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Chapter 1

Background and Introduction

1.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) consist of devices that integrate physical and compu-

tational processes. While the integration of physical and computation processes has itself

been in existence for quite some time in the form of embedded systems[1], those are typ-

ically designed as isolated systems. In contrast, the vision of CPS is that the devices are

open and networked, allowing them to communicate and interact [2]. Allowing commu-

nication and interaction across devices allows for the development of new systems with

capacities that extend beyond those of isolated embedded systems.

An example of CPS can be seen in Fig. 1.1 which shows a traditional power grid con-

sisting of the power plant, transmission lines, substations, and meters. These systems rely

on distributed and heterogeneous devices, some of which may have some combination of

sensors, actuators, computing or storage resources, and communication capabilities. Thus,

applications that use these devices must be built to rely on loosely connected components

that run on different processors.

In addition to fulfilling their intended functional purposes, CPS systems must satisfy

the following non-functional requirements:

• Safety and Security: Safety is the freedom from unacceptable loss [3]. This archety-

pally includes loss of life and damage to property; in the context of CPS, for example,

this can include damage to users’ hardware or other belongings. Security, at least in

the field of information resources, has been defined as having three components:

“confidentiality (protection against disclosure to unauthorized individuals), integrity

(protection against alteration or corruption), and availability (protection against inter-
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ference with the means to access the resources)” [4]. To accommodate this definition

to cover CPS, we must consider not only information security but also hardware se-

curity. Since the hardware is directly controllable via software, we require physical

and cyber access control. We must also still preserve integrity by accounting for

changes that can be made to the hardware physically or via software by those who

have access. Finally, to preserve availability we must consider the consequences of

losing access to our communication with the hardware.

• Resilience and Reliability: Resilience is the ability to withstand and recover from

failures, regardless of whether the cause is a fault or an attack. Traditional CPS sys-

tems typically assume that the agents within the system are honest and only consider

crash failures [5][6]. Some distributed CPS also consider Byzantine failure [7] for

cases when agents may be compromised (as in the case of an attack), but if an agent

is not compromised it is presumed honest. Reliability is the ability of a system to

consistently do what it is intended to do. Reliability is achieved in part through se-

curity (preventing failures) but also by resilience (withstanding and recovering from

failures). The reliability of a system can be measured with respect to the number of

failures it can sustain before violating some invariant. Systems are designed to with-

stand some number of failures. For example, power systems are designed to handle

the failure of any single component [8].

• Efficiency and Scalability: Efficiency, generally speaking, is minimizing the re-

sources required to fulfill the other requirements.

Efficiency is generally cost-motivated and introduces constraints to the system de-

sign. For example, providing reliability may require redundant systems, potentially

using replicas. However, there are costs associated with each replica, leading the de-

signer to consider potential trade-offs. Coulouris et al. [4] have described a system

as being scalable “if it will remain effective when there is a significant increase in the
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number of resources and the number of users”.

Many of the most interesting applications of CPS such as smart cities and networked

autonomous vehicles need to be able to function if there is a large influx of users.

This list is not exhaustive, however, it does provide criteria for evaluating CPS solu-

tions. These requirements must be satisfied even if some of the system agents are malicious,

compromised, or faulty.

1.2 The Concept of Multiple Stakeholders

Many distributed CPS are designed, owned, and operated by a single stakeholder, or a

few collaborating stakeholders where cyber and physical components are developed jointly.

However, there is growing interest in developing CPS applications that can be constructed

ad hoc from existing devices as applications become relevant. For much of the history of

the United States, for example, power was generated, harnessed, and provided to the public

by individual utility companies that provided power to their respective regions, operating

as a distributed CPS (see Fig. 1.1). Over time, however, the provision of power to the

public has become spread across interacting companies that coordinate and operate power

grids. In recent years, new technologies (e.g. solar panels) have allowed an ever-expanding

number of people to operate their sources of energy. Power systems now include these

members of the public who are in theory capable of trading their energy resources via novel

transactive energy systems (TES). There is a potential for nearly unlimited participants in

TES, and each may have unique goals and motives when it comes to energy production and

trade.

TES are an example of industrial MSCPS that will generate massive amounts of data.

Other such applications appear in systems such as smart cities and networked autonomous

vehicles which consist of many distinct users. The data can be used to, over time, train and

develop algorithms for maintaining the system - for example the algorithms to control the
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prosumer trading strategy or identifying the criteria for raising alarms. These data-driven

algorithms are resource-intensive and generate data in volumes and rates that are typically

only seen in data centers. Due to the volume, the networks potentially connecting these ap-

plications to data centers do not have sufficient bandwidth to provide timely analysis. This

has resulted in interest among the community in turning toward edge computing systems

for these purposes.

Edge-computation (also referred to as edge-cloud computation) refers to computations

carried out on various distributed nodes as opposed to central cloud servers. These nodes

may be centrally managed, but many independently owned devices (including those which

comprise the Internet of Things, or IoT) have computation capabilities. These devices

are often underutilized, and there is interest in opportunistically harnessing their compute

power. As the IoT and the number of devices with processing capability rapidly expands,

necessary computations can be distributed among local, decentralized networks of devices

instead of being sent to centrally managed cloud servers [9]. Owners of these devices,

however, may have inherently distinct interests and priorities.

Edge-cloud computation can be utilized in TES and other industrial IoT systems. The

correctness of operation of the TES, in this case, depends upon the correctness of results

and timeliness of analysis obtained from the edge cloud.

We refer to these kinds of systems (both TES and the edge-cloud system used to de-

ploy industrial IoT applications) as multi-stakeholder cyber-physical systems (MSCPS),

and they add an additional layer of complexity due to potentially conflicting objectives of

the participants and the mutual distrust that consequently may exist between them.

1.2.1 Challenges in MSCPS

The overarching challenge unique to MSCPS is the coordination between stakeholders.

The reason this is so challenging is because to coordinate, the agents comprising the sys-

tem must share information by sending messages to one another. How do we know that
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Figure 1.2: Distributed power grid with multiple stakeholders, including homeowners that
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messages are being sent and received? Since the stakeholders cannot be trusted, can the

messages be trusted? These questions force us to consider the following core questions:

• How will the agents be able to reach consensus? Will the agents follow through with

any agreed-upon actions?

• How do we cope with the needs of agents to maintain individual privacy?

• How do we ensure that the system is accomplishing its goals?

We discuss these problems and other important considerations below.

Trust. For agents to coordinate appropriately, they must exhibit some degree of trust

in the system and be able to reach a consensus about what actions to take. In the example

of TES, the participants must agree on how much energy each will produce or consume in

order to ensure that they are balanced. Balance is critical because an imbalance can shift

the frequency of the AC power; this changes the behavior of the devices connected to the

power line and could cause them to operate faster or generate more heat. If the error is suf-

ficiently large and persists long enough, at some point it will damage the physical system

and compromise safety. Many works have investigated ways to achieve consensus across

agents in MSCPS[10]. Consensus generally requires information-sharing across devices,

but information-sharing can fail in indistinguishable ways. For example, if a message sent

by one device does not arrive, does that mean the device has failed, or the network failed?

Or does it mean that the message has simply not yet arrived? This challenge is exacer-

bated by conflicting objectives among stakeholders who may withhold messages or send

conflicting messages. Determining how to prevent, detect, and cope with resultant failures

generally requires us to make assumptions about the intentions of the stakeholders.

• If we assume all agents are honest, then failures to achieve consensus are a result

of system failures (including crashes, corrupted messages, and network failures).

Consensus protocols have been developed specifically to cope with these types of

issues [11, 12, 13].
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• If we instead assume agents are rational or malicious, then they may share false

information or lie about actions taken. This requires the use of consensus protocols

that are Byzantine fault-tolerant (BFT) [7, 14, 15]. Some additional BFT protocols

that use game theoretical techniques [16, 17] are feasible for rational agents since

such agents will do what benefits them most.

• In systems that rely on incentivizing agents to achieve consensus, a means of detect-

ing misbehavior is essential. One way this can be achieved is by keeping records of

the stated intentions of the participants so that they can be audited through compari-

son against actual events (a feature known as auditability).

The methods employed to facilitate consensus must therefore consider the goals of the

system overall, its agents, and its applications when determining what considerations must

be in place to ensure consensus is possible. To preserve trust in the system, there must also

exist mechanisms to verify that the agents are cooperating and that the system is indeed

operating correctly.

Privacy. Importantly, the need to share information across nodes can compromise the

privacy of participants using the system. Since these systems are intrinsically integrated

with humans, privacy preservation is an important requirement. Privacy is a subtype of

safety, where an agent is free from unwanted observation and unwarranted interference is

limited. Privacy is critical in TES, for example, because energy usage patterns can be used

to identify system participants and learn personal information about them. These issues

could be accounted for, for example, by obscuring participants’ identities or by obscuring

data regarding their transactions.

There has been extensive work on ways to preserve privacy in distributed systems. Dif-

ferential privacy protocols add noise to communicated data so information can be gathered

without learning private information about individuals. Encryption schemes, including ho-

momorphic encryption [18, 19, 20], allows computations to be performed on encrypted data

while minimizing access to decryption keys. Mixing [21, 22, 23] is an approach that hides
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the identities of the participants within a group and allows the data needed for consensus

to be shared as plaintext. Many privacy protocols also implement multi-party computation

(MPC) [24] which allows a group of agents to collectively compute a result without sharing

their private inputs. These various approaches require us to make certain considerations.

For example, you cannot augment privacy without considering the effects it will have on

other important properties of an MSCPS, including the ease with which it can communi-

cate to reach consensus across agents, its efficiency of operation, and the overall safety of

the system. For example, consensus protocols run more efficiently when agents are work-

ing with unencrypted information [25]. This raises important questions, such as: how do

we manage a need for privacy with the need to achieve consensus? Implementation of

privacy techniques also impairs how efficiently the system operates. How do we balance

the trade-off between preserving privacy and maintaining efficiency? Additionally, privacy

techniques must take into consideration the need to keep certain information accessible so

that system safety can be monitored.

Integration and Correctness. MSCPS can be comprised of many heterogeneous de-

vices. TES, for example, consists of power plants, transmission lines, substations, smart

meters, solar panels, etc. These devices may be legacy devices that were part of existing

power grids, or they may be newer devices capable of running more state-of-the-art tech-

nologies. Many MSCPS are also open systems, which need to be able to adapt to agents

entering and exiting the system (scalability). In the example of transactive energy, an in-

dividual may acquire the capacity to generate power and wish to be added to an existing

energy trading system. These integrative challenges contribute to MSCPS being complex

to design, build, and manage. To cope with these complexities, middleware platforms for

CPS [26] have been developed to provide an abstraction layer that enables applications to

be developed without having to worry about the details of a secure communication proto-

col, for example. To ensure an effective MSCPS, we must also ensure correctness of both

the applications and the middleware they are built upon. Doing so again requires the use
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of verification mechanisms, which often utilize models or formal mathematical verification

methods [27, 28]. The solutions and results produced by the system applications must be

verified as well, and we must be able to identify and track any system failures so they can

be appropriately addressed.

1.2.2 Role of Distributed Ledgers in MSCPS

To address these problems in MSCPS there has been intense interest in distributed

ledger technologies (DLT)[29].

DLT refers to a family of protocols that allow mutually distrustful parties to achieve

consensus in the absence of a centralized authority. These protocols are distributed across

many stakeholders which each maintain a copy of a ledger, which is an immutable, append-

only record of communications or transactions within the system. The permanence of this

ledger makes the transactions auditable, which provides a mechanism to ensure system

security by checking for dishonest behavior that would disrupt the ability to achieve correct

results and consensus without a central authority. The maintenance of a single replicated

ledger across distributed agents allows the system to be scaled to accommodate entering

and exiting agents.

The prototypical example of DLT is Bitcoin[16]. DLT gained popularity because of

the success of Bitcoin, which uses a blockchain data structure, which is a specific type

of distributed ledger. Bitcoin is a platform that was designed to enable financial trans-

actions without a trusted third party. To achieve this, Bitcoin implemented an incentive-

compatible game to determine who has write-access (the ability to make updates) to a

ledger via a proof-of-work consensus algorithm. The result is an open ledger that is effec-

tively immutable (due to prohibitively high cost and complexity of tampering with data in

the ledger), auditable (since all transactions are publicly accessible), and which accurately

records transactions without reliance upon a central authority. The developers of Ethereum

[30][31] recognized that a platform like Bitcoin could be used for more than just trans-
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ferring tokens/currency between mistrusting parties since distributed ledgers can be used

to model state machines. They introduced the concept of smart contracts, which are pro-

grams that are appended to the ledger and can later be executed with the same guarantees as

manual transactions. Smart contracts greatly expand the capabilities of distributed ledgers

allowing them to perform trusted computations, again without a trusted central author-

ity. Though it is clear that distributed ledgers can benefit MSCPS systems particularly in

achieving consensus, non-repudiation, and correctness of computation, DLT does not sim-

ply solve all the major problems in MSCPS. The application of DLT to MSCPS opens up

some additional issues we must consider, especially with respect to privacy and integration

(e.g., real-time operation).

1.3 Motivating Research Questions

The overarching question motivating the work in this dissertation is how can DLT be

used to address the problems in MSCPS, and what additional challenges does this intro-

duce? I confront this issue by specifically addressing the following questions:

1. In MSCPS that require non-repudiation to incentivize correct operation, how

do we preserve safety while enabling privacy? In TES, energy producers and

consumers submit offers to trade energy. If the trades in the system are not balanced,

or exceed the safety constraints of the system, then they can cause physical damage.

Safe trades can be incentivized by recording trades and fining prosumers for deviating

from them. However, this requires knowledge about which prosumer has made a

given offer, which could violate privacy concerns. I, along with collaborators, have

aimed to develop a trading platform based on DLT that enables a safe and private

energy trading market.

2. In a system with multiple stakeholders, how can trust and consensus be achieved

efficiently? In an edge-cloud system used to deploy CPS applications, since the
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participants are mutually mistrusting, we cannot implicitly trust that a computation

provider will execute the computation correctly. There are ways to check the cor-

rectness of results, but the costs of ensuring correctness need to be competitive with

cloud computation costs for an edge-cloud to be viable. Thus a focus has aimed to

explore how DLT can be used to implement a secure edge-cloud marketplace that

enables complex computations while preserving efficiency.

3. Can we make it easier to make well-integrated MSCPS applications? What fea-

tures does this require? The Android operating system provides many services and

features that facilitate the development of phone applications. Similarly, MSCPS

applications require many services that are difficult to implement correctly, and so

would benefit from a platform to aid in application development. DLT can be used

to provide many of these services, but there are other services that DLT cannot pro-

vide. Additionally, well-integrated MSCPS must include measures to ensure that the

systems are constructed and are operating correctly. We have worked to develop a

platform that provides these additional services and can integrate with DLT and thus

support MSCPS applications.

1.4 Outline and Scope of Dissertation

The remainder of this dissertation describes my efforts to answer these questions and

my contributions in this field. Primarily, I describe the development of two applications

(for trading energy and for trading computational capacity) which are intended to address

some of the aforementioned challenges of MSCPS.

In Chapter 2 a decentralized platform designed to enable a forward-trading peer-to-peer

transactive energy market that ensures trading safety while preserving anonymity called

TRANSAX is presented.

MODiCuM (Mechanisms for Outsourcing Computation via a Decentralized Market)

aims to enable a market for opportunistic utilization of idle compute resources at the edge
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Table 1.1: Summary of Key Publications Addressing the Research Questions

Question Relevant Publications

Q1 [32, 33]
Q2 [34, 35, 36]
Q3 [37, 38, 39]

(Chapter 3) It takes a minimalist approach to consensus, by assuming that only a task-giver

needs to be convinced of the correctness of a computation. MODiCuM provides probabilis-

tic assurance that jobs are executed correctly. Our initial implementation of MODiCuM

was limited to batch (or offline) jobs, which were isolated from outside systems. Recog-

nizing the need to support streaming (or online) computations to access the potential of

MSCPS systems we built upon the principles established in MODiCuM to construct a mar-

ket that supports trusted outsourcing of online computation (Chapter 4). This is an essential

preliminary step for industrial internet applications that have soft real-time requirements.

In Chapters 5 and 6 we describe elements necessary to support general MSCPS appli-

cations. Specifically, since MSCPS must be able to interface with heterogeneous devices

Chapter 5 we utilize a middleware to abstract away high complexity details associated with

“infrastructure protocols”. Then in Chapter 6 we build upon that foundation and construct

a generalized platform for arbitrating resource consumption across different domains. This

blockchain-based platform, SolidWorx, provides key design patterns for enabling resource

exchange, including a hybrid solver architecture.

The specific contributions of this work, in addition to the development of these appli-

cations, include:

• An analysis and design of privacy groups that can achieve k-anonymity while main-

taining safety in MSCPS - Some applications require data in order to take control

actions to keep the system safe, but the sharing of that information may violate user

privacy. By allocating an in-network currency (representing safe trading limits based

on physical system constraints) and using a mixing protocol, we demonstrated an
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ability to provide k-anonymity to participants in a transactive market. ([36])

• An analysis of a verifier strategy for MSCPS - As part of building an incentive-

compatible market for outsourcing computation, we performed a game-theoretic anal-

ysis of participant strategies to verify that a rational participant would behave cor-

rectly with overwhelming probability. ([32])

• Integration of a blockchain-based distributed ledger and a production-grade stream-

ing middleware to enable the trusted outsourcing of stream computations. The two

tools are integrated through the construction of a protocol that enforces a game that

verifies participant outputs to ensure that rational participants will behave in expected

ways. ([33])

• Generalization of the solution using Middleware and a general market Platform - To

generalize the solutions developed in this dissertation we focused on the development

of a) a connection substrate [38] and integrating it with the distributed ledger and b)

design of a generalized resource sharing market platform called SolidWorx. ([37])

• A hybrid solver pattern - In systems requiring complex computations, there may exist

a computationally limited but secure compute resource, as well as a computationally

powerful but non-secure resource. We have developed a hybrid solver pattern that

enables the system to execute computation with the non-secure resource and use the

secure resource to verify the result. ([37])

The remainder of this dissertation proceeds as follows: In Chapter 2, we describe the

development of the TRANSAX platform and its major components and how this applica-

tion addresses issues of privacy and efficiency in the MSCPS of transactive energy systems.

In Chapter 3 we discuss the MODiCuM platform and describe how it addresses integrative

issues and verifies the correctness of computations in a distributed computing marketplace.

In Chapter 4, we describe the extension of MODiCuM to online (streaming) applications.
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In Chapters 5 and 6, we discuss the integration with RIAPS and the SolidWorx platform, in-

cluding the hybrid solver. Finally, in Chapter 7 the dissertation concludes with a discussion

and possible future work in this field.
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Chapter 2

Privacy and Resilience Through Blockchains For Energy Systems

2.1 Overview

Privacy describes a state of being free from unwanted interference. MSCPS, which

access and process information from many sources and users, are typically only attractive to

users if they can guarantee some degree of privacy when it comes to the use of participants’

information.

When considering privacy, though, we must also consider safety. Privacy necessitates

hiding information, however safety requires information. This apparent conflict comes

up frequently as a concept in the role of government. Governments want to monitor more

aspects of their populace to improve safety, but there is always a concern that if private data

is not carefully protected then it can be used to harm its owner1. Examples of such harms

include identity theft or using private information to target a specific group of people.

Privacy and safety are both critical in transactive energy systems (TES). If the trans-

actions in a community are public, the energy consumption patterns of a household can

be exploited to harm participants. Therefore, the amount of energy produced, consumed,

bought, or sold by any prosumer should be anonymous to other prosumers and perhaps

only shared confidentially with the distributed system operator (DSO) when paying the

monthly bill. However, the system must also prevent negligent or malicious trading from

endangering the stability or physical safety of the microgrid by rejecting trades that are

unlikely to be delivered or that would violate line capacity constraints. Ensuring that the

system operates appropriately and within these constraints therefore requires information

about the participants’ actions and locations within a network.

1https://www.newyorker.com/magazine/2018/06/18/why-do-we-care-so-much-about-privacy
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There are a variety of tools that have been used in conjunction with DLT to enhance

privacy in distributed systems. Examination of these techniques makes it apparent that de-

grees of privacy can be assured at the expense of system efficiency. The eminent challenge

is to achieve sufficient levels of privacy and safety without sacrificing too much efficiency

[40].

Achieving this goal requires us to determine specifically what information should be

kept private. In the case of TES, we must be able to provide privacy of communication.

Without this, an adversary can discern who is making a function call or sending a message

over a network based on the sender’s MAC address, IP address, or route to the destination.

However, communication confidentiality is not sufficient for anonymous trading, as the

accounts used to make trades must also not be associated with their owners. We must

therefore anonymize individual users’ identities.

To satisfy the seemingly conflicting requirements of privacy, efficiency, and safety in

MSCPS, we have developed a platform for transactive energy system microgrids which

trades efficiency for safety and privacy. To demonstrate the feasibility of our platform, we

perform experiments with dozens of embedded devices and energy production and con-

sumption profiles from a real dataset.

The works comprising this chapter have been accepted for publication in Transactions

on Cyber-Physical Systems (TCPS) [36] and have been published in IEEE Computer [35].

This builds upon [34] which was published in the 24th IEEE International Conference on

Parallel and Distributed Systems (ICPADS).

• S. Eisele, T. Eghtesad, K. Campanelli, P. Agrawal, A. Laszka, and A. Duby, “Safe

and Private Forward-Trading Platform for Transactive Microgrids,” 2020, Accepted,

Pending Publication.

• Scott Eisele, Carlos Barreto, Abhishek Dubey, Xenofon Koutsoukos, Taha Eghtesad,

Aron Laszka, and Anastasia Mavridou. Blockchains for Transactive Energy Systems:

Opportunities, Challenges, and Approaches. Computer, 53(9):66–76, 2020
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• A. Laszka, S. Eisele, A. Dubey, G. Karsai, and K. Kvaternik, “Transax: A blockchain-

based decentralized forward-trading energy exchange for transactive microgrids,” in

Proceedings of the 24th IEEE International Conference on Parallel and Distributed

Systems (ICPADS), 2018, pp. 918–927.

2.2 Introduction

The traditional setup of the power grid is rapidly changing. Solar panel capacity is

estimated to grow from 4% in 2015 to 29% in 2040 [41], and with the decreasing costs

of battery technology, it is becoming increasingly feasible to support almost 99% of the

total load with renewable sources, by balancing out the intermittence with batteries [42].

These changes are also leading to the development of a decentralized vision for the future

of power-grid operations, in which local peer-to-peer energy trading within microgrids can

be used to both reduce the load on distribution system operators (DSO) and help them plan

better, leading to the development of transactive energy systems (TES) [43, 44, 45, 46]. A

transactive energy system is a set of market-based constructs for dynamically balancing the

demand and supply across the electrical infrastructure [46]. In this approach, customers

connected by transmission and distribution lines can participate in an open market, trading

and exchanging energy locally. Customers participating in these markets are known as

prosumers. There are typically three phases in the operation of this market: posting offers

to buy or sell energy, matching selling offers with buying offers, and synchronized energy

transfer to and from the grid.

In theory, these interactions could happen in a centralized manner by communicating all

offers to a centralized market, which would match the offers and broadcast the trades back

to the individual prosumers. However, in a centralized solution [47], the market presents a

single point of failure.

In the last decade, there has been an emphasis on decentralizing the operations of elec-

trical power grids [48] due to their vulnerability to natural disasters, such as Hurricane
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Maria, and cyber threats, such as the Ukraine power grid attack. In the absence of central-

ized control, the “prosumers” (customers with both electrical energy production and con-

sumption capability) can collaborate to dynamically balance the demand and supply across

their microgrid, improving system reliability. However, this requires a financial market at

the distribution level, where participants can trade energy assets. It also requires control

strategies to keep local energy sources stable due to the low system inertia compared to a

conventional grid [49]. This is the main concept behind transactive energy systems (TES)

[44].

Prosumers that change consumption (demand response) as part of market-based trans-

active control were demonstrated in the Olympic Peninsula Project [50] in 2006. Both

local production and consumption in a limited “transactive” system were demonstrated by

the LO3 project in Brooklyn [51]. There are ongoing studies, such as the work done by

Wörner et al. [52] in a town in Switzerland.

However, large-scale deployments are still missing. The primary reason for this is

the complexity of integration between financial markets, predictive algorithms, informa-

tion platforms, and physical control. While the research community has made progress

in managing the control of the system [53] and developing predictive algorithms [54], the

integration with a decentralized information architecture and market remains a challenge

due to problems of trust, correctness, and privacy.

Our research team—and several other teams as shown by a recent survey [55]— pro-

posed addressing the challenges of trust in TES through the use of blockchains. The moti-

vation behind this is in part due to the success of Bitcoin, a prototypical example application

of blockchains. Bitcoin stores transactions in a public distributed ledger, which is called

a blockchain because the records are stored in blocks that are cryptographically linked to

previous blocks, forming a chain. Any entity can read the ledger; however, to append a

new block to the ledger, the Bitcoin network uses a probabilistic consensus protocol based

on proof-of-work (PoW). This consensus protocol solves both trust and fault-tolerance is-
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sues since the majority of participants will reach consensus on the ledger state. Further, it

provides censorship-resistant, immutable, tamper-proof, and transparent transactions, thus

enabling trusted transactions without a trusted third party. Enabling trusted transactions

without a trusted third-party is a crucial factor for TES. Some blockchain implementations

also enable participants to implement smart contracts—programs that are stored and exe-

cuted by the blockchain network, benefiting from its trust properties.

While the idea of integrating blockchains into TES is conceptually appealing, several

challenges must be addressed before protocols and implementations can live up to their

potential. The outline for this article is as follows: first, we describe several of the key

challenges which prevent the widespread adoption of decentralized TES. Then, we present

TRANSAX, our solution for implementing blockchain-based TES, and show how it ad-

dresses these challenges.

2.3 Challenges for Blockchains in TES

The key challenges of using blockchains in transactive energy systems can be summa-

rized as (a) code complexity and immutability; (b) privacy issues; (c) high computation

costs, especially when trying to process complex market operations through smart con-

tracts; (d) integration challenges due to a lack of suitable patterns to interact with physical

devices and to ensure time synchronization; and (e) security concerns of blockchain-based

systems. Table 2.1 summarizes these challenges and how we address them.

Code Complexity and Immutable Bugs Coding errors frequently occur due to incorrect

assumptions about the execution semantics of smart contracts [58]. For example, Luu et

al. [59] analyzed 19,366 smart contracts and found that 8,833 contracts had one or more

security issues. These errors can result in devastating security incidents, such as the “DAO

attack,” where $50 million in cryptocurrency was stolen, and the multi-signature Parity

Wallet library hack, where $280 million in cryptocurrency was lost.

Blockchain-based platforms are designed to provide immutability, which prevents patch-
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Table 2.1: Summary of challenges integrating blockchain technologies with power systems
and our relevant contributions.

Challenge Description Contributions

Immutable bugs Blockchains’ design guarantees im-
mutability; however, this means
bugs are also immutable

Build and verify smart contracts us-
ing VeriSolid [56]

Efficiency Smart contracts require all verifier
nodes to replicate the computations
in a transaction

Limit the computations executed on
the smart contract to checking cor-
rectness

Integration Existing power grid equipment does
not have the capabilities for manag-
ing a distributed set of blockchain
nodes integrated with the power
equipment

Use the middleware services (time
synchronization, discovery) of RI-
APS for integration [57]

Privacy Transaction details can be open and
attributable to prosumers

Energy assets, cryptographic mix-
ing, and groups to provide k-
anonymity to prosumers while en-
suring feeder level safety

Cybersecurity Although blockchains protect
against some attacks, adversaries
can compromise information before
it is processed by the blockchain

Design policies to mitigate attacks
(future work)

ing smart contracts or reverting malicious transactions. Developers can work around this

by separating the code into distinct contracts, a “frontend” and a “backend,” where the

frontend references the backend library. Then, to change the functionality of the frontend,

developers can simply change the reference to point to a new version of the backend. How-

ever, this can also erode trust since a contract may be changed and no longer satisfy its

original terms. In more extreme cases, transactions can be reverted via a hard fork, but this

requires the consensus of all the stakeholders and introduces security issues such as replay

attacks.

To tackle these security risks and vulnerabilities in TRANSAX, we use formal methods

developed by our team to generate code from the high-level, graphical, and FSM-based

language to low-level smart contract code. Rooting the whole process in rigorous semantics

allows the integration of formal analysis tools, which can be used to verify safety and
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security properties, thereby enabling the development of correct-by-design smart contracts.

Computational Efficiency Smart contracts are not suitable for executing complex market

mechanisms, because the majority of verifier nodes responsible for verifying the compu-

tation in a given transaction must perform the computation to ensure correct execution,

making computations very costly. This is sometimes referred to as on-chain computation.

To limit the potential for abuse of the network, Ethereum sets an upper bound on the amount

of computation that may be performed in a single transaction.

To provide complex market functionality, the computation must be performed off-chain

and only the results should be evaluated and verified by the smart contract on-chain. This

is apparent in the implementation of transactive energy systems where the trades must

be decided optimally based on a complex set of equations considering the feeder design

and various power limits. Such complex computations are not possible to implement in

smart contract languages like Solidity. Therefore, we have developed a novel hybrid solver

pattern for TRANSAX where we integrate external solvers with smart contracts. This

enables us to perform the computations off-chain and verify them on the blockchain.

Privacy Concerns Although it is possible to make anonymous transactions with cryp-

tocurrencies, energy trades may need information that reveals the traders’ identities. For

example, the trades must be associated with a specific feeder to ensure that the maximum

power transferred through the feeder is less than the rated capacity. This poses a challenge

for privacy, because a trader may need to reveal its location to permit constraint checks and

validate trades.

If the information is available publicly, then the inference of energy usage patterns

can be exploited, for example, to infer the presence or absence of a person in their home.

Brenzikofer et al. [60] address privacy while incentivizing stability through dynamic grid

tariffs. However, their safety checks are limited to the total aggregated grid load rather than

per feeder constraints, which are essential in a power network. In TRANSAX, we use the

concept of tradeable and mixable energy assets in a transactive energy system to provide a
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level of anonymity to the users while ensuring that system calculations at the feeder level

are still safe.

Integration Concerns Integrating legacy infrastructure with blockchains is challenging

since most existing smart meters lack the computational capabilities required to participate

in a blockchain network [61]. An alternative to directly participating is for the devices

to send their data to nodes that are connected to the blockchain network. However, this

requires configuring each device to connect to a suitable gateway and mechanisms to handle

lost connections and gateway failures. Moreover, while the ledger provides consensus on

when to produce or consume power, participants still need to time synchronize their energy

transfer to avoid instabilities in the system.

TRANSAX solves the integration concerns using RIAPS (Resilient Information Archi-

tecture Platform for Smart Grids) [57], a platform for building distributed, fault-tolerant

smart-grid applications. RIAPS provides key services, like time-synchronization and dis-

covery. Discovery facilitates the integration of legacy hardware with blockchain applica-

tions by automating the network connections between them via RIAPS nodes, which have

been developed to run on low-cost embedded devices. Each component in the TRANSAX

is either a RIAPS node or interfaces with a RIAPS node.

Security Threats Research on power systems security has investigated cyber-attacks with

different goals and strategies. Some attacks exploit the centralized nature of the system, for

example, by compromising the utility’s network to access control systems (such as in the

attacks against Ukraine’s power utilities). Other scenarios consider adversaries that target

IoT or smart appliances to create disturbances in the system (e.g., turning all the A/Cs on

at the same time).

The distributed nature of blockchain prevents some attacks that are feasible in central-

ized systems. For example, some false data injection attacks that modify utility’s messages

(e.g., price signals) may fail because the devices can verify such information with multi-

ple sources (blockchain nodes). Hence, an adversary may have to compromise multiple
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blockchain nodes to deceive smart appliances. However, some attacks remain. Since pro-

sumers must connect to the blockchain-based system through gateway nodes, an adversary

can still attempt to “cut off” prosumers from the system by targeting these gateway nodes

and making them unavailable. For example, an adversary can launch a (distributed) denial

of service attack against a gateway node to prevent a set of bids from arriving at the market

on time. Using this attack, the adversary, who may be affiliated with one of the market

participants, can increase (or decrease) market prices by delaying a set of lower (or higher)

price bids. We are still in the preliminary stages of developing active mitigation strategies

in TRANSAX to prevent these attacks.

Building a decentralized market for transactive microgrids is challenging because the

system must satisfy several requirements, which are often in conflict with each other.

• First, the market must be efficient, i.e., the system should maximize the utilization of

local supply—in meeting local demand—by matching the prosumers in the micro-

grid, taking advantage of their temporal flexibility in production and consumption.

This requirement is crucial since effective trading is the purpose of the system; all

other requirements are supporting this one.

• Second, the market must be safe, i.e., the system must reject trades that would en-

danger the stability or physical safety of the microgrid 2.

• Third, the market must be privacy-preserving, i.e., the system should conceal in-

formation that could be used to infer the prosumers’ energy usage patterns. The

amount of energy produced, consumed, bought, or sold by any prosumer should be

anonymous to other prosumers and limited to the monthly bill for the DSO. This is

necessary because such information could be exploited, e.g., to determine when a

resident is at home.

• Fourth, the market must be secure, i.e., the system must ensure authenticity, data

integrity, and auditability for offers, trades, and bills.
2Note that this is orthogonal to the physical enforcement of safety which is provided by overcurrent pro-

tection units that limit the total current flowing through the microgrid.
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• Finally, the market must be resilient, i.e., it must retain availability even if some

nodes or entities (e.g., DSO) are unavailable.

Addressing the requirements of privacy, safety, and efficiency simultaneously in a de-

centralized system is essential because removing any of these requirements significantly

simplifies the problem. For example, if we do not consider safety, then privacy is easy

since all offers can be made anonymously. If we do not consider privacy, then safety is

easy since the safety constraints are associated with the offers and can be checked. If we

do not consider efficiency, then we can simply say no trades are allowed, preserving pri-

vacy and safety. If we allow a centralized market, then the centralized market can keep the

offers confidential and can check the safety constraints. However, such a system has a sin-

gle point of failure. Assurance that the system is secure and resilient is crucial in practice,

e.g., because communities are facing increasing cyber threats as well as natural disasters

that disrupt infrastructure.

The research community is increasingly advocating the use of distributed ledgers in the

energy sector [55]. This is primarily because a distributed ledger can provide an immutable,

complete, and fully auditable record of all transactions that have occurred within a system.

However, there are still research gaps. For example, Andoni et al. [55] surveyed 140 ap-

plications of distributed ledgers and found that 33% were focused on decentralized energy

trading, with privacy preservation being a key challenge that has not been addressed. They

also highlighted the balancing of supply to demand (stability) as another critical issue. The

work presented in this paper addresses the problem of privacy while ensuring that safety

constraints can be enforced for trades.

Contributions: In this paper, we introduce TRANSAX3, a blockchain-based decentral-

ized transactive energy system that provides privacy while preserving safety without using

a centralized market. The underlying communication substrate is implemented by using a

distributed middleware, called Resilient Information Architecture Platform for Smart Grid
3This paper is a significant extension of our previously published conference papers [62, 34, 37].
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(RIAPS) [63, 64, 65], which provides resilience against failure of individual services. The

specific contributions of this paper are as follows.

1. To enable safe and anonymous trading, we introduce production and consumption

assets that allow us to dissociate safety from privacy (Section 2.6.3). To provide

privacy, we integrate a decentralized mixing protocol [22] that enables prosumers to

anonymize their production and consumption assets within their groups, and hence

trade anonymously. This also enables privacy-preserving billing such that no infor-

mation is disclosed to the DSO other than the billed amount.

2. We show in Section 2.8.2 that prosumers can be anonymous within groups (Sec-

tion 2.6.2) while preserving system safety; however, there is potential for some loss

of trading efficiency. We provide an analysis of efficiency loss and under what con-

ditions.

3. To improve trading efficiency, we provide prosumers with the ability to specify pro-

duction and consumption offers with temporal flexibility (Section 2.6.4). We solve

the trading problem as a linear program, maximizing the energy traded over a long

time horizon4, and introduce a hybrid architecture for solving this linear program.

4. We show in Section 2.8.1.2 that the hybrid architecture can combine the resilience of

distributed ledgers with the computational efficiency of conventional compute plat-

forms when solving the energy allocation problem. This hybrid architecture ensures

the integrity of data and computational results— if the majority of the ledger nodes

are secure—while allowing the complex computation to be performed by a set of

redundant and efficient solvers.

5. In Section 2.9, we provide a testbed and experimental analysis of our proof-of-

concept implementation of TRANSAX. We show that our approach is feasible for

private blockchains in the grid-connected microgrid setting.

Outline: We introduce the background concepts in Section 2.4. TRANSAX compo-
4In Section 2.8.1.3, we show that temporal flexibility can improve trading efficiency.
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Figure 2.1: Illustration of a multi-feeder system. Each feeder is protected by an overcurrent
relay at the junction of the common bus. The inset figure shows that a node in the network
has different kinds of loads, some of which can be scheduled, making it possible for a
consumer to bid in advance for those loads. The smart meter ensures proper billing per
node. The blockchain network is an immutable record of all transactions and is used for
scheduling energy transfers between homes in the microgrid and between homes and the
DSO.

nents are discussed in Section 2.5. We present the energy trading approach, including

extensions to support safety and privacy in Section 2.6. Then, we describe the protocol

that implements the energy trading approach in Section 2.7. We analyze how we meet

key requirements and discuss the tradeoff between privacy and efficiency in Section 2.8.

We present an integrated testbed using GridLAB-D [66] and numerical results in Sec-

tion 2.9. Finally, we present related research in Section 2.10 followed by conclusions in

Section 2.11.

2.4 Background

To explain the concepts of TRANSAX, we first need to provide an overview of basic

concepts and assumptions and how we use them in TRANSAX.

Assumption on the Microgrid Architecture We consider a microgrid with a set of feeders.

27



A feeder has a fixed set of nodes, each representing a residential load or a combination of

load and distributed energy resources, such as rooftop solar and batteries, as shown in

Fig. 2.1. Each node is associated with a participant in the local peer-to-peer energy trading

market, and each participant is independent and has control over its energy utilization.

The participants may be able to predict their future production and consumption based on

historical data and anticipated utilization.

Resilient Information Architecture for Smart Grid RIAPS is an open application plat-

form for smart grids that distributes intelligence and control capability to local endpoints

to reduce total network traffic, avoid latency, and decrease dependency on multiple de-

vices and communication interfaces, thereby enhancing reliability. RIAPS also provides

platform services to power-system applications running on remote nodes [67], including

1. resource-management framework to control the use of computational resources, 2. fault-

-management framework to detect and mitigate faults in all layers of the system, 3. secu-

rity framework to protect the confidentiality, integrity, and availability of a system under

cyber-attacks, 4. fault-tolerant time-synchronization service, 5. discovery framework to es-

tablish the network of interacting actors for an application, and 6. deployment and manage-

ment framework for administration of the distributed applications from a control room. In

TRANSAX, RIAPS is used as the base middleware and application-management substrate,

allowing all actors to communicate and the protocol—discussed later in this paper—to be

implemented. As a note, actor interactions are supplemented with interactions with the

distributed ledger and the smart contract. We will discuss these interactions in detail in the

protocol section. For more details on RIAPS, we refer the interested reader to [38].

Distributed Ledgers

Distributed ledgers refer to distributed databases where nodes in a network simultane-

ously reconcile their copies of the data and sequence of actions through Byzantine con-

sensus to achieve a shared truth so that data in the shared ledger can be verified and is

tamper-aware. Data is added to the ledger via transactions and all transactions submitted
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to the ledger are associated with an account, which is typically not anonymous. The im-

mutability of actions is crucial for providing safety and security, i.e., after a transaction

has been recorded, it cannot be modified or removed from the ledger. The ledger is dis-

tributed to enhance fault tolerance. Since a distributed ledger is maintained by multiple

nodes, nodes must reach a consensus on which transactions are valid and stored on the

ledger. This consensus must be reached both quickly and reliably, even in the presence of

erroneous or malicious (e.g., compromised) ledger nodes. We make no assumptions about

the particulars of the consensus algorithm. In practice, a distributed ledger can be imple-

mented using, e.g., blockchains with proof-of-stake consensus or a practical Byzantine fault

tolerance algorithm [68]. In TRANSAX, we use Ethereum [69] as the ledger.

Mixing The use of blockchains in building a transactive energy platform is appealing also

because they elegantly integrate the ability to immutably record the ownership and trans-

fer of assets, with essential distributed computing services such as Byzantine fault-tolerant

consensus on the ledger state as well as event chronology. The ability to establish consensus

on state and timing is important in the context of TES since these systems are envisioned

to involve the participation of self-interested parties, interacting with one another via a

distributed computing platform that executes transaction management. However, this also

leads to the problem of privacy as the records in the blockchain can be attributed to the

prosumers. The earliest approach to solve the privacy problem in blockchains was mix-

ing. The key concept in mixing is to hide the linkage between the inputs and outputs of

a transaction by combining them with other transactions. In TRANSAX, we use Coin-

Shuffle [22]. A simplified example of how this works is that each participating prosumer

provides an anonymous output account and shuffles them with the others so that only the

owner knows who owns a specific account. Then, if each prosumer inputs the same amount,

all the transaction must do is transfer that amount from each of the public accounts to each

of the anonymous accounts. Since the anonymous accounts were shuffled, no anonymous

account can be linked conclusively to its owner. Note that this does not hide the quantity

29



Prosumer
(Python, geth, RIAPS)

Prosumer
(Python, geth, RIAPS)

DSO
(Python, geth, RIAPS)

Off-Chain Solver
(Python, CPLEX, RIAPS)

Blockchain
miner (geth)

Blockchain
miner (geth)

Smart contract
(Solidity)

Hybrid Solver

Verifier

/0MQ

Figure 2.2: Components of the energy trading system. In our reference implementation,
we use Ethereum as the decentralized computation platform for smart contracts, and the
other components interact with the blockchain network using the geth Ethereum client.
The smart contract is implemented in Solidity, a high-level language for Ethereum, and it is
executed by a private network of geth mining nodes. The off-chain solver uses CPLEX.

of assets stored in each anonymous account.

2.5 TRANSAX Components

In this section, we introduce the components of TRANSAX (see Fig. 2.2).

Distribution System Operator We assume the existence of a distribution system operator

(DSO) that participates in the market and may use the market to incentivize timed energy

production within the microgrid to aid in grid stabilization and promotion of related an-

cillary services [70] through updates to the price policy. The participants settle trades in

advance using automated matching which allows them to schedule their transfer of energy

into the local distribution system. The DSO meets the participants’ residual demand and

supply, i.e., consumption and production that they did not trade in advance due to estima-

tion error or lack of trade partners5.

5Note that this requires the presence of a secondary controller that balances voltage and frequency in the
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DSO is also responsible for handling financial operations, such as sending monthly

bills, and functional operations, such as registering new smart meters6. Registration means

adding a new smart meter to the platform when it is installed for a prosumer. Thus, DSO

provides safety and security by limiting access to the distributed ledger to prosumers that

have registered.

Producers and Consumers The participants in the market are the producers and con-

sumers of energy, collectively referred to as prosumers. The prosumers are built upon

the RIAPS middleware which provides communication services via the ZeroMQ messag-

ing library 7. RIAPS additionally provides time synchronization between the prosumers

allowing them to synchronize production and consumption, ensuring that they remain bal-

anced. The prosumers can construct offers and trade with other prosumers. The trades are

submitted to a Smart Contract (described below) via a geth client. Geth 8 is the Go imple-

mentation of the Ethereum protocol and is used to instantiate and interact with an Ethereum

blockchain. The prosumers use a light client that interacts with the full clients that consti-

tute the blockchain. Each prosumer has a smart meter that measures the prosumer’s energy

production and consumption. The smart meter aggregates this data and provides it to the

DSO periodically, which is a necessary element of privacy-preserving billing. Prosumers

work together to achieve privacy via the execution of mixing protocol.

Distributed Ledger The blockchain in Fig. 2.2 provides the basis for the market functional-

ity of TRANSAX. It provides immutable storage service for offers, solutions, safety con-

straints, and a notification log of events. Prosumers and solvers check for these events

and perform actions based on them. Nodes in the network host full Ethereum clients to

provide this substrate. Hybrid Solver The hybrid solver in Fig. 2.2 is an innovation of

microgrid as described in our prior work in [71].
6In practice, these smart meters must be tamper-resistant to prevent prosumers from “stealing electricity”

by tampering with their meters. After a smart meter has measured the net amount of energy consumed by the
prosumer in some time interval, it can send this information to the DSO for billing purposes. This way, the
DSO has no fine-grained information on the energy profile of the consumer, the DSO only knows the amount
that needs to be paid for the energy consumed during that cycle.

7https://zeromq.org/
8https://geth.ethereum.org/downloads/
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TRANSAX, which enables a distributed market architecture that has the auditability and

resilience of blockchains through a smart contract, and can yet use high-performance com-

puters to solve the computationally expensive optimization problem off-blockchain. The

hybrid solver consists of smart contract elements as well as an off-chain solver.

• Smart contract — The smart contract in Fig. 2.2 provides the essential functional-

ity of the market, such as financial transactions and enabling offers to be submitted

and then matched into trades that satisfy the safety constraints of the system. The

matching of the offers is a complex optimization problem, and since smart contracts

are limited in the number of computations they can perform, we do not use the smart

contract to match offers into trades. Rather, we only use it for validation of energy

trading solutions provided by the off-chain solver.

• Off-Chain Solver — The off-chain solver in Fig. 2.2 consists of a set of solvers.

Any participant of the system can act in the solver role since all offers posted on the

blockchain are public. Prosumers are incentivized to act as solvers — especially if

no dedicated solvers are available — since they can create trades that benefit them.

Note that this is safe because the smart contract verifies each solution and accepts a

new solution only if it is feasible and strictly better than the current solution. Each

solver can use whatever strategy it chooses for solving because the solutions will still

be verified. In this work, we implement an efficient linear programming solver using

CPLEX [72], which can be run off-blockchain, on any capable computer (or multiple

computers for increased reliability). The solver is run periodically to find a solution

to the energy trading problem based on the latest set of offers posted. Once a solution

is found by the matching solver, it is submitted to the smart contract in a blockchain

transaction, which is validated by the smart contract. Note that if new offers have

been posted since the solver started working on its solution, the solution computed

by the solver will still be considered valid by the smart contract because any solution

that is valid for a set of offers is also valid for a superset of those offers. Since solvers
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may fail, the smart contract should accept solutions from multiple off-blockchain

solvers to preserve the reliability provided by the blockchain. However, these solvers

might provide different solutions. Thus, the smart contract must be able to choose

from multiple solutions (some of which may come from compromised nodes).

2.6 Energy Trading Approach

The distribution network infrastructure is a collection of feeders (Fig. 2.1). A feeder

has a fixed set of nodes, each representing a prosumer, which is a combination of load and

distributed energy resources, such as rooftop solar panels and batteries. We assume that the

prosumers can estimate their future production and consumption based on historical data

and anticipated utilization. The prosumers submit energy offers based on their estimates

via automated agents that act on behalf of residents (i.e., residents do not need to trade

manually). The estimates do not need to be perfect because we assume the existence of

a distribution system operator (DSO), which also participates in the market and can sup-

ply residual demand not met through the local market. The DSO may use the market to

incentivize timed energy production within the microgrid to aid in grid stabilization and

the promotion of related ancillary services [70] through updates to the price policy. Since

the trades record only the energy futures and do not control the actual exchange of en-

ergy, we include a smart meter at each prosumer to measure the prosumer’s actual energy

production and consumption. In practice, these smart meters must be tamper-resistant to

prevent prosumers from “stealing electricity.” After a smart meter has measured the net

amount of energy consumed by the prosumer in some time interval, it can send the relevant

information to the DSO for billing purposes to keeping the actual consumption private.

Our goal is to find an optimal match between energy production and consumption of-

fers, which we refer to as the energy trading problem. Each offer is associated with an

identity that belongs to the prosumer that posted the offer. We refer to these identities as

accounts, and prosumers may generate any number of them.
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Table 2.2: List of Symbols
Symbol Description

Microgrid
F , U set of feeders and prosumers, resp.
Ce

f , Ci
f maximum net (external) and total (internal) load constraints, resp., on feeder

f ∈F
L+

u , L−u production (+) and consumption (-) limits, resp., of prosumer u
Ce

g, Ci
g maximum net (external) and total (internal) load constraints, resp., on group

g ∈ G
EPA, ECA asset granting permission to produce or consume, resp., a unit of energy
∆ length of each time interval
Tclear minimum number of time intervals between the finalization and notification of

a trade
Et

u energy transferred by prosumer u in interval t
t f next interval to be finalized t +1+Tclear

Offers
S f , B f set of selling and buying offers, resp., from feeder f ∈F
S , B set of all selling and buying offers, resp.
S (t), B(t) set of all selling and buying offers, resp., submitted by the end of time interval

t
As, Ab account that posted offers s ∈S and b ∈B, resp.
Es, Eb amount of energy to be sold or bought, resp., by offers s ∈S and b ∈B
Is, Ib time intervals in which energy could be provided or consumed by offers s ∈S

and b ∈B, resp.
Rs, Rb reservation prices of offers s ∈S and b ∈B, resp.
M (s), M (b) set of offers that are matchable with offers s ∈S and b ∈B, resp.

Solution
εs,b,t amount of energy that should be provided by s to b in interval t
πs,b,t unit price for the energy provided by s to b in interval t
Feasible(S ,B) set of feasible solutions given sets of selling and buying offers S and B
ε̂s,b,t , π̂s,b,t finalized trade values

Implementation Parameters
Th solve horizon; the number of intervals beyond the most recently finalized in-

terval that are considered by the solver (offers beyond horizon t f +Th are not
considered by solver)

∆̂ length of the time step used for simulating the real interval of length ∆
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2.6.1 The Basic Problem Specification

Let F denote the set of feeders. On each feeder, there is a set of prosumers, who can

make offers to buy and sell energy. We assume that time is divided into intervals of fixed

length ∆, and we refer to the t-th interval simply as time interval t. For a list of symbols

used in the paper, see Table 2.2.

For feeder f ∈F , we let S f and B f denote the set of selling and buying offers posted

by prosumers in feeder f , respectively.9 A selling offer s ∈ S f is a tuple (As,Es, Is,Rs),

where As is the account that posted the offer, Es is the amount of energy to be sold, Is is the

set of time intervals in which the energy could be provided, Rs is the reservation price, i.e.,

lowest unit price for which the prosumer is willing to sell energy. Similarly, a buying offer

b ∈ B f is a tuple (Ab,Eb, Ib,Rb), where the values pertain to consuming/buying energy

instead of producing/selling, and Rb is the highest price that the prosumer is willing to pay.

For convenience, we also let S and B denote the set of all buying and selling offers (i.e.,

we let S = ∪ f∈FS f and B = ∪ f∈FB f ).

We say that a pair of selling and buying offers s ∈S and b ∈B is matchable if

Rs ≤ Rb and Is∩ Ib 6= /0. (2.1)

In other words, a pair of offers is matchable if there exists a price that both prosumers

would accept and a time interval in which the seller and buyer could provide and consume

energy. For a given selling offer s ∈S , we let the set of buying offers that are matchable

with s be denoted by M (s). Similarly, we let the set of selling offers that are matchable

with a buying offer b be denoted by M (b).

A solution to the energy trading problem is a pair of vectors (ε,π), where εs,b,t is a non-

negative amount of energy that should be provided by offer s ∈S and consumed by offer

b ∈M (s) in time interval t ∈ Is∩ Ib
10; and πs,b,t is the unit price for the energy provided

9To include the DSO in the formulation, we assign it to a “dummy” feeder.
10We require the both seller and buyer to produce a constant level of power during the time interval. This
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by offer s ∈S to offer b ∈M (s) in time interval t ∈ Is∩ Ib.

A pair of vectors (ε,π) is a feasible solution to the energy trading problem if it satisfies

the following two constraints. First, the amount of energy sold or bought from each offer

is at most the amount of energy offered:

∀s ∈S : ∑
b∈M (s)

∑
t∈I(s,b)

εs,b,t ≤ Es and ∀b ∈B : ∑
s∈M (b)

∑
t∈I(s,b)

εs,b,t ≤ Eb (2.2)

Second, the unit prices are between the reservation prices of the seller and buyer:

∀s ∈S ,b ∈M (s), t ∈ I(s,b) : Rs ≤ πs,b,t ≤ Rb (2.3)

The objective of the energy trading problem is to maximize the amount of energy traded.

The rationale behind this objective is maximizing the load reduction on the bulk power grid.

Formally, an optimal solution to the energy trading problem is

max
(ε,π)∈ Feasible(S ,B)

∑
s∈S

∑
b∈M (s)

∑
t∈I(s,b)

εs,b,t (2.4)

where Feasible(S ,B) is the set of feasible solutions given selling and buying offers S

and B (i.e., set of solutions satisfying Equations (2.2) and (2.3) with S and B).

The above formulation ensures feasibility, which takes the reservation prices into ac-

count. However, we do not address how to set the clearing prices in this paper. Clearing

prices could be set using an existing approach, e.g., double auction; however, this is part of

our future work (Section 2.11).

2.6.2 Adding Safety Extensions to Problem Specification

To ensure the safety of the microgrid, we introduce additional constraints on the so-

lution to the energy trading problem. Each prosumer u has independent production and

can be achieved by smart inverters.
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consumption limits, which are denoted by L+
u and L−u , respectively. Further, each feeder

f ∈ F , has a transformer for incoming energy, which has a capacity rating. We let Ce
f

denote the capacity of the transformer of feeder f . Similarly, the distribution lines and

transformers within the feeder have capacity ratings as well. We let Ci
f denote the maxi-

mum amount of energy that is allowed to be consumed or produced within the feeder during

an interval11. These constraints are physically enforced by the over-current relays of the

circuit breakers and feeders.

Now we generalize and introduce the notion of groups. We note that groups can corre-

spond to feeders and support the constraints that we introduced in the previous paragraphs.

They allow us to support physical layouts other than strictly feeders, and it will be useful

for privacy later. We define a group g to be a set of feeders (i.e., g ⊆F ). We let G be the

set of all groups, and for each group g ∈ G , we introduce group safety limits Ci
g and Ce

g,

which are analogous to feeder limits. A solution is safe if it satisfies the following three

constraints. First, the amount of energy transferred out of or into a prosumer is within the

production and consumption limits in all time intervals:

∀u ∈U , t : ∑
s∈Su

∑
b∈B

εs,b,t ≤ L+
u and ∀u ∈U , t : ∑

b∈Bu

∑
s∈S

εs,b,t ≤ L−u (2.5)

where Su and Bu are the sets buying and selling offers posted by accounts owned by

prosumer u.

Second, the amount of energy consumed and produced within each group is below the

safety limit in all time intervals:

∀g ∈ G , t : max

{
∑

b∈Bg

∑
s∈S

εs,b,t , ∑
s∈Sg

∑
b∈B

εs,b,t

}
︸ ︷︷ ︸

max of energy bought or sold (X)

≤Ci
g (2.6)

11In other words, limit Ce
f is imposed on the net production and net consumption of all prosumers in feeder

f , while limit Ci
f is imposed on the total production and consumption of prosumers in feeder f .
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This means that the sum of all the buying trades nor the sum of selling trades can exceed

the safety limit.

Third, the amount of energy flowing into or out of each group is within the safety limit

in all time intervals:

∀g ∈ G , t :−Ce
g ≤

(
∑

s∈Sg

∑
b∈B

εs,b,t

)
−

(
∑

b∈Bg

∑
s∈S

εs,b,t

)
︸ ︷︷ ︸

net energy transfer (N)

≤Ce
g (2.7)

Note that the maximum of bought or sold energy (X) in Eq. (2.6) is always greater than the

net energy transferred (N) in Eq. (2.7), i.e., N < X . This is important because it means that

we need to consider only Ce
g ≤Ci

g. If we considered Ci
g <Ce

g, then N < X ≤Ci
g <Ce

g, which

means that the internal limit will always trip (X >Ci
g) before the external limit, making the

external limit irrelevant. This observation will be important in Section 2.8.2

2.6.3 Adding Privacy Extensions to Problem with Safety Specifications

To protect prosumers’ privacy, we let them use anonymous accounts when posting of-

fers. By generating new anonymous accounts, a prosumer can prevent others from linking

the anonymous accounts to its actual identity, thereby keeping its trading activities private.

However, anonymous accounts pose a threat to safety. Since the energy trading formaliza-

tion with safety extension (see Equations (2.5) - (2.7)) discussed earlier requires the offers

to be associated with the prosumer to enforce prosumer-level constraints and with the group

from which they originated to be able to enforce group-level safety constraints. Without

these associations, prosumers can generate any number of anonymous accounts. They can

then post selling and buying offers for large amounts of energy without any intention of de-

livering and without facing any repercussions. A malicious or faulty prosumer could easily

destabilize the grid with this form of reckless trading. Consequently, the amount of energy

that may be traded by anonymous accounts belonging to a prosumer must be limited.
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To enforce the prosumer-level constraints we introduce the concept of energy produc-

tion and consumption assets, which allows us to disassociate the limiting of assets from the

anonymity of offers. First, an energy production asset (EPA) is a tuple (EEPA, IEPA,GEPA),

where

• EEPA is the permission to sell a specific non-negative amount of energy to be pro-

duced,

• IEPA is the set of intervals for which the asset is valid, and

• GEPA is the group that the asset is associated with.

Second, an energy consumption asset (ECA) represents permission to buy a specific

amount of energy and is defined by the same fields. For this asset, however, the fields

define energy consumption instead of production. Each prosumer u is only permitted to

withdraw assets up to the limits L+
u and L−u into a non-anonymous account.

These assets can be moved to anonymous accounts in an untraceable way such as

through an anonymizing mixer. The mixer ensures that accounts cannot be linked to the

prosumer that owns them. However, the anonymous accounts must retain their group asso-

ciation and the sum of the assets remains constant. Production assets are required to post

a selling offer, and consumption assets are required to post a buying offer. For the offer to

be valid, the account posting the offer must have assets that cover the amount and intervals

offered. When a trade is finalized the assets are exchanged. We will provide more details

on how they fit into the trading approach in Section 2.7.

To enforce group-level safety we only provide group-level anonymity, meaning that an

offer can be traced back to its group of origin, but not to the individual prosumer within the

group. When forming a group, the safety constraints need to be set appropriately. We will

discuss how they should be set and the associated energy trading capacity costs in Section

2.8.2.
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2.6.4 Introducing the Notion of Clearance Windows

In our basic problem formulation, we assumed that all buying and selling offers B and

S are available at once, and we cleared the market in one take. In practice, however,

the market conditions and the physical state of the DSO and prosumers may change over

time, making it advantageous to submit new offers12. As new offers are posted we need

to recompute the solution. While new offers can increase the amount of energy traded, the

trade values εs,b,t and πs,b,t need to be finalized at some point in time. At the very latest,

values for interval t need to be finalized by the end of interval t−1; otherwise, participants

would have no chance of actually delivering the trade.

Here, we extend the energy trading problem to accommodate a time-varying offer set

(where offers can be unmatched, matched and pending, or matched and finalized), and a

time constraint for finalizing trades. Our approach finalizes only trades that need to be fi-

nalized, which maximizes efficiency while providing safety. We assume that all trades for

time interval t ′ (i.e., all values ps,b,t ′ and πs,b,t ′) must be finalized and the trading prosumers

must be notified by the end of time interval t ′−Tclear− 1 (see Fig. 2.3), where Tclear is a

positive integer constant that is set by the DSO. In other words, if the current interval is

t, then all intervals up to t +Tclear have already been finalized. Preventing “last-minute”

changes can be crucial for safety and fairness since it allows both the DSO and the pro-

sumers to prepare for delivering (or consuming) the right amount of energy. In practice,

the value of Tclear must be chosen accounting for both physical constraints (e.g., how long it

takes to turn on a generator) and communication delay (e.g., some participants might learn

of a trade with delay due to network disruptions).

We let ε̂s,b,t and π̂s,b,t denote the finalized trade values, and we let B(t) and S (t) denote

the set of buying and selling offers that participants have submitted by the end of time

interval t. Then, the system takes the following steps at the end of each time interval t.

12Updating or cancelling offers could also be useful; however, we do not provide this functionality in the
current version and leave it for future work.
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t t f

Tclear Th

Figure 2.3: Temporal parameters (t is the current interval, t f is the interval to be finalized).

First, find an optimal solution (ε∗,π∗) to the extended energy trading problem:

max
(ε,π)∈ Feasible(S (t),B(t))

∑
s∈S (t)

∑
b∈M (s)

∑
τ∈I(s,b)

εs,b,τ (2.8)

subject to

∀τ ≤ t f : εs,b,τ = ε̂s,b,τ (2.9)

πs,b,τ = π̂s,b,τ (2.10)

Second, finalize trade values for time interval t f based on the optimal solution (ε∗,π∗):

ε̂s,b,t f := ε
∗

s,b,t f (2.11)

π̂s,b,t f := π
∗
s,b,t f

(2.12)

By taking the above steps at the end of each time interval, trades are always cleared

based on as much information as possible (i.e., considering as many offers as possible)13

without violating any safety or timing constraints. Note that here Feasible(S ,B) now also

includes the safety constraints (2.5), (2.6), and (2.7).

13This includes offers for intervals beyond the finalization interval. Effectively, matches for an interval
beyond finalization can be changed if a better solution is found; however, finalized matches are permanent
and never changed.
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2.6.5 Practical Considerations for Solving the Problem

To find the optimal solution efficiently, we frame the energy trading problem as a linear

program. First, we create real-valued variables εs,b,t and πs,b,t for each s ∈ S,b ∈M (s), t ∈

Is∩ Ib. Then, the following reformulation of the matching problem is a linear program:

max
ε,π

∑
s∈S

∑
b∈M (s)

∑
t∈I(s,b)

εs,b,t (2.13)

subject to the constraint Equations, which can all be expressed as linear inequalities (2.2),

(2.3), (2.5), (2.6), (2.7), and

ε≥ 0 and π ≥ 0. (2.14)

However, we must consider that even though Equation (2.4) can be formulated as a

linear program and be solved efficiently (i.e., in polynomial time), the number of variables

{εs,b,t} may grow prohibitively high as the number of offers and time intervals that they

span increases. In practice, this may pose a significant challenge for solving the energy

trading problem for larger transactive microgrids. A key observation that helps us tackle

this challenge is that even though prosumers may post offers whose latest intervals are far

in the future, the optimal solution for the finalized interval typically depends on only a

few intervals ahead of the finalization deadline. Indeed, we have observed that considering

intervals in the far future has little effect on the optimal solution for the interval that is to

be finalized next (see Fig. 2.8).

Consequently, for practical solvers, we introduce a planning horizon Th (see Fig. 2.3)

that limits the intervals that need to be considered for a solution: for any t̂ > t f +Th, we set

εs,b,t̂ = 0, where t f is the earliest interval that has not been finalized. By “pruning” the set of

free variables, we can significantly improve the performance of the solver with a negligible

effect on solution quality (see Fig. 2.8). This results in the following “pruned” objective
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function:

max
(ε,π)∈ Feasible(S ,B)

∑
s∈S

∑
b∈M (s)

∑
τ∈Is∩Ib∩{τ;τ≤t f+Th}

εs,b,τ (2.15)

Although solving linear programs is not computationally hard, it can be challeng-

ing with many variables and constraints in resource-constrained computing environments.

Since computation is relatively expensive on blockchain-based distributed platforms14,

solving even the “pruned” energy trading problem from Equation (2.15) might be infea-

sible using a blockchain-based smart contract. Considering this, we choose to use our

hybrid-solver approach since compared to finding optimal trades, verifying the feasibility

of a solution (ε,π) and computing the value of the objective function is computationally

inexpensive and can easily be performed on a blockchain-based decentralized platform.

Thus, the smart contract provides the following functionality:

• Solutions may be submitted to the smart contract at any time. The contract verifies

the feasibility of each submitted solution, and if the solution is feasible, then the con-

tract computes the value of the objective function. The contract always keeps track

of the best feasible solution submitted so far, which we call the candidate solution.

• At the end of each time interval t, the contract finalizes the trade values for interval

t f = t +Tclear +1 based on the candidate solution.15

2.7 TRANSAX Protocol

We implement the practical solution approach described in the previous section as a

protocol of interaction between the TRANSAX components (Section 2.5). The protocol is

depicted in Fig. 2.4, and the activities are described below.

14Further, Solidity, the preferred high-level language for Ethereum, currently lacks built-in support for
certain features that would facilitate the implementation of a linear programming solver, such as floating-
point arithmetic [31].

15If no solution has been submitted to the contract so far, which might be the case right after the trading
system has been launched, ε= 0 may be used as a candidate solution.
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Smart contract
(Solidity)

Prosumer 1

Prosumer 2

DSO

Hybrid Solver

Off-Chain Solver Verifier

1 registerSmartMeter 9 finalize

4 mix
2 registerProsumer
3 withdrawAssets

5 postOffer
8 SolutionPosted

10 Finalized

11 deposit

12 Energy
Transfer

Smart Meter 1

Smart Meter 2

6 OfferPosted

10 Finalized

7 postSolution

13 bill

Figure 2.4: Example workflow of TRANSAX. Nodes represent entities in the platform,
and edges represent interactions, such as smart-contract function calls. In this example,
prosumer 1 is selling energy to prosumer 2 and the dashed line represents the energy trans-
fer.

2.7.1 Registration

When a new customer is added to the grid, a smart meter is installed. The DSO registers

the smart meter by calling 1 16 registerSmartMeter on the TRANSAX smart contract. This

call sets the asset allocation limits for that customer and records which feeder it is located

on in the grid. The customer then registers as a prosumer with TRANSAX by calling 2

registerProsumer.

The registration information requires each prosumer to specify a smart meter, and to

provide a DSO certified public address that corresponds to the specified smart meter for

the DSO to use when allocating assets. Since the smart meter is associated with a specific

feeder, the smart contract adds the prosumer to the group associated with that feeder. This

is required to ensure that feeder-level safety constraints can be correctly applied. The regis-

trations can happen asynchronously, allowing new prosumers to join at any time, even long

after trading has commenced. The registration process occurs only once for each smart

meter and prosumer. Once registered, a prosumer may participate in the following trading

16The circled numbers correspond to the numbered edges in Fig. 2.4
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protocol repeatedly.

2.7.2 Mixing

Once a prosumer has registered, it can withdraw assets into its public address (i.e.,

the account registered at DSO) for future intervals by calling 3 withdrawAssets. After

withdrawing assets, a prosumer could make offers using postOffer. However, if it made

offers using its public account, then the trades could be traced back to the prosumer as all

transactions in the distributed ledger are recorded publicly, thereby violating the privacy

requirements. Instead, the prosumer creates an anonymous address, which is not registered

with the DSO, and transfers the assets from its public address to the anonymous addresses

via 4 mixing assets with other prosumers. Mixing can be done in assigned groups by ex-

ecuting a decentralized mixing protocol, such as CoinShuffle [22]. The goal of the mixing

protocol is to transfer funds or assets from a set of accounts to a set of anonymous accounts

without directly linking any of the accounts to each other. Due to this mixing, even if an

entity knows which prosumers participated in a mixing protocol (i.e., based on their reg-

istered, public accounts) and what target anonymous accounts were used in the mixing, it

cannot link any anonymous account to the prosumer who owns the account.

2.7.3 Trading

2.7.3.1 Posting Offers

Next, the prosumers can construct and post anonymous offers using their anonymous

accounts by calling function 5 postOffer. The smart contract checks that the anonymous

account used to post the offer has assets that cover the amount and intervals specified in

the offer. If not, then the offer is rejected. If the offer is accepted, the smart contract emits

event 6 OfferPosted, notifying the off-chain matching solvers.
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2.7.3.2 Matching Offers

The matching solvers may wait for many prosumers to post many offers, but eventually,

it pairs buying and selling offers and posts the solutions by calling function 7 postSolution.

The smart contract checks the solution to make sure that it is feasible according to the

feasibility requirements described in Section 2.6, including checking that the trades do

not exceed the group capacity constraint. If the solution is valid, then the smart contract

saves it and emits event 8 SolutionPosted, notifying the prosumers of the current candidate

solution. Additional solutions may be submitted by any solver, and if those solutions are

valid and superior (i.e., they trade more energy), then the smart contract will update the

candidate solution. Offers can continue to be posted until the end of the trading interval

when trades will be finalized.

2.7.4 Energy Transfer and Billing

As an interval comes to a close, the DSO calls17 function 9 finalize which means that

offers for interval t f are no longer accepted and the smart contract transfers funds from

the consuming offer’s account to the producing offer’s account. It also exchanges the EPA

assets of the seller for the ECA assets of the buyer and vice versa for each of the matched

offers. The call also emits the 10 Finalized event, notifying the solvers to update their

solving interval, and the prosumers that the trades for interval t f have been finalized. If

a prosumer posts offers with many anonymous accounts, it will have to aggregate all the

corresponding trades to determine how much energy it is expected to produce/consume

during that interval when it arrives. Once the prosumers are notified of the trades, they

call function 11 deposit to transfer all assets for the finalized interval from the prosumers

anonymous accounts to an anonymous account owned by their smart meter.

The smart meter checks that the total amount of assets deposited matches the amount

17Note that by default the DSO calls the finalize function to increment the current interval, but since this
function is time guarded, any other entity can call it, which provides additional resilience.
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withdrawn for the finalized interval. This ensures that there are no trades that have not

been accounted for. The smart meter also compares the total of all production assets that

were deposited against the production originally withdrawn to compute the net energy sold

(∆EPA = EPAdeposit−EPAwithdraw). When interval t arrives and the energy transfer begins

12 , deviations from the allocated trades are covered by the DSO, including deviations due

to prosumer failures. To provide billing information for the DSO, the smart meter must

measure the deviations. To this end, it measures the net energy production Et
u (negative

values represent net consumption) of prosumer u at time interval t. The smart meter then

computes the difference between the net energy sold and the net energy production to get

the residual production (again, negative values are residual consumption). The residual

production or consumption is multiplied by the selling or buying price of the DSO, respec-

tively, to calculate what the prosumer owes the DSO for each interval. Every 13 billing

cycle, the smart meter sums the cost of the residuals and sends that to the DSO for the

monthly bill. The bill Bt
u of prosumer u for timeslot t, which will be paid by the prosumer

to the DSO, is

Bt
u =


(Et

u +∆EPA) ·πS
t if Et

u +∆EPA < 0

(Et
u +∆EPA) ·πB

t otherwise,
(2.16)

where πS
t is how much the DSO pays to purchase energy and πB

t is how much the DSO

charges for energy. The price schedule is set for each timeslot t by the DSO. The prices

could be functions of Et
u +∆EPA to charge higher rates as the deviation from the traded

amount increases. By designing the DSO prices to vary based on the deviation from the

amount traded, we can provide strong incentives to prosumers to predict energy production

and consumption accurately and to post conservative offers, so that the DSO and other

prosumers can adjust their production or consumption preemptively, reducing the balancing

that the DSO must provide due to unanticipated demand.
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Table 2.3: Summary of Component Functionality in TRANSAX

Requirement Components Approach
Security
and Safety

Distribution System Op-
erator and Smart Contract

DSO sets trading limits for prosumers and feed-
ers, and the smart contract enforces them.

Resilience Distributed Ledger and
Hybrid Solver Architec-
ture

A distributed ledger is resilient because of its dis-
tributed nature. Solvers are replicated to provide
resilience.

Efficiency Smart Contract and
Solvers

Problem formulation allows temporal flexibility,
a smart contract enforces choosing the best solu-
tion.

Privacy Prosumers Prosumers achieve privacy via a mixing protocol.

2.8 Discussion and Analysis

In this section, we first describe how the TRANSAX design ensures the security, re-

silience, and safety of the system. Then, we provide a discussion on the inherent trade-offs

between efficiency, and privacy. Table 2.3 summarizes how each component in the archi-

tecture contributes to satisfying the system requirements.

2.8.1 Requirement Evaluation

2.8.1.1 Security and Safety

The underlying blockchain platform provides basic security features, so we are not

concerned with the operations occurring on the blockchain. We are concerned with the

secure and reliable operation of the solver. Similarly, the basic safety of the system is

handled by the constraints described in Section 2.6.2. The safety constraints are applied

correctly and reliably by the same contract. An adversary cannot force the contract to

finalize trades based on an unsafe (i.e., infeasible) solution since such a solution would be

rejected. Similarly, an adversary cannot force the contract to choose an inferior solution

instead of a superior one. In sum, the only action available to the adversary is proposing a

superior feasible solution, which would improve energy trading in the microgrid.
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Figure 2.5: Topology of a distribution network.

2.8.1.2 Resilience

Now we show that our contract is reliable and can tolerate temporary disruptions in the

DSO, solvers, or the communication network. First, since the finalize contract function is

time guarded any entity can call it, and the system can progress without a DSO which is

only required for registering new prosumers and their smart meters. Second, notice that

any solution (ε,π) that is feasible for sets S and B is also feasible for supersets S ′ ⊇S

and B′⊇B. As the sets of offers can only grow over time, the contract can use a candidate

solution submitted during time interval t to finalize trades in any subsequent time interval

τ > t. In fact, without receiving new solutions, the difference between the amount of

finalized trades and the optimum will increase only gradually: since the earlier candidate

solution can specify trades for any future time interval, the difference is only due to the

offers that have been posted since the solution was found and submitted. Thus, the system

can continue making trades using older valid solutions

2.8.1.3 Trading Efficiency

The trading platform we have presented can support efficient trading through temporal

flexibility. We show this through Example 1. As a reminder, this is due to prosumers being

able to specify their production/consumption capacities and preferences (i.e., reservation
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prices) via offers and the linear-program finding an optimal matching. In Section 2.9.3, we

show using simulation that energy trading reduces the load on the power grid.

Example 1. Consider two prosumers (denoted by 102, 103) and one consumer (denoted by

101) from the community depicted in Fig. 2.5. We divide each day into 15-minute intervals.

Let us assume that 102 can transfer 10 kWh into the feeder during interval 48, which

translates to 12:00 pm – 12:15 pm. Assume similarly that 103 can also provide 30 kWh

to the feeder in interval 48, but it has battery storage. Since 103 has battery storage—

unlike 102, who must either transfer the energy or waste it—103 can delay the transfer

until a future interval, e.g., interval 49. Now suppose that 101 needs to consume 30 kWh

in interval 48 and 10 kWh in interval 49. A possible solution would be to provide all 30

kWh to 101 from 103 in interval 48. However, that will lead to the waste of energy provided

by 102. Thus, a better solution will be to consume 10 kWh from 102 in interval 48 and 20

kWh from 103 in interval 48. Then, transfer 10 kWh from 103 in interval 49, which is more

efficient than the first matching as it allows more energy (summed across the intervals) to

be transferred. Thus, we see that permitting temporal flexibility can significantly increase

trading volume, though it does increase the size of the optimization problem, increasing

computational complexity.

2.8.1.4 Privacy

The platform provides pseudo-anonymity as the individual offers cannot be tied back to

the prosumer who posted them since the offer is only affiliated with an anonymous address

and contains only the energy amount and reservation price. Additionally, the DSO does not

know the total amount of energy utilized by the prosumers thanks to the anonymous billing

via the smart meter. However, to preserve safety, some information about the prosumers

needs to be public to allow checking of the offers to ensure that they are safe or limit the

resources available to them.

In our design, we assume that the consumption (L−) and production (L+) limits of each
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prosumer are public information, as well as which feeder a prosumer is on. The group

safety constraints Ci
g and Ce

g are also public. Recall that the smart contract ensures that

no prosumer can withdraw more assets than the specified limits and that any offer which

violates the recorded safety constraints will be rejected. As a result, the only way to violate

the safety requirements is if the asset limits or safety constraints are set incorrectly, which

is not allowed by our design. However, as we will show below it is possible to improve

privacy by choosing a conservative safety constraint for a group or a conservative limit

on the maximum assets a prosumer can withdraw, which impacts the trading efficiency.

Consider the following example for illustration.

Example 2. Consider the community depicted in Fig. 2.5. Let the prosumers denoted by

102 and 103 form a group g with an internal constraint of Ci
g = 40, where prosumers 102

and 103 have asset limits L+ = 10 and L+ = 30, respectively. Assume that the prosumers

in this group have anonymized their assets. If the total assets traded by the group—which

we denote Tf —is below 10, then there is no way to definitively say that either prosumer

is trading. If the assets traded by f exceed 10, then we know that 103 is trading at least

Tf −10 since 102 can only produce 10. If Tf > 30, then we know that 102 is trading at least

Tf − 30. If Tf = 40 or 0, then we know the full state of the feeder, either both prosumers

are trading at their limit or not trading at all. To improve anonymity, the feeder as a

whole should not trade more than 10. This however reduces trading efficiency considerably.

Nonetheless, if both prosumers have L+ = 20, then anonymity is improved until trading

exceeds 20. Thus, it is important to select the constraints carefully. We discuss this in

Section 2.8.2.

2.8.2 Tradeoff between Privacy and Efficiency

Note that the safety of the system is a strict requirement, which we cannot compro-

mise. Thus, the only plausible tradeoff is between privacy and efficiency. This tradeoff

can be achieved by creating groups, as we discussed in Section 2.6.3. However, groups
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and constraints must be created and set carefully to ensure that trading remains safe while

also minimizing the loss in trading potential18. To better understand this problem, consider

that when a group is mapped to a single physical feeder, the safety constraints are simply

the feeder’s constraints. However, in a group, we cannot tell which feeder the accounts

belong to once the accounts are anonymous. Thus, to preserve safety, the constraints need

to be adjusted. Therefore, the set of feeders are transformed into a group by treating all

the prosumers in those feeders as if they were on a common feeder. Since the offers are

anonymous at the group-level, the system can treat the group as a single feeder with two

prosumers: one which posts production offers and one which posts consumption offers (see

Fig. 2.6).

To describe the methodology for selecting group constraints and the corresponding cost

of privacy, we need to consider two cases.

2.8.2.1 Case 1 - There is a set of prosumers in the group that is capable of exceeding

the safety constraint of the feeder they are on:

Assume a microgrid with feeders F and groups G , wherein Lu for each prosumer19 and

C f for each feeder can have any value. Recall that we only need to consider Ce
g ≤Ci

g. For

now, we consider when both constraints are violated simultaneously, setting Ce
g = Ci

g, and

refer to it as the feeder safety limit Cg. For this system to be safe, the following condition

on Cg must hold for every group g:

Cg ≤min

{
C f

∣∣∣∣∣ f ∈ g and ∑
u∈ f

Lu ≥C f

}
(2.17)

18The downside of grouping is that common feeder groups may result in lower energy trading limits due
to modified aggregated constraints. We call this efficiency loss the cost of privacy.

19Note that L+
u and L−u (Table 2.2) are the same type of constraint, representing production/outgoing or con-

sumption/incoming limits, so we will use Lu to represent both in our analysis, but in each case the equations
refer to both.
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Figure 2.6: Feeder conversion diagram.

Proof. For the sake of contradiction, suppose that Equation (2.17) does not hold, but the

system is safe. This means that ∃C f < ∑u∈ f Lu and Cg >C f . Let ∑u∈ f Lu =Cg. Then, the

prosumers in f can trade EL assets. However, this exceeds the feeder safety limit, so the

system cannot be safe. Equation (2.17) must therefore be true.

Thus, the best value for the group constraint is when Equation (2.17) is equality. This

means that the group as a whole can at most produce the same amount as the single smallest

of its internal feeders. The cost in this case is:

cost = min

{
∑
∀s∈Sg

Es, ∑
∀b∈Bg

Eb

}
−min

{
∑
∀s∈Sg

Es, ∑
∀b∈Bg

Eb,Cg

}
. (2.18)

Thus, the cost is the amount by which the potential trades exceed the safety constraint.

2.8.2.2 Case 2 - No set of prosumers in any of the feeders in the group are capable of

exceeding their feeders’ safety constraint:

Given a microgrid with feeders F and groups G where C f can have any value and

∀g∀ f∈g ∑
u∈ f

Lu ≤C f , (2.19)

group constraint should be set as Cg =∑ f∈gC f to maximize trading, and trades can be done

safely.

Proof. Assume a microgrid is not safe and Equation (2.19) is true. Then, ∃ f such that

∑u∈ f Lu >C f . But, Equation (2.19) says this is not allowed. So, the system is safe.
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In this case, there is no cost to group privacy. Safety is ensured by the asset withdrawal

limits rather than the group constraint. Note that Case 1 can be converted to Case 2 by

reducing the prosumer asset limits so that the prosumers on a feeder cannot exceed their

feeder’s safety constraint20. To compute the cost of this conversion, instead of setting

Ci
f =Ce

f as we did in Case 1, we let Ci
f >Ce

f . This means that without privacy, the amount of

energy that can safely be traded within the feeder is greater than the amount of energy that

can be traded with other feeders. In this case, the maximum amount of energy that could

potentially be traded is Ci
f . Even if the prosumers could exceed the internal constraint,

those trades would not be permitted, so they are not a loss. Therefore, we need to consider

only the trades that could have been made but are no longer permitted, which is at most

Ci
f −Ce

f .

2.8.2.3 Insights on Grouping

Based on the analysis of the effects of privacy on efficiency, the best strategy is to limit

the trading assets of the prosumers such that they remain less than the feeder constraints.

This means that all feeders can be safely grouped. The cost of grouping feeders is the loss

of flexibility in trading due to the rigid asset limits. The cost will be at most the feeder limit

minus the prosumer asset limit, if that prosumer can reach the feeder limit, and if no other

prosumers in its feeder are trading. This could be mitigated by an additional mixing and

trading step within the feeder, but we have not examined this possibility in detail. There is a

second criterion that may influence grouping decisions. There is information leakage, and

at the extremes (max load, zero load) anonymity ceases to exist. We assume that generally

this will not be the case, and the odds of that occurring diminish if there are many feeders

in the group. Information leakage can be reduced by setting all the asset limits to the same

value for all prosumers. The maximum system cost of this is the difference between the

feeder limit and the sum of the prosumer limits. To reduce information leakage, groups

20This can be enforced by the DSO during installation.
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Figure 2.7: Messages exchanged between simulator and TRANSAX.

should consist of feeders with similar limits.

2.9 Experimental Evaluation

In this section, we present a simulation testbed 21 that we developed for evaluating

TRANSAX, as well as our initial results illustrating the effectiveness of TRANSAX in

reducing the load on the bulk power grid.

2.9.1 Testbed

The system to demonstrate the simulation platform has three major parts as shown in

Fig. 2.7: the TRANSAX nodes (BeagleBone Blacks22) emulating the prosumers23, the

distribution system physics simulator (GridLAB-D [66], running on an x86 computer with

a Core i7 processor and 24GB of RAM), and a Python agent to coordinate the hardware

in the loop (emulated TRANSAX prosumers) integration with GridLAB-D. Messages and

time steps between the Python agent and GridLAB-D are coordinated by the Framework

for Network Co-Simulation [73].

The general message structure between GridLAB-D, the Python agent, and TRANSAX

is shown in Fig. 2.7. While GridLAB-D is paused, TRANSAX agents request charge sta-

21The source code of the testbed is available at https://github.com/scope-lab-vu/transactive-blockchain
22With limited computational capability and ARM architecture, these nodes are a good representation

of embedded devices that we can expect to be used in real scenarios for managing energy trading within
communities.

23The control logic of prosumers is implemented in RIAPS.
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tus for their batteries in the GridLAB-D simulation. They use this data, along with their

predicted energy usage, to create a bid that is sent to TRANSAX. TRANSAX agents send

the finalized trades back to the Python agent. The Python agent sets each simulated node’s

output for the next interval based on the finalized trades from TRANSAX by modifying

GridLAB-D system parameters. In this demonstration, the Python agent meets the final-

ized trades only by modifying battery outputs. However, the Python agent has control over

all the dynamically modifiable parameters in GridLAB-D. Consequently, future demon-

strations could incorporate more control parameters, such as curtailments to solar output or

curtailments to energy used by pure consumers.

The most important feature of this demonstration is its methodology for synchronizing

time between GridLAB-D and TRANSAX, which is also responsible for time synchroniza-

tion between GridLAB-D’s variable-timestep solver and TRANSAX’s matching solver. In

the experiments described below, we use a solver period of 15 minutes. Thus, the Python

agent forces GridLAB-D’s variable-timestep solver to pause at each logical 15-minute in-

terval. Then, the prosumer nodes post offers for each 15-minute interval of logical time, and

TRANSAX clears and finalizes trades. Next, the GridLAB-D simulation is advanced with

actual energy transfer, allowing the impact to be measured. This process is repeated for the

duration of the simulation’s logical time. The time-synchronization strategy is scalable to

any desired period for the TRANSAX solver. The strategy also provides freedom to run

experiments, such as assessing how the solver’s period affects the amount of energy traded,

the stability of the finalized trades, or computational cost. Note that all physical nodes in

the setup are time-synchronized using the services provided by RIAPS [67] (Section 2.4).

2.9.2 Simulated Scenario

We run our simulations on the distribution topology described earlier in Fig. 2.5. It

consists of a substation feeding three main overhead lines that are connected to prosumers.

The lines below the main lines represent prosumers with batteries and solar panels, which
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enables them to either consume or produce energy depending on the net output of the

solar panels and batteries; and those above the main line represent prosumers with loads

only (i.e., they can never produce). For the demonstration, the simulation was built with 9

producer nodes and 6 consumer nodes.

The simulation was set up to run in logical time from 8 AM to 8 PM of the same day,

for a total duration of 12 hours. During our experiments, we sped up the simulation by

letting the real-time length of the time interval be ∆̂ < ∆ where ∆̂ is 2 minutes and ∆ is 15

minutes. Note that ∆̂ is the amount of real time passed in the simulation before proceeding

to the next interval; this allows us to speed up the experiments without compromising our

results since running the system slower would be easier.

2.9.3 Results

We now discuss the results of three sets of experiments. The first experiment studies the

impact of the solver horizon window Th (Table 2.2). The second experiment demonstrates

the benefit of the platform to the DSO. Finally, the third set of experiments studies how

inaccurate predictions of energy consumption and productions affect the DSO.

2.9.3.1 Experiment 1 - Impact of Th

It is expected that a longer time horizon will allow the TRANSAX solver to be more

efficient and better match the producer and consumer offers. However, there is a tradeoff

because a longer horizon also leads to higher computational cost. Thus, we varied the

value of Th and measured the memory usage, CPU usage, and amount of energy traded. In

Fig. 2.8, we see that as the time horizon increases, so does the memory usage and energy

traded until Th = 30, at which point there is no additional gain to energy traded. The time

horizon also impacts the CPU utilization of the solver (not shown). This demonstrates that

we can select a finite time horizon and still obtain high-quality solutions.
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2.9.3.2 Experiment 2 - Impact of TRANSAX on Load Serviced by DSO

To determine the impact of trading on the load supplied by the DSO, we ran several

simulations. The simulation was first run without battery output and without any control

by TRANSAX. This output was used to generate an energy profile for each prosumer for

each interval. Then, the simulation was repeated with the prosumers submitting offers

matching their energy profile to the TRANSAX system, which represents an ideal scenario

with accurate bids for each 15-minute interval. This simulation demonstrates how batteries

can reduce the load on the DSO. Fig. 2.10 shows the comparison of DSO (utility substation)

loads with and without TRANSAX. The horizontal axis is the simulated time since the start

of the simulation. The vertical axis shows the load on the substation, negative values mean

that the prosumers’ generation exceeds their loads. Without TRANSAX, solar generation

begins to outproduce the total load within the first interval. Solar production reaches its

peak around 12:45 PM. Finally, at 4:45 PM, the load exceeds solar production, and the

substation load becomes positive. The inclusion of TRANSAX dramatically reduces the

need for the substation backup. From 8:00 AM to 4:45 PM, the overproduction of solar

meant that the batteries were charging, which mitigated the negative load on the substation.

After 4:45 PM, the batteries discharged and mitigated the positive load on the system.

Fig. 2.11 shows the average battery charge level across all 9 batteries. At the end of the
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simulation at 8 PM, the average battery had only around 25% charge. This means that if

the simulation were to go further into the night, there would not have been enough battery

charge left to meet demand for the entirety of the night.

Fig. 2.12 shows the total amount of energy offered for each interval, as well as the total

amount of energy recorded in trades. In Fig. 2.13, we see that the trades recorded (blue)

are mostly consistent with the measured load (orange) on the system, with one notable

exception at 2:15 PM. The deviations occur because the prosumers currently assume that

solar output remains constant over each interval, and this constant value is used when mak-

ing offers. Fig. 2.9 shows the time required by the platform to find the optimal matching

of a set of offers (green), as well as that time combined with the time required to submit

that solution to the smart contract (blue). Most of the time spent is due to smart contract

communications.

The results of the simulation with TRANSAX are promising. TRANSAX found energy

trade solutions that resulted in an overall reduction of substation load. The distribution was

however not completely independent of the substation feeder, and there is still a need for a

connection to the larger distribution grid through a DSO.

2.9.3.3 Experiment 3 - Impact of Imprecision of Offer Prediction on DSO

Since prosumers must estimate their future production and consumption, we are inter-

ested in assessing the impact of estimation uncertainty on the stability of the system and

on the load on the DSO. In an ideal case, prosumers will provide or consume the same

amount of energy as they offered, and the DSO will know in advance how much energy it

must provide to compensate for system stability. Any variations from the offered amount of

energy result in uncertainty for the DSO. To study the effect of this uncertainty, we created

scenarios where we added normally distributed error to energy produced or consumed by

each prosumer (relative to the settled offers). The standard deviation of the error was scaled

as a percentage of the prosumer’s largest expected trade in a day, ranging from 0% to 35%
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of the energy traded. We chose this value because there are models for short-term cloud

forecasting that have estimation errors of 20-30% for 15 to 45 minutes in the future [74].

We chose 35% as the upper bound. Fig. 2.14 shows the average daily difference between

the energy that the DSO anticipated to provide from finalized trades and the energy it actu-

ally provided as a function of prosumer uncertainty. The averages were calculated over 100

simulated days. The uncertainty for the DSO increases with uncertainty in prosumer energy

production and consumption. The standard deviation of the uncertainty for the DSO is 33%

of the anticipated DSO load when prosumer trades are uncertain by a standard deviation of

35% of the offers; however, the average additional load remains near zero. The experiment

demonstrates that while uncertainty in the offers will result in errors in the amount traded

and eventually cause some uncertainty for the DSO, the net difference will remain small if

the error is normally distributed.

2.10 Related Work

Transactive strategies manage generators and loads based on market dynamics while

ensuring system reliability. The earliest example of transactive control was demonstrated

in the Olympic Peninsula Project [75]. An extension of these controls is seen in the man-

agement of building energy consumption [76]. Recently, with well-known grid failures,

including the 2012 Sandy Storm and 2017 hurricane Maria in Puerto Rico there have

been concerted efforts to build decentralized energy systems with transactive components

[77, 78]. However, the existing platforms are not fully operational and, in most cases,

cannot satisfy the three conflicting requirements of resilience, privacy, and safety.

Existing energy trading markets, such as the European Energy Exchange [79] and

project NOBEL in Spain, involve centralized database architectures that constitute single

points of failure. The closest to a decentralized implementation that is required for re-

silience is Wörner et al. [52], who have developed an implementation of their peer-to-peer

energy market and deployed it in a town in Switzerland. Their goal is to gather empiri-
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cal evidence to answer the question of what the benefits of a blockchain system are in the

electricity use case. However, the results have not yet been published. Similarly, the next

phase of the LO3 project in Brooklyn [51] is working on extending the blockchain-based

energy market. However, to the best of our knowledge, their focus has primarily been using

blockchain as the resilient information store, and they are not using the decentralized archi-

tecture to implement a market. The blockchain there is simply a medium to store renewable

energy attributes.

Since a decentralized transactive energy system consists of various components includ-

ing the markets, the controller, and privacy mechanisms, we discuss them in detail below.

2.10.1 Markets

After prosumers share their energy availability and demands in the form of offers, these

offers need to be matched. Researchers have proposed two approaches to this problem.

2.10.1.1 Stable Matching

Stable matching refers to a matching of all possible buy and sell offers in a bipartite

graph. Yucel et al. proposed a homomorphic encryption-based position hiding method [80]

which protects users’ privacy. Nunna et al. [81] proposed the symmetrical allocation prob-

lem based on a native auction algorithm to match buyers and sellers. This algorithm is run

periodically, and only one selling offer is matched in each round. PowerLedger [82] uses

another mechanism to match offers. Offers are broken into equal portions and matched

together e.g., when a new consumer arrives, it receives the equal allocation from the energy

pool in the area.

2.10.1.2 Auction

Another approach to match buyers and seller offers is to use auctioning approaches.

Majumder et al. [83] proposed a double auction mechanism before the era of blockchains
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where the controller doesn’t need the users’ preferences, but instead, they use an incentive-

compatible auction mechanism to extract that information in the form of bids. In the era of

blockchains, Kang et al. [84] and Guerrero [85] used double auctions to match parties and

not goods in blockchains. To ensure the integrity of the results of matching, Wang [86] pro-

posed a multi-signed digital certificate. Khorasany et al. [87] designed a greedy algorithm

with the averaging auction mechanism to match buyers with higher prices to sellers with

lower prices. Zhao et al. [88] created a two-phase auctioning algorithm to find the optimal

pricing for bids. Finally, Zhang et al. [89] developed a non-cooperative auctioning game

and used it to find the optimal solution for the matching problem using the Nash equilib-

rium.

2.10.2 Grid Control and Stability

Microgrid controllers are an integral part of smart grids. They ensure the stability and

resiliency of the microgrid. They enable the transition of the microgrid from grid-connected

to islanded [90, 91] so that the failures in the grid do not cascade to other areas similar to

the outage event back in 1999 in Sao Paulo, Brazil [92]. Currently, most microgrid con-

trollers are centralized [47] which are vulnerable to cyber-threats and privacy issues. A

large spectrum of cyber-threats are applicable on centralized microgrid controllers with

single-point-of-failure ranging from attackers eavesdropping on channels between the con-

trollable resource and the centralized controller to steal critical information of the users or

network infrastructure, performing DDOS attacks on the centralized controller, or manipu-

lation of demand via IoT (MadIoT) attacks[93] to injecting malware into the market opera-

tion system and manipulate settings, such as DLMP limits or clearing time interval similar

to the notable cyber-attack against Ukrainian power systems in December 2015 [94, 95].

Due to these drawbacks of centralized grid controls, the industry is transforming from

centralized to decentralized [96, 97]. TRANSAX aims to create a decentralized transactive

energy market that ensures the privacy and security of users while maintaining the stability
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and resiliency of the grid.

2.10.3 Security and Privacy

2.10.3.1 Communication Security

The first step to preserve users’ privacy and anonymity in a distributed system is to

provide communication privacy. Without this, an adversary can discern who is making

a function call or sending a message over the network based on the sender’s MAC ad-

dress, IP address, or route to destination. Existing protocols for low-latency communica-

tion anonymity include onion routing [98], the similar garlic routing [99], STAC [100], and

the decentralized Matrix protocol 24. However, Murdoch and Danezis [101] show that a

low-cost traffic analysis is possible of the Tor-network, theoretically and experimentally.

Communication security is an orthogonal research problem to TRANSAX.

2.10.3.2 Address Anonymity

Communication anonymity is necessary but not sufficient for anonymous trading, as

the cryptographic objectives of authentication and legitimacy are not fulfilled. We suggest

using cryptographic techniques from distributed ledgers, blockchains, and cryptocurren-

cies. The most adopted one, Bitcoin allows for very simple digital cash spending but has

serious privacy and anonymity flaws [102, 103, 104]. Additionally, Biryukov and Pustoga-

rov, 2015, show that using Bitcoin over the Tor network opens a new attack surface [105].

Solutions to the tracing and identification problems identified by these researchers have

been proposed and implemented in alternative cryptocurrency protocols: mixing using ring

signatures and zero-knowledge proofs [106, 107].

A proposed improvement to standard ring signatures is the CryptoNote protocol, which

prevents tracing assets back to their original owners by mixing incoming transactions and

outgoing transactions. This service hides the connections between the prosumers and the

24https://matrix.org/docs/spec/
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addresses. Mixing requires the possibility to create new wallets at will and the existence of

enough participants in the network. Monero is an example of a cryptocurrency that provides

built-in mixing services by implementing the CryptoNote protocol [21]. There are however

alternative implementations of mixing protocols such as CoinShuffle [22] or Xim [23]. A

variant of ring signatures, group signatures, were first introduced by Chaum and van Heyst,

1991, [108] and then built upon by Rivest et al., 2001 [109]. The basis for anonymity in the

CryptoNote protocol, however, is a slightly modified version of the traceable ring signature

algorithm by Fujisaki and Suzuki, 2007 [110]. This allows a member of a group to send a

transaction so that it is impossible for a receiver to know any more about the sender than

that it came from a group member without the use of a central authority.

Some newer cryptocurrencies, such as Zerocoin [107], provide built-in mixing services,

which are often based on cryptographic principles and proofs.

2.10.3.3 Smart Meters’ Privacy

Most works discussing privacy look at it from the context of smart meters. McDaniel

and McLaughlin discuss privacy concerns due to energy-usage profiling, which smart grids

could potentially enable [111]. Efthymiou and Kalogridis describe a method for securely

anonymizing frequent electrical metering data sent by a smart meter by using a third-

party escrow mechanism [112]. Tan et al. study privacy in a smart metering system

from an information-theoretic perspective in the presence of energy harvesting and storage

units [113]. They show that energy harvesting provides increased privacy by diversifying

the energy source, while a storage device can be used to increase both energy efficiency

and privacy. However, transaction data from energy trading may provide more fine-grained

information than smart meter-based usage patterns [114].
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2.11 Conclusions and Future Work

In this paper, we described TRANSAX, a decentralized platform for implementing en-

ergy exchange mechanisms in a microgrid setting. Building on top of blockchains, we

obtained decentralized trust and consensus capabilities, which prevent malicious actors

from tampering with the shared system state. We found that satisfying the seemingly

conflicting goals of safety and privacy can be reconciled using anonymity within a grid,

though this may result in a loss of flexibility and trading volume if the prosumers within

a feeder could exceed the feeder’s limit. Using our hybrid-solver approach, which com-

bines a smart-contract based validator with an open set of external solvers, we showed that

we can clear offers securely, efficiently, and resiliently, submitting solutions to the con-

tract within approximately 200ms. We also demonstrated using TRANSAX that private

blockchain-based transactive energy is feasible for communities on the scale of microgrids

and smaller, though we have not determined the upper limit for scalability. We can ensure

that trades are balanced and that energy trading can the load on the DSO.

In the current implementation, we have not chosen a specific approach for setting the

clearing prices for the prosumers’ trades since the economics of setting the clearing prices

is an orthogonal problem. Friedman and Rust [115] provide a survey of these mechanisms

for governing trade, to which they refer as market institutions. One of the most commonly

used mechanisms is the double auction. Note that we cannot apply the double auction

directly because of the different time-interval attributes that the offers may specify. Prior

work has extended the double auction to allow for multiple attributes; however, they typi-

cally (e.g., [116]) require a function to combine the attributes into a single value, which is

then used to order the offers. The difficulty of this approach is in identifying a meaningful

function. A more straightforward approach is to perform the feasibility matching as we

have presented, and then for each interval, use a double auction to set the clearing price for

the matched offers. This approach provides a straightforward solution to the problem of

setting clearing prices; however, it is not obvious whether it will preserve the properties that
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a simple double auction has, such as incentive compatibility. We leave the investigation of

these mechanisms and how they are impacted by privacy to future work.

Further, we need to allow prosumers to update or cancel offers. The current formulation

can support updating offers as long as the updates do not invalidate previous solutions; for

example, a selling offer can increase the amount of energy to be sold or augment the set of

intervals in which energy could be produced. To support restrictive changes or canceling

offers, we would need to introduce a deadline for when offers could no longer be updated

or canceled. Solvers could then wait for this deadline and start working only after the

deadline. Lastly, in the current implementation, the DSO provides the missing energy when

a prosumer fails; however, we may also consider the case when the DSO is not available.

In this case, a potential solution is to maintain backup energy reserves to satisfy demand

that was unmet due to a failure.
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Chapter 3

Managing Cheating Through Blockchains – An Edge Computing Case-Study

3.1 Overview

In addition to the standard challenges associated with CPS and other distributed sys-

tems, multi-stakeholder cyber-physical systems (MSCPS) present significant additional

concerns with respect to trust. Because, by definition, MSCPS are composed of multiple

agents which may malfunction or have conflicting objectives. Efficient system operation

is achieved only when agents are able to cooperate, but agents cannot inherently trust each

other. They must therefore employ mechanisms that reduce overall efficiency to ensure that

the system functions correctly. Otherwise, agents will not trust the system as a whole and

will not use it.

For many distributed systems, participants can reach a consensus about system actions

based on stored data. However, in MSCPS, consensus alone is inadequate since the system

additionally interacts with the physical world. In the case of edge-cloud computing, agents

need to not only agree on what kind of computational task is to be run (its requirements),

but the task must also actually be executed. Ensuring this requires a method of verification

to confirm that agreed-upon actions successfully occurred. An important consideration

in addition to consensus and verification is that of fairness, which entails ensuring a fair

outcome for involved parties, This ideally means that participants obtain the correct results,

but fairness may be preserved if participants are compensated for incorrect results.

Distributed Ledger Technology (DLT) has enabled decentralized currency markets and

has the potential to enable other markets as well. A distributed ledger (DL) is an append-

only distributed database with the key feature being that the database replicas are managed

by independent stakeholders. This allows mutually distrustful parties to achieve consensus
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on the state of information recorded in the absence of a centralized authority because each

agent is responsible for correctly updating its copy of the database. In these protocols, each

participant can independently verify the validity of the transactions and determine their

order.

A major criticism of proof-of-work and other related consensus protocols is that they

are computationally wasteful and inefficient. The desire to harness the benefits of a decen-

tralized consensus mechanism for an edge-computing environment, and MSCPS generally,

must therefore be balanced against concerns regarding computational efficiency.

My work in this area has been primarily focused on identifying less resource-intensive

ways to convince only the essential system participants of the validity of results. This is

valuable when attempting to harness the surplus compute that is available at the edge. Ex-

isting solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are

centralized platforms in which a single organization or company can control participation

and pricing. By contrast, an open market of computational resources, where resource own-

ers and resource users trade directly with each other, could lead to greater participation

and more competitive pricing. To enable trusted computations between mistrusting parties

in the edge-cloud environment while minimizing the additional computation overhead, I,

with collaborators developed a platform for outsourcing computations. The existing efforts

to construct such a platform, particularly those using blockchain, focus on ensuring global

consensus on the results of the computation, but there are many cases where this is not

required.

This platform, called MODiCuM, minimizes computational overhead since it does not

require global trust in mediation results. Further, none of the outsourced computations are

computed using the smart contract, but instead only uses the contract to hold the partic-

ipants accountable. MODICUM deters participants from misbehaving—which is a key

problem in decentralized systems—by resolving disputes via dedicated mediators and by

imposing enforceable fines. This effectively replaces the trusted third party required for
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general trusted two-party computation with the distributed ledger and smart contract. An-

alytical results prove that MODICUM can deter misbehavior, and the overhead of MOD-

ICUM is demonstrated using experimental results based on an implementation. This work

has been published in DEBS 2020.

The work comprising this chapter has been published in the Proceedings of the 14TH

ACM International Conference on Distributed and Event-Based Systems (DEBS) [32].

• S. Eisele, T. Eghtesad, N. Troutman, A. Laszka, and A. Dubey, “Mechanisms for

Outsourcing Computation via a Decentralized Market,” in Proceedings of the 14TH

ACM International Conference on Distributed and Event-Based Systems (DEBS),

Montreal, Quebec, Canada, July 2020.

3.2 Introduction

The number of computing devices—and thus computational power—available at the

edge is growing rapidly; this trend is projected to continue in the future [117]. Many of

these are end-user or IoT devices that are often idle since they were installed for a specific

purpose, which they can serve without using their full computational power. Our goal is to

harness these untapped computational resources by creating an open market for outsourcing

computation to idle devices. Such a market would benefit device owners since they would

receive payments for computation while incurring negligible costs. To illustrate, running an

AWS Lambda instance with 512MB of memory for 1-hour costs $0.03, while the electrical

cost of operating a BeagleBone Black1 single-board computer with 512MB of memory for

an hour is 100 times less. Thus, it is feasible that a computation service could be provided

economically.

Prior efforts to leverage these underutilized resources include volunteer computing

projects, such as BOINC [118] and CMS@Home [119], in which users donate the compu-

tational resources of their personal devices to be used for scientific computation. Volunteer
1https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
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computing suffers from two limitations that prevent it from broader utility. First, the re-

sources made available by volunteer computing participants are only accessible to specific

users and projects. Second, it relies on systems “volunteering” their time as it does not

include incentives to provide reliable access to computational resources, leading to the

problem of low participation [120].

Participation can be incentivized through the implementation of a competitive market,

which facilitates the discovery and allocation of supply and demand for computational

resources and tasks. The market must provide mechanisms to address misbehavior and re-

solve any disputes2 between the participants. Such a market could be managed by a central

organization, as many in the sharing economy are (e.g., Uber, Airbnb). A central organi-

zation could mediate disputes. However, a centralized system presents a clear target for

attackers, can be a single point of failure, and without competition may charge exorbitant

fees. An alternative is to create an open and decentralized market, where resource owners

and resource users trade directly with each other, which could lead to greater participation,

more competitive pricing, and improved reliability.

In distributed computing systems, faults and misbehavior are typically addressed using

consensus algorithms. Recently, distributed ledgers have emerged as a novel mechanism

to provide consensus in decentralized public systems [121]. Smart contracts extend the ca-

pabilities of a distributed ledger by enabling “trustless” computation on the stored data. In

theory, smart contract implementations, e.g. the one used in Ethereum [122, 31], could be

used to outsource complex computations. However, since the computation is replicated on

thousands of nodes, it is costly. To reduce costs, complex computations must be executed

off-chain and only result aggregation, validation, and record-keeping should be kept on the

chain (e.g. [34]).

Prior efforts to construct outsourced computation markets using distributed ledgers in-

clude TrueBit [123], and iExec [124]. Unfortunately, these existing solutions have varying

2Disputes are disagreement between the parties about the correctness of the job execution. They may arise
due to a fault or malicious behavior.
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degrees of inefficiency due to extensive verification of the computation performed. There

have been some efforts to ameliorate this situation. For example, TrueBit performs com-

putation using a typical computer and relies on the distributed ledger only to complete

disputed instructions; however, this approach is still quite inefficient. We discuss these

existing solutions and their drawbacks in detail in Section 3.3.

Contributions: The key problem in implementing a decentralized market is the effi-

cient resolution of disputes, which includes determining if the results of outsourced jobs are

correct. This paper introduces Mechanisms for Outsourcing via a Decentralized Computa-

tion Market (MODICUM), a distributed-ledger based platform for decentralized computa-

tion outsourcing. In contrast to other distributed-ledger based solutions (mentioned above),

our approach retains computational efficiency by minimizing the amount of resources spent

on verification through three ideas. First, it relies on partially trusted mediators for settling

disputes instead of trying to establish a global consensus on the computation results. Sec-

ond, it verifies random subsets of results, which keeps verification costs low while support-

ing a wide range of jobs. Third, it deters misbehavior through rewards and fines, which

are enforced by a distributed-ledger-based smart contract. Thus, MODICUM does not

prevent cheating and misuse, but it deters rational agents from misbehavior. The specific

contributions of this paper are as follows:

1. We introduce a smart contract-based protocol and a platform architecture for incentiviz-

ing the participation of job creators, resource providers, and mediators.

2. We present an analysis of the protocol by modeling the exchange of resources as a

game, and show how we can select the values of various parameters (fines, deposits, and

rewards), ensuring that honest participants will not lose, and the advantage of dishonest

participants is bounded.

3. We provide a proof-of-concept implementation of the protocol, built on top of Ethereum.

Through comparison against AWS lambda we determine that due to the transaction costs

currently associated with the main Ethereum blockchain, our implementation is cur-

72



rently suited only for very long-running jobs. However, any improvements to Ethereum

will benefit our platform. Additionally, our protocol is not limited to the use of a specific

platform. Any platform that supports smart contract functionality can be utilized.

Outline: We begin by discussing related work in Section 3.3. Then, we introduce

MODICUM in Sections 3.4 and 3.5. We analyze the protocol in Section 3.6. In Section 3.7,

we describe an implementation of our platform and provide experimental results on its

performance. Finally, in Section 3.8, we present concluding remarks. Implementation is

available at [125], and proofs and detailed specification can be found in our full paper

[126].

3.3 Related Work

In [127], the authors determine that for verifying outsourced computation the crypto-

graphic approach is not practical and should instead use repeated executions. The com-

putations however should not be duplicated more than twice. Their strategy is simple:

outsource to two providers and compare results. The key challenge then is to prevent col-

lusion. They propose sabotaging collusion with smart contracts. Essentially, they hold

the providers accountable using security deposits and a smart contract. They also assume

that if two providers intend to collude, the providers also use a smart contract to hold each

other accountable. To counter this, the authors propose a third contract that states that the

first provider who betrays the other, showing the colluder’s contract as proof, is granted

immunity and will receive a reward. In their work, they have not yet considered the sce-

nario when the client may be an adversary. They also do not address the case when the

contractors do not need a contract to trust each other.

The authors of [128] consider a case where there is a trusted third party that would

be responsible for verifying a critical computation, except that it becomes a bottleneck for

the rest of the system. It instead becomes a boss and outsources the verification task. To

incentivize participation, the boss offers a reward, and to discourage misbehavior the boss
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requires a security deposit to enable it to enforce fines. The two verification strategies

they consider are random double-checking by the boss and hiring multiple contractors to

perform a job and comparing results. The authors do not consider the case when the boss is

malicious or attempts to avoid paying out the rewards promised. They also do not discuss

practical issues such as what if the contractors never return a result.

In iExec [129], the number of repeated executions required for verification is deter-

mined by a confidence threshold. After a result is computed, the pool scheduler checks

if the results submitted achieve the desired level of confidence using Sarmenta’s voting

[130]. The workers register themselves to a scheduler that they choose to trust. If the

scheduler breaks trust, the worker can leave to a competing pool. iExec checks tasks for

non-determinism before allowing them to be deployed in the network. It does this by ex-

ecuting the task many times. This has the drawback that the task must take no inputs;

otherwise, all execution paths would need to be tested.

In TrueBit [123], verification is provided via Verifiers, which duplicate the computation

based on an incentive structure that rewards them for finding errors, and errors are inten-

tionally injected into the system occasionally to guarantee benefits for verification. When

a Verifier finds an error, it initiates a protocol where they compare the machine state at

various points during the execution, like binary search. Once the step where the two solu-

tions deviate is found, the machine state is submitted to an Ethereum smart contract, which

implements a virtual machine that acts as a mediator. The TrueBit virtual machine exe-

cutes that specific step and determines which agent is at fault. The authors state that though

TrueBit can theoretically process arbitrarily complex tasks, in practice the mediation is

inefficient for complex tasks.

In each of these prior works, the authors assume that results must be globally accepted

or have universal validity. In [123], the authors mention that using a trusted mediator is

an option for resolving disputes regarding whether a task was done correctly, but such a

solution is unacceptable because it does not provide universal validity. We argue however
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Figure 3.1: MODICUM architecture. For ease of presentation, only one instance of Re-
source Provider, Job Creator, Mediator, Directory, and Solver is shown.

that many tasks—perhaps even the majority—do not require universal validity. For such

tasks, only the agent who requested the execution of the task must be convinced of the

validity of the result, which means that the systems proposed by prior work incur significant

and unnecessary computational overhead for such tasks. Prior works also do not address

the possibility that the job creator itself could manipulate the system by providing tasks

that have non-deterministic or environment-dependent results.

3.4 MODICUM Architecture

MODICUM enables the allocation and execution of computational tasks on distributed

resources that may be dishonest and may enter or exit the platform at any time. Concep-

tually, this requires resource management, i.e., the allocation of resources to maximize

utility. We also need a service for managing job requests, which include both the job spec-

ification and the data products related to a job. Finally, we need a service that manages the

market, which includes matching jobs to available resources, tracking the provenance of

job products, accounting, and handling failures. Due to the decentralization of the system,

job creators (JC) and resource providers (RP) can have their own strategies; however, the

market must operate as a singleton.

To satisfy all of these requirements, we develop an architecture that consists of a distributed-

ledger-based Smart Contract, storage services (Directory), allocation services (Solver), Re-
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source Providers, Job Creators, and Mediators. These components and actors are shown

in Figure 3.1 and described in the following subsections. We start by describing first what

a job is in MODICUM.

3.4.1 MODICUM Jobs

A job is a computing task that takes inputs and produces outputs. The jobs MODICUM

is designed to support are limited to deterministic, batch jobs that are not time-critical, and

are isolated, meaning they receive no information that allows them to discern which agent

(RP, M) is executing them. We discuss the importance of our limitations in Section 3.5.4.

Further, the confidentiality of the job cannot be guaranteed since the computation is out-

sourced to any capable participant. It is essential that jobs can be executed independently

of the host configuration. The state-of-the-art approach for achieving this is to use a con-

tainer technology [131]. Consequently, we use Docker [132] images to package the jobs

in our implementation. Docker containers provide an easy-to-use way of measuring and

limiting resource consumption and securely running a process by separating the job from

the underlying infrastructure. To avoid downloading a full image for every job execution,

we support Docker layers. To execute an instance of a job, a base layer (i.e., OS or frame-

work), an execution layer with job-specific code, and a data layer are required. The base

layer can be downloaded a priori, and the other layers are downloaded after a match. If

the execution layer has already been downloaded, then only the new data layer is required.

The job requirements, including the required resources, are specified in the offers that the

agents make. These requirements are used by the resource provider to set the Docker con-

tainer’s resource constraints at runtime.

The cost of running a job depends on the amount of resources used. The resources

we consider for feasibility are instruction count (computes from CPU speed and time on

CPU), disk storage, memory, and bandwidth for downloading the job. The resources we

use to compute the price are the instruction count and bandwidth used as reported by the RP
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where each is multiplied by the RP’s asking price. Thus, the price of the job is calculated

as follows:

πc =result.instructionCount · resourceOffer.instructionPrice

+ result.bandwidthUsage · resourceOffer.bandwidthPrice
(3.1)

Note that it is often difficult to estimate resource requirements precisely. Repeated

executions of the same job result in approximately the same resource usage, but not exactly

the same. Therefore, when constructing an offer, the JC must add sufficient margins to the

estimated resource requirements to account for the expected variance. If the JC did not

provide this leeway, jobs would often exceed their resource allotments, forcing the JC to

often pay for the execution of failed jobs.

3.4.2 MODICUM Actors

3.4.2.1 Resource Provider and Job Creator

Job Creators (JC) have jobs to outsource and are willing to pay for computational re-

sources. Resource Providers (RP) have available resources and are willing to let Job Cre-

ators use their hardware and electricity in exchange for monetary compensation. JCs post

offers to the market specifying the jobs, quantities of resources required, deadlines for

execution, required Docker base layers, computation architecture, and unit bid prices for

resources; while RPs post offers specifying available resources, Docker base layers, com-

putation architecture, and unit ask prices for resources. To prevent the JC and RP from

cheating, they are required to include security deposits (see Eq. (3.2)) in the offers submit-

ted to the platform. We provide more details on the costs and deposits later in Section 3.6.

JCs and RPs also specify trusted Directories and Mediators, which we describe below.

A JC has multiple strategies for verifying the correctness of the results returned by an
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RP. Any reasonable verification strategy must cost less than what it would cost to simply

execute the job. A straightforward verification strategy is to re-execute a random subset

of jobs and compare the results with those provided by the RP. As long as the number of

verified jobs is low enough, this strategy is viable. If the JC cannot execute the job itself,

then it can post duplicate job offers instead and compare the results provided by different

RPs. For some jobs, there exist verification algorithms that cost significantly less than

execution, and so the JC may be able to verify every job. However, this requires the JC to

implement an efficient algorithm for verification, which might be challenging.

3.4.2.2 Directory

Directories are network storage services that are available to both JCs and RPs for

transferring jobs and job results. Directories are partially trusted by the actors, which means

that actors (RPs and JCs) choose to trust certain Directories, but these are not necessarily

trusted by the platform or by other RPs or JCs. Directories are paid by the JC and RP for

making its services available for the duration of a job.

3.4.2.3 Solver

Matching a JC offer, and an RP offer requires computations that cannot be executed

on a smart contract which has limited computation capabilities. Therefore, we extend the

concept of hybrid solvers introduced in [34] and include Solvers in MODICUM. A Solver

can be a standalone service, or it may be implemented by another actor (e.g., RPs and JCs

may act as Solvers for their own offers). Unlike the smart contract, Solvers are not running

on a trustworthy platform; hence, the contract has to check the feasibility of matches that

the Solvers provide which is significantly easier computationally than finding matches.

Solvers receive a fixed payment, set by the platform and paid by the JC and RP, for finding

a match that is accepted by the platform.
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3.4.2.4 Mediator

When there is a disagreement between a JC and an RP on the correctness of a job de-

scription or a job result (e.g., the RP claims that a job result is correct, while the JC claims

that it is incorrect), a partially trusted Mediator decides who is at fault or “cheating.” A

Mediator is capable of executing the job in the same way as the RP, but it can be more ex-

pensive since it is expected to provide a more reliable service and to maintain its reputation

in the ecosystem. Each Mediator sets a price which it is paid by the JC and RP for making

its services available for the duration of a job. In the case of mediation, it is additionally

compensated for the computations it executes.

3.4.2.5 Smart Contract

The Smart Contract (SC) is the cornerstone of our framework. Most communication

in MODICUM is effectuated through function calls to the SC and events emitted 3 by

the SC. The SC is deployed and executed on a trustworthy decentralized platform, like

the Ethereum blockchain [31], which enables it to enforce the rules of the MODICUM

protocol described in the next section. It also enables actors to make financial deposits

and to withdraw funds on conditions set by the SC. The functions provided by the smart

contract can be found in our full paper [126].

3.5 MODICUM Protocol

In this section, we discuss the operation protocol, possible misbehavior, the concept of

mediation, and various faults that can occur and how they can be handled. Fig. 3.2 shows a

possible activity sequence from registration to completion of a job. Fig. 3.3 represents the

state of a job from the perspective of the smart contract.

3Emitted events in platforms such as Ethereum are recorded to the transaction logs of the ledger, which
can be accessed by interested agents via polling. We use the word emit because that is word used for this
functionality in Solidity, which we use for our proof-of-concept implementation.
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Figure 3.2: Sequence diagram showing the outsourcing of a single job. Black arrows are
function calls to the smart contract. Blue dashed lines are events emitted by the smart
contract. Gray lines are optional function calls. Red lines are optional calls that are required
in case of disagreement between RP and JC. Green lines are off-chain communication.
Note that events are broadcast, and visible to all agents that can interact with the contract.
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3.5.1 Registration and Posting Offers

First, RPs and JCs register themselves with MODICUM (Fig. 3.2: registerResou-

rceProvider, registerJobCreator). Note that RPs and JCs need to register only

once, and then they can make any number of offers. If an RP is interested in accepting jobs,

it will send a resource offer to the platform (Figs. 3.2 and 3.3: postResOffer). On the

other side, a JC first creates a job and uploads the job to a Directory that it trusts and can use

(Fig. 3.2: uploadJob). Then, it posts a job offer (Figs. 3.2 and 3.3: postJobOffer).

Note that any time before the offers are matched, RPs and JCs can cancel their of-

fers. Cancellation can be due to unscheduled maintenance, or because their offers have

not been matched for a long time and they wish to adjust their offer (e.g., increase maxi-

mum price) by cancelling the previous offer (Figs. 3.2 and 3.3: cancelJobOffer and

cancelResOffer) and posting a new one. Once matched, cancellation is no longer

permitted.

3.5.2 Matching Offers

After receiving offers, the smart contract notifies the Solvers by emitting events (Figs. 3.2

and 3.3: JobOfferPosted, ResourceOfferPosted). The Solvers add these to

their list of unmatched offers and attempt to find a match among them. After finding a

match (which consists of the resource offer, job offer, and the Mediator) a Solver posts it

to the smart contract (Figs. 3.2 and 3.3: postMatch). The smart contract checks that

the submitted match is feasible, if it is the match is recorded and the JC and RP are no-

tified that their offers have been matched (Figs. 3.2 and 3.3: Matched). Note that for a

match to be feasible the resources specified in the RP offer must satisfy the requirements

of the job specified by the JC offer. Additionally, they should have a common architecture,

trusted mediator, and directory. The full feasibility specification can be found in our full

paper [126]. With the Matched event, the contract pays the Solver the amount RP and JC
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specified as the matching incentive.

3.5.3 Execution by RP and Result Verification by the JC

After receiving notification of a match, the RP downloads the job from the Directory

(Fig. 3.2: getJobImage) and runs the job. While running the job, RP measures re-

source usage. Finally, when the job is done, it uploads results to the Directory (Fig. 3.2:

uploadResult) and reports the status of the job and resource usage measurements to the

smart contract (Figs. 3.2 and 3.3: postResult). The status of the job is the state in which

the job execution is terminated. Some possible termination states include Completed or

MemoryExceeded. The full list of status codes can be found in our full paper [126] and

we will discuss some of them in Section 3.5.4.

After receiving the notification that the result has been posted (Figs. 3.2 and 3.3: Resu-

ltPosted) the JC downloads the result (Fig. 3.2: getResult) and decides whether

to verify it or not. It then accepts, ignores, or rejects the result. If the JC accepts the

result (Figs. 3.2 and 3.3: acceptResult) the contract returns deposits, pays the RP and

Mediator, and closes the match (Fig. 3.3: MatchClosed).

If the JC ignores the result, then after some time, the window for the JC to react

closes, and the RP is permitted to accept the result (Fig. 3.3: RP:acceptResult) re-

sulting in the match closing (Fig. 3.3: MatchClosed). If the JC disagrees with the re-

sult, it rejects the result (Figs. 3.2 and 3.3: rejectResult) with a reason code such

as WrongResults or ResultNotFound; then, mediation follows (Figs. 3.2 and 3.3:

JobAssignedForMediation).

3.5.4 Faults and Mediation

There are essentially two types of faults that can occur in the system: 1. Connectivity:

this can occur for the JC, RP, and the Mediator when they try to communicate with the

Directory or the smart contract. Note that the JC, RP, and Mediator do not talk directly
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(see Fig. 3.1). Solver connectivity faults are not a concern since it only interacts with the

smart contract and the failure of a Solver implies that Solver does not submit a solution,

but others may. Hence, we only worry about the connectivity to the smart contract and

the directory. 2. Data (job input and results of execution): it can be malformed, return an

exception when executed, not be available on the Directory, be verifiably incorrect, etc.

First, we discuss the connectivity with the smart contract. If the RP cannot commu-

nicate with the smart contract, it may not receive a notification that it has been matched

and it is also unable to call postResult. These are both addressed by the JC having a

timeout. If the JC calls timeout (see Figs. 3.2 and 3.3) and the required waiting period

has elapsed, then the smart contract pays the JC the estimated value of the job from the

RPs deposit and returns the remainder. The timeout also addresses when the JC misses the

ResultPosted message sent by the RP, since if the misses the message, it will attempt

to timeout, which will fail because the result was posted, and then it will fetch the result.

Smart contract connectivity failure also means that the JC cannot send acceptResult

and that the RP never receives a notification that the JC accepted. This is addressed by

allowing the RP to bypass the JC and call acceptResult if the platform specified dura-

tion for the JC to respond has elapsed. Connectivity failure also means that the JC and the

RP may not receive the MediationResultPosted message. In this case, they may

respond by removing that Mediator from their trusted list; and if the result eventually ar-

rives, they can re-add the Mediator. This also addresses when the Mediator does not get the

mediation request or cannot post the mediation result. In this case, mediation is considered

to have failed; to release the security deposits, we enforce a timeout via the smart contract.

In the event of this timeout, we instead pay the RP half of the JC’s job estimate and return

the remainder of the deposits. Obviously, the Mediator does not get paid since mediation

failed.

Now, we discuss connectivity with the Directory. If a JC cannot connect to the Direc-

tory to submit a job, it simply tries to upload to another Directory it trusts. If it cannot
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connect to retrieve a result then the JC must either pay the RP or request mediation with

the DirectoryUnavailable status. To verify the JC claim, the Mediator queries the

Directory for its uptime. If the Directory reports that it was available for the entire job

duration, then the Mediator assigns fault to the JC; otherwise, it assigns fault to the Direc-

tory. If the JC does not agree, it may remove the Directory and/or the Mediator from its

trusted lists. Similarly, if the RP cannot connect to the Directory, either to fetch the job or

upload the results, then it posts a result with the DirectoryUnavailable status. If

the JC does not agree that the Directory is unavailable, then it requests mediation which

proceeds as above with the RP rather than the JC. If the Mediator sends a mediation result

of DirectoryUnavailable then the RP and JC may choose to remove the Directory,

Mediator, or both from their trusted list.

Finally, we discuss the data faults. The data faults that the RP can detect and the corre-

sponding result status are: 1) no job on the Directory (JobNotFound), 2) a job description

error (JobDescriptionError), 3) excessive resource consumption (ResourceExc-

eeded), and 4) an execution exception during execution (ExceptionOccurred). The

JC can request mediation if it disagrees with a claim of any of these faults, in addition

to detecting no result on the Directory, or that the result is incorrect. Finally, the JC can

request mediation if, after verification, the JC suspects that the resource usage claimed by

the RP is too high. This could occur since the resource variation should be small, but the

JC may have set a high resource limit to ensure the job completes.

If the JC requests mediation claiming there is a data fault, then the Mediator attempts

to replicate the steps taken by the RP, with the distinction being that it re-executes the

job n times (see Section 3.6.1, it is defined as a parameter of the smart contract), and

compares its results with the RP’s results. In two cases, the JC will be at fault: 1. All of

the Mediator’s results and RP’s results are the same, which means that the RP has executed

the job correctly. 2. The Mediator gets two different results when running the job, which

means that JC has submitted a non-deterministic job. Otherwise, the Mediator assumes that

85



the RP has submitted a wrong result. Another case is when the JC claims that the result is

not on the Directory. In that instance, the Mediator attempts to retrieve the result from the

Directory. If it cannot it faults the RP, if it can it faults the JC. If either agent disagrees it

may remove that Directory, Mediator, or both from its trusted list.

The Mediator submits the verdict to the smart contract (Figs. 3.2 and 3.3: postMedia-

tionResult), and the smart contract claims the security deposit. Of the deposit, the ac-

tual job price is used to compensate the damaged party for its losses, and πm (which is the

job price times the number of repeated executions n) goes to the Mediator to cover its me-

diation costs. In addition, Mediators always receive πa as payment for making their service

available. They receive this when a job is closed (Figs. 3.2 and 3.3: MatchClosed).

For this mediation approach to work, the RP must not allow jobs to access any extra

information (e.g., physical location, time) beyond what is in its description and Docker

image. Otherwise, a JC could create a job that could determine where it is running (e.g.,

via connecting to a remote server) and produce different results on the RP than on the Me-

diator. Thus, the Mediator would always incorrectly blame and punish the RP. This is why

the platform requires that jobs be 1. deterministic and punishes the JC if non-determin-

ism is detected (otherwise, we could not use repeated executions to verify) and 2. batch

(otherwise, the jobs could not be isolated).

3.5.4.1 Collusion

A part of the challenge in designing a fair system is the problem of collusion. We

enumerate all possible two-party collusions and discuss their objectives and how MOD-

ICUM addresses them. We do not consider more than two-party collusions explicitly be-

cause they are indistinguishable from two-party collusions for the non-colluding agents in

MODICUM.

• Job Creator and Solver: Since offers are public and any participant can act as a solver, the

collusion between JCs and solvers is inevitable. The goal of this collusion is to match a
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JC’s offers to the resource offers with the lowest unit price. Thus, the RP with the lowest-

price offer will be matched first. This is harmless because every resource offer includes

a minimum reservation price; thus, a JC cannot force an RP to perform computation for

less than what the RP voluntarily accepts.

• Job Creator and Mediator: Both JC and Mediator can benefit from this collusion by

taking the RP’s security deposit and splitting it between them, while the JC can also

benefit by having its jobs executed without paying. This can be achieved by the JC

requesting mediation on a correct result and the Mediator ruling in favor of the JC. To

an honest RP, this collusion will appear as a faulty Directory, faulty Mediator, or non-

deterministic job, though it can eliminate the last by repeating the job execution. The RP

removes the Mediator and Directory from its trusted list. Thus, a mediator can launch

this attack only once per RP.

• Job Creator and Directory: This collusion is similar to the one between the JC and

Mediator. JC and Directory can collude in multiple ways. For example, the Directory

manipulates the job so that the RP will return JobDescriptionError result status.

Then, JC will request mediation, the Directory will provide the correct job to the Me-

diator, and the Mediator will rule in favor of JC. Since the RP cannot distinguish this

collusion from the one between a JC and mediator, as a response, the RP removes the

Mediator and Directory from its trusted list. Thus, a Directory can launch this attack

only once per RP.

• Job Creator and Resource Provider: There is no possible benefit from this collusion.

• Resource Provider and Solver: The goal of this collusion is the same as for the collusion

between JC and Solver, and its impact and mitigation are also the same. This collusion

is desirable for the same reason as well.

• Resource Provider and Mediator: RP and Mediator can both benefit from this collusion

by taking the JC’s security deposit and splitting it between them; while the RP can also

benefit by receiving payment for a job without actually executing it. This can be achieved
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by the RP returning any job result, which the JC might verify and request to be mediated,

upon which Mediator will rule in favor of the RP. This collusion is mitigated in the same

way as the collusion between JC and Mediator, except that the roles of JC and RP are

reversed.

• Resource Provider and Directory: The goal of this collusion is the same as the RP and

Mediator collusion, and it can be achieved and handled in a manner similar to the JC

and Directory collusion. To an honest JC, collusion will appear as a faulty or colluding

Directory. As a response, the JC removes the Mediator and Directory from its trusted

list. Thus, a Directory can launch this attack only once per JC.

• Directory and Solver: There is no benefit from this collusion.

• Directory and Mediator: This collusion aims to ensure that the JC will request Media-

tion by manipulating data or availability, and then splitting the payment for Mediation.

Depending on the Directory’s manipulation and the Mediator’s ruling, either the JC or

RP will respond in the same way as if the RP or JC were colluding with the Directory or

Mediator.

• Mediator and Solver: The goal in this case is for the solver to prioritize trades that include

the Mediator, and further prioritize JCs and RPs with a history of requiring mediation.

This could result in unfairness, i.e., some jobs may never get matched. However, this is

not a real concern since the JC and RP can act as solvers and match their own offers.

From exploring the possible scenarios, we conclude that the JC and RP could be cheated

once by a Mediator or a Directory; however, the faulty agent will be removed from the

trusted list afterward. Since the business model for Mediators and Directories is attracting

RPs and JCs who trust and pay them for their services, they have strong incentives to build

a positive reputation in the ecosystem. Thus, we assume they will behave honestly. The

formal proof for this conjecture will be provided in future work.
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3.6 Analyzing Participant Behavior and Utilities

Here we formulate the agents’ actions as a game and solve for strategies that result in

a Nash equilibrium. We also show that platform parameters can be set so that a rational

JC will follow the protocol with, at least, some minimum probability. The extensive-form

representation of the game (shown in Fig. 3.4) is explained below.

3.6.1 Game-Theoretic Model

To understand the game, we first introduce a set of parameters in Table 3.1. Parameters

denoted by p are probabilities, π are payouts, c are costs incurred by agents, and g are

the costs for interacting with the platform. Many parameters have constraints on the valid

values that they can take and on their relationships with other parameters.

Now, we consider the JC’s choices. The JC has a job to outsource, whose execution

provides a constant benefit b upon receiving the correct job result. The JC is willing to pay

a job-specific price, up to π̂c, which is appropriate for the resources required to have the

result computed. The JC is able to verify if the job result is correct, but it incurs verification

cost cv by doing so. In order to mitigate this cost, the JC may choose to verify the result

with some probability pv, trading confidence for lower costs.

However, a dishonest JC can design non-deterministic jobs and we assume that the JC

can always recover the correct result from any output4. The goal of the JC in designing

a non-deterministic job is to get the correct output without having to pay the RP. It can

accomplish this if it requests mediation, and when it does, the mediator concludes that the

result returned by the RP is incorrect. Thus, if a JC designs a job to look “normal” to

the mediator with probability pa and “incorrect” with probability 1− pa, then the JC will

accept correct results with probability pa and request mediation with probability 1− pa. A

simple illustration of such a job is one which returns a natural number as its solution, and

4Note that the RP and M cannot be expected to analyze the code, and hence cannot know that the job
contains non-determinism.
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changes the sign of that value (i.e., multiply by -1) with a fixed probability, creating a set

of positive results and a set of negative results.

The game starts with the JC choosing a probability value for pa. A probability of pa = 0

means that the JC is completely dishonest, and all results will be considered incorrect. A

probability of pa = 1, means the JC is honest and all correct outputs are accepted.

The RP makes the next move, choosing between honestly executing the job or forging

a result to deceive the JC. The RP may be motivated to return a false result if the job

execution cost ce is higher than the deception cost cd and the JC does not verify the result

with some probability. The RP executes the job with probability pe, where pe = 0 means

that the RP is completely dishonest and always attempts to deceive the JC, while pe = 1

means that the RP is honest and executes the job correctly. Note that the correct result can

be a fault code if the computation fails.

The JC makes the next move and selects its strategy, choosing between verifying the

result or passing on the verification. The JC verifies the with probability pv. If verification

finds the result to be incorrect, the JC requests mediation to dispute the result.

To resolve the dispute, the Mediator must determine which agent is at fault. The Me-

diator does this by performing the steps that an RP would take to execute a job, repeating

several times to detect non-determinism. When initialized the smart contract specifies a

verification count n, which is the number of times the Mediator will execute a job checking

for anomalies. Since the job has a probability pa of returning a normal result and the Me-

diator executes the job n times, the probability that the job returns a normal result in every

execution is pn
a. Thus, the Mediator detects a non-deterministic job with probability 1− pn

a

and fines the JC for being dishonest.

As stated in Section 3.5.1, to deter cheating through fines, we require JCs and RPs to

provide a security deposit d when submitting offers. We define the deposit to be dependent

on the JC’s estimate of the job price π̂c and scaled by a penalty rate θ , which is set by the

smart contract. The job price π̂c estimated by the JC is the same as πc except it uses the JC’s
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bid prices and requested resources. The penalty rate must be set to a sufficiently high value

to deter misbehavior. The security deposit must also cover the cost of potential mediation

πm, which we estimate as π̂c ·n since the JC is willing to pay π̂c and the Mediator must run

n times. The deposit must also cover the availability costs of the Mediator and Directory

as well as the Solver costs; we let πa denote the sum of these costs. Thus, we define the

minimum security deposit dmin as:

dmin = π̂c ·θ︸ ︷︷ ︸
penalty

+(π̂c ·n)︸ ︷︷ ︸
πm

+πa (3.2)

The game induced by the interactions of the actors described above has 7 possible

outcomes. Each outcome has payouts for the agents as described in Fig. 3.5. To illustrate

how the payouts are calculated, consider the following sequence. The JC pays g j to submit

a non-deterministic job with a probability pa of returning a normal result. The RP honestly

executes the job incurring cost ce and pays gr to submit the result. Since the RP executed

honestly, the JC receives the benefit b. The JC verifies the result, incurring cost cv, and

detects that the non-beneficial part of the result is anomalous. It then attempts to avoid

paying πc to the RP by requesting mediation, paying gm. The Mediator executes the job n

times and if in one or more of those executions it encounters an anomalous result, which

occurs with probability 1− pn
a, then it submits to the smart contract that the JC is at fault

and the JC loses its security deposit d for submitting non-deterministic jobs resulting in

outcome o6. Otherwise, if all of the results from the repeated executions are normal then

the JC successfully cheats and receives πd as reparations for being “faulted” resulting in

o7. The payouts of the other outcomes are calculated similarly. The platform interaction

costs are fixed properties of a given smart contract and its underlying platform.

Since we assume that Directories and Mediators always act honestly, we do not consider

their strategic decisions in our game analysis. The expected utilities of both the RP and

the JC are summarized in Tables 3.2 and 3.3, respectively. The table is constructed by
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considering the possible actions of the RP and JC. There are two possible actions for RP

(execute and deceive) and two for JC (verify and pass) as illustrated by the tree in Fig. 3.4.

Hence, the utilities of RP and JC depend on the four action combinations and their possible

outcomes o1 · · ·o7. To understand how the utilities are calculated, consider the example of

the case when RP chooses to execute, and JC chooses to verify. This is node 7 in Fig. 3.4,

and there are three possible outcomes o5,o6,o7. Outcome o5 occurs with probability pa, o6

with probability (1− pa)(1− pn
a), and o7 with probability (1− pa)pn

a. Thus,

UJC
EV = pa · to5 +(1− pa)

(
(1− pn

a) · to6 + pn
a · to7

)
(3.3)

The utility for each combination of actions is denoted by utility U with a superscript of

the agent (i.e., RP and JC) and subscript of the action combination of RP and JC (i.e.,

EV is < execute,veri f y >, DP is < deceive, pass >, EP is < execute, pass >, and DV is

< deceive,veri f y >). Note that we replace the total outcomes payoffs using Fig. 3.5 in

Tables 3.2 and 3.3.

3.6.2 Equilibrium Analysis

Here we analyze the utility functions explained in the previous section. For lack of

space, we describe only the key results. Detailed proofs for these statements can be found

in the appendices of the arXiv version of this paper [126].

The ideal operating conditions for the platform would be if the RP always executed

(pe = 1), the JC never had to verify (pv = 0) and only submitted jobs which returned de-

terministic results (pa = 1). However, if the agents are rational, these parameters do not

constitute a Nash equilibrium. This is because if the JC does not verify, then the RP will

choose to deceive rather than execute since URP
EP < URP

DP . The JCs utility in this case is

always negative and so it is better off not participating in the platform. This proves the

following theorem:
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Theorem 1 (JC should not always pass). If the JC always passes (i.e., pv = 0), then the

RP’s best response is to always deceive (i.e., pe = 0).

If the RP always chose to deceive, the platform would serve no purpose. Therefore, we

must ensure that if the JC chooses to verify, the RP prefers to execute. This occurs when

URP
DV <URP

EV . We show in [126] that this is true if pn+1
a > 1

2 . When these conditions are true,

we can prove the following theorem:

Theorem 2 (pe > 0). If pv > 0 and pn+1
a > 1

2 , then a rational RP must execute the jobs with

non-zero probability.

Recall pa is a parameter set by the JC, so to satisfy the condition on pa in Theorem 2

we must show that the platform can set parameters to force the JC to choose a value for

pa that is greater than some lower bound. We assume that the JC is rational and chooses

pa to optimize its utility UJC. To find the bound we take its derivative with respect to pa,

∂UJC

∂ pa
, and assess how each parameter shifts the optimal value for pa. The trends are as n,

θ , gm increase pa also increases, meanwhile as πc and pe increase pa decreases. Knowing

how varying each parameter shifts the optimal value for pa we can select the worst-case

values for each parameter, i.e. those that minimize optimal pa, maximizing dishonesty.

Specifically, if the parameter and pa are inversely related, set the parameter to its maximum

allowed value, and if they are directly related set the parameter to its minimum value. Thus,

the worst-case values for each of the parameters are: gm = 0, pe = 1, n = 1, θ = 0. The

plot in Fig. 3.6 uses those parameters and shows that increasing n does cause the optimal

value for pa to increase. We see that when n = 1, the optimal pa = 0.5; and when n = 4,

the optimal pa = 0.943. This can be summarized as:

Theorem 3 (Bounded pa). Setting the JC utility function parameters to minimize the op-

timal value for pa (maximizing a rational JC’s dishonesty) ensures that any deviation will

increase pa. The platform controls n and θ , and so controls the minimum optimal value of

pa.
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We want to minimize the number of times the Mediator has to replicate the computation,

so we set n = 2 and set θ = 50 which yields a minimum pa = 0.99.

So far we have shown that we can ensure that a rational RP will prefer to execute when

a JC verifies, and deceive when the JC passes, and we can limit the amount of cheating

the JC can achieve through non-deterministic jobs. Next, we analyze the JC utilities to

determine the Nash equilibria of the system.

Analyzing JC types: The preferences of the JC depend on the parameters in its utility

function. We refer to each combination of preferences as a “type” of JC. We will call a

JC that prefers to always verify as type 1. A JC that prefers to always pass is type 4; we

have already covered this type and determined that a JC of this type will not participate. A

JC that prefers to verify when the RP executes and pass when the RP deceives is type 2.

A JC that prefers to pass when the RP executes, and verify when the RP deceives, is type

3. The JC has a preference because its utility is better in that case. These preferences are

summarized in Table 3.4 with the ∗ symbol followed by the type that prefers that choice.

This table is Table 3.3 refactored to remove terms that do not impact the JC’s preference

and to highlight the relationship between the preference and the cost of verification cv. We

consider the equilibrium for each type assuming the RP has been restricted as we discussed

previously. The theorems below summarize these observations. Proofs are available in our

full paper [126].

Theorem 4 (JC type 1). If the JC is type 1, it will always verify (pv = 1) since cv is suffi-

ciently low. This results in a pure strategy equilibrium < execute,veri f y >.

Theorem 5 (JC type 2). If the JC is type 2, it results in two pure strategy equilibria <

execute,veri f y >, < deceive, pass >, and one mixed strategy Nash equilibrium where the

JC randomly mixes between verifying and passing.

Theorem 6 (JC type 3). If the JC is type 3, it will result in a Nash equilibrium where the

JC randomly mixes between verifying and passing, and the RP mixes between executing

and deceiving.
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Strategies: Based on these preferences, a type 1 JC will always verify pv = 1. Type

2 JCs may also choose to always verify, or choose a mixed strategy, setting pv such that

the RP receives the same utility regardless of whether it executes or deceives resulting in a

Nash equilibrium. It achieves this by solving Eq. (3.4) for pv, setting ce = πc and cd = 0.

Type 3 JCs only have the option of solving Eq. (3.4) for pv.

pv ·URP
EV +(1− pv) ·URP

EP = pv ·URP
DV +(1− pv) ·URP

DP

Solve for pv; pv =
ce− cd

pn+1
a πc (θ +n+1)

(3.4)

The RP’s strategy changes depending on which type of JC it is working with. If the JC

is type 1, it is simple: the RP must execute. However, the other two types can mix, so the

RP must also mix. It does this by solving Eq. (3.5) for pe. The challenge with this is that the

RP does not know the value of cv. However, all other parameters are known once a match

is made except pa which from our work earlier we know that pa ≥ .99. Thus, the RP can

sample cv from a uniform distribution where 0≤ cv ≤ PJC
EV for type 2 and 0≤ cv ≤ PJC

DV for

type 3 (PJC
EV is the JCs preference value for < execute,veri f y > from Table 3.4). However,

since the RP does not know which type of JC it is working with, it further mixes between

the 3 strategies according to its belief on the distribution of the types of JC in the system.

pe ·UJC
EV +(1− pe) ·UJC

DV = pe ·UJC
EP +(1− pe) ·UJC

DP

Solve for pe; pe =
2πc− cv−gm−πc (1− pn

a)(n+θ +1)
pa (2πc−gm−πc (1− pn

a)(n+θ +1))

(3.5)

This analysis shows that we can limit the dishonesty of the JC and that the JC and

RP can compute strategies that will result in a mixed-strategy Nash equilibrium. Further,

we can show that the JC will not have to verify frequently by examining Eq. (3.4) and

showing that the maximum verification rate is low. First, we know that if ce < πc (which

should hold since otherwise the RP will always deceive), then ce−cd
πc
≤ 1. In this case, the
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verification rate is at its maximum when ce = πc and cd = 0. Simplifying Eq. (3.4), we

find that 1
pn+1

a (θ+n+1)
. In establishing Theorem 3, we showed that setting θ and n enforces

a minimum value for pa. Again to minimize computation replication we choose n = 2 and

θ = 50 and recall that this results in pa≥ 0.99. Substituting these values into our simplified

equation and find that pv = 0.02. This means that the JC will verify 2% of the results. Since

pa ≥ 0.99, mediation will occur at most 0.02% of the time.

3.7 MODICUM Implementation

In this section, we describe an implementation of MODICUM. The code is available on

GitHub [125]. We use a private Ethereum network to provide smart contract functionality.

MODICUM actors, including Job Creators, Resource Providers, Solvers, and Directory

services are implemented as Python services. The matching solver uses a greedy approach

to match offers as they become available using a maximum bipartite matching algorithm.

These actors use the JSON-RPC interface to connect to the Ethereum Geth client [133].

Note that each actor can be configured with any number of Geth clients, and the ledger can

be implemented either as a private blockchain or we can use the main Ethereum chain as

the ledger. We use Docker [132] images to package jobs. Jobs can be run securely by sep-

arating the job from the underlying infrastructure through isolation. This can be achieved

using a hardening solution such as AppArmor [134] or seccomp [135] in conjunction with

Docker. This protects computational nodes from erroneous or malicious jobs if properly

configured. Proper configuration has been discussed in other papers, for example [136],

and we do not go into detail here. To determine job requirements, jobs are profiled using

cAdvisor [137].

As part of the offer and matching specification, we require the JC to include the hash of

the base of the Docker image. Additionally, during setup, Mediators and RPs specify a set

of supported base Docker images (Fig. 3.2: mediatorAddFirstLayer and resourceProvider-

AddFirstLayer). This permits some optimization since RPs are able to specify which base
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images they have installed, thus by matching them accordingly, we can reduce the band-

width required to transfer the job by the size of the base image. Common base images vary

between about 2MB - 200MB [138].

3.7.1 Experimental Evaluation

JCs, RPs, and a Mediator were deployed on a 32 node BeagleBone cluster with Ubuntu

18.04. We set up a private Ethereum network. The Solver and Directory were deployed on

an Intel i7 laptop with 24GB RAM. The actors connect to the Geth client [133] each using

a unique Ethereum account.

Measuring Gas Costs and Function Times: To measure the minimum cost of execut-

ing a job via MODICUM, we had a single JC submit 100 jobs and measured the function

gas costs and call times independent of the job that was being executed. These can be found

in our full paper [126]. The JC’s average gas cost of a nominal execution is 592,000 gas.

At current Ethereum prices, this converts to $0.168 per job for the JC [139]. Comparing

this to Amazon Lambda pricing [140] on a machine with 512MB RAM (which a Beagle-

Bone has), a job would have to last ˜6 hours to incur the same cost. However, the electrical

costs to run a BeagleBone (210-460mA @5V) at maximum load for that long, assuming

$0.12/kWh electricity price, is only $0.0016. This illustrates that there is potential for such

a transaction system to be a viable option compared to AWS. However, using Ethereum

as the underlying mechanism is currently only viable for long-running jobs; but work is

underway to improve the efficiency of Ethereum [141]. We also measured the gas cost of a

mediated execution: the JC’s average gas cost in this case is 991,000, and the Mediator’s

cost to post the mediation result is 187,000.

During these tests, the duration of the function calls was also measured (see Fig. 3.8).

We note that the mean time for a block with transactions to be mined (block time in Fig. 3.8)

is about every 10 seconds, and that function call delay is consistently about 5 to 10 seconds

longer. This may be attributable to calls missing a recent block. The close time is the
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time measured between MatchClosed events. Since the jobs were run sequentially it is

a measure of the cumulative time added to the execution of a job, in this test running a job

through MODICUM added approximately 52 seconds.

Measuring the Overhead of Platform: To measure the overhead, we compared the

execution of jobs run with Docker containers natively against jobs run in MODICUM.

The job we used was the bodytrack computer vision application drawn from the PARSEC

benchmarking suite [142]. PARSEC has been used to benchmark resource allocation plat-

forms [143] as well as platforms for high-performance computing [144] among others. We

again ran 100 jobs, which took a total of 221 minutes, averaging 2 minutes per job. The

mean time for a block to be mined was 31 seconds, meaning it took about 4 blocks to com-

plete a job. The block time was likely longer in this experiment because as the blockchain

grew block mining times appeared to increase, though we did not study this explicitly. This

application tracks the 3D pose of a human body through a sequence of images. In Figure

3.9a, we see that MODICUM increases the runtime by about 1 second or 4%. In Figure

3.9b, the average memory consumption increases by 0.1MB, or 3%. To check mediation,

we ran the jobs again, but rejected the results for all 100 jobs and requested mediation.

Resource consumption while running the benchmark on MODICUM can be seen in

Fig. 3.7. The nodes are idle during the valley from 16:04:30 to 16:05:30 at which point the

platform is started. From 16:05:30 onward, MODICUM is running, and the bursts that can

be seen, for example at 14:09:30-14:10:45 in Figure 3.7c, are when jobs are being executed.

MODICUM introduces about 20-25MB RAM overhead for each agent type. It introduces

80% CPU overhead on the Mediator, 30% on the Job Creator, and no apparent change to

the Resource Provider. This is acceptable since the BBB devices are resource-constrained

and so the overhead will be less significant on more powerful compute nodes.
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3.8 Conclusions

An open market of computational resources, where resource owners and resource users

trade directly with each other has the potential for greater participation than volunteer com-

puting and more competitive pricing than cloud computing. The key challenges associated

with implementing such a market stem from the fact that any agent can participate and be-

have maliciously. Thus, mechanisms for detecting misbehavior and for efficiently resolving

disputes are required. In this paper, we propose a smart contract-based solution to enable

such a market. Our design deters participants from misbehaving by resolving disputes via

dedicated Mediators and by imposing enforceable fines through the smart contract. This is

possible because we recognized that the results do not need to be globally accepted, con-

vincing the JC will often suffice. We learned that due to the limitations of Ethereum our

platform is only suitable for long-running tasks, but there is space between the cost of elec-

tricity and AWS for a platform of this nature. Future work is looking into other platforms

that support smart contracts, as well as leveraging improvements to Ethereum.

99



Table 3.1: MODICUM Parameters and System Constraints

MODICUM Smart Contract (SC)
θ penalty rate set by the contract
d deposit by JC and RP for collateral prior to transaction
dmin minimum security deposit
gm cost of requesting mediation
gr cost for an RP to participate; includes the costs of submitting the offer and the

results, as well as partial payment to the Solver for a match accepted by the smart
contract

g j cost for a JC to participate; includes the costs of submitting the job offer, as well as
partial payment to the Solver for a match accepted by the smart contract

πd payout to wronged party when deception is detected
n number of times Mediator executes a disputed job

Mediator (M) and Directory (D)
πm payout to the Mediator when it is invoked
πa payout to the Mediator and Directory for being available for the duration of the job,

which also covers the Solver match payment
Job Creator (JC)

pv probability that JC verifies a job result (verification rate)
pa probability that a correct execution of a non-deterministic job returns a “normal”

result for which the JC will not request mediation (functionally, this is an indicator
of how honest the JC is)

πc payment from JC to RP for successfully completing a computation
b JC’s benefit for finished job minus cost of submitting job
cv JC’s cost to verify a job result

Resource Provider (RP)
πr payout that resource provider asks for completing the job
pe probability that RP intentionally executes the job correctly (1− pe is the probability

of cheating)
ce execution cost for RP to compute job
cd computational cost for RP to deceive and create wrong answer

System Constraints
1 b > πc +πa +g j for honest JC
2 θ ≥ 0 the penalty rate cannot be negative
3 n > 0 else the mediator does not re-execute the job
4 ce > cd > 0 else the RP never has incentive to cheat
5 π̂c ≥ πc ≥ πr > ce; if ce ≥ πr, the RP will abort the job; and if πr > π̂c, then that job

and resource offer match is disallowed by the contract
6 d ≥ dmin
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Figure 3.4: Extensive-form game produced by the MODICUM protocol. Blue nodes indi-
cate JC moves, red nodes indicate RP moves, green nodes indicate Mediator’s probabilistic
outcome. The game is sequential, but the decisions are hidden, so we treat it as a simulta-
neous move game. Each outcome has payouts for the agents, which are found in Fig. 3.5

Outcome Party
Contract
Payoff

Self
Benefit Reward(r)

o1
RP πd−gr−πa −cd πd− cd−gr−πa
JC −g j−d−gm−πa −cv −g j−d−gm− cv−πa

o2
RP −d−gr−πa −cd −d−gr− cd−πa
JC πd−g j−gm−πa −cv πd−g j−gm− cv−πa

o3
RP πc−gr−πa −cd πc−gr− cd−πa
JC −g j−πc−πa 0 −g j−πc−πa

o4
RP πc−gr−πa −ce πc−gr− ce−πa
JC −g j−πc−πa b b−g j−πc−πa

o5
RP πc−gr−πa −ce πc−gr− ce−πa
JC −g j−πc−πa b− cv b−g j−πc− cv−πa

o6
RP πd−gr−πa −ce πd−gr− ce−πa
JC −g j−d−gm−πa b− cv b−g j−d−gm− cv−πa

o7
RP −d−gr−πa −ce −d−gr− ce−πa
JC πd−g j−gm−πa b− cv b+πd−g j−gm− cv−πa

Figure 3.5: Game outcomes and payments in Fig. 3.4. For example, o1 is the outcome when
the RP deceives, the JC verifies, and the Mediator finds non-determinism and faults the JC.
The reward for the agents is the sum of contract payoff and self-benefit and is denoted roi .
The Mediator is not included in the table: in every outcome, it receives πa; when the JC
requests mediation, the M also receives πm, which is drawn from the faulty party’s deposit
d.
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Table 3.2: RP payoffs by decision

verify pass

execute

URP
EV︷ ︸︸ ︷

−ce−gr−πa+

πc

(
npn

a (pa−1)+ pa + pn
aθ (pa−1)

)
+

πd (1− pa)(1− pn
a)

URP
EP︷ ︸︸ ︷

πc− ce−gr−πa

deceive −cd−gr−πa +
pn

aπc (−n−θ)+πd (1− pn
a)︸ ︷︷ ︸

URP
DV

πc− cd−gr−πa︸ ︷︷ ︸
URP

DP

Table 3.3: JC payoffs by decision

verify pass

execute

UJC
EV︷ ︸︸ ︷

b−g j−πc (n+θ)(1− pa)(1− pn
a)+

(1− pa)(−gm + pn
aπd)− cv− paπc−πa

UJC
EP︷ ︸︸ ︷

b−g j−πa−πc

deceive −cv−g j−gm + pn
aπd−πa

−πc (n− pn
a (n+θ)+θ)︸ ︷︷ ︸
UJC

DV

−g j−πa−πc︸ ︷︷ ︸
UJC

DP
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Figure 3.6: We vary the value of n and plot pa against ∂UJC

∂ pa
. This shows that as n increases,

so does the optimal value of pa (zero-crossing of derivative curve). Parameter values are
πc = 2, gm = 0, θ = 0, cv = 1, b = 4, pe = 1
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Table 3.4: Simplified JC payoffs to assess dominant strategy with πd = πc

verify pass

execute −πc (1− pa)(1− pn
a)(n+θ +1)+

(1− pa)(−gm +2πc)
∗1,2

c∗3,4v

deceive 2πc − gm −
πc (1− pn

a)(n+θ +1)∗1,3
c∗2,4v

(a) Job Creator CPU (b) Job Creator RAM

(c) Resource Provider CPU (d) Resource Provider RAM

(e) Mediator CPU (f) Mediator RAM

Figure 3.7: MODICUM Total Resource usage. Each plot shows the resource consumption
on a node.
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Figure 3.8: Duration of MODICUM function calls during nominal operation.
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Chapter 4

Efficiency is a Challenge – Using Distributed Ledgers with Blockchains – A Stream

Computing Case Study

4.1 Overview

To address the challenges present in MSCPS, a platform was developed for outsourcing

computations to edge devices (MODiCuM) that seeks to minimize the costs associated with

reaching consensus through the use of a Mediator. The initial implementation of MOD-

iCuM was limited to batch jobs, which were isolated from outside systems. Ultimately,

the capability to outsource streaming computations, which make it possible to extract the

time-value of data, is required. This is because many critical real-time industrial internet

applications fall in that category and are becoming more common with the growth of the

industrial internet-of-things.

To support stream computation, inputs need to be processed faster than they arrive, but

since the computation is outsourced, assurance that the results are correct is also required.

Existing streaming solutions do not provide that assurance. On the other hand, trusted

computation solutions incur monetary and computational costs that are not compatible with

the volume and velocity of streaming data. The question then is: is there a solution that

provides both?

The solution presented here relies on the recognition that only key operations require

correctness assurances, and through careful partitioning of market functions we can pro-

vide both support for stream processing at low cost, and trust when required. The two

primary design features of this architecture are 1) an append-only data structure, in which

new events are added to a distributed ledger. The append sequence mimics the temporal

nature of incoming data and indexes it spatially for quick spatial-temporal queries. The
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primary implementation mechanism is Apache Pulsar [145] using Apache BookKeeper

[146] to implement the ledger. While similar systems such as Kafka [147] implement a

data store per topic, BookKeeper can distribute the topic content1 across nodes and mix

multiple topics within a node. 2) A universally trusted computing mechanism to manage

those aspects which would compromise the market if manipulated. This is implemented

using the Ethereum blockchain via “smart contract”. This allows us to reap the benefits

which come from using blockchain (namely, trust among participants) while facilitating

efficient execution of streamed computations. The challenge then is integrating these two

systems. Specifically, how to use the trusted computing mechanism to ensure that rational

participants will do what they claim they will do. This is accomplished through the con-

struction of a protocol that enforces a game that verifies participant outputs to ensure that

rational participants will behave in expected ways. However, we must also ensure that the

verification mechanism used has minimal impact on the stream processing performance.

To minimize the impact, the trusted computing mechanism is only required to compare two

hashes, and disputes are resolved by Mediator that is trusted by the relevant participants.

Within this solution participants can make certain trade-offs in the form of performing spec-

ulative work, by which we mean a Supplier can start processing service inputs before the

allocation is confirmed on the blockchain, trusting that it will eventually be added and that

it will eventually be paid. Or it can wait for the allocation and signatures to be confirmed

before starting work.

Integrating with Pulsar provides additional benefits such as runtime monitoring. To

account for participant failures timeouts are also included to detect when agents are not

functioning. As part of this work, initial experiments were run to set a baseline for the plat-

form’s operation and visualize its normal execution. As this solution is further developed,

its performance can be compared against this baseline to detect other abnormal behaviors

that may arise.

1A topic is a named tag associated with a type of of message.
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The work presented in this chapter has been submitted, and at the time of this writing

is awaiting review.

• S. Eisele, M. Wilbur, T. Eghtesad, F. Eisele, A. Mukhopadhyay, A. Laszka, and

A. Dubey, “Protocol, strategies and analysis for enabling a distributed computation

market for stream processing,” October 2020, Pending Review.

4.2 Introduction

Emerging Trends Online, or stream processing, allows Internet of Things (IoT) and

Smart City services to extract useful information from real-time data. Examples include

real-time availability maps for dockless scooters [148], improved emergency response

procedures [149], energy usage estimation and subsequent optimization for transit vehi-

cles [150], real-time occupancy maps [151], and traffic density and pedestrian density esti-

mation from intersections [152]. These applications are time-sensitive, necessitating rapid

processing of the inputs. This is the purpose of modern stream processing engines such as

Spark, Flink, Kafka, Pulsar, StreamQRE, and Heron [153, 154, 155, 156].

Such applications are commonly hosted on cloud computing platforms. This can be

expensive for cities2, especially for real-time high-velocity and high-volume data analysis.

Recently, an alternative paradigm known as dispersed edge computing has been conceptual-

ized [157, 158], where the compute power of nearby resources is leveraged. This paradigm

is still in nascent stages and does not necessarily address the problem of where the resources

to perform dispersed computing come from, for example by utilizing the slack computing

capacity at the edge. These approaches lack principled mechanisms that incentivize own-

ers to share slack resources with other stakeholders. This surplus computing capacity is

the portion of computing resources that remains after they have been utilized to satisfy the

requirements of their intended use. It is estimated that there are hundreds of exaFLOPs

2In a personal communication with a large cloud vendor, a southern U.S. metropolis had to undertake an
expense of $100K dollars per year for setting up real-time data processing applications for managing scooters.
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of surplus compute capacity available [159, 160]. The advantage of using these surplus

resources is in reduced costs 3 and in the distributed nature of devices, which promotes re-

silience and diffuses network congestion. This surplus capacity is not generally accessible

currently. This presents an opportunity to design a market that can effectively trade this

latent surplus computing capacity.

State of the art Work on aggregating surplus resources for outsourcing computational

tasks via a market exists. For example, [161, 162] aggregate surplus compute resources,

but only from trusted entities like internet service providers. This sidesteps the problem of

validating results in the same way that cloud providers do but leaves the bulk of the surplus

resources untapped. Other works such as [163, 123] allow mistrusted entities, and rely

on blockchain-based distributed ledgers, where there is no central trusted entity; instead,

trust is distributed among the participants, to provide trusted compute. Recognizing that

blockchain-only systems are inefficient, slow, and have limited throughput these design

protocols that perform the computation and verification on standard compute nodes and

only rely on the blockchain to control market operation. However, they do not account

for fundamental requirements of stream processing and delay providing outputs until after

verification, making them only suitable for batch processing.

Challenges To support stream computation with surplus computation several chal-

lenges must be addressed. Obviously, for stream processing, the inputs need to be pro-

cessed faster than they are generated, and since the computation is outsourced, some assur-

ance that the results are correct is required. Existing solutions (like those mentioned above)

do not provide that assurance or are not equipped to validate results in a manner amenable

to stream processing, i.e., near-instantaneous and inexpensive due to the volume of data

processed. Additionally, streaming processes are often long-running; surplus capacity, on

the other hand, is transient and subject to the demands of the primary application. Thus,

it is likely that agents who provide surplus compute will not be able to host a service for

3The space, hardware, cooling, and operations costs are sunk costs, which are already paid for to support
the devices’ primary applications.
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its entire life-cycle. The time sensitivity of streaming processes means that the interactions

between services must be accounted for and they are especially sensitive to failures. A

failure that requires restarting the service results in loss of value from the data that should

have been processed.

Our Contributions This paper presents a solution that addresses the issues of resource

availability, trust, reliability, and time-sensitivity posed by outsourcing stream processing.

To gain access to surplus compute capacity, we construct a market that incentivizes Suppli-

ers (agents who provide surplus compute) to participate by offering compensation for their

otherwise wasted compute cycles. To handle the volatility inherent in surplus resources,

Customers (stakeholders who have services to outsource) specify a minimum service time,

and their offers can be broken up into sub-offers with a duration no shorter than the mini-

mum service time. To address the potential for Suppliers to fail accidentally, Customers are

able to request that their service be hosted by multiple Suppliers. Allocators are employed

to construct allocations, matching Customer and Supplier offers according to feasibility

constraints, including replicas and minimum service times.

To address the issue of trust, this solution relies on the recognition that only key oper-

ations require correctness assurances, and through careful partitioning of market functions

we can provide both support for stream processing at low cost, and trust when required.

The two primary design features of this architecture are 1) an append-only data structure,

in which new events are added to a distributed ledger. The primary implementation mech-

anism is Apache Pulsar [145]. 2) A universally trusted computing mechanism to manage

those aspects which would compromise the market if manipulated. This is implemented us-

ing the Ethereum blockchain via “smart contract”. This is similar to [123, 163] in that we

use blockchain for limited aspects of the protocol, but the integration with Pulsar allows us

to reap the benefits which come from using blockchain (namely, trust among participants)

while facilitating efficient execution of streamed computations. The challenge then is in-

tegrating these two systems. Specifically, how to use the trusted computing mechanism to
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ensure that rational participants will do what they claim they will do.

This is accomplished through the construction of a protocol that enforces a game that

verifies participant outputs to ensure that rational participants will behave in expected ways.

However, we must also ensure that the verification mechanism used has minimal impact

on the stream processing performance. To minimize the impact, the trusted computing

mechanism acts as a Verifier but is only required to compare two hashes, and disputes

are resolved by Mediator that is trusted by the relevant participants. Within this solution

participants are able to make certain trade-offs in the form of performing speculative work,

by which we mean a Supplier can start processing service inputs before the allocation

is confirmed on the blockchain, trusting that it will eventually be added and that it will

eventually be paid. Or it can wait for the allocation and signatures to be confirmed before

starting work.

This solution can provide the substrate for multi-stakeholder applications that rely on

a dispersed edge computing paradigm. However, it requires careful consideration of the

protocol and parameters of the system because individual participants may be selfish and

choose their strategy to maximize their own utility. We show how our mechanism ensures

that strategies that would undermine trust in the system are not viable. Thus, we emphasize

the following aspects of our solution in the paper.

1. We formally describe the design of the architecture and protocol of the system.

2. We show that our solution enables trust. For this, we provide the design and game-

theoretic analysis of an incentive-compatible and individually-rational market mecha-

nism. We prove that if the participants are rational, the system operators can set param-

eters to discourage cheating.

3. Lastly, we describe real-world application scenarios and examples obtained from our

partners and show how the system will work in practice.

Our results show that with this design, rational participants will follow the protocol and

benefit from participating in the system, while participants that deviate from the protocol
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Figure 4.1: Example: participants in the market. Blue lines represent the city network
(Both wired and wireless).

incur fines.

Outline We describe the problem formulation and our assumptions in Section 4.3.

This is followed by a description of our system and protocol in Section 4.4. We then show

the analysis of our system using a game-theoretic formulation Section 4.5. We present our

implementation and experimental results (Sections 4.6 and 4.7). We conclude with related

research and discussion (Sections 4.8 and 4.9).

4.3 Problem Formulation

The problem that we seek to address is the construction of a robust and trusted market

for outsourcing streaming computation.

4.3.1 Basic Problem Formulation

Let µ denote a market for outsourcing of services that rely on stream computations.

The market is formed by various agents (Figure 4.1 provides an illustrative deployment).
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There are Customers, denoted by C, who have computational services to outsource and

can make offers to rent compute capacity. For example, in a community where a regional

transit authority (ARTA) requires the ability to process real-time data from its vehicles, the

authority can participate in a market as a Customer where there is a set of Suppliers, denoted

S, who can make offers to sell surplus compute capacity and host the services. Examples

of Suppliers include businesses, universities, end-users, ISPs, and cloud providers. In the

figure, D are the streaming data sources of C who wants to process the sensor data. A and

M are Allocators and Mediators and will be explained later in the paper.

Services We denote a streaming service by ψ , which has a data input rate of λ and

requires Rc MB of memory and Ic CPU instructions (in millions) to process each input.

The service also has a finite lifecycle defined as ∆c = cend − cstart where cstart and cend

denote the start and end clock times of the service, respectively. We assume that for a

specific service, Customers can estimate Ic, Rc, λ , and ∆c. An example of such a service is

the occupancy detection application that several transit authorities deploy [164, 165].

Resources The surplus RAM Rs and CPU resources Is of Suppliers are available only

for a limited duration defined as ∆s = send− sstart , subject to the demands of the owner of

the resource. We assume Suppliers can estimate Is, Rs, and ∆s.

Assumption 1. We note that spare CPU cycles and RAM are not the only resources that

may be required to provide a service; network bandwidth, disk space, GPU cycles, etc.

may also be required. However, these resources do not significantly change the problem of

outsourcing online computation. As a result, we do not include them in our system model.

In particular, we point out that the surplus compute market we design is meant for urban

communities that have already begun implementing smart city and IoT stream-computing

applications. To support these applications, cities must have access to a robust high-speed

wide area network which is crucial to facilitate data transfer. Since such a network is

required regardless of whether the computation occurs on the edge or in the cloud, we

make the reasonable assumption that the market has access to a network that is reliable.
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We primarily focus on computation aggregation and not communication constraints.

Offers We denote the sets of Customer and Supplier offers as Oc and Os, respectively.

A Supplier offer os ∈ Os is a tuple that includes: Supplieraccount, the account that posted

the offer; Is, the amount of surplus instructions (in millions) per second available; Rs, the

amount of RAM available; sstart ; send; and πxmin, the minimum price the Supplier is will-

ing to be paid per million instructions. A customer offer oc ∈ Oc is a similar tuple that

includes: Customeraccount, the Customer account that posted the offer; Ic, CPU instruc-

tions (in millions) to process each input; Rc, the amount of RAM required; cstart ; cend;

πxmax, the maximum price the Customer is willing to pay per million instructions; λ , data

input rate of the service; name, the name of the service; r, the number of Supplier replicas

that the Customer want to host the service. Accounts are identifiers for the Suppliers and

Customers.

A Supplier offer and a Customer offer can be matched to form an allocation Ω if:

Icλ ≤ Is and Rc ≤ Rs and πxmin ≤ πxmax (4.1)

[sstart ,send]∩ [cstart ,cend] 6= /0 (4.2)

In other words, a pair of offers is matchable if the Supplier has sufficient resources, there

exists a price that both Customer and Supplier would accept, and the times overlap. We

assume access to an algorithm that, given a set of Supplier and Customer offers, can find a

match if one exists. This is a classic example of a resource allocation problem for which

there are many different algorithms [166].

Allocation An allocation is a service contract between the participants according to

their offers. We define an allocation as a tuple which includes: customer, the allocated

Customer; {suppliers}, a set of allocated Suppliers; astart , the allocation start time; aend ,

the allocation end time; name, the service name; πx, the transaction price per million in-

structions such that πxmin ≤ πx ≤ πxmax; and r, the number of Supplier replicas. For the
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transaction price πx any value between πxmin and πxmax is feasible, it is determined by the

Allocator based on its allocation mechanism (e.g., double auction, fixed price, etc.). Effec-

tively, an allocation declares which offers were matched, the service price, the start and end

times, the transaction price.

The duration of the allocation is defined as ∆ = aend − astart . Recall: Ic is the number

of CPU instructions (in millions) to process each input and πx is the transaction price per

million instructions. For convenience, we define πs to be the price to process a service

input: πs = Icπx. Therefore, the total value of an allocation is πtotal = πsλ∆. Note the basic

problem is to find the allocations given a set of offers.

Processing A Supplier correctly processing an allocation means that the Supplier is

able to process the incoming data at least as fast as the incoming data rate λ , otherwise

data would eventually be lost. Formally: Icλ ≤ Is.

4.3.2 Additional Considerations

To enable trust and robustness in the market, we must consider the resource availability,

trust, reliability, and time sensitivity problems posed by outsourcing stream computations,

while keeping overhead costs low.

Resource Availability Consider a Customer needs to run a service continuously from

cstart to cend in order to receive the expected benefit. Suppliers are likely unable to host a

service for its entire life-cycle due to the demands of the Supplier’s primary applications.

To address this the total Customer offer must be “chunked” into sub-offers that correspond

with the offers by the Suppliers in the System.

Trust Given a particular market mechanism, each agent i (a Supplier or Consumer) has

a utility function Ui, and a set of actions Ai to choose from. We assume that the agents in

the system are rational and choose to maximize their utility. For example, agent i chooses

action a∗ ∈ Ai such that a∗ = argmaxa∈Ai
Ui. This means that Suppliers have an incentive

to neglect processing service inputs, because of the electricity costs πsε , if the benefits are
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greater than the consequences. We therefore face the challenge of designing a mechanism

that needs to achieve two crucial goals: first, it should incentivize rational agents to partici-

pate in the market, and second, it should incentivize truthful behavior. To aid this endeavor

we specify a security deposit πd the Customer and Suppliers need to provide in order to

participate. πd is computed as πd = πs×ρ , where ρ is a penalty rate defined by the mar-

ket. We show how the desired behavior is enforced by considering game-theoretic models

based on rational actors. We do not consider malicious agents which might have incentives

that are external to the market. We also require access to a verification mechanism that can

detect cheating.

Reliability In any large distributed system failures are inevitable so platforms must

be designed to account for them. The Customer would like to minimize the costs that it

pays to have a service hosted. However, if correct results are not provided on time then

it receives no benefit. As a result, the Customer may need to hire multiple Suppliers to

ensure reliability. The number of suppliers needed for a specific job is exogenous to our

market and is typically a function of the specific job and the risk profile of the Customer.

We assume that the time to failures can be approximated by an exponential distribution, a

widely used model in reliability engineering [167]. Let the average rate of failure (per unit

time) be denoted by q. The probability of failure can then be denoted by p f = 1− e−qt .

We assume that the probability of failure is common knowledge to all participating agents.

Conditional on p f , the Customer must hire r replicas to ensure P(b) probability of success

such that:

r =
1−P(b)

p f
(4.3)

Verification As mentioned we require a verification mechanism, however, introducing

verification may also introduce delays in the output stream. Thus, any verification that
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occurs must be essentially instantaneous or performed after the output has been released.

Verification must also be inexpensive due to the volume of data processed. To this end we

assume that the services are deterministic, meaning that repeated processing of a specific

output provides the same output every time. This assumption forms the basis for verifying

Supplier outputs. Specifically, verification compares outputs to detect errors, because this

is fast. Naturally, the assumption also means that the market we design cannot be used

for applications that involve random sampling, or for training machine learning models

that can involve non-deterministic estimators. However, it can be used for inference using

trained machine learning models.

Assumption 2. We require the stream applications to be stateless. Stateful services cannot

be split across streams, do not scale well, are not robust to failure since the state is lost, and

introduce time delays to recover. The assumption of statelessness does not mean that we

cannot handle state at all. If the state is stored external to the service then it can be read to

perform the processing. Alternatively, if the service operates on windowed time-series data

then it can be transformed into a data stream that merges the inputs into a single sample,

thereby allowing the service to be stateless. Specifically, “non-re-entrant functions” with

implicit states stored in the service itself are not supported.

Mediation Verification by comparing result, though fast, may not be able to determine

which inputs were actually correct. For this reason, we introduce the notion of media-

tion. Mediation is performed by a trusted agent that duplicates the contended output and

compares it against the previous results. Mediators are assumed to be few or have limited

resources and for this reason, cannot be used to host all services.

4.4 The System

We now describe the system components, protocols, and the strategy analysis for ratio-

nal actors.
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Figure 4.2: Horizontal lines represent communication channels between participants. Ver-
tical lines represent functions that write to (filled circle) and/or read from (open circle)
channels. For example, the Supplier reads that an allocation was accepted on the accept
channel which causes it to create (denoted by a square) a reader on the input channel, a
writer on the output channel, and a reader on the cleanup channel. The functions occur in
the numbered sequence. Red numbers only occur if the outputs checked by the Verifier do
not match.

4.4.1 Enabling Market Capabilities

Allocators As discussed, we require the capability to match offers in our system to

form allocations. Suppliers are offered an incentive to implement an allocation algorithm

and provide this service. We refer to such suppliers as Allocators. The set of Allocators

is denoted A. Each Allocator in the system is free to implement an arbitrary (and correct)

matching algorithm. We assume each Allocator is fair, i.e., does not target offers to leave

unmatched.

Blockchain Blockchain-based distributed ledgers have been of interest in recent years

for systems where there is no central trusted entity, instead trust is decentralized among

the participants. However blockchain-only systems are inefficient, slow, and have limited
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throughput making them unsuitable for streaming applications that are time-sensitive and

long-running. For example on Ethereum, blocks are committed approximately once every

15 seconds [168], and confirming a particular transaction takes at least 2 blocks, and can

take up hundreds depending on the amount paid in transaction fees [169]. Stream Process-

ing, on the other hand, needs to be comparatively faster. The challenge we face is to enable

speed but preserve trust.

Messaging and Streaming platform With Blockchain To address this challenge we

supplement the blockchain (box on the bottom of Fig. 4.2) with a distributed messaging

and streaming platform (box on the top of Fig. 4.2). Participants communicate through

both of these ledgers, and both ledgers record state.

To understand how the participants in the market communicate we reference Fig. 4.2.

Communication happens using channels. A channel is a topic in a pub/sub system with

authentication and authorization controlled by the stakeholders that communicate on that

channel. For example, the offers channel is public so any stakeholder can read it, and

any stakeholder can write their own offers4. In contrast, the input channel is private and

only the Customer and its sensors can write to it, while only the allocated Suppliers and

Mediator can read it. Using a streaming platform we can efficiently communicate the bulk

of information. Then, deploy a smart contract on a blockchain to implement elements

that are critical to preserving trust in the system such as tracking the state of allocations,

providing verification, and transferring payments.

4.4.2 Protocol

The protocol is subdivided into stages of interactions. The sequence of events is de-

noted with the numbered labels in Fig. 4.2, which we use to assist in describing the market

protocol. We refer to these events with circled numbers in the text (e.g., 1 ). We also refer

to the state machine shown in Fig. 4.3 as we describe the protocol, which depicts how the

4they cannot modify the offers written by other stakeholders
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Signing
AddSupplier(true)

AddSupplier(false)

Everyone Signed
Pay Allocator

mediatorSign()
customerSign()
supplierSign()

ClearMarket()

Pay Supplier
Return Customer Deposit

ReturnDeposits()

CreateAllocation()

PostMediation()
Pay Mediator

PostOutput()

Figure 4.3: State of allocation on the smart contract represented as a State Diagram. Our
smart contract code can be found online [170] and functions are described in Section 4.4.2.

smart contract tracks the state of each allocation. We also explain the participants and the

cost structure we use. As a convention, text in teletype font represents smart contract

functions and text that is italicized are state machine states.

Making Offers The protocol begins with the Customers and Suppliers constructing

their offers as described in Section 4.3. These offers are then sent on the offers channel 1 .

Creating Allocation The Allocator then reads the offers channel 2 . This causes it to

execute a matching algorithm and construct an allocation, if one exists. It then sends the

allocation on the allocations channel.

Accepting Allocation The Customers and Suppliers read the allocations channel 3 and

send a message on the accept channel to specify if they accept the allocation or not. The

participants read the accept channel 4 , and if all the allocated participants accept, then the

Allocator calls the blockchain smart contract function createAllocation. The state

of the allocation is initiated to Allocated. Afterward, for each Supplier of this allocation,
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the Allocator adds the Supplier and its offer hash (AddSupplier) to the allocation. When

all Suppliers are added, the state of the allocation transitions to Signing. This function call

incurs gas cost πac. Also in response to all of the allocated participants accepting, the other

participants must construct the necessary channels for the service to operate. In conjunction

with this, the participants read the blockchain for the Signing state change event from the

smart contract. When it appears, the participants check the allocation to make sure that

it matches the specific allocation that the Allocator sent on the allocations channel and,

if it does, sign (e.g., customerSign) the allocation on the blockchain by submitting

their security deposits. This varies somewhat between participants. As part of signing the

allocation, the Customer commits to n test input/output pairs5. This causes the Customer

to incur the cost nπcg to generate a set of hashed outputs and writing that hash to the smart

contract πcc. When all of the participants sign the contract, the state of the allocation is

automatically changed to Running.

The Customer, Suppliers, and Mediator also incur a cost for signing the allocation and

pay the Allocator for its service. These costs are lumped as πa. Once all participants have

signed, the Allocator receives πA as payment for its service.

Service Execution After the channels are constructed the Supplier can begin reading 5

on the service input channel and sending outputs on the service output channel6. For each

correctly processed input, the Customer reads 6 it receives a benefit b and the Supplier

incurs electricity cost πsε .

Verifying Outputs At the end of the allocation, the Allocator sends a message on the

cleanup channel 7 notifying the participants to end the allocation. The Customer informs

the Supplier which n outputs are to be verified. The Supplier identifies the corresponding

outputs and sends them to the Verifier on the blockchain 8 , calling PostOutput. The

Supplier incurs a cost of πv performing this operation. The Verifier on the blockchain stores

the output of the Supplier and compares it against the output provided by the Customer

5We describe how this is done and why it is necessary in Section 4.5
6Note: this can start before signing is complete
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during allocation.

Mediation and Closing the Allocation If the outputs do not match then the Verifier

emits a MediationRequested event (red 9 ) to the blockchain, where the Mediator reads

it (red 10 ). The Mediator then reads 11 from the input and output channels and re-

processes the n inputs and compares its output against the Suppliers and Customer outputs

to determine which participants are at fault. This incurs costs of n(πsε + πcg). The Me-

diator then writes the result to the blockchain, calling PostMediation, which incurs a

cost of πmc. Then, the Verifier transfers payments and closes the allocation 12 by calling

ClearMarket. The call causes the state of the allocation to transition to Closed, which is

read (red 13 ) by the participants. If a Customer or Supplier output did not match the Me-

diator output they are fined πcd or πsd respectively. From these fines, the Mediator is paid

n(πs). If the outputs match, the Verifier transfers payments; the Supplier receives λ∆πs, the

Customer pays λ∆πs, and the Mediator receives πm for being available. The Verifier also

closes the allocation (black 9 ), calling ClearMarket causing the state of the allocation

to transition to Closed, which is read (black 10 ) by the participants.

Timeouts At each point in the protocol where a participant is waiting on the output from

another (contract signing, service setup, service cleanup, service verification) we include

timeouts in the implementation. If the output is not received within a specified time window

the sender is considered failed, does not get paid, and is fined a portion of its deposit rather

than the full deposit as it would have if it had submitted an incorrect result.

4.4.3 Allocation Duration

A Customer may need to run a service for a duration that is longer than the avail-

ability of any of the Suppliers. In that case, the offer must be ”chunked” into sub-offers

with durations that correspond with the offers made by the Suppliers in the system. Some

care must be taken when chunking since each offer that is allocated incurs monetary and

time costs. Specifically, there is a time cost associated with constructing an allocation,
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denoted by δalloc, and with setting up the service after the allocation is signed, denoted

by δsetup. Allocation setup includes the Allocator writing the allocation to the alloca-

tions channel, allocated participants reading the allocation, writing to the accept chan-

nel, and optionally waiting for the allocation to be signed on the blockchain. Service

setup includes transferring the service and starting the service. To be profitable and avoid

thrashing, each service has a minimum service time δmin. For an allocation to be valid

tend > δmin+δalloc+δsetup must be true. The time at which this becomes false is the expiry

time is te = tend−δmin−δsetup−δalloc.

The Customer can read the active Supplier offers to identify a reasonable service dura-

tion, greater than the minimum service time, and construct offers using this value. As part

of the allocation algorithm, the Allocator checks if the Customer offer has expired. If the

offer has not expired, it checks to see how many replicas the Customer has requested. It

then attempts to find that many Suppliers that are available for the duration. If the Allocator

can not satisfy an offer it produces a void allocation that serves to notify the Customer that

the specific offer is not allocated.

4.5 Analysis: Mitigating Cheating, Collusion and Failures

To analyze the strategic interaction between the Customers and Suppliers, we consider

our protocol as a game. We derive the utility functions for the agents by using the cost

structure that the protocol imposes. Before we discuss the game we explain why the pro-

tocol enforces the following: 1. have the Customer check the Supplier outputs, 2. why

the Customer must pay even if the Supplies do no work, 3. implement the Verifier on the

blockchain, 4. include a Mediator, and 5. have the Customer commit to n outputs during

the allocation,

Customer Verifying Supplier Outputs The Customer checks the outputs generated

by the Supplier in order to prevent collusion among the Suppliers. Consider a situation

where the check is not enforced. In that case, the Suppliers can collude and agree on a
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Figure 4.4: Extensive-form game produced by the protocol. Blue nodes indicate Customer
moves, red nodes indicate Supplier moves. The game is sequential, but the decisions are
hidden, so we treat it as a simultaneous move game. Each outcome has payouts for the
agents, which are found in Table 4.4

common output such that their outputs match. Recall that the Verifier only compares the

outputs, so a common (albeit incorrect) set of outputs would be accepted. Such behavior is

possible, since presumably, colluding can be significantly cheaper in practice than running

the service. One way to prevent such behavior is to ensure the existence of an additional

Supplier that does not participate in collusion. Such an idea is motivated by the role of

“trusted agents” in multi-agent systems [171]. There are two relatively straightforward

ways to achieve this. First, the Customer itself can occasionally act as a Supplier, and

second, the Customer can occasionally hire a Supplier that it trusts to process an input.

The presence of such a Supplier does not negate the benefits of the outsourcing market

because the service workload can (and usually will) exceed the trusted resources available

to the Customer. Since the Supplier in consideration is trusted by the Customer it does not

collude with the other Suppliers. In such a scenario, the Verifier detects the collusion since

the outputs agreed upon by the colluding Suppliers do not match with that of the trusted

Supplier.

Customer pays regardless A small but key design decision to eliminate undesired be-

havior is to have the Customer pay rλ∆πs at the end of the allocation regardless of the

outcome. This decision avoids complications that appear in prior work [163]. If the Cus-

tomer is refunded when a job fails, it naturally incentivizes Customers to construct jobs

that can manipulate the system (since Customers can get work done for free by collecting
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the refund), or collude. We understand that this design choice may seem unfair — there is

a possibility that the Customer pays for a service that is not delivered. However, in prac-

tice, we merely shift the overall cost incurred by the Customer. This shift is due to the

fact that if Customers had the incentive to cheat, the system would have incurred costs to

build infrastructure to regulate such behavior. Naturally, such cost would have been borne

by all agents, including the Customer. Also, we explain shortly how this payment does not

surface in the optimal strategy profiles for the agents.

Blockchain Implementation of the Verifier To prevent the Verifier from being able to

collude we implement it on the blockchain. The Verifier is only capable of detecting errors,

not ascertaining which entities are at fault.

Inclusion of a Mediator Including a Mediator to reprocess inputs allows us to only

penalize participants who are at fault. Participants allowlist Mediators and include this

information in their offers for the Allocator to construct valid allocations. If a participant

chooses to no longer trust a particular Mediator then it no longer includes it in its offers.

Verifying n outputs We now explain the need for the Customer to commit to checking

n inputs. Consider the situation where the Customer can check the Supplier outputs but can

choose not to.

The Game Model We model the interaction between the Supplier(s) and the Customer

as a game. The Supplier’s actions are to either process an input (denoted by s) or not

(denoted by s). Similarly, the Customer can choose to process the input (sc) or not (sc)

(note that the Customer can hire a trusted supplier to do the processing or do it by itself;

this choice is orthogonal to the strategic interaction we consider). The Customer pays

πa to accept the allocation and πs for the Supplier to process the input. Recall that the

Customer pays this regardless of whether the Supplier provides the output. The Customer

receives benefit b when it receives the processed output and pays πsε (the electricity cost of

processing the input as defined in section 4.4.2) to process the input itself if it decided to

check.
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The Supplier also pays πa to accept an allocation and πv to have its output verified. To

process an input the Verifier incurs πsε in electrical costs. If the outputs differ, the Verifier

records this to the blockchain, which triggers mediation to determine which Customers and

Suppliers to penalize. The Mediator posts the outcome back to the blockchain, finalizing

the allocation and. triggering payments. If a Customer is at fault it is fined πcd . If a Supplier

is at fault it is fined πsd . We show the game matrix for this scenario in Table 4.2.

Theorem 7. There is no pure strategy Nash equilibrium in the game between the Supplier

and the Customer

Proof. Assume the Customer chooses to process all inputs (say, through a trusted Sup-

plier), then: 1. the Supplier’s utility for (s,sc) is higher than for (s,sc), and as a result, the

Supplier’s optimal strategy is to truthfully process all inputs. 2. However, the Customer

then has a profitable deviation by changing its strategy to process no inputs. 3. If the Cus-

tomer processes no inputs, then the Supplier also has a profitable deviation and processes

no inputs, causing the Customer to deviate and process all inputs as we began.

Notice, that if the Customer makes a credible threat that it checks some (n) of the inputs,

then the game changes such that processing all inputs is the Supplier’s dominant strategy.

Naturally, the choice of n depends on a specific game and the payment structure. However,

for the Supplier to be convinced the Customer’s threat is credible, the Customer must have

no profitable deviations from processing n inputs. We identify two ways to accomplish

this. We describe one of the approaches here (the one that we implement as part of our

experiments) and discuss the other approach in the online appendix.

Prior to the allocation, the Customer processes n inputs. Then, as part of accepting the

allocation, it hashes those n outputs and commits them to the blockchain. It then mixes

those n inputs in with the regular workload inputs.7 At the end of the allocation, the Cus-

tomer notifies the Supplier which outputs it must submit. The Supplier submits its output

7This assumes that the Supplier cannot distinguish test inputs from workload inputs
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hash to the Verifier which compares them against the Customer’s committed output hash.

If the Customer hash did not represent the correct number of correct outputs, then it is de-

tected and the Customer is penalized. Thus, there is no profitable deviation from processing

n inputs for the Customer.

The game that is derived from this protocol can be seen in Fig. 4.4 with payouts in Ta-

ble 4.4. In this game, (s,sc) is the dominant strategy for the Customer as long as the utility

for U(s,sc)>U(s,sc), which is true when nπcg < πcd . Setting variables as in Eq. (4.4) the

Customer will always process n inputs as long as n < ρ .

nπcg < πcd

Note: πcg = ecπs, ec < 1, set πcd = ρπs

necπs < ρπs

nec < n < ρ

(4.4)

Similarly (s,sc) is the dominant strategy for the Supplier as long as the utility for

U(s,sc) > U(s,sc) which is true when λ∆(πs−πsε) > −πsd . This is true unless the Cus-

tomer severely underestimates the resources required, in which case the Supplier’s output

states that the resources allocated were exceeded, or the Supplier underestimated its power

consumption in its initial offer. Note that if the Customer sends too few, or bad outputs to

the Supplier, the Supplier can call for Mediation.

This formulation presumes that the Supplier processed every input or none of them.

However, it is possible that since the Customer is only checking n inputs the Supplier can

risk skipping the processing of some inputs to reduce its electricity costs. The utility for

the Supplier then depends on if it processed all the inputs whose outputs would be checked.

The utility of the Supplier in that case is:
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U [S] =P(s)n(λ∆πs−λ∆πsεP(s))+

(1−P(s)n)(−πsd)−πv−πa

(4.5)

The Supplier can then solve for P(s) to maximize its utility.

∂U [S]
∂P(s)

= nP(s)n−1
λ∆πs− (n+1)λ∆πsεP(s)n+nP(s)n−1

πsd

< set equal to 0, solve for P(s) >

P(s) =
n(λ∆πs +πsd)

(n+1)λ∆πsε

< πsd = ρπs, πsε = esπs, simplify >

P(s) =
1
es

(
n

n+1
+

nρ

λ∆(n+1)

)
< set ρ =

λ∆

n
>

P(s) =
1
es

(4.6)

In Eq. (4.6) we see that by requiring the penalty rate ρ equal to λ∆

n the maximum utility

of the Supplier occurs when P(s)> 1 (since e < 1) which is not possible. This means this

requirement ensures that the Supplier will always process the inputs. ρ is a parameter that

is set at the system level on the blockchain, while λ∆ is specified in the Customer offer and

n and πsd are computed by the Allocator.

Keeping threats credible While describing the protocol, we make the following three

statements: 1) the Customer “commits to n test input/output pairs”, 2) “The Customer

informs the Supplier which n outputs are to be verified”, and 3) “The Supplier identifies

the corresponding outputs and sends them to the Verifier on the blockchain.”. If these

outputs are sent in the clear, our game breaks or devolves back to a mixed strategy Nash

equilibrium. For example, if the Customer sends its n test outputs raw to the blockchain, the
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Supplier can read them and copy those outputs. Then, it can simply provide those outputs

at the end of the allocation and neglect processing any of the inputs. For this reason,

we need to make sure that the outputs are shared in a way that does not break the game.

To do this we have the Customer use a hash function to mask the output it sends to the

blockchain. Then since the Verifier is comparing outputs the Supplier’s output must also

be hashed so the results can be compared. To prevent the Supplier from simply copying

the Customer’s hash it must provide its outputs so that the Verifier itself can hash them to

match the Customer outputs.

To do this we first introduce some notation. Let Oc = {o1,o2, . . .on} represent the

set of the Customers n committed outputs where oi is a particular Customer output. Let

Os =
{

os1,os2, . . .osλ∆

}
represent the set of λ∆ outputs produced by the Supplier, where

osi is a particular Supplier output. Then to mask the outputs we use the following hash

functions:

α(K) = {hash(ki) : ∀k ∈ K}

γ(K) = hash(K)

Γ(K) = hash(hash(K))

(4.7)

For the hash function we need to use a hash function that is supported by the chosen

blockchain implementation - for example, since we use Ethereum we can use keccak256,

sha256, and ripemd160[172].

When the Customer sends its outputs to the Supplier so the Supplier can identify which

outputs it needs to send to the Verifier, the Customer sends α(Oc). Then to determine

which inputs are the test inputs the Supplier hashes all of its outputs and find which

hashes are common to the two sets. We call that subset of Supplier outputs Ov where

Ov = {oi : hash(oi) ∈ α(Oc)∩α(Os)}. This is because if the Customer sent {oi : oi ∈ Oc}

then the Supplier could skip processing the inputs and simply use the outputs provided to

produce Ov. Or if the Customer sent the index i of each test output the Supplier could
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neglect processing the inputs until it received the indices to produce Ov.

When the Customer commits Oc to the blockchain it sends it as Γ(Oc). The output set

is double hashed because if the Customer sent γ(Oc) then the Verifier on the blockchain

would have to hash all of the Supplier’s n outputs which is expensive. Instead, the Customer

sends Γ(Oc), requiring the Supplier to send γ(Ov) to the Verifier. Then the Verifier only

has to hash a single element to compare against the Customer’s output hash: Γ(Oc) ==

hash(γ(Ov)).

4.6 Implementation

Since interacting with a public blockchain like Ethereum is slow (minimum of 15 sec-

onds to record a transaction) and costly ($0.80 base fee with fastest transaction) we mini-

mize the number of interactions with it. While using side-chains is an option, implementa-

tions of side-chains are still relatively new and immature [173]. Instead, we choose to use

Apache Pulsar, which was developed for robust stream computing applications. These char-

acteristics have been demonstrated in industrial applications [174]. Pulsar is a distributed

messaging framework and ledger which supports multiple clusters and multi-tenancy [175].

A tenant can be likened to a user in an operating system. Users operate on processes and

files, while tenants operate on topics and clusters of hardware resources. By representing

a stakeholder as a tenant the stakeholder is able to manage which other stakeholders have

access to its clusters while isolating cluster hardware. 8 Thus clusters and tenants make

Pulsar a viable option for implementing and supporting a multi-stakeholder market. 9 10

To describe our implementation we refer to Table 4.5. Each stakeholder is represented

by a tenant (t1, t2, ..., tn) and their compute resources are placed into clusters (c1,c2, ...,cn).

8Pulsar tenants are applied to machine clusters. These clusters contain and isolate the resources owned by
the market participants.

9This is not the only way to implement the multi-stakeholder functionality we desire, but it is sufficient
for our purposes.

10There are some weaknesses in the current Pulsar implementation. The management of tenants is not
itself distributed.
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To participate in the Market, a stakeholder must first add its clusters to the Pulsar instance.

Then joining the Market is done by giving the marketplace tenant read-access to its public

namespace, which is on the stakeholder’s Marketplace Cluster (MC) [176]. The set of clus-

ters that allow the marketplace tenant constitutes the marketplace. After joining the Market

if the new stakeholder writes an offer to the market/public/offers topic the other stakehold-

ers are able to read it. Likewise, the new stakeholder can read the offers and allocations

of other stakeholders. Sharing of topics, and by implication messages, is handled with the

Pulsar administrative mechanisms. All stakeholders are implicitly granted read access to

the marketplace tenant.

4.6.1 Resilience

The Market is robust since many stakeholders are present and maintain their own clus-

ters. A failure of the blockchain means the miner network has been compromised this

undermines the trust in the system and the Market fails. However, on a proof-of-work

blockchain, this means an adversary controls more than 50% of the mining power, thus

the security of a blockchain is based on having a large number of miners in the network.

We assume this failure does not occur. The failure of other participants does not cause the

market to fail but may interrupt some allocations.

Essentially, our market design ensures that the consequences of failures are localized

to the specific stakeholder that experiences the failure. In the proposed system, as long

as there is more than one stakeholder that sends offers to an Allocator and stakeholders

have a mutually trusted Mediator, the Market is considered to be operational. Pulsar can

detect failures and can automatically fail-over to continue operating if the stakeholder has

configured its Pulsar cluster appropriately.
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4.7 Experiments and Results

These experiments are performed on a computing cluster that is used to create a repre-

sentative set of actors. We model the sensors and customers based on applications that we

have from our work with a representative Area Regional Transit Authority (ARTA).

4.7.1 Blockchain Analysis

Gas measures the amount of computation required to execute a transaction or make a

smart contract function call in an Ethereum network. The total gas cost of a transaction

depends on transaction costs and execution costs. While the transaction costs count for

the amount of data written on the blockchain, execution costs count for CPU operations

required. The exact code that is executed while making a function call to the smart contract

can vary based on many factors. For example, the number of Suppliers affects the number

of CPU operations required for making a ClearMarket function call since the smart

contract must compute the hash of the output hash for each Supplier and compare it to the

Customer’s committed hash of output hash.

Further, the agent (i.e., Supplier, etc.) making calls to the smart contract decides on

the price of gas based on how busy the Ethereum network is. Generally, more price on

gas means that the transaction will be executed faster on the network. Table 4.6 shows the

approximate gas cost required for making each function call to the smart contract based on

the sum of their transaction costs and execution costs, and their equivalent of USD price

given a typical gas cost of 20 Gwei.

In [163] the gas cost for a nominal execution of the platform for the equivalent of the

Customer was 592,000. The cost to the Customer in this work is the cost of signing the

allocation which is about 4 times less at 137,281. This reduction is possible due to the

use of Pulsar to handle the majority of market interactions, minimizing contract calls. The

smart contract functions could be optimized in the future to further reduce costs.
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Figure 4.5: Cumulative supplier utility compared to the number of allocations completed
by that supplier. Suppliers are broken into six groups representing the probability of the
supplier successfully processing the inputs of a given allocation P(s) (0% in the figure
represents cheating 100% of the time). Each group consists of 5 suppliers. As shown,
processing all allocations maximizes profit over time.

4.7.2 Strategy Experiments

The goal of this experiment was to validate the conclusions determined from the analyti-

cal analysis of the game by empirically checking that correct behavior resulted in maximum

utility. To perform this we chose a set of parameters to compute values for the payments.

These can be seen in Section 4.7.2. We set up the Supplier and the Customer so that we

could configure their strategies. Specifically, the Suppliers were given a parameter repre-

senting the probability that the Supplier would properly process all the service inputs (i.e.

did not cheat), P(s). The Suppliers were grouped by P(s) into 5 groups with P(s) set to

0, 20%, 40%, 60%, 80%, and 100% respectively. Similarly, the Customers were given a

parameter representing the probability that the Customer would supply the required outputs
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P(c). For the 30 Customers, we similarly broke them into five groups with p(c) set to 0,

20%, 40%, 60%, 80%, and 100% respectively.

We ran the experiment with 30 Suppliers and 30 Customers. Each of the Customers

and Suppliers sent 100 offers on the offers channel, where they were read by the Alloca-

tor and matched. The Allocator wrote the resulting allocation to the allocation channel.

Once the allocation was sent the participants executed their strategies by writing to the

output channel what their strategy was. This was read by a script that was emulating the

Verifier and Mediator. Based on the strategies taken by the Supplier and Customers, the

Verifier/Mediator would calculate the corresponding payments according to the game out-

lined in Section 4.5 and write to a channel representing the blockchain that the Customers

and Suppliers would read to update their balance.

As shown in Fig. 4.5, the Supplier utility was maximized when the Suppliers processed

all inputs and did not cheat. The utility was least when the Suppliers cheated every time

and improved as the probability of not cheating increased. There was minimal variance

between Suppliers with the same P(s), showing that the behavior of the Customers had a

negligible impact on the Supplier’s utility. Therefore, it is always in the Supplier’s best

interest to process the service inputs.

The Customer Utility is dependent on the behavior of the Suppliers, so to investigate

the impacts of Supplier behavior on Customers, we ran nine experiments. Each of these

experiments involved a set of Suppliers with a fixed P(s). The first experiment therefore

had all Suppliers with a P(s) = 60% and the last experiment had a P(s) = 100%. For each

of the experiments, we recorded the final utility of the customer that submitted n outputs

for verification and a customer that did not submit n outputs for verification.

As shown in Fig. 4.6, it is always in the best interest of the Customer to submit the

required n outputs for verification regardless of the system level P(s). In the case of a per-

fect system with P(s) = 100%, there was a 24% greater utility for submitting outputs for

verification. Additionally, there is a clear linear relationship between the P(s) of the Sup-
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Figure 4.6: Customer utility after 1000 allocations compared to the probability of suppliers
in the market servicing a given allocation (P(s)). The customer gets the maximum benefit
when submitting the required number of verification values. As shown, there is a linear
relationship between the global P(s) of the suppliers and customer utility.

pliers in the system and utility for the Customer. For the ARTA application as formulated

in Section 4.5, the Customer had a break-even point when Suppliers in the system had a

P(s) of 82%.

From this experiment, we see that the rational strategy for the Customer is to verify n

outputs and the Supplier to process all inputs. Allowing the participants to trust the system.

This was possible because of the protocol and incentive design decisions.

4.7.3 End to End Execution Experiments

The goal of this experiment was to monitor the performance of the system under load.

We ran an experiment with 20 customers and 30 suppliers and monitored the time between
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Figure 4.7: Message delay (seconds) at runtime for experiments with 20 Customers and
30 Suppliers. Fig. 4.7a: distribution of time between a Supplier submitting an offer and
receiving an allocation (Supplier-1 to Supplier-3 in Fig. 4.2). Fig. 4.7b: distribution of time
between customer writing to input channel and receiving a processed result from the output
channel (Customer-1 to Customer-6 in Fig. 4.2). Fig. 4.7c: distribution of time between the
Mediator reading the verification outcome and mediator writing to verifier (Mediator-10 to
Mediator-11). A total of 76,990 messages were processed during the experiment.

messages exchanged within the system. All customers ran the ARTA application with

parameters as outlined in Section 4.7.2 and the results are provided in Fig. 4.7. In total there

were 76,990 messages exchanged throughout the experiment. Using Fig. 4.2 to visualize

the data flow; Fig. 4.7b shows the delay between a Customer writing to an input channel

1 and reading the processed result from the output channel 6 . The median time for this

process was 0.029 seconds, showing that customers can expect a reasonably fast processing

time for the ARTA application.

Fig. 4.7a shows the delay between a supplier submitting an offer on the offers topic and

receiving an allocation. This process can be visualized in Fig. 4.2 as the time between a

Supplier writing to the offer channel 1 and reading the allocation channel 3 . The median

time for this process was 0.38 seconds showing there was minimal delay in matching offers.

Fig. 4.7c shows the delay between the mediator reading the verification outcome and the

mediator writing to the verifier. The median time for this process was 0.033 seconds,

showing that mediation is a reasonably fast process and does not add significant overhead

to the system.
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4.8 Related Work

With the proliferation of large-scale IoT systems, publish-subscribe and stream pro-

cessing software have rapidly advanced in recent years. In this context, a data stream is

a large unbounded collection of time-stamped messages that are published and consumed

on a message topic. Modern low-latency publish-subscribe middleware such as Apache

Kafka [179] and Apache Pulsar [145] use brokers and partitioned logs used to reliably pro-

cess large scale data in near real-time. Kafka is used at LinkedIn to process peak loads

of 200,000 messages a second and deliver over 55 million messages a day to users [180].

Many of the applications built on these architectures rely on processing raw data streams,

including event detection systems, video analysis applications and, analytics. Stream pro-

cessing engines such as Heron [181], Apache Storm [182], and Apache Spark Streaming

[183] provide unified APIs and protocols for building stream processing applications.

Modern pub-sub and streaming frameworks have made it more accessible to design

robust streaming applications. Typically these systems are deployed on the cloud, and

their architectures assume that the servers running these applications are trustworthy. This

presents unique challenges in offloading computation to mistrusted entities. Market-driven

approaches have been studied in the context of residual cloud computing [184] and batch

processing [163]. However, despite the potential benefits of creating an open decentral-

ized market for outsourcing stream processing, there has been limited research in this area.

Cherniack et. al. [185] outlined a federated market for which producers and consumers de-

rive value from streaming data, however they do not address trust in their design. TrueBit

[123] is a platform designed to extend the computation capabilities of blockchain-based

consensus computers (such as Ethereum) which provide strong guarantees that small com-

putations are performed correctly. They do this by constructing a market and outsourcing

computational tasks to Solvers, employing game-theoretic techniques. However, this plat-

form is not suitable for stream computing because it relies on the Solvers sending their

results to the blockchain before they are released. Mutable [186] is a cloud platform whose
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resources are aggregated from the surplus compute capacity of trusted entities like internet

service providers, telecommunications operators, or urban data centers. Though similar in

nature to this paper, aggregating surplus resources, they do not consider all the potential

resources and the associated potential for misbehavior.

4.9 Conclusion and Future Work

In this paper, we developed an environment that can be used to implement decentralized

market mechanisms. Using this environment we designed a market for outsourcing online

computations. This market solution can provide the substrate for multi-stakeholder appli-

cations that rely on a dispersed computing paradigm, of which ARTA and multi-modal

traffic monitoring are examples. This architecture allows participants to make trade-offs

between speed and trust. By this, we mean that as soon as an allocation has been accepted

the participants may begin speculatively working in order to work quickly. However, this

work may be wasted because that allocation is never added to the blockchain. Alternatively,

participants may be cautious and avoid beginning the service until the allocation has been

recorded in the blockchain.

We demonstrated that rational participants will follow the protocol and benefit from

participating in the system, while participants that deviate from the protocol incur fines. We

do not prevent agents from operating maliciously and returning erroneous results, however,

we do make it so that the costs exceed the benefits within the system. We do not handle

scenarios when there are benefits that are external to the system that make it worthwhile to

misbehave. Considering these scenarios is part of our future work.

Since there are many Allocators in the system, each with its own allocation algorithm,

a multitude of Markets within the system can be formed. Exploring how these various

markets interact is also an interesting avenue for future work.
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Table 4.1: Key Symbols

Smart Contract (SC)
ρ penalty rate set by the contract
πv cost of Supplier submitting outputs to the Verifier.
πcc cost of Customer committing outputs to the Verifier
πmc cost of Mediator committing mediation results to the blockchain

Mediator (M)
πm payout to the Mediator for being available for the duration of the service
πvε Mediator’s electricity cost to verify outputs

Customer
πxmax amount the Customer is willing to pay per million instructions
I number of instructions (in millions) required to process a service input
b benefit that the Customer obtains from service output
πcg Customer’s cost of generating an output
ec =

πcg
πs

Customer’s efficiency of processing vs. the price paid to outsource
λ rate at which sensor data is generated (these are the inputs to be processed in an allo-

cation)
r number of replicas requested by the Customer
sc Customer choosing to process an input
sv Customer choosing to verify an output

Supplier
πxmin payment that the Supplier requires per million instructions
πsε cost to process a service input
πv cost to send output hash to the Verifier
P(s) probability that the Supplier will process a particular input
es = πsε

πs
: Supplier’s efficiency of processing vs. the price paid to outsource

Allocator
πa cost to pay Allocator and for signing the allocation
πA payout to the Allocator for providing an accepted allocation
∆ = aend−astart : duration of a service allocation
πx market price per million instructions between πxmin and πxmax (determined by the Al-

locator)
πs = πx× I: amount to be charged/paid to a Customer/Supplier for a processed input
n number of outputs that must be provided by the Customer for verification
λ∆ = λ ×∆: total number of inputs to be processed by each Supplier replica during an

allocation
πcd Customer’s security deposit for collateral prior to transaction (set to ρπs)
πsd Supplier’s security deposit for collateral prior to transaction (set to ρπs)
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Table 4.2: The utility of the Customer and Supplier given the 4 combinations of their pure
strategies.

Supplier
Customer sc sc

s πs−πsε −πv−π∗a
b−πs−πsε −πv−πa

πs−πsε −πv−πa

b−πs−π∗a

s −πv−πd−πa

b−πs−πsε −πv−π∗a
πs−πv−π∗a
−πa−πs

Table 4.3: The utility of the Customer and Supplier given the 4 combinations of their pure
strategies after the Customer’s threat to check n outputs

Supplier
Customer sc sc

s λ∆(πs−πsε)−πv−π∗a
λ∆(b−πs)−nπcg−πcc−π∗a

λ∆(πs−πsε)−πv−πa
λ∆(b−πs)−πcc−πcd−πa

s −πv−πsd−πa
−λ∆πs−nπcg−πcc−πa

−πv−πsd−πa
−λ∆πs−πcc−πcd−πa

o1 o2 o3 o4

ssc ssc ssc ssc
Customer λ∆(b−πs)−nπcg−πcc−πa −λ∆πs−nπcg−πcc−πa λ∆(b−πs)−πcc−πcd−πa −λ∆πs−πcc−πcd−πa
Supplier λ∆(πs−πsε)−πv−πa −πv−πsd−πa λ∆(πs−πsε)−πv−πa −πv−πsd−πa
Allocator πA πA πA πA
Mediator πm πm−n(πsε −πvε +πs)−πmc πm−n(πsε −πvε +πs)−πmc πm−n(πsε −πvε +πs)−πmc

Table 4.4: Game outcomes and payments in Fig. 4.4. For example, o2 is the outcome
when the Supplier does not process all the validation inputs correctly and the customer
does provide sufficient validation inputs.

Tenants (t1, t2, · · · , tn)
Customer Supplier Allocator Mediator

C
lu

st
er

(c
1,

c 2
,·
··
,c

n)

Customer
MC rw r r r
SC rw r - r

Supplier
MC r rw r r
SC - rw - r

Allocator MC r r rw r

Mediator
MC r r r rw
SC r r r rw

Table 4.5: Tenants represent stakeholders and can read and write to their own cluster of
hardware. To participate in the market they allow read access to their Marketplace Cluster
(MC). To participate in a service they allow read access for allocated stakeholders to their
Service Cluster (SC)
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Function Name Approx. Gas Cost Approx USD ($) value
Constructor 4054778 33.43

Setup 227554 1.88
CreateAllocation 369506 3.05

AddSupplier 181139 1.49
MediatorSign 101853 0.84
CustomerSign 137281 1.13
SupplierSign 188145 1.55
PostOutput 130108 1.07

ClearMarket 157458 1.30

Table 4.6: Gas Costs and USD value of each smart contract function call. Assuming 20
Gwei per 1 unit of gas.

Table 4.7: Test Parameters. The majority of these parameters were created to model the
game (Table 4.4) and are defined in Table 4.1. The others are as follows. To convert gas
to dollars we used [169]. Electricity cost per kWh E was acquired from [177]. For the
device thermal design power (T DP), we used the specification of a Beagle Bone Black
single-board computer[178].

Parameter Test Value Description
λ 20 frames per second
∆ 10 minutes
λ∆ 12000 λ ×∆

n 12 .1% of λ∆

ρ 1000 Eq. (4.6)
gasprice 20 Gwei price per unit of gas
πcc 1.1257 137,281 gas at gasprice to dollars
πv 1.0669 130,108 gas at gasprice to dollars
E 13.2 cents per kWh
T DP 4.6e-4 Thermal Design Power (kW) at max
T DPmin 2.1e-4 Thermal Design Power (kW) at min
πaε 0.001 E×T DP×∆

πa 3.02994 πaε +369,506 gas at gasprice to dollars
πcg 7e-8 (E×T DP×n)/λ∆

πse 7e-8 (E×T DP)/λ∆

πs 2.0e-5 b > πs > πse
b 3.5e-5 Table 4.4
πcd 0.02 πs×ρ

πsd 0.02 πs×ρ

πm 3.3e-5 E×T DPmin×∆
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Chapter 5

Generalizing the Solution for Multi-Stakeholder Systems - Connecting the Stakeholders

5.1 Overview

MSCPS are subject to dynamism, heterogeneity, and increased failure potential since

they typically do not operate in data centers or other controlled environments. These chal-

lenges are not exclusive to MSCPS and in fact occur in many distributed systems, though

they are exacerbated in MSCPS since various stakeholders may be developing the devices

that will coexist within the system. Since these problems are common across applications,

middleware frameworks and platforms are created to facilitate high-level application im-

plementation. These platforms can help to abstract away high complexity details associated

with “infrastructure protocols” of the heterogeneous devices requiring low-level commu-

nication via drivers and distributed computing. The frameworks are often used to aid in

development and deployment, and in coordinating and controlling the computation done

on distributed computing nodes [187].

The RIAPS middleware provides a robust communication and integration layer, al-

lowing integration with heterogeneous devices. This capability is demonstrated through a

traffic controller case study. In this chapter, we discuss RIAPS and how it supports MSCPS

applications.

The work comprising this chapter has been published in the IEEE 20th International

Symposium on Real-Time Distributed Computing (ISORC) [38].

• S. Eisele, I. Mardari, A. Dubey, and G. Karsai, “Riaps: Resilient information archi-

tecture platform for decentralized smart systems,” in 2017 IEEE 20th International

Symposium on Real-Time Distributed Computing (ISORC). Toronto, ON, Canada:

IEEE, May 2017, pp. 125–132.
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5.2 Introduction - RIAPS

Emerging Trends: The emerging Fog Computing paradigm provides an additional

computational layer consisting of distributed computation and communication resources

that can be used to monitor and control physical phenomena close to the source. It can

also be used for fine-grained data collection and filtering before sending the data to a

cloud service. Examples of these Fog Computation platforms include SCALE [188] and

Paradrop[189]. However, while, the concept of Fog Computing is promising, a number

of challenges exist that must be addressed. One of the foremost challenges is providing

a stable environment for application development and deployment despite the dynamism,

heterogeneity, and increased failure potential of computing resources at the edge which do

not operate in data centers or some other controlled environment.

A solution to this problem is a universal computing platform, which provides the core

services necessary for a stable deployment environment. Services like time synchroniza-

tion, distributed data management and coordination, service discovery, and mechanisms to

deploy and remotely manage the distributed applications.

RIAPS: Our team is developing the core architecture, algorithms, and programming

paradigms for such a computing platform called RIAPS (Resilient Information Architec-

ture Platform for Smart Systems) [190]. The pivotal concept of Smart Applications is the

distribution of intelligence throughout the infrastructure. For example, in the smart grid

domain, increasingly companies, communities, and even some customers (or prosumers)

are becoming managers of power. This requires monitoring, control, and management of

software applications at all levels to do their work. The centralized, control-room oriented

paradigm is not sustainable, as it does not scale. Rather, a decentralized paradigm is re-

quired where interacting software programs deployed on devices across the network solve

problems collaboratively. This is also true for distributed traffic control where each in-

tersection controller must coordinate with other controllers based on contextual and local

information [191].
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Innovation: This paradigm is very different from what is being used today. In today’s

systems, data is collected locally and transferred to a central server or control room where

control decisions are made and control commands are generated. These commands are

then sent back to local controllers and actuators. This architecture incurs long round-trip

times, delayed decisions, and does not lend itself to the needs of future edge applications

[192] like energy management [193]. The distinguishing characteristic of RIAPS is the

completely decentralized computing model: software applications are distributed across

a multitude of compute nodes on a communication network, and each node has access

to local measurements and actuators. An application consists of components that run in

parallel on a collection of nodes. The functionality of an application is realized by the

network of interacting components managed by actors. This computation architecture is

an extension of the F6COM computation model [194] and [195]. The specific extensions

are related to the discovery services and the platform services that we discuss in the next

section.

Contributions: The contribution of this paper is the architectural description of RIAPS

(section 5.3), a demonstration with a development version of the platform implementing a

traffic control example (section 5.3.2) showing some results comparing the effectiveness of

traffic control with distributed coordination compared to no coordination. We also briefly

discuss a microgrid application example on the platform. Using these examples we moti-

vate the need for a robust decentralized discovery service (section 5.3.4) as a critical service

for the resilience of the platform. Thereafter, we discuss the design and implementation of

the discovery service using a distributed hash table (section 5.4). We finally present exper-

imental results (section 5.5) on some discovery service metrics and compare our work with

the state of the art (section 5.6).
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Figure 5.1: RIAPS Run-Time System Architecture

5.3 The RIAPS Computation Architecture

The goal of the RIAPS run-time system (see Fig 5.1) is to provide a software founda-

tion for building distributed applications. It relies on an underlying operating system and

includes two major ingredients: (1) a Component Framework, and (2) a suite of Platform

Managers. The Component Framework is instantiated as a set of software libraries that

are (dynamically) linked with the application components, while the Platform Managers

are specialized operating system processes, implemented as daemons in the Linux sys-

tems. These two ingredients provide the services that will be used by a developer in sup-

porting the implementation of the application logic. The Component Framework layer is

where the implementation of the various middleware libraries reside. The goal of the Com-

ponent Framework is to provide higher-level abstractions for building complex, resilient,

distributed applications on the platform. The middleware libraries include the component

scheduler (which implements the component execution semantics), the component inter-

action library (that enables publish/subscribe, and remote method invocation on the same
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node or across the network. Having formal interaction semantics provide additional reason-

ing capabilities as shown in [196]). Furthermore, the framework provides support for life-

cycle management support (that assists in remotely managing the software components),

the language run-time libraries, the resource management support (to monitor computing

platform resource utilization/availability), the fault management support (that detects and

mitigates anomalies in software components), the security library (for secure communi-

cation), the logging library (to record component events), and the persistence library (to

allow the persistent storage of data). These libraries are linked with the components used

to create an application.

The Platform Managers layer includes the elements of the application framework: the

various platform services that run as independent processes and implement system-level

management capabilities. The services include the Application Manager (that enables re-

mote installation and management of the applications), the Distributed Coordination Man-

ager (that implements fault-tolerant distributed service like leader election, consensus, co-

ordinated actions, etc.), the Discovery Manager (which determines available connections

among components on the same node or other operating nodes), the Time Manager (that

provides high-precision timing and time synchronization services), the Resource Manager

(monitors computing resources to ensure components and Platform Managers are able to

run concurrently), the Fault Manager (that provides node-level fault management services),

the Device Manager (that supports access to and management of attached input/output de-

vices), the Security Manager (that handles authentication and manages keys and digital

signatures), the Log Manager (that serves as a single entry point to all log activity on a

node) and the Persistence Manager (that provides non-volatile data storage facility).

The applications reside in the top layer (see figure 5.1) and they rely on the services

provided by the Component Framework and Platform Managers. One application consists

of one or more application managers, called actors, which are deployed on computing

nodes. Each actor hosts one or more application components that interact solely through
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the middleware interactions and rely on the available platform services. The advantage of

packaging multiple components into one actor is that the cost of communication between

components in one actor is much smaller than across actors running on the same node.

The communication between actors running on different nodes is even more costly, as

the messages have to go through a complex protocol stack and a (potentially unreliable)

network.

5.3.1 Component Architecture

A RIAPS component is a reusable unit of software that implements a set of operations

for manipulating its state, and ports through which it communicates and interacts with

other components. A special port, called the timer port is also available. It enables time-

based triggering of the component. The timing of the RIAPS component is controlled by

the Time Manager service that provides high-precision timing and time synchronization

services. This service is not fully implemented yet and will be discussed in future work.

The operation of a component is analogous to a typical computer process in the sense

that each component is limited to a single thread of computation. This thread is managed

by a trigger method that is provided by the developer of the component. The trigger method

monitors the state of the component and launches operations when 1) the state of the ports

change, 2) a timer expires, or 3) an operation is completed. These operations implement the

application logic of the component. The ports on the component are determined by the de-

sired communication patterns which include asynchronous request/response, synchronous

client/server, and publish/subscribe. Ports are assigned a message type and when an ap-

plication is deployed, the message types represent the services provided or requested by

the corresponding port. A special component, called the device component has the same

attributes as application components however it may have multiple threads of execution to

handle interfaces to physical devices.

To run an application the components are deployed on computation nodes. The compo-
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nents on a particular compute node are managed by actors. An actor provides its compo-

nents with the run-time code as well as the interfaces necessary to access platform services.

Additionally, the actor provides the capabilities to control and configure its components re-

motely. This is required to ensure that all the components of an application can be installed

and configured correctly. The actor is responsible for loading a component, setting up its

configuration, and initializing its state.

5.3.2 Traffic Controller Example

In order to experiment with the RIAPS framework, we developed a traffic controller

example. The example involves a city simulation where the traffic lights in each intersection

are controlled by a traffic controller application implemented with the RIAPS platform

running on embedded single board computers. The simulation sends simulated ”sensor

data” to the intersection controllers consisting of the traffic density for the incoming road

segments, as well as the current state of the traffic lights. Each intersection controller shares

this information with its neighboring controllers, and each uses the information to estimate

the traffic incoming on each segment. This information is used to change the state of the

traffic lights to improve the flow of traffic.

The testbed for this example can be seen in Figure 5.2. It consists of a 32 Beagle-

Bone Black [197] cluster connected through an Ethernet switch to a computer running

Cities: Skylines [198]. This game was chosen because it can simulate the movements of

hundreds of thousands of citizens, and it has a rich game modification API with an active

community. This allowed us to modify the game to be able to control the traffic lights with

our embedded controllers.

The RIAPS application created for this test scenario includes an intersection controller,

a light interface device, and a density sensor device whose implementation can be seen in

listings 5.1, 5.2, and 5.3 respectively.

// Intersection Controller component.
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Figure 5.2: Testbed

component IC ( p a r e n t ="none" ) {

t i m e r c l o c k 1000 ;

sub d e n s i t y P o r t : gameDensityMsg ;

sub l i g h t P o r t : gameLigh tS ta teMsg ;

pub pubICPor t : ICDensi tyMsg ;

sub s u b I C P o r t : ICDensi tyMsg ;

r e q s e t L i g h t s P o r t : ( s e t L i g h t R e q , s e t L i g h t R e p ) ;

}

Listing 5.1: Intersection Controller Component

d e v i c e L i g h t I F ( r a t e =10 , gameServe r IP ="host" , p a r e n t ="none" ) {

i n s i d e t r i g g e r /* default */ ;

t i m e r c l o c k 1000 ;

pub l i g h t P o r t : gameLigh tS ta teMsg ;

r e p s e t L i g h t s P o r t : ( s e t L i g h t R e q , s e t L i g h t R e p ) ;
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}

Listing 5.2: Interface to Light device

d e v i c e D e n s i t y S e n s o r ( r a t e =10 , gameServe r IP ="host" , p a r e n t ="none" ) {

i n s i d e t r i g g e r /* default */ ;

t i m e r c l o c k 1000 ;

pub d e n s i t y P o r t : gameDensityMsg ;

}

Listing 5.3: Interface to Density sensor device

The controller has 3 subscriber ports, a publisher port, a request port, and a timer. Two

of the subscribers, lightPort and densityPort are for reading sensor data from the game. The

lightPort has the message type of gameLightStateMsg and is connected to the publisher port

with the corresponding message type in the light interface device when the application is

deployed. The densityPort is essentially equivalent. Each intersection controller publishes

the sensed density data at intervals determined by the firing of the timer and subscribes

to the density data published by the adjacent intersections. The controller implemented in

this example is fairly simple in that the state switching occurs based on thresholds. The

thresholds ensure that a light remains in a particular state for some minimum time but

no longer than some maximum time, similarly there are minimum and maximum density

thresholds.

These components and devices of the application are contained in an actor. The actor is

responsible for managing the components and devices and providing interfaces to platform

services. As can be seen in listing 5.4 the actor contains both devices and a controller and

is used to specify several parameters such as the IP address of the simulation machine. The

actor registers the ports of the components with the Discovery Manager and if a matching

message type is already known to the Discovery Service the client will retrieve that infor-

mation and return it to the actor, which then sets up the connections between corresponding

components.
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a c t o r Ac to r0 {

l o c a l gameDensityMsg , gameLightSta teMsg , s e t L i g h t R e q , s e t L i g h t R e p ;//

Local message types

{

i c : IC ( p a r e n t ="Actor0" ) ;// Intersection Controller

LIF : L i g h t I F ( r a t e =2 , gameServe r IP ="192.168.0.107" , p a r e n t ="Actor0" )

;// Light interface device

d s n s r : D e n s i t y S e n s o r ( r a t e =2 , gameServe r IP ="192.168.0.107" , p a r e n t ="

Actor0" ) ;// Density sensor device

}

}

Listing 5.4: Actor

5.3.2.1 Experimental Results

The traffic controller implementation was run comparing the densities of the segments

when running the controller with 1)only timer switching logic, 2)each controller checking

its own density data and 3)each controller sharing data with its neighbors. The average

segment densities for these tests can be seen in Figure 5.3.

We see from these initial experiments that monitoring intersection density is useful to

decrease the segment density and sharing that information improves the situation slightly.

In this study, the densities were collected from the game by querying the road segments

surrounding the traffic lights. In an actual implementation, this will not work unless some

sensor is installed at each road segment. Another option to obtain the data is for the cars

themselves to publish their positions and routes to the cars around them and that informa-

tion is then shared with the intersection controller. This way the controller does not have to

guess how much traffic is coming on each of its segments. In addition, if vehicles are pub-

lishing their data, emergency vehicles may also publish this information, and controllers

switch to prioritize the emergency vehicle. For such a system to be realistic the vehicles
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Figure 5.3: Mean traffic densities for each segment of each intersection controller.

and lights must be aware of each other. This motivates the need for a discovery service that

can quickly capture and share ingress and egress information to intersection controllers as

vehicles come and go.

5.3.3 Microgrid Example

Another application for the RIAPS platform that is currently under development is a

decentralized controller for microgrids. As power requirements change or faults occur

segments of a connected grid may break off and become islands. This information must

propagate quickly to the controllers to ensure smooth operation and continuous service.

Similarly, when the islands re-connect to the main grid the components must discover each

other and share resource information. The objective is to handle the transients between

these states in clusters of controllers rather than at a centralized location as this will improve

scalability as well as fault tolerance.
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5.3.4 Requirements for the Discovery Service

In both use cases, the set of member nodes can change over time. For example, in a

microgrid application, homeowners can choose to disconnect themselves from their local

photo-voltaic grid and transfer themselves to the main utility grid. Similarly, in the traffic

controller example, the lights can get disconnected due to failures. Furthermore, the same

system can be extended to create a traffic priority system, where the emergency vehicles

entering an area can communicate with the controller and can disengage when they exit the

area. Given these two use cases it is easy to see that the network of communicating entities

must be able to (a) know when new nodes join the group and (b) know when nodes leave the

group. Furthermore, they must know when applications (and their components) come and

go - the Discovery Service is expected to keep track of the state of the applications’ services

and message types. This service has to be distributed and fault-tolerant. A centralized

implementation is insufficient, as it does not scale and it can be a single point of failure.

Fault tolerance is needed as any node or communication link can fail unexpectedly. These

local failures must not result in system-wide collapse. Hence, the Discovery Service must

be available on each node, and these instances need to share their state - as needed - across

the network.

5.4 Discovery Service

RIAPS aims to provide modular, decentralized solutions for each service comprising

the platform, so they can be used in other applications. Therefore, the Discovery Service

runs on each node as an independent process and listens for messages from the local RIAPS

applications, and other nodes with a Discovery Service. Figure 5.4 shows the main features

of the service discovery: RIAPS applications register app services by providing the related

details to the discovery service(message types, communication protocols, IP addresses,

and ports). The Discovery Service stores the app service details and forwards the new
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Figure 5.4: RIAPS Discovery Service Infrastructure

information to the neighboring nodes. When a RIAPS application requests an app service,

it queries the local Discovery Service and the results are asynchronously sent to the RIAPS

application.

The Discovery Service relies on OpenDHT [199] to store, query, and disseminate the

service details through the network. OpenDHT is a fast, lightweight Distributed Hash

Table (DHT) implementation. The dissemination does not mean full data replication on

all nodes, OpenDHT stores the registered value locally and forwards it to a maximum of

eight neighbors. Note that usage of distributed hash table for service discovery does not

distinguish the nodes, (i.e. there are no “server” or “client” nodes) – nodes are peers and

each operates with the same rules. If a node disconnects from the network, the Discovery

Service on other nodes is still able to register new services or run queries. If a new node

joins the cluster, the values stored in the network are available to the new node. For this

approach to flexibly handle node ingress and egress the Discovery Services must find each

other. Note that there are two major cases for network configuration: (i) the nodes are on
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the same local subnet or (ii) the nodes are on different subnets of the network.

To find the available Discovery Service managers on the same local subnet the RIAPS

framework uses UDP-beacons. Periodically, each Discovery Service instance announces

(via IPv4 UDP broadcast) its network address and listens for incoming beacons. These

UDP packets are sent and received asynchronously and the Discovery Service managers

maintain the list of known addresses. Before a UDP packet is processed by the Discovery

Service the received beacons are filtered to remove the non-RIAPS-specific UDP messages.

These messages function as a heartbeat. If no messages are received from a known node

during two time periods, then the Discovery Service removes the silent node from the list

of peers. When a UDP beacon arrives from a new node the Discovery Service stores the

address of the new node in OpenDHT, which then adds it to the list of known nodes.

Unfortunately, the nodes in another subnet cannot be discovered by UDP broadcasting;

the remote addresses must be passed explicitly to the Discovery Service. In this case, we

rely on designated gateways running the Discovery Service with IP addresses of the other

subnet (assuming that routing is available between the subnets).

5.4.1 Handling the ingress and egress scenarios

In the previous section, we mentioned that the DHT-based service discovery forms 8

node clusters to share application service registration data, but we did not discuss how the

stored data is used in RIAPS. When a RIAPS application starts, it registers its services in

the Discovery Service. The Discovery Service stores this information in the DHT, and the

DHT propagates the new information through the cluster.

In the startup phase, a RIAPS application not only announces the provided services but

subscribes to needed services. If a compatible service is already in the DHT, the Discovery

Service sends a notification to the requesting RIAPS application. The application processes

the newly arrived notification and connects to the service. If the desired service is not

available the Discovery service will issue a callback to the requesting application when it
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becomes available.

OpenDHT does not provide an API to remove a service from the DHT. Instead, a ser-

vice may be removed by setting an expiration value (the default being 10 minutes). After

this time the service is removed from the DHT. It also means that value must be renewed

periodically by the Discovery Service if the application is running. Therefore, when a

service stops responding the manager does not remove it from the DHT until the current

registration expires.

5.4.2 Fault Tolerance

The Discovery Service is responsible for renewing the registration of application ser-

vices in the DHT. Renewal is necessary, as the stored values are otherwise removed. Be-

fore renewal, the Discovery Service must check that the RIAPS component service to be

renewed is still running and available. This means that the Discovery Service must han-

dle the case when an application service leaves the cluster abruptly, e.g. it stops without

sending a message.

We are currently implementing the next version of the discovery service in which the

service information is paired with the Process ID (PID) of the actor. Namely, when an

application component registers a service then the PID of the parent actor is also registered

with a time-stamp in the Discovery Service. The list of service/PID pairs are verified peri-

odically by checking if the PID is still running. If the process has stopped, the Discovery

Service removes the pair and does not renew the registration at the next DHT refresh point.

The components must be resilient as well, since the Discovery Service could stop un-

expectedly. If the Discovery Service fails, the components and actors continue, but cannot

receive notifications about new services, and new actors cannot be started (until the Dis-

covery Service restarts).

Since the components are managed by actors, the components do not implement any

discovery checking algorithm. The connection with the Discovery Service is maintained
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by the actors. The approach for the actor checking Discovery Service liveness is the same

as Discovery Service checking components. The actor knows the PID of the Discovery

Service and maintains a time stamp. If the PID of the Discovery Service is not in the list

of the running processes, the actor starts a re-initialization process. Reinitialization means,

that the actor re-registers the running RIAPS services in a new Discovery Service instance

and subscribes to the services needed. If the discovery service dies, the actors are informed

and they re-register to recreate the state within the discovery service.

5.5 Tests for the Discovery Service

To test the discovery service we ran a few tests. The first was to initialize all but

one node as subscribers. Once ready, the final node was added as a publisher service.

This provides events for measuring service propagation time through the cluster. The node

clocks are synchronized with NTP, making measurements across the cluster meaningful

as their timestamps are within 300ms of each other. This test is relevant to the traffic

light example because as vehicles move through the city they enter and exit new clusters

which collectively transmit their density to the traffic controller allowing the controller to

efficiently route traffic.

There are several measurements taken for this test. The first is the “Register service”

step (s1) where each node informs the Discovery Service of which services it provides and

which it requires. As mentioned this occurs first for all of the subscribers, then the pub-

lisher. The Discovery Service stores which service the subscriber is interested in, and when

that service is available the Discovery service sends a message to the component’s actor,

this is the second measurement (s2). We assume the difference between this time and the

publisher service registration time to be the time needed to propagate a new service through

the DHT. The third time-stamp (s3) is when the actor notifies the corresponding component

of the new service. The final time-stamp (s4) is when the subscriber is connected to the

publisher. These events can be visualized using Figure 5.4 as a reference. The duration of
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Figure 5.5: This figure shows the time between when the publisher registers with the Dis-
covery service and the time when the subscribers receive notification of that service for the
tests involving 5, 9, 17, and 32 BeagleBone Black. Several data points were very close to
each other, and so overlap in the plot. The ranges of the overlapping nodes are Test 1: 4
nodes(1-7ms), Test 2: 7 nodes(18-32ms) 1 node(2.032s), Test 3: 16 nodes(2-23ms), Test 4
: 12 nodes(27-35ms), 18 nodes(2.041-2.056s), 1 node(2.276s)

steps 1 and 2 are the time stamp of the publisher registration and the subscriber s1 and s2

timestamps respectively. The duration of step 3 is s3-s2 and the duration of step 4 is s4-s3.

The test was run utilizing Zopkio [200]; a testing framework. We can see the result for

step 2 in Figure 5.5. The time between the first subscriber registration and the publisher

registration (step 1) is linear as nodes increase due to the implementation of deployment in

Zopkio as a sequential process. Steps 3 and 4 take between 5 and 12ms.

As the accuracy of the clock between nodes is about 300ms the 5, 9, and 17 node tests

are indistinguishable, however the jump in time for the 32 node experiment suggests further

tests are needed to verify scalability. The times for steps 3 and 4 after notification are not

relevant for this service propagation test and are of short duration as we see in the next test.

The second test consists of two nodes each requesting and providing a publisher service.

This means that each node subscribes to itself and all others. The test is to have one node

exit and later rejoin the cluster. This is to verify that nodes recover and provide services

reliably after egress events. The result of this test is shown and described in Figure 5.6

From this test, we do see that when BBB2 rejoined all services were re-established.
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Figure 5.6: The plot here has two Beaglebones on the y-axis. The points denote the events
(s1-s4) for each Beaglebone when BBB2 rejoins the cluster. The two zoom in boxes show
the events in detail as they happen on timescales on the order of milliseconds. At the be-
ginning of this test, two nodes were started. After some time BBB2 was rebooted. In the
zoomed box between times 340 and 341, the first event shown is s1 for BBB2 when it regis-
ters its publisher service. The s2 event for BBB1 is when BBB1 receives the notification of
BBB2’s service 14ms after BBB2 registers it. 4 and 10ms later BBB1 notifies it’s request-
ing component and that component connects to the publisher respectively. Towards the
end of the first zoom-in-box, we see s2, 3, and 4 events when BBB2 receives notification
of its own service. The second zoom-in-box between 342 and 343 seconds shows BBB2
again receiving notification of its own publisher. Covered by the second zoom in box at
344.5 seconds BBB2 finally receives notification of the publisher on BBB1. There is some
behavior where a new node receives notification of the first service it discovers twice.

5.6 Related Literature

Resource discovery is a critical aspect of distributed applications. Zookeeper, which

was originally developed to provide a distributed, eventually consistent hierarchical con-

figuration store [201] has been adapted to serve as a resource discovery service. The in-

frastructure of Zookeeper includes sending notifications to clients, so service discovery has

been implemented with it. However it is difficult to deploy and maintain, it also prioritizes

consistency over availability [202]. This means that in a network with nodes joining and

leaving new applications will be blocked waiting for resources while the service discovery

waits for consistency before allocating resources. For highly dynamic systems, like the

traffic example, a paradigm that prioritizes consistency is fundamentally flawed when at-
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tempting service discovery. Responding to this need Apache released Apache Helix which

resolves some problems [203] but the fundamental issues are still present.

Another tool developed specifically for resource discovery is Consul from Hashicorp

[204] which is the industrial state-of-the-art. Consul provides several higher-level features

such as health checking and distributed configuration management. It relies on servers to

store and replicate the resource discovery data. It is recommended to have several consul

servers for fault-tolerance. With several servers one is elected as a leader, using Raft-based

consensus, in order to guarantee consistency between servers. This means that Consul

too has the problems associated with prioritizing consistency over availability because in

a dynamic system a device chosen as a server may leave resulting in a lack of quorum.

To combat this, it is possible to make every node a server but in high device density, or

resource-limited situations there are issues with data replication since every node will repli-

cate the key/value store. An alternative is Serf, another tool from Hashicorp which is not as

fully featured as Consul, but rather than using an always consistent model it has an eventu-

ally consistent model, prioritizing availability. Serf does not have a central server, making

it more resilient. The problem with Serf is that it was developed for node discovery rather

than service discovery and so would need extensions to provide the service discovery. In

[202] the authors create a docker container for Serf calling it Serfnode and using it for

service discovery.

Hoefling et al. [205] present some extensions to the C-DAX [206] middleware. C-

DAX is a middleware developed to be a cyber-secure and scalable middleware for the

power grid. The authors do not discuss the security aspects of C-DAX but rather refer-

ence papers demonstrating these features. Scalability in C-DAX is achieved using a cloud

and broker-based publish/subscribe mechanism, making it more scalable than client/server

patterns. The extensions presented by Hoefling are to address weaknesses in the C-DAX

middleware with respect to interoperability with legacy applications such as SCADA, and

low latency applications such as synchrophasor-based Real-Time State Estimation of Ac-

159



tive Distribution Networks (RTSE-ADN). SCADA relies on bidirectional communication,

so the authors implement a new client which consists of both a publisher and a subscriber to

communicate with IP-based applications like SCADA using a tunnel-adapters and virtual

network interfaces. The clients communicate using the C-DAX middleware. For low la-

tency applications, such as synchrophasor-based RTSE-ADN, the authors present a method

of connecting publishers directly to subscribers, without a broker reducing network traffic

and the number of network hops required. The problems with this approach are those

that impact all cloud-based systems. As devices increase so does cloud traffic and latency.

Therefore in the end edge computing will be necessary.

In our work on RIAPS, we are interested in similar issues regarding latency, however,

rather than relying on cloud-based centralized databases and resolvers, we use a Distributed

Hash Table (DHT) to track the participants in the network and have the nodes discover one

another. The removal of the cloud allows us to achieve single-hop connections between

publishers and subscribers as done in [205] but rather than needing to 1) send a join message

to a Designated Node in the cloud which 2) queries the Resolver (the look-up) for the

address of the topic-specific database, then 3) have the Designated node connect to the

database and request the subscribers or publishers for the topic so that 5)the publisher or

subscriber can update its connection rules we can simply 1)look up in our DHT Discovery

Service for the message type we are interested in, 2)receive the address and 3)connect.

Data Distribution Service (DDS) is a “middleware protocol” and API open standard for

data-centric connectivity” published by Object Management Group (OMG) [207]. There

are many implementations of the DDS standard which vary by developer. To promote

interoperability between DDS implementations OMG introduced the Real-Time Publish-

Subscribe (RTPS) protocol which was designed for DDS. The main features of RTPS[208]

include fault tolerance, plug-and-play connectivity (allowing for dynamic ingress and egress

with automatic discovery), the capability to implement trade-offs between reliability and la-

tency, scalability, modularity allowing constrained devices to run a subset of the standard[209]
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and still communicate with the network, and type-safety to prevent mismatched endpoints

from connecting. However, the tremendous complexity of the DDS discovery service due

to the several QoS options make it very difficult to use. Furthermore, the discovery service

is tightly integrated with DDS and is not suitable for other platforms.

In [210], Cirani et al. present work on global and local service and resource discovery

for the Internet of Things. To handle resource discovery the authors present an IoT Gate-

way. For local networking, there are two ways a device can join a network. If it is aware

of an IoT gateway it can join and send its resource information to it, or it can wait for a

message broadcast from the gateway alerting the device to its presence. The addresses and

resources of devices are added to the gateway which acts as a service look-up to the other

devices in the local network and a service provider to external IoT gateways. For IoT gate-

ways to discover and communicate with each other the authors present two P2P overlays.

The first is the distributed geographic table (DGT). This table is similar to a distributed hash

table but rather than the replicated data being based on hash value assignments the storage

is based on the geographic location. This makes it deterministic. For a device to make

itself known on a network it contacts a known gateway and shares its location to the DGT.

The DGT shares this among the peers and informs the device of other gateways. Once the

gateways are known, requests can be made for lists of services that can be accessed and

this information is added to the distributed location service which is the other P2P overlay.

In [211] the authors present several important issues in IoT systems including standard-

ization, mobility, networking, and Quality of Service support. To address these issues they

present an architecture that combines DDS with software-defined networking (SDN). DDS

is responsible for providing discovery and communication between heterogeneous devices

within a domain. However, DDS is for local networks. SDN is used to allow communi-

cation outside of the local network. By decoupling the control plane from the forwarding

plane a SDN controller can provide network interfaces to the local network and when re-

quests can not be filled locally it allows for forwarding rules to be defined, to pass messages
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to other networks. It is not clear from the paper how the SDN nodes find each other.

Compared to these solutions, one of the key benefits of our discovery service is that

it is completely isolated and compartmentalized from the rest of the framework. In fact,

we have seamlessly moved from an earlier Redis based discovery service (not described

in this paper) to the DHT based discovery service mentioned in this paper as a drop-in

replacement. This is due to the abstraction of register, query, and response interfaces as

described in figure 5.4.

5.7 Discussion and Conclusions

Fog computing provides new opportunities for distributed applications and analytics.

However as the domain becomes more complex, tools are necessary to assist developers in

creating applications by handling the implementation details. One of these details is service

discovery.

Service discovery is an essential aspect of fog and edge computing, particularly in dy-

namic environments. The current mechanisms for handling dynamic discovery are gener-

ally ill-equipped as they rely on a central server resulting in increased latency and a single

point of failure, or they prioritize consistency over availability which can prevent appli-

cation deployment if there is a fractured quorum. For highly dynamic discovery, which

prioritizes utility over consensus, the only options do not include the discovery of services.

This means that service discovery would be an addition. From our initial experiments using

distributed hash tables to provide a dynamic discovery service, we see that it is tolerant to

egress/ingress scenarios and can scale to at least 32 nodes.

We have shown some example applications on the RIAPS platform and demonstrated

our prototype discovery service which allows for fault-tolerant dynamic discovery. There

is additional work to be done to verify and improve the capabilities of the platform but the

outlook is promising.
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Chapter 6

Generalizing the Solution for Multi-Stakeholder Systems - General Market

6.1 Overview

MSCPS applications cover many domains and have the potential to provide partici-

pants with the capability to exchange not only data but also resources, there exist concerns

regarding integrity, trust, and the need for fair and optimal solutions to the problem of re-

source allocation. The exchange of information and resources leads to a problem wherein

the stakeholders of the system may have limited trust in each other. Thus, collaboratively

reaching a consensus on when, how, and who should access certain resources becomes

problematic.

In efforts to address some of these issues in a domain-agnostic way, we developed the

SolidWorx platform. SolidWorx is a blockchain-based platform that provides key mecha-

nisms required for the trading of resources, that are fungible and can be discretized, across

different applications in a domain-agnostic manner. SolidWorx provides a trustworthy

mechanism of resource allocation. Doing so strictly with distributed ledger technology is

inefficient, as explained in Chapter 3. Therefore, SolidWorx introduces and implements a

hybrid-solver pattern, where complex optimization computation is handled off-blockchain

while solution validation is performed by a smart contract. We show that while using this

hybrid approach, we can ensure the system remains robust against failures by enabling

multiple solvers. To ensure correctness, the smart contract of SolidWorx is generated and

verified using a model-based approach. To enable domain-agnostic trading, it describes a

flexible schema that allows for the use of generalized optimization functions to solve the

resource allocation problem. To show the versatility of our transaction management plat-

form, we apply it to two case studies: a carpooling service and energy trading within a
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microgrid. SolidWorx is integrated with the RIAPS middleware which provides a robust

communication and integration layer, allowing SolidWorx to integrate with heterogeneous

devices. In this chapter to present SolidWorx.

The works comprising this chapter was published in the 2018 IEEE International Con-

ference on Blockchain (ICBC) [37]. Future work on this topic includes integrating our

work on simulation and evaluating and analyzing decentralized fog applications [39].

• S. Eisele, A. Laszka, A. Mavridou, and A. Dubey, “SolidWorx: a resilient and trust-

worthy transactive platform for smart and connected communities,” in 2018 IEEE

International Conference on Blockchain (Blockchain 2018), Halifax, Canada, Jul.

2018

• S. Eisele, G. Pettet, A. Dubey, and G. Karsai, “Towards an architecture for evaluating

and analyzing decentralized fog applications,” in 2017 IEEE Fog World Congress

(FWC), Oct 2017, pp. 1–6.

6.2 Introduction

Smart and connected communities (SCC) as a research area lies at the intersection of

social science, machine learning, cyber-physical systems, civil infrastructures, and data

sciences. This research area is enabled by the rapid and transformational changes driven

by innovations in smart sensors, such as cameras and air quality monitors, which are now

embedded in almost every physical device and system that we use, ranging from watches

and smartphones to automobiles, homes, roads, and workplaces. The effects of these inno-

vations can be seen in many diverse domains, including transportation, energy, emergency

response, and health care, to name a few.

At its core, a smart and connected community is a multi-agent system where agents

may enter or leave the system for different reasons. Agents may act on behalf of service

owners, managing access to services, and ensuring that contracts are fulfilled. Agents can
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also act on behalf of service consumers, locating services, entering contracts, as well as

receiving and presenting results. For example, agents may coordinate carpooling services.

Another example of such coordination exists in transactive energy systems [212], where

homeowners in a community exchange excess energy. Consequently, these agents are re-

quired to engage in interactions, negotiate with each other, enter agreements, and make

proactive run-time decisions—individually and collectively—while responding to chang-

ing circumstances.

This exchange of information and resources leads to a problem where the stakeholders

of the system may have limited trust in each other. Thus, collaboratively reaching a consen-

sus on when, how, and who should access certain resources becomes problematic. How-

ever, instead of solving these problems in a domain-specific manner, we present SolidWorx

and show how this platform can provide key design patterns to implement mechanisms for

arbitrating resource consumption across different SCC applications.

Blockchains may form a key component of SCC platforms because they enable partici-

pants to reach a consensus on the value of any state variable in the system, without relying

on a trusted third party or trusting each other. Distributed consensus not only solves the

trust issue but also provides fault-tolerance since consensus is always reached on the cor-

rect state as long as the number of faulty nodes is below a threshold. Further, blockchains

can also enable performing computation in a distributed and trustworthy manner in the

form of smart contracts. However, while the distributed integrity of a blockchain ledger

presents unique opportunities, it also introduces new assurance challenges that must be ad-

dressed before protocols and implementations can live up to their potential. For instance,

Ethereum smart contracts deployed in practice are riddled with bugs and security vulnera-

bilities. Thus, we use a correct-by-construction design toolchain, called FSolidM [213], to

design and implement the smart-contract code of SolidWorx.

The outline of this paper is as follows. We formulate a resource-allocation problem for

SCC in Section 6.3, describing two concrete applications of the platform in Section 6.3.2
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and presenting extensions to the basic problem formulation in Section 6.3.3. We describe

our solution architecture in Section 6.4, which consists of off-blockchain solvers (Sec-

tion 6.4.2) and a smart contract (Section 6.4.3), providing a brief analysis in Section 6.4.4.

In Section 6.5, we evaluate SolidWorx using two case studies, a carpooling assignment

(Section 6.5.1) and an energy trading system (Section 6.5.2). Finally, we discuss the ar-

chitecture of SolidWorx in the context of related research in Section 6.6, and we provide

concluding remarks in Section 6.7.

6.3 Problem Formulation

We first introduce a base formulation of an abstract resource allocation problem (Sec-

tion 6.3.1), which captures the core functionality of a transactive platform for SCC. Then,

we describe two examples of applying this formulation to solving practical problems in

SCC (Section 6.3.2). We conclude the section by introducing various extensions to the

base problem formulation, in the form of alternative objectives and additional constraints

(Section 6.3.3). A list of the key symbols used in the resource allocation problem can be

found in Table 6.1.

6.3.1 Resource Allocation Problem

In essence, the objective of the transactive platform is to allocate resources from users

who provide resources to users who consume them. The sets of resource providers and

resource consumers are denoted by P and C, respectively. Note that a user may act both

as a resource provider and as a resource consumer, in which case the user is a member

of both P and C. Resources that are provided or consumed belong to a set of resource

types, which are denoted by T . A resource type is an abstract concept, which captures

not only the inherent characteristics of a resource, but all aspects related to providing or

consuming resources. For example, a resource type could correspond to energy production

or consumption in a specific time interval, or it could correspond to a ride between certain
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Table 6.1: List of Symbols

Symbol Description
P set of resource providers
C set of resource consumers
T set of resource types

OP set of providing offers
OC set of consumption offers
oP resource provider who posted offer o ∈

OP
oC resource consumer who posted offer o ∈

OC
oQ(t) amount of resources of type t ∈ T pro-

vided or requested by offer o
oV (t) unit reservation price of offer o for re-

source type t ∈ T
aOP providing offer from which assignment

a allocates resources
aOC consuming offer to which assignment a

allocates resources
aQ amount of resources allocated by assign-

ment a
aT type of resources allocated by assign-

ment a
aV unit price for the resources allocated by

assignment a

locations at a certain time.

Each provider p ∈ P may post a set of providing offers. Each providing offer o is a

tuple o = 〈oP,oQ,oV 〉, where oP ∈ P is the provider who posted the offer, oQ ∈ T 7→ N

is the amount of resources offered from each type (i.e., oQ(t) is the amount of resources

offered from type t ∈ T ), and oV ∈ T 7→ N is the unit reservation price asked for each

resource type (i.e., oV (t) is the value asked for providing a unit resource of type t ∈ T ).

Each offer o= 〈oP,oQ,oV 〉 defines a set of alternatives: provider op offers to provide either

oQ(t1) resources of type t1 ∈ T or oQ(t2) resources of type t2 ∈ T , but not at the same time.

However, convex linear combinations, such as providing bα · oQ(t1)c resources of type

t1 ∈ T and b(1−α) ·oQ(t2)c resources of type t2 ∈ T at the same time (where α ∈ [0,1]),
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are allowed. For example, an offer o providing oQ(t1) units of energy in time interval t1 or

oQ(t2) units of energy in time interval t2 may provide b0.5 ·oQ(t1)c energy in time interval t1

and b0.5 ·oQ(t2)c energy in time interval t2. The set of all offers posted by all the providers

is denoted by OP.

Each consumer c ∈C posts a set of consumption offers. Each consumption offer o is a

tuple o = 〈oC,oQ,oV 〉, where oC ∈ C is the consumer who posted the offer, oQ ∈ T 7→ N

is the amount of resources requested from each type (i.e., oQ(t) is the amount of resources

requested from type t ∈ T ), and oV ∈ T 7→ N is the unit reservation price offered for each

resource type (i.e., oV (t) is the value offered for a unit resource of type t ∈ T ). Similar to

providing offers, consumption offers also define a set of alternatives. The set of all offers

posted by all the consumers is denoted by OC.

A resource allocation A is a set of resource assignments. Each resource assignment

a ∈ A is a tuple a= 〈aOP,aOC,aQ,aT ,aV 〉, where aOP ∈ OP is a providing offer posted by

a provider, aOC ∈OC is a consumption offer posted by a consumer, aQ ∈N and aT ∈ T are

the amount and type of resources allocated from offer aOP to aOC, and aV ∈ N is the unit

price for the assignment.

A resource allocation A is feasible if

∀o ∈ OP : ∑
t∈T

∑
a∈A:

aOP=o∧aT=t

aQ

oQ(t)
≤ 1 (6.1)

∀o ∈ OC : ∑
t∈T

∑
a∈A:

aOC=o∧aT=t

aQ

oQ(t)
≤ 1 (6.2)

∀a ∈ A : (aOP)V (aT )≤ aV (6.3)

∀a ∈ A : (aOC)V (aT )≥ aV . (6.4)

In other words, a resource allocation is feasible if the resources assigned from each

providing offer (or consuming offer) is a convex linear combination of the offered (or re-

quested) resources, and if the value in each assignment is higher than (or lower than) the
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reservation price of the providing offer (or consuming offer).

The objective of the base formulation of the resource allocation problem is to maxi-

mize the amount of resources assigned from providers to consumers. We define the base

formulation of the problem as follows.

Definition 1 (Resource Allocation Problem). Given sets of providing and consumption

offers OP and OC, find a feasible resource allocation A that attains the maximum

max
A:A is feasible

∑
a∈A

aQ. (6.5)

6.3.2 Example Applications

To illustrate how the Resource Allocation Problem (RAP) may be applied in smart and

connected communities, we now describe two example problems that can be expressed

using RAP.

6.3.2.1 Energy Futures Market

We consider a residential energy-futures market in a transactive microgrid. In this ap-

plication, resource consumers model residential energy consumers (i.e., households), while

resource providers model the subset of consumers who have energy-providing capabilities

(e.g., solar panels, batteries). We divide time into fixed-length intervals (e.g., 15 minutes),

and let each resource type correspond to providing or consuming a unit amount of power

(e.g., 1 W) in a particular time interval.

Based on their predicted energy supply and demand, residential consumers (or smart

homes acting on their behalf) post offers to provide or consume energy in future time

intervals. For instance, a provider may predict that it will be able to generate a certain

amount of power π using its solar panel during time intervals t1, t2, . . . , tN ∈ T . Then, it

will submit a set of N offers: for each time interval t ∈ {t1, . . . , tN} in which energy may be
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produced, it posts an offer specifying

oQ(t) =


π if t = t

0 otherwise.
(6.6)

Alternatively, the provider may have a fully charged battery, which could be discharged in

any of the next N intervals t1, t2 . . . , tN . Let π denote the amount of power that could be

provided if the battery was fully discharged in a single time interval. Then, the provider

will submit a single offer specifying

oQ(t) =


π if t ∈ {t1, t2, . . . , tN}

0 otherwise.
(6.7)

The reservation prices of the offers should consider the energy prices of the utility

company (i.e., the alternative to local trading) and the cost of providing energy (e.g., cost

of battery depreciation due to charging and discharging).

6.3.2.2 Carpooling Assignment

We consider the problem of assigning carpooling riders to drivers with empty seats in

their cars. In this application, resource consumers model riders, while resource providers

model drivers. We again divide time into fixed-length intervals, and we divide the space

of pick-up locations into a set of areas (e.g., city blocks). Then, we let a resource type

correspond to a ride from a particular area in a particular time interval to a particular area.

A unit of a resource is a single seat for a ride.

A provider (i.e., driver) who has π empty seats in its car will post a providing offer. Let

Π⊆ T denote the set of combinations of pick-up and drop-off areas and pick-up times that
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are feasible for the provider. Then, the provider’s offer specifies

oQ(t) =


π if t ∈Π

0 otherwise.
(6.8)

Similarly, a consumer (i.e., rider) who needs 1 seat will post a consuming offer, specifying

oQ(t) =


1 if t ∈Π

0 otherwise,
(6.9)

where Π is the set of combinations (i.e., pick-up and drop-off areas and pick-up times) that

are feasible for the rider.

6.3.3 Problem Formulation Extensions

The Resource Allocation Problem that we introduced in Section 6.3.1 can capture a

wide range of real-world problems. However, some problems may not be easily expressed

using the constraints (Equations (6.1) to (6.4)) and the objective (Equation (6.5)) of the

base problem formulation. For this reason, here we introduce a set of alternative objective

formulations and additional constraints for resource allocation.

6.3.3.1 Objectives

We first introduce alternative objective formulations, which quantify the utility of a

resource allocation based on alternative goals.

Resource Type Preferences: Equation (6.5) assumes that exchanging a unit of any

resource type is equally beneficial. In some practical scenarios, exchanging certain resource

types may be more beneficial than exchanging others. For each resource type t ∈ T , let βt

denote the utility derived from exchanging a unit of resources of type t. Then, the utility of
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a resource allocation A can be expressed as

∑
a∈A

β(aT ) ·aQ. (6.10)

Provider and Consumer Benefit: The reservation price oV (t) of a providing offer

o means that provider oP is indifferent to (i.e., derives zero benefit from) exchanging re-

sources of type t at unit price oV (t). Hence, the unit benefit derived by the provider from

exchanging at a higher price aV ≥ oV (t) is equal to aV − oV (t). Similarly, the unit bene-

fit derived by a consumer, who posted an offer o, from exchanging resources of type t at

price aV is equal to oV (t)−aV . Therefore, the total benefit created by an assignment a for

provider aOP and consumer aOC is

aQ · [aV − (aOP)V (aT )]+aQ · [(aOC)V (aT )−aV ]

=aQ · [(aOC)V (aT )− (aOP)V (aT )] , (6.11)

and the total benefit created by a resource allocation A for all the providers and consumers

is

∑
a∈A

aQ · [(aOC)V (aT )− (aOP)V (aT )] . (6.12)

6.3.3.2 Constraints

Next, we introduce additional feasibility constraints that may be imposed on the re-

source allocations.

Price Constraints: A regulator (e.g., utility company in a transactive energy platform)

may impose constraints on the prices at which resources may be exchanged (e.g., based on

bulk-market prices). If the minimum and maximum unit prices for resource type t ∈ T are

mint and maxt , respectively, then we can express price constraints as

∀a ∈ A : min(aT ) ≤ aV ≤ max(aT ). (6.13)
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Pairwise Constraints: Due to physical constraints, exchanging resources of certain

types between certain pairs of prosumers may be impossible. If the set of prosumer pairs

that may exchange resources of type t ∈ T is denoted by Et ⊆ P×C, we can express

pairwise constraints as

∀a ∈ A : (aOP,aOC) ∈ E(aT ). (6.14)

Real-Valued Offers and Allocations: Finally, we may also relax some of the con-

straints of the base formulation. In particular, we may allow real-valued quantities in of-

fers and allocations (i.e., oQ : T 7→ R+ and aQ ∈ R+) as well as real-valued prices (i.e.,

oV : T 7→ R+ and aV ∈ R+).

6.4 SolidWorx: A Decentralized Transaction Management Platform

Now, we describe the SolidWorx platform, which (1) allows prosumers1 to post offers,

and (2) can find a solution to the resource allocation problem in an efficient and trustwor-

thy manner. SolidWorx follows the actor-based architecture, which was proposed initially

in [214], and which has been accepted as a standard model for building distributed applica-

tions. The key aspect of an actor-based system are interfaces with well-defined execution

models [215]. The following subsections will describe the transaction management plat-

form in more detail. Here, we provide a brief overview.

Figure 6.1 shows the key actors of our transaction management platform, while Figure

6.2 describes the data flow between these actors. A directory actor provides a mechanism

to look up connection endpoints, including the address of a deployed smart contract. We

described how to create a decentralized directory service using distributed hash tables in

Chapter 5. Prosumer actors (i.e., resource providers and consumers) post offers to the plat-

form via functions provided by a smart contract. These functions check the correctness of

each offer and then store it within the smart contract. An optional mixer service can be used

to obfuscate the identity of the prosumers [216]. By generating new anonymous addresses
1An actor or an agent that can both provide and consume resources.
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Figure 6.1: Implementation view of the SolidWorx. A private Ethereum network (used for
testing purposes) is the decentralized computation platform running the smart

Distributed Ledger (e.g., blockhain)

Smart Contract
(check offer and solution correctness, select best solution) Events

Solver

Anonymizing Mixer
(provide privacy)

Prosumer

Directory
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close, finalize

offers,
closed

connection addresses

potential
solutionsoffers

resource allocation for offers

Figure 6.2: Data flow between actors of SolidWorx.

at random periodically, prosumers can prevent other entities from linking the anonymous

addresses to their actual identities [62, 216], thereby keeping their activities private. Solver

actors, which are pre-configured with constraints and an objective function, can listen to

smart-contract events, which provide the solvers with information about offers. Solvers

run at pre-configured intervals, compute a resource allocation, and submit the solution al-

location to the smart contract. The directory, acting as a service director, can then finalize

a solution by invoking a smart-contract function, which chooses the best solution from all

the allocations that have been submitted. Once a solution has been finalized, the prosumers
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are notified using smart-contract events.

6.4.1 Scheduling

Once the system is deployed, providers and consumers will need to use it repeatedly for

finding optimal resource allocations. For example, riders and drivers want to find optimal

carpooling assignments every day, while users in an energy futures market want to find

optimal energy trades every, e.g., 20 minutes. Consequently, the platform has to gather

offers and solve the resource allocation problem at regular time intervals. Each one of

these cycles is divided into two phases. First, an offering phase, in which providers and

consumers can post new offers or cancel their existing offers (e.g., if they wish to change

their offer based on changes in the market). Second, a solving phase, in which the resource

allocation problem is solved for the posted (but not canceled) offers. At the end of the

second phase, the assignments between providers and consumers are finalized based on the

solution. Then, a new cycle begins with an offering phase.

6.4.2 Hybrid Solver Architecture

The Resource Allocation Problem described in Section 6.3 can be solved by formulat-

ing it as an (integer) linear program (LP): feasibility constraints (Equations (6.1) to (6.4))

and constraint extensions (Section 6.3.3.2) can all be formulated as linear inequalities,

while the objective function (Equation (6.5)) as well as the alternative objectives (Sec-

tion 6.3.3.1) can be formulated as linear functions. Arguably, we could set up a solver actor

that would receive offers from prosumers, formulate a linear program, and use a state-of-

the-art LP-solver (e.g., CPLEX [72]) to find an optimal solution. However, a simple N-to-1

architecture with N prosumers and 1 solver would suffer from the following problems:

• Lack of trust in solver nodes: Prosumers would need to trust that the solver is acting

selflessly and is providing correct and optimal solutions.
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• Vulnerability of the transaction management platform: A single solver would be a

single point of failure. If it were faulty or compromised, the entire platform would

be faulty or compromised.

• Data storage: For the sake of auditability, information about past offers and alloca-

tions should remain available even in case of node failures.

A decentralized ledger with distributed information storage and consensus provided by

blockchain solutions, such as Ethereum, is an obvious choice for ensuring the auditability

of all events and providing distributed trust. However, computation is relatively expensive

on blockchain-based distributed platforms2, solving the trading problem using a block-

chain-based smart contract would not be scalable in practice. In light of this, we propose a

hybrid implementation approach, which combines the trustworthiness of blockchain-based

smart contracts with the efficiency of more traditional computational platforms.

Thus, the key idea of our hybrid approach is to (1) use a high-performance computer

to solve the computationally expensive linear program off-blockchain and then (2) use a

smart contract to record the solution on the blockchain. To implement this hybrid approach

securely and reliably, we must address the following issues.

• A computation that is performed off-blockchain does not satisfy the auditability and

security requirements that smart contracts do. Thus, the results of any off-blockchain

computation must be verified by the smart contract before recording them on the

blockchain.

• Due to network disruptions and other errors (including deliberate denial-of-service

attacks), the off-blockchain solver might fail to provide the smart contract with a

solution on time (i.e., before assignments are supposed to be finalized). Thus, the

smart contract must not be strongly coupled to the solver.

2Further, Solidity, the preferred high-level language for Ethereum, currently lacks built-in support for
certain features that would facilitate the implementation of an LP solver, such as floating-point arithmetics.
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• For the sake of reliability, the smart contract should accept solutions from multiple

off-blockchain sources; however, these sources might provide different solutions.

Thus, the smart contract must be able to choose from multiple solutions (some of

which may come from a compromised computer).

6.4.3 Smart Contract

We implement a smart contract that can (1) verify whether a solution is feasible and (2)

compute the value of the objective function for a feasible solution. Compared to finding

an optimal solution, these operations are computationally inexpensive, and they can easily

be performed on a blockchain-based decentralized platform. Thus, we implement a smart

contract that provides the following functionality:

• Solutions may be submitted to the contract at any time during the solving phase.

The contract verifies the feasibility of each submitted solution, and if the solution is

feasible (i.e., if it satisfies the constraint Equations (6.1) to (6.4)), then it computes the

value of the objective function (i.e., Equation (6.5)). The contract always keeps track

of the best feasible solution submitted so far, which we call the candidate solution.

• At the end of the solving phase, the contract finalizes resource assignments for the

cycle based on the candidate solution. If no solution has been submitted to the con-

tract, then an empty allocation is used as a solution, which is always feasible but

attains zero objective.

This simple functionality achieves a high level of security and reliability. Firstly, it

is clear that an adversary cannot force the contract to finalize assignments based on an

incorrect (i.e., infeasible) solution since such a solution would be rejected. Similarly, an

adversary cannot force the contract to choose an inferior solution instead of a superior one.

In sum, the only action available to the adversary is proposing a superior feasible solution,

which would actually improve the transactive management platform.
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Figure 6.3: FSolidM model of the SolidWorx smart contract.

To ensure that the smart-contract code is correct-by-construction [217], we use the for-

mal design environment FSolidM [213] to design and generate the Solidity code of the

smart contract. FSolidM allows designing Ethereum smart contracts as Labelled Transi-

tion Systems (LTS) with formal semantics. Each LTS can then be given to the NuSMV

model checker [218] to verify liveness, deadlock-freedom, and safety properties, which

can capture important security concerns.

In Figure 6.3, we present the LTS representation of the transactive-platform smart con-

tract, designed with FSolidM. The contract has three states:3

• Init, in which the contract has been deployed but not been initialized. Before the

contract can be used, it must be initialized (i.e., numerical parameters must be set up).

• Receive, which corresponds to the offering phase of a cycle (see Section 6.4.1). In this

state, prosumers may post (or cancel) their offers.

• Solve, which corresponds to the solving phase of a cycle (see Section 6.4.1). In this

state, solvers may submit solutions (i.e., resource allocations) based on the posted (but

not canceled) offers.

In FSolidM, smart-contract functions are modeled as LTS transitions. Note that by

3Generated smart-contract code is not included in the paper because of space constraints. How-
ever, interested readers can view the code at https://github.com/visor-vu/transaction-
management-platform
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design, each function may be executed only if the contract is in the origin state of the

corresponding transition. Our smart contract has the following transitions (after the name

of each transition, we list the function parameters):

• from state Init:

– setup(uint64 numTypes, uint64 precision, uint64 maxQuantity, uint64

lengthReceive, uint64 lengthSolve): initializes a contract with numerical param-

eter values, setting up the number of resource types, the arithmetic precision for calculations, the

maximum quantity that may be offered, and the time length of the offering and solving phases;

upon execution, the contract transitions to state Receive.

• from state Receive:

– createOffer(bool providing, uint64 misc)): creates a blank offer (belonging

to the prosumer invoking this transition) within the smart contract; parameter providing

is true for providers and false for consumers, parameter misc is an arbitrary value that pro-

sumers may use for their own purposes (e.g., to distinguish between their own offers); emits an

OfferCreated event.

– updateOffer(uint64 ID, uint64 resourceType, uint64 quantity, uint64

value): sets quantity and value for a resource type in an existing offer (identified by the ID

given in the OfferCreated event); may be invoked only by the entity that created the offer,

and only if the offer exists but has not been posted yet; emits an OfferUpdated event.

– postOffer(uint64 ID): posts an existing offer, enabling solvers to include this offer in

a solution; may be invoked only by the entity that created the offer; emits an OfferPosted

event.

– cancelOffer(uint64 ID): cancels (i.e., “un-posts”) an offer, forbidding solvers from

including this offer in a solution; may be invoked only by the entity that created the offer; emits

an OfferCanceled event.

– close(): protected by a guard condition on time, which prevents the execution of this tran-

sition before the offering phase of the current cycle ends; transitions to state Solve; emits a

Closed event.
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• from state Solve:

– createSolution(uint64 misc): creates a new, empty solution (i.e., resource alloca-

tion) within the smart contract; parameter misc is an arbitrary value that solvers may use for

their own purposes (e.g., to distinguish between their own solutions); emits a SolutionCreated

event.

– addAssignment(uint64 ID, uint64 providingOfferID, uint64 consuming-

OfferID, uint64 resourceType, uint64 quantity, uint64 value): adds

a resource assignment to an existing solution (identified by the ID given in the Solution-

Created event); may be invoked only by the entity that created the solution; checks sev-

eral constraints ensuring that the solution remains valid if this assignment is added; emits an

AssignmentAdded event.

– finalize(): selects the best solution and finalizes it by emitting an AssignmentFinalized

event for each assignment in the solution; protected by a guard condition on time, which prevents

the execution of this transition before the solving phase of the current cycle ends; transitions to

state Receive.

Notice that posting an offer or submitting a solution requires at least three or two func-

tion calls, respectively. The reason for dividing these operations into multiple function calls

is to ensure that the computational cost of each function call is constant:

• createOffer, postOffer, cancelOffer, and createSolution are ob-

viously constant-cost.

• updateOffer adds a single resource type to an offer.

• addAssignment simply updates the sum amounts on the left-hand sides of Equa-

tions (6.1) and (6.2) for a single providing and a single consuming offer, respectively;

and then it updates the sum in Equation (6.5).

With variable-cost functions, posting a complex offer, or submitting a complex solution

could be infeasible due to large computational costs, which could exceed the gas limit.4

4In Ethereum, each transaction is allowed to consume only a limited amount of gas, which corresponds to
the computational and storage cost of executing the transaction.
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Figure 6.4: A possible sequence of operations in SolidWorx. Underlined text denotes events
emitted by the smart contract. Some events, such as OfferUpdated, are omitted for
simplicity.

A typical sequence of function calls and events in SolidWorx is shown in Figure 6.4.

6.4.4 Analysis

The computational cost of every smart-contract function is constant (i.e., O(1)) except

for finalize, whose cost is an affine function of the size of the solution (i.e., O(|A|)).

Note that the cost of finalize depends on the size of the solution A only because it emits

an event for every assignment a ∈ A. These could be omitted for the sake of maximizing

performance since the assignments have already been recorded in the blockchain anyway.

The number of function calls required for posting an offer depends on the number of re-

source types with non-zero quantity in the offer. If there are n such resource types, then

n+2 calls are required (createOffer, n updateOffer, and postOffer). The num-
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ber of function calls required for submitting a solution A is 1+ |A| (createSolution

and |A| addAssignment).

6.4.4.1 Verification

For the specification of safety and liveness properties, we use Computation Tree Logic

(CTL) [219]. CTL formulas specify properties of execution trees generated by transitions

systems. The formulas are built from atomic predicates that represent transitions and state-

ments of the transition system (i.e., smart contract), using several operators, such as AX,

AF, AG (unary) and, A[·U ·], A[·W ·] (binary). Each operator consists of a quantifier on the

branches of the tree and a temporal modality, which together define when in the execution

the operand sub-formulas must hold. The intuition behind the letters is the following: the

branch quantifier is A (for “All”) and the temporal modalities are X (for “neXt”), F (for

“some time in the Future”), G (for “Globally”), U (for “Until”) and W (for “Weak until”). A

property is satisfied if it holds in the initial state of the transition systems. For instance, the

formula A[pWq] specifies that in all execution branches the predicate p must hold up to the

first state (not including this latter) where the predicate q holds. Since we used the weak

until operator W, if q never holds, p must hold forever. As soon as q holds in one state of an

execution branch, p does not need to hold anymore, even if q does not hold. On the con-

trary, the formula AGA[pWq] specifies that the subformula A[pWq] must hold in all branches

at all times. Thus, p must hold whenever q does not hold, i.e., AGA[pWq] = AG(p∨q).

We verified correctness of behavioral semantics with the NuSMV model checker [218],

by verifying the following properties:

• deadlock-freedom, which ensures that the contract cannot enter a state in which progress is im-

possible;

• “if close happens, then postOffer or cancelOffer can happen only after finalize”,

translated to CTL as: AG(close)→ AX A [¬(postOffer ∧ cancelOffer) W finalize],

which ensures that prosumers cannot post or cancel their offers once the solvers have started
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working;

• “OfferPosted(ID) can happen only if (ID < offers.length) && !offers[ID]-

.posted && (offers[ID].owner == msg.sender)”, translated to CTL as:

A[¬OfferPosted(ID) W (ID < offers.length) && !offers[ID].posted &&

(offers[ID].owner == msg.sender)], which ensures that an offer can be posted only

if it has been created (but not yet posted) and only by its creator;

• “OfferCanceled(ID) can happen only if (ID < offers.length) && offers[ID]-

.posted && (offers[ID].owner == msg.sender)”, translated to CTL as:

A[¬OfferCanceled(ID) W (ID < offers.length) && offers[ID].posted &&

(offers[ID].owner == msg.sender)], which ensures that an offer can be canceled

only if it has been posted and only by the poster;

• “if finalize happens, then createSolution can happen only after close”, translated to

CTL as:

AG(finalize)→ AX A [¬createSolution W close], which ensures that solutions can be

posted only in the solving phase.

6.5 Case Studies

To evaluate our platform, we present two case studies, based on the energy trading and

carpooling problems (Section 6.3.2), with numerical results. The computational results for

the carpool example were obtained on a virtual machine configured with 16 GB of RAM

and 4 cores of an i7-6700HQ processor. The energy market example results were obtained

on a virtual machine configured with 8GB of RAM and 2 cores of an i7-6700HQ processor.

For these experiments, we used our private Ethereum blockchain network [69].

6.5.1 Carpooling Problem

In this section, we describe a simulated carpooling scenario. The problem of carpooling

assignment was introduced earlier in Section 6.3.2.2. Here, we model a carpool prosumer
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Figure 6.5: Green and red dots mark the 75 residences (anonymized and resampled). Blue
dots are destinations on campus. We used K-Means to identify 20 central locations (yellow
dots) for pickup.

as an actor that specifies 1. whether it is providing or requesting a ride, 2. the number

of seats being offered/requested, 3. a residence, 4. a destination, 5. a time interval during

which the ride is available/required, 6. and a radius specifying how far out of their way they

are willing to travel. To set up the carpooling problem, we need to identify these parameters

and encode them as offers.

Residences were generated by sampling from the real-trip distribution data of Vander-

bilt University. Destinations were chosen uniformly at random for each prosumer from

the 5 garages around Vanderbilt University. Other parameters were also chosen randomly:

number of seats from the range of 1 to 3, prosumer type from producer or consumer, time

interval from 15-minute intervals between 7:00 and 9:30 AM. The “out of the way” met-

ric was chosen to be half of the distance between the residence and the destination. For a

provider, the center of the pick-up circle is the midway point between the residence and the

destination, and for a consumer, the center is the residence.
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Since each prosumer has a distinct residence, encoding it as a unique resource type

would mean that every prosumer would need to have the address of every other prosumer

to determine if they are in their pick-up range. Instead, we specify pick-up points which are

public locations where carpoolers can meet. Each prosumer can determine which pick-up

points are within their out-of-the-way radius and list those points in their offer. To encode

these values, we assign an ID to each pickup point and destination. Finally, we encode each

15-minute interval using a timestamp.

An offer consists of a collection of alternative resource types, each with a quantity and

value. We encode a resource type, which is a combination of a time interval, a pick-up

point, and a destination, as a 64-bit unsigned integer. For example, if the timestamp is

1523621700, the pick-up location ID is 15, and the destination ID is 3, then the resource

type is 1523621700153. A complete offer may look as follows:

{True, {1523623500173 : 2,1523623500153 : 2,

1523624400153 : 2,1523624400173 : 2},

{1523623500173 : 10,1523623500153 : 10,

1523624400153 : 10,1523624400173 : 10} }.

In this offer, the prosumer is offering rides (True for providing), has two pick-up locations

in range (17 and 15), drives to destination 3, is available in two time intervals, offers 2 seats,

and asks for value 10 in exchange for a ride.

In our experiment, we selected 75 prosumers for the carpool service simulation. The red

and green points in Figure 6.5 are the locations of the consumers and producers randomly

sampled from the anonymized distribution data of employees of Vanderbilt University. The

yellow points were selected as pick up locations using K-Means clustering choosing 20

clusters. The blue points are 5 garages around the Vanderbilt campus where employees

typically park.
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Figure 6.6: Each bar is a 15-minute interval. Each color in a bar is an offer that is valid
during that interval. The height of each color is the number of seats offered. If the color
appears during another interval that means it could be matched in any one of them, but no
more than one.

Figure 6.6 shows all the offers posted to the platform. Figure 6.7 shows the production

and consumption offers that were matched. The running time of the solver was 23 ms, while

the time between the request for finalization and emission of AssignmentFinalized

events was 29 s.

6.5.2 Energy Trading Problem

To show the versatility of our transaction management platform, we now apply it to the

problem of energy trading within a microgrid, which we introduced in Section 6.3.2.1.
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Figure 6.7: 4 production and 4 consumption offers that were matched. The blue and yellow
production offers are matched with the orange and yellow consumption offers. The height
of each color is the number of seats in that offer that were matched.

In this example, a prosumer is modeled as an actor with an energy generation and

consumption profile for the near future. In practice, the generation profile would be typ-

ically derived from predictions based on the weather, energy generation capabilities, and

the amount of battery storage available. The consumption profile would be derived from

flexible power loads, like washers and electric vehicles.

To represent future generation or consumption at a certain time, resource types encode

timestamps for 15-minute intervals, during which the power will be generated or consumed.

As an example, consider a battery that has 500 Wh energy, which could be discharged at

any time between 9 and 10 AM. This can be represented by an offer having resource types

900, 915, 930, and 945, specifying a quantity of 500 Wh for each.

For our simulation, the prosumer energy profiles are load traces recorded by Siemens

during a day from a microgrid in Germany, containing 102 homes (5 producers and 97

consumers). Since the dataset does not include prices, we assume reservation prices to be

uniform in our experiments and focus on studying the amount of energy traded and the

performance of the system.

Figure 6.8 shows the total production and consumption across this microgrid, as well

as the total energy traded per interval using our platform. The horizontal axis shows the

starting time for each of the 96 intervals.
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Figure 6.8: Total energy production capacity (green) and energy demand (red) for each
interval, as well as the total energy traded in each interval (blue).

In another simulation, we exercise the hybrid solver architecture by running multiple

solvers, and after some time, cause one to fail. This result is shown in Figure 6.9. The

narrow vertical red line indicates when solver 1 fails at 8:15 AM. Up until that point, solver

1 submitted the green, yellow, light blue, orange solutions, with the final solution being red.

On the other hand, we see that solver 2 continues to provide solutions for later intervals.

6.6 Related Research

Online Information Management Platforms: Smart and connected community sys-

tems are designed to collect, process, transmit, and analyze data. In this context, data

collection usually happens at the edge because that is where edge devices with sensors are

deployed to monitor surrounding environments. SolidWorx does not suggest a specific data

collection methodology. Rather, it follows an actor-driven design pattern where “prosumer”

actors can integrate their own agents into SolidWorx by using the provided APIs. Another

concern of these platforms is the cost of processing. Traditionally, this problem was solved

using scalable cloud resources in-house [220]. However, SolidWorx enables a decentralized

ecosystem, where components of the platform can run directly on edge nodes, which is one
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Figure 6.9: A failure scenario with failure at 8:15 AM. The solver can submit new solutions
as time progresses; the most recent solution is the color that is on the top of the stack for
an interval.

of the reasons why we designed it to be asynchronous.

To an extent, the information architecture of SolidWorx can be compared to dataflow en-

gines [221, 222, 223]. All of these existing dataflow engines use some form of a computa-

tion graph, comprising computation nodes and dataflow edges. These engines are designed

for batch-processing and/or stream-processing high volumes of data in resource-intensive

nodes and do not necessarily provide additional “platform services” like trust management

or solver nodes.

Integration with Blockchains: SolidWorx integrates a blockchain because it enables

the digital representation of resources, such as energy and financial assets, and their secure

transfer from one party to another. Further, blockchains constitute an immutable, complete,

and fully auditable record of all transactions that have ever occurred in the system. This

is in line with the increased interest and commercial adoption of blockchains [224], which

has yielded market capitalization surpassing USD 75 billion [225] for Bitcoin and USD 36
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billion USD for Ethereum [226]. Prior work has also considered the security and privacy

of IoT and Blockchain integrations [227, 228, 229].

The biggest challenge in these integrated systems comes from computational-complexity

limitations and the complexity of the consensus algorithms. In particular, their transaction-

confirmation time is relatively long and variable, primarily due to the widely-used proof-

of-work algorithm. Further, blockchain-based computation is relatively expensive, which

is the main reason why we separated finding a solution and validating the solution into two

separate components in SolidWorx.

Correctness of Smart Contracts: Both verification and automated vulnerability dis-

covery are considered in the literature for identifying smart-contract vulnerabilities. For ex-

ample, Hirai performs a formal verification of a smart contract that is used by the Ethereum

Name Service [230]. However, this verification proves only one property and it involves

a relatively large amount of manual analysis. In later work, Hirai defines the complete

instruction set of the Ethereum Virtual Machine in Lem, a language that can be compiled

for interactive theorem provers [231]. Using this definition, certain safety properties can be

proven for existing contracts.

Bhargavan et al. outline a framework for verifying the safety and correctness of Ethereum

smart contracts [232]. The framework is built on tools for translating Solidity and Ethereum

Virtual Machine bytecode contracts into F∗, a functional programming language aimed at

program verification. Using the F∗ representations, the framework can verify the correct-

ness of the Solidity-to-bytecode compilation as well as detect certain vulnerable patterns.

Luu et al. provide a tool called OYENTE, which can analyze smart contracts and detect cer-

tain typical security vulnerabilities [233]. The main difference between prior work and the

approach that we are using (i.e., verifying FSolidM models with NuSMV) is that the former

can prevent a set of typical vulnerabilities, but they are not effective against vulnerabilities

that are atypical or belong to types which have not been identified yet.
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6.7 Conclusion

Smart and connected community applications require decentralized and scalable plat-

forms due to the large number of participants and the lack of mutual trust between them.

In this paper, we introduced a transactive platform for resource allocation, called Solid-

Worx. We first formulated a general problem that can be used to represent a variety of

resource allocation problems in smart and connected communities. Then, we described an

efficient and trustworthy platform based on a hybrid approach, which combines the effi-

ciency of traditional computing environments with the trustworthiness of blockchain-based

smart contracts. Finally, we demonstrated the applicability of our platform using two case

studies based on real-world data.

191



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

This dissertation makes several important contributions to the field, which we reiterate

here.

First, this dissertation addresses the conflicting requirements of privacy and safety in

a transactive energy market. We presented an analysis and design of privacy groups that

can achieve k-anonymity while maintaining safety in MSCPS, by the development of a

platform known as TRANSAX (Chapter 2). This is important because some applications

require data in order to take control actions that ensure overall system safety, but the shar-

ing of that information may violate user privacy. By allocating an in-network currency

(representing safe trading limits based on physical system constraints) and using a mixing

protocol, we demonstrated an ability to provide a meaningful degree of privacy to partici-

pants in a transactive market.

Second, this dissertation presented market protocols designed to enable trust in de-

centralized systems without relying exclusively on cryptographic protocols. In the de-

velopment of MODiCuM, we constructed an incentive-compatible market for outsourcing

computation. To do so, we performed a game-theoretic analysis of participant strategies

to verify that a rational participant would behave correctly with overwhelming probability

(Chapter 3). We initially designed MODiCuM for batch processing, but then redesigned

the platform to be able to function for stream processing (Chapter 4); in doing so we were

able to construct the market such that rational participants will behave correctly.

Third, we presented elements necessary for the generalization of these solutions, in-

cluding a connection substrate and a generalized resource allocation market. In addition
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to these, we presented a hybrid-solver pattern for blockchain-based markets, which allows

stakeholders to coordinate without a central authority while overcoming some of the inef-

ficiencies of a purely blockchain-based market, allowing for reduction of costs and preser-

vation of trust. This hybrid-solver pattern enables the system to execute computation with

the non-secure resource and use the secure resource to verify the result (Chapter 6).

7.2 Future Work

MSCPS are complex systems that require special considerations in their design and

development. However, such systems are rising to prominence in Smart and Connected

Communities, which present many opportunities for many stakeholders to interact in mu-

tually beneficial ways. Distributed ledgers are a valuable tool in the development of these

systems, allowing for decentralization while maintaining trust between participants, but the

application of distributed ledger technology to MSCPS is not straightforward.

While we have presented several platforms that utilize blockchains and may facilitate

the exchange of resources among many stakeholders, there is significant work yet to be

accomplished. The overarching goal of research in this arena is to have a unified platform

wherein all the requirements of MSCPS can be met across a variety of domains. Such a

platform would encompass the difficult-to-implement aspects of MSCPS and account for

all of the requirements when it comes to communication between nodes, system resilience,

system testing and diagnostics, etc. This theoretical platform could allow for groups to

write market-based solutions for whatever domain they are interested in, and allow those

groups to test their solutions, provide strategies to their users, and explore an array of

market-based opportunities.

While we have not yet achieved this goal, this dissertation provides key patterns and

initial platforms which can be further expounded upon as the field continues this pursuit.
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