification of mutational differences between sublines based on gene signature in FIG. 8A. Total numbers of 
mutations (stratified by mutation type) across genes and cell line versions are shown as bar plots to the right and 
above of the heatmap, respectively. (B) Mutational differences between PC9-VU sublines for the cancer gene 
signature in FIG. 8B. (C) Mutation class pie charts. SNV: single nucleotide variant; indel: combination of insertion and 
deletion. 

 

Interestingly, CNVs in the sublines show a slightly more nuanced result (FIG. 14): DS8 has major 

amplifications (chromosomes 6, 17, and 22) and deletions (chromosomes 7, 13, and 22) and some minor 

alterations not shared with other sublines; DS3 is missing a deletion present in chromosome 7 in DS6, DS7, 

and DS9 and also has a unique deletion in chromosome 9; and minor additional sharing is seen among 
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other sublines, such as DS8 and DS9 (deletions in chromosomes 13 and 16). On the whole, DS8 has the 

clearest cases of unique copy number variations in the sublines, while the other sublines remain largely 

similar except for a few instances. Taken together, with the exception of DS8, these genomic data (FIGS. 

12-14) illustrate that there is significantly less genomic variability among the PC9-VU sublines than among 

the cell line versions. It is also important to note that DS8 does not harbor the same resistance conferring 

mutation (EGFR-T790M) that PC9-BR1 does (FIGS. 8B and 13B), indicating a different (unknown) resistance 

mechanism is at play (see Chapter V: Discussion). 

 

 

Figure 14 | Copy number Variant (CNV) detection for discrete sublines. 
Red corresponds to amplifications, blue to deletions. 

 

Comparing single-cell transcriptomes (FIG. 15A), we see distinctions among the sublines but to a 

much lesser extent than among the cell line versions, except for DS8, which, as in the genomics data, is a 

clear exception (FIG. 15B-C). Pairwise distances between centroids show virtually no separation between 
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DS7 and DS9, small but clear separations between DS3, DS6, and DS7/DS9, and a large separation between 

DS8 and the other sublines (FIG. 15D). We also see that DS3, DS6, DS7, and DS9 substantially overlap with 

the PC9-VU region of the UMAP space (see blue contour in FIG. 14A). These observations are largely 

consistent with the clonal drug responses observed in the cFP assays (i.e., the DS7 and DS9 distributions 

are almost identical, the DS3 and DS6 distributions are distinct from each other and from DS7/DS9, the 

DS8 distribution stands apart from the others in being bimodal with a large shoulder extending beyond 

the upper range of the PC9-VU parental distribution, and the DS3, DS6, DS7, and DS9 distributions overlap 

substantially with the PC9-VU distribution; see FIG. 6B). However, despite the clear separations of the 

centroids, we do see slight overlaps at the boundaries between the transcriptomic features for DS3 and 

DS7/DS9 and between DS6 and DS7/DS9, suggesting the possibility of phenotypic state transitions 

occurring between these states. We also see a very small number of DS9 cells (<2%) that overlap with 

DS8, which could have many potential explanations but is likely an outlier (see Chapter V: Discussion).  
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Figure 15 | Transcriptomic characterizations of PC9-VU discrete sublines. 
(A) Uniform Manifold Approximation and Projection (UMAP) visualization of single-cell transcriptomes for sublines. 
For comparison purposes, the UMAP space is defined over all eight PC9 samples (including cell line versions and PC9-
VU sublines; see Methods). (B) Clustering of sublines. Number of clusters (two) was defined based on majority rule 
from a consensus of 30 indices. Ward’s minimum variance method was used. (C) Quantification of cluster fraction 
by subline. (D) Distance between subline centroids in UMAP space. Centroids were calculated as the mean across 
each UMAP axis using a Euclidian distance metric. 

 

Statistical comparisons between GO terms associated with high consequence genetic variants and 

DEGs support a connection between genomics and transcriptomics in DS8 but not in the other sublines 

(FIG. 16). Although DS3, DS6, and DS7 have a few terms significantly enriched and shared between data 

modalities, there were not enough data points to compute a correlation. DS9 is an interesting case, where 

many terms were similar between the modalities but showed a negative correlation (more so than PC9-

VU; cf. FIG. 11). Taken together, these results suggest a strong connection between genomics and 

transcriptomics in DS8, a weaker but possibly not insignificant connection in DS9, and likely no connection 

in the other sublines. 
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Figure 16 | Gene Ontology comparison analysis of unique IMPACT mutations and differentially expressed genes 
(DEGs) for discrete sublines. 
A correlation coefficient (Pearson) was calculated for each sample. Terms with a value greater than two on either 
axis are highlighted. 

 

Joint analysis of PC9 cell line family members 

To validate these results, we perform a series of comparisons on all PC9 cell line family members 

jointly. Principal component analysis (PCA) on normalized RNA-seq counts (FIG. 17A) is strikingly 

consistent with scRNA-seq UMAP projections (FIGS. 10A and 15A). PC9-VU and its derivatives group with 

PC9-BR1 (upper left), while PC9-MGH (right) and DS8 (bottom left) group apart from other PC9 family 
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members. Hierarchical clustering of gene signatures shows a similar breakdown (FIG. 17B). PC9-VU falls 

in the same region as its derivatives, as expected. PCA on WES-derived SNPs (FIG. 17C) shows most PC9-

VU sublines (DS3, DS6, DS7, DS9) and PC9-BR1 have similar genotypes (top right), while DS8 is distinct 

(bottom right), as seen in the transcriptomics datasets. Interestingly, PC9-VU and PC9-MGH reside in a 

similar region of the PCA space (left). An identity-by-state analysis on the same SNPs (FIG. 17D) shows a 

similar breakdown. Since PC9-MGH seems to differ from PC9-VU predominately by CNVs but shares a 

common progenitor, this result is consistent with earlier explanations. As shown in prior analyses, DS8 has 

a distinct genotype that is independent of other PC9 family members, signifying a distinct genetic 

mechanism of resistance. A surprising result is PC9-BR1 grouping with other sublines in both modalities, 

considering it differs so greatly from other cell line versions in earlier analyses (FIGS. 7-10). But since this 

analysis does not consider biological impact, it may indicate the importance of phenotypic context to 

mutations, as the single EGFRT790M mutation has been shown to confer resistance in PC9-BR1130.  

 



 38 

 

Figure 17 | Dimensionality reductions and clustering of bulk sequencing datasets. 
(A) Principal Component Analysis (PCA) of single-replicate normalized RNA-seq count data. (B) Hierarchical clustering 
of RNAseq normalized count data. Clustering was performed on the pairwise Euclidian distance matrix created from 
the relative log transformed gene counts using the Ward’s minimum variance method. (C) PCA of single nucleotide 
polymorphisms (SNP) genotypes. Using a subset of SNPs in approximate linkage equilibrium, a genetic covariance 
matrix was calculated. The covariance matrix was converted to a correlation matrix to achieve appropriate scaling 
and PCA was run to identify SNP eigenvectors (loadings of the principal components). PC9 cell line family members 
are plotted along the principal component axes. (B) Hierarchical clustering of PC9 genotypes. Using an identity-by-
state analysis, a matrix of genome-wide pairwise identities was calculated. Hierarchical clustering was performed on 
these identities to determine sample relatedness.  

 

 To further supplement GO correlation analyses, we modified a semantic similarity metric145 to 

compare the two sets of GO terms. For each version, we calculate pairwise similarity scores between GO 
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terms for genetic variants and DEGs and obtain an aggregate score between 0 and 1, with 1 indicating 

that differentially expressed genes at the transcriptomic level can be perfectly explained by variations at 

the genomic level, and vice versa (see Methods). Relative to a randomized baseline, we see elevated 

semantic similarity scores for PC9-BR1 in the “Biological Process” (BP) GO category and for PC9-VU in the 

“Molecular Function” (MF) category (FIG. 18). We also see significant semantic similarity scores for all 

three versions relative to baseline in the “Cellular Component” (CC) category. For the sublines, we see 

mixed results (FIG. 18): DS8 has high scores for both BP and MF GO categories but not for CC; DS3, DS6, 

and DS7 have low scores for BP and MF; DS6 also has a low score for CC but DS3 and DS7 have high scores; 

and DS9 has a high score for the BP category but low scores for the others. Note that based on the number 

of GO terms in each category (BP: 12,272, MF: 4,165, CC: 1,740), we consider BP to be the most predictive 

of the three, followed by MF and then CC (see Methods). Taken together, these results (FIGS. 11, 16, and 

18) indicate a strong connection between mutations in the genomes of the cell line versions and 

expression at the transcriptomic level. Moreover, we use these results as benchmarks for ascertaining 

whether transcriptomic differences seen among single cell-derived sublines are rooted in genetic 

differences (like in the cell line versions) or are more likely non-genetic in origin. In most of the sublines, 

their transcriptomic states cannot be explained by variations seen at the genomic level, indicating that 

the transcriptomic differences are epigenetic in origin, not rooted in genetics. An important exception is 

DS8, which exhibits high scores (as well as a positive GO term correlation; cf. FIG. 16). 
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Figure 18 | GO semantic similarity scores for each GO ontology type. 
Significantly enriched GO terms for each data modality pair (IMPACT mutations and differentially expressed genes) 
were compared for each cell line family member for each GO type (“Biological Process” – BP, “Molecular Function” 
– MF, “Cellular Component” – CC). The top 1000 similarity scores within each pair were compiled into a distribution 
to calculate a median (white circle) and 95% confidence interval (error bars). Scores are plotted relative to a baseline, 
defined as the median + one standard deviation of simulated distributions (dashed lines). Simulated score 
distributions were calculated based on random gene lists of identical lengths to the experimental gene lists (see 
Methods). 

 

Furthermore, to address the potential biological interpretability of differences across PC9 cell line 

family members, we score each cell based on 50 hallmark gene signatures of well-defined biological states 

(see Methods). Many of these processes distinguish cell line versions, such as IL2/STAT5 and KRAS 

signaling being overexpressed in PC9-MGH, while PI3K/AKT/mTOR signaling has more expression in PC9-

VU and PC9-BR1. Interestingly, PC9-BR1 has less expression in Hedgehog signaling than PC9-MGH and 
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PC9-VU, making it an interesting potential side effect of the increased mutational burden. For the sublines, 

DS8 has a larger hallmark gene signature score than the other sublines (and cell line versions) for DNA 

repair, unfolded protein response, and androgen response, while it has a slightly lower score in the p53 

pathway. There are no clear cases where other sublines had a significantly larger hallmark gene signature 

score, with the exception of distribution extremes. Table 1 summarizes the findings of the biological 

interpretation analysis. 

 

Table 1 | VISION transcriptome functional interpretation analysis.  
Single-cell gene expression matrix and MSigDB hallmark gene signatures were input to create a signature score for 
each cell (see Methods). Scores were totaled for each population across each hallmark and plotted as a density 
distribution. All 50 hallmark signatures were sampled. Note that “KRAS signaling” and “UV response” had hallmark 
signatures for both up- and down-regulated. We condensed these four signatures into two, leaving 48 hallmark 
signatures total. 

PC9-MGH PC9-BR1 DS8 PC9-VU (no DS8) 

↑ Angiogenesis ↑ Cholesterol Homeostasis ↑ Allograft Rejection ↑ Hedgehog Signaling 

↑ Apical Surface ↓ Hedgehog Signaling ↑ Androgen Response ↓ IL2/STAT5 Signaling 

↑ Bile Acid Metabolism ↓ Xenobiotic Metabolism ↑ Complement ↓ WNT/β-catenin Signaling 

↑ IL2/STAT5 Signaling  ↑ DNA Repair  

↑ KRAS Signaling  ↑ Interferon α/γ Response  

↑ WNT/β-catenin Signaling  ↑ Unfolded Protein Response  

↓ Allograft Rejection  ↓ P53 Pathway  

↓ Coagulation    

↓ Interferon α/γ Response    

↓ Pancreas β Cells    

↓ PI3K/AKT/MTOR Signaling    
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Stochastic birth-death simulations suggest most PC9-VU sublines are epigenetically monoclonal, while 

one is polyclonal 

The PC9-VU sublines exhibit variability in drug response, not just at the population level (FIG. 6A) 

but also at the sub-clonal level, as evidenced by variable colony growth in cFP assays (FIG. 19A) and 

quantified as distributions of DIP rates (FIG. 6B). To explore the origin of this subclonal variability, we 

perform stochastic simulations137 on a simple birth-death model of cell proliferation to ascertain whether 

intrinsic noise in division/death decisions alone is sufficient to explain experimental observations (see 

Methods). We perform a battery of in silico cFP assays, where untreated single cells grow into colonies of 

variable size at a fixed proliferation rate (division rate constant – death rate constant) and are then treated 

with drug, modeled by reducing the proliferation rate. Colony sizes are tracked over time (FIG. 19B) and 

DIP rate distributions are calculated and statistically compared against experimental distributions (FIG. 

19C). We repeat this procedure for a wide range of division and death rate constants to identify ranges of 

parameter values that can statistically reproduce experimental DIP rate distributions (p>0.05, 

bootstrapped Anderson-Darling test). For all sublines (except DS8, see next paragraph), we find ranges of 

parameter values that are physiologically plausible (FIG. 20). This is strong evidence that these sublines 

(DS1, DS3, DS4, DS6, DS7, DS9) are monoclonal, i.e., experimental DIP rate distributions can be reproduced 

with a birth-death model containing a single cell state (one division and one death rate constant) 

simulated stochastically.  
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Figure 19 | Comparison of experimental and simulated cFP assays for PC9-VU sublines. 
(A) Experimental clonal Fractional Proliferation (cFP) time courses for six PC9-VU sublines (DS1, DS3, DS4, DS6, DS7, 
DS9) in response to 3µM erlotinib (same data used to generate DIP rate distributions in FIG. 6B). Each trace 
corresponds to a single colony, normalized to 72h post-drug treatment. Only colonies with cell counts greater than 
50 at the time of treatment were kept. n represents the number of colony traces for each subline. (B) Simulated cFP 
time courses generated using division and death rate constants that closely reproduce the experimental time courses 
in A. Trajectories are normalized to the time at which the simulated drug treatment was initiated and simulated cell 
counts are plotted only at experimental time points. Although the same number of simulations were initiated as the 
number of colonies (n) in the corresponding experiment (see panel A), only simulated colonies with cell counts > 50 
at the time of simulated drug treatment are shown. (C) Comparison of experimental and simulated DIP rate 
distributions calculated from time courses in A and B. Distributions are compared statistically using the Anderson-
Darling (AD) test (see Methods). Bootstrapped p-values are shown (mean and standard deviation). Dashed black line 
signifies zero DIP rate, for visual orientation.  
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Figure 20 | Parameter scan of division and death rate constants for six PC9-VU sublines. 
For each pair of rate constants, we ran model simulations (same number as corresponding subline), calculated DIP 
rates and compiled them into a distribution, and then statistically compared against the corresponding experimental 
DIP rate distribution using the AD test (bootstrapped). All p<0.05 are colored white, indicating lack of statistical 
correspondence to experiment.  

 

In contrast, DS8 is an exception once again, displaying greater variability than the other sublines 

in cFP colony growth rates (FIG. 21A) and a bimodal DIP rate distribution (FIG. 6B). We perform stochastic 

simulations on an expanded version of the birth-death model containing two cell states with distinct 

division and death rate constants (see Methods). As with the other sublines, we perform in silico cFP 

assays (FIG. 21B) and compare the simulated DIP rate distributions against the bimodal distribution seen 

experimentally (FIG. 21C). We again find physiologically feasible ranges of rate parameter values that can 

statistically reproduce the experimental result (FIG. 21D). Thus, these results provide strong evidence that 

DS8 harbors at least two distinct cell states. It is important to note that the mathematical model is agnostic 
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as to whether these two states are genetically or epigenetically distinct; it simply states that they have 

distinct division and death rate constants. 

 

Figure 21 | Comparison of experimental and simulated cFP assays for DS8. 
(A) Same as FIG. 20A but for subline DS8. (B) Same as FIG. 20B but for DS8 using a two-state model. (C) Same as FIG. 
20C but for DS8. (H) Same as FIG. 21 but for DS8 using a four-dimensional (two division-death rate constant pairs) 
parameter scan and projected into two dimensions. ‘´’ denotes parameter values used to generate the simulated 
DIP rate distribution in C. 
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Methods 

Cell culture and reagents 

PC9-VU and PC9-BR1 were obtained as a gift from Dr. William Pao (Roche, formerly of Vanderbilt 

University Medical Center). PC9-MGH was obtained as a gift from Dr. Jeffrey Settleman (Massachusetts 

General Hospital). PC9-VU, PC9-MGH, and PC9-BR1 were individually fluorescently labeled with histone 

H2B conjugated to monomeric red fluorescent protein (H2BmRFP), as previously described36,110,117,118,146. 

The PC9 cell line versions and derivatives were cultured in Roswell Park Memorial Institute (RPMI) 1640 

Medium (Corning) with 10% Fetal Bovine Serum (Gibco). Cells were incubated at 37°C, 5% CO2, and 

passaged twice a week using TrpLE (Gibco). Cell lines and sublines were tested for mycoplasma 

contamination using the MycoAlertTM mycoplasma detection kit (Lonza), according to manufacturer’s 

instructions, and confirmed to be mycoplasma-free. Cell line identity was confirmed using mutational 

signatures in whole exome sequencing. Erlotinib was obtained from Selleck Chemicals (Houston, TX) and 

solubilized in dimethyl sulfoxide (DMSO) at a stock concentration of 10mM and stored at -20°C. Cell lines 

were originally stored at -80°C, then moved into liquid nitrogen. 

 

Derivation of single-cell sublines 

The PC9-VU sublines were generated by limiting dilution of the parental cell line in 96-well plates. 

Wells with single cells were expanded for multiple weeks until large enough to be saved as frozen cell 

stocks. A single stock of each subline was brought back into culture, passaged for two weeks, and used for 

drug-response experiments. After 3-4 weeks of continued passaging, sublines were used for whole exome 

sequencing, bulk RNA sequencing, and single-cell RNA sequencing experiments. Since sublines were 

isolated from PC9-VU, they retained the same H2BmRFP nuclear label as cell line versions.  

Population-level DIP rate assay 
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Cells were seeded in black, clear-bottom 96-well plates (Falcon) at a density of 2500 cells per well 

with six replicates for each sample. Plates were incubated at 37°C and 5% CO2. After cell seeding, drug 

was added the following morning and changed every three days until the end of the experiment or 

confluency. Untreated samples were allowed to grow in DMSO-containing media until confluency, with 

media changes every three days. Plates were imaged using automated fluorescence microscopy 

(Cellavista Instrument, Synentec). Twenty-five non-overlapping fluorescent images (20X objective, 5x5 

montage) were taken twice daily for a total of 500 hours or until confluency. Cellavista image 

segmentation software (Synentec) was utilized to calculate nuclear count (i.e., cell count) per well at each 

time point (Source = Cy3, Dichro = Cy3, Filter = Texas Red, Emission Time = 800µs, Gain = 20x, Quality = 

High, Binning = 2x2). Cell nucleus count across wells was used to calculate mean and 95% confidence 

intervals and normalized to time of drug treatment.  

 

Clonal fractional proliferation assay 

We modified the original cFP assay, which tracks multiple colonies in a single well of a plate127. 

Instead, here we flow-sorted single cells into a black, clear-bottom 384-well plate (Greiner) using 

fluorescence-activated cell sorting (FACS Aria III, RFP+). Plates were incubated at 37°C, 5% CO2 and cells 

were allowed to grow into small colonies over eight days in complete media (no media change). Drug was 

then added and changed every three days. Plates were imaged using the Cellavista Instrument (Synentec). 

Nine non-overlapping fluorescent images (3x3 montage of the whole well at 10X magnification) were 

taken once daily for a total of seven days. Cellavista image segmentation software (Synentec) was utilized 

to calculate nuclear count (i.e., cell count) per well at each time point (Source = Cy3, Dichro = Cy3, Filter = 

Texas Red, Emission Time = 800µs, Gain = 20x, Quality = High, Binning = 2x2). Depending on the number 

of wells that passed quality control thresholding (at least 50 cells per colony at the time of treatment), 

160-280 replicates were included for each sample. DIP rates were calculated from 48h post-treatment to 
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the end of the experiment using the lm function in R. DIP rates for each sample were combined and 

plotted as a kernel density estimate. Mood’s median test was performed to determine statistical 

difference between subline DIP rate distributions using the RVAideMemoire R package. 

 

DNA bulk whole exome sequencing 

Data acquisition: Genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen), according 

to the manufacturer’s protocol. Libraries were prepared using 150 ng of genomic DNA by first shearing 

the samples to a target insert size of 200 bp. Illumina's TruSeq Exome kit (Illumina, Cat: 20020615) was 

utilized per manufacturer’s instructions. The samples were then captured using the IDT xGen® Exome 

Research Panel v1.0 (IDT, Cat: 1056115). The resulting libraries were quantified using a Qubit fluorometer 

(ThermoFisher), Bioanalyzer 2100 (Agilent) for library profile assessment, and qPCR (Kapa Biosciences, 

Cat: KK4622) to validate ligated material, according to the manufacturer’s instructions. The libraries were 

sequenced using the NovaSeq 6000 with 150 bp paired end reads. RTA (version 2.4.11; Illumina) was used 

for base calling and sequence-specific quality control analysis was completed using MultiQC v1.7. Reads 

were aligned to the University of California, Santa Cruz (UCSC) hg38 reference genome using BWA-MEM147 

(version 0.7.17) with default parameters. 

 

Genomic mutational analysis: Mutation analysis for single nucleotide polymorphisms (SNPs) and 

insertion/deletions (InDels) was performed using an in-house variant calling pipeline based on the 

Genome Analysis Toolkit (GATK, Broad Institute) recommendations. Duplicate reads were marked and 

replaced using PICARD (Broad Institute). Base recalibration and variant calling were performed using GATK 

version 3.8 (Broad Institute). Variants were selected and filtered based on gold standard SNPs and InDels, 

as well as a hard filtration according to GATK recommendations (SNPs: QD<2, QUAL<30, SOR>3, FS>60, 

MQ<40, MQRankSum<-12.5, ReadPosRankSum<-8; InDels: QD<2, QUAL<30, FS>200, ReadPosRankSum<-
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20). Total variants were counted using VCFtools148 (version 0.1.15). Sequencing metrics were calculated 

using vcfR149 (version 1.8.0). These metrics included read depth, mapping quality, and a Phred quality 

score150. Variants were annotated by Variant Effect Predictor82 (VEP; Ensembl Genome Browser version 

95, available at ensembl.org) with multiple indicators, including chromosome name, gene symbol, 

mutation class, mutation type, and IMPACT rating. Mutation class corresponds to whether a variant is a 

substitution (SNV, sequence alteration) or Indel (insertion, deletion, or both - also referred to as indel). 

Type corresponds to the result of a variant on the amino acid sequence: synonymous (no effect), missense 

(codon change), nonsense (codon stop or start), splice site (boundary of intron and exon), or a shift in 

frame (inframe or frameshift). IMPACT rating is a subjective classification of the severity of variant 

consequence, as defined by Ensembl and based on genetic variant annotation and predicted effects (e.g., 

amino acid change, protein structure modification). The IMPACT rating categories are: modifier (no 

evidence of impact), low (unlikely to have disruptive impact), moderate (non-disruptive but might have 

effect), and high (assumed to have disruptive impact). Modifier variants were not plotted but constituted 

a majority of variants in all samples. Variants categorized into low, moderate, or high are referred to as 

IMPACT mutations in the text. The variant count distribution was organized as a mean-centered mutation 

count per chromosome for samples within each comparison set (cell line versions, sublines). Variant 

overlap analysis was conducted using VCFtools and visualized using the UpSet (version 1.4.0) R package. 

Variants unique to each sample were plotted as proportions of the total mutations in that sample. The 

SNPRelate R package (version 1.18.1) was used to project sample genotypes into PCA space and cluster 

based on similarity. 

 

Automatic generation of a genetic mutational signature: Unique cell line version mutations were input 

into dNdScv151 to generate a mutational signature that could define the genetic heterogeneity within the 

PC9 cell line family (all cell line versions and sublines). In this analysis, genes are first annotated by type. 
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dNdScv then uses a maximum-likelihood model to detect genes under positive selection (i.e., potential 

driver mutations). For each gene, a variety of models are utilized to identify genes that have substantially 

more nonsynonymous mutations than expected in each of the nonsynonymous mutation types, as 

compared to synonymous mutational load. These metrics are combined together to calculate a global p-

value (see original publication for details). We use this approach, with a maximum number of mutations 

per gene per sample = 5 (tool recommendation; limits a hyper-mutator phenotype), to determine genes 

with a global p-value <0.05 in all eight members of the PC9 cell line family. The resulting gene signature 

sets the baseline for the genetic heterogeneity for all cell populations (Table 2). We visualized the 

mutation data as a heatmap of these significant genes and cell line versions or sublines, colored by 

annotated mutation type (number of variants in each gene-population pair are not annotated in heatmap 

but are shown in adjacent bar charts for number of variants per gene and sample). 
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Table 2 | List of genes associated with mutation heatmaps. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index Gene Index Gene Index  Gene 
1 BHLHA15 35 IL32 69 AC092647.5 
2 NCR2 36 SOX21 70 ARID1B 
3 TMEM158 37 GDF11 71 CNPY3 
4 JAGN1 38 MECP2 72 FOXD1 
5 DLX4 39 VKORC1L1 73 TPPP 
6 RAD51B 40 SMAP1 74 PRDM8 
7 FAU 41 XBP1 75 OLIG1 
8 AGAP3 42 RAPH1 76 DBNDD2 
9 KRTAP10-6 43 MMP17 77 MYL1 
10 CGREF1 44 TERF1 78 LRP1B 
11 RPS15 45 POU3F2 79 CCDC74A 
12 TUBB8P12 46 BCHE 80 ZNF257 
13 HCRT 47 POU3F3 81 YY1 
14 SKA3 48 ZFP36L2 82 FOXN3 
15 OR8G1 49 ZNF787 83 PCDH9 
16 GPR37L1 50 BCL6B 84 MMP1 
17 BHLHE22 51 TDG 85 RRP8 
18 RRAGD 52 IGSF21 86 TCHH 
19 VEGFC 53 VCX3B 87 PRAMEF6 
20 NAP1L5 54 OR2A1   
21 SOX10 55 SLC35F1   
22 IGFBP2 56 CADM4   
23 ADRA2B 57 NPIPB3   
24 SOX11 58 FAM155A   
25 FAM98C 59 PHLDA1   
26 CEBPA 60 RAB21   
27 PHOSPHO1 61 OR2T35   
28 PHGR1 62 FOXO6   
29 BRI3BP 63 POU3F1   
30 CARNMT1 64 FMR1NB   
31 TAF11L2 65 ASTN2   
32 EPB41L1 66 SNX31   
33 CAPNS1 67 MNX1   
34 ACSM2A 68 ZNF713   
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Literature-curated, cancer-associated mutational signature: A cancer-associated gene list was established 

to supplement the predicted genetic heterogeneity signature from dNdScv. The gene list was created from 

the NIH Genetics Home Reference (GHR) key lung cancer genes (ghr.nlm.nih.gov/condition/lung-

cancer#genes) and two additional publications of key mutations in lung cancer12,140. Associated heatmaps 

were generated of this gene list for cell line versions and sublines, colored by annotated mutation type. 

 

RNA single-cell transcriptome sequencing 

Data acquisition: scRNA-seq libraries were prepared using the 10X Genomics gene expression kit (version 

2, 3’ counting152) and cell hashing153. Cells were prepared according to recommendations from the cell 

hashing protocol on the CITE-seq website (cite-seq.com/protocol). After cell preparation, 1 ng of eight 

different cell hashing antibodies (TotalSeq-A025(1-8) anti-human Hashtag, Biolegend) were used to label 

each of the eight samples. Hashed single-cell samples were combined in approximately similar 

proportions and ‘super-loaded’ (aiming for ~20,000 cells, ~15,400 cells were obtained) onto the 

Chromium instrument. Cells were encapsulated according to manufacturer guidelines. Single-cell mRNA 

expression libraries were prepared according to manufacturer instructions. The leftover eluent of the 

mRNA expression library, containing the hashtag oligonucleotides (HTOs), was utilized to further size 

select the HTO library. The size-selected HTO library was PCR amplified to obtain higher quality reads. 

Libraries were cleaned using SPRI beads (Beckman Coulter) and quantified using a Bioanalyzer 2100 

(Agilent). The libraries were sequenced using the NovaSeq 6000 with 150 bp paired-end reads targeting 

50M reads per hashed sample for the mRNA library and a spike-in fraction for the HTO library. RTA 

(version 2.4.11; Illumina) was used for base calling and MultiQC (version 1.7) for quality control. Gene 

counting, including alignment, filtering, barcode counting, and unique molecular identifier (UMI) counting 

was performed using the count function in the 10X Genomics software Cell Ranger (version 3.0.2) with 

the GRCh38 (hg38) reference transcriptome. We utilized CITE-seq-Count (github.com/Hoohm/CITE-seq-
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Count) to count HTOs from the HTO library. We then used the Demux function in the R package Seurat154 

(satijalab.org/Seurat, version 3.2.2) to demultiplex the HTO and mRNA libraries and pair cells to their 

associated hashtag. Data was integrated into a count matrix with genes and cells, with HTO identity as a 

metadata tag. 

 

Data analysis: After creating the demultiplexed, single-cell gene expression matrix, we removed cell 

multiplets using both cell hashtags and automated doublet detection (DoubletFinder version 3 with 

default parameters). Additionally, poor quality cells were removed based on a minimum cutoff of features 

(number of genes detected in each cell = 3000) and count (number of RNA molecules detected within 

each cell = 15000). These numbers were chosen subjectively but with respect to the overall sequencing 

depth in order to remove droplets with ambient RNA. Cells below these thresholds fell in isolated regions 

of the UMAP space and had a large degree of overlap with all other samples. Feature selection was 

performed according to Seurat guidelines (0.1 < average gene expression < 8, log variance-to-mean ratio 

> 1; 574 genes met criteria). A cell cycle score was calculated on the expression matrix (default 

implementation; satijalab.org/seurat/v3.1/cell_cycle_vignette.html), which was used to classify the cell 

cycle phase. Data were visualized using the Uniform Manifold Approximation and Projection (UMAP) 

dimensionality reduction algorithm, as implemented in the Seurat154 R package. To facilitate comparisons 

across cell line versions and sublines, we performed the UMAP projections in the space of all eight cell 

line versions and PC9-VU sublines (PC9-VU, PC9-MGH, PC9-BR1, DS3, DS6, DS7, DS8, DS9). To quantify 

overlap of cells between transcriptomic features, we performed k-means clustering  of the cell line 

versions (k=3) and the sublines (k=2) using the NBClust package, which also identified the optimal number 

of clusters based on 30 different methods. Distances between cluster centroids were calculated in the 

common UMAP space using the dist function (Euclidian) in R. Differential expression analysis was 

performed between a single sample (cell line version or subline) and the rest of the PC9 cell line family 
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members using the Wilcoxon rank sum test (as implemented in the FindMarkers function in Seurat, 

default settings). Differentially expressed genes (DEGs, adjusted-p < 0.05) were used for downstream 

analyses (see “Gene Ontology analysis” below). 

 

Copy number variation analysis 

Copy number variants were inferred from scRNA-seq data using InferCNV (Trinity CTAT Project, 

github.com/broadinstitute/inferCNV). The single-cell transcriptome count matrix (see “RNA single-cell 

transcriptome sequencing: Data acquisition” above), an annotation file (pairing each cell to its 

corresponding PC9 cell line family member), and a gene order file (derived from the GRCh38/hg38 gtf file) 

were used to create an inferCNV object. Separate objects were created for cell line versions (no reference 

group; an average of the three versions was used, default setting) and sublines (PC9-VU reference group). 

The inferCNV analysis was run with a cutoff of 0.1 (default for droplet-based experimental methods). 

Clustering was performed based on annotation file groups (i.e., cell line versions, sublines). Analysis 

settings were to denoise the dataset and use a hidden Markov model for CNV predictions. Heatmaps of 

relative expression values (to the reference group) were output by chromosome for all cells in the analysis. 

Red corresponds to increased expression (amplification) and blue to decreased expression (deletion). 

 

scRNA-seq functional interpretation analysis 

The single-cell transcriptome count matrix (see “RNA single-cell transcriptome sequencing: Data 

acquisition” above) was scaled by multiplying counts by the median RNA molecules across all cells and 

dividing that number by the number of RNA molecules in each cell (as recommended by VISION155 

developers). Gene signature files were obtained from the molecular signatures database (MSigDB). 

Hallmark gene sets (50 in total) were downloaded from MSigDB (gsea-

msigdb.org/gsea/msigdb/genesets.jsp?collection=H). Both the scaled counts matrix and each of the 
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hallmark gene sets were input into VISION155 to identify gene signature scores for each cell-signature pair. 

Four hallmark gene sets (KRAS_SIGNALING_UP, KRAS_SIGNALING_DOWN, UV_RESPONSE_UP, 

UV_RESPONSE_DOWN) were condensed into two (KRAS_SIGNALING, UV_RESPONSE) by VISION to leave 

48 total gene signatures. Scores were compiled into a distribution and plotted by PC9 cell line family 

member for each gene set. 

 

RNA bulk transcriptome sequencing 

Data acquisition: Total RNA was extracted using a Trizole extraction (ThermoFisher), according to the 

manufacturer’s protocol. RNA-seq libraries were prepared using 200 ng of total RNA and the NEBNext 

rRNA Depletion Kit (NEB, Cat: E6310X), per manufacturer’s instructions. The kit employs an RNaseH-based 

method to deplete both cytoplasmic (5S rRNA, 5.8S rRNA, 18S rRNA and 28S rRNA) and mitochondrial 

ribosomal RNA (12S rRNA and 16S rRNA). The mRNA was enriched via poly-A-selection using oligoDT 

beads and then the RNA was thermally fragmented and converted to cDNA. The cDNA was adenylated for 

adaptor ligation and PCR amplified. The resulting libraries were quantified using a Qubit fluorometer 

(ThermoFisher), Bioanalyzer 2100 (Agilent) for library profile assessment, and qPCR (Kapa Biosciences, 

Cat: KK4622) to validate ligated material, according to the manufacturer’s instructions. The libraries were 

sequenced using the NovaSeq 6000 with 150 bp paired-end reads. RTA (version 2.4.11, Illumina) was used 

for base calling and MultiQC (version 1.7) for quality control. Reads were aligned using STAR156 (version 

2.5.2b) with default parameters to the STAR hg38 reference genome. Gene counts were obtained using 

the featureCounts157 package (version 1.6.4) within the Subread package. The gene transfer format (GTF) 

file for the genes analyzed in the scRNA-seq data (provided by 10X Genomics and used in the Cell Ranger 

pipeline, generated from the hg38 reference transcriptome) was used to better facilitate internal 

comparison between scRNA-seq and bulk RNA-seq datasets.  
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Data analysis: RNA-seq data was analyzed using the DESeq2158 R package. Counts were transformed using 

the regularized logarithm (rlog) normalization algorithm. PCA was performed using the prcomp function 

in R and hierarchical clustering using the hclust R function with a Ward’s minimum variance method. Data 

was visualized using the ggplot2 R package. 

 

Gene ontology analysis 

Motivation: It is well known that a mutation in a gene does not always alter the expression level of that 

gene159. Rather, if gene X encodes for a protein that acts as a transcription factor for gene Y, then a 

mutation in X could alter the protein structure such that it affects the expression level of Y. Thus, rather 

than making gene-by-gene comparisons of mutations and expression levels, we compare data modalities 

at the level of gene ontology (GO) terms. 

 

Setup: Genes associated with unique IMPACT mutations (classified as low, moderate, or high IMPACT 

scores; see “DNA bulk whole exome sequencing: Genomic mutational analysis”) were identified for each 

comparison set (i.e., cell line versions or sublines). Additionally, DEGs from the scRNA-seq statistical 

comparisons for each comparison set were determined (see “RNA single-cell transcriptome sequencing: 

Data analysis” above). The two gene lists were independently subjected to a GO enrichment analysis using 

EnrichR160 (version 2.1). Genes were compared to the ontology databases GO Biological Process 2018 (BP), 

GO Molecular Function 2018 (MF), and GO Cellular Component 2018 (CC), which we refer to as GO “type” 

in the text. 

 

Correlation analysis: GO terms significantly enriched in the IMPACT mutations (p < 0.05) and in DEGs (p < 

0.05) were identified and stored independently as separate GO term lists for each PC9 cell line family 

member. For terms shared between the lists, we calculated -log10(p-value) to rank terms based on 
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statistical significance. Spearman correlation was calculated between the significant GO terms using the 

ggpubr R package (version 0.4.0), as long as a minimum of five significant terms were shared between the 

IMPACT and DEG GO term lists. Terms with a -log10(p-value) > 2 for the IMPACT or DEG GO term lists were 

highlighted. Outlier GO terms (-log10(p-value) > 10) were excluded from the analysis (two terms in PC9-

BR1, one in PC9-MGH), in order to not unfairly skew correlation calculations. 

 

Semantic similarity analysis: GO term lists for each PC9 cell line family member were further separated 

into GO types, which created GO term lists unique for each combination of sample (cell line version or 

subline), dataset (IMPACT mutations or DEGs), and GO type (“BP”, “MF”, or “CC”). For each sample, the 

mutation and DEG GO term lists associated with each GO type were compared using the semantic 

similarity metric from Wang et. al.145, as calculated in the GOSemSim package161 (version 2.12.1) using the 

goSim function. This approach compares two individual GO terms using the underlying GO term network 

structure. Pairwise similarities were calculated on the lists of terms to generate similarity matrices for 

each sample. In order to avoid the dismissal of terms near any proposed statistical cutoff and ensure lists 

were of a minimum length, mutation and DEG GO term lists associated with each GO type for each sample 

were chosen randomly based on a modified p-value metric from the GO enrichment analysis. Specifically, 

terms were chosen from each list if a random number (between 0 and 1) was greater than the GO 

enrichment p-value. Semantic similarity distributions had a large skew, biased heavily towards lower 

values, primarily due to the size of the GO type graph network structure and, therefore, the “distance” 

between terms in the graph. To combat this issue, a maximum range of semantic similarity scores were 

chosen for each comparison (similar to but more robust than the “best max average” option provided in 

GOSemSim). The median of the top 1000 scores and a 95% confidence interval were calculated for each 

sample-GO type comparison. Semantic similarity scores were also correlated with the number of genes 

input into the GO enrichment analysis. To address this problem, random gene lists of the same lengths as 
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IMPACT and DEG gene lists were chosen and input into the same process as experiment-derived gene lists 

in order to generate a simulated semantic similarity distribution. Depending on the length of the lists, 

these simulated distributions varied in the both the median and variance. Therefore, instead of comparing 

experimental and simulated distributions, experimental semantic similarity scores were normalized to the 

median + one standard deviation of the simulated score, for each sample. These relative GO semantic 

similarity score distributions are represented in plots. Importantly, the number of GO terms varied across 

GO types (according to GOSemSim; BP: 12,272, MF: 4,165, CC: 1,740). We assume that GO types with 

more terms are more biologically significant, i.e., BP is more predictive than MF, followed by CC.  

 

In silico modeling of clonal fractional proliferation 

Birth-death population growth models. Mathematical models of population growth dynamics were 

constructed using PySB162, a Python-based kinetic modeling and simulation framework. We modeled cell 

proliferation as a simple birth-death process, 

𝐶𝑒𝑙𝑙$ 	
&'(),(+⎯⎯-	𝐶𝑒𝑙𝑙$ + 𝐶𝑒𝑙𝑙$     (1) 

𝐶𝑒𝑙𝑙$ 	
&'/0,(+⎯⎯- 	∅       (2) 

where i is an integer index, kdiv,i and kdth,i are division and death rate constants, respectively, for cell type 

i, and ∅ denotes cell death. Note that there is no state switching included in the model. Models with one 

cell type were used to compare against experimental cFP data for the majority of the PC9-VU sublines 

(DS1, DS3, DS4, DS6, DS7, DS9), while a two-cell-type model was used in one case (DS8).  

 

Stochastic simulations and in silico DIP rate distributions. All model simulations were run using the 

stochastic simulation algorithm137 (SSA), as implemented in BioNetGen163 (invoked from within PySB), to 

capture the effects of random fluctuations in division and death on cell population proliferation. We 
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performed in silico cFP assays, where numerous single cells (run as independent simulations) were grown 

into colonies of variable size over eight days of simulated time using the SSA and fixed rate constants for 

division and death (kdiv = 0.04*ln(2) h-1, kdth = 0.005*ln(2) h-1; Table 3), based on vehicle-control 

proliferation data (FIG. 6A, dashed lines; in the case of two cell types, both types were assumed to grow 

at the same rate outside drug). We ran as many simulations as there were experimental cFP trajectories 

for the PC9-VU subline being compared against. Drug treatment was then modeled by changing the rate 

constants for division and death (for two cell types, each was assumed to proliferate at different rates in 

drug; Table 3) and running for the additional days of simulated time corresponding to each subline 

experiment. Simulated time courses were plotted at the same time points as in the corresponding 

experimental cFP assays for direct comparison. In silico DIP rates were obtained by taking log2 of the total 

cell counts and calculating the slope of a linear fit to the time course from the time of drug addition to the 

end of the simulation using the SciPy linregress function. DIP rates for all in silico colonies were compiled 

into a distribution and compared to the corresponding experimental cFP distribution using the Anderson-

Darling (AD) test. The p-value for each simulation result was bootstrapped based on 100 resamples of the 

experimental distribution. For DS8, a two-state model was used. All aspects of the model were the same, 

except drug treatment was modeled by two sets of division and death rate constants. These simulations 

were constrained by the approximate DIP rate ranges for both DIP rate distribution modes (FIG. 6B). 
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Parameter 

Table 3 | Rate parameters used for monoclonal and polyclonal growth models.  
Ranges are shown in square brackets, units are in hr-1. 

 
 
 DS1 DS3 DS4 DS6 DS7 DS8 DS9 

kdiv,pre-drug 0.04*ln(2) 0.04*ln(2) 0.04*ln(2) 0.04*ln(2) 0.04*ln(2) 0.04*ln(2) 0.04*ln(2) 

kDIP,pre-drug 0.035*ln(2) 0.035*ln(2) 0.035*ln(2) 0.035*ln(2) 0.035*ln(2) 0.035*ln(2) 0.035*ln(2) 

kdiv1,post-drug [0.01, 0.08] [0.01, 0.08] [0.01, 0.08] [0.01, 0.08] [0.01, 0.08] [0.01, 0.08] [0.01, 0.08] 

kDIP1,post-drug [0.0005, 

0.0025] 

[-0.0015, 

0.0005] 

[0.0025, 

0.0045] 

[-0.0005, 

0.0015] 

[0.001, 0.003] [0.0005, 

0.0015] 

[0, 0.002] 

kdiv2,post-drug N/A N/A N/A N/A N/A [0.01, 0.08] N/A 

kDIP2,post-drug N/A N/A N/A N/A N/A [0.0055, 

0.0075] 

N/A 

 

 

Parameter scans. We repeated the simulation procedure above over ranges of physiologically plausible 

division and death rate constant values (Table 3). For each parameter set (either one or two pairs of post-

drug division/death rate constants, depending on subline), Anderson-Darling tests for simulated vs. 

experimental DIP rate distributions were performed. To account for variabilities in individual comparisons, 

only simulations with a mean p-value minus one standard deviation (from the bootstrapped result) were 

kept. Any simulation with p-sdev > 0.05 (i.e., we cannot reject the null hypothesis that the DIP rates are 

drawn from the same distribution) were plotted in a heatmap using the ggplot2 R package. Thus, all 

colored elements in the heatmap represent sets of division/death rate constants that produce DIP rate 

distributions statistically indistinguishable from the experimental distributions obtained from cFP assays. 

Note that the scan for the two-cell-type model (DS8) was performed in four dimensions (two division and 

two death rate constants) but results were plotted in two dimensions for visual simplicity. 

 

Subline 
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Conclusion 

Cancer heterogeneity remains a persistent problem for cancer treatment, and often results in 

tumor drug tolerance or resistance. This chapter uses an in vitro cancer cell line model to attribute various 

sources of tumor heterogeneity to multiple ‘versions’ and single-cell derived sublines of commonly used 

EGFR-mutant cell line PC9. We find that genetic heterogeneity dominates drug response variability across 

cell line versions (PC9-VU, PC9-MGH, PC9-BR1). PC9-BR1 exhibits the canonical EGFRT790M resistance 

mutation, as well as various sequence and copy number variants that make it resistant to EGFRi. PC9-MGH 

varies predominately in CNVs, which translates to a distinct epigenetic state and increased drug 

sensitivity. PC9-VU exhibits mostly epigenetic variability, as seen by various single-cell derived sublines 

with similar genetic states but differential transcriptomic signatures. One subline, DS8,  harbors a distinct 

genetic state, resulting in a separate transcriptomic signature and drug insensitivity. Mathematical 

modeling of subline population dynamics show intrinsic stochastic fluctuations in a single state can explain 

drug response variability, again with the exception of DS8, which requires at least two states. 

 Together, these results advocate for a framework of cancer heterogeneity comprising genetic, 

epigenetic, and stochastic components. Through the lens of this framework, we can explain both the data 

in this chapter, as well as additional studies on cancer heterogeneity. It also offers an alternative to the 

traditional gene-centric view of heterogeneity in the cancer research community. By considering cancer 

heterogeneity as a complex system of interacting levels, one can appreciate the difficulty in treating the 

disease, as well as identify alternative treatment strategies.  
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CHAPTER III 

A Non-Quiescent “Idling” Population State in Drug-Treated, BRAF-Mutant Melanoma2 

 

Introduction 

Targeted therapy is an effective standard of care in BRAF-mutated malignant melanoma. 

However, the duration of tumor remission varies unpredictably among patients, and resistance is almost 

inevitable. Common among these patients is residual disease, the tumor population that remains after 

treatment that often falls under the limit of detection. Residual disease has been hypothesized to be 

comprised of drug-tolerant cells that ‘persist’ after treatment12,21,69, and is considered to be the reservoir 

from which resistant tumors arise. Understanding the nature of these persister cells is likely crucial to the 

eradication of tumors prior to resistance. 

In this chapter, we examine the responses of several BRAF-mutated melanoma cell lines (including 

isogenic clonal sublines) to BRAF inhibitors. We observe complex response dynamics across cell lines, with 

short-term responses (<100 h) varying from cell line to cell line. In the long term, however, we observe 

equilibration of all drug-treated populations into a non-quiescent state characterized by a balanced rate 

of death and division, which we term the “idling” state. Using mathematical modeling, we propose that 

the observed population-level dynamics are the result of cells transitioning between basins of attraction 

within a drug-modified phenotypic landscape, each associated with a DIP rate. The idling population state 

represents a new dynamic equilibrium in which cells are distributed across the landscape such that the 

population achieves zero net growth. By fitting our model to experimental drug-response data, we infer 

the phenotypic landscapes of all considered melanoma cell lines and provide a unifying view of how BRAF-

                                                
2 Adapted with permission from Paudel B.B., Harris L.A., Hayford C.E. et al. A Nonquiescent “Idling” Population 
State in Drug-Treated, BRAF-Mutated Melanoma. Biophysical Journal 6, 114 (2018). 
https://doi.org/10.1016/j/bpj.2018.01.016 
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mutant melanomas respond to BRAF inhibition. We also identify differential drug responses of a clonal 

subline as it diversifies in the absence of drug, eventually adopting a similar response to the parental. We 

hypothesize that the residual disease observed in patients after targeted therapy is composed of a 

significant number of idling cells, and differential short-term dynamics can be attributed to the occupancy 

of phenotypic states. This view provides a theoretical underpinning of cancer drug tolerance and paves 

the way toward therapies based on rational modification of the landscape to favor basins with greater 

drug susceptibility. 

 

Results 

BRAF-mutant melanoma cells enter a drug-tolerant ‘idling’ state upon treatment with BRAFi 

To investigate the effects of BRAF inhibition (BRAFi) on BRAF-mutant melanoma, we subjected 

commonly-used BRAF-mutant melanoma cell line SKMEL5 to small-molecular BRAFi PLX4720 (analogous 

to Vemurafenib) for approximately seven days at a variety of different doses. Cell counts were collected 

multiple times a day over the course of drug treatment and compiled into drug-response trajectories (FIG. 

22A). In all BRAFi dose concentrations, nonlinear dynamics were captured in the response to treatment. 

Short-term BRAFi treatment moderately reduces the DIP rate in a dose-dependent way, followed by a 

further long-term reduction at higher concentrations. At the highest BRAFi concentrations (8-32 uM), cells 

achieve a somewhat stable net-zero DIP rate over long-term BRAFi (FIG. 22B). Importantly, this net-zero 

DIP rate is not due to dish confluence (FIG. 22C) or quiescence (FIG. 22D), as cells continue to divide and 

die throughout prolonged BRAFi without further expanding. For these reasons, we termed these cells 

‘idling,’ as they continue to die and divide without expanding, much like a car engine continuing to turn 

over but not moving while parked.  
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Figure 22 | BRAFi-Induced responses of BRAF-mutant melanoma cell populations. 
(A) Population growth curves (log2 normalized) for SKMEL5 parental cells treated with varying concentrations of 
BRAFi. (B) DIP rate-based dose-response curve (C) (Left) Response dynamics of drug- (8µM PLX4720) and control-
treated (DMSO) cells. (Right) Hoechst-stained (blue) and FUCCI (cell cycle indicator; green) images of drug- and 
control-treated cells. The idling state is not due to confluence in a cell culture dish. (D) Percentage of FUCCI-negative 
cells for SKMEL5 cells post initial treatment (168-310h) with DMSO or drug. Drug-treated idling cells are still dividing, 
but at approximately half the rate of control-treated cells. 

 

To expand our understanding of this ‘idling’ behavior across BRAF-mutant melanoma, we treated 

six additional BRAF-mutant melanoma cell lines with the same prolonged BRAFi treatment (FIG. 23A). In 

each case, the cell lines exhibited differential short-term dynamics, but eventually adopted the net-zero 

DIP rate characteristic of idling. Interestingly, when given a drug holiday (~48 hours) and treated again 
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with BRAFi, drug response dynamics are similar to pre-treatment (FIG. 23B). This drug holiday experiment 

suggests that the idling state is reversible.  Taken together, these data suggest BRAF-mutant melanoma 

cell lines enter a drug-tolerant ‘idling’ state with prolonged BRAFi, which is reversible. 

 

 

Figure 23 | BRAF-mutant melanoma cell lines idle under continued BRAFi.  
(A) Population growth curves (log2 normalized; 3+ technical replicates) for six BRAF-mutant melanoma cell lines 
treated with saturating concentrations of BRAFi . (B) Idling cell populations (7 days BRAFi treatment) return to 
normal pre-drug function after a 24h drug holiday: (Top) Drug-naïve and idling cells expand at equal rates in 
control treatment (DMSO); (Bottom) Drug-naïve and idling cells response similarly to BRAFi treatment in BRAFi 
(8µM PLX4720). Mean responses are shown as solid or dashed lines. 95% point-wise confidence intervals are 
shown in shades regions with a loess fit. 

 

Idling occurs for populations of single-cell derived clonal sublines with varying short-term BRAFi 

sensitivities 

To better understand the short-term drug response dynamics in BRAFi, we subjected SKMEL5 to 

a clonal drug response assay. This assay, called clonal fractional proliferation127 (cFP), dissociates a cell 

population into many clones, which are expanded into colonies and treated with drugs. We tracked 84 

single-cell derived colonies using the cFP assay, and quantified their responses in terms of the DIP rate 
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(FIG. 24A). Drug responses varied from clone to clone, encompassing a wide rate of behaviors, from 

expanding to regressing. DIP rates were compiled into a distribution (FIG. 24B) to quantify the variability. 

The resulting distribution for SKMEL5 showed a majority of the cells had negative DIP rates, with a long 

tail. However, a small minority of cells have slightly positive DIP rates. The combination of these drug 

responses seem to lead to the short-term drug response dynamics (FIG. 23), where cells continue to 

expand as cells equilibrate to drug treatment (up to ~60 hours), followed by a regression (~60-90 hours, 

tied to the negatively proliferating cells) and further expansion (~90-125 hours, tied to positive 

proliferating cells).  

 

 

Figure 24 | Short-term drug response dynamics reveal pre-existing clonal heterogeneity.  
(A) Linear fits of population growth curves (log2 normalized) for BRAFi-treated SKMEL5 single-cell derived colonies 
(n=84) obtained using the cFP assay. (B) DIP rate distribution obtained from fits in A. 

 

To better understand the long-term idling behavior, we isolated sixteen sublines from the SKMEL5 

cell line prior to treatment and treated them with the same BRAFi therapy. As in the cFP assay, drug 

responses varied significantly across the clonal sublines upon BRAFi in the short term (<100 hours), with 

some expanding, some regressing, and others maintaining a stationary population size (FIG. 25A). We 

selected three sublines representative of the range of observed short-term responses for further 

experimentation: SC01 (regressing), SC07 (stationary), and SC10 (expanding). Upon prolonged BRAFi 
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exposure (>120 hours), despite their initial divergent responses, both SC01 and SC10 converged to near-

zero DIP rates, where SC07 maintained its initial zero-net-growth response (FIG. 25B). Furthermore, by 

manually tracking the fates of multiple individual cells over time, we determined that all three subline 

populations exhibit death and division while in the idling state (FIG. 25C). Thus, although we cannot 

exclude the possibility that some cells might be quiescent, these results confirm that balanced rates of 

death and division are largely responsible for idling cell populations. This suggests, therefore, that the 

idling population state is a characteristic feature of BRAF-mutated melanoma, which is achieved by all 

clonal sublines in the continued presence of BRAF inhibition regardless of their initial responses. 
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Figure 25 | Single-cell derived clonal sublines idle independent of short-term drug sensitivity.  
(A) Sixteen single cell-derived SKMEL5 clonal sublines treated with 8 μM BRAFi: (Left) Population growth curves 
(log2 normalized) and (right) bar plot of BRAFi-treated DIP rates (calculated as linear fits to the growth curves). (B) 
Population growth curves (log2 normalized) for three clonal sublines treated with BRAFi (6 technical replicates; 
means are points; Lines are loess fits; Shaded regions are 95% point-wise confidence interval). (C) Single-cell 
lifespans versus birth times (time of first mitotic event) for the three sublines in B. Experiment started after 7 days 
in BRAFi and continued an additional 100 h. Cells born during the experiment that reached the end of experiment 
(EOE) without a second mitotic event are plotted on the diagonal.  

 

Mathematical modeling qualitatively reproduces complex, population-level drug-response dynamics 

Due the reversibility of the idling phenotype (FIG. 23B), we assumed that differences in the short-

term clonal variability (FIG. 25A-B) originate from non-genetic processes, i.e., are not based on genetic 

alterations (differs from the traditional “clone” definition164). This result suggested that nongenetic (or 

more specific, epigenetic) heterogeneity was present prior to treatment with BRAFi. The long-term 
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convergence in drug-response phenotypes (FIGS. 22A,C, 23A, 25A-B) to a net-zero DIP rate further 

suggests that cells transition between epigenetic states during treatment.  

To mathematically formalize these observations, we constructed a simple kinetic model of cell 

proliferation that qualitatively captures the treatment responses of all BRAF-mutant melanoma cell lines 

considered here (FIG. 26A). Briefly, we defined three drug-response phenotypes: regressing (R), stationary 

(S), and expanding (E), with negative, zero, and positive DIP rates, respectively (corresponding to example 

clonal sublines in FIG. 25B). A negative DIP rate results from the rate of cell death exceeding the rate of 

cell division, a zero DIP rate is due to balanced rates of cell death and division, and a positive DIP rate is 

due to the rate of cell division exceeding death. We assume that cells in each subpopulation can 

(reversibly) transition into ‘‘adjacent’’ phenotypes, thus changing the proportion of cells in each 

phenotype over time. With cells distributed across the three phenotypes, we expect a period of short-

term, nonlinear dynamics driven by differences in rates of death and division of each subpopulation (i.e., 

clonal competition), followed by transitions of cells between phenotypes, resulting in the population 

achieving idling. Intuitively, the nature of the short-term dynamics and the timescale for transition into 

idling will depend upon the initial proportions of cells in each phenotype and the values of the transition 

rate constants. 
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Figure 26 | Three-state kinetic model qualitatively captures complex drug-response dynamics.  
(A) Graphical representation of three-state model. Arrows represent cell fates (i.e. death, division, and state 
transition), and each state corresponds to different growth dynamics (bottom). (B) Model fitting to a 1:1:1 clonal 
mixture of SKMEL5 clonal sublines (SC01, SC07, SC10). (C) Model fits of BRAFi-induced responses of the SKMEL5 
cell line and its clonal sublines using the rate constants inferred from B. (D) Model fits of BRAFi-induced responses 
of six additional BRAF-mutant melanoma cell lines (same as in FIG. 23A). All plots have experimental (black line, 
grey shading) and simulated (blue shading - one standard deviation envelope for 1000 parameter sets) trajectories. 

 

For the SKMEL5 cell line, we estimated model parameters by fitting the mathematical model to 

experimental data for a 1:1:1 clonal mixture of the SC01, SC07, and SC10 clonal sublines (FIG. 26B) using 

MCMC sampling (see Methods). We then used the estimated transition rate constants to predict drug-

response dynamics for individual SKMEL5 clonal sublines as well as the parental line (allowing the initial 

cell proportions to vary; FIG. 26C). In each case, the model predictions matched closely with the 

experimental time courses, capturing both the short-term dynamics and the transition into the idling 
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population state. Importantly, the model cannot explain the observed dynamics if the transition rate 

constants are set to zero, demonstrating that the nonlinear growth curves cannot simply be explained by 

clonal selection. We also fitted the model to experimental time courses for six additional melanoma cell 

lines (FIG. 26D). In all cases, the model predicted that the idling state is composed of very few cells in the 

R subpopulation but significant proportions of cells in both the S and E subpopulations, ranging between 

20 and 80% (FIG. 27A). This is a significant result because it demonstrates that the idling state is not 

characteristic of an individual cell but is rather an emergent state of the population as a whole. In 

summary, our model, incorporating both clonal competition and phenotypic state transitions, captured 

the key features of the drug-response dynamics of several BRAF-mutated melanoma cell populations, 

which differ significantly in the shape and duration of their short-term response but eventually converge 

into an idling population state. 

 

 

Figure 27 | Model-inferred drug-modified landscapes provide insight into drug-response dynamics.  
(A) Model-predicted proportions of cells in the regressing (Rid), stationary (Sid), and expanding (Eid) subpopulations 
of the idling state. (B) Calculated landscapes for all seven BRAF-mutant melanoma cell lines considered in this 
chapter. U(x) is the quasi-potential energy, and x is the molecular state (sometimes called “reaction coordinate”). 
Landscapes are based on 2000 random samples of MCMC-generated parameter ensembles. Mean basin depths 
and barrier heights are shown as red lines; Blue shaded regions correspond to one standard deviation around the 
mean. 
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Using the values of the transition rate constants from the MCMC-generated parameter 

ensembles, we inferred BRAFi-induced quasi-potential-energy landscapes for all BRAF-mutated 

melanoma cell lines considered (Fig. 27B; see Methods). Within a quasi-potential-energy landscape, each 

subpopulation is associated with a basin of attraction, and transitions between subpopulations amount 

to traversals of energy barriers separating basins89. Our results showed that the basin associated with the 

expanding subpopulation (E) was consistently the shallowest across cell lines (i.e., had the smallest exit 

barrier). This makes intuitive sense, since for the cell population to reach the idling state (zero net growth), 

cells must rapidly evacuate the basin for the E state, otherwise the cell population would continue 

expanding. However, at equilibrium, a proportion of cells remained in this basin, providing a source to 

counterbalance the cell depletion occurring in the regressing subpopulation. The depths of the basins 

associated with the regressing and stationary subpopulations were more variable than the basin for the 

expanding state (across the MCMC-generated parameter ensemble), but they generally showed the basin 

for the S state to be deeper than the basin for the R state. Notable exceptions were the WM164 and 

WM88 cell lines, which exhibited significant short-term cell loss. Again, it makes intuitive sense because 

for this to occur, because the exit barrier from the basins for the R to the S state has to be large enough 

to reduce the flux into the basin for the S state after drug exposure. Overall, the inferred epigenetic 

landscapes are powerful theoretical tools for understanding the basis of the complex population-level 

dynamics observed in BRAF-mutated melanoma cell populations and for reconciling differences in drug 

response seen across cell lines in terms of variations in an epigenetic landscape’s topography. 

 

Subclonal diversification in the absence of drug leads to differential in-drug responses 

In addition to cellular adaptation to drug-induced epigenetic landscape changes, cancer cells have 

also been known to change in the absence of treatment165 . Stochastic, or transcriptional state switching 
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has been known to happen in the absence of drug treatment, and can sometimes have an effect on drug 

sensitivity phenotypes61,98,99. To address this issue, we subjected previously isolated clonal subline SC01 

to prolonged cell passaging in the absence of selective pressure to mimic drug-naïve diversification (FIG. 

28A). At different points in the diversification process, samples of cells were drawn from the population 

and tested in BRAFi (passages 9, 13, 22, and 26; FIG. 28B). Interestingly, each successively higher passage 

sampled adopted a slightly larger DIP rate when tested in BRAFi. In passages 22 and lower, sampled cells 

seemed to still acquire the long-term net-zero DIP rate characteristic of idling. However, at least in the 

timeframe tested, passage 26 cells continued a stable positive DIP rate in prolonged BRAFi, similar to the 

short-term dynamics identified in the parental cell line (FIGS. 22A and 26C). A qualitative look back at the 

BRAF-mutant melanoma three-state model suggests a potential explanation (FIG. 28C). SC01 cells, at low 

passage, are presumably monoclonal in nature. Given sufficient time, epigenetic diversification allows 

cells to overcome barriers in the epigenetic landscape. Based on the drug-response dynamics seen in 

across cell passages, we predicted that SC01 cells may diversify into adjacent basins in the absence of drug 

treatment, which are only revealed in BRAFi.  
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Figure 28 | Clonal phenotypic diversification in the absence of selective pressure.  
(A) Design for population DIP rate experiment to identify clonal diversification. (B) Population growth curves (log2 
normalized) for SC01 at different cell passages (9, 13, 22, 26) treated with BRAFi (6 technical replicates; means are 
points; Lines are loess fits; Shaded regions are 95% point-wise confidence interval). (C) Hypothesized diversification 
of SC01 over increasing passage number. Basins in landscapes correspond to DIP rate phenotypes, and colors are 
shared with B. (D) Simulations of drug treated based on different initial model conditions (diversity across states). 
Six stochastic simulations were run for each condition. Simulation means are noted by the thick lines, and shaded 
regions represent a 95% confidence interval. (E) Simulated DIP rate distribution from in silico cFP assays. 1000 
clonal drug response trajectories were simulated for each initial condition, and linear fits were compiled into 
distributions. 

 

Therefore, we revisited the three-state model to quantitatively address this clonal diversification 

hypothesis by varying the initial clonal composition (i.e., model initial conditions). Using the MCMC model 

fits as a guide (FIG. 26C), we chose model initial conditions corresponding to the subclonal diversity for 

each passage number and simulated drug response dynamics (FIG. 28D). Specifically, we used six 

stochastic simulations, using the SSA (Gillespie) algorithm137, to model six experimental replicates for each 
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initial condition. These simulations are strikingly concordant with the experimental drug response 

trajectories, even down to the lack of idling being present in passage 26 over the experimental timeframe. 

We next simulated single-cell DIP rate distributions using in silico cFP assays (see Methods) to 

ensure that the population DIP rates roughly reflect the input distributions (FIG. 28E). However, although 

distributions at the diversity extremes were distinguishable, it became clear that it would be difficult to 

statistically quantify distribution differences between conditions using the standard experimental cFP 

assay. To address this concern, we created a modified cFP assay that changes the number of initial cells 

(from 1 to >5) to enrich the number of potential diversified clones and therefore shift the distribution 

mean rather than various modes. This assay, termed the low seeding density (LSD) assay (see Methods), 

was used to test a similar progression of drug-naïve diversification as in FIG. 28B. We first simulated the 

LSD assay, which showed a mild distribution shift over increasing passage number (FIG. 29A). We then 

performed experimental LSD assays over a similar diversification course, which shows a similar moderate 

shift over increasing passage number (FIG. 29B). We then use a quantitative distribution overlap metric, 

known as the histogram distance, to quantify this diversification. Compared to the self-distance (a 

statistical resampling; see Methods), all distributions after passage 11 show a statistically distinguishable 

difference from the earliest passage (FIG. 29C). 
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Figure 29 | Clonal diversification using the LSD assay.  
(A) Simulated DIP rate distributions from in silico LSD assays. 1000 clonal drug response trajectories were 
simulated for each initial condition, and linear fits were compiled into distributions. Trajectories correspond to the 
clonal mixture of approximately five cells. (B) Experimental DIP rate distributions from the LSD assay. Linear fits of 
approximately 300 clonal mixtures (approximately 5 clonal colonies per mixture) were calculated and compiled 
into distributions for each passage number tested. (C) Histogram distance calculations for each passage number 
compared to the earliest tested (passage 7). Self-distance was calculated by resampling the experimental 
distribution and calculating a distance between the original and resampled distributions. 

 

Methods 

Cell culture and reagents 

SKMEL5 cell line was purchased from ATCC© and labeled with either a fluorescent histone H2B 

conjugated to the green fluorescent protein (H2B-GFP), or monomeric red fluorescent protein (H2BmRFP; 

Addgene plasmid No. 18982) and geminin1–110 monomeric Azami-Green. Cells were cultured a mixed 

media of DMEM and Ham F-12 media (DMEM:F12 1:1, catalog no. 11330-032), supplemented with 10% 
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fetal bovine serum (FBS). Cells were incubated at 37°C, 5% CO2, and passaged twice a week using TrpLE 

(Gibco). Cell lines and sublines were tested for mycoplasma contamination using the MycoAlertTM 

mycoplasma detection kit (Lonza), according to manufacturer’s instructions, and confirmed to be 

mycoplasma-free. Cell lines were originally stored at -80°C, then moved into liquid nitrogen. BRAF 

inhibitor PLX 4720 (analog to Vemurafenib) was obtained from MedChem Express (Monmouth Junction, 

NJ) and solubilized in dimethyl sulfoxide (DMSO) at a stock concentration of 10mM and stored at -20°C.  

 

Derivation of single-cell derived sublines 

Sixteen SKMEL5 clonal sublines were derived from single cells by serial dilution. Briefly, cells were 

serially diluted to less than one cell per well in 96-well imaging plates and imaged to identify wells 

containing a single cell. Cells were expanded in complete growth medium (in the absence of BRAFi) and 

sequentially transferred to 48-, 24-, and 6-well plates until sufficient numbers of cells were available for 

cryopreservation. All sublines were tested for their sensitivity to BRAFi before cryopreservation. 

 

Population-level DIP rate assay 

Cells were seeded in black, clear-bottom 96-well plates (Falcon) at a density of 2500 cells per well 

with six replicates for each sample. Plates were incubated at 37°C and 5% CO2. After cell seeding, drug 

was added the following morning and changed every three days until the end of the experiment or 

confluency. Untreated samples were allowed to grow in DMSO-containing media until confluency, with 

media changes every three days. Plates were imaged using automated fluorescence microscopy 

(Cellavista Instrument, Synentec). Twenty-five non-overlapping fluorescent images (20X objective, 5x5 

montage) were taken twice daily for approximately two weeks or until confluency. Cellavista image 

segmentation software (Synentec) was utilized to calculate nuclear count (i.e., cell count) per well at each 

time point (Source = Cy3, Dichro = Cy3, Filter = Texas Red, Emission Time = 800µs, Gain = 20x, Quality = 
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High, Binning = 2x2). SKMEL5 and clonal derivatives were treated with 8 uM BRAF inhibitor (BRAFi; 

PLX4720 unless otherwise stated). Cell nucleus count across wells was used to calculate mean and 95% 

confidence intervals and normalized to time of drug treatment.  

 

Clonal fractional proliferation assay 

We modified the original cFP assay, which tracks multiple colonies in a single well of a plate127. 

Instead, here we flow-sorted single cells into a black, clear-bottom 384-well plate (Greiner) using 

fluorescence-activated cell sorting (FACS Aria III, GFP+). Plates were incubated at 37°C, 5% CO2 and cells 

were allowed to grow into small colonies over eight days in complete media (no media change). Drug was 

then added and changed every three days. Plates were imaged using the Cellavista Instrument (Synentec). 

Nine non-overlapping fluorescent images (3x3 montage of the whole well at 10X magnification) were 

taken once daily for a total of seven days. Cellavista image segmentation software (Synentec) was utilized 

to calculate nuclear count (i.e., cell count) per well at each time point (Source = FITC, Dichro = FITC, Filter 

= FITC, Emission Time = 800µs, Gain = 20x, Quality = High, Binning = 2x2). Wells that passed quality control 

thresholding (at least 50 cells per colony at the time of treatment) were included in DIP rate calculations 

for each sample. DIP rates were calculated from 48h post-treatment to the end of the experiment using 

the lm function in R. DIP rates for each sample were combined and plotted as a kernel density estimate.  

 

Low Seeding Density Assay 

Analogous to the cFP assay (above), we plated cells into a black, clear-bottom 384-well plate 

(Greiner) targeting ~5 cells per well. Incubation and treatment were completed identically to the cFP 

assay. Plates were imaged using the Cellavista Instrument (Synentec). Five non-overlapping fluorescent 

images (3x3 montage of the whole well at 10X magnification) were taken once daily for a total of seven 

days. Cellavista image segmentation software (Synentec) was utilized to calculate nuclear count (i.e., cell 
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count) per well at each time point (Source = Cy3, Dichro = Cy3, Filter = Texas Red, Emission Time = 800µs, 

Gain = 20x, Quality = High, Binning = 2x2). Wells that passed quality control thresholding (at least 50 cells 

per well at the time of treatment) were included in DIP rate calculations for each sample. DIP rates were 

calculated from 48h post-treatment to the end of the experiment using the lm function in R. DIP rates for 

each sample were combined and plotted as a kernel density estimate. 

 

Time-lapse single-cell tracking  

Fluorescence images of cellular nuclei were obtained as described above. Images were acquired 

using a BD Pathway 855 in (spinning disk) confocal mode with a 20X (0.75 NA) objective in a CO2- and 

temperature-controlled environment every 20 minutes for 260 hours from the time of the first drug 

treatment. Media was replaced with a freshly prepared drug every 3 days. Images from each well were 

organized into stacks of a time series. Fluorescent nuclei were manually tracked across sequential images 

to obtain cell life spans and resultant cell fates (death or division). “Birth time” denotes the time at which 

a mitotic event occurred, resulting in two sister cells. “Lifetime” denotes the duration of single-cell viability 

until the cell either died or underwent another mitosis. “End of the experiment (EOE)” represents the cells 

that were born in a drug but did not exhibit any cell fate during the remaining observation time. Data are 

displayed as two-dimensional plots of birth time versus lifetime, with death, division, and EOE signified 

with different markers. 

 

Mathematical modeling and parameter calibration 

We consider three cell subpopulations, defined in terms of their net proliferation rates: R 

(regressing), S (stationary), and E (expanding). Cells within each subpopulation can divide, die, or 

transition into “adjacent” subpopulations. The ordinary differential equations (ODEs) describing the 

temporal dynamics of the system are 
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where NR, NS, and NE are the numbers of cells in subpopulations R, S, and E, respectively; kpR, kpS, and kpE 

are the DIP (net-proliferation) rates of subpopulations R, S, and E, respectively; krs and ksr are the forward 

and reverse transition rate constants between subpopulations R and S, respectively; and kse and kes are 

the forward and reverse transition rate constants between subpopulations S and E, respectively (see Table 

4). DIP rates were set to 𝑘9: = −0.055	hHI, 𝑘9@ = 0 hHI, and 𝑘9C = 0.015 hHI and a total initial cell 

population of 10,000 was assumed. The remaining six parameters [krs, ksr, kse, kes, and the initial cell 

proportions R0 and S0 (≥0 and ≤1)] were determined by calibrating to experimental data (see below). The 

model was encoded in R (https://www.r-project.org/) and ODE simulations were performed using the 

ode function of the R package deSolve. 
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Table 4 | Three-state model variables and parameters. 

 

  

Parameter calibration was performed using Markov chain Monte Carlo (MCMC) sampling166,167 

(1.5x105 iterations) using the modMCMC function of the R package FME. Goodness of fit was quantified 

using the cost function 

 

 𝐶𝑜𝑠𝑡 = ∑ (P(HQ()S

T(
U
$VI         (4) 

 

where n is the number of measured time points and Mi, Oi, and σi are the model prediction, experimentally 

observed value, and standard experimental error (automatically determined by modMCMC) at time point 

i, respectively. For the SKMEL5 cell line, the model was calibrated against an experimental time course for 

a 1:1:1 clonal mixture of three single cell-derived subclones (SC01, SC07, and SC10). Predictions for the 
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dynamics of the SKMEL5 parental line and subclones were then made by selecting 1000 random 

parameter sets from the last 50% of iterations (accounting for burn-in) in the MCMC-generated parameter 

ensemble. Specifically, for each of the 1000 parameter sets, we recalibrated the model using MCMC 

keeping the transition rate constants (krs, ksr, kse, kes) fixed at the values for that particular iteration and 

allowing the initial cell proportions (R0 and S0) to vary as free variables. For other BRAF-mutated melanoma 

cell lines (WM88, WM164, SKMEL28, SKMEL19, A375, WM793), model calibration was performed against 

experimental time courses for the parental lines. In all cases, we plot simulated time courses as one-

standard-deviation envelopes around the mean from 1000 random samples of the MCMC-generated 

parameter ensemble. 

  

Inferring quasi-potential energy landscapes 

We assume the probability that a cell transitions from subpopulation X to Y follows Arrhenius’ 

equation. Within this view, each subpopulation constitutes a basin of attraction within a quasi-potential 

energy landscape and transitions between subpopulations require traversal of an energy barrier 

separating adjacent basins. The height of this barrier, DUxy, is proportional to the negative logarithm of 

the transition rate constant, i.e., 

 

 ∆𝑈YZ	~	− 𝑙𝑛	 𝑘YZ         (5) 

 

Intuitively, the higher the barrier the less probable is the transition. For each cell line considered, we 

randomly select 2000 parameter sets from the MCMC-generated parameter ensemble (see above) and 

estimate barrier heights between basins for each set using Eq. (5). A pictorial representation of the 

inferred quasi-potential energy landscape is then generated as a one-standard-deviation envelope around 

the mean barrier heights from the 2000 sampled parameter sets. 
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In silico modeling of clonal fractional proliferation 

Birth-death population growth models. Mathematical models of single-cell population growth dynamics 

were constructed using PySB162, a Python-based kinetic modeling and simulation framework. We modeled 

cell proliferation identical to above (i.e., three state model with adjacent state switching). 

Stochastic simulations and in silico DIP rate distributions. Model simulations were run using the stochastic 

simulation algorithm137 (SSA), as implemented in BioNetGen163 (invoked from within PySB), to capture the 

effects of random fluctuations in division and death on cell population proliferation. We performed in 

silico cFP and LSD assays, where numerous single (cFP) or few (LSD) cells (run as independent simulations) 

were grown into colonies of variable size over eight days of simulated time using the SSA and fixed rate 

constants for division and death (kdiv = 0.04*ln(2) h-1, kdth = 0.005*ln(2) h-1), based on vehicle-control 

proliferation data. We ran 1000 simulations for each condition (diversification of SC01, represented by 

passage number). Drug treatment was then modeled by changing the rate constants for division and death 

and running for the additional days of simulated time corresponding to each subline experiment. Cells 

were allowed to transition between states throughout the simulated experiment, according to transition 

rate probabilities (see above). In silico DIP rates were obtained by taking log2 of the total cell counts and 

calculating the slope of a linear fit to the time course from the time of drug addition to the end of the 

simulation using the SciPy linregress function. DIP rates for all in silico colonies (cFP) or wells (LSD) were 

compiled into distributions. 

 

Conclusion 

Plasticity in response to cancer targeted therapies continues to be a primary contributor to drug 

evasion and eventual recurrence. This chapter provides an example of such plasticity in the form of a drug-
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tolerant idling population state in BRAF-mutant melanoma. Akin to other forms of drug-tolerant 

persisters12,21,69, idling cells survive at low levels in continued treatment. However, idling cells differ in that 

they continue dividing and dying during treatment, rather than the quiescence or senescence identified 

in other systems. Additionally, we find that idling is characteristic of all clonal derivatives of a 

representative cell line. Using a population dynamics model of division, death, and cell state transitions, 

we determined that the idling state was actually a population state, i.e. multiple states in dynamic 

equilibrium, albeit defined by various properties in each cell line. Finally, we show that drug treatment is 

not necessary for plasticity, as seen through diversification of a clonal subline over successive cell passage 

numbers. A novel technique was created to quantitatively survey clonal diversification, which showed 

experimental and simulated success. 

 Ultimately, these results point towards a view of cellular plasticity where genetically similar cells 

diversify over a variety of epigenetic states. Upon treatment, the landscape of epigenetic states changes, 

resulting in a newly equilibrated population state. Using this view, we can conceptualize hypotheses for 

epigenetic diversification in response to treatment and better understand treatment evasion and 

recurrence. This chapter provides an initial hypothesis for BRAF-mutant melanoma with the discovery of 

the idling state. Chapter IV will test this hypothesis and provide molecular features for both the drug-naïve 

and idling epigenetic landscapes. 
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CHAPTER IV 

 

Ion Channel Dysregulation Induced by BRAF Inhibition Transitions Clonal Lineages into a Drug-

Tolerant Idling State Susceptible to Ferroptosis 

 

Introduction 

Tumor plasticity in response to targeted therapy is a primary method by which cancer cells evade 

treatment12,13,21. Genetic mutations often cannot explain this plasticity, suggesting that non-genetic 

factors may play a role. In tumors without clear genetic indicators, epigenetic variability can explain some 

drug tolerance21,36,168. However, it is largely unclear which cells (or cell types) will evade treatment and 

the mechanism by which they achieve drug tolerance. Chapter III identified of a novel ‘idling’ population 

state in BRAF-mutant melanoma, and proposed a hypothesis by which cells evade treatment via 

epigenetic plasticity to allow the population to persist at low levels in BRAFi. Here, we aim to test this 

hypothesis and understand the molecular underpinnings of idling state drug tolerance in order to develop 

novel therapeutic strategies. 

In this chapter, we use BRAF-mutant melanoma cell line SKMEL5 as an in vitro model of tumor 

plasticity to quantify the nature by which cells adopt the idling state in continued BRAFi. This state is 

achieved by an overwhelming majority of the drug-naïve population, identified by lineage tracing of 

barcoded SKMEL5 clones, as opposed to ‘special’ cells via clonal selection. Although more homogeneous 

than the drug-naïve population, idling cells are still heterogeneous, making up a ‘population’ state of 

dividing and non-dividing transcriptomic states. The relative fraction of clonal lineages that represent the 

idling state corresponds to lineage-specific occupancy of idling transcriptomic states, with some stochastic 

variability. Evidence of this heterogeneity is confirmed by transcriptomic characterization of single-cell 

derived clones in response to BRAFi. Idling state transcriptomic features point to ion channel activity as 
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the central process underlying drug tolerance, which is further supported by epigenomic characterization. 

Differential ion channel fluxes were verified between untreated and idling cells, which led to treatment 

with ferroptosis inducers to maximize idling cell death. Ferroptosis inducers increase drug potency, and 

provide a potential secondary therapy to work in sequence with BRAFi. This chapter provides support for 

the view that BRAFi induces re-equilibration of cancer cells to a new idling epigenetic landscape, which is 

collaterally sensitive to other treatments. 

 

Results 

Response to BRAFi is driven by a shift in the majority of cells 

We chose BRAF-mutant melanoma cell line SKMEL5 as a model system to understand cellular 

plasticity in melanoma. This cell line is characterized by a BRAFV600E point mutation, making it sensitive to 

inhibition of the mutant BRAF protein. We have used this cell line in the past36,133,134, as it has an average 

response to BRAFi compared to other BRAF-mutant melanoma cell lines. Interestingly, this cell line shows 

non-linear drug response dynamics to BRAFi. In response to BRAFi (>=8 µM), cells have an initial phase of 

growth, regression, and rebound, which we hypothesized was to clonal selection. However, then these 

cells move from a net-positive to a net-zero growth rate that remains stable for days. This change in the 

underlying phenotype from relatively high fitness in drug to an inability to proliferate further is a stark 

contrast to the traditional theory of cancer clonal selection, whereby cells acquire key genetic mutations 

that allow for survival in changing environments14, such as drug treatment12,13. Therefore, we aimed to 

understand how these cells adopt the idling state, i.e., whether the idling state could be explained by 

clonal selection or if other mechanisms were at play.  

To this end, we barcoded the SKMEL5 cell line with a gRNA barcoding library that allowed for both 

lineage tracing at the level of isolated, amplified barcode sequences (barcode sampling32) or mRNA in 

single-cell transcriptomics (scRNA-seq) (unpublished). This type of approach allows for the simultaneous 
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high-depth coverage of lineage dynamics and their dynamics in the transcriptomic space, in order to 

determine the distribution of barcodes that survive treatment (FIG. 30A). Cells were barcoded with a low 

multiplicity of infection (MOI, ~2.5%) with a limited barcode library (16 bp strong-weak balanced, 216 

potential barcodes) to achieve a minimum of 425 uniquely barcoded cells (FIG. 30B). Upon treatment with 

BRAFi PLX 4720 (8µM for 8 days), the barcode library complexity was reduced by less than 10% (FIG. 30B). 

These barcodes were shared within a large majority of replicates within each treatment condition (FIG. 

30C), as well as between conditions (FIG. 30D). These results indicate that the idling state consists of cells 

from an overwhelming majority of the original population, providing evidence against the clonal selection 

hypothesis. 
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Figure 30 | Most clonal lineages survive treatment with BRAFi into idling.  
(A) Schematic of example lineage tracing experiments using cellular barcoding. (B) Number of unique barcodes in 
each treatment condition. Lines correspond to the means of three experimental replicates (points). A minimum 
cutoff of 100 counts per million (CPM) was used. (C) Proportional sharing of barcodes among experimental 
replicates (i.e. R1 = replicate 1) for each treatment condition. (D) Heatmap of relative barcode abundances (log10 
CPM) for each experimental replicates across all captured barcodes. Heatmap is organized by decreasing barcode 
abundance in untreated condition. 

 

Some fluctuations in relative barcode abundance did exist after treatment with BRAFi (FIG. 31A). 

Nearly all of the lineages that do not survive treatment come from clones that have an exceedingly small 

representation in the overall distribution, suggesting that the loss of those lineages is due to stochastic 

loss. Interestingly, the underlying fold change distribution for the entire barcoded cell population from 

untreated to idling is a normal distribution centered at zero (FIG. 31B). No clear exceptions were noted, 

and the top barcodes reflected this distribution (colored blocks in the histogram; same lineages as FIG. 

31A; these barcodes will be used for downstream analyses). Therefore, although lineages exhibit some 
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expansion and contraction upon BRAFi (FIG. 31A), this behavior is not indicative of clonal selection. 

Instead, this is consistent with a hypothesis that cell state transitions dominate in the response to BRAFi, 

leading a diverse set of clonal lineages to adopt phenotypic states associated with drug tolerance. 

Rationale for the barcode fluctuations is explored in later sections. 

 

 

Figure 31 | Lineage dynamics in response to treatment reflected as relative barcode abundance.  
(A) Relative fraction of the top 25 ranked (in untreated) barcoded cell lineages in untreated and idling conditions. 
Bar height corresponds to the average of three experimental replicates (line is standard deviation). (B) Distribution 
of (log2) fold change for barcoded clonal lineages from untreated to idling. Means of fold changes were compiled 
into a distribution for all captured lineages (grey), as well as the top 25 most abundant lineages noted in A. 

 

BRAFi induces melanoma cells into a convergent, yet heterogeneous transcriptomic state 

In order to determine the phenotypic state associated with idling drug tolerance, single-cell 

transcriptomics was performed on the barcoded cell line in both untreated and idling (see Methods). We 

use Uniform Manifold Approximation and Projection141,142 (UMAP) to project the transcriptional states for 

each cell into a two-dimensional space (FIG. 32A). Untreated and Idling cells clears fall in different regions 

of the UMAP space, with minimal overlap. Additionally, the idling population falls in a much more 

constrained region of the UMAP space. To quantify variability of localization in the UMAP space, pairwise 

distances were calculated between cells in each condition. Pairwise distances were compiled into a 

cumulate density distribution for each condition (FIG. 32B) and an Earth mover’s distance (EMD, see 
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Methods) was calculated between the distributions. More than 30% of the untreated cell-cell distances 

are greater than 10 distance units (Euclidian, UMAP space) apart, and nearly all idling cell-cell distances 

are lower than 10. The EMD between distributions indicates a rather large distance (2.53) separate the 

two population distance distributions. 

 

 

Figure 32 | Idling cells represent a convergent, yet still heterogeneous transcriptomic state.  
(A) UMAP projection of untreated and idling single-cell transcriptomes. 6410 cells are shown, with an 
approximately equal split between conditions. (B) CDF of pairwise cell distances (random sampling of 15,000) on 
the UMAP space in A. An EMD was calculated between the distributions. 

 

To determine the biological factors that differentiate the axes that separate populations, we 

perform differential expression analysis between treatment conditions, clusters, and combinations to 

determine biological interpretation of UMAP axes. Although no clear biological processes separate 

UMAP_2, UMAP_1 could be separated based on cell cycle stage, even after cell cycle regression (within 

the context of treatment condition; see Methods). To simplify the interpretation, cell cycle stages (G1, 

G2M, S) were simplified into nondividing (G1) and dividing (G2M/S) states and overlay it on the UMAP 

plot (FIG. 33A). A first look indicates nondividing and dividing cells are represented in both untreated 

clusters, but clearly separate idling clusters (see Methods). Therefore, we classified cell cycle state 

proportional representation across untreated and idling clusters (FIG. 33B). Within the untreated 
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population, across both clusters, we see a gradient of cell cycle states, with nondividing cells representing 

the smaller UMAP_1 values and dividing cells the larger values. The large cluster (~84% of all untreated 

cells) does have a larger proportion of nondividing cells (~35%) than the small cluster (~16%). However, 

in the idling state, clusters separate solely based on cell cycle state, with the large cluster (~83% of all 

idling cells) composed of nearly all nondividing cells, while the small cluster has a large majority (~97%) of 

dividing cells. 

 

 

Figure 33 | Cell cycle state separates major clusters in idling cells.  
(A) Overlay of cell cycle state (see Methods) on UMAP projection of single cell transcriptomes (colored contours 
represent information in FIG. 32A). (B) Relative proportion of cells in cell cycle state for major untreated and idling 
clusters. The total number of cells in each cluster (n) is noted above each bar. 

  

This result is interesting because the clusters seem to be maintained after BRAFi treatment, even 

down to the relative proportion of the population, but shifted in the transcriptomic space (see next 

paragraph for further rationale from transcriptomic lineage analysis). Considering that dividing cells 

represent a majority of both untreated clusters, but separate clearly between clusters in idling cells, it 

seems likely that the idling phenotypic distribution (i.e. epigenetic landscape) may have shifted upon 

BRAFi. Further, the decrease in the proportion of dividing cells from untreated (~67% total) to idling (~15% 
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total) maintains that the idling state drug-tolerant persister cells have a reduction in cell division events, 

but not a total loss, as predicted in Chapter III. It also seemingly indicates that the population idling state 

is due to a combination of quiescence/senescence and balanced division/death, unifying previous 

claims12,21,69. In addition, it supports our previous claims that the BRAF-mutant melanoma cell lines, 

specifically SKMEL5, are a population state after treatment, meaning that multiple cell states coexist even 

after treatment. It may be that these cell cycle states broadly reflect proliferation states, with a large 

quiescent/senescent state, and a small actively dividing state. Importantly, in this view, cells can 

interconvert between these states, which we will further investigate in the next section.  

 

Lineage re-equilibration to the drug-modified idling transcriptomic landscape is predictive of the 

corresponding drug response 

To investigate the lineage distribution across the states in each population, we overlay barcoded 

clonal lineages on the underlying transcriptomic distributions (four representative examples in FIG. 34A). 

We then quantify the relative proportions of each barcode (top 25 from FIG. 31) in the dividing cell cycle 

state for untreated and idling cells (FIG. 34B). Interestingly, in untreated cells, lineages exhibit a tight 

distribution across the dividing cell cycle state (FIG. 34B, top). This result is contrary to what one might 

expect without taking into account epigenetic variability and transitions between epigenetic states, i.e., 

isolated lineages should fall in distinct transcriptomic regions. However, the likely explanation is barcoded 

lineages quickly equilibrated in the untreated distribution, spreading across the epigenetic landscape. 

Therefore, we can conclude that the transcriptomic regions that they originate from are not very stable 

(i.e., shallow basins in the epigenetic landscape). The lineage distributions in the idling state have a slightly 

more nuanced behavior, with more variable occupancies across cell cycle states (FIG. 34B, bottom). 

However, a closer looks shows that the proportion of idling cells in the dividing cell cycle state is predictive 

of lineage response to BRAFi (FIG. 31). Lineages like barcodes 1 and 5 have a smaller relative proportion 
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of cells in the idling dividing state, corresponding to a smaller relative fraction after BRAFi. Conversely, 

barcodes 2 and 13 have a larger proportion of cells in the idling dividing state, which results in a larger 

relative fraction after treatment. This result is consistent with a short-term, relative lineage distribution 

shift as the barcodes re-equilibrate to the new idling epigenetic landscape. In the long term, lineages 

presumably reach a dynamic equilibrium where they reflect the proportions of cells in each cell state, 

similar to the untreated condition. 

 

 

Figure 34 | Lineage distribution across cell cycle states are reflective of clonal dynamics.  
(A) Projections of lineage transcriptomic distributions on UMAP projection in FIG. 32A. Lineages correspond to 
colored dots, while contours reflect treatment condition. (B) Proportion of cells in the dividing transcriptomic state 
for the top 25 most abundant barcodes. Dashed line represents average of all barcodes. 

 

To confirm single-cell transcriptomic phenotypes in response to BRAFi, we subjected previously 

isolated clonal sublines (SKMEL5 SC01, SC07, and SC10; see Chapter III) to bulk RNA sequencing (RNA-seq) 

at three time points over the course of BRAFi (0, 3, and 8 days post treatment). These populations were 

chosen because they represent the extremes of the drug-response distribution (SC01 – most negative 

short-term proliferation rate; SC10 – most positive short-term proliferation rate) and an average 



 94 

representative (SC07 – near zero short-term proliferation rate). All three clonal sublines eventually adopt 

the long-term net-zero proliferation rate characteristic of idling (3-8 days; see FIG. 25B). Bulk 

transcriptomics data of the clonal sublines were projected into reduced dimensionality space by PCA (see 

Methods, FIG. 35A). Interestingly, clonal sublines predominately vary on PC1 prior to BRAFi treatment. In 

the short term (day 0 à day 3), sublines predominately change on PC2, and maintain the overall variance 

from baseline. From the short-term to long-term response (day 3 à day 8), cells converge on both PC1 

and PC2. A differential expression analysis was performed between untreated (day 0) and idling (day 8) 

bulk RNA-seq data to identify transcriptomic signatures characteristic of the transition to idling. 

Differentially expressed genes (see Methods) were input into a gene ontology (GO) over-enrichment 

analysis to determine processes that are upregulated in the idling state (see Methods). Interestingly, GO 

terms associated with ion transport and homeostasis are upregulated in idling cells (FIG. 35B). This result 

will be further explored in later sections. 

 

Figure 35 | Bulk transcriptomics on single-cell derived subclone response to BRAFi.  
(A) PCA projection of subclones (SC01, SC07, and SC10) at multiple times (0, 3, and 8 days) in BRAFi. Each condition 
(e.g. SC01 at day 0) was completed in triplicate. Lines are drawn between the centroids of triplicates across the 
time series. (B) GO over-representation analysis on differentially expressed genes with increased expression 
between untreated and idling. GO terms with the top 10 largest gene ratios (see Methods) are shown. 
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Together, these results qualitatively agree with the lineage-resolved single-cell transcriptomics 

data, in that BRAFi seems to induce a change in the transcriptomic states (i.e., epigenetic landscape) into 

a more convergent transcriptomic space. Since bulk measurements muddle subpopulation separation, 

these results could indicate either that clonal sublines’ transcriptomic signatures are becoming closer 

upon prolonged BRAFi (i.e. independently becoming more homogeneous) or that the underlying 

landscape has shifted (i.e. cells originating from the same subline are equilibrating to the new landscape). 

Considering the lineage-resolved transcriptomics data, the latter is more consistent. The drug-induced 

shift seems to be tied to a re-equilibration of ion channel transport and homeostasis, which we attempted 

to validate with different data modalities below. 

 

Epigenomic data shows a broad shift upon BRAFi treatment and has strong connection with 

transcriptomics 

To understand the connection between transcriptomic and epigenomic phenotypes, as well as 

validate the functional findings, we performed by bulk Assay for Transposase-Accessible Chromatin 

sequencing (ATAC-seq) on untreated and idling cells. We first calculated the fragment size distribution in 

both populations (FIG. 36A). Both populations show enrichment for nucleosome-free and mono-

nucleosome fragments, indicative of a successful experiment. Fragments were then aligned to a reference 

genome and peaks were identified (see Methods). Peaks were compared to identify intersections and 

unique peaks (FIG. 36B). Approximately twice as many peaks were identified in idling than untreated, but 

could be attributed to duplicated reads (see Methods).  
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Figure 36 | Quality control of bulk epigenomics ATAC-seq data.  
(A) Insert size distribution of aligned reads from ATAC-seq data on untreated and idling cells. Both conditions 
follow traditional nucleosome patterning. (B) Venn diagram of ATAC-seq identified peaks of open chromatin. 

 

Unique and shared peaks were normalized to the transcription start site (TSS) to determine the 

distribution of binding loci (FIG. 37A), and used to quantify the peak feature distribution (FIG. 37B). Idling 

peaks have much fewer proximal features (e.g., promoter regions) and more distal elements (e.g., distal 

intergenic and intronic regions) compared to the untreated condition, which seems to suggest that idling 

cells are the result of dynamic epigenetic changes in response to treatment. Unique peaks were also 

assigned to a corresponding gene using the nearest gene paradigm, and genes associated with unique 

genes were input into a GO over-representation analysis (like the single-cell transcriptomics data). GO 

over-representation identifies ion transport and activity as clear differentiators of idling (FIG. 37C), which 

compliments findings in transcriptomics data. This connection between transcriptomics and epigenomics 

indicates a clear, conserved shift in the epigenomic signature upon treatment with BRAFi. Additionally, 

the connection between idling GO terms across data modalities suggests a new “epigenetic landscape” is 

formed upon treatment with BRAFi, as seen in transcriptomic and epigenomic landscape “reflections.” 
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Figure 37 | Molecular epigenomic profiling of the idling state.  
Alignment of peaks to the TSS allows for prediction of epigenomic features. (A) Peak binding site distribution for 
untreated, idling, and shared peaks. X-axis represents kb distances from the TSS. (B) Predicted feature distribution 
in untreated, idling, or shared peaks. Peaks were assigned to features based on proximity to TSS (see Methods). (C) 
GO over-enrichment analysis of genes associated to unique idling peaks. The top 10 terms with the largest gene ratio 
are shown. 

 

Verification of ion channel molecular mechanism 

Considering both the transcriptomics and epigenomics data point toward ion channel activity as 

a major connection point in idling, we intended to test the baseline ion channel flux exhibited in idling 

versus untreated cells. To do this, we used a previously described calcium flux assay169 that measures the 
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amount of chelated calcium that accumulates in the intracellular space upon treatment with various 

agonists. In the first assay, we use Ionomycin as an agonist, which in this assay specifically facilitates 

calcium transport from intracellular stores (FIG. 38A). Here, the maximum amplitude of the untreated 

cells reached almost twice the height of the idling cells, and both were followed by a re-equilibration 

period. This suggests that idling cells have a lower flux capacity than untreated. A possible mechanism is 

that high expression of these ion channels in idling (FIG. 35B) means that more channels exist on idling 

cell compartment (i.e. mitochondria) membranes. Therefore, the idling calcium ion concentration in 

cytosol is higher than untreated cells prior to agonist treatment, meaning cells have lower potential flux 

from the compartments to the cytosol. To garner a more specific mechanism, we perform the same assay 

with Thapsigargin, an endoplasmic reticulum (ER) stress active transport inhibitor (FIG. 38B). Here, we see 

a slightly more nuanced result, with similar short-term responses to the agonist but divergent long-term 

responses. The lack of a second peak in the long-term idling response to Thapsigargin indicates possible 

impairment of store operated calcium entry (SOCE), which has been implicated previously in melanoma 

disease progression170. Regardless of the mechanism, these results confirm differences in ion channel 

activity in idling cells, as predicted by transcriptomics and epigenomics data. 
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Figure 38 | Untreated and idling cells have differential ion flux when challenged by agonists.  
Calcium flux assays for (A) Ionomycin and (B) Thapsigargin agonists. Trajectories were normalized to the time of 
agonist addition. Data points were captured every second for 320 seconds. Means are shown as a solid line, while 
the shaded envelope represents one standard deviation. 

 

Idling BRAF-mutant melanoma cells are susceptible to ferroptotic death 

BRAF-mutant melanoma cells have a previously established convergent gene signature upon 

prolonged BRAFi treatment (FIGS. 32A and 35A), but the molecular implications of that gene signature 

remain unclear. Bulk RNA-seq and ATAC-seq data suggest that ion channel activity is an important 

characteristic of idling cells (FIGS. 35B, 37C, and 38), but there is not a clear way to target ion channel 

activity in a therapeutic manner. Previous publications171 have indicated a connection between ion 

channels, cancer signaling, and ferroptosis, a type of necrotic cell death. Thus, induction of ferroptosis 

may provide a potential way to eradicate idling cancer cells. Recent publications on the idling state36,133,134 

have indicated that BRAFi induces mitochondrial oxidative stress through reactive oxygen species (ROS), 

which is also known to result in ferroptosis. Interestingly, ferroptotic cell death has been marked in the 

literature more by sensitivity to ferroptosis inducers than specific molecular indicators69,170. However, 

some biological processes do seem to have an effect on ferroptosis, including glutathione (GSH) 

regulation, polyunsaturated fatty acid (PUFA) synthesis, and iron regulation. 
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To create a ferroptosis molecular signature, genes associated with these three processes were 

curated from the from the KEGG database (see Methods) and used to categorize clonal subline 

transcriptomic signatures. Using genes already identified in the earlier differential expression analysis (see 

Methods, FIG. 35), we further reduced that significant gene set to those also in the KEGG ferroptosis 

signature, and further classified genes according to GSH, PUFA, and iron regulation (see previous 

paragraph). Using this reduced signature, gene expression z-scores were compiled into a heatmap to 

indicate changes over time in BRAFi (FIG. 39). An initial observation is that the clonal sublines have vastly 

different gene expression scores, with SC01 exhibiting a markedly lower score across all genes over the 

course of treatment with BRAFi. Second, we see large shifts in gene expression from pre- to post-

treatment, providing some credence to ferroptosis as a potential cell death target. Interestingly, these 

clones have relatively similar scores by the 8 days in BRAFi, suggesting this signature may be characteristic 

of the idling state and pointing toward a potential way to target idling cells. 
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Figure 39 | Ferroptosis gene expression of clonal sublines across BRAFi time course.  
Gene expression values (z-scores; see Methods) for multiple clonal sublines (SC01, SC07, SC10) across the BRAFi 
treatment time course (0, 3, and 8 days post treatment). Genes are further broken down into three contributing 
groups (GSH – glutathione regulation; PUFA – polyunsaturated fatty acid synthesis; Iron regulation). 

 

Erastin and RSL3 (see Methods) are ferroptosis inducers that have been known to modify 

glutathione metabolism and prevent cells from removing ROS and addressing lipid peroxidation, which 

leads to increased cell death69,133. Erastin works by targeting system Xc, a cysteine-glutamate antiporter 

on the cell membrane, while RSL3 targets the downstream GPX4, a key regulator of glutathione 

oxidation172 (FIG. 40A). We subjected both drug-naïve and idling cells to Erastin and RSL3 treatment (DIP 

rate dose response curve, see Methods) in order to identify a potential mechanism . Interestingly, Erastin 

did not induce cell death in untreated or idling cells (FIG. 40B). However, RSL3 had a major impact on 

idling cells compared to untreated, massively increasing drug potency (FIG. 40C; blue to red solid line). 

Since Erastin did not actively target idling cells as well as RSL3, it became clear that idling sensitivity was 

more localized to a region of glutathione signaling than originally thought (FIG. 40A). To further clarify the 

important signaling processes, we performed a drug rescue experiment (see Methods) with ferrostatin-1 
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(Fer-1), a ferroptosis inhibitor, on SKMEL5 cells treated with the sequential BRAFi + RSL3 (FIG. 40C; dashed 

lines). Fer-1 inhibits lipid free radicals (FIG. 40A), reducing opportunities for ferroptotic death172. The Fer-

1 treatment rescued the drug-response behavior except at very large doses (uM range) in both treatment 

conditions (FIG. 40C; solid to dashed lines), but is specifically important in idling (FIG. 40C; red solid to red 

dashed line) because it shows that idling drug sensitivity is associated with a narrow region of glutathione 

signaling and lipid peroxidation that makes them particularly susceptible to ferroptotic cell death. Given 

these results, it is possible that RSL3 may be a candidate for sequential therapy (post-BRAFi) to eradicate 

cells that persist BRAFi and eventually acquire resistance (i.e. the idling state). 
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Figure 40 | Idling cell populations are susceptible to ferroptotic cell death.  
(A) Schematic of signaling upstream of ferroptosis cell fate determination. Adapted from Abdalkader et al. 
(2018)172. (B) DIP rate dose response curves for untreated and idling cells treated with ferroptosis inducer Erastin. 
(C) DIP rate dose response curves for untreated and idling cells treated with ferroptosis inducer RSL3 (solid lines). 
Rescue experiments on the post-treated cells using ferroptosis inhibitor Fer-1 are noted with dashed lines. 

 

Methods 

Cell culture and reagents 

SKMEL5 cell line was purchased from ATCC© and labeled with either a fluorescent histone H2B 

conjugated to the monomeric red fluorescent protein (H2BmRFP) and a cellular barcoding library (see 
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next section) or H2B conjugated to the green fluorescent protein (H2B-GFP). SKMEL5 single-cell derived 

clones were selected and derived by limiting dilution as described previously.  Cells were cultured a mixed 

media of DMEM and Ham F-12 media (DMEM:F12 1:1, catalog no. 11330-032), supplemented with 10% 

fetal bovine serum (FBS). Cells were incubated at 37°C, 5% CO2, and passaged twice a week using TrpLE 

(Gibco). Cell lines and sublines were tested for mycoplasma contamination using the MycoAlertTM 

mycoplasma detection kit (Lonza), according to manufacturer’s instructions, and confirmed to be 

mycoplasma-free. BRAF inhibitor PLX 4720 (analog to Vemurafenib), ferroptosis inducers RSL3 and 

Erastin, and ferroptosis inhibitor Fer-1 were obtained from MedChem Express (Monmouth Junction, NJ) 

and solubilized in dimethyl sulfoxide (DMSO) at a stock concentration of 10mM and stored at -20°C. Cell 

lines were originally stored at -80°C, then moved into liquid nitrogen. 

 

Cellular barcoding 

Barcode Library Creation: Cellular barcoding library was constructed by cloning a guide RNA (gRNA) library 

of barcodes into a CROP-seq-BFP-TSO vector as previously described32. The vector was engineered in a 

that barcodes could be captured by isolation and amplification (barcode sampling) or mRNA capture in a 

scRNA-seq experiment. gRNAs were built as a 20 nucleotide sequence of 4 nucleotides identical among 

all barcodes followed by a 16 strong-weak (SW) paired nucleotides (i.e., XXXXSWSWSWSWSWSWSWSW). 

The SW pairing of the barcode sequence was designed to prevent PCR amplification bias, and has a 

maximum complexity of 216 (~65k unique barcodes). The barcode library vector was used to produce 

lentiviral libraries using a lipofectamine transfection of HEK293T cells. Media containing lentiviral particles 

were collected at 48 and 72 hours post-transfection, pooled, filtered through a 0.45 um Nalgene syringe 

filter (Thermofisher) and concentrated using a 50 mL size-exclusion column (Millipore) by centrifugation 

at 2200 RCF at 4°C for 2 hours. Concentrated virus was stored in -80°C.  
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Experimental Setup: SKMEL5 cells were seeded in a 6-well plate at ~1x106 cells per well in 2.5 mL culture 

media. Cells were transduced with the barcoded CROP-seq-BFP-TSO-Barcode_sgRNA lentivirus using 0.8 

µg/mL in each well and a multiplicity of infection (MOI) of 0.05. 24 hours after incubation, transduction 

media (containing polybrene) was exchanged for fresh culture media. 48 hours after incubation, barcoded 

cells were isolated by FACS and subsequently cultured until confluence in a T-150 dish, and then 

cryopreserved. Cryopreserved cells were thawed in a T-25 dish and scaled up for ~2 weeks in two separate 

sets. The first set of thawed cells were treated with 8µM PLX4720 (and an untreated control) for 8 days 

and subjected to barcode sampling (see Barcode Sampling section). The second set was plated in 3 T-75 

flasks (parallel replicates) and independently treated with 8µM PLX4720 (or untreated control) for 8 days 

and subjected to scRNA-seq by the 10X genomics Chromium platform (version 2 chemistry, see RNA 

single-cell transcriptome sequencing section). In both cases, treated cells had media and drug replaced 

every 3 days. Untreated cells were expanded completely over the course of the time course (i.e. no cell 

splitting). 

 

Barcode Sampling: After PLX4720 treatment for 8 days (or no treatment expansion), cells in the first set 

were pelleted for genomic DNA (gDNA) extraction using the DNeasy Blood and Tissue Kit (Qiagen) per 

manufacturer’s instructions. Barcode sequences were amplified for each replicate by polymerase chain 

reaction (PCR; 98°C for 30 seconds, followed by 22 cycles of denaturation - 98°C for 10 seconds, annealing 

- 63°C for 30 seconds, extension - 72°C for 10 seconds, and a final extension of 72°C for 5 minutes) using 

primers containing flanking regions and Illumina adapter index sequences. 2µg gDNA was used in each 

PCR reaction, and a combination of 5 distinct pooled forward primers were utilized to minimize 

sequencing error. Reactions were purified using a 1.8x AMPure XP bead (Beckman Coulter) cleanup. 

Reaction products were confirmed using agarose gel confirmation (band at ~215bp). The resulting libraries 

were quantified using a Qubit fluorometer (ThermoFisher), Bioanalyzer 2100 (Agilent) for library profile 
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assessment, and qPCR (Kapa Biosciences Cat: KK4622) to validate ligated material, according to the 

manufacturer’s instructions. The libraries were sequenced using the NovaSeq 6000 with 150 bp paired 

end reads as sequencing spike-ins (targeting ~200k reads). RTA (version 2.4.11; Illumina) was used for 

base calling and MultiQC (version 1.7) for quality control. 

 

Barcode Sampling Analysis: Barcodes were identified from amplified sequence reads by trimming flanking 

adapter sequences. Barcodes abundances were totaled and normalized to library read depth, resulting in 

counts per million (CPM). Barcodes less than 100 CPM were removed from the analysis. Numbers of 

unique barcodes were calculated based on barcodes that exceeded the 100 CPM threshold. Overlaps 

among experimental replicates were calculated to determine the proportion of barcodes shared across 

different runs. Total barcode abundance (including low abundance barcodes) were calculated using the 

log10 of barcode RPM for each replicate. Relative barcode fraction was calculated for each sample across 

three replicates. Log2 fold change of the idling to untreated mean barcode fractions was calculated for all 

barcodes above the CPM threshold. 

 

RNA single-cell transcriptome sequencing  

Data Collection: After PLX4720 treatment for 8 days (or no treatment expansion), cells in the second set 

were prepared targeting ~3000 cells per sample, washed and resuspended in 0.04% bovine serum albumin 

(BSA) in phosphate-buffered saline (PBS). Cell suspensions were subjected to 10X Genomics single-cell 

gene expression protocol (version 2, 3’ counting) in two separate wells (untreated and idling), according 

to manufacturer’s guidelines. Single-cell mRNA expression libraries were prepared according to 

manufacturer’s instructions. Due to the nature of gRNA barcoding library construction, mRNAs resulting 

from gRNA barcodes were captured along with other mRNAs. Libraries were cleaned using SPRI beads 

(Beckman Coulter) and quantified using a Bioanalyzer 2100 (Agilent). The libraries were sequenced using 
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the NovaSeq 6000 with 150 bp paired-end reads targeting 50M reads per sample for the mRNA library 

(including barcode library). RTA (version 2.4.11; Illumina) was used for base calling and MultiQC (version 

1.7) for quality control. Gene counting, including alignment, filtering, barcode counting, and unique 

molecular identified (UMI) counting was performed on each library using the count function in the 10X 

Genomics software Cell Ranger (version 3.0.2) with the GRCh38 (hg38) reference transcriptome. 

 

Transcriptome Analysis: Cell Ranger output two single-cell gene expression matrices, for untreated and 

idling cells. Since cells were prepared and processed in parallel, no computational batch correction was 

performed. Seurat154 was used to perform gene expression analysis. The SCTransform function was used 

to regress out mitochondrial gene expression (percent.mt), number of features (genes; nFeature_RNA), 

number of RNA molecules in the cell (nCount_RNA), and cell cycle variables (S.Score and G2M.Score). 

Feature selection was performed according to Seurat guidelines, using a variance stabilizing 

transformation of the top 2000 most variable features. Data was normalized and scales according to 

Seurat guidelines.  Data between conditions were combined and visualized using the Uniform Manifold 

Approximation and Projection141,142 (UMAP) dimensionality reduction algorithm as implemented in 

Seurat. Pairwise distances were calculated between cells in each condition, and plotted as a cumulative 

density function (CDF). An Earth Mover’s Distance (EMD) was calculated between 15000 randomly 

sampled pairwise distances using the wasserstein1d function in the transport R package. Clustering was 

performed in the joint UMAP space using the default Seurat implementation, a shared nearest neighbor 

(SNN) modularity optimization based method. Differential expression was performed using the Seurat 

FindMarkers function to compare treatment conditions and clusters. Differentially expressed genes 

(DEGs, adjusted-p < 0.05) were input to a gene ontology (GO) over-enrichment analysis using 

clusterProfiler. GO analysis identified cell cycle as a major factor separating major idling clusters, which 

was not present for untreated cluster separation. Therefore, using cell cycle scores, a cell cycle phase (G1, 
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G2M, S) was assigned to each cell, which was further simplified into dividing (S, G2M) and nondividing 

(G1), which we call cell cycle state. Cluster proportion was calculated by cell cycle state to quantify the 

differences between clusters. 

 

Barcode Analysis: After calculation of scRNA-seq gene expression matrices, barcode abundances were 

incorporated to the matrices by mapping gRNA lineage barcodes to their associated 10X cell barcodes. 

First, unmapped scRNA-seq BAM files were cleaned to only include the mRNA transcript ID, scRNA-seq 

cell barcode, and scRNA-seq unique molecular identifier (UMI). Mapped scRNA-seq BAM files (3’ heavy) 

were cleaned to only include the mRNA transcript ID and lineage barcode (from gRNA library). Unmapped 

and mapped subsets were merged on the mRNA transcript ID to assign a lineage barcode to each cell 

barcode and UMI. The resulting merged dataset was paired down to a single cell barcode – lineage 

barcode pair, which was appended to each cell in the gene expression matrix as a metadata tag. Barcode 

abundances were totaled across all cells in the experiment that captured a barcode, and strongly reflected 

barcode sampling relative abundances and fold changes upon treatment. Barcodes were overlaid on 

UMAP projections of scRNA-seq data, and further categorized into the dividing and non-dividing 

transcriptomic states (see RNA single-cell transcriptome sequencing: Transcriptome Analysis subsection 

above). Total number of cells from each barcode were tallied across each transcriptomic cell cycle state, 

and a percentage (relative to each barcode) in each state was calculated. 

 

Bulk RNA transcriptome sequencing 

Data acquisition: Total RNA was isolated from untreated SKMEL5 single-cell derived sublines, each in 

triplicate, using Trizol isolation method (Invitrogen) according to the manufacturer’s instructions. RNA 

samples were submitted to Vanderbilt VANTAGE Core services for quality check, where mRNA enrichment 

and cDNA library preparation were done with Illumina Tru-Seq stranded mRNA sample prep kit. 
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Sequencing was done at Paired-End 75 bp on the Illumina HiSeq 3000. Reads were aligned to the GRCh38 

human reference genome using HISAT173 and gene counts were obtained using featureCounts157. 

 

Data analysis: RNA-seq data was analyzed using the DESeq2158 R package. Cells with less than 18 reads 

per condition were removed, according to DESeq2 vignette recommendations. Counts were transformed 

using the regularized logarithm (rlog) normalization algorithm. PCA was performed on the rlog normalized 

data using the prcomp function in R. The path between time series data points was visualized as a line 

between subline-time point replicate means in the PCA space. Differential expression analysis was 

performed in DESeq2 using a model design to quantify both changing variables and their interaction (~ 

subline + treatment time + subline:treatment time). DEGs across sublines between untreated (pre-

treatment, day 0) and idling (day 8 post-treatment) were identified (adjusted-p < 0.05, log2 fold change > 

2) and input into a GO enrichment analysis (clusterProfiler) to identify GO terms associated with biological 

process (BP), molecular function (MF), and cellular component (CC) GO types. A ferroptosis gene signature 

was obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Differentially expressed genes 

(q < 0.005, fold change > 1.5, z-score scaled) that overlapped with the KEGG ferroptosis gene signature 

were plotted using a z-score. Differentially expressed ferroptosis genes were classified according to 

relationship to glutathione (GSH), polyunsaturated fatty acids (PUFA), and iron regulation. 

 

Bulk ATAC epigenome sequencing 

Data acquisition: Data was collected using the omni-ATAC protocol for bulk ATAC sequencing (ATAC-seq). 

After PLX4720 treatment for 8 days (or no treatment expansion), cells from the first set (in parallel to 

barcode sampling data collection) were pelleted at 50k cells and resuspended in a cold ATAC-seq 

resuspension and lysis buffer containing NP40 (0.1%), Tween20 (0.1%), and Digitonin (0.01%) and 

incubated on ice. A resuspension buffer was added (0.1% Tween20, no NP40 or Digitonin) to wash out the 
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lysis reaction. Cells were pelleted and resuspended in a transposition mix (5x Tris-DMF, PBS, 1% digitonin, 

10% Tween20, nuclease-free H2O), including transposase Tn5, followed by a 30 minute incubation at 37°C, 

with shaking to enhance tagmentation. After 30 minutes, the reaction was stopped by adding a DNA 

binding buffer (Zymo) and purified using a DNA Clean and Concentrate kit (D4004, Zymo). The final 

product was eluted in nuclease-free H2O. PCR amplification was performed on the eluate with an NEBNext 

2X High Fidelity PCR Mix (NEB, M0541S) N7, and N5 index sequencing primers (extension at 72°C for 5 

minutes; denaturation at 90°C for 30 seconds; 12 cycles: denaturation at 98°C for 10 seconds, annealing 

at 62°C for 30 seconds, extension at 72°C for 30 seconds; final extension at 72°C for 5 minutes). The PCR 

product was purified with the Zymo DNA Clean and Concentrate kit, and eluted in 22uL nuclease-free H2O. 

ATAC-seq PCR libraries were visualized by agarose gel electrophoresis for an initial check of the 

nucleosome ladder pattern (bands ever ~150 bp). Libraries were also quantified using a Qubit fluorometer 

(ThermoFisher), Bioanalyzer 2100 (Agilent) for library profile assessment, and qPCR (Kapa Biosciences Cat: 

KK4622) to validate ligated material, according to the manufacturer’s instructions. The libraries were 

sequenced using the NovaSeq 6000 with 150 bp paired-end reads (untreated: ~160m, idling: ~130m 

reads). RTA (version 2.4.11; Illumina) was used for base calling and MultiQC (version 1.7) for quality 

control. 

 

Data Analysis: Reads were trimmed using cutadapt (paired-end) to remove primer sequences, and aligned 

to hg38 reference genome using the bwa mem function in Burrows-Wheeler Aligner (BWA, version 

0.7.17). Aligned reads were sorted and duplicates were marked using Picard (version 2.17.10). Untreated 

reads had more detected duplicates (~78% compared to ~32% in idling). Reads were deduplicated, leaving 

much fewer reads in untreated compared to the idling library. Reads were further cleaned according to 

sequence quality guidelines. Insert sizes were plotted from the output of InsertSizeMetrics after 

deduplication in Picard. Peaks of open chromatin were called using the MACS2 callpeak function according 
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to recommended guidelines for ATAC-seq data (BAM paired-end method, q-threshold: 0.05, no MACS2 

model, shift: -100, extension size: 200). Peaks were subjected to a further round of quality control and 

cleaning using ChIPQC (peak mapping, peak duplication, blacklist peak detection), and blacklisted peaks 

were removed. Peaks were converted to consensus counts using the runConsensusCounts function in 

soGGi. Intersections of and unique cleaned peaks were determined and visualized as a Venn diagram using 

the vennDiagram function in the limma package. Unique and intersection peaks were annotated with the 

nearest neighbor genes using the annotatePeak function and hg38 transcriptome in the ChIPseeker 

package. These peaks were also re-aligned to the transcription start site (TSS) for each gene, and average 

profiles of read subsets across all genes were obtained (nucleosome-free, mono-nucleosome, and di-

nucleosome; normalized to the TSS). Peaks were classified based on closeness to the TSS, and assigned to 

predicted feature (e.g., promoter, UTR, exon, intron, downstream, distal intergenic). Genes associated 

with unique and intersections of peaks were input into a GO enrichment analysis for BP, MF, and CC GO 

types. Transcription factor (TF) footprinting in the region around TSSs was performed on untreated and 

idling unique peaks for key transcription factors TFs. 

 

Calcium flux assays 

Untreated and idling cells were seeded on 384 well plates (Greiner) on the day prior to the 

experiment targeting 1000 cells per well. On the day of the experiment, media is removed from cells, 

washed with HBSS with Ca2+ and Mg2+ (Corning), and incubated in assay buffer (HBSS and HEPES (Gibco)) 

and Fluo-8 dye (1µM, Teflabs) for 1 hour. Cells are then washed with the assay buffer to remove dye and 

plates are input into the Panoptic experiment (WaveFront Biosciences). Cells were then treated with an 

agonist (Ionomycin - 8 µM; Thapsigargin - 20 µM; derived from experimental dose response curves in 

previous experiments). Upon agonist addition, plate images are immediately taken every second for 320 

seconds. Images are converted to fluorescence values based on the well intensity (i.e. the green 
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fluorescence in cells; Fluo-8 is an AM dye, so it is cell impermeable). Well intensity is compiled across 

technical replicates (12 per condition), and normalized to the time of agonist addition.  

 

Conclusion 

Understanding tumor plasticity in the context of treatment evasion is key to targeting recurrent 

cancers. Chapter III identified a novel ‘idling’ state in BRAF-mutant melanoma, which was attributed to 

epigenetic plasticity in response to BRAFi. This chapter provides a means by which cells utilize epigenetic 

plasticity to enter the idling state. Interestingly, short-term variability in the response to BRAFi is driven 

by lineage-dependent occupancy of idling transcriptomic states, which are broadly categorized into 

dividing and nondividing, i.e. more cells that transition into the idling dividing state leads to larger 

proportions of that barcode. However, all lineages eventually adopt the net-zero DIP rate characteristic 

of idling, suggesting that they eventually diversify across epigenetic states in dynamic equilibrium. Omics 

analyses of the SKMEL5 cell line point toward increased ion channel activity in idling cells, suggesting that 

molecular process is one of the major factors influencing the post-BRAFi landscape. Ion channel flux 

differences were performed to verify omics molecular findings, and literature suggested these differences 

opened up the door to cell death by ferroptosis. Ferroptosis inducer RSL3 showed marked increased cell 

death of idling cells, and rescue by ferroptosis inducer Fer-1 suggests glutathione signaling is a key point 

of interest for future studies targeting the idling state. 

 Together, this chapter suggests that a systems-level understanding of cancer plasticity can be 

utilized to identify potential secondary therapeutics and harness the consequences of that plasticity. 

Furthermore, although idling may be a reservoir for potential resistance mutations, it may also be a limited 

time frame where the disease can be targeted for better patient outcomes. We hypothesize ion channel 

signaling may serve as a network control point for the epigenetic landscape after BRAFi, and targeting that 

control point (with ferroptosis inducers or otherwise) may again modify the landscape so that all basins 
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will eventually go extinct, eradicating the tumor. While the analyses here do point to potential hypotheses 

for killing idling cells, the underlying theory provides a potential mechanism for targeting epigenetic 

plasticity in general. Namely, sequential therapies may be the best approach for targeting residual disease 

in tumors, as post-treatment tumors may have unique vulnerabilities associated with their epigenetic 

landscapes rather than specific single states. 
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CHAPTER 5 

Conclusion 

 

Discussion 

Despite significant progress in the treatment of oncogene-addicted cancers in recent decades, 

single targeted therapies have not developed into the “cure” many had hoped. Although these therapies 

can increase short-term patient survival, responses are variable and tumors invariably recur9,11. Many 

mechanisms have been proposed to understand tumor recurrence, but a large portion of these cases 

remain unexplained. Many studies that investigate tumor drug responses fail to grasp the extent of 

variability present in tumors prior to and in response to treatment. This variability, which comes from a 

variety of sources27,28,49,74, is one of the major contributors to recurrence. Inability to combat tumor 

variability leaves a large gap in our understanding, which results in the continuing poor patient prognoses. 

In this work, we quantify various aspects of tumor variability in multiple in vitro models of tumor 

heterogeneity and plasticity. We present these findings through the lens of a common heterogeneity 

framework23,85, which considers different types of heterogeneity jointly. Throughout this work, we make 

distinctions between different types of variability, and discuss their implications for drug sensitivity and 

evasion. The progress made in this work provides a way to interpret the complex array of variability in 

cancer, which in turn paves a path toward improved therapeutic strategies to treat this recalcitrant 

disease.  

Many modern cancer therapies focus on targeting specific genetic mutations within a tumor. 

Recent studies have shown that a complex interplay between genetic and non-genetic factors likely plays 

a key role in the failure of targeted treatments24,129. In this Chapter II, we investigated genetic and non-

genetic sources of variability in an in vitro tumor heterogeneity model comprising multiple versions (VU, 

MGH, BR1) and single-cell derived sublines of the NSCLC cell line PC9 that exhibit a wide range of different 
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responses to EGFR inhibition (FIG. 5). Given their histories and how each was derived, we had good reason 

to believe that the cell line versions were genetically distinct. This was validated using WES and CNV 

detection, which showed significant mutational differences among them (FIGS. 7-9). Distinct 

transcriptomic features were also identified by scRNA-seq (FIG. 10) and connections to the underlying 

genetic states were established by a comparison between GO terms enriched in each data modality (FIGS. 

11, 17, and 18). We then isolated seven sublines from PC9-VU that exhibited differential responses to 

EGFR inhibition (FIG. 6). Clonal drug response assays (FIG. 6B) and scRNA-seq analysis (FIG. 15) showed 

significant overlap with the PC9-VU parental cell line. WES and CNV detection revealed substantially less 

genomic variability among six of the seven sublines relative to the cell line versions (FIGS. 12-14) and GO 

similarity analysis indicated a weak, if any, connection between genomic and transcriptomic states in 

these sublines (FIGS. 16-18). For the other subline, DS8, the results were dramatically different: DS8 

harbors significantly more unique and IMPACT mutations than the other sublines (FIG. 12B-C), there is 

clearer evidence for copy number variation (FIG. 14), its single-cell transcriptomic state is substantially 

distinct from the other sublines (FIG. 15), and it displays a much stronger connection between genomic 

and transcriptomic states (FIGS. 16-18). Finally, stochastic simulations revealed that colony growth 

dynamics for six of the seven sublines can be explained as a population with a single cell state experiencing 

probabilistic division/death decisions (FIGS. 19-20). For DS8, a second cell state had to be included in the 

model to reproduce the bimodal DIP rate distribution observed experimentally (FIG. 21). 

In order to interpret our results, we utilize the theoretical framework for tumor heterogeneity 

discussed previously23,84,85,92 (FIG. 2). As explained in this view of tumor heterogeneity, tumors may 

comprise multiple genetic states, each of which has an associated epigenetic landscape with ³1 quasi-

potential energy basins corresponding to phenotypic states, across which cells can transition driven by 

intrinsic (e.g., gene expression) or extrinsic noise sources. Within our in vitro tumor model, the PC9 cell 

line versions (VU, MGH, BR1) correspond to the different genetic states. We assert that four of the PC9-
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VU sublines (DS3, DS6, DS7, DS9), based on their genomic similarity (FIGS. 12-14), transcriptomic 

distinctiveness (FIG. 15), weak genetic-to-transcriptomic correspondence (FIGS. 16-18), and 

monoclonality (FIGS. 19-20), likely correspond to basins within the epigenetic landscape associated with 

the PC9-VU genetic state. In contrast, DS8 appears to harbor a distinct genetic state that emerged out of 

PC9-VU at some point in the past in the absence of selective pressures. We come to this conclusion based 

on its resistance to EGFRi (FIG. 6), genomic (FIGS. 12-14) and transcriptomic (FIG. 15) distinctiveness from 

the other sublines and all three cell line versions, strong genomic-to-transcriptomic correspondence (FIGS. 

16-18), apparent polyclonality (FIG. 21), and lack of the resistance-conferring mutation (EGFR-T790M) 

found in PC9-BR1 (FIG. 13B). A schematic of these conclusions is summarized in FIG. 41. 

 

 

Figure 41 | Schematic summary of our interpretation of the results of analyses on PC9.  
Cell line versions PC9-MGH (light green), PC9-BR1 (red), and PC9-VU (blue) represent different genetic clones 
within our in vitro tumor model. Each genetic clone has an associated epigenetic landscape, including PC9-VU with 
at least three distinct basins corresponding to DS3, DS7/DS9, and DS6. Also depicted is the acquisition of a genetic 
resistance mutation out of the PC9-VU population detected within the DS8 subline (dark green). Note that it is 
unclear at present whether the resistance mutation was acquired before or after the subline was established (see 
below). 

 

Figure 22

G
en

et
ic 

Ax
is

Epigenetic Landscape

PC9-
VU

PC9-
MGH

PC9-
BR1

DS8

x (molecular state)

U(x) DS3 DS6DS9
DS7



 117 

We conclude based on our genomic and transcriptomic analyses that the DS8 subline harbors a 

novel genetic resistance mutation that emerged from the PC9-VU parental population at some point in 

the past. However, it remains an open question as to whether this mutation occurred after or before the 

subline was established (FIG. 42). If it occurred after, it could be the case that DS8 actually harbors two 

distinct genetic states, the original PC9-VU state and the new emergent state (FIG. 42A). However, if that 

were the case we would expect to see some DS8 cells in the same region of transcriptomic space as PC9-

VU, which we do not (FIG. 15A). Another possibility is that the emergent genetic state in DS8 outgrew the 

PC9-VU state, leaving behind an isogenic population (i.e., a “selective sweep”). This would explain the lack 

of DS8 cells in the PC9-VU region of transcriptomic space. However, there does not appear to be a 

discernable difference between the out-of-drug proliferation rates for DS8 and the other sublines (FIG. 

6A), which would seem to discount this possibility. We cannot entirely preclude this prospect, however, 

as it is possible that the difference in proliferation rates is simply too slight to detect in our current data.  

Conversely, if the mutation in DS8 arose prior to the subline being established, we would expect 

some mutant cells to remain within the PC9-VU parental population. We do, in fact, see a small number 

of PC9-VU cells in the region of transcriptomic space where DS8 cells reside (compare FIG. 10A and 15A). 

Interestingly, we also see some DS9 cells in this region (but not DS7, despite the significant overlap 

between the two populations; FIG. 15A). This could indicate that DS9 actually comprises two epigenetic 

basins, a deep one where most of the cells reside and a shallow one in the region of transcriptomic space 

where DS8 resides. It is possible that PC9-VU cells transition frequently between these two basins and 

that at one point in the past one cell in the shallow basin randomly acquired a genetic mutation that 

caused it to get “locked into” that basin. A progeny of that cell could have been isolated to start the DS8 

subline (FIG. 42B). This scenario would be consistent with the findings of Shaffer et al.136, although without 

the selective pressure that drives the mutation in their case.  However, if this is the case, given that DS8 

proliferates at essentially the same rate as the other sublines in the absence of drug, why are those cells 
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so rare (~2%) within the PC9-VU parental population? One would expect that population to grow out in 

the same way that DS8 did. One possible explanation might be that cell-cell interactions174 destabilize the 

mutant cells when in culture together with PC9-VU parental cells. This is an intriguing idea that would 

require additional experimentation to verify, perhaps using DNA barcoding31–33,175.  

Finally, there is also the added complication that DS8 exhibits a bimodal DIP rate distribution 

under EGFRi, which we conclude from our stochastic simulation analysis (FIG. 21) indicates that DS8 

harbors (at least) two distinct cell states. As discussed in Chapter II, the model is agnostic as to whether 

these two states are genetically identical or not, it merely requires they have distinct DIP rates. Thus, it 

does not preclude the possibility that DS8 is isogenic, as would be the case in two of the scenarios 

discussed above (i. mutation after subline establishment, followed by selective sweep; ii. mutation prior 

to subline establishment). However, the region of transcriptomic space in which DS8 cells reside is small 

compared to PC9-VU and there are no obvious subpopulations present (FIG. 15A). It is also difficult to 

reconcile why the left mode of the DS8 DIP rate distribution overlaps so significantly with the PC9-VU 

parental and subline distributions (FIG. 6B) despite the lack of overlap in transcriptomic space. These 

remain open questions that we hope to address in future investigations. We emphasize, however, that 

none of the issues raised here changes our main conclusion presented that DS8 harbors a novel genetic 

resistance mutation that emerged from PC9-VU at some point in the past in the absence of selective 

pressures. We summarize these conclusions in a schematic illustrating the different sources of cell state 

variability we hypothesize are operating within the PC9 family of cell lines and sublines (FIG. 42). 
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Figure 42 | Potential explanations for cell state heterogeneity in DS8.  
(A) Multiple genetic states hypothesis. In this scenario, a genetic resistance mutation was acquired after the DS8 
subline was established. Assuming the mutant state does not outgrow the original genetic state (i.e., a “selective 
sweep”), both genetic states should co-exist within the subline. (B) Single genetic state hypothesis. In this scenario, 
a genetic resistance mutation emerged within the PC9-VU parental population and a cell containing that mutation 
was isolated to establish the DS8 subline. To explain our single-cell transcriptomics data, we hypothesize that cell-
cell interactions between mutant and PC9-VU cells increases the death rate for mutant cells, making them a small 
proportion (<2%) of the total PC9-VU population.  

 

This view of tumor heterogeneity, as a three-tiered amalgamation of genetic, epigenetic, and 

stochastic factors, is not yet broadly accepted within the cancer research community85 because of the 
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focus on mutations as the main mechanism of cancer development. This mutation-centric framework has 

been helpful for many cancers, but can only be taken so far given the proliferation of new knowledge in 

the field of cancer heterogeneity. A primary goal of Chapter II has been to provide evidence for an 

alternative framework of cancer heterogeneity that includes genetic mutations, but also epigenetic 

variation and intrinsic stochasticity (FIG. 2). However, we believe that numerous reports in the literature 

are also consistent with this view. For example, Ben-David et al.26 showed that numerous “strains” 

(comparable to our cell line versions) of human cancer cell lines, obtained from different institutions, 

display extensive genetic heterogeneity. Moreover, genetically similar strains exhibit similar 

transcriptomic signatures and drug-response profiles. Thus, they argued that cancer cell lines can drift 

genetically when kept in culture independently, consistent with our results for the PC9 cell line versions. 

Our conclusion that the drug-resistant DS8 genetic state emerged spontaneously from PC9-VU in the 

absence of selective pressure aligns with observations by Ramirez et al.12 and Hata et al.13, who 

independently reported diverse resistance-conferring mutations arising in both untreated and drug-

treated PC9-MGH clones. Shaffer et al.136 described a transient, transcriptionally-encoded pre-resistance 

state in two BRAF-mutant melanoma cell lines that cells can transition into and out of in the absence of 

drug. We hypothesize that this pre-resistant state may constitute a basin within a BRAF-mutant melanoma 

epigenetic landscape, similar to our single cell-derived sublines (DS3, DS6, DS7, DS9) that we allege occupy 

the PC9-VU epigenetic landscape. The veracity of this hypothesis depends on how long cells reside in the 

pre-resistant state (its stability) and, correspondingly, whether the state is heritable by progeny cells. 

One insight from the study of heterogeneity in the PC9 cell line family was that PC9-VU sublines 

seem to occupy deep basins in the epigenetic landscape (i.e. the drug-response phenotypes remain 

independent in continued drug treatment). These deep basins are ideal for the study of heterogeneity, as 

they are more stable and therefore exhibit less plasticity. BRAF-mutant melanoma, as remarked above, 

has been shown to display remarkable plasticity in the presence of drug treatment, allowing for drug 
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evasion35,132,176. An early rationale for this plasticity is that BRAF-mutant melanoma is represented by 

shallow epigenetic landscapes, where transitions happen frequently and allow for cells to find drug 

tolerant states29,131. In Chapter III, we address that very topic. We report that sustained BRAF inhibition (> 

100 hours in vitro) induces entry of BRAF-mutant melanoma cell populations into a non-quiescent ‘idling’ 

state of balanced death and division, characterized by a near-zero proliferation rate36. Idling occurs in both 

parental and clonal populations, independent of differences in initial short-term responses, and is both 

drug induced and reversible, consistent with nongenetic drug tolerance described in earlier reports. 

Although a balanced state of cell proliferation and apoptosis has been described as tumor dormancy, the 

idling population state is distinct because it occurs in the context of drug response. Idling was not 

previously described, possibly because drug-response assays tend to be performed over short observation 

times (72-96 hours), and proliferation rates are not usually measured as done here117,118. Taken together, 

our findings are not easily explained within the existing paradigms of drug resistance or tolerance. In 

particular, cell populations that initially expand but then transition into the idling state (SKMEL5 in FIG. 

22A; A375 in FIG. 23A; SC10 in FIG. 25B) can neither be the result of selection of rare, preexisting resistant 

clones nor of the acquisition of resistance-conferring genetic mutations. Furthermore, idling populations 

are not due to confluence (FIG. 22C) or quiescence alone (FIG. 22D). This begs the question as to why an 

apparently thriving cell population would cease expanding and enter a less proliferative state of balanced 

death and division. 

To garner insights into these complex dynamics, we propose a kinetic model (FIG. 26A) in which 

a cell population is composed of multiple discrete, interconverting subpopulations, each of which is 

characterized by a DIP rate quantifying its net proliferation in a drug. The model is most easily understood 

within the framework of epigenetic landscapes, where cell subpopulations are associated with basins of 

attraction and phenotypic state transitions with traversals of quasi-potential-energy barriers. An implicit 

assumption of the model is that an epigenetic landscape exists in the absence of drug, defined by the 
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genetic background of the cell. Over time, cells within an isogenic population (e.g., a cell line) 

stochastically diffuse across basins in this landscape. This drug-naive “phenotypic drift” sets the initial 

cellular occupancies of each basin. Upon drug addition, the epigenetic landscape is modified in a drug- 

and dose-dependent manner. With the cFP assay, we have an experimental platform for quantifying initial 

cell occupancies in the drug-naive landscape based on measured DIP rate distributions. The central 

hypothesis of this work is that drug-treated cell populations re-equilibrate over this new drug-modified 

landscape; the short-term population-level drug response is a reflection of this re-equilibration process, 

and the idling state constitutes the final equilibrated state of the population. This theoretical framework 

explains why populations of single-cell-derived clonal sublines respond differently to a drug in the short 

term (different initial numbers of cells in each basin) but identically in the long term (exposure to the same 

landscape topography), as we report here. The reversibility of the idling phenotype for parental cell 

populations (FIG. 23B) is explained by a return to the drug-naive epigenetic landscape upon drug removal 

and re-equilibration back to the original cell occupancies. This is consistent with recent work showing that 

intermittent addition and withdrawal of vemurafenib leads to sequential periods of tumor shrinkage and 

growth, which forestalls development of drug resistance in BRAF-mutant melanoma cell populations70. 

Differential dynamics across cell lines are explained in terms of variations in the topography of drug-

modified landscapes (FIG. 27B) that are set by the genetic backgrounds of the cell lines. An important 

consequence is that each cell line achieves idling in a slightly different way— with varying proportions of 

regressing, stationary, and expanding subpopulations (FIG. 27B)—despite harboring a common BRAF-

activating mutation (i.e., the driving addicting oncogene). Differences in the sizes of idling cell populations 

may explain the extreme diversity of durability, or lack thereof, in individual patients’ clinical responses 

(i.e., the probability of acquiring resistance mutations depends on the number of cells surviving 

treatment). For instance, tumors that show significant early regression (e.g., WM88, WM164; FIG. 23A) 
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would be expected to take longer, perhaps significantly longer, to acquire secondary mutations than those 

that either show no initial change or expand (e.g., SKMEL5, A375; FIGS. 22A and 23A). 

An important aspect to consider when quantifying tumor drug sensitivity is drug-naïve drift, 

represented by shifts in epigenetic state occupancies, prior to treatment165. To better understand how 

cells diversify across the epigenetic landscape, we isolated a single SKMEL5 clone (SC01) sensitive to 

BRAFi, and tested its BRAFi response at multiple points along its drug-naïve progression (FIG. 28A). 

Different responses emerged after prolonged drug-naïve diversification (FIG. 28B), suggesting that the 

SKMEL5 landscape may be very plastic, even in the absence of selective pressure. Further model 

predictions (FIG. 28D-E) and experimental validations at the single-cell level (FIG. 29) suggest that, just 

like cells seem to equilibrate to a drug-treated epigenetic landscape, they too continue to diversify across 

cellular states in the absence of selective pressure. The implications of this drift are important to 

determine how the cancer community approaches therapies. If tumors do drift, targeting specific cellular 

sub-states will not eradicate the tumor, as cells from adjacent basins will repopulate the previous basin 

(i.e. killing SC10-like cells will not remove the possibility of SC01- or SC07-like cells from transitioning into 

that basin). This property of cancer adds a significant wrinkle to developing therapeutic approaches that 

both treat aggressive cells and prevent the plasticity that creates these cells. 

The properties predicted by in silico models of population dynamics suggested that transitions are 

rampant across BRAF-mutant epigenetic landscapes, in the presence or absence of drug treatment. We 

created a model schematic to interpret the effects of drug addition and removal on the underlying 

landscapes (FIG. 43). In short, we hypothesize that drug treatment modifies the landscape, over which the 

cells must re-equilibrate. After drug removal, barring any relevant genetic mutations, the landscape will 

return to its previous form and cells will re-equilibrate to it.  
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Figure 43 | Drug-induced and drug-free population dynamics are explained as re-equilibrations over epigenetic 
landscapes.  
(A) Schematic representation of a drug-addition and drug-removal cycle for a cancer cell population: (top left) cells 
begin in complete growth medium and are in a dynamic equilibrium across basins of a drug-free epigenetic 
landscape; (top left to bottom left) exposure to a drug modifies the landscape, taking the system out of 
equilibrium; (bottom left to bottom right) the population re-equilibrates over the new drug-induced landscape by 
reducing cell proportions in the regressing (R) and expanding (E) basins and increasing the proportion in the 
stationary (S) basin; (bottom right) the idling state corresponds to the newly achieved dynamic equilibrium; 
(bottom right to top right) removal of the drug reestablishes the drug-free epigenetic landscape and, again, takes 
the system out of equilibrium; (top right to top left) the population re-equilibrates over the drug-free landscape, 
returning the system to the original dynamic equilibrium. Arrow thicknesses represent relative transition rates at 
each stage of the re-equilibration process. (B) Clonal (top) and parental (bottom) drug-response population 
dynamics illustrating the connection to the different stages of the drug-induced re-equilibration process. Numbers 
and colors (orange, regressing; green, stationary; blue, expanding) correspond to those in the schematic above. 
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However, this hypothesis left a series of gaps: (1) how different are the pre- and post-treated 

landscapes? (2) how do cells re-equilibrate to the post-treated landscape? (3) what are the molecular 

properties of the landscapes? In Chapter IV, we used an in vitro model of melanoma tumor plasticity, 

BRAF-mutant melanoma cell line SKMEL5, to clarify the mechanism by which cells adopt a population 

“idling” state that is tolerant to BRAFi. Using cellular barcoding, we showed that idling cells result from an 

overwhelming majority of untreated clones, rather than clonal selection of a special idling clone (FIG. 30). 

Distinct transcriptomic signatures were identified that differentiate untreated and idling cells, with the 

idling cells represented in a more restrained transcriptomic space (FIG. 32). Importantly, both untreated 

and idling cells both occupied two separate transcriptomic states, one large and one small each (FIG. 33). 

These two states were defined by different features in each treatment condition (i.e., untreated and 

idling), with the idling cells separated into dividing and non-dividing cell states, as defined by each cell’s 

location in the cell cycle (FIG. 33). Barcoded clonal lineages were distributed across both transcriptomic 

states in each treatment condition, but relative barcode abundances after BRAFi were correlated to the 

relative proportion in each idling transcriptomic state, i.e., lineages that have a larger proportion of cells 

in the dividing than nondividing idling state results in a larger proportion of that barcode after treatment 

(FIGS. 31 and 34). Single-cell derived clonal subline transcriptomics show a similar behavior, as treatment 

causes clones to move to a more convergent transcriptomic space as they enter idling (FIG. 35A). 

Interestingly, subline differential expression analysis pointed towards ion channel activity as a 

characteristic of entrance into idling across sublines (FIG. 35B). Distinct regions of open chromatin were 

also found to differentiate idling from untreated cells, which also points toward ion channel activity (FIG. 

37C). Gene ontology similarity suggest each modality shows a reflection of the underlying epigenetic 

landscape. Validations of ion channel flux differences (FIG. 38) led to the identification of ferroptosis as a 

potential avenue for idling cell death (FIG. 39). Sequential addition of ferroptosis inducer RSL3 (after 

BRAFi) was shown to increase drug potency for idling cells (FIG. 40C), providing potential future avenues 



 126 

for drug treatment regimens. Together, these data provide evidence for a view of tumor plasticity where 

cells fall into basins across an epigenetic landscape, which can change in response to perturbations (e.g., 

drug treatment), and over which cells have to re-equilibrate. Differential short-term behaviors associated 

with the location where cells land in the treated landscape, and the idling phenotype represents cells 

equilibrated across the drug-treated landscape.  

Many studies have remarked on the epigenetic plasticity as a way to understand decreased drug 

sensitivity27,139, and others postulated that the epigenetic landscape as a mechanism to understand how 

cancer cells transition between states36,68,132. However, little direct experimental evidence exists showing 

how epigenetic state transitions lead to drug tolerance and eventual resistance. Chapter IV puts forth data 

that suggests a timeline for epigenetic plasticity prior to and after treatment. Tumor initiation from a 

single clone creates a population with the same genetic background. The genetic clone emanates an 

epigenetic landscape, comprised of several basins of attraction over which cells populate to create 

multiple cell types, each with different molecular phenotypes (FIG. 2). This “bet-hedging” strategy of 

epigenetic diversification in the absence of perturbations has been observed in bacteria40  and proposed 

as a survival strategy in cancer21,177. Over time, cells in the landscape reach a dynamic equilibrium, i.e., 

cells can still transition between basins but the population is in a state of balance. It seems our untreated 

population had nearly equilibrated prior to treatment, as most barcodes had a similar proportional split 

between transcriptomic clusters to the overall population (FIG. 34). The introduction of a perturbation, 

such as an anticancer drug treatment, upends the equilibrated landscape and drops cells into a new 

landscape. Cells re-equilibrate to the new landscape, and adopt cell fates corresponding to the state in 

which they now reside. In the case of a drug with good efficacy, most cells will fall into a state of the drug-

treated landscape that results in death. However, if the new landscape includes a state where cells have 

a positive proliferation rate in drug, the population will invariably rebound. In our case, most of the cells 

matriculate into the large non-dividing state upon treatment with BRAFi, but some end up in a smaller 
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dividing state (FIG. 34). However, some barcoded clonal lineages disproportionally fall into one of the two 

states (FIG. 34), leading some lineages to have increased short-term drug fitness but eventually adopt a 

drug-tolerant phenotype after lineages fully equilibrate to the new landscape. This occurrence is largely 

consistent with other oncogene-addicted cancers treated with targeted therapies4,12,21,36,71,135. 

Overall, this dissertation puts forth a framework to understand tumor variability, supported by 

multiple types of data, that could have a profound impact of how patients are treated in the clinic. Our 

quantitative approach to study tumor variability, which included drug response experiments, an array of 

omics technologies, lineage tracing, and mathematical modeling, captured high-level rationales for how 

tumors tolerate, evade, and become resistant to anticancer tumor therapies. By integrating these data 

across modalities and scales, we identify the properties of tumor populations at different points along 

disease progression that can lead to recurrence. These analyses provided a general mechanism of cancer 

cells: (1) prior to treatment, become heterogeneous (genetic, epigenetic, etc.) in a bet-hedging strategy 

for future perturbations; (2) in response to treatment, utilize plasticity between epigenetic basins to evade 

treatment in drug-tolerant states; (3) while evading treatment, allow some cells to continue dividing in 

order to acquire mutations that could provide resistance (i.e. genetic plasticity, via the baseline mutation 

rate). While this is an interesting mechanism, about which there remains much debate, it provides a 

simple and transferable approach for analyzing drug response variability in a variety of cancer systems. 

 

Future Directions 

It is now abundantly clear that a focus on single data modalities alone cannot solve the complex 

problems of tumor progression, metastasis, and treatment failure that continue to plague clinical 

oncology178,179. The view of tumor heterogeneity advocated in this work offers an alternative to the 

traditional gene-centric view and may transform how we understand and treat the disease. For example, 

that each genetic state has an associated epigenetic landscape with potentially numerous accessible 
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phenotypic states may explain why targeted drug treatments eventually fail in almost all cases180: some 

of these phenotypes may have molecular compositions that enable their survival under drug treatment. 

Cells pre-existing in these states (e.g., the pre-resistance state of Shaffer et al.136), and those that escape 

into them upon drug addition, may act as a refuge from which genetic resistance mutations can arise21,36. 

Alternative treatments based on targeting cancer stem cells181 (CSCs) have also been proposed but have 

so far proven unsuccessful182. This could be because CSCs correspond to shallow basins within an 

epigenetic landscape; killing cells in this basin does not eradicate the basin, hence leaving it available to 

be repopulated by cells from “adjacent” basins. Limited success can be attributed to understanding 

epithelial-mesenchymal transition (EMT), which is similar in principle to CSCs in that it employs epigenetic 

plasticity183,184. In a similar fashion, transitioned mesenchymal cells, targeted by drugs, could easily be 

repopulated by the epithelial state. The nature of this strategy suggests that targeting a single tumor 

subpopulation (involved in tolerance, resistance, etc.) will not eradicate the tumor and delay inevitable 

recurrence, as seen in the clinic36,185. 

Consistent with these reports, we believe that the idling population presented here, and the 

relatively simple theoretical framework describing it, has potentially far-reaching implications for patient 

therapies. In particular, even in tumors with high therapeutic sensitivity, a minority of cells often survive 

and can persist for months or even years. This ‘‘residual disease’’ is suspected to act as a reservoir from 

which resistance-conferring genetic mutations, and ultimately tumor recurrence, arise186. We speculate 

that idling cancer populations may, in fact, constitute the bulk of the residual disease. Indeed, by 

continuing active progression through the cell cycle, idling populations are more prone to accumulate 

deleterious mutations and, hence, are a more fertile ground for acquiring resistance mutations than 

quiescent or senescent populations. Recently described ‘‘drug-addicted’’ cells187, which can arise by either 

genetic or epigenetic mechanisms, may also emerge from idling cell populations. These cells are 

dependent upon a drug for continued proliferation such that drug withdrawal leads to initial tumor 
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shrinkage followed by regrowth. Within our modeling framework, drug addiction due to genetic changes 

would correspond to a change in the epigenetic landscape relative to that for drug-sensitive cells. 

Alternatively, if drug addiction is nongenetic in nature, this implies that additional basins exist within the 

drug-modified epigenetic landscape that are not easily accessible. In either case, idling cell populations 

are clearly distinct from drug-addicted populations. Applying the methods presented here to drug-

addicted cells is a possible area of future investigation.  

We have shown that the idling state is not a property of individual cells but rather a property of a 

BRAF-mutant melanoma population as a whole under prolonged BRAF-inhibition. As such, idling 

populations cannot be eradicated by targeting one particular subpopulation (i.e., a basin). Rather, the 

landscape itself must be altered (e.g., using drugs) to favor basins for regressing states over stationary and 

expanding states. Drug-naïve phenotypic drift has to also be accounted, as repopulation of drug 

insensitive cancer cells further complicates the problem. This is a significant departure from recent 

approaches that aimed to identify and eliminate rare cell subtypes (e.g., cancer stem cells182,188, drug-

tolerant persisters12,21) thought to be responsible for tumor progression and recurrence. This type of 

cellular reprogramming will require deep knowledge of the molecular factors that shape and define the 

epigenetic landscapes cancer cells inhabit. It has been suggested that a better approach, termed “targeted 

landscaping”36,185, is to use drugs in combination or in sequence to alter the topography of a landscape to 

favor drug-sensitive states over drug-tolerant states168. The feasibility of such an approach is supported 

by multiple studies showing that resistance to one drug can confer sensitivity to another, known as 

“collateral sensitivity”189–191. However, there remains the problem of how to administer treatment. 

Combination therapies have been shown to have clinical efficacy, but most tumors still recur and are 

recalcitrant. This is likely because combinations create an entirely new epigenetic landscape that has new 

molecular properties with unknown vulnerabilities, making the new tumor difficult to treat. An alternative 

approach is sequential therapy, in which cells are able to equilibrate to the new drug-treated landscape 
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with the hope that it is more sensitive as a whole. In fact, it has been shown that sequential drug 

applications can often be more effective than up-front drug combination treatments192,193. Molecular 

analyses in our study show that the drug-treated landscape in BRAF-mutant melanoma cell line SKMEL5 

is more homogeneous after treatment and has a common thread in ion channel activity across 

transcriptomics and epigenomics data (Chapter IV). By targeting the idling state with a sequential therapy 

that reduces ion channel activity, we could create another epigenetic landscape where all of the basins 

would have a negative proliferation rate in drug treatment and result in tumor eradication. Our attempts 

with ferroptosis inducers were a first step toward that goal (FIG. 40). However, future sequential drugs 

would need to improve efficacy in addition to the improved potency of ferroptosis inducers in idling. 

Although identification of such a target is a difficult endeavor, it is invariably a better option than the 

mutation-centric approach of targeting single states that eventually leads to tumor recurrence. Therefore, 

potential future studies could be aimed at identifying vulnerabilities of epigenetic landscapes that result 

after primary drug treatment, and finding patient-specific secondary drugs used for sequential drug 

treatment regimens that eradicate the entire tumor. 

Although this work reveals that idling is a property of nearly all BRAF-mutant melanoma lineages 

upon BRAFi treatment, it would be interesting to perform matched multi-platform studies on lineages 

over the course of treatment to determine patterns (or lack thereof) of acquired resistance. The 

framework provided here states that different types of heterogeneity are relevant at different times, so 

an ideal study would include genomic, transcriptomic, and epigenomic profiling on lineage-resolved 

cancer cell populations with a common genetic background in response to long-term BRAFi treatment at 

various intervals (e.g. every five days for one month). Inherent in this view is that epigenetic differences 

would dominate in the short-term response to treatment, while genetic mutations, driven by the baseline 

mutation rate while cells are idling, will initiate genetic states that may become resistant in treatment. An 

experiment could yield the following result: (1) Exome sequencing shows no genetic difference between 
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lineages prior to and early in the response to treatment, while ATAC-seq and scRNA-seq shows the pre-

treatment epigenetic variability indicative of differential short-term dynamics; (2) As cells enter idling, 

exome sequencing still shows no difference between lineages while ATAC-seq and scRNA-seq converge 

and lineages do not shift relative abundances; (3) Exome sequencing identifies rare and distinct genetic 

resistance mutations in a small minority of lineages during long-term treatment, establishing new and 

independent scRNA-seq and ATAC-seq epigenetic profiles associated with resistant genetic states. 

Together, this type of experiment would provide an explanation for how the different levels of 

heterogeneity enact changes across characteristic timescales. However, this type of experiment is 

expensive and lacks the impact of cancer research studies that utilize more clinically relevant systems, 

such as patient-derived material and multiple cell lines. But, these types of in-depth, multi-platform 

experiments could mimic a best-case scenario for personalized patient therapy, where we focus on a 

single patient (i.e. genetic background) and truly understand the dynamics of cancer progression, 

advancing mathematical models of drug-response dynamics and informing future therapeutic strategies.  

The study of systems biology encourages a repeating “loop” of modeling, experimentation, and 

informatics. In this study, we used a top-down approach to understand cancer cell population responses 

to treatment, substantiating a view to consider genetic, epigenetic, and stochastic variability jointly. By 

design, we only completed a couple of rounds through the systems biology “loop,” and therefore our 

models and analyses touched on different scales of biological variability but did not focus on any specific 

mechanisms. Further rounds through this loop could drill down into biological interpretations at the level 

of cellular processes, and eventually biochemical mechanism. Our GO analyses lends themselves to 

mathematical models of cellular processes (e.g. cancer signaling, stress response, ion channel activity) as 

a way to further understand phenotypic differences in cancer cell populations. From there, cellular 

processes could be modeled at a higher resolution as modules of protein signaling kinetics162. While the 

sequencing datasets collected here could be used calibrate these models, sensitive and specific time-
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series molecular assays, such as time-series single-cell protein measurements, would be ideal to fit these 

models and identify the signaling dynamics that lead to drug-response phenotypes. Future modeling 

studies should be aimed at understanding these molecular networks at a high-level, then drilling down to 

biochemical signaling to understand the network control points that can be targeted to improve existing 

therapies.  

An implicit limitation to all of the sequencing studies performed in this work is that they were 

performed using next-generation sequencing assays. While sequencing provides the large datasets that 

detect variation across the entire genome, there can be issues with the robustness of these methods, 

leading to false positives and targets with unknown clinical significance194. Other methods not utilized 

here, such as proteomics and metabolomics, use a different technology that has less coverage but is more 

sensitive and potentially more clinically relevant195. Additionally, the types of molecules these methods 

assess (i.e. proteins, metabolites) are end-products and signaling molecules that are more likely to have a 

functional effect than individual mutations or gene expression. Furthermore, these methods can measure 

cell activity through modifications like phosphoproteomics196 and activity-based protein profiling197. 

Therefore, future multi-omics studies should consider supplementing sequencing studies with proteomic 

and metabolomic profiling of key molecules (predicted from sequencing analyses) to confirm findings and 

elucidate the effects of upstream (of protein production; DNA, RNA) changes. These additional studies 

could bolster clinical relevance and improve consistency in the field. 

Cellular resistance to anticancer therapies is a complex, multifaceted problem. Rather than 

continuing to chase the newest drug to remove molecular sub-states of cancer, this study implores the 

cancer research community to adopt a systems-level approach to the treatment of tumors, where 

clinicians consider multiple types of variability (including, but not limited to, genetic). Looking forward, 

one can envision a future cancer treatment regimen involving genetic profiling of a tumor to identify 

dominant genetic states, followed by characterization of the associated epigenetic landscapes using 
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single-cell experimentation and computational modeling88,139,198,199 and then large-scale in vitro and in 

silico drug screens to devise personalized treatments for patients that can be tested in vivo before being 

administered clinically (FIG. 44). By leveraging state-of-the-art technologies and currently available drugs 

to tackle tumor heterogeneity at the genetic and non-genetic levels, this approach may finally give us a 

leg up in the longstanding War on Cancer.  

 

 

Figure 44 | Future strategies for treatment targeting the epigenetic landscape.  
Upon identifying and biopsying a tumor, genomic profiles will be taken. From these profiles, patient genetic data 
will be assigned to one of many relevant genetic backgrounds. In vitro data would provide information on the 
types of epigenetic states occurring in each tumor genetic background. To target tumor genetic backgrounds, 
batteries of in silico drug screens would be performed to identify the ideal treatment method (i.e. single agent, 
combination, sequential) in order to convert each epigenetic landscape into one where cells are in dying drugged 
cell states. Patients will then be provided personalized treatments (at the level of genetic backgrounds) according 
to the ideal method, and the cycle continues for as long as tumors remain. 
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