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1 Introduction

1.1 Genome-wide and Phenome-wide Association Studies

Genome-wide association studies (GWAS) rose to popularity about 15 years ago and have

become “the traditional approach for the discovery of genetic variations contributing to a

multitude of complex human traits and diseases” [24]. GWAS is used to determine the genetic

markers, usually single-nucleotide polymorphisms (SNPs), that contribute to a particular

phenotype or disease of interest within a population of unrelated individuals [1]. To conduct

GWAS, DNA is obtained from patients with and without a disease of interest, and each

person’s genome is scanned for millions of variants to identify SNPs of interest. One way

to apply GWAS is to determine significant associations with phecodes, which are derived

from billing codes from the International Classification of Diseases to represent a phenotype

of interest, in the electronic health record (EHR) [5]. Here, GWAS generally assumes that

all genetic variants being studied are equally likely to be associated with the phecode of

interest, to maximize the ability of discovering unknown associations [24]. The SNPs that

are found significantly more often in people with the disease than those without the disease

are considered to be associated with the phenotype of interest [1]. The use of large cohorts

and the evolution of GWAS to have the ability to assess millions of SNPs have led to the

discovery of many unique significant genotype-phenotype associations [16].

1.2 Cox Regression and Logistic Regression

Survival analysis is a term used to describe the statistical methods utilized when analyzing

time-to-event data. The outcome variable is the time until the occurrence of an event

of interest, which may be death, relapse, recurrence, among others. The survival time

ranges from the time origin to the occurrence of the event or the date of last contact (called

censoring) [3]. A widely-used method in survival analysis is Cox (proportional hazards)

regression, which is a semi-parametric survival model [3]. The effect size for Cox regression
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is the hazard ratio, which is the estimate of the ratio of the hazard rate in the treatment

group versus that of the control group. A major assumption of Cox regression is that of

proportional hazards, where each hazard ratio is assumed to be constant over time [3].

Logistic regression is used when the outcome variable is dichotomous. It is a generalized

linear model that uses a logistic function, logit, to link the probability of the binary outcome

to the linear predictor function [14]. The effect size for logistic regression is the odds ratio,

which is the estimate of the ratio of the odds of the event in the treatment group versus the

odds of the event in the control group.

Generally, Cox regression is used with survival data and logistic regression is used with

binary data. However, though using Cox regression would allow for more information to

be incorporated, logistic regression can still be used in survival data if the time-to-event

information is ignored. This may occur since logistic regression is more widely understood

and less computationally expensive than Cox regression in analysis [22].

1.3 Real-World Motivation

Traditionally, genomic studies have used logistic regression models to analyze the genetic

data linked to EHR data, but this method does not consider the longitudinal nature of EHR

observations. Cases are typically defined as individuals who experienced the event of interest

at any timepoint in their record, without taking into account the time at which the event

occurred. To incorporate this, in addition to logistic regression models that completely ignore

the event time [23], [12], [7], logistic regression models that adjust for the time-to-event have

been employed [26], [11], [21], [17], as well as logistic regression models that adjust for EHR

length [9]. The use of Cox regression, which can account for both the right censoring and

left truncation that occurs in EHR data, has also been explored [9]. Previous work has

shown that Cox regression is advantageous over logistic regression in genomic studies using

the EHR, in which it was found that Cox regression increased the power to detect genotype-

phenotype associations [9]. However, though GWAS of SNPs often include time-to-event
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data, logistic regression is regularly used instead of Cox regression in analysis since it is less

computationally expensive, despite some recent efforts to speed up the analysis for GWAS

[22], [15], [2].

Another resistance of using the Cox model in EHR-based analysis is the concern of

recorded time accuracy. The longitudinal nature of EHR data is useful in that it provides

information regarding disease development and progression due to repeated clinical visits

[13]. Individuals enter the healthcare system at various ages (left truncation) and may leave

the system before they have an event (right censoring). This time-to-event information can

be utilized in certain modeling techniques. However, due to the structure of EHR data,

the time-to-event that is used in Cox regression may not always be accurate. In GWAS,

an individual is considered a case if they have evidence of a phecode at some point in their

record, and the time-to-event is the age at which they first show this phecode. If an individual

has large gaps in their record, the age at which they first show the phecode on their record

could potentially be older than the age at which they actually developed the phenotype. We

refer to the age difference between when an individual actually develops the phecode and

when the phecode shows up on the record as the delayed event time in the time-to-event

information in the EHR. As Cox models use the time-to-event information directly, there

may be concern on their validity in the presence of delayed event time, especially when

compared to logistic regression models. On the other hand, it is known that the Score test

for a simple Cox regression model with one binary exposure is equivalent to the log-rank

test, a nonparametric rank-based approach, and hence, robust to the independent delayed

event time on the observed time [25].

In this paper, we sought to determine the impact of delayed event time on the performance

of Cox regression and logistic regression models in simulations and for identifying genotype-

phenotype associations in genetic data linked to EHR data. We explore when the delayed

event time is independent and when it depends on a confounder, non-confounder, and the

exposure of interest. We showed that while logistic regression does not model the time-to-

3



event directly, various logistic regression models used in GWAS were more sensitive to the

delayed event time scenarios than Cox regression. We begin in Section 2 by describing the

motivation and methods used in the simulations and genomic study application. Section 3

discusses the simulation study, while Section 4 reviews the GWAS application. We end with

a discussion in Section 5 and conclude in Section 6.

2 Methods

2.1 Modeling Schemes

We first define the Cox model and three commonly used logistic regression models used in

GWAS studies. The models are fit with an exposure variable, z, and two types of covariates

x1 and x2, where x1 is a p × 1 vector of confounders for the exposure and x2 is a q × 1

vector of covariates that is associated with the outcome but not with the exposure. Both

simulations with and without left truncation, Tlt, are conducted. The observed time, Tobs, is

the minimum of the event time, Te, and the right censoring time, Tc, for each observation. E

is the event indicator and is defined as E = I(Te < Tc). One Cox regression model and three

logistic regression models used in the GWAS literature in the presence of right censoring are

considered.

1. Cox proportional hazards regression model (Cox):

h(Tobs|z,x1,x2) = h0(t)exp{β1z + β′2x1 + β′3x2} (1)

2. Logistic regression model (adjusting for time difference) (LRMobs):

logit[P (E = 1|z,x1,x2, Td)] = β0 + β1z + β′2x1 + β′3x2 + β4f(Td) (2)

where Td = Tobs.
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3. Logistic regression model (without adjusting for time) (LRMu):

logit[P (E = 1|z,x1,x2)] = β0 + β1z + β′2x1 + β′3x2 (3)

4. Logistic regression model (adjusting for record length) (LRMrl):

logit[P (E = 1|z,x1,x2, Trl, Tc)] = β0 + β1z + β′2x1 + β′3x2 + β4f(Trl) (4)

where Trl = Tc is the EHR length. Note that Model (4) is usually not considered as

an alternative of the Cox model as, unlike EHR-based application, Tc is not observable

for E = 1 in time-to-event applications. When E = 0, Td = Tc and hence Model (2)

has the same expression as Model (4).

With the existence of left truncation, the Cox model adapting to left truncation is readily

available [10]. Td in LRMobs became Td = Tobs−Tlt and LRMu remained the same. In LRMrl,

Trl = Tc − Tlt, so Model (4) became:

4. Logistic regression model (adjusting for record length) (LRMrl):

logit[P (E = 1|z,x1,x2, Trl, Tc)] = β0 + β1z + β′2x1 + β′3x2 + β4Trl + β5f(Tc) (4)

In all models, β1, the coefficient of the exposure, is the parameter of interest, and the

unknown function f(·) is modeled using a cubic smoothing spline with three degrees of

freedom.

2.2 Delayed Event Time Scenarios

2.2.1 Delayed Diagnosis

To better understand the motivation, consider the following example: suppose the event of

interest is being diagnosed with a certain disease (phecode), and there are two individuals
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who develop the disease at the same time. Depending on certain characteristics of the

patients, such as their financial standing or insurance status, the patients are diagnosed at

different times after developing the disease. A patient who does not have insurance may

likely put off going to the doctor until it is necessary and be diagnosed later, while a patient

with insurance may go to the doctor right away. The time difference between when a patient

develops the tumor and is diagnosed with the disease (or the phecode shows up on their

record) is the delayed event time, ε, which is being simulated in the models. Only positive

delayed event time is considered; for example, if a patient develops the disease at age 40, the

delayed event time can only occur after age 40 until diagnosis. Different delayed event time

scenarios are considered, and specific examples of these scenarios are given in Section 2.3.

Before the delayed event time, ε, is incorporated, the true event time and true censoring

time are denoted as Te and Tc, respectively. The true observed time is thus Tobs = min(Te, Tc)

and the event indicator is E = I(Te < Tc). In this simulation, the delayed event time is added

to the event time only, and the observed time with delayed event time is the minimum of the

true event time plus delayed event time and the true censoring time: T̃obs = min(Te + ε, Tc).

This leads to an event indicator of Ẽ = I(Te + ε < Tc). Due to the nature of this simulation,

the delayed event time that is added to Te can lead to three different cases that relate T̃obs

with Tobs, in which Ẽ does not always equal E. These cases are explained in Appendix A, but

it should be noted that the magnitude of the proportion of misclassified events will change

the relative performance of the models. In addition, if left truncation is present, there are

occurrences of the simulated event time being less than the simulated left truncation time.

In the research to evaluate the Cox model with left truncation, these occurrences are usually

removed from the simulated dataset as they are considered as not meeting the criteria or

not at risk [8], [20]. However, to mimic the application to the EHR, an observation in this

situation is considered a control since they do not have the event of interest during their

record, which is from left truncation time to right censoring time.
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2.2.2 Baseline Shifted

Another type of delayed event time occurs when the baseline time is shifted by a fixed

delayed event time, ε. For example, consider that we are interested in the time from cancer

diagnosis to cancer mortality. If the diagnosis time is delayed such as in Section 2.2.1, both

the times of cancer related death (Te) and the last record of the patient (Tc) from diagnosis

are reduced by the same delayed event time. Compared to delayed diagnosis, baseline shifted

is less common in practice. As the example that motivates this scenario does not have a left

truncation design, only censoring without truncation is considered.

In baseline shifted, the delayed event time is subtracted from both Te and Tc to obtain

the observed time with the delayed event time: T̄obs = min(Te − ε, Tc − ε). This leads to an

event indicator of Ē = I(Te− ε < Tc− ε), so Ē = E and T̄obs = Tobs− ε for every observation.

Thus, the observations do not partition into different delayed event cases as described in

Appendix A for delayed diagnosis.

2.3 Distribution of Delayed Event Time

Five delayed event time scenarios are examined in this study. We consider when there is

no delayed event time, which can occur if a patient is diagnosed with a disease as soon as

it develops (or the phecode shows up on the EHR). If the phecode of interest is an acute

disease requiring an emergency visit, the diagnosis time is most likely accurate. We consider

delayed event time independent of the exposure or covariates, which is caused by any factor

of the patient that is not related to the exposure and other covariates, such as a delayed

clinic visit due to scheduling. In addition, we consider when delayed event time is associated

with the exposure directly, which can occur if the delay is related to a particular SNP that

is being studied or a drug of interest in a clinical trial. Another delayed event time scenario

is when the delay is associated with a confounder of exposure. If the delayed event time

is caused by a disease being easier to diagnose in one sex over the other since it is more

common in that sex, and sex is a confounder of the exposure of interest, the confounding
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scenario occurs. Last, we consider when the delayed event time is associated with a covariate

that is independent of the exposure. For example, someone with a lower income may take

longer to go to the doctor and be diagnosed, but income is not associated with a SNP or

drug of interest.

3 Simulation Study

3.1 Data-Generation Process

We simulated data for the delayed diagnosis scenario motivated in Section 2.2.1 and the

baseline shifted scenario motivated in Section 2.2.2. Specifically, two covariates x1 and x2

were independently generated from Bernoulli with p = 0.3 and N(0.5, 0.4), respectively. The

exposure, z, was simulated from a Bernoulli distribution with p = [1 + exp(1.25 − x1)]−1,

i.e., x1 is a confounder for z.

Different distributions for the event time and censoring time were considered. We

first simulated the event time from Model (1) with baseline hazard generated from either

exponential(0.001) or log-normal(6.5, 1). The former model belongs to the accelerated fail-

ure time model while the latter does not. The regression coefficients for x1 and x2 were

log(2) and the coefficient for z was varied to examine the type I error rate and power. The

censoring time was simulated from Unif(a1, a2), where a1 and a2 were specified to obtain

different numbers of observations in each delayed event case as explained in Appendix A.

We also simulated censoring time from a multivariable Cox regression model with baseline

hazard generated from exponential(0.002), where the parametric component included x1 and

x2 for non-informative censoring. The regression coefficients for x1 and x2 were log(2). We

conducted the delayed diagnosis simulation both with and without left truncation. When left

truncation was present, it was simulated from Unif(50, 150). The mean event rate varied in

the simulations depending on the delayed event case, the coefficient for z, and the censoring

distribution.
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In the simulation study, we considered sample size n = 500 and fit the four models

as described in Section 2.1. To evaluate the type I error and power of these models, we

conducted 5000 simulations, where the regression coefficient for z was rejected if the p-value

was less than 0.05. We evaluated the type I error when the coefficient for z was simulated

to be zero, and evaluated the power when the coefficient for z was simulated to be log(1.1),

log(1.15), log(1.25), log(1.5) and log(2).

3.1.1 Delayed Event Time Scenarios

We simulated five delayed event time scenarios which added delayed event time, ε, to Te.

When there was no delayed event time, the value of ε was equal to zero. Independent

delayed event time was simulated from Unif(b1, b2). When the delayed event time was

associated with the exposure, z, it was simulated from Unif(c1, c2) and Unif(c2, c3) for

subjects exposed and not exposed, respectively. The same distributions were used when the

delayed event time was associated with the confounder, but for subjects with x1 = 1 and

x1 = 0, respectively. Delayed event time that was associated with the covariate, x2, was

simulated from log-normal(d× x2, 1). The parameters b1, b2, c1, c2, c3, and d were varied to

obtain different numbers of observations in each delayed event case as explained in Appendix

A and explore different magnitudes of delayed event time.

3.2 Simulation Results

We used a series of simulations to compare the Cox regression and logistic regression models

under different delayed event time scenarios to mimic the application in the EHR data. Since

the effect sizes of the two methods are not equivalent (i.e., hazard ratios and odds ratios),

the performance of the four models was compared in terms of type I error and power in the

presence of delayed event time. We also evaluated the bias of the estimation for exposure

for the Cox model only.
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3.2.1 Simulation 1 - Delayed Diagnosis Results

The results of Simulation 1 (with left truncation) based on the five different delayed event

time scenarios, when the event time is simulated from a Cox model with baseline hazard from

an exponential distribution and the censoring time is simulated from a uniform distribution,

are shown in Figure 1 and Figure 2. In Figure 1, in all of the delayed event time scenarios,

except for when ε is associated with z, Model 1 (Cox) performs either the same or better

than two of the logistic regression models. When the coefficient for z is zero, the type I

error rate is near the nominal rate and the power increases as the effect size of the exposure

increases. Models 3 (LRMu) and 4 (LRMrl) perform well and similarly. However, Model

2 (LRMobs), performs substantially worse in terms of power than the other three models.

This is because in Model 2 (LRMobs), the effect of z leaks through Td when it has a non-null

effect.
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Figure 1: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution, the censoring time was generated from a uniform distribution, and there was left truncation. The
parameters led to a large number of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 2: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution, the censoring time was generated from a uniform distribution, and there was left truncation. The
parameters led to a small number of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).



The only difference in the data-generation for Figure 1 and Figure 2 is the magnitude of

the delayed event time, ε, and the censoring distribution to vary the proportion of subjects

with a misclassified event status (see Appendix C, Figure 7a: Delayed Event Case 2 and

Figure 7b: Delayed Event Case 2). The misclassification occurs when the delayed event time

causes an observation who is originally a case to become a control. In Figure 1, the only

delayed event time scenario in which none of the models have an acceptable performance is

when ε depends on z. This scenario is almost impossible in a GWAS study, but it is likely

for other EHR-based applications, such as drug repurposing [27]. When the proportion of

misclassified events is high, all of the models are invalid, so a new method is needed with

additional data collected to model the delayed event time in this scenario. However, when

the proportion of misclassified subjects is small, the type I error of the models when the

delayed event time depends on the exposure is controlled, as can be seen in Figure 2.

The corresponding figures for when the event-time is generated from a Cox model with

baseline hazard from a log-normal distribution are in Appendix C, Figure 8 and Figure 9.

These results are consistent to those previously described, with the exception that the type

I error is slightly inflated in Figure 9 when the delayed event time depends on z.

When the censoring distribution is modified to be simulated from a Cox model that

depends on x1 and x2 (Figure 3, Appendix C: Figure 10), Model 1 (Cox) always performs the

best in terms of power, followed by Model 4 (LRMrl). The difference in power between these

two models is larger than when the censoring distribution is independent of the covariates.

Again, when the delayed event time is associated with z and there is a high proportion of

subjects with misclassified events, all four models are invalid.
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Figure 3: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an expo-
nential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distribution
that depended on x, and there was left truncation. The parameters led to a large number of observations with a misclassified
event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).



These results hold when there is no left truncation (Appendix C, Figures 13-18), with the

exception that the type I error is always inflated when there is a small number of subjects

with misclassified events.

We also evaluated the bias of the regression coefficient estimate for exposure, z, from

Model 1 (Cox) in the different delayed event time scenarios and combinations of event

time and censoring time distributions. When there is a small proportion of subjects with

a misclassified event status, as in Figure 1, the bias ranged from -0.4104 to 0.2444. When

the proportion is large, the bias for when the delayed event time depends on z increases

slightly, widening the range from -0.4673 to 2.5374. However, the bias only has a magnitude

greater than 0.5 when the delayed event time depends on the exposure, which we already

stated requires a new method with additional data used to model the delayed event time.

Including the observations who have a simulated event time earlier than their simulated

left truncation time in the analysis as controls (since their time-to-event information would

not be known in application) slightly increases the magnitude of the bias for z, compared

to when we did the same simulations while removing these observations from the analysis

(results not shown).

3.2.2 Simulation 2 - Baseline Shifted Results

The results for Simulation 2 are relatively consistent with those from Simulation 1 (see

Appendix C, Figures 21-26). Again, in all the delayed event time scenarios except for when

ε depends on z, Model 1 (Cox) performs the same or better than the logistic regression models

in terms of statistical power, usually followed by Model 4 (LRMrl). Model 2 (LRMobs)

generally performs the worst, though it is about the same as Model 3 (LRMu) when the

censoring distribution depends on the covariates. The models are invalid when the delayed

event time is associated with z, with inflated type I error.
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4 Genomic Study Application

4.1 Genomic Study Application Data-Generation Process

To determine the impact of delayed event time on Cox and logistic regression models in a

real-data application, we conducted GWAS in the genetic data linked to EHR data [6]. We

selected ten phenotypes in which to compare the ability of Cox and logistic regression models

to detect known genotype-phenotype associations in the presence of simulated delayed event

time, which are listed in Appendix B, Table 1. These phenotypes were chosen before the

analysis was performed. Cases for each phenotype were defined as individuals who had the

phecode in the EHR on two distinct dates, and controls as those who did not have the

phecode in the EHR. Left truncation, Tlt, was present in the EHR and corresponded to the

age at the first visit in the healthcare system. The observed age, Tobs, which was the event

age for cases, Te, and the right censoring age for controls, Tc, corresponded to the age on the

second date of receiving the phecode (cases) or the age at the last visit (controls).

Since we aimed to understand the impact of delayed event time and the robustness of

the models in the empirical data, we assumed the event age in the EHR data was the “true”

event age for each patient who was a case (i.e., there was no delayed event time in the EHR).

We simulated delayed event time, and it was added to the event time only, corresponding to

Simulation 1 in which T̃obs = min(Te + ε, Tc). Due to the structure of the EHR data, since

only patients who had the phecode of consideration on two distinct dates had an age for the

event time, the delayed event time was only added to the cases. Thus, a case could become

a control in the presence of delayed event time if Te + ε > Tc, where Tc corresponded to their

last ever visit. A control remained a control.

In the genomic application, we considered the four models described in Section 2.1. For

all four models, the linear component included genotype and the first four components of

genetic ancestry. The model either included a term for biological sex or the data were

restricted to females or males only depending on the phenotype. Model 1 (Cox) used the
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counting process formulation with left truncation and the observed age. Model 2 (LRMobs)

included additional terms for the age difference (as a cubic spline with three degrees of

freedom), which was the difference between the observed age and the left truncation age,

Td = Tobs − Tlt. Model 3 (LRMu) included no additional terms concerning age. Model 4

(LRMrl) included additional terms for age at the last visit (as a cubic spline with three

degrees of freedom) and the record length, which was the difference in age between the first

ever and last ever visits.

4.1.1 Delayed Event Time Scenarios

We considered four delayed event time scenarios to add to the event age for each phenotype.

We considered delayed event time that depended on significant SNPs. For a particular

phecode, all the significant SNPs at the P ≤ 5 × 10−8 significance level were selected. The

number of significant SNPs ranged from 1 to 298 among the ten phecodes used. The coding

for the SNP was the allele count. If a patient had at least one of the alleles, the delayed event

time was simulated from Unif(min = 0,max = 0.5). If the patient had none of the alleles,

the delayed event time was simulated from Unif(min = 0.5,max = 1). The scale of age was

years, so values of delayed event time equal to 0.5 and 1 corresponded to 6 months and 1

year, respectively. We also considered delayed event time that depended on non-significant

SNPs. For each phecode, the same number of SNPs that were significant at the P ≤ 5×10−8

significance level were randomly sampled from the non-significant SNPs. The delayed event

time was simulated in the same way as for the significant SNPs. We considered delayed

event time that depended on sex, which was only used in phecodes that were associated with

both females and males. In this case, it was simulated from Unif(min = 0,max = 0.5) for

females and Unif(min = 0.5,max = 1) for males. Last, we simulated independent delayed

event time from Unif(min = 0,max = 1) for all patients.
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4.2 Genomic Study Application Results

To study the robustness of Cox and logistic regression models in the presence of delayed event

time, we compared the four models with every delayed event time scenario using genetic data

linked to the EHR. A cohort of 49,792 individuals of European ancestry was used, and ten

phenotypes were defined from the EHR. For each model and delayed event time combination,

GWAS was run on 795,850 common SNPs. The Manhattan plots for the ten phenotypes are

shown in Appendix C, Figures 29-38. Model 1 (Cox) generally detected the most significant

SNPs, followed by Model 4 (LRMrl), especially for common phenotypes.

Based on the results found in the simulations and Hughey et al [9], we calculated the

true positive and true negative rates (TPRs and TNRs) of detecting associations for the

models with each delayed event time scenario, using the Cox regression model with no

delayed event time as the gold standard. Thus, the SNPs found to be significant at either

the P ≤ 5 × 10−8 or P ≤ 1 × 10−5 significance level by Model 1 (Cox) with no delayed

event time are considered the “true” associations at the respective significance level. The

average TPRs and TNRs from all ten phecodes and corresponding 95% confidence intervals

are reported in Appendix B, Table 25. The average TNRs are very high for all the model

and delayed event time combinations due to the relatively small number of significant SNPs

compared to the 795,850 SNPs that were analyzed in the GWAS. The average TPRs for each

model and delayed event time combination can be visualized in Figure 4. Model 1 (Cox)

and Model 4 (LRMrl) have the highest true positive rates, even in the presence of delayed

event time. The individual TPRs and TNRs for the phecodes are provided in Appendix B

(Tables 3-22).
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Figure 4: Average true positive rates for detecting significant SNPs from all ten phecodes for each model and delayed event
time combination, using Model 1 (Cox) with no delayed event time as the gold standard. This application corresponds to the
delayed diagnosis set-up.

* Based on Model 1 (Cox) - no delayed event time



We also plotted the p-values of Model 1 (Cox) with no delayed event time against the

p-values of the remaining model and delayed event time combinations in Figure 5. The gray

points indicate true positive or true negative SNPs, while the colored points represent false

positive and false negative SNPs. The ideal performance of a model would be to have as

few false positives (red points) and false negatives (blue points) as possible. In addition,

the true negative and true positive SNPs (gray points) should follow closely along the 45◦

line. Model 1 (Cox) and Model 4 (LRMrl) have the fewest false positive and false negative

points, even in the presence of delayed event time. The true positive/true negative points

follow most closely to the 45◦ line for Model 1 (Cox) compared to the logistic regression

models, within each respective delayed event time scenario. The corresponding figures for

the individual phecodes are given in Appendix C (Figures 39-48).
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Figure 5: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with
no delayed event time as the gold standard, for all ten phecodes. Dark green lines correspond to P ≤ 5× 10−8 and light green
lines correspond to P ≤ 1× 10−5.



We also used the GWAS results from each model/delayed event time combination for the

ten phenotypes to determine each method’s ability of detecting known associations from the

NHGRI-EBI GWAS Catalog [4]. The results are shown in Figure 6, where each graph shows

the four models for a particular delayed event time scenario. It can be seen that Model 1

(Cox) has the highest relative sensitivity compared to the other models across a range of

p-value cutoffs, even with delayed event time. Model 4 (LRMrl) generally seems to perform

better than Models 2 (LRMobs) and 3 (LRMu) in detecting known associations.
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Figure 6: Sensitivity of each model and delayed event time combination for detecting known genotype-phenotype associations.



5 Discussion

Although rare in our motivating study, we considered when the censoring distribution was

simulated from a Cox model that depended on both the covariates and exposure for compari-

son (see Figures 11, 12, 19, 20, 27, 28 in Appendix C). In this situation, informative censoring

was observed. When the coefficient for z in the censoring distribution was log(2), and thus

there was moderate correlation between the exposure and censoring distribution, the bias

in the coefficient for z was minimum. As the coefficient of z in the censoring distribution

increased, thus leading to more severe informative censoring, the bias in the coefficient of

z increased, even in the absence of delayed event time (see Appendix B, Table 2). At the

existence of informative censoring, many methods were developed to extend the Cox model

under different scenarios including, [18], [19], [27], [28], among many others, which is outside

the scope of this paper and will be investigated in the future. Though not ideal, the Cox

regression model without adjusting for informative censoring still outperformed the logistic

regression models. Finally, the performance of LRMobs and LRMu deteriorated in this

scenario, with uncontrolled type I error rate and decreasing power with increased effect size

(see Appendix C, Figures ,12, 20, 28).

In the simulation study, we assumed that observations who had a simulated event time less

than their left truncation time were a control, since the time-to-event information would not

be known in application. Compared to otherwise identical analyses where these observations

were removed in the simulations, the bias in the beta coefficient for exposure, z, increased

slightly in magnitude when these patients were kept and treated as controls. This extends

to the EHR application, where if a patient had the phenotype of interest before entry into

a healthcare site, it would not be shown on the record. Due to our definition of a case,

which was having the phecode of interest on two distinct dates, patients who had the event

of interest before their first age in the record were considered controls, unless they had a

recurrence during their record. A limitation of this study is the use of a single-site EHR,

which restricted us to only consider patients as cases if they showed the phecode twice after
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entering the record. If the first distinct date of showing the phecode on the record occurred

at the first age in the record, this could be indicative of a patient who actually developed the

phecode before entering the single-site EHR. This limitation could be alleviated if multi-site

EHRs were combined.

There are limitations with the use of both Model 1 (Cox) with no delayed event time

and the GWAS Catalog as the gold standards in the GWAS application. We made the

assumption that the associations found to be significant by Model 1 (Cox) with no delayed

event time were the truth based on previous work [9] and the results of the simulation study.

These associations were used to calculate the true positive and true negative rates of the

other model/delayed event time combinations, which could be misleading if some of the

significant associations are incorrect. In addition, the use of the GWAS Catalog as the gold

standard to determine the sensitivity of the Cox models is limiting, since most of the known

genotype-phenotype associations were found by logistic or linear regression. Thus, it does

not apply directly to associations found by Cox regression. All of the methods showed low

sensitivity due to being underpowered for detecting the associations. However, it is promising

that both the simulations and the GWAS application indicated that Cox regression has the

best performance in detecting genotype-phenotype associations, even with these limitations.

Lastly, we did not determine the exact magnitude of delayed event time that would be

acceptable in the EHR in order for the Cox model to continue to outperform the logistic

regression models, as our main goal was to explore the impact of delayed event time on the

performance of the models in general. However, in the simulations, we varied the parameters

when simulating the delayed event time to obtain different numbers of observations with a

misclassified event status, which led to different ranges of delayed event time magnitude. For

example, when there was a small number of misclassified events and the delayed event time

depended on the confounder, we set c1 = 20 and c3 = 60 days. To increase the proportion

of misclassified events, we set c1 = 60 and c3 = 1400 days. Increasing the magnitude of

the delayed event time caused all the methods to be invalid when the delayed event time
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depended on the exposure, as explained in Section 3.2.1. However, for the other delayed

event time scenarios, even when the magnitude of the delayed event time was large, the Cox

regression model performed either the same or better as the logistic regression models in

terms of statistical power, and the type I error rate was controlled. This gives some insight

into the impact of the magnitude of delayed event time on the performance of the models.

6 Conclusion

Based on the use of both simulations and empirical data, we found that while logistic regres-

sion does not model the time-to-event directly, various logistic regression models used in the

literature were more sensitive to delayed event time than Cox regression. The simulations

showed that Cox regression had similar or modest improvement in statistical power over

logistic regression at controlled type I error. These results were supported by the empirical

data, where the Cox models steadily had the highest sensitivity to detect known genotype-

phenotype associations under all scenarios of delayed event time. In the presence of delayed

event time scenarios that might exist in EHRs, Cox regression outperformed the logistic

regression models commonly used in genomic studies. Among the three logistic regression

models, the logistic regression model that adjusts for record length, Model 4 (LRMrl), is the

preferred modeling scheme to use.

As stated in the Introduction, previous work has already shown the advantages of Cox

regression over logistic regression in many scenarios [22], [26], including for use in genomic

studies that utilize the EHR [9]. Our primary focus in this study was to determine if Cox

regression still outperformed logistic regression when the time-to-event information in the

EHR is incorrect, which we found to be true. This indicates that Cox regression is the most

robust modeling scheme to delayed event time. Thus, even if time-to-event information

is inaccurate, Cox regression may improve our ability to determine the significant genetic

constitutes for a variety of diseases.
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7 Appendix A: Delayed Event Time Scenarios

7.1 Simulation Notation

The following are considered without left truncation:

• Te is the true event time

• Tc = Trl is the true censoring time and the record length

• Tobs = min(Te, Tc) = Td is the true observed time and time difference

• E = I(Te < Tc) is the event indicator

• ε is the delayed event time

7.1.1 Simulation 1 - Delayed Diagnosis

• T̃d = T̃obs = min(Te + ε, Tc) is the observed time with delayed event time

• Ẽ = I(Te + ε < Tc) is the event indicator with delayed event time

There are three cases in which subjects can be partitioned once delayed event time is

added to their true event time:

Case 1. Ẽ = 0 and Tc < Te:

T̃d = Tc = min(Te, Tc) = Td

Ẽ = E = 0

Case 2. Ẽ = 0 and Te < Tc < Te + ε:

T̃d = Tc < Te + ε

Td = Te

⇒ T̃d 6= Td ⇒ T̃d − Td < ε
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Ẽ = 0 and E = 1 =⇒ delayed event time leads to a misclassfied event status

To estimate the proportion of observations in Case 2:

a) If Tc is uniformly distributed:

P (Case 2) = P (Te < Tc < Te + ε)

= P (Te < Tc|Tc < Te + ε)P (Tc < Te + ε)

= [1− P (Tc < Te|Tc < Te + ε)]P (Tc < Te + ε)

= [1− P (Tc < Te|Tc < Te + ε)]P (Ẽ = 0)

where P (Ẽ = 0) is the censoring rate in the data

=

[
1− Te

Te + ε

]
P (Ẽ = 0)

=

[
ε

Te + ε

]
P (Ẽ = 0)

=

[
Re

1 +Re

]
P (Ẽ = 0)

where Re =
ε

Te
is the relative delayed event time to the true event time

b) If Tc has density function g(t), which is estimable in our application:

P (Case 2) = −
∫ T

0

∫ t

t−ε
g(µ)dµdS̃(t)

where S̃(t) is the survival function for T ∗e = Te + ε

Case 3. Ẽ = 1 and Te + ε < Tc:

T̃d = Te + ε

Td = Te

⇒ T̃d = Td + ε

Ẽ = E = 1
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7.1.2 Simulation 2 - Baseline Shifted

• T̄d = min(Te − ε, Tc − ε) is the observed time with delayed event time

• Ē = I(Te − ε < Tc − ε) is the event indicator with delayed event time

• Ē = E

• T̄d = Td − ε

7.2 Simulation 1 - Delayed Diagnosis

7.2.1 Cox

The likelihood function is:

`i(T̃di , Ẽi) = f(T̃di)
Ẽi × S(T̃di)

1−Ẽi

Case 1. = S(Tdi)
1−Ei = `i(Tdi , Ei)

Case 2. = S(T̃di) 6= f(Tdi) = `i(Tdi , Ei)

Case 3.

= f(Tdi + ε) = exp{logf(Tdi + ε)}

= exp

{
logf(Tdi) +

f ′(T ∗di)

f(T ∗di)
ε

}
where T ∗di ∈ [Tdi , Tdi + ε]

= f(Tdi)exp

{
f ′(T ∗di)

f(T ∗di)
ε

}
= `i(Tdi , Ei)exp

{
f ′(T ∗di)

f(T ∗di)
ε

}

The log-likelihood function of (T̃di , Ẽi) is:

Case 1. = logS(Tdi) = log`i(Tdi , Ei)

Case 2. = logS(T̃di) 6= logf(Tdi) = log`i(Tdi , Ei)
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Case 3. = log`i(Tdi , Ei) +
f ′(T ∗di

)

f(T ∗di
)
ε

7.2.2 LRMobs

Assuming we model f(T̃d) linearly:

logit
[
P (Ẽ = 1|Z,X, T̃d)

]
= β0 + β1Z + β′2X + β3T̃d

=


β0 + β1Z + β′2X + β3Td if case 1

β0 + β1Z + β′2X + β3Tc if case 2

β0 + β1Z + β′2X + β3Td + β3ε if case 3

⇒


= logit

[
P (E = 1|Z,X, T̃d)

]
if case 1

6= logit
[
P (E = 1|Z,X, T̃d)

]
if case 2

= logit
[
P (E = 1|Z,X, T̃d)

]
if case 3

⇒



if case 1⇒



= β0 + β1Z + β′2X + β3Td if no delayed event time

= β0 + β1Z + β′2X + β3Td if delayed event time independent

= β0 + β1Z + β′2X + β3Td if delayed event time depends on Z

= β0 + β1Z + β′2X + β3Td if delayed event time depends on X

if case 2⇒6= logit
[
P (E = 1|Z,X, T̃d)

]

if case 3⇒



= β0 + β1Z + β′2X + β3Td if no delayed event time

= (β0 + β3ε) + β1Z + β′2X + β3Td if delayed event time independent

= β0 + (β1Z + β3g[Z]) + β′2X + β3Td if delayed event time depends on Z

= β0 + β1Z + (β′2X + β3g[X]) + β3Td if delayed event time depends on X
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where g[Z] is the delayed event time as a function of Z and g[X] is the delayed event time

as a function of X. Then we have:

logit
[
P (Ẽ = 1|Z,X, T̃d)

]

⇒



if case 1⇒



= logit [P (E = 1|Z,X, Td)] if no delayed event time

= logit [P (E = 1|Z,X, Td)] if delayed event time independent

= logit [P (E = 1|Z,X, Td)] if delayed event time depends on Z

= logit [P (E = 1|Z,X, Td)] if delayed event time depends on X

if case 2⇒6= logit [P (E = 1|Z,X, Td)]

if case 3⇒



= logit [P (E = 1|Z,X, Td)] if no delayed event time

6= logit [P (E = 1|Z,X, Td)] if delayed event time independent

6= logit [P (E = 1|Z,X, Td)] if delayed event time depends on Z

6= logit [P (E = 1|Z,X, Td)] if delayed event time depends on X

7.2.3 LRMu

logit
[
P (Ẽ = 1|Z,X)

]
= β0 + β1Z + β′2X

⇒


= logit [P (E = 1|Z,X)] if case 1

6= logit [P (E = 1|Z,X)] if case 2

= logit [P (E = 1|Z,X)] if case 3
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7.2.4 LRMrl

Assuming we model f(T̃rl) linearly:

logit
[
P (Ẽ = 1|Z,X, Trl)

]
= β0 + β1Z + β′2X + β3Trl

⇒


= logit [P (E = 1|Z,X, Trl)] if case 1

6= logit [P (E = 1|Z,X, Trl)] if case 2

= logit [P (E = 1|Z,X, Trl)] if case 3

7.3 Simulation 2 - Baseline Shifted

7.3.1 LRMobs

Assuming we model f(T̄d) linearly:
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logit
[
P (Ē = 1|Z,X, T̄d)

]
= β0 + β1Z + β′2X + β3T̄d

= β0 + β1Z + β′2X + β3(Td − ε)

= β0 + β1Z + β′2X + β3Td − β3ε

⇒



= β0 + β1Z + β′2X + β3Td if no delayed event time

= (β0 − β3ε) + β1Z + β′2X + β3Td if delayed event time independent

= β0 + (β1Z − β3g[Z]) + β′2X + β3Td if delayed event time depends on Z

= β0 + β1Z + (β′2X− β3g[X]) + β3Td if delayed event time depends on X

where g[Z] is the delayed event time as a function of Z and g[X] is the delayed event time as

a function of X. Then we have:

⇒



= logit [P (E = 1|Z,X, Td)] if no delayed event time

6= logit [P (E = 1|Z,X, Td)] if delayed event time independent

6= logit [P (E = 1|Z,X, Td)] if delayed event time depends on Z

6= logit [P (E = 1|Z,X, Td)] if delayed event time depends on X

7.3.2 LRMu

logit
[
P (Ē = 1|Z,X)

]
= β0 + β1Z + β′2X

= logit [P (E = 1|Z,X)]
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7.3.3 LRMrl

Assuming we model f(T̄rl) linearly, where T̄rl = Trl − ε = Tc − ε:

logit
[
P (Ē = 1|Z,X, Trl)

]
= β0 + β1Z + β′2X + β3(Trl − ε)

⇒



= β0 + β1Z + β′2X + β3Trl if no delayed event time

= (β0 − β3ε) + β1Z + β′2X + β3Trl if delayed event time independent

= β0 + (β1Z − β3g[Z]) + β′2X + β3Trl if delayed event time depends on Z

= β0 + β1Z + (β′2X− β3g[X]) + β3Trl if delayed event time depends on X

where g[Z] is the delayed event time as a function of Z and g[X] is the delayed event time as a

function of X. Then we have:

⇒



= logit [P (E = 1|Z,X, Trl)] if no delayed event time

6= logit [P (E = 1|Z,X, Trl)] if delayed event time independent

6= logit [P (E = 1|Z,X, Trl)] if delayed event time depends on Z

6= logit [P (E = 1|Z,X, Trl)] if delayed event time depends on X
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8 Appendix B: Additional Tables

No Delayed Significant Non-significant
Phenotype Phecode Event Time SNPs SNPs Independent Sex

Event Rate Event Rate Event Rate Event Rate Event Rate
Cancer of bronchus; lung 165.1 2.74% 1.95% 2.06% 1.78% 1.74%

Cancer of prostate * 185 6.52% 6.11% 5.80% 5.78% -
Hypothyroidism 244 11.74% 10.94% 10.93% 10.64% 10.73%
Type 2 diabetes 250.2 14.33% 13.23% 13.23% 12.79% 12.73%

Vitamin D deficiency 261.4 6.72% 6.16% 6.11% 6.02% 6.12%
Hypercholesterolemia 272.11 9.99% 9.64% 9.75% 9.64% 9.62%

Insomnia 327.4 4.46% 4.00% 4.14% 4.11% 4.11%
Myocardial infarction 411.2 5.61% 4.54% 4.72% 4.66% 4.59%

Coronary atherosclerosis 411.4 16.83% 15.46% 15.51% 14.99% 14.89%
Atrial fibrillation 427.21 9.93% 8.65% 8.66% 8.3% 8.19%

Table 1: Phecodes used in the GWAS application. Includes information about the phenotype, phecode, and the event rate for
each delayed event time scenario.

* Analysis performed for males only.



Coefficient of z for Tc model
Coefficient of z for Te model ln(2) ln(3) ln(exp{2})
ln(1) -0.020 -0.097 -6.733
ln(1.1) -0.038 (-0.401) -0.103 (-1.081) -6.349 (-66.616)
ln(1.15) -0.050 (-0.358) -0.104 (-0.746) -6.014 (-43.032)
ln(1.25) -0.075 (-0.334) -0.098 (-0.439) -5.639 (-25.273)
ln(1.5) -0.129 (-0.317) -0.135 (-0.332) -4.824 (-11.897)
ln(2) -0.254 (0.367) -0.239 (-0.345) -3.910 (-5.641)

Table 2: Bias (relative bias) for the β coefficient of z from Model 1 (Cox) with no delayed
event time when the correlation between the coefficient for z in the event time and the
coefficient for z in the censoring time increases. This is related to informative censoring.
These are the results from Simulation 1 when the event time was generated from a Cox model
with baseline hazard from an exponential distribution, the censoring time was generated from
a Cox model with baseline hazard from an exponential distribution that depended on x and
z, and there was left truncation.

40



P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 12 - -
LRMobs 0 0% (0/12) 100% (795838/795838)
LRMu 4 33.33% (4/12) 100% (795838/795838)
LRMrl 0 0% (0/12) 100% (795838/795838)
Delayed event time depends on significant SNPs
Cox 19 100% (12/12) 99.9991% (795831/795838)
LRMobs 15 100% (12/12) 99.9996% (795835/795838)
LRMu 17 100% (12/12) 99.9994% (795833/795838)
LRMrl 14 91.67% (11/12) 99.9996% (795835/795838)
Delayed event time depends on non-significant SNPs
Cox 4 33.33% (4/12) 100% (795838/795838)
LRMobs 0 0% (0/12) 100% (795838/795838)
LRMu 1 8.33% (1/12) 100% (795838/795838)
LRMrl 0 0% (0/12) 100% (795838/795838)
Delayed event time is independent
Cox 0 0% (0/12) 100% (795838/795838)
LRMobs 0 0% (0/12) 100% (795838/795838)
LRMu 0 0% (0/12) 100% (795838/795838)
LRMrl 0 0% (0/12) 100% (795838/795838)
Delayed event time depends on sex
Cox 0 0% (0/12) 100% (795838/795838)
LRMobs 0 0% (0/12) 100% (795838/795838)
LRMu 0 0% (0/12) 100% (795838/795838)
LRMrl 0 0% (0/12) 100% (795838/795838)

Table 3: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for cancer of bronchus; lung (phecode 165.1). The results are shown
for the P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 29 - -
LRMobs 22 68.97% (20/29) 99.9997% (795819/795821)
LRMu 24 79.31% (23/29) 99.9999% (795820/795821)
LRMrl 20 62.07% (18/29) 99.9997% (795819/795821)
Delayed event time depends on significant SNPs
Cox 54 55.17% (16/29) 99.9952% (795783/795821)
LRMobs 52 51.72% (15/29) 99.9954% (795784/795821)
LRMu 51 51.72% (15/29) 99.9955% (795785/795821)
LRMrl 46 48.28% (14/29) 99.996% (795789/795821)
Delayed event time depends on non-significant SNPs
Cox 23 51.72% (15/29) 99.999% (795813/795821)
LRMobs 19 41.38% (12/29) 99.9991% (795814/795821)
LRMu 17 41.38% (12/29) 99.9994% (795816/795821)
LRMrl 20 41.38% (12/29) 99.999% (795813/795821)
Delayed event time is independent
Cox 20 48.28% (14/29) 99.9992% (795815/795821)
LRMobs 13 13.79% (4/29) 99.9989% (795812/795821)
LRMu 15 27.59% (8/29) 99.9991% (795814/795821)
LRMrl 14 20.69% (6/29) 99.999% (795813/795821)
Delayed event time depends on sex
Cox 21 44.83% (13/29) 99.999% (795813/795821)
LRMobs 19 13.79% (4/29) 99.9981% (795806/795821)
LRMu 17 17.24% (5/29) 99.9985% (795809/795821)
LRMrl 14 13.79% (4/29) 99.9987% (795811/795821)

Table 4: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for cancer of bronchus; lung (phecode 165.1). The results are shown
for both the P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 8 - -
LRMobs 3 37.5% (3/8) 100% (795842/795842)
LRMu 0 0% (0/8) 100% (795842/795842)
LRMrl 5 62.5% (5/8) 100% (795842/795842)
Delayed event time depends on significant SNPs
Cox 6 75% (6/8) 100% (795842/795842)
LRMobs 3 37.5% (3/8) 100% (795842/795842)
LRMu 0 0% (0/8) 100% (795842/795842)
LRMrl 3 37.5% (3/8) 100% (795842/795842)
Delayed event time depends on non-significant SNPs
Cox 5 62.5% (5/8) 100% (795842/795842)
LRMobs 3 37.5% (3/8) 100% (795842/795842)
LRMu 0 0% (0/8) 100% (795842/795842)
LRMrl 4 50% (4/8) 100% (795842/795842)
Delayed event time is independent
Cox 0 0% (0/8) 100% (795842/795842)
LRMobs 0 0% (0/8) 100% (795842/795842)
LRMu 0 0% (0/8) 100% (795842/795842)
LRMrl 0 0% (0/8) 100% (795842/795842)

Table 5: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for cancer of prostate (phecode 185). The results are shown for the
P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 37 - -
LRMobs 32 51.35% (19/37) 99.9984% (795800/795813)
LRMu 24 56.76% (21/37) 99.9996% (795810/795813)
LRMrl 30 64.86% (24/37) 99.9992% (795807/795813)
Delayed event time depends on significant SNPs
Cox 31 75.68% (28/37) 99.9996% (795810/795813)
LRMobs 27 48.65% (18/37) 99.9989% (795804/795813)
LRMu 24 51.35% (19/37) 99.9994% (795808/795813)
LRMrl 28 64.86% (24/37) 99.9995% (795809/795813)
Delayed event time depends on non-significant SNPs
Cox 34 67.57% (25/37) 99.9989% (795804/795813)
LRMobs 32 40.54% (15/37) 99.9979% (795796/795813)
LRMu 32 51.35% (19/37) 99.9984% (795800/795813)
LRMrl 24 51.35% (19/37) 99.9994% (795808/795813)
Delayed event time is independent
Cox 29 62.16% (23/37) 99.9992% (795807/795813)
LRMobs 30 35.14% (13/37) 99.9979% (795796/795813)
LRMu 28 43.24% (16/37) 99.9985% (795801/795813)
LRMrl 23 48.65% (18/37) 99.9994% (795808/795813)

Table 6: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for cancer of prostate (phecode 185). The results are shown for the
P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox)- no delayed event time

44



P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 231 - -
LRMobs 106 44.59% (103/231) 99.9996% (795616/795619)
LRMu 126 54.11% (125/231) 99.9999% (795618/795619)
LRMrl 194 83.55% (193/231) 99.9999% (795618/795619)
Delayed event time depends on significant SNPs
Cox 239 92.21% (213/231) 99.9967% (795593/795619)
LRMobs 124 48.48% (112/231) 99.9985% (795607/795619)
LRMu 145 57.14% (132/231) 99.9984% (795606/795619)
LRMrl 207 84.42% (195/231) 99.9985% (795607/795619)
Delayed event time depends on non-significant SNPs
Cox 233 94.37% (218/231) 99.9981% (795604/795619)
LRMobs 116 48.92% (113/231) 99.9996% (795616/795619)
LRMu 140 56.71% (131/231) 99.9989% (795610/795619)
LRMrl 210 87.45% (202/231) 99.999% (795611/795619)
Delayed event time is independent
Cox 225 88.74% (205/231) 99.9975% (795599/795619)
LRMobs 133 52.81% (122/231) 99.9986% (795608/795619)
LRMu 142 57.14% (132/231) 99.9987% (795609/795619)
LRMrl 162 66.67% (154/231) 99.999% (795611/795619)
Delayed event time depends on sex
Cox 268 95.67% (221/231) 99.9941% (795572/795619)
LRMobs 142 53.68% (124/231) 99.9977% (795601/795619)
LRMu 162 58.87% (136/231) 99.9967% (795593/795619)
LRMrl 235 91.34% (211/231) 99.997% (795595/795619)

Table 7: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event
time as the gold standard, for hypothyroidism (phecode 244). The results are shown for the
P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 731 - -
LRMobs 434 56.22% (411/731) 99.9971% (795096/795119)
LRMu 491 66.21% (484/731) 99.9991% (795112/795119)
LRMrl 622 84.4% (617/731) 99.9994% (795114/795119)
Delayed event time depends on significant SNPs
Cox 742 91.11% (666/731) 99.9904% (795043/795119)
LRMobs 464 57.73% (422/731) 99.9947% (795077/795119)
LRMu 540 64.98% (475/731) 99.9918% (795054/795119)
LRMrl 644 79.62% (582/731) 99.9922% (795057/795119)
Delayed event time depends on non-significant SNPs
Cox 753 92.48% (676/731) 99.9903% (795042/795119)
LRMobs 446 55.4% (405/731) 99.9948% (795078/795119)
LRMu 527 65.53% (479/731) 99.994% (795071/795119)
LRMrl 637 79.62% (582/731) 99.9931% (795064/795119)
Delayed event time is independent
Cox 731 88.92% (650/731) 99.9898% (795038/795119)
LRMobs 488 60.33% (441/731) 99.9941% (795072/795119)
LRMu 587 69.63% (509/731) 99.9902% (795041/795119)
LRMrl 671 82.49% (603/731) 99.9914% (795051/795119)
Delayed event time depends on sex
Cox 779 91.79% (671/731) 99.9864% (795011/795119)
LRMobs 524 62.65% (458/731) 99.9917% (795053/795119)
LRMu 617 71.82% (525/731) 99.9884% (795027/795119)
LRMrl 725 86.87% (635/731) 99.9887% (795029/795119)

Table 8: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event
time as the gold standard, for hypothyroidism (phecode 244). The results are shown for the
P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 298 - -
LRMobs 153 48.66% (145/298) 99.999% (795544/795552)
LRMu 196 61.74% (184/298) 99.9985% (795540/795552)
LRMrl 268 88.93% (265/298) 99.9996% (795549/795552)
Delayed event time depends on significant SNPs
Cox 201 66.11% (197/298) 99.9995% (795548/795552)
LRMobs 129 41.61% (124/298) 99.9994% (795547/795552)
LRMu 164 53.69% (160/298) 99.9995% (795548/795552)
LRMrl 168 55.37% (165/298) 99.9996% (795549/795552)
Delayed event time depends on non-significant SNPs
Cox 213 69.8% (208/298) 99.9994% (795547/795552)
LRMobs 124 38.59% (115/298) 99.9989% (795543/795552)
LRMu 165 53.36% (159/298) 99.9992% (795546/795552)
LRMrl 206 67.45% (201/298) 99.9994% (795547/795552)
Delayed event time is independent
Cox 224 71.81% (214/298) 99.9987% (795542/795552)
LRMobs 148 47.32% (141/298) 99.9991% (795545/795552)
LRMu 183 59.06% (176/298) 99.9991% (795545/795552)
LRMrl 214 69.13% (206/298) 99.999% (795544/795552)
Delayed event time depends on sex
Cox 258 80.54% (240/298) 99.9977% (795534/795552)
LRMobs 193 62.42% (186/298) 99.9991% (795545/795552)
LRMu 211 67.11% (200/298) 99.9986% (795541/795552)
LRMrl 250 76.85% (229/298) 99.9974% (795531/795552)

Table 9: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for type 2 diabetes (phecode 250.2). The results are shown for the
P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox)- no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 548 - -
LRMobs 483 76.28% (418/548) 99.9918% (795237/795302)
LRMu 474 79.74% (437/548) 99.9953% (795265/795302)
LRMrl 526 89.05% (488/548) 99.9952% (795264/795302)
Delayed event time depends on significant SNPs
Cox 549 89.05% (488/548) 99.9923% (795241/795302)
LRMobs 433 70.07% (384/548) 99.9938% (795253/795302)
LRMu 454 78.28% (429/548) 99.9969% (795277/795302)
LRMrl 535 85.4% (468/548) 99.9916% (795235/795302)
Delayed event time depends on non-significant SNPs
Cox 578 92.34% (506/548) 99.9909% (795230/795302)
LRMobs 465 68.43% (375/548) 99.9887% (795212/795302)
LRMu 504 79.56% (436/548) 99.9914% (795234/795302)
LRMrl 581 86.5% (474/548) 99.9865% (795195/795302)
Delayed event time is independent
Cox 616 90.51% (496/548) 99.9849% (795182/795302)
LRMobs 485 72.08% (395/548) 99.9887% (795212/795302)
LRMu 534 79.93% (438/548) 99.9879% (795206/795302)
LRMrl 606 86.68% (475/548) 99.9835% (795171/795302)
Delayed event time depends on sex
Cox 603 88.69% (486/548) 99.9853% (795185/795302)
LRMobs 490 69.34% (380/548) 99.9862% (795192/795302)
LRMu 529 79.2% (434/548) 99.9881% (795207/795302)
LRMrl 581 86.5% (474/548) 99.9865% (795195/795302)

Table 10: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for type 2 diabetes (phecode 250.2). The results are shown for the
P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 3 - -
LRMobs 3 100% (3/3) 100% (795847/795847)
LRMu 3 100% (3/3) 100% (795847/795847)
LRMrl 3 100% (3/3) 100% (795847/795847)
Delayed event time depends on significant SNPs
Cox 5 66.67% (2/3) 99.9996% (795844/795847)
LRMobs 5 66.67% (2/3) 99.9996% (795844/795847)
LRMu 5 66.67% (2/3) 99.9996% (795844/795847)
LRMrl 5 66.67% (2/3) 99.9996% (795844/795847)
Delayed event time depends on non-significant SNPs
Cox 6 100% (3/3) 99.9996% (795844/795847)
LRMobs 6 100% (3/3) 99.9996% (795844/795847)
LRMu 6 100% (3/3) 99.9996% (795844/795847)
LRMrl 6 100% (3/3) 99.9996% (795844/795847)
Delayed event time is independent
Cox 6 100% (3/3) 99.9996% (795844/795847)
LRMobs 7 100% (3/3) 99.9995% (795843/795847)
LRMu 7 100% (3/3) 99.9995% (795843/795847)
LRMrl 6 100% (3/3) 99.9996% (795844/795847)
Delayed event time depends on sex
Cox 6 100% (3/3) 99.9996% (795844/795847)
LRMobs 7 100% (3/3) 99.9995% (795843/795847)
LRMu 7 100% (3/3) 99.9995% (795843/795847)
LRMrl 6 100% (3/3) 99.9996% (795844/795847)

Table 11: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for vitamin D deficiency (phecode 261.4). The results are shown for
the P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 13 - -
LRMobs 16 92.31% (12/13) 99.9995% (795833/795837)
LRMu 19 92.31% (12/13) 99.9991% (795830/795837)
LRMrl 18 100% (13/13) 99.9994% (795832/795837)
Delayed event time depends on significant SNPs
Cox 14 76.92% (10/13) 99.9995% (795833/795837)
LRMobs 23 76.92% (10/13) 99.9984% (795824/795837)
LRMu 22 76.92% (10/13) 99.9985% (795825/795837)
LRMrl 18 84.62% (11/13) 99.9991% (795830/795837)
Delayed event time depends on non-significant SNPs
Cox 17 84.62% (11/13) 99.9992% (795831/795837)
LRMobs 21 84.62% (11/13) 99.9987% (795827/795837)
LRMu 22 84.62% (11/13) 99.9986% (795826/795837)
LRMrl 19 84.62% (11/13) 99.999% (795829/795837)
Delayed event time is independent
Cox 20 84.62% (11/13) 99.9989% (795828/795837)
LRMobs 21 84.62% (11/13) 99.9987% (795827/795837)
LRMu 21 84.62% (11/13) 99.9987% (795827/795837)
LRMrl 21 84.62% (11/13) 99.9987% (795827/795837)
Delayed event time depends on sex
Cox 17 84.62% (11/13) 99.9992% (795831/795837)
LRMobs 23 84.62% (11/13) 99.9985% (795825/795837)
LRMu 22 84.62% (11/13) 99.9986% (795826/795837)
LRMrl 21 92.31% (12/13) 99.9989% (795828/795837)

Table 12: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for vitamin D deficiency (phecode 261.4). The results are shown for
the P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 15 - -
LRMobs 16 80% (12/15) 99.9995% (795831/795835)
LRMu 16 80% (12/15) 99.9995% (795831/795835)
LRMrl 15 100% (15/15) 100% (795835/795835)
Delayed event time depends on significant SNPs
Cox 11 73.33% (11/15) 100% (795835/795835)
LRMobs 13 53.33% (8/15) 99.9994% (795830/795835)
LRMu 14 73.33% (11/15) 99.9996% (795832/795835)
LRMrl 11 73.33% (11/15) 100% (795835/795835)
Delayed event time depends on non-significant SNPs
Cox 14 93.33% (14/15) 100% (795835/795835)
LRMobs 16 73.33% (11/15) 99.9994% (795830/795835)
LRMu 14 73.33% (11/15) 99.9996% (795832/795835)
LRMrl 15 100% (15/15) 100% (795835/795835)
Delayed event time is independent
Cox 13 86.67% (13/15) 100% (795835/795835)
LRMobs 16 73.33% (11/15) 99.9994% (795830/795835)
LRMu 14 73.33% (11/15) 99.9996% (795832/795835)
LRMrl 15 100% (15/15) 100% (795835/795835)
Delayed event time depends on sex
Cox 14 93.33% (14/15) 100% (795835/795835)
LRMobs 16 73.33% (11/15) 99.9994% (795830/795835)
LRMu 14 73.33% (11/15) 99.9996% (795832/795835)
LRMrl 14 93.33% (14/15) 100% (795835/795835)

Table 13: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for hypercholesterolemia (phecode 272.11). The results are shown for
the P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 60 - -
LRMobs 34 41.67% (25/60) 99.9989% (795781/795790)
LRMu 44 60% (36/60) 99.999% (795782/795790)
LRMrl 52 85% (51/60) 99.9999% (795789/795790)
Delayed event time depends on significant SNPs
Cox 53 83.33% (50/60) 99.9996% (795787/795790)
LRMobs 43 45% (27/60) 99.998% (795774/795790)
LRMu 41 53.33% (32/60) 99.9989% (795781/795790)
LRMrl 53 80% (48/60) 99.9994% (795785/795790)
Delayed event time depends on non-significant SNPs
Cox 58 93.33% (56/60) 99.9997% (795788/795790)
LRMobs 37 40% (24/60) 99.9984% (795777/795790)
LRMu 45 58.33% (35/60) 99.9987% (795780/795790)
LRMrl 55 86.67% (52/60) 99.9996% (795787/795790)
Delayed event time is independent
Cox 45 68.33% (41/60) 99.9995% (795786/795790)
LRMobs 44 46.67% (28/60) 99.998% (795774/795790)
LRMu 44 53.33% (32/60) 99.9985% (795778/795790)
LRMrl 45 66.67% (40/60) 99.9994% (795785/795790)
Delayed event time depends on sex
Cox 58 83.33% (50/60) 99.999% (795782/795790)
LRMobs 47 50% (30/60) 99.9979% (795773/795790)
LRMu 51 55% (33/60) 99.9977% (795772/795790)
LRMrl 56 78.33% (47/60) 99.9989% (795781/795790)

Table 14: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for hypercholesterolemia (phecode 272.11). The results are shown for
the P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 1 - -
LRMobs 0 0% (0/1) 100% (795849/795849)
LRMu 0 0% (0/1) 100% (795849/795849)
LRMrl 0 0% (0/1) 100% (795849/795849)
Delayed event time depends on significant SNPs
Cox 1 100% (1/1) 100% (795849/795849)
LRMobs 1 100% (1/1) 100% (795849/795849)
LRMu 1 100% (1/1) 100% (795849/795849)
LRMrl 1 100% (1/1) 100% (795849/795849)
Delayed event time depends on non-significant SNPs
Cox 0 0% (0/1) 100% (795849/795849)
LRMobs 0 0% (0/1) 100% (795849/795849)
LRMu 0 0% (0/1) 100% (795849/795849)
LRMrl 0 0% (0/1) 100% (795849/795849)
Delayed event time is independent
Cox 0 0% (0/1) 100% (795849/795849)
LRMobs 0 0% (0/1) 100% (795849/795849)
LRMu 0 0% (0/1) 100% (795849/795849)
LRMrl 0 0% (0/1) 100% (795849/795849)
Delayed event time depends on sex
Cox 0 0% (0/1) 100% (795849/795849)
LRMobs 0 0% (0/1) 100% (795849/795849)
LRMu 0 0% (0/1) 100% (795849/795849)
LRMrl 0 0% (0/1) 100% (795849/795849)

Table 15: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event
time as the gold standard, for insomnia (phecode 327.4). The results are shown for the
P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 12 - -
LRMobs 14 66.67% (8/12) 99.9992% (795832/795838)
LRMu 15 83.33% (10/12) 99.9994% (795833/795838)
LRMrl 13 100% (12/12) 99.9999% (795837/795838)
Delayed event time depends on significant SNPs
Cox 13 58.33% (7/12) 99.9992% (795832/795838)
LRMobs 13 50% (6/12) 99.9991% (795831/795838)
LRMu 13 58.33% (7/12) 99.9992% (795832/795838)
LRMrl 14 58.33% (7/12) 99.9991% (795831/795838)
Delayed event time depends on non-significant SNPs
Cox 10 66.67% (8/12) 99.9997% (795836/795838)
LRMobs 12 50% (6/12) 99.9992% (795832/795838)
LRMu 13 66.67% (8/12) 99.9994% (795833/795838)
LRMrl 13 75% (9/12) 99.9995% (795834/795838)
Delayed event time is independent
Cox 9 50% (6/12) 99.9996% (795835/795838)
LRMobs 10 33.33% (4/12) 99.9992% (795832/795838)
LRMu 13 58.33% (7/12) 99.9992% (795832/795838)
LRMrl 15 83.33% (10/12) 99.9994% (795833/795838)
Delayed event time depends on sex
Cox 14 75% (9/12) 99.9994% (795833/795838)
LRMobs 13 58.33% (7/12) 99.9992% (795832/795838)
LRMu 16 66.67% (8/12) 99.999% (795830/795838)
LRMrl 14 75% (9/12) 99.9994% (795833/795838)

Table 16: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event
time as the gold standard, for insomnia (phecode 327.4). The results are shown for the
P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 4 - -
LRMobs 6 75% (3/4) 99.9996% (795843/795846)
LRMu 6 100% (4/4) 99.9997% (795844/795846)
LRMrl 3 75% (3/4) 100% (795846/795846)
Delayed event time depends on significant SNPs
Cox 4 100% (4/4) 100% (795846/795846)
LRMobs 6 100% (4/4) 99.9997% (795844/795846)
LRMu 6 100% (4/4) 99.9997% (795844/795846)
LRMrl 4 100% (4/4) 100% (795846/795846)
Delayed event time depends on non-significant SNPs
Cox 3 75% (3/4) 100% (795846/795846)
LRMobs 5 75% (3/4) 99.9997% (795844/795846)
LRMu 6 100% (4/4) 99.9997% (795844/795846)
LRMrl 3 75% (3/4) 100% (795846/795846)
Delayed event time is independent
Cox 3 75% (3/4) 100% (795846/795846)
LRMobs 4 50% (2/4) 99.9997% (795844/795846)
LRMu 6 100% (4/4) 99.9997% (795844/795846)
LRMrl 3 75% (3/4) 100% (795846/795846)
Delayed event time depends on sex
Cox 1 25% (1/4) 100% (795846/795846)
LRMobs 3 25% (1/4) 99.9997% (795844/795846)
LRMu 4 50% (2/4) 99.9997% (795844/795846)
LRMrl 1 25% (1/4) 100% (795846/795846)

Table 17: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for myocardial infarction (phecode 411.2). The results are shown for
the P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 19 - -
LRMobs 29 57.89% (11/19) 99.9977% (795813/795831)
LRMu 24 68.42% (13/19) 99.9986% (795820/795831)
LRMrl 17 78.95% (15/19) 99.9997% (795829/795831)
Delayed event time depends on significant SNPs
Cox 17 36.84% (7/19) 99.9987% (795821/795831)
LRMobs 23 42.11% (8/19) 99.9981% (795816/795831)
LRMu 17 36.84% (7/19) 99.9987% (795821/795831)
LRMrl 19 42.11% (8/19) 99.9986% (795820/795831)
Delayed event time depends on non-significant SNPs
Cox 21 52.63% (10/19) 99.9986% (795820/795831)
LRMobs 23 36.84% (7/19) 99.998% (795815/795831)
LRMu 24 47.37% (9/19) 99.9981% (795816/795831)
LRMrl 17 47.37% (9/19) 99.999% (795823/795831)
Delayed event time is independent
Cox 18 31.58% (6/19) 99.9985% (795819/795831)
LRMobs 26 36.84% (7/19) 99.9976% (795812/795831)
LRMu 17 36.84% (7/19) 99.9987% (795821/795831)
LRMrl 17 42.11% (8/19) 99.9989% (795822/795831)
Delayed event time depends on sex
Cox 19 42.11% (8/19) 99.9986% (795820/795831)
LRMobs 20 31.58% (6/19) 99.9982% (795817/795831)
LRMu 19 36.84% (7/19) 99.9985% (795819/795831)
LRMrl 15 36.84% (7/19) 99.999% (795823/795831)

Table 18: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for myocardial infarction (phecode 411.2). The results are shown for
the P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 181 - -
LRMobs 75 27.62% (50/181) 99.9969% (795644/795669)
LRMu 117 51.93% (94/181) 99.9971% (795646/795669)
LRMrl 164 88.95% (161/181) 99.9996% (795666/795669)
Delayed event time depends on significant SNPs
Cox 152 81.77% (148/181) 99.9995% (795665/795669)
LRMobs 68 27.07% (49/181) 99.9976% (795650/795669)
LRMu 83 34.25% (62/181) 99.9974% (795648/795669)
LRMrl 87 46.41% (84/181) 99.9996% (795666/795669)
Delayed event time depends on non-significant SNPs
Cox 165 91.16% (165/181) 100% (795669/795669)
LRMobs 67 27.07% (49/181) 99.9977% (795651/795669)
LRMu 78 32.6% (59/181) 99.9976% (795650/795669)
LRMrl 92 50.28% (91/181) 99.9999% (795668/795669)
Delayed event time is independent
Cox 164 90.61% (164/181) 100% (795669/795669)
LRMobs 73 30.94% (56/181) 99.9979% (795652/795669)
LRMu 112 53.04% (96/181) 99.998% (795653/795669)
LRMrl 122 66.3% (120/181) 99.9997% (795667/795669)
Delayed event time depends on sex
Cox 139 76.24% (138/181) 99.9999% (795668/795669)
LRMobs 70 28.73% (52/181) 99.9977% (795651/795669)
LRMu 88 38.67% (70/181) 99.9977% (795651/795669)
LRMrl 85 46.96% (85/181) 100% (795669/795669)

Table 19: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for coronary atherosclerosis (phecode 411.4). The results are shown
for the P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 423 - -
LRMobs 234 39.48% (167/423) 99.9916% (795360/795427)
LRMu 275 51.77% (219/423) 99.993% (795371/795427)
LRMrl 234 52.48% (222/423) 99.9985% (795415/795427)
Delayed event time depends on significant SNPs
Cox 394 79.43% (336/423) 99.9927% (795369/795427)
LRMobs 181 31.21% (132/423) 99.9938% (795378/795427)
LRMu 246 48.23% (204/423) 99.9947% (795385/795427)
LRMrl 220 50.12% (212/423) 99.999% (795419/795427)
Delayed event time depends on non-significant SNPs
Cox 365 74.7% (316/423) 99.9938% (795378/795427)
LRMobs 178 30.02% (127/423) 99.9936% (795376/795427)
LRMu 248 47.04% (199/423) 99.9938% (795378/795427)
LRMrl 214 48.94% (207/423) 99.9991% (795420/795427)
Delayed event time is independent
Cox 343 72.34% (306/423) 99.9953% (795390/795427)
LRMobs 220 40.9% (173/423) 99.9941% (795380/795427)
LRMu 246 48.7% (206/423) 99.995% (795387/795427)
LRMrl 216 49.65% (210/423) 99.9992% (795421/795427)
Delayed event time depends on sex
Cox 325 69.03% (292/423) 99.9959% (795394/795427)
LRMobs 195 33.57% (142/423) 99.9933% (795374/795427)
LRMu 247 48.7% (206/423) 99.9948% (795386/795427)
LRMrl 212 48.23% (204/423) 99.999% (795419/795427)

Table 20: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for coronary atherosclerosis (phecode 411.4). The results are shown
for the P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 126 - -
LRMobs 126 92.86% (117/126) 99.9989% (795715/795724)
LRMu 123 93.65% (118/126) 99.9994% (795719/795724)
LRMrl 123 94.44% (119/126) 99.9995% (795720/795724)
Delayed event time depends on significant SNPs
Cox 118 93.65% (118/126) 100% (795724/795724)
LRMobs 121 92.06% (116/126) 99.9994% (795719/795724)
LRMu 121 92.06% (116/126) 99.9994% (795719/795724)
LRMrl 116 91.27% (115/126) 99.9999% (795723/795724)
Delayed event time depends on non-significant SNPs
Cox 122 96.83% (122/126) 100% (795724/795724)
LRMobs 121 91.27% (115/126) 99.9992% (795718/795724)
LRMu 121 92.86% (117/126) 99.9995% (795720/795724)
LRMrl 116 91.27% (115/126) 99.9999% (795723/795724)
Delayed event time is independent
Cox 118 93.65% (118/126) 100% (795724/795724)
LRMobs 119 91.27% (115/126) 99.9995% (795720/795724)
LRMu 121 92.86% (117/126) 99.9995% (795720/795724)
LRMrl 115 91.27% (115/126) 100% (795724/795724)
Delayed event time depends on sex
Cox 116 92.06% (116/126) 100% (795724/795724)
LRMobs 119 91.27% (115/126) 99.9995% (795720/795724)
LRMu 121 92.86% (117/126) 99.9995% (795720/795724)
LRMrl 114 90.48% (114/126) 100% (795724/795724)

Table 21: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for atrial fibrillation (phecode 427.21). The results are shown for the
P ≤ 5× 10−8 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 186 - -
LRMobs 197 72.04% (134/186) 99.9921% (795601/795664)
LRMu 194 75.81% (141/186) 99.9933% (795611/795664)
LRMrl 186 83.87% (156/186) 99.9962% (795634/795664)
Delayed event time depends on significant SNPs
Cox 175 83.33% (155/186) 99.9975% (795644/795664)
LRMobs 177 69.89% (130/186) 99.9941% (795617/795664)
LRMu 173 70.97% (132/186) 99.9948% (795623/795664)
LRMrl 156 76.88% (143/186) 99.9984% (795651/795664)
Delayed event time depends on non-significant SNPs
Cox 176 83.33% (155/186) 99.9974% (795643/795664)
LRMobs 151 69.89% (130/186) 99.9974% (795643/795664)
LRMu 149 72.04% (134/186) 99.9981% (795649/795664)
LRMrl 158 76.34% (142/186) 99.998% (795648/795664)
Delayed event time is independent
Cox 179 83.33% (155/186) 99.997% (795640/795664)
LRMobs 157 70.43% (131/186) 99.9967% (795638/795664)
LRMu 161 72.58% (135/186) 99.9967% (795638/795664)
LRMrl 163 77.96% (145/186) 99.9977% (795646/795664)
Delayed event time depends on sex
Cox 165 81.18% (151/186) 99.9982% (795650/795664)
LRMobs 155 70.43% (131/186) 99.997% (795640/795664)
LRMu 147 70.43% (131/186) 99.998% (795648/795664)
LRMrl 154 75.81% (141/186) 99.9984% (795651/795664)

Table 22: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for atrial fibrillation (phecode 427.21). The results are shown for the
P ≤ 1× 10−5 significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 5× 10−8 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 879 - -
LRMobs 488 49.6% (436/879) 99.9993% (7957569/7957621)
LRMu 591 61.89% (544/879) 99.9994% (7957574/7957621)
LRMrl 775 86.92% (764/879) 99.9999% (7957610/7957621)
Delayed event time depends on significant SNPs
Cox 756 81% (712/879) 99.9994% (7957577/7957621)
LRMobs 485 49.03% (431/879) 99.9993% (7957567/7957621)
LRMu 556 56.88% (500/879) 99.9993% (7957565/7957621)
LRMrl 616 67.24% (591/879) 99.9997% (7957596/7957621)
Delayed event time depends on non-significant SNPs
Cox 765 84.41% (742/879) 99.9997% (7957598/7957621)
LRMobs 458 46.87% (412/879) 99.9994% (7957575/7957621)
LRMu 531 55.18% (485/879) 99.9994% (7957575/7957621)
LRMrl 652 72.13% (634/879) 99.9998% (7957603/7957621)
Delayed event time is independent
Cox 753 81.91% (720/879) 99.9996% (7957588/7957621)
LRMobs 500 51.19% (450/879) 99.9994% (7957571/7957621)
LRMu 585 61.32% (539/879) 99.9994% (7957575/7957621)
LRMrl 637 70.08% (616/879) 99.9997% (7957600/7957621)
Delayed event time depends on sex
Cox 802 84.16% (733/871) 99.999% (7161710/7161779)
LRMobs 550 56.49% (492/871) 99.9992% (7161721/7161779)
LRMu 607 61.88% (539/871) 99.9991% (7161711/7161779)
LRMrl 705 75.43% (657/871) 99.9993% (7161731/7161779)

Table 23: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for all ten phecodes. The results are shown for the P ≤ 5 × 10−8

significance level.

* Based on Model 1 (Cox) - no delayed event time
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P ≤ 1× 10−5 # Significant SNPs True Positive * True Negative *
No delayed event time
Cox 2058 - -
LRMobs 1495 59.52% (1225/2058) 99.9966% (7956172/7956442)
LRMu 1584 67.83% (1396/2058) 99.9976% (7956254/7956442)
LRMrl 1718 78.52% (1616/2058) 99.9987% (7956340/7956442)
Delayed event time depends on significant SNPs
Cox 2042 85.67% (1763/2058) 99.9965% (7956163/7956442)
LRMobs 1436 55.98% (1152/2058) 99.9964% (7956158/7956442)
LRMu 1581 64.63% (1330/2058) 99.9968% (7956191/7956442)
LRMrl 1733 73.71% (1517/2058) 99.9973% (7956226/7956442)
Delayed event time depends on non-significant SNPs
Cox 2035 86.39% (1778/2058) 99.9968% (7956185/7956442)
LRMobs 1384 54.03% (1112/2058) 99.9966% (7956170/7956442)
LRMu 1581 65.21% (1342/2058) 99.997% (7956203/7956442)
LRMrl 1738 73.71% (1517/2058) 99.9972% (7956221/7956442)
Delayed event time is independent
Cox 2010 82.99% (1708/2058) 99.9962% (7956140/7956442)
LRMobs 1494 58.65% (1207/2058) 99.9964% (7956155/7956442)
LRMu 1666 66.52% (1369/2058) 99.9963% (7956145/7956442)
LRMrl 1791 74.15% (1526/2058) 99.9967% (7956177/7956442)
Delayed event time depends on sex
Cox 2001 83.67% (1691/2021) 99.9957% (7160319/7160629)
LRMobs 1486 57.84% (1169/2021) 99.9956% (7160312/7160629)
LRMu 1665 67.29% (1360/2021) 99.9957% (7160324/7160629)
LRMrl 1792 75.85% (1533/2021) 99.9964% (7160370/7160629)

Table 24: Number of significant SNPs, true positive rates, and true negative rates for each
model and delayed event time combination, using Model 1 (Cox) with no delayed event time
as the gold standard, for all ten phecodes. The results are shown for the P ≤ 1 × 10−5

significance level.

* Based on Model 1 (Cox) - no delayed event time
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63

P ≤ 5× 10−8 P ≤ 1× 10−5

TPR (95% CI) * TNR (95% CI) * TPR (95% CI) * TNR (95% CI) *
No delayed event time
Cox Reference Reference Reference Reference
LRMobs 50.62% (44.49%, 56.75%) 99.99% (99.99%, 100.00%) 62.29% (57.72%, 66.85%) 99.99% (99.97%, 100.00%)
LRMu 57.48% (50.17%, 64.78%) 99.99% (99.99%, 100.00%) 71.37% (67.20%, 75.54%) 99.99% (99.98%, 100.00%)
LRMrl 69.34% (62.73%, 75.94%) 100.00% (99.99%, 100.00%) 80.07% (75.34%, 84.79%) 99.99% (99.98%, 100.00%)
Delayed event time depends on significant SNPs
Cox 84.87% (78.72%, 91.03%) 99.99% (99.95%, 100.00%) 72.92% (67.57%, 78.27%) 99.99% (99.93%, 100.00%)
LRMobs 66.67% (60.31%, 73.03%) 99.99% (99.96%, 100.00%) 54.33% (49.08%, 59.58%) 99.99% (99.93%, 100.00%)
LRMu 67.72% (62.31%, 73.12%) 99.99% (99.96%, 100.00%) 59.10% (53.80%, 64.39%) 99.99% (99.93%, 100.00%)
LRMrl 74.66% (67.29%, 82.04%) 100.00% (99.97%, 100.00%) 67.02% (61.69%, 72.35%) 99.99% (99.94%, 100.00%)
Delayed event time depends on non-significant SNPs
Cox 71.63% (63.44%, 79.82%) 100.00% (99.98%, 100.00%) 75.94% (70.58%, 81.30%) 99.99% (99.96%, 100.00%)
LRMobs 49.17% (43.21%, 55.12%) 99.99% (99.98%, 100.00%) 51.71% (46.63%, 56.79%) 99.99% (99.96%, 100.00%)
LRMu 51.72% (45.85%, 57.59%) 99.99% (99.98%, 100.00%) 61.40% (56.17%, 66.61%) 99.99% (99.96%, 100.00%)
LRMrl 62.14% (55.48%, 68.81%) 100.00% (99.98%, 100.00%) 67.78% (62.36%, 73.20%) 99.99% (99.96%, 100.00%)
Delayed event time is independent
Cox 60.65% (55.34%, 65.96%) 100.00% (99.98%, 100.00%) 68.01% (62.75%, 73.26%) 99.99% (99.96%, 100.00%)
LRMobs 44.57% (39.65%, 49.49%) 99.99% (99.97%, 100.00%) 49.41% (44.98%, 53.85%) 99.99% (99.96%, 100.00%)
LRMu 53.54% (48.62%, 58.46%) 99.99% (99.97%, 100.00%) 57.48% (52.48%, 62.48%) 99.99% (99.96%, 100.00%)
LRMrl 56.84% (51.12%, 62.55%) 100.00% (99.98%, 100.00%) 64.28% (59.34%, 69.23%) 99.99% (99.96%, 100.00%)
Delayed event time depends on sex
Cox 62.54% (57.05%, 68.03%) 99.99% (99.97%, 100.00%) 73.40% (68.26%, 78.54%) 99.99% (99.96%, 100.00%)
LRMobs 48.27% (43.35%, 53.19%) 99.99% (99.97%, 100.00%) 52.70% (48.49%, 56.91%) 99.99% (99.95%, 100.00%)
LRMu 53.43% (48.51%, 58.34%) 99.99% (99.97%, 100.00%) 58.95% (54.52%, 63.37%) 99.99% (99.95%, 100.00%)
LRMrl 58.22% (52.72%, 63.72%) 99.99% (99.98%, 100.00%) 65.96% (61.60%, 70.33%) 99.99% (99.96%, 100.00%)

Table 25: Average true positive and true negative rates (95% confidence interval) for each model and delayed event time combination,
using Model 1 (Cox) with no delayed event time as the gold standard. The average is calculated from ten phecodes, which are given
in Appendix B, Table 1. The results are shown for both the P ≤ 5× 10−8 and P ≤ 1× 10−5 significance levels.
* Based on Model 1 (Cox) - no delayed event time



9 Appendix C: Additional Figures
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(a) Parameters led to a large number of observations with a misclassified
event status.

(b) Parameters led to a small number of observations with a misclassified
event status.

Figure 7: Histograms of counts of observations in each delayed event time case in Simulation
1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution. The delayed event time cases are explained in detail in Appendix
A.
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Figure 8: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from a log-normal
distribution, the censoring time was generated from a uniform distribution, and there was left truncation. The parameters led
to a large number of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 9: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from a log-normal
distribution, the censoring time was generated from a uniform distribution, and there was left truncation. The parameters led
to a small number of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 10: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an expo-
nential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distribution
that depended on x, and there was left truncation. The parameters led to a small number of observations with a misclassified
event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 11: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distri-
bution that depended on x and z, and there was left truncation. The parameters led to a large number of observations with a
misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 12: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distri-
bution that depended on x and z, and there was left truncation. The parameters led to a small number of observations with a
misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 13: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a uniform distribution. The parameters led to a large
number of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 14: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a uniform distribution. The parameters led to a small
number of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 15: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from a log-
normal distribution and the censoring time was generated from a uniform distribution. The parameters led to a large number
of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 16: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from a log-
normal distribution and the censoring time was generated from a uniform distribution. The parameters led to a small number
of observations with a misclassified event status (detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 17: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x. The parameters led to a large number of observations with a misclassified event status (detailed
in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 18: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x. The parameters led to a small number of observations with a misclassified event status
(detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 19: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x and z. The parameters led to a large number of observations with a misclassified event status
(detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 20: Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x and z. The parameters led to a small number of observations with a misclassified event status
(detailed in Appendix A).

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 21: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a uniform distribution. The parameters are the same as
those in Figure 13.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 22: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a uniform distribution. The parameters are the same as
those in Figure 14.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 23: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from a log-
normal distribution and the censoring time was generated from a uniform distribution. The parameters are the same as those
in Figure 15.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 24: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from a log-
normal distribution and the censoring time was generated from a uniform distribution. The parameters are the same as those
in Figure 16.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 25: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x. The parameters are the same as those in Figure 17.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 26: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x. The parameters are the same as those in Figure 18.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 27: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x and z. The parameters are the same as those in Figure 19.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 28: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an
exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential
distribution that depended on x and z. The parameters are the same as those in Figure 20.

* Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Figure 29: Manhattan plots of GWAS results for cancer of bronchus; lung (phecode 165.1) for each model and delayed event
time combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 30: Manhattan plots of GWAS results for cancer of prostate (phecode 185) for each model and delayed event time
combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 31: Manhattan plots of GWAS results for hypothyroidism (phecode 244) for each model and delayed event time combi-
nation. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 32: Manhattan plots of GWAS results for type 2 diabetes (phecode 250.2) for each model and delayed event time
combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 33: Manhattan plots of GWAS results for vitamin D deficiency (phecode 261.4) for each model and delayed event time
combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 34: Manhattan plots of GWAS results for hypercholesterolemia (phecode 272.11) for each model and delayed event time
combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 35: Manhattan plots of GWAS results for insomnia (phecode 327.4) for each model and delayed event time combination.
The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 36: Manhattan plots of GWAS results for myocardial infarction (phecode 411.2) for each model and delayed event time
combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 37: Manhattan plots of GWAS results for coronary atherosclerosis (phecode 411.4) for each model and delayed event
time combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 38: Manhattan plots of GWAS results for atrial fibrillation (phecode 427.21) for each model and delayed event time
combination. The dark green line corresponds to P ≤ 5× 10−8 and the light green line corresponds to P ≤ 1× 10−5.
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Figure 39: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox)
with no delayed event time as the gold standard, for cancer of bronchus; lung (phecode 165.1). Dark green lines correspond to
P ≤ 5× 10−8 and light green lines correspond to P ≤ 1× 10−5.
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Figure 40: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with
no delayed event time as the gold standard, for cancer of prostate (phecode 185). Dark green lines correspond to P ≤ 5× 10−8

and light green lines correspond to P ≤ 1× 10−5.
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Figure 41: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with
no delayed event time as the gold standard, for hypothyroidism (phecode 244). Dark green lines correspond to P ≤ 5 × 10−8

and light green lines correspond to P ≤ 1× 10−5.
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Figure 42: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with
no delayed event time as the gold standard, for type 2 diabetes (phecode 250.2). Dark green lines correspond to P ≤ 5× 10−8

and light green lines correspond to P ≤ 1× 10−5.
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Figure 43: False negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with no delayed event
time as the gold standard, for vitamin D deficiency (phecode 261.4). Dark green lines correspond to P ≤ 5 × 10−8 and light
green lines correspond to P ≤ 1× 10−5.
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Figure 44: False negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with no delayed event
time as the gold standard, for hypercholesterolemia (phecode 272.11). Dark green lines correspond to P ≤ 5 × 10−8 and light
green lines correspond to P ≤ 1× 10−5.



103

Figure 45: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox)
with no delayed event time as the gold standard, for insomnia (phecode 327.4). Dark green lines correspond to P ≤ 5 × 10−8

and light green lines correspond to P ≤ 1× 10−5.
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Figure 46: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox)
with no delayed event time as the gold standard, for myocardial infarction (phecode 411.2). Dark green lines correspond to
P ≤ 5× 10−8 and light green lines correspond to P ≤ 1× 10−5.
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Figure 47: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox)
with no delayed event time as the gold standard, for coronary atherosclerosis (phecode 411.4). Dark green lines correspond to
P ≤ 5× 10−8 and light green lines correspond to P ≤ 1× 10−5.
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Figure 48: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with
no delayed event time as the gold standard, for atrial fibrillation (phecode 427.21). Dark green lines correspond to P ≤ 5×10−8

and light green lines correspond to P ≤ 1× 10−5.
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