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CHAPTER 1

INTRODUCTION

1.1 Outline

This dissertation takes a network view of Electronic Health Records (EHR) using
traditional statistical methods and network science to build new tools to discover and
explore complex phenotype associations in noisy data. In chapter 2, we demonstrate
how the injection of network statistics and visualization into traditional methods can
empower the analyst to check model assumptions and explore the underlying data
to find patterns previously complicated to uncover. Next, in chapter 3, we show
how network algorithms and interactive visualization methods can be combined to
construct a visualization tool for exploring extremely high-dimensional association
structures, such as that of the clinical phenome. Last, in chapter 4, we demonstrate
the utility and value of network statistics by applying custom-built but simple metrics
to explore and quantify the similarity of two comorbidity networks generated from
separate EHRs.

Before we start, we will go over the basics of EHRs and network science to provide
the reader with the necessary background knowledge to utilize the later chapters’
contributions.

1.2 Electronic health records

EHRs, in the simplest terms, are computer-stored patient records. As computers and
computer storage become ever cheaper and more ubiquitous, hospitals have shifted
from storing patient data on paper charts to using EHRs. The full benefits and
implementations of EHRs are beyond this dissertation’s scope, but brief examples
include the ability for rapid retrieval of a patient’s data from any computer within
the hospital’s network, and the transfer of that information efficiently to new care
providers.

EHRs are a general concept and contain many types of data. Examples include
everything from hand-written notes to high-resolution radiology scans. Here, we
focus on a small subset known as “billing codes.”
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1.2.1 Billing codes

In the form of ICD9 (World Health Organization, 1978) and the newer ICD10 (World
Health Organization, 2004) codes, billing codes are an internationally recognized stan-
dard list of codes used to characterize a patient’s stay in the hospital for billing pur-
poses. As the range of possible conditions is vast, so are the number of codes present.
ICD9 codes contain around 13 thousand different codes, and the newer ICD10 stan-
dard has around 68 thousand. While their extreme dimensionality makes the use
of ICD codes in statistical modeling difficult, they are further hindered by being de-
signed for billing and not research. This difference may seem subtle but means any
models and inferences made from ICD data will have numerous and complicated to
discern biases. For further information on the challenges of analysis with ICD codes,
we refer the reader to chapter 4 of this dissertation and (Yadav et al., 2018).

1.2.2 Phecodes

In an attempt to alleviate some of the issues associated with ICD code usage in
our analyses, ICD9 and ICD10 codes present in a patient’s records are mapped to
the lower-dimensional phenotype classifications called “phecodes.” Phecodes were
developed in parallel with the Phenome-Wide Association Study (Denny et al., 2010)
(PheWAS) to translate the billing oriented ICD codes to a more research appropriate
mapping of around 1.8 thousand clinically relevant phenotypes. Phecodes benefit from
interpretable descriptions and high-level category groupings. These clean and easy to
understand groupings allow for “sanity-checks” of results and open up interpretation
of results to non-physician scientists.

1.2.3 Biobanks

In addition to the use of billing code data, some parts of this dissertation use data
from “biobanks.” Biobanks are repositories of biomarker data from patients in a hos-
pital system or systems. These biomarkers can be a large variety of things, from
raw serum up to single-cell RNA sequencing data. There are many exciting appli-
cations of the merger of biobank and billing-code derived phenotypes; however, here
we touch only on the aforementioned PheWAS studies, which seek to discover asso-
ciations between a given biomarker of interest and each distinct phenotype present,
or the user’s “Phenome.” These studies, like their predecessors, the Genome-Wide
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association study (Hindorff et al., 2009) (GWAS), typically use Single Nucleotide
Polymorphisms (SNPs) as their biomarkers of interest.

1.2.4 Is it worth it?

With billing-code derived phenotypes subject to so many potential confounding and
noise-introducing biases, it is reasonable to question why any effort should be made
to build models around them. Skepticism is valid and valuable in these cases, but
ultimately the potential upsides make the efforts worth it. With the clinical care
industry worth $3.6 trillion as of 2018 (hea, 2020), the purely monetary benefits of
successful translational research done on billing code data are vast.

Even with the risks mentioned above, we have seen great successes from billing-code
based work (Ritchie et al., 2010). For example, the use of PheWAS studies to find
drug repurposing targets has successfully identified alternative targets for already
approved drugs (Werfel et al., 2020). This type of work not only saves money but,
more importantly, speeds up the availability of potentially life-saving medications.
Further, in chapter 4 of this dissertation, we show that the phenome’s topological
structure, as represented by phecodes, is surprisingly robust.

1.3 Network science

“A network is a simplified representation that reduces a system to an
abstract structure of topology, capturing only the basics of connection
patterns and little else… This has some disadvantages but it has advan-
tages as well.” - Newman, Networks chapter 1 (Newman, 2018)

While network science is a relatively new discipline, its roots trace back to work
done by Leonard Euler in 1741 (Euler, 1741). The likely first problem with a formal
network-based solution is known as “The Seven Bridges of Königsberg.” The goal of
the seven bridges problem was to build a path through the Prussian city of Königsberg
that crossed each of its seven bridges just once. By breaking the problem down to one
of a network, representing each landmass (either side of a river and an island within
the river) as nodes and the bridges connecting them as edges, Euler was able to
show with mathematical formality that there was no solution to the problem. Euler’s
seven bridges result marked the first widely recorded use of networks as an abstract
topological representation of a system, but it was not the last.

3



1.3.1 Types of networks

The networks used in network science can come from any system that can be ab-
stracted to a series of nodes and connections between those nodes; however, a few
common areas have emerged as sources of network data.

One of the canonical examples of a network is a social network. Here, nodes are
individuals, and connections are interactions in some form, such as friendship or
coworking status. One of the first examples of a social network is the Southern
Women’s Cohort network (Davis et al., 2009), which tracked 18 women and the social
events they attended in 1939. A common task with social networks is determining
groups (or clusters) of individuals, such as political party separation (Minot et al.,
2020).

Another example of network data commonly seen comes from technological networks.
These typically directly represent the data connections between computers or other
circuits. The first examples come from telegraph networks (Müller, 2016), and the
much larger and more recent examples come from the internet (LYON and B, 2005).
Here the questions posed tend to be more algorithmic, for example, how to efficiently
route network packets between a server and a client (Ng et al., 2007).

As a method of connecting units of information (e.g., Wikipedia pages), the inter-
net also represents another common type of network: Information networks. These
networks - predictably - represent the flow of information, either abstractly or math-
ematically defined (e.g. entropy) between their nodes. Citation networks are another
classic example of information networks. Whereby the nodes are researchers, and
edges represent the co-authoring of a paper together. Potential questions asked in-
clude what disciplines tend to collaborate the most often (Newman, 2001).

Biochemical or biological networks represent one of the newer applications of network
science. Here the networks can represent a large number of related biological processes.
Examples range from the highly algorithmic: how to assemble a genome (Compeau
et al., 2011; Pop, 2009); to information-based: genes co-expressing under certain
conditions (Kovács et al., 2019).

Of all the networks mentioned, the work in this dissertation most closely relates
to these biological networks. The problems posed mirror many of those seen in
gene-regulation networks. What Phenotypes tend to occur together or are highly
“comorbid?” Throughout the following chapters, we will draw inspiration from pre-
vious works on all network types to build new methods to explore and understand

4



Phenome-based networks.

1.3.2 Basic networks primer

Throughout this dissertation, a large amount of network science jargon is used. This
section aims to provide both a reference point for those terms and a very brief overview
of basic network science concepts. A more thorough introduction of these terms and
concepts is available in the textbooks Networks by Newman (Newman, 2018), and
Statistical Analysis of Network Data by Kolaczyk (Kolaczyk and Csárdi, 2020).

Node/Vertex: The node is the most basic unit of a network. It can represent almost
anything from nations to individuals, down to the base pairs of those individuals
genomes. Another name for “node” is “vertex.” In this dissertation, the two terms
are interchangeable. Often “node” is used in the description of real-world networks,
and “vertex” is used when discussing abstract mathematical properties.

Bi/Polypartite networks The nodes in a network need not always be the same type
of thing (e.g., all nodes are individuals). Many systems are more naturally described
with multiple node “types,” or as “polypartite” networks. The most common example
of this is “bipartite” networks or networks with two node types. Examples of bipartite
networks include states (or provinces) and their nations, students and the schools they
attend, or genes and the samples in which those genes were expressed.

The only strict rule with polypartite networks is that two nodes of the same type
can not share an edge. For instance, in the students-to-schools example, a student
can be connected to a school as the edges represent attendance, but a student cannot
“attend” another student, and neither can a school attend another school. These
restrictions manifest themselves in the formation of the abstraction and are usually
not challenging to accommodate.

While bipartite networks are the most common type after unipartite networks, there
is no reason why the number of types is limited to two. For example, a network with
nodes representing patients, genes, and phenotypes is a tripartite network where an
edge between a patient and a gene represents the patient having a mutation on that
gene, and an edge between a patient and a phenotype represents that patient having
the phenotype in their medical records.

Edge/Link: An edge represents some form of connection or interaction between two
nodes. Again, this is very general and can represent a vast range of “interactions.”
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For instance, the trading of goods between two nations, two individuals knowing each
other, or two codons occurring side-by-side on the genome. Like “node” and “vertex,”
an edge is sometimes called a “link;” again, here we use the two terms interchangeably.

Weighted edge: Often an edge is annotated with information such as the strength
of the connection. While these annotations can take any form, the most common is
a scalar value that makes the edge “weighted.” These values could be the monetary
value of trades between two nations, how long two individuals have known each other,
or how frequently two codons occur next to each other. While not strictly necessary, it
is conventional for the weights to be exclusively positive values. Positive edge weights
result in some convenient mathematical properties (see entry for “adjacency matrix”).
As mentioned, this is not a hard-and-fast rule, and in chapter 4, we deal heavily with
negative edge weights.

Directed edge: In addition to having weights, edges can also have direction. For
instance: a nation’s exports and imports, one individual may consider the other a
“friend” but not necessarily the reverse, or asymmetric conditional probabilities of two
codons co-occurring (Single et al., 2016; Thomson and Single, 2014). While directed
edges can represent many exciting systems, this dissertation will primarily focus on
un-directed networks.

Neighbors: A node’s “neighbors” are all of the other nodes with which they share
an edge, e.g., all the nations that trade with the United States, all of a student’s
friends at school, or all the codons that co-occur with AGT.

Degree: The degree of a node is the sum of all its edges its adjacent edges. In the
case of the typical binary connections of an unweighted network, this is simply the
number of neighbors the node has. For weighted networks, the degree is typically
reported as the sum of the weights of all a node’s adjacent edges.

Graph: It is common - especially in algorithmic contexts - for a network to be
referred to as a “graph.” In this dissertation, we will treat “graph” and “network”
interchangeably.

Subgraph: A subset of nodes and edges within a larger graph or network. In math-
ematical terms: a graph 𝐻 is a subgraph of 𝐺 if 𝑉𝐻 ⊆ 𝑉𝐺 and 𝐸𝐻 ⊆ 𝐸𝐺, where 𝑉𝐺
is the set of all vertices in 𝐻, and 𝐸𝐺 is the set of all edges in 𝐻.

Isolated subgraphs/Components: Often, within a network as a whole, some
subgraphs are entirely isolated from the rest of the network. Isolated here meaning
there is no way to step along a series of edges between nodes to reach the rest of
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the network. In the context of landmasses connect by bridges in the seven bridges
example (Euler, 1741), there is no way to get from landmass A to landmass B by
crossing bridges. The most common term used to describe these isolated subsets of
nodes is “component,” however, in this dissertation, we will use the term “isolated
subgraph” to avoid confusion with other statistical concepts used for high-dimensional
data such as Principle Components Analysis.

Adjacency matrix: One popular way of representing the edges of a network is via
an “adjacency matrix.” In a network with 𝑛 nodes, this is an 𝑛 × 𝑛 symmetric matrix
with the edge weight between nodes 𝑖 and 𝑗 encoded in the value of the 𝑖, 𝑗th cell.
The diagonal elements are taken to be 0. The adjacency matrix is used heavily in
mathematical representations and theory for networks such as calculating the eigen-
centrality of nodes. Eigen-centrality ranks nodes “importance” within the network by
taking the 𝑛 elements of the eigenvector with the largest eigenvalue to be the node’s
importance value. All the entries in the adjacency matrix being positive are necessary
for at least one eigenvector to itself be all positive, as stated by the Perron-Frobenius
theorem. For more details on eigen-centrality, see chapter 4 of this dissertation and
chapter 7 of (Newman, 2018).

1.3.3 One-mode projections

Mathematical simplicity and an abundance of example datasets has resulted in most
network analysis methods being designed for unipartite networks. This unipartite bias
means that it is common for polypartite networks to be first collapsed or “projected”
to a unipartite or “one-mode” version. This new collapsed network can then have the
unipartite algorithms run on it.

The most straightforward format of this collapsing is co-occurrence. In the students-
schools bipartite network example, this would mean connecting students if they both
share a connection to (aka attended) the same school. While the methods used to
collapse networks can get much more complicated (see 4.3.2 for an example), there is
always a loss of information about the system that occurs when simplifying the struc-
ture (Larremore et al., 2014). This loss of information means that collapsing should
only be done when appropriate. However, as we will see in chapter 4, sometimes this
information loss is a feature that can be used to preserve the anonymity of nodes
within the original un-collapsed network.
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1.3.4 Computing with networks

Now that datasets are large and compute so cheap, practically all network analysis
is done on a computer. While much of the math underpinning network theory is
built around manageable mathematical constructs like the adjacency matrix, these
representations can be highly inefficient when translated onto a computer. As a
result, a large body of data structure and algorithms development has been devoted
to representing and operating on networks. Here we will provide a very brief overview
of common network representations and algorithms. We point readers to chapter 8
of (Newman, 2018) and chapter 4 of (Sedgewick and Wayne, 2011) for more complete
coverage of this topic.

Storing networks: The most common method of representing a network on a com-
puter is through objects representing nodes that contain an array of references to
every one of that node’s neighbors, similar to a linked-list. This representation has
the benefit of providing fast access to the node’s neighbors, allowing rapid traver-
sal of the network. The ability to rapidly “walk” along the edges of a network is a
fundamental element of network algorithms.

Traversal algorithms: While there is a large number of computing algorithms that
operate on networks, almost all of these are variations on two similar algorithms
for traversing the network: breadth-first search (BFS) and depth-first search
(DFS). By using the linked representation of a network, these algorithms and their
variations avoid exhaustive searching, meaning that they often run in sub-linear time,
typically 𝑂(log𝑛).
Both breadth- and depth-first search are relatively simple and follow a similar tem-
plate:

1. Start with a given (often random) node in the network
2. Add every neighbor of the current node to a list of “nodes to explore”
3. Starting at the top of the nodes-to-explore list, repeat the steps 1 and 2

• For BFS, add all neighbors to the bottom of nodes-to-explore
• For DFS, add all neighbors to the top of nodes-to-explore

4. Once all 𝑛 nodes have been explored, or the desired node is found, the algorithm
finishes

The difference of which end of the nodes-to-explore list the neighbors are added
determines if the algorithm searches wide and shallow (i.e., with “breadth”), or if
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it exhaustively explores a given edge path before resetting (i.e., with depth). Both
algorithms are used in similar scenarios, such as finding the shortest paths through
mazes (MOORE and F, 1959; Sedgewick and Wayne, 2011). The choice between
which algorithm to use typically depends on properties of the network being explored,
but for non-tree-based networks - like those considered in this dissertation - DFS
typically is the variant of choice (Sedgewick and Wayne, 2011; Newman, 2018).
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CHAPTER 2

PHEWAS-ME: A WEB-APP FOR INTERACTIVE EXPLORATION OF
MULTIMORBIDITY PATTERNS IN PHEWAS

2.1 Summary

Electronic health records linked with a DNA biobank provide unprecedented oppor-
tunities for biomedical research in precision medicine. The Phenome-wide association
study is a widely-used technique for the evaluation of relationships between genetic
variants and a large collection of clinical phenotypes recorded in EHRs. PheWAS
analyses are typically presented as static tables and charts of summary statistics ob-
tained from statistical tests of association between a genetic variant and individual
phenotypes. Comorbidities are common and typically lead to complex, multivariate
gene-disease association signals that are challenging to interpret. Discovering and
interrogating multimorbidity patterns and their influence in PheWAS is difficult and
time-consuming. We present PheWAS-ME: an interactive dashboard to visualize
individual-level genotype and phenotype data side-by-side with PheWAS analysis re-
sults, allowing researchers to explore multimorbidity patterns and their associations
with a genetic variant of interest. We expect this application to enrich PheWAS
analyses by illuminating clinical multimorbidity patterns present in the data.

Availability: A demo PheWAS-ME application is publicly available at https://
prod.tbilab.org/phewas_me/. Sample datasets are provided for exploration with
the option to upload custom PheWAS results and corresponding individual-level
data. Online versions of the appendices are available at https://prod.tbilab.org/
phewas_me_info/. The source code is available as an R package on GitHub (https:
//github.com/tbilab/multimorbidity_explorer).

2.2 Introduction

Large-scale biobanks combined with electronic health records are increasingly avail-
able for clinical and translational research around the world (Chen et al., 2011; Cho
et al., 2012; Gaziano et al., 2016; All of Us Research Program Investigators et al.,
2019; McCarty et al., 2011; Sudlow et al., 2015, ). These data platforms typically
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provide subject-level information on a wide range of biomarkers along with detailed
phenotype data and provide a highly anticipated paradigm shift for clinical and trans-
lational research in the era of precision medicine. The Phenome Wide Association
Study is a statistical method to find associations across phenomes in the EHR with
a given biomarker (e.g. SNPs). PheWAS quantifies associations between single SNP-
phenotype pairs, which are blind to complex correlation structures present in pheno-
types. When multiple phenotypes show a strong association with a genetic variant,
researchers rely on domain expertise and more extensive interrogation of the data
to determine potential causes. These include driver phenotypes (e.g., patients with
a common disease taking a drug and then experiencing a common drug side effect),
phenotype hierarchy, related diseases with an overlapping set of patients, or merely
people with multiple diseases. Here we present PheWAS Multimorbidity Explorer
(PheWAS-ME), a web application built using the programing language R and the
Shiny library (Chang et al., 2020). PheWAS-ME allows researchers to interact with
PheWAS results alongside the individual-level phenotype and genotype data that gen-
erated them. By visualizing individual-level data along with statistical results, the
application provides a rich and explorable view into the patterns and relationships
between phenotypes and the genotype being investigated. The interactive nature of
the tool lets users enhance their interrogation of comorbidity patterns by delving into
areas of interest on the phenome, such as a disease category, with custom visualiza-
tions. See Appendix B for a demonstration of the use of PheWAS-ME to parse the
results of a PheWAS analysis to find novel phenotype associations.

2.3 Implementation

Data needed to run PheWAS-ME are a standard PheWAS result table and the cor-
responding individual-level data. These results can be supplied to the app via a
data loading screen or pre-loaded (see appendix C for full requirements). If desired,
multiple comparisons correction can be performed on loaded data using either the
Bonferroni (Dunn, 1961) or Benjamini-Hochberg (Benjamini and Hochberg, 1995)
methods.

After data are loaded, the app directs to the main visualization and analysis interface
- an interactive dashboard including four views: SNP information, an interactive Phe-
WAS Manhattan plot, multimorbidity UpSet plot, and a subject-phenotype bipartite
network plot.
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Figure 2.1: Screenshot of PheWAS-ME running on SNP rs200445019.

Application state: PheWAS-ME works by filtering down to a list of ‘selected’ pheno-
types. When a set of phenotypes is selected, the individual-level data are subset to
just subjects who had one or more of the selected phenotypes in their records. This
allows users to easily discard uninteresting or noisy phenotypes and focus in on po-
tentially meaningful patterns using criteria like strength of the statistical association
or phenotype category.

SNP information panel: To provide context to the currently investigated SNP, the
application provides a panel containing summary information (Figure 2.1A). Minor
allele frequency in the provided subject population and the currently selected subset
are shown as a bar chart. If the SNP of interest is present in an internal SNP
annotation table sourced from dbSNP (Sherry et al., 2001) and VEP (McLaren et al.,
2016), then additional information such as the minor allele, chromosome, and gene
are provided.

Interactive PheWAS Manhattan plot: A manhattan plot (Figure 2.1B) is provided
for the results of the PheWAS analysis (Denny et al., 2010). The x and y axis of
this plot are phenotype diagnosis and statistical significance, respectively. Additional
metadata from the supplied results table - such as name, description, and statistical
results for a phenotype - are accessible by hovering over a phenotype’s point in the plot.
Phenotypes can be selected for individual-level-data inspection by any combination
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of clicking, dragging a selection box, and searching in a table view below the plot. A
histogram of the log-odds ratios for all phenotypes is provided and can be used to
filter codes by ranges of association strength and direction.

Multimorbidity UpSet plot: Figure 2.1C is an UpSet plot (Lex et al., 2014). This plot
shows the unique multimorbidity patterns seen in the individual-level data for the
currently selected phenotypes as a matrix with columns as phenotypes and patterns
(represented by filled phenotype columns) as rows. On the left side of the plot is
a bar-chart displaying how many subjects had a multimorbidity pattern. To the
right is a point estimate and 95% confidence interval of each pattern’s relative risk of
occurring given that the subject has the given genetic variant of interest (calculated
using Fisher’s Exact Test (Fisher, 1992)). When a pattern is selected, the subjects
who have the pattern are highlighted in the network plot (Figure 2.1D). Hovering
over a phenotype’s column displays its name and description, supporting the quick
examination of multimorbidity pattern membership. For more details on the upset
plot we refer the reader to the original UpSet publication (Lex et al., 2014).

Subject-Phenotype Bipartite Network: Individual-level data are visualized directly as
a bipartite network. Phenotypes are represented as larger nodes (colored to match
their point in the manhattan and upset plots) and subjects are represented as smaller
nodes (colored by their number of copies of the SNP minor allele). A link is drawn
between subjects and phenotypes if a subject was diagnosed with a phenotype. A
physics-based layout simulation (Bostock et al., 2011) is run in real-time as the data
are filtered to position nodes with similar connection patterns close to each other.
As the user investigates the network structure, phenotype nodes can be selected and
isolated or removed from within the plot. An optional filtering mode limits the
network to only subjects with one or more copies of the SNP’s minor allele, allowing
investigation of genetics-driven patterns. An “export mode” button lets the user
download a high-resolution copy of the plot with optional phenotype labels for use in
publications.

Greater detail of each section of PheWAS-ME is available via in-app help pages and
the meToolkit package usage manual (see “Availability”).

2.4 Example usage

Here we describe a sample use-case of the PheWAS-ME application for investigating
the results of a PheWAS analysis and subject-level data corresponding to the SNP
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Figure 2.2: State of application at initial load

rs200445019.

Published literature shows the gene TBXA2R is associated with advanced cardiovas-
cular disease (Yi et al., 2019; Milanowski et al., 2017; Bauer et al., 2014; Schumacher
et al., 1992). A recent paper (Werfel et al., 2020) demonstrates a novel association
of SNP rs200445019 - a mutation within TBXA2R that is known to enhance a pro-
tein receptor regulating coagulation, blood pressure, and cardiovascular homeostasis -
with cancer metastasis phenotypes. A finding validated using mouse models. Here we
show how PheWAS-ME is capable of uncovering this new phenotype association by
providing a flexible set of interaction workflows to explore PheWAS analysis results
for rs200445019 and accompanying subject-level data.

The application used in this demonstration is available at https://prod.tbilab.org/
phewas-me-rs200445019. The section 2.4.2 contains links to the various application
states described in this walkthrough.

2.4.1 Exploration process

2.4.1.1 Loading app

PheWAS-ME starts in the default state: with the top 5 most significant codes visible.
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Figure 2.3: The region selection tool in the manhattan plot is used to draw a selection around the
most significant phecodes.

2.4.1.2 Broadening selection

The P-Value threshold line and manhattan-plot region selection are used to expand
the selected phecodes to those with a P-Value < 0.01 along with codes just below
the threshold that appear separated from the background level of significance. (Cor-
responding to a P-Value < 0.015)

2.4.1.3 Filtering to minor allele carriers

The network panel is filtered to only minor-allele carriers to view the individual data
in the context of the SNP. This filtering allows the network to reflect the genetic
association network between phenotypes, rather than general comorbidity.

2.4.1.4 Removing noisey phenotypes

Using the PheWAS results table, nonspecific and general-purpose phenotypes - such
as 303 (Psychogenic and somatoform disorders) and 782.30 (Edema) - are removed.

2.4.1.5 Using upset filtering to probe comorbidity frequencies

At this stage, the network plot appears to show relatively distinct clusters of comorbid
phenotypes. For further insight into this separateness, the pattern frequency limiter
is reduced to show all patterns with more than one subject. This expansion shows
that only two phenotype comorbid pairs occur more than twice: 285.22 and 198.20
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Figure 2.4: Using the checkbox ”Just minor-allele carriers” in the network plot the subject-level
data is reduced to only individuals who have one or more copies of the minor allele of interest.

Figure 2.5: With noisey phenotypes removed a separation into two clusters begins to appear in
network plot.
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Figure 2.6: The upset plot panel complements the network plot by showing exact counts of comor-
bidity patterns in currently selected data.

(“Anemia in neoplastic disease” and “Secondary malignancy of respiratory organs”),
and 415.20-415.21 (“Chronic pulmonary heart disease” and “Primary pulmonary hy-
pertension”) and no comorbidity pairs cross multiple general phenotype topics.

2.4.1.6 Removing low-sample-size phenotypes

In order to avoid spurious separations in clusters due to limited sample size, all
phecodes with less than three minor allele carrying subjects are found by mousing
over phecodes in the network panel. These low-sample-size codes are removed from
the currently selected phecodes using the “delete” option in the network selection
context menu.

2.4.1.7 Investigating phenotype clusters

At this stage the noted two comorbid clusters in the subject-level graph persist. With
the mouse-over tooltips the contents of these clusters can be investigated. This in-
vestigation reveals one cluster consisting mostly of circulatory system phenotypes
(e.g., 394.70: “Disease of tricuspid valve” and 395.40: “Nonrheumatic pulmonary
valve disorders”) and the other consisting of a mixture of Neoplasm phenotypes (e.g.,
195.1: “Malignant neoplasm, other” and 198.2: “Secondary malignancy of respira-
tory organs”) and cancer treatment side-effects (e.g., 572.7: “Disturbance of salivary
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Figure 2.7: With low-sample-size phecodes removed from the subject data, the distinction of two
clusters remains.

secretion,” 528.1: “Stomatitis and mucositis”)

2.4.1.8 Exploring cluster bridging phenotypes

The relative separation of these patterns is reflected in the upset plot: only a single
minor-allele-containing subject has phecodes in both cancer and circulatory pheno-
type clusters. By using the mouse-over tooltip in the network plot, the phenotype
in the “cancer” cluster with a common subject is seen to be 562.1: “Diverticulosis”:
a highly age-linked phenotype. This separation suggests a potentially novel associa-
tion between rs200445019 and cancer-related phenotypes. This association does not
appear driven by correlation with the (previously known to be associated) coronary
phenotypes.

2.4.1.9 Exporting results

The export functionality in the network panel is used to produce a vector-based
output plot with all selected phecodes labeled for use in publication or to share with
collaborators.

2.4.2 Application State Links

• 2.4.1.1: https://prod.tbilab.org/phewas-me-rs200445019
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Figure 2.8: By mousing over phecode nodes in the network plot the two comorbidity clusters can be
explored.

Figure 2.9: Mouseover information on the bridging phecode shows it is linked to coronary phenotypes
by a single subject and is a highly age-related phenotype.
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Figure 2.10: The final state of the network plot is put into export mode so phecode id callouts can
be added for use outside of app.

• 2.4.1.2: https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/
?rs200445019__41100_41520_93910_69410_75600_52641_52810_55030_
59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_
56210_25512_28100_61450_28522_97600_98800_71610_30340_19510_
79210_14900_73200_22700_19820_19400_65622_78230_37710_65660_
35800_65680_36441_51020_36210_51000_37700

• 2.4.1.3: https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/
?rs200445019__41100_41520_93910_69410_75600_52641_52810_55030_
59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_
56210_25512_28100_61450_28522_97600_98800_71610_30340_19510_
79210_14900_73200_22700_19820_19400_65622_78230_37710_65660_
35800_65680_36441_51020_36210_51000_37700__ma_filtered

• 2.4.1.4: https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/
?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_
25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_
25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_
19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_
filtered

• 2.4.1.6: https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/
?rs200445019__41520_52810_25500_39540_41521_39470_52770_56210_
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https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/?rs200445019__41100_41520_93910_69410_75600_52641_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_97600_98800_71610_30340_19510_79210_14900_73200_22700_19820_19400_65622_78230_37710_65660_35800_65680_36441_51020_36210_51000_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/?rs200445019__41100_41520_93910_69410_75600_52641_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_97600_98800_71610_30340_19510_79210_14900_73200_22700_19820_19400_65622_78230_37710_65660_35800_65680_36441_51020_36210_51000_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_d23113f0/?rs200445019__41100_41520_93910_69410_75600_52810_55030_59221_25500_25930_39540_44110_41521_39470_45300_52770_69510_56210_25512_28100_61450_28522_19510_79210_14900_73200_22700_19820_19400_65622_65660_35800_65680_36441_51020_36210_37700__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/?rs200445019__41520_52810_25500_39540_41521_39470_52770_56210_28522_79210_19820_65680_37700_19510__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/?rs200445019__41520_52810_25500_39540_41521_39470_52770_56210_28522_79210_19820_65680_37700_19510__ma_filtered
https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/?rs200445019__41520_52810_25500_39540_41521_39470_52770_56210_28522_79210_19820_65680_37700_19510__ma_filtered


28522_79210_19820_65680_37700_19510__ma_filtered

2.5 Discussion

In this paper we have provided a brief introduction to the application PheWAS Mul-
timorbidity Explorer. This application takes PheWAS results and individual-level
data, and enables researchers interactively explore complex multimorbidity patterns
in PheWAS analyses.

21

https://prod.tbilab.org/phewas-me-rs200445019/_w_086bb6d1/?rs200445019__41520_52810_25500_39540_41521_39470_52770_56210_28522_79210_19820_65680_37700_19510__ma_filtered


CHAPTER 3

INTERACTIVE NETWORK-BASED CLUSTERING AND INVESTIGATION OF
ASSOCIATION MATRICES WITH ASSOCIATIONSUBGRAPHS

3.1 Summary

Making sense of association networks is vitally important to many areas of high-
dimensional analysis. However, as the data-space dimensions grow, the number of
association pairs increases in 𝑂(𝑛2); this means traditional visualizations such as
heatmaps quickly become too complicated to parse effectively. Here we present asso-
ciationSubgraphs: a new interactive visualization method to quickly and intuitively
explore high-dimensional association datasets using network science derived statistics
and visualization.

Availability: An R package implementing both the algorithm and visualization
components of associationSubgraphs is available at https://github.com/nstrayer/
associationSubgraphs. Online documentation and usage examples are available at
https://nickstrayer.me/associationsubgraphs/.

3.2 Introduction

Analysis of association or correlations between variables is an essential step in ex-
ploratory data analysis of high-dimensional datasets. In these scenarios, a dataset
with many columns (, or measured variables,) without known or validated patterns
of association between them is inspected using statistical and visualization methods
to gain insight into how the variables interact. There are many different ways of
establishing these interactions’ strength, from as simple as the mutual occurrence of
binary variables (Cha, 2007) to complex penalized regression models (Hallac et al.,
2015; Tibshirani et al., 2005). Examples of areas where association analysis is used
are gene regulatory networks (Gustafsson et al., 2005), analysis of single-cell sequenc-
ing data to determine cell differentiation (Chan et al., 2017), networks of comorbidity
between diseases (Chen and Xu, 2014), topic modeling in natural language processing
(Wang and Zhu, 2014), and many others.

The most common way of analyzing association patterns is to use heatmaps. In
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Figure 3.1: An example of the ”hairball” problem in the visualization of dense networks. The density
of overlaps and number of competing forces on the layout algorithm result in very poor inference of
underlying structure. This is clearly seen here, where a true structure of three clusters of similar
nodes are simulated but appear almost purely randomly placed in the visualization.

heatmaps, both rows and columns represent all present variables, and the color of
the cells represent the strength of the association between the two variables. Once
the number of variables gets large, the effectiveness of a heatmap rapidly decreases.
The main issue present is the ordering of the rows and columns. What variables
are placed next to each other can completely change inference made by the analyst
(Bojko, 2009) and must be done with care. Typically this ordering is done with a
non-trivial clustering algorithm (Metsalu and Vilo, 2015; Pryke et al., 2007), which
injects model assumptions into the visualization that are not immediately clear to
the analyst or later audience. Another issue with large heatmaps is the difficulty of
discerning the identity of cells that fall far from the labeled axes (Bojko, 2009).

One way of alleviating the issues with heatmaps is to represent the association space
as a network and visualize it using various network visualization tools. Unfortunately,
beyond a few nodes, the visualization devolves into what is commonly referred to as
a “hairball” network (figure 3.1) with little to no value in interpreting results.

An obvious way to deal with network representations’ hairball issue is to do edge/asso-
ciation filtering and then visualize the reduced network. Methods used to do this filter-
ing typically involve parametric tests that do not account for the network-structure
(Benjamini and Yekutieli, 2001) or contain a large number of assumptions (Hallac
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et al., 2015). Non-parametric methods typically based on permutations also exist,
but due to the 𝑂(𝑛2) complexity inherent in association datasets, they are computa-
tionally infeasible for large datasets (Harris and Drton, 2013). For more information
on these methods, we point the reader to the book (Kolaczyk and Csárdi, 2020).

A classic model in network science is the “random graph” (Solomonoff and Rapoport,
1951, Erdös and Rényi (1959)) (often called the Erdos-Renyi graph). In random
graphs, nodes are randomly connected by a given number of edges, i.e., without
any specific node preference. An emergent property of these “random” graphs are
“components” or “isolated subgraphs” (Newman, 2018, chapter 10) (In this paper,
we will not use “component” to avoid confusion with principal-components). Isolated
subgraphs are groups of nodes that are connected internally but not to any other
nodes in the network. Percolation theory (Newman, 2018, chapter 15) is a subfield
of network-science dedicated to understanding how the removal of edges within a
network leads to the formation of these isolated subgraphs. By framing association
analysis as a network problem, we can utilize the results of percolation theory to design
an intuitive set of visualizations for exploring the structure of association networks
based around the concept of adding and removing edges in order of the strength of
association.

3.3 Methods/Implementation

3.3.1 Algorithm

The algorithm for computing associationSubgraphs at all given cutoffs is closely re-
lated to single-linkage clustering (Gower and Ross, 1969). However, it differs philo-
sophically by viewing nodes that are yet to be merged with other nodes as “unclus-
tered” (and thus unvisualized) rather than residing within their own cluster.

To calculate the set of subgraphs at every threshold, the algorithm starts by sort-
ing edges/associations in descending order of strength. Then the nodes connected
by the highest association strength are set as a “cluster.” Next, the second-highest
association strength is added. If either adjacent node is shared with the first cluster,
then the non-shared node is added to the existing cluster. Otherwise, a new separate
cluster containing the two adjacent nodes is created. This procedure is repeated for
all association pairs. If both nodes for a pair already reside in separate clusters, they
are merged into a new “super” cluster. After every edge is added, the current cluster
state is exported. For further details see Algorithm 3.2.
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Figure 3.2: Find neighborhood subgraphs algorithm. By simply requiring the association strengths
to be sorted, the only assumption required of the strength measure is monotonicity
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Figure 3.3: Interactive visualization of subgraph clustering results with current threshold set at the
optimal threshold according to the smallest-largest rule.

3.3.2 Visualization

The subgraph-clustering algorithm results are visualized through an interactive vi-
sualization built using the javascript library D3 (Bostock et al., 2011; Luraschi and
Allaire, 2020) that allows panning through and visualizing all cluster states that occur
during the running of the algorithm.

At every step, all currently clustered nodes are displayed as a grid of force-directed
subgraphs (De Leeuw, 1988) (figure 3.3A). Accompanying each subgraph is a set of
three measures as encoded in a chart (figure 3.3B). These are the number of nodes in
the subgraph, the density (number of edges at current threshold linking nodes relative
to maximum possible), and the average strength of all those edges.

By adding edges in one-at-a-time, we are emulating the formation of a random graph.
As the edges are added, isolated subgraphs form within the network. Unlike tra-
ditional network or heatmap visualizations, by physically separating the subgraphs,
associationSubgraphs acknowledges that (at the current association strength thresh-
old,) the nodes are conceptually isolated and should be represented as such.

Every subgraph can be selected and zoomed into by clicking, which reveals all mem-
bers within the cluster (figure 3.3D), the edge strengths between them, and any
further supplementary node information provided by the user (figure 3.3E).

To help explore association thresholds, a series of line-plots below the network visu-
alization (figure 3.3C) provide summary statistics about the algorithm/cluster state
at every possible cutoff. These include the number of subgraphs, the number of sub-
graphs with at least three members (triples), the average density of those subgraphs,

26



the average size of the subgraphs, and the size the largest subgraph relative to all
other subgraph combined, and the current association threshold. Hovering over a
state in these line plots updates the drawn network to the desired threshold. This
updating is done in real-time, allowing the user to see what edges were added and
how they changed the subgraph state.

3.3.3 Choosing “optimal” threshold

AssociationSubgraphs is meant to provide an exploratory view of the entire associa-
tion network; this means the concept of the ideal threshold is not particularly impor-
tant. However, we can draw inspiration from random-graph and percolation theory
to estimate an “optimal” threshold value used as the initial point in the visualization.

When nodes are truly randomly connected, what is known as a “giant-component”
forms very quickly. A giant component is an isolated subgraph containing a con-
siderable portion (typically 𝑛2/3 Newman (2018) chapter 15) of the network’s nodes.
There are three “phase-transitions” regarding the size of the largest isolated subgraph
in the network relative to the number of edges (e) added.

If 𝑒 < 𝑛, we would expect many small subgraphs with the largest having size on the
order of log(𝑛). If 𝑒 = 𝑛, we would expect to still have many subgraphs, this time
with an expected largest subgraph of size 𝑛2/3. Last, after 𝑒 > 𝑛, we would expect
all nodes to be connected in one giant subgraph/component.

When the edges are not purely random, we expect a deviation from these patterns,
and in practice, we see these deviations, with a giant-component typically forming
well after the number of included edges surpasses the number of nodes.

To take advantage of this known behavior, we propose the “giant-subgraph-formation”
rule for finding the optimal threshold. This rule states that an association network’s
optimal threshold value will be the one just before the giant component starts to form.
This point is estimated by tracking the largest subgraph size relative to a threshold
value of 𝑂(𝑛2/3). The optimal threshold can be seen as the step just before the largest
subgraph exceeds this threshold.

As a giant component is defined with regards to the number of nodes in the network,
with associationSubgraphs, we could use two different 𝑛’s. The “local” 𝑛: 𝑛local corre-
sponds to how many nodes have currently been put into subgraphs at the given thresh-
old (i.e., have been placed in existing subgraphs.) This means the giant-component
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is relative to the currently displayed network at any given step. In contrast to the
local threshold, the “global” threshold: 𝑛global sets 𝑛 as the total number of unique
nodes present in the network. Typically we recommend using 𝑛local as the difference
between the two counts is frequently negligible, and, by using the local 𝑛, we remove
the need to pre-calculate the number of unique nodes present in associations. Both
options are available in the provided R package.

3.3.4 Simulating an association network

To simulate an association network, we define some number of variables (𝑁𝑉 ) that
are randomly assigned to some number of clusters (𝑁𝐶). After every variable has a
cluster assignment, all 𝑁𝑉 ⋅(𝑁𝑉 −2)

2 unique pairs of variables are given an association
value drawn from a normal distribution with unit-variance and mean 𝜇0 = 0 for pairs
of variables not in the same cluster and mean 𝜇𝑎 > 0 for pairs of variables that are
in the same cluster.

3.3.5 Determining the performance of each step in the visualization

To determine how well any given state in the associationSubgraphs visualization corre-
sponds to the true cluster structure, we compute the normalized mutual information
(NMI) (Chiquet et al., 2020) between the true cluster status C and the current sub-
graph membership S𝑡 for every step (3.1). NMI is the ratio of how much information
is contained in both partitions of the variables. To obtain the NMI, the mutual
information (I(C; S𝑡)) between each partition is divided by the sum of the entropy
present in those partitions alone (H(C), H(St)). This ratio takes a value between
zero (no shared information) and one (they perfectly mirror each other). The nor-
malized aspect of this metric allows us to compare values across a different number
of clusters.

NMI𝑡(C; S𝑡) = 2 ⋅ I(C; S𝑡)
H(C) + H(St)

(3.1)
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Figure 3.4: The normalized mutual information between the visualization state at a given threshold
and the true cluster structure in this given simulation shows a clean peak shape with a maximum
value of 0.95.

3.4 Results

3.4.1 Performance of giant-component cutoff on simulated data

The optimal cutoff suggestion is meant as just that, a suggestion. We encourage
the user to explore all cutoff thresholds when using associationSubgraphs. However,
the choice of the threshold is not arbitrary and, under certain assumptions, does
correspond to the best cutoff position or very close to it.

To provide context for the relative associations used to access performance, figure 3.4
shows the raw performance of associationSubgraphs running on a network simulated
using 3.3.4. This figure shows the associationSubgraphs algorithm reaching very close
to perfect separation in the middle of the x-axis range. A behavior we see repeated
in most simulations.

3.4.1.1 Visualizing the thresholds

When the network has relatively few “noise nodes,” as is the case with our simu-
lated data, then the global threshold is more appropriate as it is less likely to be
triggered too early by a set of highly associated nodes occurring relatively early in
the visualization.

Luckily, as Figure 3.5 shows, these two thresholds rapidly converge, so which one is
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Figure 3.5: The cutoff hueristic corresponds to when the black-line (size of the largest subgraph)
crosses either the local or global thresholds, indiciating a giant-component has formed. The local
and global thresholds quickly converge to similar values as the number of variables seen rises; this
causes the optimal thresholds according to either to be very similar.

picked is relatively unimportant. Indeed, the results for either threshold are the same
step for many networks, as is the case in figure 3.6.

3.4.1.2 Scaling up simulations

The simulation described in 3.3.4 was run over a range of true cluster sizes from two to
twelve, and for each size, the simulation was repeated 100 times to get a better handle
on the optimal cutoff threshold’s performance. The mean of the normal distribution
governing the “true” associations, 𝜇𝑎, was set at 3 and the number of variables fixed
at 300.

As figure 3.8 shows, we see mediocre performance when the true number of clusters
is small; however, the results quickly rise to excellent performance, with the median
relative NMI even hitting one for both global and local cutoffs at 10 clusters.

While the assumptions made in these simulations are relatively strong (e.g., non-
hierarchical structure, purely normal distributed associations, even cluster sizes), the
results show that the use of giant-component formation as a threshold for an optimal
cutoff has statistical merit and serves as a good starting point for the associationSub-
graphs visualization. Again, the purpose of associationSubgraphs is to explore the
structure dynamically, so we highly encourage the user to explore other thresholds.
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Figure 3.6: In this simulation, the local and global cutoff thresholds are very similar and fall a few
steps after the true maximum NMI step as the algorithm merged two true clusters before the cutoff
threshold.

Figure 3.7: The result of running the associationSubgraphs algorithm on a single instance of the
simulated association network and using the global threshold to choose the starting position. We
see that the clusters are very close to perfectly resolved at the starting point.
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Figure 3.8: Simulations show that for non-hierarchichal cluster structure the cutoff detection heuris-
tic works best when the number of clusters is above 6, with the relative performance in terms of
NMI rising to near one for the global cutoff with the local lagging just slightly behind.

3.5 Visualizing comorbidity associations

Figure 3.3 shows the results of running the associationSubgraphs algorithm and visu-
alization on a comorbidity network of 1,815 phenotypes as “phecodes” (Denny et al.,
2010) constructed using EHR data from two large healthcare systems (chapter 4).
AssociationSubgraphs provides intuitive and meaningful insights into the structure of
the results. Using the described method (3.3.3) to determine an association strength
cutoff returns a network with 47 isolated subgraphs. Figure 1C shows the investiga-
tion of one of the present subgraphs which includes the codes 720.00, 720.10, 721.00,
721.10, 722.00, 722.10, 722.60, 760.00, 763.00; all are back-pair related phecodes (e.g.,
Spinal stenosis of lumbar region: 720.10, and Back pain: 760.00.) This particular vi-
sualization and more examples are available on the associationSubgraphs R package
website.

3.6 Discussion

Here, we have provided a brief introduction to the algorithm and visualization as-
sociationSubgraphs for exploring association networks. By enabling the exploration
of high-dimensional association networks through interactive network-visualization
guided by basic network-science theory, associationSubgraphs allows researchers to
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understand their data with greater precision and intuition.
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CHAPTER 4

INVESTIGATING PHENOME-WIDE COMORBIDITY LANDSCAPES ACROSS
TWO LARGE-SCALE EHR SYSTEMS

4.1 Summary

Background: Large electronic health records systems have proven massively valu-
able for retrospective research studies, allowing the gathering of much larger cohorts
than previously possible. Typically EHR-based studies are performed with a single
institution’s records, which, combined with the high noise levels of patient-level data,
raises concerns about how robust the results are when applied outside of the original
system.

Methods: Here, we build two different comorbidity networks - one for Vanderbilt
University Medical Center (Vanderbilt) and one for Massachusetts General Hospi-
tal (MGH) - using covariate-adjusted logistic regression to ascertain the comorbidity
strength. With network statistics, we quantify how conserved phenotype comorbidity
patterns are among the two systems, and merge both networks to build a standard
comorbidity network.

Results: We find high amounts of similarity between the two systems, with an overall
correlation of comorbidity strengths of 0.791 (95% CI: 0.788, 0.794). Additionally, we
see hints of how system specialization can affect a phenotypes’ position within the
overall comorbidity network. Finally, we show how these network differences and
similarities can provide valuable insight for a specific phenotype (Schizophrenia.)

Conclusions: Our results show great promise for the transportability of analyses
run on EHR data. The combined comorbidity network produced allows the investiga-
tion of general and robust comorbidity patterns. Further, the framework we use for
the construction of this combined comorbidity network can be easily and efficiently
extended as more systems’ data are added.

4.2 Introduction

Electronic health records (EHR) systems provide opportunities to conduct research
related to clinical phenotypes on a larger scale than ever before. Many new methods,
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such as Phenome-Wide association studies (PheWAS) (Denny et al., 2010), have been
developed to take advantage of these new data sources. These new methods have
primarily focused on single phenotype associations, e.g., the univariate association
of a given single nucleotide polymorphism (SNP) on the genome with a phenotype
of interest. An area that has been relatively underserviced with EHR data is the
network of phenotype comorbidities.

Research on clinical comorbidities is not a new practice; however, the previous efforts
have tended to either focus on a small subset of phenotypes (Avery et al., 2011)
(typically classified via chart review) or have taken the form of a meta-analysis of
literature and databases (Chen and Xu, 2014; van Driel et al., 2006).

While the opportunities are far-reaching for the use of EHR data in the investigation
of comorbidity patterns, it is essential to keep in mind the limitations of EHR data.
EHR data, particularly the billing codes we will focus on in this paper, are highly
subject to human error. A code may be left on a patient’s chart from a previous
visit or a different patient’s records, or a provider may be biased to one code due to
experience with it. Also, as ICD9 and ICD10 codes used for billing purposes, they
were not designed for research, which can manifest in multiple codes encoding for the
same phenotype or encompassing multiple very different phenotypes. (For a more
detailed look at nuances of EHR-based research, we point the reader to (Yadav et al.,
2018).) Last, billing codes’ outcome space is extremely high dimensional, with roughly
thirteen thousand ICD9 codes and 68 thousand of the newer ICD10 standard. This
high dimensionality poses risks to statistical models both for multiple-comparisons
testing and the runtime of algorithms.

Efforts have been made to address the issues inherent in ICD-code based phenotype
inference. One of the most successful is the phecode (Denny et al., 2010), which was
developed in conjunction with the PheWAS method. Phecodes are a hand-crafted
mapping of ICD9 and ICD10 codes to 1,815 hierarchical codes constructed by MDs
and Bioinformaticians. They were designed to create a more robust phenotype map-
ping for research purposes. In addition to the advantages of curated conceptual
mappings that phecodes provide, reducing the dimension of the “phenome” space
benefits statistical models. Sample sizes for a given phenotype are much larger due
to combining multiple ICD9 codes to a single phecode; this means greater power in
models. Importantly for comorbidity networks, the phenome’s dimension reduction
has a squared-effect on reducing the number of possible comorbidity patterns to be
investigated. There are 2.312 billion unique comorbidity pairs of ICD10 codes but
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only 1.6 million pairs of phecodes. This reduction opens up the feasibility of running
models across all pairs in a reasonable amount of time.

The treatment of comorbidities among phenotypes as a network is vital to acknowl-
edge the complexity of the phenome. Most traditional approaches to investigating a
phenotype of interest involve univariate association models, either between two phe-
notypes or between a biomarker such as a SNP and a phenotype. This simplified view
has provided valuable insights but ultimately, phenotypes do not exist in isolation.
Every phenotype is influenced by - or influences - another phenotype with varying
levels of intensity.

By building models that account for the phenome’s network structure, we open the
door to much more nuanced and powerful inferences. For instance, a biomarker
strongly linked with cancer formation will often have a high association with nausea.
Univariate methods simply report this association, whereas network-based methods
allow the researcher to see that the comorbidity is likely driven by nausea’s association
with the cancer phenotype due to chemotherapy and other treatments than by a direct
causal path between nausea and the biomarker.

Further, by viewing comorbidity as a network, we open the door to system-level ques-
tions. One question that can be asked is what phenotypes are the most “central”
in the network. That is what phenotypes tend to be comorbid with lots of others?
The network structure can also be used to find phenotypes that occupy very similar
positions within the comorbidity network, potentially highlighting new phenotype
targets for use in drug repurposing. Infact, the insights provided by network meth-
ods for drug repurposing have already been seen in other biomedical fields such as
Pharmacology (Csermely et al., 2013).

While the potential benefits of network-driven inferences on EHR-derived phenotype
comorbidity are considerable, the results are most useful if they are transferable to
other systems. Due to data availability and established methods, previous work in the
realm of EHR-derived phenotype models has focused principally on single healthcare
systems (Hebbring et al., 2013). However, differences such as patient population de-
mographics and primary health-insurance providers will result in differences in both
what a given phenotype “means” between systems and how the comorbidity network
is structured between those phenotypes. Estimating how stable these underlying net-
works are is critical to determining if statistical models and inferences are appropriate
to be applied outside their home system.

Network analysis approaches provide valuable tools to access the differences between
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these networks. These approaches allow us to make statements about how stable a
given phenotype is within its network: is it comorbid with the same phenotypes, or do
its relationships change? Statements can also be made about the network structure
itself: are the same phenotypes “central” in each system, or do other factors such as
hospital specialization or patient demographics considerably influence these patterns?

As our proposed methods only compare and merge the comorbidity networks them-
selves (represented as strengths of comorbidities between pairs), these networks can
be generated within a system and shared without risks to patient privacy. These
privacy-conscious mappings provide an opportunity to combine multiple systems’ in-
formation to help smooth out the differences observed between the two systems and
build more general-purpose comorbidity networks without the need for large-scale
databases to aggregate individual-level data such as UKBiobank. The constructed
phenome-wide general comorbidity network can be used by researchers hoping to an-
swer questions specific to phenotypes (or groups of phenotypes) of interest within the
context of their comorbidities.

4.3 Methods

4.3.1 Individual-level data

Individual-level data for 250 thousand randomly selected patients were gathered from
Vanderbilt and MGH’s EHR systems of 2.2 million and 1.8 million patients, respec-
tively. The sampled patient’s longitudinal records were then collapsed to the number
of occurrences of ICD9 codes. These ICD9 code counts were then mapped to phe-
codes using the PheWAS R package (Carroll et al., 2014). Finally, each phecode was
considered to have “occurred” when seen two or more times in the patient’s collapsed
record. Demographic data, including patient age at extraction date (regardless of
mortality status), EHR age (patient age at last recorded visit), sex, race, and EHR
burden (number of unique phecodes present in patients’ records) were also exported
for model adjustment purposes (see (4.1)).

4.3.2 GLM-based comorbidity strength

Two logistic regression generalized linear models (GLMs) were run to characterize
“comorbidity strength” between two phecodes for all pairs of phecodes (A, B). One
predicting the occurrence of phecode A given the occurrence of phecode B, and the
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other predicting the occurrence of phecode B given phecode A. The test statistic
for the conditional phecode in each model was then used to represent comorbidity
strength. Both models were adjusted for patient age, EHR age, sex, and race. See
(4.1) for the full specification of the model in one direction.

By using the test statistic instead effect-size, the comorbidity strength takes into ac-
count the relative sample-size of each regression, avoiding large comorbidity estimates
due to random chance when very few patient’s records contained both phecodes A
and B. If no patients had both phecodes in their records the models were not fit.

Both effect sizes were then averaged together to create a symmetric comorbidity score
for all pairs. Unless otherwise noted, this symmetric comorbidity score is what is used
for the analysis in this paper.

log [ 𝑃(phecode B)
1 − 𝑃(phecode B)] =𝛼 + 𝛽1(phecode A) + 𝛽2(age)+

𝛽3(sexM) + 𝛽4(sexUNK)+
𝛽5(raceB) + 𝛽6(raceH) + 𝛽7(raceI)+
𝛽8(raceN) + 𝛽9(raceUNK) + 𝛽10(raceW)+
𝛽11(EHR age) + 𝛽12(log (EHR burden)) + 𝜖

(4.1)

Equation (4.1): Form of model used to infer comorbidity strength. Second model is
of the same format with roles of phecode A and phecode B flipped.

4.3.3 Comorbidity patterns:

To characterize a given phecode’s comorbidity behaviors, we can export what we call
the phecode’s “comorbidity pattern.” The comorbidity pattern is a phecode’s set of
all defined comorbidity strengths to other phecodes (figure 4.1). It is important to
note that because some phenotypes are rarer than others, it is common for there to
be no overlap between patients for two phecodes and thus no information to infer
comorbidity strength; this means that rarer phecodes will have smaller comorbidity
patterns.
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Figure 4.1: Example comorbidity pattern for a phecode to three other phecodes.

Figure 4.2: Example of three phecode comorbidity patterns where phecode A has a low similarity
to phecode B but a high similarity to phecode C.

4.3.4 Comorbidity similarity

How much the comorbidity patterns of two phecodes resemble each other conveys
how similar the two phecode’s are in the broader comorbidity network. This measure
is referred to as the “structural equivalence” (Newman, 2018, chapter 7) of the two
phecodes within their network. Here, we define the similarity between the two comor-
bidity patterns as the Pearson correlation of their common comorbidities. Pearson
correlation is used as the comorbidity strengths are - due to using the test statistic
of association - gaussian distributed.

For example, as in figure 4.2, if phecode A has comorbidities of 0.1, 10, and -0.5 to
phecodes X, Y, Z, respectively, and phecode B has comorbidities of 8, -0.1, and 0.2:
they would have low comorbidity similarity. Whereas phecode C with comorbidity
strengths of 0.5, 11, and -8 would be highly similar to phecode A.

4.3.5 Phecode comorbidity conservation

To assess how conserved a phecode’s relative position is within the comorbidity net-
work we again use a node-similarity metric. This similarity compares the comorbidity
pattern of a phecode with the same phecode in the opposing system (see 4.3.) Again,
this is calculated by taking the Pearson correlation of two vectors.
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Figure 4.3: Example of two phecodes across two EHR systems where phecode A’s comorbidity
pattern is relatively unconserved between the systems but phecode B is highly conserved.

4.3.6 System-level comorbidity conservation

A snapshot of the conservation of the entire comorbidity network is obtained by taking
a weighted average of all individual phecode comorbidity conservation values, where
weights are given by the size of the shared comorbidity patterns between the two
systems. By using a weighted average, rarer codes - with less certain estimates of
conservation due to fewer defined comorbidity strengths - will have less impact on
the system-wide conservation than more common codes. While not particularly useful
in isolation, system-level comorbidity conservation provides a comparison point for
future expansion of these analyses.

4.3.7 Phenotype centrality

The network statistic eigen-centrality is used to measure how “important” a phecode
is within the comorbidity network. Eigen-centrality (Newman, 2018) is an “impor-
tance” measure of a node that considers the number and strength of its connections
and who those connections are (figure 4.4). For instance, a phenotype with strong con-
nections to rare and relatively un-comorbid phenotypes will rank lower than one with
the same magnitude of connections to more commonly comorbid phenotypes such
as cardiovascular disease. Phenotype-centrality for a single phenotype in isolation is
rather uninformative, but when the entire network’s centrality measures are investi-
gated, centrality paints an information-rich view of the structure of comorbidities in
the system.

Eigen-centrality is calculated by taking calculating the eigen-vector with the largest
magnitude of the symmetric adjacency matrix (4.2).
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Figure 4.4: Eigen-centrality takes into account how connected - and thus central - the neighbors of
a given phecode are to give a network-structure informed view into phecode centrality.

Centrality of phecode i = 𝑥𝑖 s.t. Ax = 𝜅x; where 𝜅 = largest eigenvalue of A
(4.2)

4.3.8 Combined comorbidity network

Both comorbidity networks were merged at the comorbidity pair level to build a com-
bined comorbidity network for cross-institution inferences. Every pair of phecode as-
sociations was defined as the weighted average of both system’s comorbidity strength
for that pair, weighted by the number of patients that shared that comorbidity with
the respective network (equation (4.3)).

Comorbidity𝐶
𝐴,𝐵 =

(Comorbidity𝑉
𝐴,𝐵 ⋅ # shared𝑉

𝐴,𝐵) + (Comorbidity𝑀
𝐴,𝐵 ⋅ # shared𝑀

𝐴,𝐵)
# shared𝑉

𝐴,𝐵 + # shared𝑀
𝐴,𝐵

(4.3)

This weighted averaging gives greater emphasis on the estimates backed by a larger
number of cases. Standard inverse-variance weighting is not applicable in this instance
as the comorbidity strength is the test statistic and thus does not have a variance
associated with it.

4.3.9 Subgraph neighborhoods

A custom hierarchical clustering algorithm and visualization were developed (4.5)
to explore the patterns within the combined comorbidity network; the algorithm
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Figure 4.5: Interactive visualization of subgraph clustering results with current threshold set at the
optimal threshold according to the smallest-largest rule.

is closely related to single-linkage clustering but differs philosophically by viewing
nodes/phecodes that are yet to be merged with other nodes/phecodes as unclustered
rather than residing within their own cluster of size one.

This difference means the results show, for a given comorbidity “threshold,” what
phecodes sit within neighborhoods of highly comorbid phecodes. For more details,
we point the reader to chapter 3, which details the algorithm and accompanying
visualization tool.

4.4 Results

4.4.1 Patient populations

4.4.1.1 Demographics

As both systems serve different populations of individuals, this means there will be
differences in the population demographics of the 250k randomly sampled patients.
These differences can be seen in race distributions (4.6), with the MGH population
being substantially more white than the Vanderbilt population (186k vs. 154k). MGH
is also more female than the Vanderbilt system (144k vs. 133k). The age distribution
is also noticeably different between the systems, with Vanderbilt’s population distri-
bution being much flatter, with more young and old patients than MGH. These and
other differences are expected and act as a realistic example of comorbidity trans-
portability, as no two systems will ever have identical patient populations.
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Figure 4.6: Demographic statistics for both subset of populations for both systems

Table 4.1: Age distribution differences between two systems. Note that Vanderbilt’s age is regardless
of mortality status.

Counts
Age Group Vanderbilt MGH

< 9 22,901 9
10 - 19 36,289 7,604
20 - 29 29,286 24,878
30 - 39 27,712 37,563
40 - 49 27,468 41,166
50 - 59 32,243 44,962
60 - 69 33,487 41,922
70 - 79 24,735 29,577
80 - 89 12,106 18,289
90 - 99 3,690 3,963
100 < 82 67

Mean age 42.7 (SD: 24.4) 52.6 (SD: 19)

43



1

10

100

1000

10000

1e+01 1e+03 1e+05
# in Vanderbilt

# 
in

 M
G

H

category

circulatory system

congenital anomalies

dermatologic

digestive

endocrine/metabolic

genitourinary

hematopoietic

infectious diseases

injuries & poisonings

mental disorders

musculoskeletal

neoplasms

neurological

pregnancy complications

respiratory

sense organs

symptoms

Axes correspond to number of times a given phecode was seen at least twice in the 250k patients

Phecode prevalences between two systems
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4.4.1.2 Phecode prevalences

Figure 4.7 compares the prevalence (or counts) of all phecodes across the systems and
shows a strong agreement between the two. One instance where we see differences is
the “sense organs” category, who’s codes tend to have much higher levels of prevalence
in Vanderbilt than MGH. This difference in counts can be attributed to the eye
institute at MGH being kept separate from the main system EHR until 2008, thus
limiting the accumulation of eye-related phecodes.

4.4.2 Direct comorbidity results

The results of running all possible pairs phecode’s through the GLM-based comor-
bidity model shows a high correlation among comorbidity patterns (figure 4.8). Both
populations show right-skewed distributions with very high-levels of correlation (0.791
(95% CI: 0.789 - 0.794)). This high correlation demonstrates that the comorbidity
structure is preserved across the systems even when the patient populations them-
selves are different.

4.4.2.1 How conserved are comorbidity patterns across the two systems?

As figure 4.9 shows, conservation levels of individual phecodes (4.3.5) are varied,
but only twelve have 95% confidence intervals that cover zero, or no correlation/-
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Figure 4.8: Strength of comorbidity for all common comorbidity pairs across both systems.

conservation. The median (point-estimate) conservation is 0.77, which shows high
conservation of comorbidity patterns across the two systems.

Phecodes that are most conserved fall into the categories of “Circulatory system”
and “musculoskeletal,” as table 4.2 shows. On the other side of the spectrum, the
phecodes that are the ‘least’ conserved - as defined by the lowest upper bound of the
95% confidence interval - are a mixture of categories. Further detail of these category
differences can be seen in figure 4.11, which shows sense organ phecodes to be the
least conserved on average (as would be expected with the aforementioned eye-center
inclusion discrepancies in MGH) and neoplasms to be the most conserved on average.

At the individual-code level, “Primary/intrinsic cardiomyopathies” (425.10) has the
highest conservation level with a lower-bound of its 95% confidence interval at 0.921.
The phecode with the lowest upper bound is “Dental abrasion, erosion and attrition”
(521.20) with an upper-bound of its 95% confidence interval at 0.072. The comorbidity
patterns of these two extremes are shown in figure 4.10.

4.4.2.2 Phecode centrality differences

To investigate how a given phecode’s comorbidity pattern is conserved across the
systems and how that phecode’s relative role within the broader comorbidity network
is preserved, we can compare the eigen-centrality of each phecode (4.3.7) between the
systems.
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Table 4.2: Most extreme conservation levels across phenome.

Phecode category conservation # in common
425.10 Primary/intrinsic cardiomyopathies circulatory system 0.938(0.921, 0.953) 1621

720.00 Spinal stenosis musculoskeletal 0.943(0.92, 0.958) 1680
425.00 Cardiomyopathy circulatory system 0.935(0.918, 0.949) 1634

722.00 Intervertebral disc disorders musculoskeletal 0.939(0.917, 0.955) 1731
722.60 Degeneration of intervertebral disc musculoskeletal 0.93(0.911, 0.945) 1699

720.10 Spinal stenosis of lumbar region musculoskeletal 0.935(0.908, 0.952) 1629
740.90 Osteoarthrosis NOS musculoskeletal 0.925(0.908, 0.939) 1746

427.10 Paroxysmal tachycardia, unspecified circulatory system 0.926(0.907, 0.94) 1616
702.10 Actinic keratosis dermatologic 0.928(0.907, 0.948) 1647

740.00 Osteoarthrosis musculoskeletal 0.924(0.907, 0.939) 1749
521.20 Dental abrasion, erosion and attrition digestive -0.05(-0.175, 0.072) 246

134.00 Helminthiases infectious diseases 0.023(-0.039, 0.096) 868
134.10 Intestinal helminthiases infectious diseases 0.058(-0.012, 0.13) 678

710.30 Osteopathy resulting from
poliomyelitis

musculoskeletal -0.305(-0.702, 0.137) 23

367.10 Myopia sense organs 0.006(-0.133, 0.149) 163
974.00 Poisoning by water, mineral, and

uric acid metabolism drugs
injuries & poisonings 0.127(0.047, 0.214) 481

976.00 Poisoning by agents primarily affecting
skin & mucous membrane, ophthalmological,
otorhinolaryngological, & dental drugs

injuries & poisonings 0.09(-0.045, 0.214) 201

965.20 Antirheumatics causing adverse
effects in therapeutic use

injuries & poisonings 0.119(-0.013, 0.249) 188

715.30 Spinal enthesopathy musculoskeletal 0.178(0.091, 0.257) 277
289.90 Abnormality of red blood cells hematopoietic 0.218(0.156, 0.276) 1271

Note:
Conservation is Pearson correlation of comorbidity vectors between Vanderbilt and MGH.
95% confidence interval (CI) calculated using 500 bootstrap iterations.
Highest lower-bound of CI determines ”most conservered”, lowest upper-bound determines ”least conservered”.
”# in common” is number of shared comorbidity strengths between systems used to calculate the correlation values.

Least conserved = 521.20 | −0.05 (−0.175, 0.072) Most conserved = 425.10 | 0.938 (0.921, 0.953)
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Figure 4.12: Centralities of phecodes are largely conserved across systems with some notable differ-
ences such as the sense organs category.

As 4.12 shows, there is a strong agreement between a phecode’s centrality in Van-
derbilt and MGH’s respective comorbidity networks with a Spearman correlation of
0.902 (95% CI: 0.889 - 0.914) (Spearman used due to non-gaussian distribution of
eigen-centrality).

Investigating the largest magnitude differences in centrality reveals that sense organ
and respiratory codes tend to more central in Vanderbilt, whereas neoplasms make
up half of the top-ten most MGH-leaning phecodes (4.3). These trends are reflected
in the distribution of centrality differences by category, as shown in figure 4.13. Only
three categories: neoplasms, musculoskeletal, and dermatologic are, on average, more
central in MGH than Vanderbilt, with the remaining fourteen categories being, on
average, more central in Vanderbilt’s comorbidity network.

4.4.3 A combined comorbidity network

Comparisons of network stability across systems are valuable for understanding what
comorbidity behaviors are similar or different between them, but a single network
allows many exciting questions with more direct interpretability. Both systems net-
works were combined using (4.3) to build a more general-purpose “combined comor-
bidity network.” As seen in figure 4.14, the resulting distribution of all comorbidities
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Table 4.3: Sense organs and respiratory phecodes are more central in Vanderbilt’s comorbidity
network whereas neoplasms, musculoskeletal and dermatologic are more central in MGH. Centrality
is normalized eigen-centrality of node given symmetric comorbidity associations. Most central node
has eigen-centrality of 1.

centrality
Phecode category Vanderbilt MGH difference
366.00 Cataract sense organs 0.538 0.127 0.412

381.00 Otitis media and Eustachian tube
disorders

sense organs 0.726 0.317 0.409

464.00 Acute sinusitis respiratory 0.748 0.346 0.402
381.20 Eustachian tube disorders sense organs 0.515 0.146 0.369

476.00 Allergic rhinitis respiratory 0.867 0.513 0.355
371.00 Inflammation of the eye sense organs 0.489 0.144 0.344

483.00 Acute bronchitis and bronchiolitis respiratory 0.593 0.265 0.329
379.00 Other disorders of eye sense organs 0.398 0.071 0.327

366.20 Senile cataract sense organs 0.383 0.059 0.324
414.00 Other forms of chronic heart disease circulatory system 0.661 0.340 0.321

694.20 Other dyschromia dermatologic 0.417 0.633 -0.216
198.40 Secondary malignant neoplasm of

liver
neoplasms 0.324 0.552 -0.228

740.90 Osteoarthrosis NOS musculoskeletal 0.529 0.758 -0.228
289.40 Lymphadenitis hematopoietic 0.348 0.587 -0.239

198.20 Secondary malignancy of respiratory
organs

neoplasms 0.380 0.621 -0.242

198.30 Secondary malignant neoplasm of
digestive systems

neoplasms 0.302 0.554 -0.252

165.10 Cancer of bronchus; lung neoplasms 0.320 0.574 -0.254
196.00 Radiotherapy neoplasms 0.281 0.536 -0.255

165.00 Cancer within the respiratory system neoplasms 0.327 0.585 -0.258
198.00 Secondary malignant neoplasm neoplasms 0.589 0.939 -0.350

Note:
difference = Vanderbilt centrality - MGH centrality
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product of two gaussian distributions, maintains a gaussian distribution.

retains the same shape as each system individually: being centered around zero with
a long tail of positive-comorbidity values.

4.4.3.1 UMAP projections

One way of viewing the entire comorbidity network as a snapshot is by using dimen-
sionality reduction using the absolute comorbidity value as the “distance.” Figure 4.15
shows the result of running the dimensionality reduction technique Uniform Manifold
Approximation Protocol (UMAP) (Mcinnes and Healy, 2018) on the combined comor-
bidity network’s direct comorbidity values and the phecode similarity values (4.3.4).
Both networks show a strong preservation of category structure.

4.4.3.2 Neighborhood clustering

Using the association network visualization algorithm associationSubgraphs from
chapter 3 provides further insights into the structure of the results. Using the rec-
ommended cutoff from (Strayer et al., 2020) to determine a comorbidity strength
cutoff returns a cutoff value of 61.9454517, at which point there are 53 isolated sub-
graphs. One of the present subgraphs includes the codes 720.00, 720.10, 721.00,
721.10, 722.00, 722.10, 722.60, 760.00, 763.00 which are all back-related phecodes
(e.g. Spinal stenosis of lumbar region: 720.10, and Back pain: 760.00.) For further
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Figure 4.15: Dimension reduction of combined comorbidity network via direct comorbidity and
similarity via UMAP provides clear separation of phecodes into their respective categories.

investigation of these clustering results, see figure 4.5 and the application outlined in
4.4.4.

4.4.4 App to explore phecode comorbidity

We have provided a web-application to explore a preferred phecode’s comorbidity
pattern and position within the broader comorbidity network. The application is
available at prod.tbilab.org/comorbidity_network_explorer. This application allows
the user to input a phecode of interest and returns a series of plots and tables that
explore phecode’s position within the combined comorbidity networks. The following
section details the results provided with this application.

4.4.5 Investigating 295.1 - Schizophrenia

Here we look in more detail at phecode 295.1, or “Schizophrenia” to demonstrate
comorbidity networks’ utility for a specific phecode of interest.
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Figure 4.16: Comorbidity patterns for both systems with 295.1 are largely inline with eachother
with a phecodes in the more-extreme end of comorbidity (such as 312: Conduct disorders) slighlty
more comorbid for Vanderbilt than MGH.

4.4.5.1 Differences between systems

Before we look at the position of 295.1 in the combined comorbidity network, we
first investigate how its comorbidity patterns match or differ for it in Vanderbilt
and MGH’s separate networks. Figure 4.16 shows that there is a large agreement
between the two systems (conservation values: 0.852 (95% CI: 0.792 - 0.895). The top
differences, as seen in table 4.4, show some phecodes that have negative comorbidity
scores in MGH, such as 458 (hypotension), are positively comorbid in Vanderbilt.
However, none of these differences sit in the tail of either comorbidity distribution;
this contrasts with the Vanderbilt enriched codes, which tend to be highly comorbid
in both systems.

4.4.5.2 Combined comorbidity network

The combined comorbidity network shows us an expected enrichment of mental dis-
orders codes in 295.1’s comorbidity pattern (figure 4.17 and table 4.5). Outside of
mental disorders, 496.20 (Chronic bronchitis) stands out as an interesting comorbid-
ity, potentially linked to high smoking prevalence among patients with Schizophrenia
(de Leon et al., 1995; Lohr and Flynn, 1992; Hughes et al., 1986).
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Table 4.4: The top differences in comorbidity show mental disorders codes tend to be more comorbid
in Vanderbilt.

comorbidity
phecode category Vanderbilt MGH difference
More comorbid in MGH

285.00 Other anemias hematopoietic -8.29 -0.66 -7.62
703.00 Diseases of nail, NOS dermatologic -1.43 5.69 -7.12
513.00 Respiratory abnormalities respiratory -6.21 -0.33 -5.88
496.00 Chronic airway obstruction respiratory 1.02 6.73 -5.71
585.00 Renal failure genitourinary -5.99 -0.39 -5.60
458.00 Hypotension circulatory system -2.58 2.71 -5.29
458.10 Orthostatic hypotension circulatory system -1.08 4.11 -5.20
479.00 Other upper respiratory disease respiratory -4.96 0.19 -5.15

More comorbid in Vanderbilt
368.91 Psychophysical visual disturbances sense organs 19.32 3.89 15.43
300.00 Anxiety disorders mental disorders 28.99 13.56 15.44
300.90 Posttraumatic stress disorder mental disorders 30.96 13.52 17.44
292.60 Hallucinations mental disorders 38.32 20.63 17.69
291.10 Transient mental disorders due to conditions classified elsewhere mental disorders 21.12 1.66 19.46
297.10 Suicidal ideation mental disorders 44.28 23.96 20.32
297.00 Suicidal ideation or attempt mental disorders 44.60 18.71 25.89
312.00 Conduct disorders mental disorders 37.51 4.81 32.71

Note:
Comorbidity defined as averaged Z-score of comorbidity regression.
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Table 4.5: The top most comorbid phecodes with 295.1 in the combined comorbidity network are
all in the mental disorders category.

phecode category comorbidity similarity
295.30 Psychosis mental disorders 52.43 0.83
296.10 Bipolar mental disorders 47.92 0.84
297.10 Suicidal ideation mental disorders 39.07 0.85
297.00 Suicidal ideation or attempt mental disorders 36.08 0.79
312.00 Conduct disorders mental disorders 35.29 0.81
296.00 Mood disorders mental disorders 34.73 0.69
292.60 Hallucinations mental disorders 34.44 0.83
316.00 Substance addiction and disorders mental disorders 28.65 0.74

4.4.5.3 Contrasting comorbidity with Polygenic Risk Score

Comorbidity patterns on their own are interesting indicators of clinical-level behavior;
however, one area further area of interest is how these high-level outcomes correlate
with genetic signals. Figure 4.18 shows that phecodes statistically significantly associ-
ated with a Schizophrenia-pinned PRS from (Zheutlin et al., 2019). The figure shows
that phecodes significantly associated with the PRS score are more correlated with
their respective comorbidity values than those that were not statistically significant
(although these differences themselves were not statistically significant). As can be
seen in table 4.6, there are some strong agreements, such as 296.10 (Bipolar), which
has a combined comorbidity value of 47.916 and a PRS log-odds of 0.191 (95% CI:
0.148 - 0.235).

4.5 Discussion

As EHR’s become ever more prevalent, opportunities for never-before-possible re-
search questions open up. The type of data available and the questions asked dif-
fer from traditional clinical and translational data science and statistics and require
methods that fit the data and answer the right questions. By building comorbidity
networks out of large amounts of patient-level data using statistically rigorous meth-
ods, we have provided a unique viewpoint into how phenotypes interact and co-occur
with each other. The use of phecodes to reduce the dimensionality of the comparison
space keeps the results both interpretable and more research-focused than the use of
raw ICD9 or ICD10 codes. Further, by comparing two independent large-scale EHRs
from both geographically and demographically distinct hospitals, we show that these
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57



Table 4.6: Strong associations with the Schizophrenia PRS tend to imply strong comorbidity values.
A notable example is 727.1 which is negatively associated with the PRS score and has an averaged
comorbidity Z of -3.74.

phecode category PRS beta (95% CI) comorbidity
727.10 Synovitis and tenosynovitis musculoskeletal -0.08 (-0.154, -0.007) -3.741
599.00 Other symptoms/disorders or the urinary system genitourinary 0.055 (0.012, 0.097) -1.270
278.11 Morbid obesity endocrine/metabolic -0.069 (-0.118, -0.019) -0.746
295.00 Schizophrenia and other psychotic disorders mental disorders 0.277 (0.141, 0.412) 0.095
599.30 Dysuria genitourinary 0.085 (0.026, 0.143) 0.109
278.10 Obesity endocrine/metabolic -0.049 (-0.089, -0.009) 1.418
798.00 Malaise and fatigue symptoms 0.044 (0.007, 0.081) 1.953
292.30 Memory loss mental disorders 0.09 (0.001, 0.178) 2.754
070.00 Viral hepatitis infectious diseases 0.107 (0.005, 0.209) 7.620
070.30 Viral hepatitis C infectious diseases 0.122 (0.014, 0.23) 8.471
300.11 Generalized anxiety disorder mental disorders 0.07 (0.008, 0.131) 8.805
300.10 Anxiety disorder mental disorders 0.097 (0.056, 0.137) 13.159
300.12 Agorophobia, social phobia, and panic disorder mental disorders 0.12 (0.017, 0.223) 13.522
292.00 Neurological disorders mental disorders 0.066 (0.008, 0.124) 20.243
318.00 Tobacco use disorder mental disorders 0.067 (0.024, 0.109) 20.550
317.00 Alcohol-related disorders mental disorders 0.118 (0.027, 0.209) 21.777
300.00 Anxiety disorders mental disorders 0.103 (0.063, 0.142) 22.927
296.20 Depression mental disorders 0.077 (0.039, 0.115) 24.566
301.00 Personality disorders mental disorders 0.224 (0.056, 0.392) 25.125
300.90 Posttraumatic stress disorder mental disorders 0.182 (0.046, 0.318) 25.792
296.22 Major depressive disorder mental disorders 0.079 (0.03, 0.129) 26.334
316.00 Substance addiction and disorders mental disorders 0.16 (0.062, 0.258) 28.647
296.00 Mood disorders mental disorders 0.084 (0.046, 0.121) 34.729
297.00 Suicidal ideation or attempt mental disorders 0.156 (0.015, 0.297) 36.078
297.10 Suicidal ideation mental disorders 0.251 (0.071, 0.431) 39.074
296.10 Bipolar mental disorders 0.191 (0.099, 0.284) 47.916
295.30 Psychosis mental disorders 0.238 (0.07, 0.406) 52.433
Note:
Sorted by from smallest to largest comorbidity values.
PRS beta is log-odds of phecode occuring given increase of one unit of PRS. Confidence interval is Bonferroni-adjusted.
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comorbidity networks provide meaningful and transferable insights.

There are limitations to our analysis unavoidable due to the problem space. First,
due to the need to preserve patient privacy, the direct sharing of patient-level data
is not possible or advisable; thus, the combination of comorbidity networks must be
done as a meta-analysis.

A full investigation of what patterns of comorbidity are due to the structure of ICD
codes along with their phecode mappings is currently unfeasible due to computation
times. The computation of each system’s network took one week on a cluster with
100 CPU cores. The simulations needed to fully characterize the structural role of
coding fully would take too long with current (2020) computer architectures. However,
we point the reader to the 6 where we use a null-model simulation to show that the
impact of the hierarchical structure of phecodes on the conservation of the comorbidity
networks, while not zero, is minimal.

The use of the test-statistic, or “Z-score,” as a comorbidity strength measure, is
desirable because it encapsulates the directionality and the uncertainty of comorbidity
without requiring two measures as a pure effect-size would. However, it does throw
away information on the exact effect-size, along with being a one-mode projection of
a truly bipartite network of patients and phenotypes.

Finally, the concept of a true “comorbidity network” is one without ground truth.
Unlike many statistical models, where a real underlying association or metric is being
estimated, a network structure is a product of the question asked. The interplay
between question and network allows great freedom to pose important questions but
limits the ability to test the assumptions empirically, relying on the analyst to ask
well-formed and scientifically meaningful questions. We point the reader to chapter
one of the textbook Networks, by Mark Newman (Newman, 2018) for further reading
on this subject.

While the network comparison results show great promise regarding the stability
within individual networks, the merger of the two system’s networks to a combined-
comorbidity network allows the inference of general location-independent comorbidity
patterns. The inferences drawn from this network via the included web-application
will allow researchers to easily explore patterns of their phenotype of interest, provid-
ing a phenome-level view not previously accessible. The framework used to combine
both systems is easily extendable to further systems, allowing the expansion of this
work to develop evermore robust and valuable comorbidity networks.
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CHAPTER 5

CONCLUSION

In Chapter 2, we showed that by merging the established PheWAS method with
interactive visualizations of the underlying patient-phenotype network, researchers
have greater power to explore and understand their results. While the PheWAS-
ME application is available to use online without any coding necessary, we have also
provided an R package with an easy-to-use modular framework self-hosting sensitive
data and expanding PheWAS-ME applications.

Chapter 3 drew upon network analysis methods and graph algorithms to create a new
method for exploring high-dimensional association networks such as the phenotype co-
morbidities. Previous methods to visualize association networks are either meant for
much lower-dimensional spaces or only provide structure summaries such as dendro-
grams, making them unsuitable for deeply exploring patterns. Our approach, based
on isolated subgraphs and interactive association thresholds, keeps the representation
of the results transparent and straightforward. By pairing this simplicity with fast
graph-algorithms, associationSubgraphs empowers analysts to rapidly and thoroughly
explore their results. The work is accompanied by an R package with functions for
creating and embedding associationSubgraph visualizations into reports and websites
to make its use as easy as possible.

Chapter 4 used network statistics and visualizations to quantify comorbidity net-
work stability across two independent EHRs. Besides providing a first-of-its-kind
analysis of comorbidity structure between multiple systems, we derived new and in-
terpretable network methods for characterizing those comorbidity networks’ topol-
ogy. After demonstrating substantial conservation in comorbidity structure across
the two systems, we constructed a merged network and used it to explore the comor-
bidity patterns of Schizophrenia: providing a framework that can be repeated using
an interactive web application provided. This work serves as a boost of confidence
for the validity of billing-code-derived phenotypes for research. It also provides a
framework for further expanding the combined general-purpose comorbidity network
with data-privacy-respecting individual networks, meaning sensitive patient-level data
need never leave the home institution.
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Altogether, this dissertation provides a glimpse at the utility provided by merging tra-
ditional biostatistics with network analysis methods, algorithms, and visualizations.
This combination is critical to exploring and understanding the correlated outcome
space of clinical phenotypes. We hope that this work provides both foundation and
inspiration to build new methods that further characterize and consider comorbidities
when performing analyses.
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CHAPTER 6

APPENDIX: SIMULATING COMORBIDITY ASSOCIATIONS

A natural question arising from such high correlations between associations in the
two systems seen in chapter 4 is how much of that correlation is due entirely to
how phecodes (and by extension, billing codes) are structured? One vital benefit
of phecodes is their hierarchical structure. Starting at the round integer level and
descending in specificity in the tens and then thousands place. This structure means
that one would expect a high association between two phecodes that sit in-line on the
hierarchical structure, e.g., 345.00 and 345.10 should be more associated than 345.00
and 228.12.

Here we simulate random patient data from 250,000 individuals to assess how much
the hierarchical structure inherent in the phecode definitions drives the correlation
between independent systems.

6.1 Simulation procedure

6.1.1 Generating patient data

The following steps were taken to simulate a patient’s “phenome” with the hierarchical
structure of phecode’s present. First, the patient’s base phenome is drawn with
independent Bernoulli trials with probability of success 𝑃𝑐 for all possible phecodes.
The hierarchical structure is then added to the patient’s phenome by “rolling up”
all the phecodes present in their base phenome. This rollup is done by adding all
phecodes above a given phecode in the hierarchical structure to the patient’s phenome.
For example, if a patient has phecode 295.12, both 295.1 and 295.00 are added to
their phenome vector. This procedure is then repeated until the desired population
size of 𝑁𝑝 is achieved.

The probability of any phecode occurring in a patient’s phenome: 𝑃𝑐 was set at 0.01.
This value is derived from the average number of unique phecodes seen in patients in
the observed systems dataset to keep the simulations as accurate to the real data as
possible. It is important to note that, as the rollup adds more phecodes to a patient’s
phenome, this is a slight over-estimate.
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Table 6.1: Statistics for comorbidity z values for simulated association pairs

system mean sd min median max
Simulated 0.005 1.009 -3.301 -0.016 4.051
MGH 3.454 9.720 -12.220 0.266 92.816
Vanderbilt 5.142 10.389 -9.162 1.287 127.653

For computational reasons, the possible phecodes were limited to the “neoplasms”
section. Neoplasms were chosen as they showed high conservation between the two
systems, meaning that if the hierarchical structure is responsible, they will be an
excellent candidate to reflect this.

6.1.2 Calculating the association network

The model fit to infer comorbidity of phecode pairs in simulations ((6.1)) follows
the same form as (4.1) except for covariate adjustment. Since the occurrence of any
phecode in a patient’s phenome is uniform, we drop the covariate adjustments present
in the original models we effectively “know” that the effect sizes are zero.

As in original model, the association of A given B uses the same format with roles of
phecode A and phecode B flipped. These two models are then averaged together to
produce a symmetric comorbidity strength.

log [ 𝑃(phecode B)
1 − 𝑃(phecode B)] = 𝛼 + 𝛽1(phecode A) + 𝜖 (6.1)

6.2 Results

6.2.1 Association distributions

The distribution of all associations for simulated pairs is, as expected, normally dis-
tributed. As table 6.1 shows, there is a slight positive bias (mean = 0.005) as expected
from the structure, but this positive leaning is much smaller that either system (Van-
derbilt mean = 5.142, MGH mean = 3.454). Further, figure 6.1 shows that both real
systems exhibit longer tails than the much more clean bell-shape of the simulated
data.
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Figure 6.1: The distribution of association values from the simulated association network is much
tighter around the null value of zero than those of either system.

6.2.2 Association correlations

Figure 6.2 shows a drastically decreased correlation between simulated association
pairs and either system (plus combined). Correlations for the simulations are all posi-
tive but very small (e.g., 0.008 between the simulation and Vanderbilt’s associations).

6.3 Discussion

These results show that the correlations between the two real systems are not driven
exclusively, or even largely, by the inherent hierarchical structure of phecodes them-
selves, but by some other latent factors.
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