
Directedness, Duality, and Parity Conditions for Embedded Graphs

By

Blake Dunshee

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

September 30, 2020

Nashville, Tennessee

Approved:

Mark Ellingham, Ph.D.

Marcelo Disconzi, Ph.D.

Paul Edelman, Ph.D.

Gregory Leo, Ph.D.

Michael Mihalik, Ph.D.



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1: Introduction: Representations of Cellularly Embedded Graphs . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cellularly Embedded Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Partial Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Properties of Partial Duality . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Single-Vertex Partial Duals . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3: Medial Graphs and Crossing-Total Directions . . . . . . . . . . . . . . . . . . 23

3.1 Medial Graph Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Crossing-Total Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Graph States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Balanced Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4: Closed Walks in Gems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 Jewels and Petrie Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Petrie Orientability, Bipartiteness, and Applications to Partial Duals . . . . 42
4.2.2 Parity Conditions for Closed Walks in Gems and Jewels . . . . . . . . . . . 49
4.2.3 Eulerian Partial Duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 5: Directed Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 History of Directed Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Extending Partial Orientations of Eulerian Graphs to Digraph Embeddings . . . . . 74

5.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Embeddings Extending to Directed Embeddings . . . . . . . . . . . . . . . 78

5.3 Eulerian-Directable Mixed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Extending Partial Directed Embeddings to Directed Embeddings . . . . . . . . . . 86

ii



Chapter 6: Introduction to Pseudosurface Duality . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Partial Duality on Pseudosurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 7: Uniqueness of Partial Duality . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Minor Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Combined Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 8: Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

iii



LIST OF FIGURES

Page

1.1 A graph G with V (G) = {v0, v1, v2, v3} and its dual G∗ with V (G∗) = {v4, v5, v6} 2

1.2 A gem J representing a cellularly embedded graph G with 2 vertices, 3 edges, and

1 face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 A ribbon graph G and its arrow-marked ribbon graph G	E(G) (Deng and Jin [11]). 9

2.1 Partial Dual with a Single Edge (Moffatt [30]) . . . . . . . . . . . . . . . . . . . . 18

3.1 {c, d, t}-vertices (Deng and Jin [11]) . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 White (center) and Black (right) smoothings (Deng and Jin [11]) . . . . . . . . . . 25

3.3 A b-vertex in the medial graph of G drawn on a b-edge in G . . . . . . . . . . . . 31

4.1 A tree with 2 distinct partial Petrie duals. . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Overview of Parity Condition Results . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 A bicubic 3-face-colored embedding and a related directed embedding (from Tutte

[38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 A non-extendable properly 2-edge colored linear forest. . . . . . . . . . . . . . . . 92

6.1 A vertex at a pinchpoint in a pseudosurface (Ellis-Monaghan and Moffatt [15]). . . 100

6.2 A gem J (left) and its dual gem J∗ (right) . . . . . . . . . . . . . . . . . . . . . . 102

6.3 A pseudocellular, pseudosurface embedding corresponding to J and a pseudocel-

lular embedding corresponding to J∗ . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 A chain of 5 vertices in the medial graph . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 A chain shift σ = (e1e2e3) of e1 applied to the chain in Figure 7.1 . . . . . . . . . 122

7.3 Diagram for the relationship between G, H , and the minor operations. . . . . . . . 125

iv



Chapter 1

Introduction: Representations of Cellularly Embedded Graphs

1.1 Introduction

In this dissertation we explore the relationships between various properties of cellularly embed-

ded graphs and their related graphs. Specifically we relate parity conditions in a gem representa-

tion of a cellularly embedded graph with properties of the embedding itself, the graph embeddings

generated by applying duality and Petrie duality, and the medial graph. These properties include

orientability, bipartiteness, the existence of an Eulerian circuit, the existence of certain bidirections

of the medial graph, and directability. We also examine how partial duality, a generalization of the

concept of duality, interacts with these properties and explore the uniqueness of partial duality up

to a set of desired conditions.

In Chapter 1 we discuss different representations of cellularly embedded graphs. The main

way that cellularly embedded graphs are represented in this dissertation is by graph encoded maps

or gems. We will show many instances where using gems, especially when interacting with partial

duality and partial Petrie duality, will be more convenient than using a typical representation of a

cellularly embedded graph as a ribbon graph or embedding scheme. In Chapter 2 we introduce the

operations of duality and its generalization, partial duality. The operation of duality for embedded

graphs is performed by placing a vertex in each face and putting a new edge across each original

edge. An example is given below in Figure 1.1. The idea of partial duality was first introduced by

Chmutov in 2009 using ribbon graphs and has found numerous applications in the years since. We

show an equivalent way to think of partial duality using gems and discuss the basic properties of

partial duality.

In Chapter 3 we will extend a result of Deng and Jin and begin to show the relationship between

structural and topological properties of a cellularly embedded graph and orientations of its medial
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Figure 1.1: A graph G with V (G) = {v0, v1, v2, v3} and its dual G∗ with V (G∗) = {v4, v5, v6}

graph. We also show how partial duality and partial Petrie duality affect certain orientations, also

called directions, of the medial graph. In Chapter 4 (bi)directions of the medial graph are related to

parity conditions of closed walks in gems. Furthermore, seven distinct parity conditions, which can

be identified with points in the Fano plane, are each shown to correspond to embedding properties,

the bipartiteness of related graphs, and bidirections of the medial graph. Each line in the Fano

plane gives us a theorem relating the three properties corresponding to points in the line. We

also characterize which abstract graphs have an embedding satisfying each of the seven properties.

One of the seven properties gives a characterization of when an undirected embedded graph can

be given an orientation in such a way that the resulting embedding of a directed graph is a directed

embedding, which is shown in Chapter 5.

A directed embedding of a digraph is an embedding where the face boundary walks are directed

walks. Generally, in Chapter 5 we seek to answer whether or not an embedding of an undirected

graph or mixed graph can be given a direction (orientation) in such a way that the resulting directed

graph is a directed embedding and if this directed embedding can have certain desired properties

such as orientability or the presence of a set of prespecified faces. We give a characterization of

when a pair (G,W), where G is a mixed graph and W is a collection of closed directed walks,

can be extended to a directed embedding of an orientation D of G where the set of existing arcs

2



(original directed edges) of G is unchanged and W is a subcollection of the facial walks in the

embedding. We also characterize when such an embedding can be chosen to be orientable.

Chapters 6 and 7 further explore the operations of duality and partial duality. In Chapter 6 we

give a definition of duality in the setting of a generalization of cellular embeddings on surfaces

to pseudocellular embeddings on pseudosurfaces and discuss the possibility of extending partial

duality to this context. In Chapter 7 we explore various sets of properties in the pursuit of a result

on the uniqueness of the operation of partial duality up to a set of desired properties. We discuss

what makes Chmutov’s definition a “natural” one and give examples of other operations that fit

some of the desired properties of partial duality but seem to be more contrived. Finally, Chapter 8

gives avenues for future research.

Chapters 1, 2, and 3 mostly present background information and known results taken under a

new lens. Chapters 4, 6, and 7 are joint work with Mark Ellingham. Chapter 5 is joint work with

Mark Ellingham and Joanna Ellis-Monaghan.

1.2 Cellularly Embedded Graphs

An embedded graph G = (V (G), E(G)) ⊆ Σ is a graph G drawn on a surface Σ such that

the edges intersect only at their endpoints. By surface we mean a compact 2-manifold. Therefore

all connected surfaces in this paper are Sh, a sphere with h handles added, or Nk, a sphere with k

crosscaps added. The connected components of Σ \ G are called the regions or faces of the em-

bedded graph. Each face has a boundary consisting of edges in the embedded graph that form one

or more closed walks called facial walks. An embedded graph G is called a cellularly embedded

graph if each of these regions is homeomorphic to an open disc; in that case each face has only

one facial walk.

In this paper we consider abstract graphs and embedded graphs up to isomorphism. An iso-

morphism from an abstract graph G to another abstract graph H is a bijection f that maps V (G)

to V (H) and E(G) to E(H) such that each edge of G with endpoints u and v is mapped to an

edge with endpoints f(u) and f(v). An isomorphism of embedded graphs is an abstract graph iso-
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morphism that maps facial walks to facial walks up to reversal and/or cyclic shifts. For cellularly

embedded graphs this is the same as the characterization that G ⊆ Σ is equivalent to G′ ⊆ Σ′ if

there is a homeomorphism from Σ to Σ′ that sends G to G′.

Now we give three standard ways to represent cellularly embedded graphs: ribbon graphs,

graph encoded maps, and embedding schemes.

A ribbon graph G = (V (G), E(G)) is a (possibly nonorientable) surface with boundary repre-

sented as the union of two sets of closed discs: a set V(G) of vertices and a set E(G) of edges such

that

(a) the vertices and edges intersect in disjoint line segments,

(b) each such line segment lies on the boundary of exactly one vertex and one edge, and

(c) every edge contains exactly two such line segments.

These definitions for ribbon graphs and cellularly embedded graphs define equivalent objects.

If G is a cellularly embedded graph then by taking small neighborhoods around the vertices and

edges of G we arrive at the corresponding ribbon graph. As long as we take small enough neighbor-

hoods we can see that we satisfy the three criteria for vertex and edge discs. To move from a ribbon

graph back to a cellularly embedded graph we can attach a disc to each boundary component of the

ribbon graph; these will correspond to the faces in the embedded graph. Then we can shrink the

vertex discs to points and the edge discs to line segments to arrive at a cellularly embedded graph.

Thus we can think of ribbon graphs and cellularly embedded graphs in one-to-one correspondence

and we consider two ribbon graphs to be equivalent if their corresponding cellularly embedded

graphs are equivalent.

We now move our attention to another way to represent cellularly embedded graphs. The

concept of a gem that we use here (although not the name) is due to Robertson [33] and was

further developed by Lins and others. We will use a definition based on Lins [26].

An edge-coloring of a graph G is a labeling γG : E(G) → S. If |S| = k the edge-coloring is

called a k-edge-coloring. The labels in S are called colors and the edges of a color ci ∈ S form a

color class of edges, γG−1(ci). A k-edge coloring is proper if adjacent edges, i.e., edges adjacent
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to a common vertex, have different labels; that is, if each color class is a matching.

A graph-encoded map or gem J is a finite cubic graph with a given proper 3-coloring of its

edges. We will call these three colors cv, cf , and ca; these are constants, not variables. As a

convention, in figures we will consistently use the real colors red, blue, and yellow for cv, cf , and

ca, respectively. Further, we require that the components of the subgraph generated by the edges

colored cv and cf be polygons with four edges each. We will call these polygons e-squares. We

think of these three colors as vertex, facial, and auxiliary colors which will allow us to assign to

our gem a unique, up to isomorphism, cellularly embedded graph. Note that this definition cannot

cope with embeddings that have isolated vertices. So we also allow a component of a gem to be a

“free loop” with no vertices or edges, but which we consider to be colored ca. This free loop will

represent an isolated vertex in the corresponding cellularly embedded graph.

A 2-edge-colored polygon or bigon in a gem J is a polygon in J whose edges are colored

alternately with two of the three colors. The bigons have three types:

(a) e-squares, whose edges are labeled with cv and cf .

(b) v-gons, whose edges are labeled with cv and ca.

(c) f-gons, whose edges are labeled with cf and ca.

These three sets of bigons will correspond naturally to the edges, vertices, and faces, respectively

of our cellularly embedded graph that is represented by J . A free loop is considered to be both a

v-gon and an f-gon.

This definition will allow us to easily perform the operation of partial duality. First we will see

how these gems correspond to ribbon graphs and therefore to cellularly embedded graphs. To move

from a gem J to the corresponding ribbon graph G, we glue discs to the bigons that correspond to

vertices and edges. This can be seen in the following three step process.

1. First glue a disc to each v-gon in J (so that the v-gon is identified with the boundary of the

disc). These discs are the set V (G) from the definition of a ribbon graph.

2. Next glue a disc to each e-square in J . These discs are the set E(G) from the definition of a

ribbon graph.
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Figure 1.2: A gem J representing a cellularly embedded graph G with 2 vertices, 3 edges, and 1
face.

3. Finally remove all vertices and labeled edges from the gem J so that we are left with only

two sets of discs V (G) and E(G) such that

(a) the vertices and edges intersect in disjoint line segments,

(b) each such line segment lies on the boundary of exactly one vertex and one edge, and

(c) every edge contains exactly two such line segments.

This set of vertices and edges makes up a ribbon graph G = (V (G), E(G)) which has a corre-

sponding cellularly embedded graph. Notice that the disjoint line segments where these two sets

of discs intersect are precisely the edges labeled cv in the gem J . At this stage we have shown how

to move from a gem to a ribbon graph. To go from a ribbon graph to a gem we can essentially

reverse the steps above while being careful where to place our labeled edges along the way. Given

a ribbon graph G = (V (G), E(G)), we proceed as follows.

1. Label with cv the disjoint line segments where the vertices and edges intersect and place a

vertex at each end of every line segment.

2. Then label with cf the two portions of the boundary of each disc inE(G) that do not intersect

with any disc in V (G).

3. Then label with ca the portions of the boundary of each disc in V (G) that do not intersect

with any disc in E(G).

6



4. Now remove interiors of the discs V (G) and E(G) so that all that remains is a set of labeled

edges which meet at vertices.

This gives a gem J . Since gems are in one-to-one correspondence with ribbon graphs they are

also in one-to-one correspondence with cellularly embedded graphs. The cellularly embedded

graph G associated with a gem J is the cellularly embedded graph derived from the ribbon graph

corresponding with G through the process above. We will move freely between gems, ribbon

graphs, and cellularly embedded graphs.

Next we give a third way to represent cellularly embedded graphs.

Given an embedded graph G, at each vertex v ∈ V (G) the transition graph T (G, v) is con-

structed as follows:

1. Create a vertex for each half-edge incident with v.

2. Join two (possibly equal) vertices by an edge for each time their corresponding half-edges

occur in succession along a face in the embedding of G.

Thus at each vertex in an embedded graph G the transition graph T (G, v) is isomorphic to a cycle

of length d(v). The set of transition graphs of G, T (G), is the set T (G) = {T (G, v) : v ∈ V (G)}.

Next we will show that these transition graphs can be used as another method of describing an

embedding. In the above definitions we described the process of how to obtain transition graphs

from a given embedding. However we can also characterize cellularly embedded graphs using

transition graphs, edge twists, and local orientations.

As defined by Mohar and Thomassen [32], an embedding scheme S is a graphG together with a

clockwise cyclic orientation of the half-edges at each vertex (sometimes referred to as the rotation

at that vertex) and a function assigning to each edge a signature (either +1 or −1).

An embedding scheme can be thought of as choosing a transition graph at each vertex, then

choosing which direction along the cycle to define as clockwise, and then choosing whether each

edge in G has a twist (signature). Determining an embedding scheme has the following steps:

1. Begin with an abstract graph G.

2. At each vertex v ∈ V (G) construct a graph T (G, v) by placing a vertex at each half-edge
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incident with v and assign edges to T (G, v) so that T (G, v) is isomorphic to a cycle of length

d(v).

3. For each vertex v ∈ V (G) assign a clockwise direction for the cycle T (G, v).

4. For each edge e ∈ E(G) assign a signature (untwisted +1 or twisted −1).

So an embedding scheme is a triple consisting of a set of transition graphs T , a consistent

direction λ(v) for each transition graph T (G, v), and a signature function ε(e). The first two

of these determine a rotation system. We sometimes consider a rotation system to determine an

embedding by itself, by taking all edge signatures to be +1.

In a cycle C of length l with cyclic vertex ordering v1v2...vl we can split a vertex vi in C into

two vertices u1 and u2 connected by an edge to create a new cycle C ′ with length l + 1 and vertex

ordering v1v2...vi−1u1u2vi+1...vl. We will use this to translate from an embedding scheme to a gem

(and thus to a cellularly embedded graph).

Let S be a embedding scheme for a graph G. We will construct a unique graph encoded map

J from S. For each transition graph T (G, v) in T , color the edges in T (G, v) with ca. Then split

each vertex in T (G, v) corresponding to a half-edge in G (half of an edge e, say) and color the

new edge with cv and associate it with the same edge e in G. Each transition graph then has been

colored and split in such a way that it is a v-gon associated with the vertex v in G. These v-gons

inherit the clockwise direction from S.

Then, for every edge e ∈ E(G), we complete the two edges, e1 and e2, associated with e and

colored cv, to an e-square using the following procedure. If the signature associated with e is −1,

then attach the vertices on the clockwise ends of e1 and e2 with an edge colored cf and attach

the vertices on the counterclockwise ends of e1 and e2 with an edge colored cf . If the signature

associated with e is +1, then attach the vertex on the clockwise end of e1 with an edge colored cf

to the vertex on the counterclockwise end of e2 and attach an edge colored cf with endpoints being

the two other ends of e1 and e2. This creates a unique gem associated with S.

Here are the steps to go from a gem to a (nonunique) corresponding embedding scheme. Given

a gem J , select a local clockwise direction for each v-gon. If the edges colored cf on an e-square

8



Figure 1.3: A ribbon graph G and its arrow-marked ribbon graph G	 E(G) (Deng and Jin [11]).

associated with e connect the two clockwise ends of the edges colored cv in e to each other (and

similarly the two counterclockwise ends), then assign the signature −1 to e. Otherwise assign

the signature +1. Then contract the edges colored cv in J and replace them with a single edge

e, but keep the direction on each v-gon as a local clockwise direction for the vertex. This gives a

transition graph with direction function and signature function.

Throughout the majority of this paper we will use the gem representation of a cellularly em-

bedded graph, though we sometimes make reference to ribbon graphs and embedding schemes.

We now give another way to represent ribbon graphs which will be used for defining partial

duality.

An arrow-marked ribbon graph consists of a ribbon graph equipped with a collection of labeled

arrows called marking arrows on the boundaries of its vertices. These marking arrows allow us to

delete edges from the ribbon graph while maintaining the information about the position of each

edge. The marking arrows are such that no marking arrow meets an edge of the ribbon graph, and

there are exactly two marking arrows with each label. These two marking arrows mark the position

of a missing edge and correspond to the two line segments in part (c) of the definition of a ribbon

graph. Figure 1.3 shows a ribbon graph and a corresponding arrow-marked ribbon graph.

As noted, arrow-marked ribbon graphs will be useful for retaining information about an edge’s

placement upon deletion of that edge. Here is how that process works. Let G be a ribbon graph

and A ⊆ E(G). Then let G 	 A denote the arrow-marked ribbon graph obtained as follows: For

9



each edge e ∈ A,

(a) arbitrarily orient the boundary of e,

(b) place an arrow on each of the two line segments where e meets a vertex of G that follows the

orientation of the boundary of e,

(c) label these two arrows with e, then

(d) delete the edge e.

We denote by G ⊕ A the natural inverse of this operation where in this case A is a set of pairs of

labels (pairs of marking arrows). In this process, for each label e ∈ A:

(a) take a disc and orient its boundary arbitrarily, then

(b) add this disc to the ribbon graph by identifying two non-intersecting arcs on the boundary of

the disc with the two marking arrows colored e.

These discs now form edges in a new ribbon graph. From any arrow-marked ribbon graph we

can repeat this process until all arrow markings are gone. Thus, we say that two arrow-marked

ribbon graphs are equivalent if the ribbon graphs they describe are equivalent. We will commonly

not distinguish between sets of labels and sets of edges since they represent the same objects.

Recall that in a ribbon graph the disjoint line segments where the two sets of discs V (G) and E(G)

intersect are precisely the edges labeled cv in the gem J . Therefore, in the definition of arrow-

marked ribbon graphs we see that the edges labeled cv in the e-squares associated with an edge set

A correspond directly to marking arrows in G	A. This is important to keep in mind as we define

partial duality for gems in order to see that this operation is the same as the one we defined for

ribbon graphs.

1.3 Orientability

A local orientation at a point in a surface is an assignment of a clockwise direction do an open

neighborhood homeomorphic to a disc around that point. A curve in a surface is a continuous

image of the unit interval [0, 1]. A consistent global orientation of a surface is a local orientation at

every point in the surface such that any two local orientations agree when translated along a curve.
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A surface is called orientable if it can be given a consistent global orientation. A local orientation

of a cellularly embedded graph is an assignment of a local orientation to disjoint neighborhoods

homeomorphic to a disc around each vertex.

If the surface Σ on which a cellularly embedded graphG is embedded is orientable then we say

that G is orientable. An equivalent definition of an orientable embedding is that G is orientable

if its embedding has a consistent global orientation, meaning that local orientations assigned to

each vertex agree when translated along an edge. Since all faces in cellular embeddings are home-

omorphic to discs, a consistent global orientation of an embedded graph gives a consistent global

orientation of the surface in which it is embedded. A third characterization of orientable cellularly

embedded graphs is that the facial walks can be assigned directions in such a way that every edge

is used once in each direction when traveling along a face. These directions can then be regarded

as giving a global clockwise orientation. A cellularly embedded graph with an embedding scheme

where every edge is assigned signature +1 is orientable. Also, an embedding where every cycle is

two sided (every cycle has an even number of edges with signature −1) is orientable.

Orientability is a fundamental property of embeddings. The next theorem gives a characteri-

zation of orientable embeddings in terms of gems. This will help us observe how the property of

orientability behaves under taking partial duals in a subsequent corollary.

Theorem 1.3.1 (Lins [26]). Let J be a gem with a corresponding cellularly embedded graph

G ⊆ Σ. Then the surface Σ, and hence the embedded graph G, is orientable if and only if J is

bipartite.

Proof. Let J be the gem corresponding to a cellularly embedded graph G ⊆ Σ. Assume that Σ is

orientable. Since the embedding of G in Σ is orientable, the embedding of the gem J in the same

surface Σ is orientable. Thus, there is a consistent orientation of J so that we may refer to the

clockwise cyclic sequence of edges incident to a vertex in a meaningful way.

Now, under this embedding of J in Σ together with its orientation, consider the following

bipartition of the vertices in J : Let X be the set of vertices whose clockwise cyclic sequence of

colors is ca, cf , cv. Let Y be the set of vertices whose clockwise cyclic sequence of colors is ca,
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cv, cf . First we must check that this is indeed a well-defined partition of V (J). Indeed, by the

orientability property described above, we can see that a each vertex has a unique clockwise cyclic

sequence of edge labels corresponding to the three colors since J is a properly 3-edge colored

cubic graph. It is also clear that each vertex is in exactly one set X or Y . So the bipartition is well

defined. Now we check that each edge has an endpoint in X and an endpoint in Y . Let e ∈ E(J).

Because all bigons in J are facial walks, in order for the orientation to be consistent we must be

able to orient the bigons in J so that if we traverse an oriented bigon then at each vertex we travel

along the next edge in the clockwise cyclic sequence. Since all the bigons consist of two colors

this means that the cyclic sequence is reversed at each vertex when traveling around a bigon. Now

it becomes clear that for any edge e ∈ E(J) one endpoint has clockwise cyclic orientation ca, cf ,

cv and the other has ca, cv, cf . Therefore we have shown that J is bipartite.

Now conversely assume that J is bipartite. Let X and Y be the two sets of the bipartition.

Assign an orientation, B, of the edges of J such that all edges go from a tail in X to a head in

Y . So every vertex in X is a source and every vertex in Y is a sink. Now we will show that we

can orient the facial walks of J in such a way that each edge appears once in the direction of B

and once in the direction opposite to B. For the v-gons we travel along the edges colored cv in

the same direction as the orientation B and along the edges colored ca in the opposite direction

to the orientation B. Then, in the f-gons we travel along the edges colored ca in the direction of

the orientation B and along the cf edges in the opposite direction to B. Finally, we traverse the

e-squares by going along the edges colored cf in the direction of B and along the edges colored cv

in the opposite direction to B. So we traversed each face of J in such a way that each edge appears

once in the direction of B and once in the direction opposite to B. Thus the embedding of J in Σ

is orientable.
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Chapter 2

Dualities

2.1 Duality

Given a cellularly embedded graph G ⊆ Σ, the dual, G∗, is formed by placing one vertex in

each face of G and embedding an edge of G∗ between two vertices of G∗ for each edge that the

corresponding faces of G share. Notice that there is a natural immersion of G ∪ G∗ in Σ where

each edge of G intersects with precisely one edge of G∗ at exactly one point. We will call this the

standard immersion ofG∪G∗. This immersion nicely portrays the natural bijection betweenE(G)

and E(G∗) from the definition of duality. We will use e∗ to denote the edge of G∗ that corresponds

to and intersects the edge e of G.

Recall that if we wish to change a ribbon graph G to a cellularly embedded graph we attach

discs to the boundary components. These discs naturally correspond to the faces in the cellularly

embedded graph. Thus if we fill in the boundary components with a set of discs, V (G∗), we arrive

at a surface without boundary. If we then remove the set of discs V (G) we arrive at the dual

G∗ = (V (G∗), E(G)). This is how we define duality for ribbon graphs. We see clearly here the

bijection between the edge sets of G and G∗ because they are exactly the same.

The dual of a cellularly embedded graph G can be formed using gems. First we move from G

to its associated gem J . Then the dual J∗ is formed by swapping the colors cv and cf . Observe

that this interchanges the v-gons and f-gons in the gem which, in the process described above, will

cause vertices and faces to swap in the corresponding cellularly embedded graph. The dual G∗ is

the cellularly embedded graph associated with the gem J∗. We see that this is equivalent to the

definition given for ribbon graphs. Indeed, the faces and vertices ofG that correspond to the f-gons

and v-gons in J are swapped by this process. The edges in the dual graph are between any two

vertices in G∗ that correspond to faces in G that share a common edge. This can be seen clearly by
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viewing the e-squares as displaying which vertices and faces are adjacent in both the graph and its

dual, where these two get swapped by taking the dual.

The Petrie dual of a cellularly embedded graph G is obtained by giving every edge in G a twist

(changing the signature of every edge in an embedding scheme representation) and is denoted by

G×. For any edge set A ⊆ E(G) the partial Petrie dual with respect to A is obtained from G by

changing the signature of all edges in A and is denoted G × A. We will show how Petrie duality

and partial Petrie duality can be expressed using an extension of gems in Chapter 4.

2.2 Partial Duality

We begin with the definition for partial duality given by Chmutov [10]. In his 2009 paper,

he introduced the concept of partial duality in order to generalize the dual of embedded graphs

and explore properties of the Bollobás-Riordan polynomial of embedded graphs with signs at-

tached to the edges. Though partial duality was introduced relatively recently, it has proven to be

a fundamental operation on embedded graphs with applications extending well beyond Chmutov’s

original motivation. Partial duals of embedded graphs can have vastly different topological and

graph-theoretical properties from the original embedded graph. Since we will primarily concern

ourselves with characterizing embedded graphs based on the properties of the partial duality op-

eration and are not so much concerned with graph polynomials, it will be useful for us to use the

definition of Moffatt [24] rather than that of Chmutov. This definition is essentially the same as

the Chmutov definition but does not use signs on edges of the graph. Both of the definitions use

ribbon graphs to define partial duality.

We will now define partial duality using the definition from Moffatt [28] . Let G be a ribbon

graph and A ⊆ E(G). Then the partial dual GA of G is formed by:

(a) “hiding” the edges that are not in A by replacing them with marking arrows using G	 Ac,

(b) forming the dual (G	 Ac)∗, then

(c) putting back in the edges that are not in A.

This gives us GA = (G	 Ac)∗ ⊕ Ac.
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Let G be a ribbon graph and A ⊆ E(G). Then the partial dual of G with respect to A, denoted

by GA, is given by

GA := (G	 Ac)∗ ⊕ Ac.

It becomes clear now that we are effectively taking the dual of the ribbon graph with respect to

only a subset of the edges. The marking arrows are used to remove then replace edges that are not

in A so that they are unaffected in some sense by taking the partial dual with respect to A.

We can also define partial duality using gems. The partial dual of a cellularly embedded graph

Gwith respect to a subset of edgesAwith corresponding gem J and corresponding set of e-squares

A is formed by swapping the colors cv and cf on the bigons corresponding to A in the gem J . This

gives us the gem JA that corresponds to the cellularly embedded graph GA, the partial dual of G

with respect to A. This appears to be a simpler way to define partial duality when compared to the

definition using arrow-marked ribbon graphs, if it is indeed the same operation as in the definition

using ribbon graphs. We now show that the two operations are equivalent.

Proposition 2.2.1. Let G be a cellularly embedded graph with corresponding ribbon graph and

graph encoded map. Then the partial dual of G with respect to an edge set A using the ribbon

graph formulation is equivalent as a cellularly embedded graph to the partial dual of G with

respect to the same edge set A using the gem formulation.

Proof. Recall the steps to transition from a ribbon graph G = (V (G), E(G)) to a corresponding

gem J as described above. Let us consider what happens to the gem as we take the partial dual

of the ribbon graph G = (V (G), E(G)) with respect to a set of edges A ⊆ E(G). Under the

definition of partial duality for ribbon graphs, the underlying graph formed by the boundary of

the discs in steps (1), (2), and (3) is unchanged. Some edges are deleted and then replaced in the

same position and other edges change label when we dualize, but the underlying graph of the gem

does not change. So all that remains to be seen is that the edges that change label in the gem

are precisely the swaps on the e-squares for edges in A. Notice that none of the edges labeled ca
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change because boundary segments of discs in V (G) that do not intersect any disc in E(G) are

unaffected by partial duality on the ribbon graph G. The labels on the edges corresponding to

e-squares in Ac are unchanged because these discs are removed and then put back with the exact

same portions intersecting vertices in the ribbon graph. The labels on the edges corresponding to

e-squares in A swap when we dualize G	Ac. Indeed, for each edge in A the portions of the edge

that intersect vertices swap with the portions of the edge that do not intersect any vertex. In the

gem, this corresponds to swapping the labels cv and cf on all of the e-squares in A and making no

other changes. This is precisely the definition of partial duality using the gem formulation.

So we have shown that the definition of partial duality using gems is equivalent to the operation

defined using ribbon graphs. This definition of partial duality proves to be valuable in providing

alternate methods for proving properties of the partial duals of cellularly embedded graphs. This

is the main reason why we will routinely choose to use the gem representation in this paper. From

the definition of partial duality using gems we obtain an immediate Corollary of Theorem 1.3.1.

Corollary 2.2.2. GA is orientable if and only if G is orientable.

Partial duality preserves orientability since taking the partial dual does not affect whether or

not the underlying graph of the corresponding gem is bipartite. It is also worth noting that J being

bipartite is equivalent to all closed walks in J being of even length. As it turns out, there are

other interesting consequences of characteristics of closed walks in J . The parity of the number of

edges of each color in closed walks in a gem tells us characteristics of the corresponding cellularly

embedded graph. We will discuss results of this type in Chapter 4.

2.2.1 Properties of Partial Duality

Proposition 2.2.3. Properties of Partial Duality

The following are properties of the operation of partial duality defined above. Here we let G be a

cellularly embedded graph with A,B ⊆ E(G) and e ∈ E(G).

(a) GE(G) = G∗.
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(b) G∅ = G.

(c) (GA)A = G.

(d) (GA)B = (GB)A.

(e) (GA)B = GA∆B where A∆B = (A∪B) \ (A∩B) is the symmetric difference of A and B.

Proof. (a) This is clear from the way we defined partial duality. Taking the partial dual with respect

to all the edges is the same as taking the dual since in both cases we swap the colors cv and cf on

all e-squares in the gem and then GE(G) = G∗ is the corresponding cellularly embedded graph.

(b) This follows directly from the definition since swapping colors on an empty set of e-squares

leaves the gem and hence the corresponding cellularly embedded graph unchanged.

(e) Swapping colors on the e-squares for A and then swapping colors on the e-squares for B is

equivalent to swapping the colors on the e-squares for A∆B. Therefore (GA)B = GA∆B.

(c), (d) These follow directly from (e).

Let us examine how taking the partial dual of a cellularly embedded graph with respect to

a single edge impacts the graph. Taking the partial dual with respect to a single edge can be

categorized by whether that edge is (a) a non-loop edge (a link), (b) an orientable (untwisted) loop,

or (c) a nonorientable (twisted) loop. These three situations are shown in Figure 2.1. If we dualize

a link, the two ends of the link become a single vertex and the link becomes an untwisted loop; if

we dualize an untwisted loop the vertex to which the loop is incident splits into two vertices and

the loop becomes a link; and if we dualize a twisted loop it remains a twisted loop although the

vertex to which it is incident has a new cyclic order of edges.

Notice that we can define edge deletion for ribbon graphs in the natural way. Deletion of edges

in a ribbon graph results in another ribbon graph which also describes a cellularly embedded graph.

This will be a useful operation since in general deletion of edges from a cellularly embedded graph

may result in a non-cellularly embedded graph. So, we use the following definition.

Let G be a ribbon graph, e ∈ E(G), and v ∈ V (G). Then G − e or G \ e denotes the ribbon

graph obtained from G by deleting the edge e, and G− v denotes the ribbon graph obtained from

G by deleting the vertex v and all of its incident edges. A ribbon graph H is a ribbon subgraph of
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Figure 2.1: Partial Dual with a Single Edge (Moffatt [30])

G if it can be obtained from G by deleting vertices and edges. If v1 and v2 are the (not necessarily

distinct) vertices incident to e, then G/e denotes the ribbon graph obtained as follows: consider

the boundary component(s) of e ∪ v1 ∪ v2 as curves on G. For each resulting curve attach a disc

(which will form a vertex of G/e) by identifying its boundary component with the curve. Delete e,

v1, and v2 from the resulting complex to get the ribbon graph G/e. We say G/e is obtained from

G by contracting e. We say that H is a ribbon graph minor of a ribbon graph G if H is obtained

from G by a sequence of edge deletions, vertex deletions, or edge contractions. We also say that

G has an H-ribbon graph minor if it has a ribbon graph minor equivalent to H .

The definition of ribbon graph minors can also be translated to the language of gems. To delete

an edge e in a gem J we remove the edges colored cf in the e-square for e and then replace each

maximal path with internal vertices of degree 2 by a single edge of color ca (or a cycle of degree 2

vertices by a free loop of color ca). To contract an edge e we proceed in the same way except that

we remove the edges colored cv, not cf , in the e-square for e.

We now have three operations on edges in cellularly embedded graphs (deletion, contraction,

and partial duality) and in the following lemma we give properties of how these operations interact.
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All of these properties follow directly from the definitions of the three operations.

Lemma 2.2.4. Let G be a cellularly embedded graph and e, f ∈ E(G) with e 6= f . Then

1. G\e/f = G/f\e.

2. G\e = (Ge)/e and G/e = (Ge)\e.

3. (Ge)\f = (G\f)e and (Ge)/f = (G/f)e.

We can extend these definitions and properties to the level of sets of edges. For disjoint sets

B,C we have G\B/C = G/C\B and we can form this all at once in terms of the gem J . In

this process we delete cf edges for e-squares in B, cv edges for e-squares in C, and then replace

all maximal paths with internal vertices of degree 2 by edges colored ca and all cycles of vertices

of degree 2 by free loops colored ca. We can also combine and extend properties (1), (2), and (3)

similarly to obtain properties like GA\B/C = (G\((B\A)∪ (C ∩A))/((B ∩A)∪ (C\A)))A\B\C

for disjoint edge sets B,C and an arbitrary edge set A.

We now turn our attention to the effects of partial duality on the medial graph of a cellularly

embedded graph. Let G be a cellularly embedded graph in Σ. We construct its medial graph

M = Med(G) by placing a vertex v(e) on each edge e of G and then for each face f with bound-

ary v1e1v2e2...vd(f)ed(f) we draw the edges (v(e1), v(e2)), (v(e2), v(e3)), ...., (v(ed(f)), v(e1)) in a

natural non-intersecting way inside the face f . Note that M is a 4-regular cellularly embedded

graph in Σ. If we think of G as a cellularly embedded graph resulting from a gem J , we see that

there is a natural bijection between the edges colored ca in J and the edges of the medial graph.

The medial graph may be obtained from the gem by contracting each e-square to a vertex.

A checkerboard coloring of a cellularly embedded graph is a proper 2-face coloring where we

assign the color black or white to each face in such a way that adjacent faces receive different

colors. A medial graph M of a cellularly embedded graph G can always be given a checkerboard

coloring by assigning the color black to all faces in M that correspond to a vertex in the original

graph G and coloring the remaining faces, which correspond to a face in G, white. We call this the

canonical checkerboard coloring of M .

Although they did not explicitly state it in these terms, Corollary 3.20 in Ellis-Monaghan and
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Moffatt’s book [14] shows that taking the Chmutov partial dual of an edge e in a cellularly embed-

ded graph G corresponds to flipping v(e) in the checkerboard-colored, rigid-vertex, vertex-labeled

medial graph M of G. This result also appears in an earlier paper from Ellis-Monaghan and Mof-

fatt [13, Theorem 4.24]. By rigid-vertex we mean that we allow only for flips of vertices (reversals

of the cyclic ordering of edges around a vertex) in the embedding of the medial graph.

Proposition 2.2.5 (Ellis-Monaghan and Moffatt [14, Corollary 3.20]). Suppose G and H are em-

bedded graphs with checkerboard-colored embedded medial graphs M and N respectively. Then

H = GA for some A ⊆ E(G) if and only if N is obtained from M by reversing the local clockwise

ordering around each vertex of M corresponding to an edge in A, with the checkerboard coloring

swapping colors around vertices corresponding to edges in A and remaining unchanged around

vertices corresponding to edges in E(G) \ A.

Proof. Swapping the colors cv and cf on the e-square in the gem corresponding to an edge e

corresponds precisely to reversing the rotation of, and swapping the colors around, the vertex v(e)

in the checkerboard-colored embedded medial graph.

2.2.2 Single-Vertex Partial Duals

We now move our attention to single-vertex embeddings, also known as bouquets. Single-

vertex embeddings are an important special class of embeddings that have been studied from a

number of perspectives, and have connections to other ideas such as chord diagrams. Every con-

nected embedded graph has a partial dual that is a single-vertex embedding, namely by dualizing

the edges of a spanning tree. Since every connected embedded graph has at least one single-vertex

partial dual, it is natural to ask when all the partial duals are single-vertex.

Next we will give a characterization of when all partial duals of an embedded graph have only

one vertex. Consider such an embedded graph G with gem J . First, recall that if an embedded

graph has an untwisted loop, then taking the partial dual with respect to that loop splits the incident

vertex into two vertices. So G (and all partial duals of G) contain no untwisted loops. Clearly,
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G also contains no links, so all edges in G are twisted loops. Two loops e and f are called

interlaced if they share a common vertex v and the cyclic order of edge labels around v is of the

form AeBfCeDf where A,B,C, and D are ordered lists of edge labels. Next, observe that if two

twisted loops are interlaced, then taking the partial dual with respect to one of the two twisted loops

results in the other loop becoming untwisted. So G has no interlaced twisted loops. If there are no

interlaced twisted loops, then taking the partial dual with respect to a noninterlaced twisted loop

keeps that edge and all other edges as noninterlaced twisted loops. So we arrive at the following

characterization.

Theorem 2.2.6. An embedded graph G with gem J is such that GA has a single vertex for all

A ⊆ E(G) if and only if G has a single vertex and every edge of G is a noninterlaced twisted loop.

A graph is outerplanar if it has an embedding in the plane with every vertex on the boundary

of the outer face.

The end graph of a cellularly embedded graph G is formed by first creating a vertex for each

half-edge in G. Two vertices in the end graph are adjacent if they represent half-edges of the same

edge in G or if their half-edges are next to each other in cyclic order around a vertex in G. Thus

the end graph is a 3-regular graph with 2E(G) vertices. Because the ends of G are in one-to-one

correspondence with the edges colored cv in the gem, the end graph of a cellularly embedded graph

G with corresponding gem J can be formed by contracting all edges colored cv in J , removing one

of the two parallel edges colored cf in J corresponding to an edge e ∈ E(G), and removing the

colors from the remaining edges in J .

The colored end graph is obtained from the gem J by the same process with the exception of

the final step of removing the colors from the remaining edges in J .

Theorem 2.2.7. All partial duals of an embedded graph G with gem J have only one vertex if and

only if every edge is a twisted loop and the colored end graph can be drawn as an outerplanar

graph where all outside edges are colored ca.

Proof. Assume that all partial duals of an embedded graph G with gem J have only one vertex.
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ThenG is a single vertex with no interlaced twisted loops. Then we can draw J in the plane in such

a way that there is a single v-gon on the exterior of the drawing and none of the e-squares intersect

with each other. In this drawing the only intersections are between two edges colored cf on the

same e-square. Contracting the edges colored cv from J results in a cycle of edges colored ca on

the outer cycle of the drawing. Upon removal of parallel edges colored cf we obtain the colored

end graph of G. None of the edges in this drawing intersect and every vertex is on the outer cycle.

Now assume that every edge of G is a twisted loop and the colored end graph can be drawn

as an outerplanar graph where all outside edges are colored ca. Begin with such a drawing of the

colored end graph of G. Replace each edge colored ca by a path of length two where the edges are

colored cv and ca in clockwise order around the outer cycle. Then for every path of length three

with edges colored cv, cf , and cv, join the two ends by an edge colored cf to create an e-square.

This is a drawing of a gem J representing G. Since all the edges are noninterlaced twisted loops,

G is such that GA has a single vertex for all A ⊆ E(G).
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Chapter 3

Medial Graphs and Crossing-Total Directions

The work of Huggett and Moffatt [24] was further extended by Deng and Jin [11] by using

all-crossing directions of medial graphs. In this chapter we will give an overview of their main

results and then point out how their results may be proved and generalized using gems. Huggett

and Moffatt [24], and later Deng and Jin [11], worked to characterize partial duals of a cellularly

embedded graph G with certain properties like being bipartite or Eulerian in terms of directions of

the medial graph of G. Here we consider medial graph directions separately from partial duality,

making it clear that they are two separate issues: what properties correspond to certain medial

graph directions, and how medial graph directions are changed by taking partial duals. We will

also unify this with the effects on the medial graph of taking partial Petrie duals.

3.1 Medial Graph Directions

3.1.1 Crossing-Total Directions

A crossing-total direction of a medial graph M of a cellularly embedded graph G is an assign-

ment of an orientation to each edge of M in such a way that for each vertex v(e) of M , the edges

incident with v(e) are “in, in, out, out,” “in, in, in, in” or “out, out, out, out” in cyclic order with

respect to v(e). If M is given the canonical checkerboard coloring and a fixed crossing-total direc-

Figure 3.1: {c, d, t}-vertices (Deng and Jin [11])
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tion, then we can partition vertices of M into three classes. First observe that each vertex in M is

met by two black faces and two white faces in the checkerboard coloring of M , which correspond

to vertices and faces respectively in G. Using this coloring, a vertex v(e) in M is:

(a) a c-vertex if the two white faces that meet at v(e) are each incident to an “in” edge and an

“out” edge of v(e); in this case the two black faces that meet at v(e) are incident to two “in”

edges or two “out” edges.

(b) a d-vertex if the two black faces that meet at v(e) are each incident to an “in” edge and an

“out” edge of v(e); in this case the two white faces that meet at v(e) are incident to two “in”

edges or two “out” edges.

(c) a t-vertex if the edges incident with v(e) are “in, in, in, in” or “out, out, out, out.”

The corresponding edge e in G is called a c-edge, d-edge, or t-edge in conjunction with its vertex

in the medial graph v(e). Figure 3.1 depicts c-, d-, and t-vertices. A crossing-total direction with

no t-vertices is called an all-crossing direction.

It is worth noting that M = Med(G) = Med(G∗) as cellularly embedded graphs (without the

checkerboard coloring) and the canonical checkerboard coloring of M considered as Med(G∗) can

be obtained from the canonical checkerboard coloring of M considered as Med(G) by swapping

the colors black and white on all faces of M = Med(G). This allows us to directly observe the

following lemma.

Lemma 3.1.1. Let G be a cellularly embedded graph and e ∈ E(G). Under a fixed crossing-total

direction of M = Med(G), we have:

1. e is a c-edge in G if and only if e is a d-edge in G∗.

2. e is a d-edge in G if and only if e is a c-edge in G∗.

3. e is a t-edge in G if and only if e is a t-edge in G∗.

3.1.2 Graph States

Let M be a canonically checkerboard colored medial graph of G. As we noted previously, at

each vertex v(e) ∈ V (M) there are two black faces and two white faces meeting one another. We
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Figure 3.2: White (center) and Black (right) smoothings (Deng and Jin [11])

will consider two ways that we can split the vertex into two vertices of degree 2. We can take a

white smoothing where we split the vertex so that the white faces remain unchanged and the black

faces are combined into a single face. We can similarly take a black smoothing such that the two

black faces remain unchanged and the two white faces become one face. These can be seen in

Figure 3.2.

Let G be a cellularly embedded graph in Σ. A state S of G specifies a choice of either a white

smoothing or a black smoothing at each vertex of M. After splitting each vertex according to the

state S, we obtain a set of disjoint closed cycles in Σ. We call these disjoint closed cycles the state

circles of S. States in the medial graph translate nicely to the language of partial duals.

Let A ⊆ E(G) and VA = {v(e)|e ∈ A} ⊆ V (M). A state SA of G is the choice of choosing

white smoothing for each vertex of VA and black smoothing for each vertex of V (M) \ VA = VAc .

This is called the state associated withA. The state associated withA has an important relationship

with the partial dual of G with respect to A. This relationship can be seen in the following lemma.

Lemma 3.1.2. Let G ⊆ Σ be a cellularly embedded graph and A ⊆ E(G). Let SA be the graph

state of G associated with A. Then there are natural bijections taking each of the following four

pairs of objects to any of the other three pairs.

(a) State circles of SA, and their degree 2 vertices.

(b) Boundary components of G	 Ac, and their marking arrows in (G	 Ac)∗ 	 A.

(c) Vertices of GA, and their marking arrows in (G	 Ac)∗ 	 A.

(d) v-gons in the gem of GA, and their edges labeled cv.
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Proof. We know the bijection between (b) and (c) from the definition of partial duality for ribbon

graphs, Definition 2.2. So we need only to show that there is a bijection between the pairs (c) and

(d) and between the pairs (a) and (d).

For the bijection between (c) and (d) we know that v-gons in the gem of G correspond to ver-

tices of G by the correspondence between gems and ribbon graphs. By this same correspondence

edges labeled cv correspond to marking arrows in G	E(G). Applying these observations with G

replaced by GA, v-gons in the gem of GA correspond to vertices of GA and edges labeled cv in the

gem of GA correspond to marking arrows in (G	 Ac)∗ 	 A = GA 	 E(G).

For the bijection between the pairs (a) and (d) we have already seen that the edges colored ca

in G are in one-to-one correspondence with the edges of the medial graph M . Furthermore, the

vertices in M are in one-to-one correspondence with the e-squares in G. Then we can think of a

black or a white smoothing at an vertex v(e) in M with e-square Q(e) as corresponding directly

to whether or not we choose to associate the resulting split vertex with the two edges colored cf in

Q(e) or the two edges colored cv in Q(e). In a white smoothing we are associating the resulting

split vertex with the two edges colored cf . In a black smoothing we are associating the resulting

split vertex with the two edges colored cv. Now, when we take the partial dual of G with respect

to A we swap the colors cv and cf on the e-squares associated with the edges in A. So, when we

take a white smoothing on each edge in A and a black smoothing on each edge in Ac to arrive at

SA, we see that we associate with each split vertex the two edges colored cv on the e-squares in

GA. Thus we see that the edges colored cv are in one-to-one correspondence with the vertices of

degree two along the state circles of SA. Furthermore, the state circles themselves are in one-to-one

correspondence with the v-gons in GA.

This lemma is foundational to the following proofs, which were proved using the language of

ribbon graphs in papers from Huggett, Moffatt, Deng, and Jin [11, 24]. Its first direct application

is in characterizing when the partial dual of a cellularly embedded graph is Eulerian.

A graph G is Eulerian if it is connected and has a closed trail containing all the edges in G.

The following theorem is well known.
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Theorem 3.1.3. A graph G is Eulerian if and only if it is connected and every vertex in G has even

degree.

A state is called even if each of its state circles is a cycle of even length.

Lemma 3.1.4. Let G be a connected, cellularly embedded graph and A ⊆ E(G). Then GA is

Eulerian if and only if SA is even.

Proof. We first observe that the degree of a vertex v of GA is equal to the number of edges colored

cv in its corresponding v-gon in JA. But, by Lemma 3.1.2 we know that the number of edges

colored cv in this v-gon is exactly equal to the number of vertices in its corresponding state circle.

Thus, we see that the degree of v is even if and only if the length of its corresponding state circle

is even. Therefore, GA is Eulerian if and only if SA is even.

Using this lemma, Deng and Jin [11] were able to give a characterization of when the partial

dual of an embedded graph is Eulerian. They made this characterization in terms of crossing-total

directions of the medial graph.

Lemma 3.1.5 (Deng and Jin [11]). Let G be a connected, cellularly embedded graph. Then G is

Eulerian if and only if there is a crossing-total direction of its medial graphM in which all vertices

are c-vertices or t-vertices.

Proof. Assume that G = G∅ is Eulerian. Then by Lemma 3.1.4, we know that S∅ is even. Now

we can give an alternating orientation to each circle of S∅ so that each degree two vertex either

has indegree two (a sink) or outdegree two (a source). We can transfer these state circles back to

G by reversing the black/white smoothing procedure done to obtain S∅. Let v be a vertex of M

corresponding to two vertices v′, v′′ in S∅. If v′ and v′′ are both sources or sinks, then v is a t-vertex

in M ; otherwise, since all smoothings for S∅ were black smoothings, v is a c-vertex. So we have

an orientation of M where all vertices are c- or t-vertices.

Now conversely assume that there is a crossing-total direction of M in which all vertices are

c-vertices or t-vertices. Then consider the state S∅. We can take a black smoothing at every vertex
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of M and the resulting degree two vertices have indegree two or outdegree two. Thus every state

circle has alternating edge orientations and therefore S∅ is an even state. By Lemma 3.1.4, we then

know that G is Eulerian.

In Lemma 3.1.1 we observed that c-edges and d-edges swap in the dual while t-edges remain

t-edges. This lemma can be extended to the operation of partial duality as well. According to

Proposition 2.2.5, if we dualize a set A ⊆ E(G) and e ∈ A, then the cyclic order of the edges at

v(e) in M is reversed and the colors in the checkerboard coloring around v(e) are swapped. From

this, we see that if e was a c-edge in G it is a d-edge in Ge and if e was a d-edge in G it is a c-edge

in Ge. It is clear that a t-edge e remains a t-edge in Ge because the medial graph edges at v(e)

remain all directed in or all directed out. This gives us the following lemma.

Lemma 3.1.6. Let G be a cellularly embedded graph, A ⊆ E(G) with e1 ∈ A and e2 /∈ A. Then

under a fixed crossing-total direction of M , we have:

1. e1 is a c-edge in G if and only if e1 is a d-edge in GA.

2. e1 is a d-edge in G if and only if e1 is a c-edge in GA.

3. e1 is a t-edge in G if and only if e1 is a t-edge in GA.

4. e2 is a c-edge in G if and only if e2 is a c-edge in GA.

5. e2 is a d-edge in G if and only if e2 is a d-edge in GA.

6. e2 is a t-edge in G if and only if e2 is a t-edge in GA.

The following theorem follows directly from Lemma 3.1.2 and Lemma 3.1.6.

Theorem 3.1.7 (Deng and Jin [11, Theorem 1.5]). Let G be a connected, cellularly embedded

graph with medial graph M and A ⊆ E(G). Then GA is Eulerian if and only if there exists a

crossing-total direction of M for which A is the union of the set of all d-edges and a set of some

t-edges.

Observation 3.1.8. Let G be a connected, cellularly embedded graph, and A ⊆ E(G). Then GA

is an even-face graph if and only if GAc is Eulerian.
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The following corollary follows directly from Observation 3.1.8 and Theorem 3.1.7.

Corollary 3.1.9 (Deng and Jin [11, Corollary 3.5]). Let G be a cellularly embedded graph with

medial graph M and A ⊆ E(G). Then GA is an even-face graph if and only if there exists a

crossing-total direction of M for which A is the union of the set of all c-edges and a set of some

t-edges.

In the same paper [11], Deng and Jin give a necessary and sufficient condition for the partial

dual of a cellularly embedded graph to be bipartite. This is an extension of a result from Huggett

and Moffatt for plane graphs [24]. Recall that an all-crossing direction of M is a crossing-total

direction with only c-edges and d-edges.

Theorem 3.1.10 (Huggett and Moffatt [24]). Let G be a plane graph with medial graph M and

A ⊆ E(G). Then the partial dualGA is bipartite if and only if there exists an all-crossing direction

of M for which A is the set of c-edges.

The following theorem extends Huggett and Moffatt’s result for plane graphs, Theorem 3.1.10,

to all orientable cellularly embedded graphs. Deng and Jin were also able to extend this result to

the case of nonorientable cellularly embedded graphs by constructing a “modified medial graph” in

which they add a 2-valent vertex to each twisted edge inM . This result and proof are very similar to

that of the orientable case, so for ease of notation we give the theorem with orientable embeddings

and the “unmodified” medial graph. We can also extend Theorem 3.1.11 to the nonorientable case

by using bidirections of the medial graph as shown in Chapter 4 (condition (010)).

Theorem 3.1.11 (Deng and Jin [11]). Let G be an orientable cellularly embedded graph with

medial graph M and A ⊆ E(G). Then GA is bipartite if and only if there exists an all-crossing

direction of M for which A is the set of c-edges.

We will prove Theorem 3.1.11 by proving a simpler result and combining it with Lemma 3.1.6.

Lemma 3.1.12. Let G be an orientable cellularly embedded graph. Then G is bipartite if and only

if there is an all-crossing direction of its medial graph M in which every edge is a d-edge.
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Proof. Let G ⊆ Σ be an orientable cellularly embedded graph with corresponding gem J and

medial graph M . Let B be a fixed orientation of Σ. Consider the state S∅ in which each vertex

of the medial graph M receives a black smoothing. By Lemma 3.1.2 the state circles of S∅ are in

one-to-one correspondence with the vertices of G that are given by the v-gons of J . The edges

labeled ca on the v-gons of J are in one-to-one correspondence with the edges of the medial graph

M . If M has an all-crossing direction in which every edge is a d-edge, then the state circles of S∅

are directed cycles. Let X be the set of all state circles oriented clockwise relative to B and Y be

the set of all state circles oriented counterclockwise relative to B. Notice that since every edge is a

d-edge and black smoothings were applied to each vertex in M , each vertex in M was smoothed to

a degree 2 vertex of a state circle in X and a degree 2 vertex of a state circle in Y . Then using the

bijection between state circles and vertices of G we see that (X, Y ) induces a bipartition of V (G).

Conversely assume that G has a bipartition (X, Y ). Then we can orient the v-gons repre-

senting vertices in X in the clockwise direction and the v-gons representing vertices in Y in the

counterclockwise direction relative to B. The induced directions on the edges labeled ca gives an

all-crossing direction of the medial graph M . This all-crossing direction has only d-edges.

Theorem 3.1.11 now follows from Lemma 3.1.12 and Lemma 3.1.6.

3.1.3 Balanced Directions

Let us now observe the interaction between partial Petrie duality and crossing directions of the

medial graph. We first must observe that crossing-total directions of the medial graph are not fixed

under Petrie duality. In addition to c-, d-, and t-edges there is a fourth type of edge involved.

A b-vertex in an orientation of the medial graph is a vertex v(e) such that the edges around v(e)

alternate “in,” “out,” “in,” “out.” The edge e in G is called a b-edge. See Figure 3.3.

An all-balanced direction of the medial graph is an orientation of the medial graph such that at

each vertex the number of in edges is equal to the number of out edges. An all-balanced direction

of the medial graph can contain b-, c-, and d-vertices.
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Figure 3.3: A b-vertex in the medial graph of G drawn on a b-edge in G

A balanced-total direction of the medial graph is an orientation of the medial graph such that at

each vertex there is an even number of in edges and an even number of out edges. A balanced-total

direction of the medial graph can contain b-, c-, d-, and t-vertices.

Throughout this section we will use G ∗ A to denote the partial dual of G with respect to A

and G×A to denote the partial Petrie dual of G with respect to A. We can extend Lemma 3.1.6 to

include b-edges.

Let us observe what happens to b-, c-, d-, and t-vertices under Petrie duality. Since each edge

is being given a twist, we can think of the effect of Petrie duality on the medial graph as swapping

(in cyclic order around v(e)) the two medial graph edges on one of the two black faces in the

canonical checkerboard coloring. This is equivalent to flipping one of the sides of a vertex in the

medial graph M which represents twisting an edge in the original graph G.

Now that we have this characterization of the effect of Petrie duality on the medial graph, the

following lemma follows immediately.

Lemma 3.1.13. Let G be a cellularly embedded graph, A ⊆ E(G) with e1 ∈ A and e2 /∈ A. Then

under a fixed balanced-total direction of M , we have:

1. e1 is a b-edge in G if and only if e1 is a d-edge in G× A.

2. e1 is a c-edge in G if and only if e1 is a c-edge in G× A.

3. e1 is a d-edge in G if and only if e1 is a b-edge in G× A.

4. e1 is a t-edge in G if and only if e1 is a t-edge in G× A.

5. e2 is a b-edge in G if and only if e1 is a b-edge in G× A.

6. e2 is a c-edge in G if and only if e2 is a c-edge in G× A.
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7. e2 is a d-edge in G if and only if e2 is a d-edge in G× A.

8. e2 is a t-edge in G if and only if e2 is a t-edge in G× A.

9. e1 is a b-edge in G if and only if e1 is a b-edge in G ∗ A.

10. e2 is a b-edge in G if and only if e2 is a b-edge in G ∗ A.

We can also now incorporate partial duals and partial Petrie duals together by combining

Lemma 3.1.6 and Lemma 3.1.13. For example, given e ∈ A ∩ B where A,B ⊆ E(G), if e is

a b-edge in G ∗ A × B then e is a c-edge in G. Note that partial duality and partial Petrie duality

do not commute.

Now we can extend Theorem 3.1.7 to include both partial duality and partial Petrie duality.

The following theorem follow directly from Lemma 3.1.6, Lemma 3.1.13, and Theorem 3.1.7.

Theorem 3.1.14. Let G be a connected, cellularly embedded graph with corresponding medial

graph M and A,B ⊆ E(G).

1. G × B ∗ A is Eulerian if and only if there exists a balanced-total direction of M for which

A \B is the union of the set of all d-edges and a set of some t-edges, and A∩B is the union

of the set of all b-edges and a set of some t-edges.

2. G ∗A×B is Eulerian if and only if there exists a crossing-total direction of M for which A

is the union of the set of all d-edges and a set of some t-edges.

Proof. Assume G×B ∗A is Eulerian. Then by Lemma 3.1.5, the medial graph M ×B ∗A has a

crossing-total direction with only c-vertices and t-vertices. Then, applying Lemma 3.1.6 by taking

a partial dual with respect to A, M × B has a crossing-total direction where A is the union of the

set of all d-edges and the set of some t-edges. Applying Lemma 3.1.13 by taking a partial Petrie

dual with respect to B we see that M has a crossing total direction where edges in A∩B are either

b-edges or t-edges. This is because partial Petrie duals swap b- and d-edges and partial duals swap

c- and d-edges. All other edges remain fixed so the only edges in B that change type are those

also in A. A \ B is the union of the set of all d-edges and the set of some t-edges arising from a

balanced-total direction of the medial graph M and A∩B is the union of the set of all b-edges and

the set of some t-edges arising from the same balanced-total direction.
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Now assume A \ B is the union of the set of all d-edges and the set of some t-edges arising

from a balanced-total direction B of the medial graph M and A ∩ B is the union of the set of all

b-edges and the set of some t-edges arising from B. Then, by Lemma 3.1.13 by taking a partial

Petrie dual with respect to B, G × B, M × B has a crossing-total direction of its medial graph

M × B with A as the union of the set of all d-edges and the set of some t-edges. Therefore, by

Theorem 3.1.7, G×B ∗ A is Eulerian.

The proof of the result for G ∗ A × B is comparable in nature. (Or we can just observe that

G ∗ A×B is Eulerian if and only if G ∗ A is Eulerian, and apply Theorem 3.1.7.)

In [13], Ellis-Monaghan and Moffatt describe an action of the symmetric group S3 on each

individual edge generated by partial duality and partial Petrie duality. This action permutes the

edge type among b-, c-, and d-edges, and preserves t-edges, in ways that follow from Lemmas

3.1.6 and 3.1.13. We can apply this to results like Theorem 3.1.7 to deduce many results similar to

Theorem 3.1.14.
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Chapter 4

Closed Walks in Gems

Next we seek to understand how characteristics of closed walks in a gem relate to properties of

the underlying cellularly embedded graphs. We will fully investigate seven distinct parity condi-

tions, which can be identified with points in the Fano plane. The parity conditions are each shown

to correspond to embedding properties, the bipartiteness of related graphs, and bidirections of the

medial graph. The main result of this section is that each line in the Fano plane gives us a theorem

relating the three properties corresponding to points in the line. Furthermore, any three properties

corresponding to points that are noncolinear imply the rest of the seven parity conditions. The first

parts of this chapter are building towards these two main results, Theorems 4.2.13 and 4.2.14, and

their various interpretations stemming from the characterizations of Section 4.2 which are com-

piled in Figure 4.2. We also give a characterization of cellularly embedded graphs that have partial

duals that are all Eulerian. In this chapter we assume that all graphs are connected, but the results

extend without difficulty to disconnected graphs by considering their connected components.

4.1 Notation

We will need to introduce some notation as it pertains to closed walks in a gem. Let J be a

gem with a corresponding cellularly embedded graph G ⊆ Σ and let K be a closed walk in J . We

define the following functions of K:

(a) vJ(K) denotes the number of edges colored cv in K,

(b) fJ(K) denotes the number of edges colored cf in K,

(c) aJ(K) denotes the number of edges colored ca in K.

Note that we will write vJ(K) + fJ(K) + aJ(K) = (v + f + a)J(K) and make other similar

notational abbreviations.
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Corollary 4.1.1. Let J be a gem with a corresponding cellularly embedded graph G ⊆ Σ. Then

the surface Σ, and hence the embedded graph G, is orientable if and only if (v + f + a)J(K) is

even for all closed walks K in J .

Proof. The embedded graph G is orientable if and only if J is bipartite by Theorem 1.3.1 and J is

bipartite if and only if the total length (v + f + a)J(K) is even for all closed walks K in J .

Theorem 4.1.2. Let J be a gem with a corresponding cellularly embedded graph G ⊆ Σ. Then G

is bipartite if and only if fJ(K) is even for all closed walks K in J .

In the proof of Theorem 4.1.2 we will be converting closed walks in an embedded graph to

closed walks in a related embedded graph. Here we will relate closed walks in a gem to closed

walks in the corresponding cellularly embedded graphs. Elsewhere, we will use similar techniques

for translating closed walks within a family of related embedded graphs.

Proof. Notice that in closed walks in gems, traveling on an edge colored ca or an edge colored

cv corresponds to traveling around a vertex in G. Traveling on an edge colored cf corresponds to

traveling along an edge in G. For this reason we can associate the pair of edges colored cf in an

e-square in J with the corresponding edge in G. This gives us a full description of how a closed

walk in a gem can be mapped to a walk in the associated cellularly embedded graph. We will

formalize this relationship with the following function. Given a walk K in J , define π(K) to be

the corresponding walk in G, where for each edge colored ca or cv we do not move in π(K), but

for each edge colored cf we follow the corresponding edge of G. So the length of π(K) is equal

to fJ(K). Further we see that if K is closed then so is π(K).

Conversely, for each walk K ′ in G there is some (nonunique) walk K in J with π(K) = K ′,

and furthermore K can be chosen to be closed if K ′ is closed. In other words π is a surjective map

from closed walks in J to closed walks in G. Given a closed walk K ′ = v0e0v1e1...vkekv0 in G we

construct a closed walk K in J as follows. Begin with the initial edge e0 in K ′. Lift e0 to an edge

in J by selecting either of the two edges colored cf in J corresponding to e0. Then travel along

edges colored cv and ca around the v-gon corresponding to v1 until the e-square corresponding to
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e1 is reached. Then travel along an edge colored cf corresponding to e1. Repeat this procedure

from v1 and e1 for each vertex and edge pair viei until v0 is ultimately reached. Then travel along

edges colored cv and ca around the v-gon corresponding to v0 until the initial edge selected in the

lift of e0 is reached, thus closing the walk. This closed walk K, constructed as described, satisfies

π(K) = K ′ and it is clear that the length of K ′ is equal to fJ(K). We also observe that K is not

uniquely chosen.

So G is bipartite if and only if all closed walks K ′ in G are of even length; and all closed walks

K ′ in G are of even length if and only if fJ(K) is even for all closed walks K in J . Therefore, G

is bipartite if and only if fJ(K) is even for all closed walks K in J .

4.1.1 Jewels and Petrie Duality

In order to continue to extrapolate information from the closed walks in gems, it will be con-

venient to extend gems to jewels.

Let J be a gem. The jewel L is obtained from J by adding two edges across the diagonals of

every e-square in J and coloring these edges with a new color denoted cz. In depictions of jewels

we will use the real color green for the color cz as a convention. This e-square, together with the two

adjacent edges colored cz, is called an e-simplex in L. So L is a 4-regular, properly 4-edge-colored

graph associated with J . The edge labeling function is denoted γL : E(L) → {cv, cf , ca, cz}. The

gem J is L \ γL−1(cz). We call the bigons in L whose edges are alternately colored cz and ca the

z-gons of L. We call this color cz because the z-gons correspond to what are commonly known as

zig-zag walks (or Petrie walks) in the underlying cellularly embedded graph.

Let J be a gem with associated jewel L and with associated cellularly embedded graph G. The

Petrie dual of L, denoted L×, is the jewel obtained from L by swapping the colors cf and cz. The

Petrie dual of the gem J is obtained by removing the edges colored cf and then drawing new edges

labeled cf which join opposite corners of the original e-squares in J , resulting in a new gem which

we denote J×. This is equivalent to twisting (changing the signature of) all of the edges in G in the

embedding scheme representation of the embedded graph G. We write G× to denote the cellularly
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embedded graph corresponding to J× and G× is called the Petrie dual of G.

Remark 4.1. We note that (J×)× = J so the operation of Petrie duality is an involution, as is the

operation of duality. We also observe that, in general, these two involutions do not commute as

operations on the gem J , as seen in the following example.

Consider an embedding of a single vertex with a twisted loop. The corresponding gem J is

drawn below. Recall, we are using yellow as the color for ca, red for cv, and blue for cf .

We can extend J to a jewel L by adding two edges across the e-square to create an e-simplex.

We are using green for the color cz.

Taking the dual of this jewel swaps red and blue resulting in the following jewel L∗. The

corresponding gem J∗ (obtained by removing the green edges) still represents a single vertex with

a twisted loop.

Then taking the Petrie dual of L∗ swaps green and blue resulting in the following jewel (L∗)×.

The corresponding gem represents a single vertex with an untwisted loop.
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If instead we first apply the Petrie dual to L by swapping the colors blue and green we obtain

the jewel L× whose corresponding embedded graph is a vertex with an untwisted loop.

Taking the dual of L× by swapping red and blue gives the jewel (L×)∗ whose corresponding

embedded graph is two vertices connected by an edge. So we see that (G×)∗ and (G∗)× are not

the same and so duality and Petrie duality do not commute.

There are, however, situations where the involutions do commute, as seen in the following

example. Begin with a gem J . Again, we are using yellow as the color for ca, red for cv, and blue

for cf . So the gem below represents two vertices with two parallel edges cellularly embedded on a

sphere.

We can extend J to a jewel L by adding two edges in each e-square to form an e-simplex. Here

we are using green for the color cz.
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The jewel L∗ is obtained by swapping the colors cv and cf (red and blue).

The jewel (L∗)× is obtained from L∗ by swapping cf and cz (blue and green).

39



Swapping cv and cf (red and blue) again gives us ((L∗)×)∗ = ((L×)∗)×.

The jewel L× is obtained from L by swapping cf and cz (blue and green).

The jewel (L×)∗ is formed from L× by swapping cv and cf (red and blue).
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Removing the cz (green) edges gives us the gems J , J∗, J×, (J∗)×, (J×)∗, and ((J×)∗)× =

((J∗)×)∗. In this example all six of these gems represent an orientable embedding of two vertices

with two parallel edges on a sphere. However, as we noted, in general these two operations do not

commute.

If we begin with a jewel L, with gem J and cellularly embedded graph G, and allow ourselves

only to apply the operations of taking the Petrie dual and taking the dual, there are six possible

jewels (with corresponding gems and cellularly embedded graphs) that arise. Let L′ be one of

these jewels with corresponding gem J ′ and cellularly embedded graph G′.

The jewel L′ can be fully described as a permutation of the colors cv, cf , and cz applied to L.

Since the group S3 has six elements, there are six possible jewels.

(a) L

(b) L∗ = (cvcf )(L)

(c) L× = (cfcz)(L)

(d) (L∗)× = (cfcz)(cvcf )(L) = (cvczcf )(L)

(e) (L×)∗ = (cvcf )(cfcz)(L) = (cvcfcz)(L)

(f) ((L∗)×)∗ = (cvcf )(cfcz)(cvcf )(L) = (cvcz)(L) = (cfcz)(cvcf )(cfcz)(L) = ((L×)∗)×

The gem J ′ can be described fully by:

(a) edges of which color, cv, cf , or cz, has its edges removed from L,

(b) edges of which color, cv, cf , or cz, becomes cv in J ′ and corresponds, together with ca, to the
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vertices in G,

(c) edges of which color, cv, cf , or cz, becomes cf in J ′ and corresponds, together with ca, to

the faces in G.

Notice that the operations of duality and Petrie duality are defined by swapping the colors (b) and

(c) and swapping (a) and (c) respectively. Since there are three colors, cv, cf , and cz, to choose

from for these three categories there are six total possible gems. For instance we could describe J

as J = (L \ cz, cv, cf ) to denote that J is obtained by removing edges with the color cz, attributing

cv to vertices, and attributing cf to faces. Using this notation, here are the six gems:

(a) J = (L \ cz, cv, cf ) which we call the gem, reference gem, or original gem.

(b) J∗ = (L \ cz, cf , cv) which we call the dual gem.

(c) J× = (L \ cf , cv, cz) which we call the skew gem or Petrie gem.

(d) (J∗)× = (L \ cv, cf , cz) the dual-skew gem.

(e) (J×)∗ = (L \ cf , cz, cv) the skew-dual gem.

(f) ((J×)∗)× = ((J∗)×)∗ = (L \ cv, cz, cf ) which we call the phial gem.

Notice that we do not mention the color ca since its role is the same in all six gems. The

six gems arise from permutations of the three colors cv, cf , and cz. So, there is an action of the

symmetric group S3 on the six gems, generated by duality and Petrie duality.

4.2 Results

4.2.1 Petrie Orientability, Bipartiteness, and Applications to Partial Duals

Using the above notation, similar to that used in [26] with jewels, we are prepared to further

understand the consequences of the characteristics of closed walks in a gem on the properties of

the underlying cellularly embedded graphs. We have shown that G is orientable if and only if

(v + a+ f)J(K) is even for all closed walks K in J . We also know that G is bipartite if and only

if fJ(K) is even for all closed walks K in J .

We now explore what happens if (v + a)J(K) is even for all closed walks K in J . We will
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relate this and other walk parity parameters to embedding properties, give a proof of a result that

is already known (Theorem 4.2.3) using parities of walks, and generalize a result of Deng and Jin.

We will begin by examining a particular theorem from Ellis-Monaghan and Moffatt [13, Propo-

sition 4.30] (also [14, Proposition 3.27]). Here we state the result as written in [13, Proposition

4.30], show that part of this result implies our Theorem 4.2.3, and point out some flaws in their

result.

(Not Entirely Correct) Theorem 4.2.1 (Ellis-Monaghan and Moffatt [13, Proposition 4.30]). Let

G be an embedded graph. Then

1. |Orb(τ)(G)| is bounded above by the number of cycles in G.

2. IfG is bipartite, thenGτ(E(G)) = G. Furthermore, (Wilson [42]) ifG is an orientable regular

embedded graph, then Gτ(E(G)) = G if and only if G is bipartite.

Theorem 4.2.3 follows from this particular proposition of Ellis-Monaghan and Moffatt [13,

Proposition 4.30(2)]. They cite a paper of Wilson in which a special case of one part of the theorem

for regular maps is stated without proof [42]. Their proof of our Theorem 4.2.3 is correct, but there

are errors in the other parts of their Proposition 4.30.

First, in Proposition 4.30(1), they state that the number of distinct edge-labeled cellularly em-

bedded graphs under the action of partial Petrie duality (|Orb(τ)(G)| in their notation) is bounded

above by the number of cycles of G. This is not true. For example, let G the embedding of a single

twisted loop. This embedding has one face and one cycle. The Petrie dual, G×, is a single vertex

with an untwisted loop with two faces. Thus there are two distinct cellularly embedded graphs

under the action of partial Petrie duality, but there is only one cycle in G. There are many other

counterexamples.

The statement of [13, Proposition 4.30(1)] was modified in [14, Proposition 3.27(1)] to say that

|Orb(τ)(G)| is bounded above by 2 to the power of the number of cycles in G. This is still not cor-

rect. Consider a tree T consisting of five edges e1 = uv, e2 = uw, e3 = ux, e4 = xy, e5 = xz em-

bedded in the plane so that the single clockwise facial walk is ue1ve1ue2we2ue3xe4ye4xe5ze5xe3u

(see Figure 4.1). Then the partial Petrie dual T × e3 has a facial walk ue1ve1ue2we2ue3xe5ze5x
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Figure 4.1: A tree with 2 distinct partial Petrie duals.

e4ye4xe3u, which uses the edges in a different order (even up to reversal). These are therefore

different as edge-labeled embeddings so there are 2 distinct Petrie duals, even though the number

of cycles is 0.

Second, in Proposition 4.30(2), they also state that ifG is bipartite thenGτ(E(G)) = G, or in our

notation G× = G. This is also not true. Take for example a planar embedding G of two vertices

joined by three parallel edges. This embedding has three faces. The Petrie dual, G× has only one

face. So G is bipartite but G× 6= G. This error was continued in [14, Proposition 3.27(2)] but is

mentioned in the online errata for [14].

Below is a drawing of the gem J for G with cv as red, cf as blue, and ca as yellow. There are

three f-gons in J that alternate between blue and yellow edges so there are three faces in G.

Then the Petrie dual of G, G×, represented by the gem J× is given below. In J× there is a

single f-gon so G× has only one face.
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We now explore what happens if (v + a)J(K) is even for all closed walks K in J .

Theorem 4.2.2. Given a gem J with a corresponding cellularly embedded graph G, (v + a)J(K)

is even for all closed walks K in J if and only if G× is orientable.

Proof. By Corollary 4.1.1,G is orientable if and only if (v+f+a)J(K) is even for all closed walks

K in J . Thus the statement of Theorem 4.2.2 is equivalent to: given a gem J , (1) (v + a)J(K) is

even for all closed walks K in J if and only if (2) (v + a + f)J×(K ′) is even for all closed walks

K ′ in J×. From the discussion above, closed walks in J and J× are in one-to-one correspondence

with closed walks in L restricted to the colors {cv, cf , ca} and {cv, cz, ca}, respectively. Since J is

a color preserving subgraph of L, (1) is equivalent to saying that (v+a)L(K) is even for all closed

walks K in L that only use the colors cv, ca, and cf . Similarly, since vJ× = vL, aJ× = aL, and

fJ× = zL, (2) is equivalent to saying that (v + a + z)L(K ′) is even for all closed walks K ′ in L

that only use the colors cv, ca, and cz.

We will show that for each closed walk K in L restricted to {cv, cf , ca} there is a closed walk

K ′ in L restricted to {cv, cz, ca} where (v+a)L(K) and (v+a+z)L(K ′) have the same parity, and

we will show that for each closed walk K ′ in L restricted to {cv, cz, ca} there is a closed walk K in

L restricted to {cv, cf , ca} where (v+a)L(K) and (v+a+z)L(K ′) have the same parity. LetK be

a closed walk in L on {cv, cf , ca}. Now for each edge colored cf in K consider the e-simplex it is

in. On this e-simplex we arbitrarily take a pair of edges labeled cv and cz that connect the endpoints

of the edge colored cf . After repeating this process for all edges labeled cf in K we arrive at a

closed walk K ′ in L restricted to {cv, cz, ca}. By this process we see that vL(K ′) = (v + f)L(K),

zL(K ′) = fL(K), and aL(K ′) = aL(K) so that (v+a+z)L(K ′) = (v+a+2f)L(K) which clearly
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has the same parity as (v + a)L(K). So for each closed walk K in L restricted to {cv, cf , ca} there

is a closed walk K ′ in L restricted to {cv, cz, ca} where (v + a)L(K) and (v + a + z)L(K ′) have

the same parity.

Now conversely let K ′ be a closed walk in L restricted to {cv, cz, ca}. Then, for each edge

that is colored cz in K ′ consider the e-simplex associated with that edge. On this e-simplex we

arbitrarily take a pair of edges labeled cv and cf that connect the endpoints of the edge colored cz.

We repeat this process for all edges colored cz in K ′. After completing the process we arrive at

a closed walk K in L which only uses the colors ca, cf , and cv, and thus corresponds to a closed

walk in J . By this interchange of edges from K ′ to K we see that vL(K) = (v + z)L(K ′) and

aL(K) = aL(K ′) so that (v + a+ z)L(K ′) = (v + a)L(K).

We have shown that for each closed walk K in L restricted to {cv, cf , ca} there is a closed walk

K ′ in L restricted to {cv, cz, ca} where (v + a)L(K) and (v + a + z)L(K ′) have the same parity

and vice versa. So, there is a closed walk K in L restricted to {cv, cf , ca} where (v + a)L(K) is

odd if and only if there is a closed walk K ′ in L restricted to {cv, cz, ca} where (v+ a+ z)L(K ′) is

odd. Therefore, (v + a)J(K) is even for all closed walks K in J if and only if (v + a+ f)J×(K ′)

is even for all closed walks K ′ in J×.

Now we have three characterizations of cellularly embedded graphs based on parity conditions

for closed walks in gems. As usual let J be a gem with a corresponding cellularly embedded graph

G. Then, as a summary of Corollary 4.1.1, Theorem 4.1.2, and Theorem 4.2.2:

(a) G is orientable if and only if (v + a+ f)J(K) is even for all closed walks K in J .

(b) G is bipartite if and only if fJ(K) is even for all closed walks K in J .

(c) G× is orientable if and only if (v + a)J(K) is even for all closed walks K in J .

The following theorem (Theorem 4.2.3) follows from a proposition of Ellis-Monaghan and

Moffatt [13, Proposition 4.30(2)], as mentioned earlier. The technique of translating embedded

graph properties into properties of closed walks in gems allows us to use walk parities to give a

different proof of Theorem 4.2.3.
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Theorem 4.2.3 (Ellis-Monaghan and Moffatt, Wilson [13, 42]). Any two of the following proper-

ties imply the third:

1. G is orientable.

2. G is bipartite.

3. G× is orientable.

Proof. It is clear that any two of the following properties imply the third:

1. (v + a+ f)J(K) is even for all closed walks K in J .

2. fJ(K) is even for all closed walks K in J .

3. (v + a)J(K) is even for all closed walks K in J .

Therefore by our summary of Corollary 4.1.1, Theorem 4.1.2, and Theorem 4.2.2, the three equiv-

alent conditions in the statement of the theorem are also such that any two imply the third.

We say that G is Petrie orientable if G× is orientable. So we can restate the three properties as

follows:

1. G is orientable.

2. G is bipartite.

3. G is Petrie orientable.

We now show how Theorem 4.2.3 can be used to extend the results of Deng and Jin [11]. In

Lemma 3.1.12 and Theorem 3.1.11 they gave characterizations of bipartite duals and partial duals

using all-crossing directions of the medial graph M . Using Theorem 4.2.2 these can be extended

to characterize when G and GA are Petrie orientable. In the orientable case Theorem 4.2.3 shows

that this reduces to G and GA being bipartite.

Theorem 4.2.4. Let G be a cellularly embedded graph. Then G is Petrie orientable if and only if

there is a direction of its medial graph M in which every edge of G is a d-edge.

Proof. Any direction of M gives an orientation of the edges of J colored ca in a natural way. This

gives a partition of the vertices of the gem J into two sets, the set X of vertices whose incident ca
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edge goes in, and the set Y of vertices whose incident ca edge goes out. Suppose the direction of

M is a direction in which all edges of G are d-edges.

Each edge e ∈ E(G) corresponds to an e-square Q(e) in J and a vertex v(e) in M . Since all

edges are d-edges, in the checkerboard coloring of M corresponding to G, what we see as we go

around v(e) is an incoming arc, a white region, an incoming arc, a black region, an outgoing arc,

a white region, an outgoing arc, and a black region. Then as we go around Q(e) in J we will see a

vertex in X , an edge colored cf , a vertex in X , an edge colored cv, a vertex in Y , an edge colored

cf , a vertex in Y , and an edge colored cv. Thus, edges colored ca and cv always join vertices in

different sets X and Y while edges colored cf join vertices in the same set. Hence (v + a)J(K) is

even for every closed walk K in J since closed walks begin and end with the same vertex. So by

Theorem 4.2.2, G is Petrie orientable.

Conversely, assume that G is Petrie orientable. Then by Theorem 4.2.2 (v + a)J(K) is even

for every closed walk K in J . Then starting by assigning an arbitrary vertex of J to X , we can

partition the vertices of J into two sets X and Y so that edges colored cv and ca join a vertex in X

and a vertex in Y and edges colored cf either join two vertices inX or join two vertices in Y . Since

(v + a)J(K) is always even this can be done consistently. Assign a direction to all edges colored

ca from X to Y (which we can translate to a direction of the medial graph M ). Then, for every

edge e ∈ E(G), as we go around Q(e) in J we will see a vertex in X , an edge colored cf , a vertex

in X , an edge colored cv, a vertex in Y , an edge colored cf , a vertex in Y , and an edge colored cv.

So in the checkerboard coloring of M corresponding to G, what we see as we go around v(e) is

an incoming arc, a white region, an incoming arc, a black region, an outgoing arc, a white region,

an outgoing arc, and a black region. This is exactly the characterization of a d-edge. So we have a

direction of M in which every edge of G is a d-edge.

Recall that c-edges become d-edges when (partially) dualized and vice versa. In an all-crossing

direction of the medial graph of a cellularly embedded graph, every edge is either a c-edge or a

d-edge. Theorem 4.2.4 therefore implies the following.
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Theorem 4.2.5. Let G be a cellularly embedded graph with medial graph M and A ⊆ E(G).

Then GA is Petrie orientable if and only if A is the set of c-edges arising from an all-crossing

direction of M .

By applying Theorem 4.2.3 we get the result from Deng and Jin.

Corollary 4.2.6 (Deng and Jin [11]). Let G be an orientable cellularly embedded graph with

medial graph M and A ⊆ E(G). Then GA is bipartite if and only if A is the set of c-edges arising

from an all-crossing direction of M .

By taking duals in Theorem 4.2.5 we obtain the following corollary.

Corollary 4.2.7. Let G be a cellularly embedded graph with medial graph M . Then G∗ is Petrie

orientable if and only if there is a direction of M in which every edge of G is a c-edge.

4.2.2 Parity Conditions for Closed Walks in Gems and Jewels

We have shown parity conditions of colors of closed walks in gems to be representative of im-

portant structural and topological graph theoretical properties of the underlying embedded graph.

We will now systematically investigate the interpretation of parity conditions for colors of closed

walks in gems and jewels.

We note that all of these parity conditions for closed walks in gems are equivalent to the parity

conditions for cycles in gems. We will show that if the number of edges of a certain color(s) S in

a closed walk is odd, then there is a cycle where the number of edges of color S is odd. We do this

by proving a more general result.

A walk is trivial if it has no edges and nontrivial otherwise.

Lemma 4.2.8. In a graph G (with loops and multiple edges allowed), a nontrivial closed walk

W = v0e1v1e2v2...ek(vk = v0) with no repeated vertex (vi 6= vj for 0 ≤ i < j < k) is either a

cycle of has the form v0ev1ev0.
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Theorem 4.2.9. Let G be a graph with S ⊆ E(G). Let s(W ) denote the number of edges of a

closed walk W (counted with multiplicity) that belong to S. If s(W ) is odd then there is a cycle C

that is a (not necessarily consecutive) subsequence of W for which s(C) is odd.

Proof. We will induct on the length of W . First assume that W is trivial. Then s(W ) = 0 and

the result holds. Now assume W is nontrivial and s(W ) is odd. If W has no repeated vertex then

W cannot have the form v0ev1ev0 because then s(W ) would be 0 or 2, so by Lemma 4.2.8 W is a

cycle and the result holds. If W has a repeated vertex, then we can split W at the repeated vertex

into two shorter nontrivial closed walks W1 and W2 with s(W ) = s(W1) + s(W2). Since s(W ) is

odd one of s(W1) or s(W2) must be odd and by induction the result follows.

2-color walks

A k-color walk in an edge-colored graph is a walk that travels along edges of at most k colors.

We begin with 2-color closed walks in a gem. By Theorem 4.2.9 we may restrict our attention

to 2-color cycles. These are the v-gons, f-gons, and e-squares of a gem J . All e-squares K have

aJ(K) = 0 and vJ(K) = fJ(K) = 2, which are all even. So we consider only the v-gons and

f-gons. On each v-gon the number of edges colored ca is equal to the number of edges colored cv.

Similarly, on each f-gon, the number of edges colored ca is equal to the number of edges colored

cf . We also know that v-gons in the gem J of G are f-gons in the gem J∗ of G∗. The following

three theorems are immediately clear because the degree of a vertex in a cellularly embedded graph

G is equal to the number of edges colored cv on the corresponding v-gon.

Theorem 4.2.10. Let G be a connected, cellularly embedded graph with corresponding gem J .

Then G is Eulerian if and only if vJ(K) is even for all 2-color closed walks K in J .

Theorem 4.2.11. Let G be a connected, cellularly embedded graph with corresponding gem J .

Then G∗ is Eulerian, i.e., G is an even-faced embedding, if and only if fJ(K) is even for all

2-color closed walks K in J .
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Theorem 4.2.12. Let G be a connected, cellularly embedded graph with corresponding gem J .

Then G and G∗ are both Eulerian if and only if aJ(K) is even for all 2-color closed walks K in J .

3-color walks

Now we move on to three color, i.e. arbitrary, closed walks in the gem. There are seven possible

nontrivial parity conditions. Let (αvαfαa), where each αx ∈ {0, 1}, represent the condition that

(αvv + αff + αaa)J(K) is even for all closed walks K in a gem J corresponding to a cellularly

embedded graph G. The condition (000) corresponds to the trivially true statement that (0v+0f+

0a)J(K) = 0 is even for all K, so we focus on the other seven triples. We have already related

the properties (111), (010), and (101) to properties of the embedded graph G in Subsection 4.2.1.

Here we will examine the seven properties in detail.

First we observe that the seven conditions are in a natural one-to-one correspondence with the

nonzero elements of Z3
2. It will be helpful to interpret the seven parity conditions as points in the

projective plane over Z2, the Fano plane. The points in the Fano plane are nonzero elements of Z3
2

and three points {u.v, w} are on a line in this projective plane if u+ v+w = 0. This interpretation

will be helpful because, as in the proof of Theorem 4.2.3, any two of the seven parity conditions

imply the third parity condition that is on the same line in the Fano plane.

Theorem 4.2.13. Let (αvαfαa), where each αx ∈ {0, 1}, represent the condition that (αvv +

αff+αaa)J(K) is even for all closed walksK in a gem J corresponding to a cellularly embedded

graph G. Then any two distinct conditions (αvαfαa) and (βvβfβa), neither equal to (000), imply

the third condition (γvγfγa) such that (αvαfαa) + (βvβfβa) = (γvγfγa) in Z3
2, or equivalently

(αvαfαa) + (βvβfβa) + (γvγfγa) = 0 in Z3
2.

Proof. Suppose (αvαfαa) + (βvβfβa) = (δvδfδa) in Z3. Assume (αvv+αff +αaa)J(K) is even

for all closed walks K in a gem J and (βvv+βff +βaa)J(K) is even for all closed walks K in J .

Then (δvv+δff+δaa)J(K) is even for all closed walksK in J . Let γx = δxmod 2 for x ∈ {v, f, a}

so (γvγfγa) ∈ Z3
2. Then (γvv + γff + γaa)J(K) has the same parity as (δvv + δff + δaa)J(K)

for all closed walks K in J . Therefore, (γvv + γff + γaa)J(K) is even for all closed walks K in
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J . Since (γvγfγa) is the unique element of Z3
2 where (αvαfαa) + (βvβfβa) = (γvγfγa), the result

follows.

So we have a theorem corresponding to any three colinear points in the Fano plane. We

also have a theorem for any three noncolinear points in the Fano plane, i.e., three conditions,

(αvαfαa), (βvβfβa), (γvγfγa) where (αvαfαa) + (βvβfβa) + (γvγfγa) 6= 0 in Z3
2. In this case

{(αvαfαa), (βvβfβa), (γvγfγa)} is a basis of Z3
2 and so any three such properties imply the other

four.

Theorem 4.2.14. Let (αvαfαa), where each αx ∈ {0, 1}, represent the condition that (αvv+αff+

αaa)J(K) is even for all closed walksK in a gem J corresponding to a cellularly embedded graph

G. Then every three distinct conditions (αvαfαa), (βvβfβa), and (γvγfγa) none of which is (000)

and such that (αvαfαa) + (βvβfβa) + (γvγfγa) 6= 0 in Z3
2 imply every condition (δvδfδa) in

Z3
2\{(000)}.

The seven cases of color combinations being even are explored in the following theorems.

Three of the conditions correspond to a pair of the six embedded graphs generated by duality and

Petrie duality being orientable. Another three correspond to a pair of the six embedded graphs

generated by duality and Petrie duality being bipartite. The final parity condition corresponds

to bipartiteness of the medial graph. We will show that all seven of these parity conditions can

be interpreted as some related graph (or sometimes several related graphs) being bipartite. All

seven of these conditions can also be interpreted as the existence of a specific type of direction

or bidirection of the medial graph. We also characterize which classes of abstract graphs have an

embedding with each of the seven properties.

We will go through the conditions by starting with the ones that have already shown a charac-

terization in Subsection 4.2.1. Whenever two conditions can be thought of as duals of one another

we characterize them consecutively. So the order we will use is (111), (101), (011), (010), (100),

(110), and finally (001).
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Condition (111)

First we will examine the condition (111), namely (v+f +a)J(K) is even for all closed walks

K in J . We showed in Corollary 4.1.1 that (111) holds if and only if G is orientable. Since G is

orientable if and only if G∗ is orientable, (111) holds if and only if G and G∗ are orientable. We

also know by Theorem 1.3.1 that (111) holds if and only if J is bipartite. Next we will characterize

(111) by a direction of its medial graph.

Theorem 4.2.15. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then (v + f + a)J(K) is even for all closed walks K in J if and only if there is a

direction of M where every edge of G is a b-edge.

Proof. Let G be a cellularly embedded graph with corresponding gem J and medial graph M . We

know that (v + f + a)J(K) is even for all closed walks K in J if and only if G is orientable. So

we will show G is orientable if and only if there is a direction of M where every edge of G is a

b-edge.

Assume G is orientable. Then there is a consistent global orientation of the v-gons in J such

that each edge has signature +1. Direct the edges in each v-gon in accordance with the clockwise

direction of this global orientation. The direction of the v-gons admits a natural direction of M

(using the corresponding direction of the edges colored ca in J). Then as we travel around a vertex

v(e) in the cannonical 2-face-coloring of M we see an incoming arc, a white region, an outgoing

arc, a black region, an incoming arc, a white region, an outgoing arc, and a black region. This is

exactly the characterization of v(e) as a b-vertex in M which means e is a b-edge in G.

Conversely, assume there is a direction of M where every edge of G is a b-edge. Then this

admits a direction of the edges colored ca in J . Since every edge is a b-edge, each edge colored

cf in J has an incoming edge colored ca and an outgoing edge colored ca. So we can extend this

direction to a direction S of the f-gons in J . On an e-square in J , the two edges colored cf are

directed in opposite directions. Thus S gives an orientation of the faces in G such that every edge

is used once in each direction; therefore, G is orientable.
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As a final note for condition (111), since every abstract graph has an orientable embedding,

every abstract graph has an embedding satisfying (111).

Condition (101)

Next we will give equivalent characterizations of the condition (101), namely (v + a)J(K) is

even for all closed walks K in J . We have already shown in Theorem 4.2.2 that (101) holds if and

only if G× is orientable. Since G× is orientable if and only if (G×)∗ is orientable, condition (101)

is equivalent to G× and (G×)∗ being orientable.

Next we wish to show that condition (101) is equivalent to a graph related to G being bipartite.

At this point we will define three graphs related to the cellularly embedded graph G. We will then

show that these each of these graphs being bipartite is equivalent to one of the conditions (110),

(101), and (011).

Every edge in an embedded graph has 2 sides (right and left) as we travel with a particular

direction and a particular local orientation of the surface. The face pullback graph or side graph

of a cellularly embedded graph G is formed by creating a vertex for each side of an edge in G.

Then two vertices in the side graph are adjacent if they represent a side of the same edge or if they

are next to each other in cyclic order around a face in G. The side graph is 3-regular with 2E(G)

vertices. Because the sides of G are in one-to-one correspondence with the edges colored cf in the

gem, the side graph of a cellularly embedded graph G with corresponding gem J can be formed

by contracting all edges colored cf in J , removing one of the two parallel edges colored cv in J

corresponding to an edge e ∈ E(G), and removing the colors from the remaining edges in J .

A corner in an embedded graph is a place where a face and a vertex come together. Every

vertex of degree d has d corners. The corner graph of a cellularly embedded graph G is formed by

creating a vertex for each corner in G then joining two vertices if their corresponding corners ap-

pear consecutively around a vertex or face inG. Because corners are in one-to-one correspondence

with edges colored ca in the gem, notice that the corner graph of a cellularly embedded graph G

with corresponding gem J can be formed by contracting all edges colored ca in J and removing
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the colors from the remaining edges in J .

Recall that the end graph of a cellularly embedded graph G is formed by first creating a vertex

for each half-edge in G. Two vertices in the end graph are adjacent if they represent half-edges

of the same edge in G or if their half-edges are next to each other in cyclic order around a vertex

in G. Thus the end graph is a 3-regular graph with 2E(G) vertices. Because the ends of G are

in one-to-one correspondence with the edges colored cv in the gem, the end graph of a cellularly

embedded graph G with corresponding gem J can be formed by contracting all edges colored cv

in J , removing one of the two parallel edges colored cf in J corresponding to an edge e ∈ E(G),

and removing the colors from the remaining edges in J .

The colored side graph, colored corner graph, and colored end graph are obtained from the

gem J by the same process with the exception of the final step of removing the colors from the

remaining edges in J .

Note that in the above definitions we are considering these graphs as embedded graphs in the

same surface as the original cellularly embedded graph G. As we observed, the side, corner, and

end graphs of a cellularly embedded graph G with gem J can be obtained by contracting the edges

colored cf , ca, and cv, respectively, possibly removing some parallel edges, and then removing the

other colors from the remaining edges in J . So, for example, a closed walk K in the gem J can be

projected onto a closed walk K ′ in the corner graph by contracting all the edges colored ca in the

walk K and removing all edge colors. This walk has length (v + f)J(K) in the corner graph. A

walk K ′ in the corner graph can be lifted to a closed walk K in the gem by lifting each edge and

attaching the appropriate edges colored ca. Similar relationships exist for closed walks in the end

and side graphs. These relationships give us the following theorems.

Theorem 4.2.16. Let G be a cellularly embedded graph with corresponding gem J . Then the side

graph of G is bipartite if and only if (v + a)J(K) is even for all closed walks K in J .

Theorem 4.2.17. Let G be a cellularly embedded graph with corresponding gem J . Then the

corner graph of G is bipartite if and only if (v + f)J(K) is even for all closed walks K in J .
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Theorem 4.2.18. Let G be a cellularly embedded graph with corresponding gem J . Then the end

graph of G is bipartite if and only if (f + a)J(K) is even for all closed walks K in J .

So we see that (101) holds if and only if the side graph of G is bipartite.

We have shown in Theorem 4.2.4 that G is Petrie orientable if and only if there is a direc-

tion of the medial graph in which every edge of G is a d-edge. Then we obtain the following

characterization of (101) in terms of a direction of the medial graph.

Corollary 4.2.19. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then (v + a)J(K) is even for all closed walks K in J if and only if there is a direction

of M in which every edge of G is a d-edge.

Finally, we observe that since all abstract graphs have an orientable embedding, all abstract

graphs also have a Petrie orientable embedding obtained by taking the Petrie dual of an orientable

embedding (using the fact that (G×)× = G). So every abstract graph has an embedding where

(101) holds.

Condition (011)

To begin characterizing the condition (011) observe that this condition is in some sense dual to

condition (101) since the colors cv and cf are swapped when taking the dual. So we see that (011)

holds in G if and only if (101) holds in G∗. Therefore condition (011) is equivalent to (G∗)× and

((G∗)×)∗ being orientable.

Theorem 4.2.20. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then (f + a)J(K) is even for all closed walks K in J if and only if (G∗)× is orientable.

We also showed in Theorem 4.2.18 that (011) is equivalent to the bipartiteness of the end graph.

By the fact that (011) holds in G if and only if (101) holds in G∗ and using the dual relationship of

c-edges and d-edges we obtain the following theorem.
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Corollary 4.2.21. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then (f + a)J(K) is even for all closed walks K in J if and only if there is a direction

of M in which every edge of G is a c-edge.

In Chapter 5, specifically Theorem 5.2.9, we will show the equivalence of (011) and the exis-

tence of an assignment of a direction on the edges such that the embedding is a directed embedding

(all facial walks are directed walks). By Corollary 5.2.6, such an embedding only exists if a graph

is Eulerian so the only abstract graphs with embeddings such that (011) holds are Eulerian graphs.

Furthermore, all Eulerian graphs have such an embedding.

Condition (010)

We have already observed in Theorem 4.1.2 that (010) is equivalent to G being bipartite. Since

G× is bipartite if and only if G is bipartite, we see that (010) is equivalent to the bipartiteness of

a pair (G and G×) of the six graphs generated by duality and Petrie duality. Since G is bipartite

if and only if G∗ is 2-face-colorable, we also see that (010) is equivalent to G∗ and (G×)∗ being

2-face colorable.

In order to give a description relating (010) to the medial graph we need to extend the notion

of directions to bidirections.

A bidirection of an edge e in a graph G is an assignment of a direction to each half-edge of e

that either points toward or away from the middle of e. A bidirection of a graph G is a bidirection

of every edge of G. A bidirected graph is a graph together with such a bidirection. There are three

types of bidirected edges:

1. those whose directions both point toward the middle which we call introverted,

2. those whose directions both point toward the ends which we call extraverted,

3. and those in which one direction points toward the middle and the other points toward the

end which we call directed.

Notice that we can consider the bidirected edges that we are calling “directed” here to just be

directed edges in the normal sense. So in this way a directed graph is a bidirected graph with

57



all directed edges. We call a bidirection of an edge that is not directed an antidirection. An

antidirection of a graph G is an antidirection of every edge of G. An antidirected graph is a graph

together with such an antidirection. An antidirected graph can be regarded as a signed graph where

extraverted edges get the sign + and introverted edges get the sign −. We next consider special

cases of antidirections of the medial graph of a cellularly embedded graph G. These antidirections

are analogous to different types of directions of the medial graph.

If M is given the canonical checkerboard coloring and a fixed antidirection such that at each

vertex the number of introverted edges is equal to the number of extraverted edges, then we can

partition vertices of M into three classes. First observe that each vertex in M is met by two black

faces and two white faces in the checkerboard coloring of M , which correspond to vertices and

faces respectively in G. Using this coloring, a vertex v(e) in M is:

(a) a b′-vertex is a vertex where the edges in order around the vertex alternate introverted, ex-

traverted, introverted, extraverted.

(b) a c′-vertex is a vertex where the edges and faces in order around the vertex are introverted,

black, introverted, white, extraverted, black, extraverted, white.

(c) a d′-vertex is a vertex where the edges and faces in order around the vertex are introverted,

black, extraverted, white, extraverted, black, introverted, white.

The corresponding edge e in G is called a b′-edge, c′-edge, or d′-edge in conjunction with its

vertex in the medial graph v(e). An all-balanced antidirection of the medial graph is an antidirec-

tion of the medial graph such that at each vertex the number of introverted edges is equal to the

number of extraverted edges. An all-balanced antidirection of the medial graph can contain b′-, c′-,

and d′-vertices. An all-crossing antidirection is an all-balanced antidirection where all vertices are

c′- or d′-vertices.

Theorem 4.2.22. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then fJ(K) is even for all closed walks K in J if and only if there is an antidirection of

M in which every edge of G is a c′-edge.

Proof. Let G be a cellularly embedded graph with corresponding gem J and medial graph M .
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Assume that fJ(K) is even for all closed walks K in J . Then G is bipartite with partite sets X and

Y . Assign an antidirection to the edges in the medial graph such that an edge is introverted if the

corresponding edge colored ca in J is along a v-gon corresponding to a vertex in X and an edge is

extraverted if the corresponding edge colored ca in J is along a v-gon corresponding to a vertex in

Y . Then around a vertex v(e) ∈ V (M) in the checkerboard-colored medial graph we see the two

black faces that meet at v(e) are incident to two introverted edges or two extraverted edges and the

two white faces that meet at v(e) are incident to an introverted edge and an extraverted edge. This

is exactly the characterization of a c′-vertex in the medial graph. Thus every edge is a c′-edge in

this antidirection.

Now assume that there exists an antidirection B of M such that every edge is a c′-edge. Apply

the corresponding antidirection to the edges colored ca inG. Then each half-edge inG corresponds

to two introverted edges or two extraverted edges in B, so around a v-gon in J , edges colored ca

are either all introverted or all extraverted. Let X be the set of vertices in G whose corresponding

v-gons have introverted edges colored ca and let Y be the set of vertices in G whose corresponding

v-gons have extraverted edges colored ca. Clearly all edges in G have an end in X and an end in

Y so G is bipartite. Therefore, by Theorem 4.1.2, fJ(K) is even for all closed walks K in J .

The class of abstract graphs that have an embedding satisfying condition (010) is the set of all

bipartite graphs; any embedding satisfies the condition.

Condition (100)

Similarly to the relationship between condition (011) and condition (101), we see that (100)

holds in G if and only if (010) holds in G∗. Therefore, G∗ and (G∗)× are bipartite if and only

if condition (100) holds. Equivalently we see that (100) holds if and only if G and ((G∗)×)∗ are

2-face-colorable.

The dual relationship between c′-edges and d′-edges is analogous to the relationship between

c-edges and d-edges shown in Lemma 3.1.1. And b′-edges are unchanged under duality, in a way

analogous to b-edges in part 9 of Lemma 3.1.13.
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Lemma 4.2.23. Let G be a cellularly embedded graph with corresponding medial graph M and

let e ∈ E(G). Under a fixed antidirection of M , we have:

1. e is a b′-edge in G if and only if e is a b′-edge in G∗.

2. e is a c′-edge in G if and only if e is a d′-edge in G∗.

3. e is a d′-edge in G if and only if e is a c′-edge in G∗.

Therefore, by the duality of the properties (100) and (010) we obtain the following result.

Theorem 4.2.24. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then vJ(K) is even for all closed walks K in J if and only if there is an antidirection of

M in which every edge of G is a d′-edge.

Finally, we show that an abstract graph has an embedding G with corresponding gem J such

that vJ(K) is even for all closed walks K in J if and only if the abstract graph is Eulerian. First, it

is clear that if vJ(K) is even for all closed walksK in J , then all vertices inG have even degree and

so G is Eulerian. Now, we will show in Chapter 5, specifically Corollary 5.2.6, that every Eulerian

graph can be given a directed embedding. Furthermore, we will show that this embedding can

be chosen to be orientable. This means that every Eulerian graph has an embedding satisfying

properties (011) and (111), respectively. By our interpretation of the parity conditions as points

on the Fano plane where on any line two of the conditions imply the third, we see that there is an

embedding of every Eulerian graph that satisfies (100).

Condition (110)

Next we characterize the condition (110). We will show that this condition is equivalent to a

pair of the six cellularly embedded graphs generated by duality and Petrie duality being bipartite.

Theorem 4.2.25. Let G be a cellularly embedded graph with corresponding gem J . Then (v +

f)J(K) is even for all closed walks K in J if and only if (G×)∗ is bipartite.

Proof. By Theorem 4.2.17 we know that condition (110) holds if and only if the colored corner

graph of G is bipartite with partite sets X and Y . Then around each 4-cycle in the corner graph
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corresponding to an e-square in J , the vertices are in the sets X , Y , X , and Y in cyclic order.

Lift this partition of the vertices into J so that edges colored ca join two vertices in the same set

while edges colored cv and cf join two vertices in opposite sets. Then, taking the Petrie dual of

G (with the same vertex partition), we see that edges colored ca and cf in J× join vertices in the

same set while edges colored cv join vertices in opposite sets. Then G× is 2-face-colorable by our

characterization of condition (100). Therefore, (G×)∗ is bipartite.

Now assume that (G×)∗ is bipartite. Then we can partition the vertices in (J×)∗ into two sets

X and Y so that edges colored cf join vertices in different sets while edges colored cv and ca join

vertices in the same set. Then in J× edges colored cv join vertices in different sets while edges

colored cf and ca join vertices in the same set. Taking the Petrie dual, in J we see that edges

colored cv and cf join vertices in different sets while edges colored ca join vertices in the same set.

Therefore, for all closed walks K in J , (v + f)J(K) is even.

SinceG is bipartite if and only ifG× is bipartite we see that condition (110) holds if and only if

(G×)∗ and ((G×)∗)× are bipartite. Equivalently condition (110) holds if and only if G× and (G∗)×

are 2-face-colorable.

We have already shown that condition (110) is equivalent to the corner graph of G being bipar-

tite, and there is a fourth graph related to G whose bipartiteness is equivalent with condition (110).

Let G be a cellularly embedded graph with gem J and medial graph M . The medial graph of M

(Med(M)) is equivalent as an embedded graph to the corner graph of G. Indeed, vertices in the

medial graph of M (edges in M ) are in one-to-one correspondence with edges colored ca in J and

two edges in M occur in succession along a facial walk in M if and only if their corresponding

edges colored ca are joined by an edge colored cv or cf . So the condition (110) holds if and only if

the medial graph of the medial graph of G is bipartite.

Next we move on to a characterization of (110) based on an antidirection of the medial graph.

The Petrie dual relationship between b′-edges and d′-edges is analogous to the relationship between

b-edges and d-edges shown in Lemma 3.1.13.
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Lemma 4.2.26. Let G be a cellularly embedded graph with corresponding medial graph M and

let e ∈ E(G). Under a fixed antidirection of M , we have:

1. e is a b′-edge in G if and only if e is a d′-edge in G×.

2. e is a c′-edge in G if and only if e is a c′-edge in G×.

3. e is a d′-edge in G if and only if e is a b′-edge in G×.

Therefore, applying Lemma 4.2.26 and Theorem 4.2.24 we obtain the following result.

Theorem 4.2.27. Let G be a cellularly embedded graph with corresponding gem J and medial

graph M . Then (v + f)J(K) is even for all closed walks K in J if and only if there is an antidi-

rection of M in which every edge of G is a b′-edge.

Proof. We know that condition (110) is equivalent to (G×)∗ being bipartite. This in turn is equiv-

alent to the existence of an antidirection of the medial graph for (G×)∗ in which every edge of

(G×)∗ is a c′-edge. Then using Lemma 4.2.23, condition (110) is equivalent to the existence of an

antidirection of the medial graph for G× in which every edge of G× is a d′-edge. Then by Lemma

4.2.26, condition (110) holds if and only if there is an antidirection of the medial graph for G in

which every edge of G is a b′-edge.

Since we showed that all Eulerian graphs have an embedding where (100) is satisfied (equiva-

lently, where G∗ is bipartite), by taking the Petrie dual of such an embedding we obtain an embed-

ding where (110) is satisfied (equivalently where (G×)∗ is bipartite).

Condition (001)

Let G be a cellularly embedded graph with corresponding gem J and medial graph M . As we

have noted, edges in the medial graph are in one-to-one correspondence with edges colored ca in

J so condition (001) holds if and only if M is bipartite. Now we will show that the equivalence

with the bipartiteness of M corresponds to a direction of M .

Theorem 4.2.28. Let G be a cellularly embedded graph with corresponding gem J and medial
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graph M . Then aJ(K) is even for all closed walks K in J if and only if there is a direction of M

in which every edge of G is a t-edge.

Proof. Assume that aJ(K) is even for all closed walks K in J . Then M is bipartite with partite

setsX and Y . We can assign a direction to every edge inM so that it becomes an arc from a vertex

in X to a vertex in Y . Then under this direction of M every vertex in X has four incident half-arcs

directed out and every vertex in Y has four incident half-arcs directed in. Thus every vertex is a

t-vertex and corresponds to a t-edge in G.

Conversely, assume that there is a direction of M in which every edge of G is a t-edge. Let X

be the set of t-vertices in M with outdegree 4. Let Y be the set of t-vertices in M with indegree 4.

Then every arc in M goes from a vertex in X to a vertex in Y . So M is bipartite with partite sets

X and Y . Therefore, aJ(K) is even for all closed walks K in J .

Next we will give a characterization of when an abstract graph can be embedded in such a way

that the medial graph is bipartite. We begin with the following observation.

Observation 4.2.29. If a cellularly embedded graph G with gem J has a bipartite medial graph

M then G and G∗ are Eulerian.

Proof. As we have noted, edges in M are in one-to-one correspondence with edges colored ca in

J . Then all v-gons and f-gons in J have an even number of edges colored ca. So in G all vertices

have even degree and all faces have even length meaning G and G∗ are Eulerian.

However, the converse of this statement is not true. For example, consider the embedded graph

G with a single vertex and one twisted loop. Then G∗ is also a single vertex with a twisted loop.

So G and G∗ are Eulerian, but the medial graph of G is a one-vertex 4-regular graph, which must

consist of a vertex with two loops, which is not bipartite. Below we have drawn the gem for G

with yellow representing ca, red representing cv, and blue representing cf .
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Lemma 4.2.30. If a graph G is Eulerian and |E(G)| is even, then G has a 2-coloring of its edges

such that at each vertex there are an equal number of incident half-edges of each color.

Proof. Since G is Eulerian, there exists an Eulerian circuit in G. Because G has an even number

of edges we can color the edges alternately with white and black. Coloring the edges in this way

creates an equal number of incident half-edges of each color at each vertex.

Theorem 4.2.31. A graph G has an embedding with a bipartite medial graph if and only if G is

Eulerian and |E(G)| is even. Moreover, the embedding can be chosen to be orientable.

Proof. Assume that G has an embedding with a bipartite medial graph M . Let J be the corre-

sponding gem for G. Since M is 4-regular, if it is bipartite then there are an equal number of

vertices in each partite set. Then |E(G)| is even since |E(G)| = |V (M)|. Since M is bipartite,

v-gons in J have an even number of edges colored ca and therefore every vertex in G has even

degree. Thus G is Eulerian.

Now assume that G is Eulerian and |E(G)| is even. By Lemma 4.2.30 there is a 2-coloring of

the edges in G such that at each vertex there are an equal number of incident half-edges of each

color. Then we can choose a rotation around each vertex so that the half-edges alternate in color.

This coloring of E(G) gives a bipartition of the vertices in the medial graph.

Note that the choice of edge signatures does not alter the medial graph (as an abstract graph).

So we can create an orientable embedding if we so choose by choosing all edge signatures to be

+1.

Overview of Parity Condition Results

In the table in Figure 4.2 we give a full overview of the results in this section. Recall that

any three conditions whose sum is zero in Z3
2 (meaning they occur on a line in the associated

Fano plane) satisfy the property that any two of the three conditions imply the third condition.

So each of the seven lines from the Fano plane corresponds to a theorem stating that any two of

the three corresponding properties implies the third. The seven conditions either correspond to
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two of the six gems generated by duality and Petrie duality being bipartite, two of the six gems

being orientable, or to the medial graph being bipartite. So we call these conditions the three

bipartiteness conditions, the three orientability conditions, and the special condition (condition

(001)). Theorems from the seven lines of the Fano plane fit into three classes:

1. There is one line with three bipartiteness conditions (the line containing {(100), (010),

(110)}).

2. There are three lines with two orientability conditions and one bipartiteness condition (the

lines containing {(111), (100), (011)}, {(111), (010), (101)}, and {(110), (101), (011)}).

The theorems corresponding to the lines {(111), (100), (011)} and {(110), (101), (011)} can

be obtained from the theorem corresponding to the line {(111), (010), (101)}, namely The-

orem 4.2.3, by replacing G by G∗ and (G∗)×, respectively.

3. There are three lines with one orientability condition, a bipartiteness condition, and the spe-

cial condition (the lines containing {(111), (110), (001)}, {(100), (101), (001)}, and {(010),

(011), (001)}). The theorems corresponding to the lines {(100), (101), (001)} and {(010),

(011), (001)} can be obtained from the theorem corresponding to the line {(111), (100),

(011)} by replacing G by G× and (G∗)×, respectively.

Recall that we have a theorem corresponding to any three colinear points in the Fano plane by

Theorem 4.2.13, and we also have a theorem for any three noncolinear points in the Fano plane

by Theorem 4.2.14. Using Figure 4.2 as a reference, we can interpret these types of theorems

in many different ways. For example, a directed, orientable embedding of a bipartite, Eulerian

digraph satisfies all seven properties. We can also apply partial duality and partial Petrie duality

to the characterizations listed in Figure 4.2 using techniques similar to those used in the proof of

Theorem 3.1.14. The results in Figure 4.2 can be extended to embeddings that are not connected

by regarding Eulerian as meaning that every vertex has even degree (but not necessarily that the

graph is connected).

65



Figure 4.2: Overview of Parity Condition Results
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4.2.3 Eulerian Partial Duals

A vertex-face walk in a gem J is a closed walk that alternates between edges colored ca and

edges colored either cv or cf . A vertex-face cycle or v/f-gon in a gem J is a cycle that alternates

between edges colored ca and edges colored either cv or cf . These v/f-gons represent a vertex (and

equivalently a face) in some partial dual of the cellularly embedded graph G represented by J .

Theorem 4.2.32. Let G be a connected, cellularly embedded graph with corresponding gem J .

All partial duals of G are Eulerian if and only if all v/f-gons have length 0 (mod 4).

Proof. Let G be a connected, cellularly embedded graph with corresponding gem J . First assume

that all partial duals of G are Eulerian. Then for any A ⊆ E(G), the v-gons of JA must have an

even number of edges colored cv. This means that the total length of the v-gon must be equal to 0

(mod 4). But, every v/f-gon in J represents a v-gon in JA for some edge set A ⊆ E(G). To see

this, begin with a v/f-gon C in J . Note that since C is a cycle, it cannot cross an e-square in J

along both an edge colored cv and an edge colored cf . Using both an edge colored cv and an edge

colored cf in the same e-square causes a vertex-face walk to use all three edges incident with a

vertex, thus making it not a cycle. So, for each e-square e in J , C crosses e along at most one color

(it may use one or both edges of that color, but it may only use one of the two colors). Let A be

the set of edges in G corresponding to e-squares in J that C crosses along edges colored cf . Then

consider GA. In GA, C becomes a v-gon since it is a v/f-gon with only edges colored ca and cv.

Therefore C must have an even number of edges colored cv since GA is Eulerian by assumption

and so C has length 0 (mod 4). Thus, all v/f-gons have length 0 (mod 4).

Conversely, assume that all v/f-gons have length 0 (mod 4). Let A be an arbitrarily chosen

subset of E(G). Let v ∈ GA be given. Then v is represented by a v-gon in GA which is itself

a v/f-gon in J up to possibly a different coloring on the edges colored cv and cf . The length of

the v-gon representing v is 0 (mod 4) and thus v has even degree. Since v and A were chosen

arbitrarily, we see that every vertex in a partial dual of G has even degree. Therefore, all partial

duals of G are Eulerian.
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Corollary 4.2.33. Let G be a connected, cellularly embedded graph with corresponding gem J . If

for each cycle C in J either (v + f)J(C) is even or aJ(C) is even, then all partial duals of G are

Eulerian.

Proof. Assume that (v + f)J(C) is even or aJ(C) is even for all cycles C in J . Then for each

v/f-gon C in J , since v/f-gons are themselves cycles in J , (v+f)J(C) or aJ(C) is even. However,

in any v/f-gon (v + f)J(C) = aJ(C). Thus the total length of C is equal to 0 (mod 4). Therefore,

by Theorem 4.2.32, all partial duals of G are Eulerian.

Corollary 4.2.34. Let G be a connected, cellularly embedded graph with corresponding gem J

and medial graph M . If G× is 2-face-colorable or if M is bipartite then all partial duals of G are

Eulerian.

Note that the converse of Corollary 4.2.33 is not true. We will construct a counterexample by

first finding an embedded graph with all partial duals Eulerian and a cycle C in its gem J such that

aJ(C) is odd. Then we will find an embedded graph with all partial duals Eulerian and a cycle

with (v + f)J(C) odd. Combining these two will give us a counterexample for the converse of

Corollary 4.2.33.

First, consider an embedded graph G with a single vertex and a single twisted edge e. The gem

J representing this graph is unchanged up to color-preserving automorphism by taking the partial

dual with respect to e. Thus, the graph and its only partial dual are both a single vertex of degree 2.

Therefore G and all its partial duals are Eulerian. The gem J contains a cycle C with aJ(C) = 1.

One such cycle is (0, 1, 2).

0

1

2

3
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Similarly we can construct a cellularly embedded graph G1 and corresponding gem J1 such

that all partial duals of G1 are Eulerian but there exists a closed walk K such that (v + f)J1(K)

is odd. Recall that two loops e and f are called interlaced if they share a common vertex v and

the cyclic order of edge labels around v is of the form AeBfCeDf where A,B,C, and D are

ordered lists of edge labels. Let G1 be an embedded graph with one vertex v1 of degree 4 with two

interlaced twisted loops e1 and e2. Then we see that Ge1
1 (and symmetrically Ge2

1 ) are embedded

graphs with a single vertex of degree 4 and two interlaced loops with one twisted and the other

untwisted. G∗1 has two vertices of degree 2. Thus all partial duals of G1 are Eulerian. Observe that

G1 contains a cycle C1 of length five with two edges colored vJ1 and an edge colored fJ1 . One

such cycle is (4, 8, 9, 10, 11). Below we have drawn J and J1.
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We can combine these two graphs and consider a graph with a single vertex, one isolated

twisted loop, and two interlaced twisted loops. This connected graph has partial duals that are

either a single vertex of degree 6 or two vertices of degree 4 and 2 respectively. So all partial duals

are Eulerian, but in this graph there exists a cycle with aJ(C) odd and (v + f)J(C) odd. One such

cycle is (0, 1, 11, 10, 6, 5, 4, 3) with three edges colored ca, two edges colored cf , and three edges

colored cv.
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Chapter 5

Directed Embeddings

A directed embedding is a digraph embedded in a surface in such a way that all the faces of

the embedding are bounded by directed walks. This is equivalent to an embedding of a digraph

where half-arcs alternate between in and out around a vertex. We seek to answer whether or not an

embedding of a mixed graph can be given an orientation in such a way that the resulting digraph

is a directed embedding, and if this directed embedding can have certain desired properties such

as orientability or the presence of a predetermined set of facial walks. First, we will give a brief

history of the study of directed embeddings.

5.1 History of Directed Embeddings

While embedded graphs have a long history of study, the study of directed embeddings has

begun in earnest only over the past few decades. In general the depth of research on directed

graphs pales in comparison to the research on undirected graphs. The first modern book on graph

theory striving to cover the theory of directed graphs in detail was published in 2000 [3].

Tutte [38] related 3-face-colorable, orientable, cellular embeddings of cubic bipartite graphs to

alternating dimaps (orientable, cellular, directed embeddings). Given a 3-face-colored, orientable,

cellular embedding of a bicubic graph G with partite sets X and Y ,

1. Assign a direction to G so that every edge becomes an arc from X to Y .

2. Select a color, R, and contract all the faces, fi ∈ FR, of that color to a vertex Ri.

Call the resulting embedded digraph D. After doing so, since G was bipartite, the half-edges

around Ri alternate “in” and “out.” Every orientable directed embedding can be constructed in this

manner. An example is given in Figure 5.1 where the partite sets are labeled with + and − and

the 3-face-coloring has colors {R, Y,B}. In this example we chose to contract faces colored R,
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Figure 5.1: A bicubic 3-face-colored embedding and a related directed embedding (from Tutte [38]

but we can apply the same procedure for any of the three colors. Thus for each 3-face-colored,

orientable, cellular embedding of a bicubic graph there are three related directed embeddings.

These three digraphs are have a triality or trinity relationship. The three digraphs are called a trial

set. An arborescence is a directed, rooted tree. Tutte’s Tree Trinity Theorem [40] showed that

for a trial set {G1, G2, G3}, T (G1) = T (G2) = T (G3) where T (Gi) is the number of spanning

arborescences in Gi (rooted at any vertex; the choice of root vertex does not change the value).

The Trinity Theorem was first proved by Tutte in [39] and an alternative approach was given in

[40]. Brooks, Smith, Stone, and Tutte [7] gave a survey of the correspondence between 3-face-

colorable, orientable, bicubic maps and alternating dimaps and gave another way of proving the

Trinity Theorem.

Berman [4] and Farr [16] expanded on the work of Tutte. Berman gave a new proof of Tutte’s

Trinity Theorem based on a determinant formula for the number of spanning arborescences of a di-

graph. Farr developed minor operations for orientable directed embeddings and showed that these

minor operations have a triality relation in a manner similar to the duality between deletion and

contraction for cellularly embedded graphs. These results that stem from Tutte’s Trinity Theorem

do not seem to be related to other directed embedding results.

A more recent study of directed embeddings of Eulerian directed graphs began in 2002 with

Bonnington, Conder, Morton, and McKenna [5]. They explored embeddings of directed graphs on

orientable surfaces. They showed that the genus range for directed embeddings of a fixed digraph
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is continuous, and that the range can have cardinality 2 (with values g and g + 1) or be arbitrarily

large. They also showed that every regular tournament (Eulerian orientation of a complete graph of

odd order) has a directed embedding with only two faces, the minimum number of faces, so this has

the maximum possible directed genus (it is upper-embeddable) among all directed embeddings of

that tournament. The questions that they posed in [5] inspired much of the recent work on directed

embeddings.

Bonnington, Hartsfield, and Širáň [6] studied obstructions to directed embeddings of Eulerian

digraphs in the plane. They proved Kuratowski-type theorems giving minimal excluded configura-

tions for directed planar embeddings. Later Archdeacon, Bonnington, and Mohar [1] gave minimal

obstructions for directed planar embeddings of (2, 2)-regular digraphs in terms of the cycle removal

operation.

Hao [20] characterized when complete tripartite graphs have minimum genus orientable em-

beddings that can be oriented to give a directed embedding. She also provided a sufficient condition

for a complete graph to have an embeding of this type which was later extended to a characteri-

zation (necessary and sufficient condition) by Liu and Hao [27]. In a result more closely related

to our work, Hao [20] stated a general result on when an orientable embedding can be oriented to

give a directed embedding (Theorem 5.2.7 below).

It is often asked whether results for embeddings of undirected graphs have analogous results

for directed embeddings. Archdeacon, Devos, Hannie, and Mohar [2] showed an analogous the-

orem to Whitney’s theorem on different embeddings of the same graph being related by flips for

embeddings of (2, 2)-regular directed graphs. In [5], Bonnington et al. asked if the directed genus

distribution of a directed graph is (strongly) unimodal. This is still an open conjecture, as is the

analogous conjecture for undirected genus distributions.

Hales and Hartsfield [19] found the minimal orientable directed genus of the de Bruijn graph.

The directed genus distributions of several classes of digraphs are known. Hao and Liu [21] found

the directed genus distribution for a class of digraphs that they called antiladders. Hao, Liu, Zhang,

and Xu [22] found the directed genus distributions of two classes of (2, 2)-regular digraphs. Then
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Chen, Gross, and Hu [9] extended their work by finding a formula for the directed genus distribu-

tion for (2,2)-regular outerplanar digraphs, and showing that this distribution is log-concave and

hence unimodal. They also introduced the method of Eulerian splitting of a vertex in a digraph.

They proved a splitting theorem for directed genus distributions that is analogous to a theorem for

undirected genus distributions. Chen, Gao, and Huang [8] found explicit formulas for unlabeled

directed genus distributions of directed bouquets of cycles, directed dipoles, and a class of regular

tournaments.

The study of directed embeddings has found applications in mathematical biology, specifically

for polypeptide nanostructures in DNA [17, 41]. The strong trace model has been used to model

these polypeptide nanostructures as embedded graphs. Fijavž, Pisanski, and Rus [17] showed that a

graph G admits a parallel strong trace, meaning a 1-face directed embedding, which is necessarily

nonorientable, if and only if G is Eulerian.

Research has been done regarding various types of embeddings of directed graphs, not all

of which are directed embeddings. For example, Sneddon and Bonnington [37] characterized

clustered planar graphs in a Kuratowski-type theorem. A clustered embedding has all the “in”

half-arcs occurring sequentially in the cyclic ordering around each vertex as opposed to alternating

“in” and “out” for a directed embedding.

5.2 Extending Partial Orientations of Eulerian Graphs to Digraph Embeddings

In this section we will be working with directed embeddings, but our work will be quite dif-

ferent in nature from the work discussed above. In general, our work is on whether or not an

embedding of an undirected graph or mixed graph can be given a direction (orientation) in such

a way that the resulting directed graph is a directed embedding. First, we give a characterization

of when an undirected embedded graph can be given a direction in such a way that the resulting

embedding of a directed graph is a directed embedding. This characterization fits in nicely with

the work that we did in Chapter 4.

Next we give a characterization of when a pair (G,W), where G is a mixed graph and W
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is a collection of closed directed walks, can be extended to a directed embedding of a direction

(orientation) D of G where the orientation on the original set of arcs (directed edges) in G is

unchanged and W is a subcollection of the facial walks in the embedding. This characterization

is done in two separate steps. First we restate a result of Ford and Fulkerson and give a proof

of when an Eulerian graph G with a subset of edges S given a direction can be extended to an

Eulerian digraph D. Second, we characterize when a fixed collection of walks W in D can be a

subcollection of the facial walks in a directed embedding of D. We will show that these two steps

can be done independently. Furthermore, we will determine when the directed embedding of a

direction D of G (where the orientation on S is unchanged andW is a subcollection of the facial

walks in the embedding) can be chosen to be orientable.

5.2.1 Basic Definitions

A directed graph or digraph D is a triple consisting of a vertex set V (D), an arc set A(D), and

a function mapping each arc to an ordered pair of vertices. The first vertex of the ordered pair is

the tail of the arc, and the second is the head. The arc goes from its tail to its head. The underlying

graph of a digraph D is the graph G that is obtained from D by taking each arc associated with

an ordered pair of vertices (u, v) and replacing it with an edge associated with the unordered pair

{u, v}.

A digraph D can be obtained from a graph G by assigning a direction to each edge in E(G)

thus associating each edge with an ordered pair of vertices making the edge an arc. In this case

D is a direction of G. Note that typically D is referred to as an ‘orientation’ of G, but to avoid

confusion with the topological meaning of orientation we will refer to this as a direction of G.

A directed path is a simple digraph whose vertices can be linearly ordered so that there is an arc

with tail u and head v if an only if v immediately follows u in the vertex ordering. In other words,

the underlying graph is a path and the arcs are given a consistent overall direction. A directed

cycle is a simple digraph whose vertices can be cyclically ordered so that there is an arc with tail

u and head v if and only if v immediately follows u in the vertex ordering. A directed walk is a
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list v0, e1, v1, e2, ..., ek, vk of vertices and arcs such that, for 1 ≤ i ≤ k, the arc ei has tail vi−1 and

head vi. A directed trail is a directed walk with no repeated arc. A directed trail or directed walk is

called closed if it begins and ends at the same vertex. For closed directed walks and trails we often

consider two closed directed walks (or trails) to be equivalent if one is a cyclic shift of the other. A

closed trail is also called a circuit.

A mixed graphG is a quintuple consisting of a vertex set V = V (G), a set of arcsA = A(G), a

set of edges E = E(G) (with A and E disjoint), a function φ mapping each arc in A to an ordered

pair of vertices, and a function ψ mapping each edge in E to an unordered pair of vertices. Note

that a directed graph is a mixed graph with E = ∅ and an undirected graph is a mixed graph with

A = ∅. We write G = (V,A,E, φ, ψ) or just G = (V,A,E).

The underlying graph of a mixed graph G is the graph G′ that is obtained from G by replacing

each directed arc with an undirected edge in the natural way.

In a mixed graph G, the degree of a vertex v ∈ V (G), denoted d(v), is the total number of all

half-edges and half-arcs incident with v. The undirected degree of v, denoted d0(v), is the total

number of all half-edges incident with v. The indegree of v, denoted d−(v), is the number of arcs

with head v. The outdegree of v, denoted d+(v), is the number of arcs with tail v. So we have

d(v) = d0(v) + d−(v) + d+(v).

A directed embedding of a digraph D is an embedding such that every facial walk in the em-

bedding is a directed walk.

A graph G is Eulerian if it is connected and has a closed trail containing all the edges in G. A

directed graph D is Eulerian if it is connected and D has a directed closed trail containing all the

arcs in D. We call such a closed trail an Eulerian circuit or a Eulerian directed circuit.

A mixed graph G is called undirected-Eulerian if the underlying undirected graph of G is

Eulerian. A mixed graph G is called Eulerian-directable if each undirected edge can be given a

direction so that the resulting directed graph is Eulerian. A mixed graph or directed graph is called

balanced if d+(v) = d−(v) for every vertex v.

The following two theorems are well known.
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Theorem 5.2.1. A graph G is Eulerian if and only if it is connected and every vertex in V (G) has

even degree.

Theorem 5.2.2. A directed graph D is Eulerian if and only if it is connected and balanced.

Observation 5.2.3. Every connected Eulerian undirected graph is Eulerian-directable.

Proof. Let G be an Eulerian undirected graph. Then G has an Eulerian circuit W . Choose a

direction for this closed walk W and direct every edge in the direction W goes through it.

Lemma 5.2.4. If a mixed graph G is balanced and undirected-Eulerian, then G is Eulerian-

directable.

Proof. Assume that G = (V,A,E) is a balanced, undirected-Eulerian mixed graph and let U

be the undirected graph with vertex set V and edge set E. Since G is balanced and undirected-

Eulerian, d0(v) is even for all v ∈ V . Thus every component of U is Eulerian. By Observation

5.2.3 each component of U can be given an Eulerian direction so that U becomes a digraph D

so that each component of D is Eulerian. Adding in the arcs in A to D results in a connected,

balanced digraph D′ which is Eulerian by Theorem 5.2.2. Then D′ is a direction of G so G is

Eulerian-directable.

We also observe that if a mixed graph G is Eulerian-directable, then it is undirected-Eulerian.

A mixed graph that is Eulerian-directable may or may not be balanced.

Proposition 5.2.5. If a connected digraph D has a directed embedding then D is Eulerian. Con-

versely, every Eulerian digraph D can be given a directed embedding. This embedding can be

chosen to be orientable.

Proof. If D has a directed embedding then because the arcs alternate between inward and outward

at every vertex, D is balanced and hence Eulerian.

Let D be an Eulerian digraph. Then D is connected and balanced by Theorem 5.2.2. Then we

can choose a rotation scheme for D such that the half-arcs alternate in and out as we travel in the
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clockwise direction around every vertex. This rotation scheme, together with the choice of +1 for

every edge signature, gives an orientable directed embedding for D.

The following corollary follows directly from Proposition 5.2.5 and Observation 5.2.3.

Corollary 5.2.6. If a connected graph G has a direction that has a directed embedding, then G

is Eulerian. Conversely, there is a direction D of every Eulerian graph G such that there is an

embedding of D that is a directed embedding. This embedding can be chosen to be orientable.

5.2.2 Embeddings Extending to Directed Embeddings

In 2018, Rong-Xia Hao gave a characterization of when an orientable embedded graph can be

given a direction resulting in a directed embedding, as follows.

Theorem 5.2.7 (Hao [20, Lemma 4.1]). For an orientable cellularly embedded graph G, there

exists a direction D of G such that D is a directed embedding if and only if G is 2-face-colorable.

As our main result in this section, we extend this characterization to arbitrary (not necessarily

orientable) embedded graphs. We will then be able to show, in Theorem 5.2.9, the relationship

between this property and other properties for embedded graphs discussed in Chapters 3 and 4.

Theorem 5.2.8. For a cellularly embedded graph G, there exists a direction D of G such that D

is a directed embedding if and only if (G∗)× is orientable.

Proof. Assume that there exists a direction D of an embedded graph G such that D is a directed

embedding. So we have an orientation for all the faces in G (following the direction of the arcs

in D) which gives us a clockwise orientation for all the vertices in G∗. Call this local clockwise

orientation S. In D, faces that share an arc go through the arc in the same direction since D is a

directed embedding. This means that in G∗, if we travel along an edge e between two vertices x

and y, and translate the local orientation at x along e, when we reach y the translated orientation

is opposite to the orientation at y. If we put a twist on every edge in G∗ by taking the Petrie dual

(G∗)×, when we translate the orientation from x to y along e, the translated orientation always
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agrees with the local orientation at y. In other words, S gives a consistent global orientation of

(G∗)×, so (G∗)× is orientable.

Now assume that (G∗)× is orientable. Let S be a consistent global orientation of (G∗)×. Then

in G∗, S gives a local orientation such that when we tranlate the local orientation from a vertex x

along an edge e to a vertex y, the translated orientation does not agree with the local orientation at

y. This means that inG, the two faces f and g that share the edge e, corresponding to x and y inG∗,

both use the edge e in the same direction. Therefore, giving this uniquely defined direction to each

edge in G results in a directed embedding because the faces of G all agree with this direction.

Combining this theorem with our previous results for closed walks in gems gives the following

theorem.

Theorem 5.2.9. Let J be a gem with corresponding cellularly embedded graph G. The following

are equivalent:

1. (G∗)× is orientable.

2. There exists an orientation D of G such that D is a directed embedding.

3. (f + a)J(K) is even for all closed walks K in J .

4. There exists an all-crossing direction of the medial graph of G such that every edge is a

c-edge.

5. The end graph of G is bipartite.

Proof. Theorem 5.2.8 shows the equivalence of 1 and 2. Theorem 4.2.7 shows the equivalence of

1 and 4. The equivalence of 1 and 3 is given by Theorem 4.2.20. Finally the equivalence of 3 and

5 is given by Theorem 4.2.18.

Note that Theorem 5.2.7 is a corollary of Theorem 5.2.9 and Theorem 4.2.3 from our work on

parity conditions in closed walks. It fits as one of the lines in the Fano plane mentioned in Chapter

4. We have shown that for a cellularly embedded graph G with gem J ,

1. G is orientable if and only if (v + a+ f)J(K) is even for all closed walks K in J .

2. G is 2-face-colorable if and only if vJ(K) is even for all closed walks K in J .
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3. There exists a directionD ofG such thatD is a directed embedding if and only if (a+f)J(K)

is even for all closed walks K in J .

So Theorem 5.2.7 is an immediate consequence of Theorem 4.2.13 applied to the line {(100),

(011), (111)} in the Fano plane.

In the following theorem we give a direct proof of the equivalence of 2 and 4 of Theorem 5.2.9

to further illustrate the relationship between directed embeddings and the other properties above.

Theorem 5.2.10. For an embedded graph G, there exists a direction D of G such that D is a

directed embedding if and only if there exists an all-crossing direction of the medial graph of G

such that every edge of G is a c-edge.

Proof. Assume that there exists a direction D of an embedded graph G such that D is a directed

embedding. Let J be the gem associated withG and letM be the medial graph ofG. The direction

on the edges of D yields a natural direction of the edges colored cf in J . Since D is a directed

embedding, all faces in D must be directed walks and so the direction of the edges also extends

to all the f-gons in J and thus to the edges colored ca. Since edges colored ca are in one-to-one

correspondence with edges in M this gives us a direction M ′ of M .

Now we partition the vertices in J into two types. Let X be the set of vertices in J with

incident edge colored ca directed in and let Y be the set of vertices in J with incident edge colored

ca directed out. Clearly edges colored ca are directed from a vertex in Y to a vertex in X . Edges

colored cf are directed from a vertex inX to a vertex in Y since all facial walks are directed. Edges

colored cv either join a vertex in X to another vertex in X or a vertex in Y to another vertex in Y .

Each edge e ∈ E(G) corresponds to an e-square Q(e) in J and a vertex v(e) in M . As we go

aroundQ(e) in J we will see anX vertex, an edge colored cv, anX vertex, an edge colored cf , a Y

vertex, an edge colored cv, a Y vertex, and an edge colored cf . Translating this to the medial graph,

what we see as we go around v(e) in M , equipped with the checkerboard coloring corresponding

to G, is an incoming arc, a black region, an incoming arc, a white region, an outgoing arc, a

black region, an outgoing arc, and a white region. This is exactly the characterization of v(e) as a

c-vertex in M which means e is a c-edge in G.
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Now assume that there exists an all-crossing direction of the medial graph of G with all c-

edges. Translate this to the natural direction of the edges colored ca in J . By our characterization

of c-edges this means that the edges colored cf are between vertices inX and vertices in Y . Assign

a direction to each edge colored cf so that it is an arc from a vertex in X to a vertex in Y . Then

every f-gon is a directed walk in J . The characterization of c-edges also means that the edges

colored cv are between two vertices in X or between two vertices in Y . Then on an e-square Q(e),

both edges colored cf correspond to the same direction of the edge e in G. Assigning this direction

for each edge e of G creates an embedded digraph D. Since all f-gons are directed walks in J , all

facial walks in D are directed.

We can also characterize when an embedding of a mixed G = (V,A,E) graph can be given

a full direction (directing the edges in E without changing the directions on A or changing the

underlying embedding scheme) in such a way that this direction D of G is a directed embedding.

Observe that if G can be directed to give a directed embedding, is connected and has an arc then

the direction on this arc determines the direction on all the other edges and arcs in the embedding.

Indeed, the directions on half-arcs around a vertex in a directed embedding must alternate so a

single arc in a directed embedding determines the directions on all edges and arcs adjacent to

that edge. If G is connected, a single arc determines all the other directions. Using this, we can

assign a direction to every arc or edge, checking that we do not create any contradictions to the

directions of the already existing arcs, and verifying that the final direction does in fact give a

directed embedding.

We can also characterize this scenario as follows. Such a direction of a mixed graph G exists if

and only if G∗ is Petrie orientable and along any sequence u1, f1, u2, f2, ..., fk, uk where the facial

walk for the face fi contains the edge(s) and/or arc(s) ui and ui+1, the (tentative) directions for

the edges and the directions already assigned for the arcs must alternate between left and right. If

there are any discrepancies between assignments, or an edge can receive two opposing tentative

assignments by following different sequences, then there is no direction D of G that is a directed

embedding.
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5.3 Eulerian-Directable Mixed Graphs

In the next three theorems (Theorems 5.3.1, 5.3.2, and 5.3.3) we present results of Ford and

Fulkerson. Theorem 5.3.1 is well known so it is simply stated. Theorem 5.3.2 has been slightly

modified to account for the possibility of parallel arcs in a network, and we present a proof that

works in that situation. In the proof of Theorem 5.3.3 we fill in some details that are omitted in the

original proof by Ford and Fulkerson.

A network is a directed graph with a non-negative capacity c(a) on each arc a and a distin-

guished supply vertex s and target vertex t. A flow f assigns a real value f(a) to each arc a. We

write f+(v) for the total flow on the arcs leaving v and f−(v) for the total flow on arcs entering

v. A flow is feasible if it satisfies the capacity constraints 0 ≤ f(a) ≤ c(a) for each arc and

the conservation constraints f+(v) = f−(v) for each vertex v /∈ {s, t}. In some networks there

are non-negative lower bounds l(a) and in this case feasibility requires the capacity constraints

0 ≤ l(a) ≤ f(a) ≤ c(a) to be satisfied for each arc in addition to the conservation constraints

f+(v) = f−(v) for each vertex v /∈ {s, t}. The quantity f+(s)− f−(s) = f−(t)− f+(t) is called

the value of a feasible flow. A circulation is a flow in which there is not a distinguished supply

or target vertex, in other words a circulation is a flow that satisfies the conservation constraint

f+(v) = f−(v) at each vertex v.

Let N be a network with X, Y ⊆ V (N) and let f be a function defined on the arcs of N . We

write f(X, Y ) to denote the sum of the values of f(a) for all arcs a from X to Y , i.e., with tail in

X and head in Y (X and Y are not necessarily disjoint). Similarly f(x, Y ) denotes the sum of the

values of f(a) for all arcs from the vertex x to the set Y , and f(Y, x) denotes the sum of the values

of f(a) for all arcs from the set Y to the vertex x.

A supply/target cut [S, T ] in a network with supply s and target t consists of the arcs from a

set S to a set T where S and T partition the set of vertices, with s ∈ S and t ∈ T . The quantity

c(S, T ) is called the capacity of the cut [S, T ].

The following is the well-known Max-Flow Min-Cut Theorem.
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Theorem 5.3.1 (Ford and Fulkerson [18]). In every network, the maximum value of a feasible flow

equals the minimum capacity of a supply/target cut. Furthermore, if all capacities are integral, a

feasible flow of maximum value may also be chosen to be integral.

The following theorem has been modified slightly from how it was stated by Ford and Fulker-

son so that it applies for networks that can have multiple arcs.

Theorem 5.3.2 (Ford and Fulkerson [18, Theorem 3.1, p. 51]). Suppose N is a network with a

nonnegative lower bound l(a) for each arc a. Then there exists a circulation f satisfying l(a) ≤

f(a) ≤ c(a) for all a ∈ A(N) if and only if c(X, X̄) ≥ l(X̄,X) for all X ⊆ V (N). Moreover, if c

and l are integral and f exists, f may be chosen to be integral.

Proof. Let N be a network with lower and upper bound functions defined on A(N). Let V =

V (N). Extend N to N ′ by adding two vertices s and t and an arc sx from s to x and an arc xt from

x to t for every x ∈ V . Remove the lower bound constraints in N ′ (l′(a) = 0 for all a ∈ A(N ′)).

The capacity function defined on A(N ′) is given by:

1. c′(a) = c(a)− l(a) for all a ∈ A(N),

2. c′(sx) = l(V, x) for all x ∈ V (N),

3. c′(xt) = l(x, V ) for all x ∈ V (N).

Then a feasible circulation f , meaning a circulation satisfying l(a) ≤ f(a) ≤ c(a) for all a ∈

A(N), in N generates a flow f ′ from s to t in N ′ by the assignment:

1. f ′(a) = f(a)− l(a) for all a ∈ A(N),

2. f ′(sx) = l(V, x) for all x ∈ V (N),

3. f ′(xt) = l(x, V ) for all x ∈ V (N).

From these assignments we see that f+(s) − f−(s) = f−(t) − f+(t) = l(V, V ) and it can easily

be verified that f ′ satisfies the conservation constraints for all vertices except s and t. So we see

that if there is a feasible circulation in N then there is a feasible flow in N ′ of value l(V, V ).

Assume now that there is a feasible flow f ′ in N ′ of value l(V, V ) where the capacities for N ′

are as above. Define a flow f on N by
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1. f(a) = f ′(a) + l(a).

For each x ∈ V (N), the flow of l(V ′, x) coming into x along sx is replaced by additional flow

along the arcs a ∈ (V, x), and the flow of l(x, V ) leaving x along xt is replaced by additional flow

along the arcs a ∈ (x, V ), so the conservation condition still holds at x. Moreover, l(a) ≤ f(a) =

f ′(a) + l(a) ≤ c′(a) + l(a) = c(a) for all a ∈ A(N). Thus, f is a feasible circulation in N .

Therefore there is a feasible circulation inN if and only if there is a feasible flow inN ′ of value

l(V, V ). By Theorem 5.3.1 there exists a feasible flow from s to t of value l(V, V ) if and only if all

cut capacities in N ′ are greater than or equal to l(V, V ).

Let (X ′, X̄ ′) be a supply/target cut in N ′. Let X = X ′ \ s and X̄ = X̄ ′ \ t. Then, using the

fact that l(V, V ) = l(X̄, X̄) + l(X, V ) + l(X̄,X) for the final step, we see that:

c′(X ′, X̄ ′) = c′(X ∪ s, X̄ ∪ t)

= c′(X, X̄) + c′(s, X̄) + c′(X, t)

= c(X, X̄)− l(X, X̄) + l(V, X̄) + l(X, V )

= c(X, X̄) + l(X̄, X̄) + l(X, V )

= c(X, X̄) + l(V, V )− l(X̄,X)

Therefore, c′(X ′, X̄ ′) ≥ l(V, V ) if and only if c(X, X̄) ≥ l(X̄,X). Thus there exists a

circulation in a network N satisfying l(a) ≤ f(a) ≤ c(a) for all a ∈ A(N) if and only if

c(X, X̄) ≥ l(X̄,X) for all X ⊆ V (N).

The statement about the integrality of f follows from Theorem 5.3.1.

The next theorem is another result of Ford and Fulkerson that we have adapted to better serve

our purposes in the following section. We have restated their theorem and filled in a few minor

details that Ford and Fulkerson leave out. Before the theorem we introduce some notation. For a

mixed graph G with X, Y ⊆ V (G) we denote by e(X, Y ) and a(X, Y ) the number of edges and

arcs, respectively, from X to Y .
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Theorem 5.3.3 (Ford and Fulkerson [18, Theorem 7.1, p. 60]). A mixed graph G is Eulerian-

directable if and only if it is undirected-Eulerian and for every X ⊆ V (G), e(X, X̄) + a(X.X̄) ≥

a(X̄,X).

Proof. Assume that G is Eulerian-directable. Then clearly it is undirected-Eulerian. Let X ⊆

V (G). Since an Eulerian circuit must traverse every arc and travel from X to X̄ the same number

of times as it travels from X̄ to X , the maximum number of times it could travel from X to X̄ ,

namely e(X, X̄) +a(X.X̄), must be greater than or equal to the minimum number of times it must

travel from X̄ to X , namely a(X̄,X).

Now we prove sufficiency. Assume that G is undirected-Eulerian and for every X ⊆ V (G),

e(X, X̄) + a(X.X̄) ≥ a(X̄,X). First replace each edge of G by a pair of oppositely directed arcs,

thus creating a directed graph G1 from the mixed graph G. Define the lower bounds and capacities

for arcs a ∈ A(G1) by

1. c(a) = 1 for all a ∈ A(G1),

2. l(a) = 1 for all a ∈ A(G),

3. l(a) = 0 for all a ∈ A(G1) \ A(G).

Using these assignments and the fact that e(X, X̄) + a(X.X̄) ≥ a(X̄,X) in G, we see that

e(X, X̄) + a(X, X̄) = c(X, X̄) ≥ l(X̄,X) = a(X̄,X) for all X ⊆ V (G1). So by Theorem 5.3.2

there exists a feasible integral circulation f in G1 so that f(a) = 0 or f(a) = 1 for all a ∈ A(G1).

Now we will assign a direction to some of the edges in G that we replaced by two arcs in G1.

Suppose e is an edge in G between x and y, which becomes two arcs e′ from x to y and e′′ from

y to x. If f(e′) = f(e′′) leave e untouched, otherwise replace e in G by e1 ∈ {e′, e′′} satisfying

f(e1) = 1. This creates a new mixed graph G2. Because G2 was obtained from G by applying a

feasible flow in G1, G2 is balanced.

So G2 is a balanced, undirected-Eulerian mixed graph and hence by Lemma 5.2.4 we know

that G2 is Eulerian-directable. Since G2 was itself a (partial) direction of G this means that G is

Eulerian-directable.

From this result of Ford and Fulkerson we have a full characterization of when a mixed graph
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can be given a direction so that it is an Eulerian digraph. In what follows we give a characterization

of when a fixed collection of walksW in an Eulerian digraphD can be a subcollection of the facial

walks in a directed embedding of D. Putting these together we will be able to determine whether a

pair (G,W), where G is a mixed graph andW is a collection of closed directed walks in G, can be

extended to a directed embedding of a direction D of G where the direction on A(G) is unchanged

andW is a subcollection of the facial walks in the embedding. We will show that these two steps

can be done independently. Namely, we can first direct a mixed graph to form a directed graph

then find an embedding withW as a subcollection of the facial walks.

5.4 Extending Partial Directed Embeddings to Directed Embeddings

In Chapter 1 we defined transition graphs for embedded graphs. We will now look at transition

graphs in more generality. Note that the situation in Chapter 1 corresponds to the case where the

collection of closed walksW is the collection of facial walks of a graph embedding.

Given a graph G and a collection (i.e., multiset) of closed walks W in G, at each vertex v ∈

V (G) the transition graph or partial transition graph induced by W , T (G,W , v), is constructed

as follows:

1. Create a vertex for each half-edge incident with v.

2. Join two (possibly equal) vertices by an edge for each time their corresponding half-edges

occur in succession along a walk inW . The set of transition graphs induced byW , T (G,W),

is the set T (G,W) = {T (G,W , v) : v ∈ V (G)}.

Note that every half-edge incident with v occurs in the transition graph T (G,W , v) even if this

half-edge does not occur along a walk in W; in this case it is an isolated vertex. It is also worth

noting that this set of induced transition graphs may or may not be able to be extended into a set of

transition graphs representing an embedding of G withW as a subcollection of the facial walks in

the embedding.

Next we extend the idea of transition graphs to digraphs. Given an Eulerian digraph D and

a collection of closed directed walks W in D, at each vertex v ∈ V (D) the transition graph or
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partial transition graph induced byW , T (D,W , v), is constructed as follows:

1. Create a vertex for each half-arc incident with v.

2. Join two (possibly equal) vertices by an edge for each time their corresponding half-arcs oc-

cur in succession along a walk inW . The set of transition graphs induced byW , T (D,W),

is the set T (D,W) = {T (D,W , v) : v ∈ V (G)}.

Again, note that every half-arc incident with v occurs in the transition graph. Also, this set of

induced transition graphs may or may not be able to be extended into a set of transition graphs

representing a directed embedding of D with W as a subcollection of the facial walks in the

embedding.

An ordered pair (G,W), where G is a graph and W is a collection of closed walks in G, is

called extendable if there is an embedding of G whereW is a subcollection of the facial walks in

the embedding. An ordered pair (D,W), where D is a digraph and W is a collection of closed

directed walks in D, is called extendable if there is a directed embedding of D where W is a

subcollection of the facial walks in the embedding.

A linear forest is a graph consisting of a disjoint union of paths (some of which may just be

isolated vertices).

The next set of theorems is a characterization of when these pairs of graphs and walks are

extendable. We first give a result of Širáň and Škoviera for extending undirected graphs. In this

case the obvious necessary conditions are also sufficient.

Theorem 5.4.1 (Širáň and Škoviera [35]). Given a graph G and a collection of closed walksW in

G, there exists an embedding of G withW as a subcollection of the facial walks if and only if

1. edges in G occur no more than twice along the walks inW , and

2. for each vertex v ∈ V (G) the partial transition graph T (G,W , v) is a cycle of length d(v)

or a linear forest, i.e. T (G,W , v) is isomorphic to a subgraph of a cycle of length d(v).

Širáň and Škoviera also give a characterization of when an ordered pair (G,W) is extend-

able and the embedding of G with W as a subcollection of the facial walks can be chosen to be

orientable.
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Theorem 5.4.2 (Širáň and Škoviera [36]). Given a graph G and a collection of closed walksW in

G, there exists an orientable embedding of G withW as a subcollection of the faces if and only if

1. we can assign directions to the walks inW in such a way that each edge of G is used at most

once in each direction, and

2. for each vertex v ∈ V (G) the partial transition graph T (G,W , v) is a cycle of length d(v)

or a linear forest, i.e. T (G,W , v) is isomorphic to a subgraph of a cycle of length d(v).

We now introduce some notation and results needed for dealing with transition graphs for di-

graphs. First we will work in a more general situation, but eventually X and Y will represent the

sets of inward and outward half-arcs at a vertex. If a linear forest L is a subgraph of a complete bi-

partite graphKn,n with partite setsX and Y , then the components in L can be partitioned naturally

into three sets. Let X be the set of components that begin and end with a vertex in X . Similarly let

Y be the set of components that begin and end with a vertex in Y . Let U be the set of components

that have one end in X and the other end in Y . Note that we consider isolated vertices in L to be

paths of length 0. So an isolated vertex in X is in X and an isolated vertex in Y is in Y . Each

component in U includes an equal number of X and Y vertices, each component in X has one

more X vertex than Y vertex, and each component in Y has one more Y vertex than X vertex.

Since |X| = |Y |, it follows that |X | = |Y|, for any such linear forest L.

Lemma 5.4.3. Any bipartite linear forest G with partite sets X and Y of equal order can be

completed to a cycle that respects the bipartition.

Proof. Let G be a bipartite linear forest with partite sets X and Y with |X| = |Y | = n. We will

proceed by induction on the number of components in such a graph.

Suppose that the number of components of G is 1. Then G is a Hamiltonian path. In this

Hamiltonian path with 2n − 1 edges one end must be in X and the other end must be in Y .

Connecting these two vertices by an edge results in a cycle respecting the bipartition.

Now assume that all graphs of this type with up to c components can be completed to a cycle

respecting the bipartition. Suppose G has c + 1 components. Select a component with an end in
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X and a different component with an end in Y . First we show that two such components exist.

If there is a component in X then there is a component in Y since |X | = |Y| so in this case we

can choose a component in X and a component in Y . If there is not a component in X , then there

must be two distinct components U1, U2 ∈ U so we can choose U1 and U2. Connecting these two

components by an edge joining an end in X in the first component with an end in Y from the

second component creates a bipartite graph G′ with c components. By the inductive hypothesis,

we can complete G′ to a cycle respecting the bipartition. Therefore, any bipartite graph G with

partite sets X and Y of equal order whose components are paths can be completed to a cycle that

respects the bipartition.

In the next theorem we give a characterization of when a pair (D,W) is extendable. We will

show that the same conditions as Theorem 5.4.1 characterize extendability in the directed case with

the added assumption that the collection of closed walks contains only directed walks. During the

construction of the extension, more care must be taken to ensure that the embedding is a directed

embedding.

Theorem 5.4.4. Given an Eulerian digraph D and a collection of closed directed walksW in D,

there exists an embedding of D withW as a subcollection of the faces if and only if

1. arcs in D occur no more than twice along the walks inW , and

2. for each vertex v ∈ V (D) the partial transition graph T (D,W , v) is a cycle of length d(v)

or a linear forest, i.e. T (D,W , v) is isomorphic to a subgraph of a cycle of length d(v).

Notice that we can treat the first condition as a special case of the second condition. Indeed,

if an arc a in D occurs more than twice along the walks in W , then the half-arcs of e become

vertices in the transition graphs with degree greater than two. This means that a vertex v incident

with e does not have a transition graph T (D,W , v) isomorphic to a subgraph of a cycle. However,

it is still worth stating and considering the first condition separately because in Theorem 5.4.2 the

corresponding undirected condition makes the parallels between the general and orientable cases

clearer. Here the first condition makes the parallels between the undirected and directed cases
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clearer.

Proof. LetD be an Eulerian digraph andW a collection of closed walks inD. Assume that there is

a directed embedding of D withW as a subcollection of the faces in the embedding,W ⊆ F (D).

LetW∗ be the collection of facial directed walks in the directed embedding. The facial walks of a

directed embedding use every arc twice, and every transition graph T (D,W∗, v) is a cycle. Since

W is a subcollection ofW∗, the two conditions forW and T (D,W , v) hold.

Now we show sufficiency. Assume that arcs in D occur no more than twice along the walks

inW and that for every v ∈ V (D), T (D,W , v) is isomorphic to a subgraph of a cycle of length

d(v). At each vertex v we can partition the vertices in T (D,W , v) into two sets. Let X(v) be

the set of vertices in T (D,W , v) corresponding to half-arcs entering v. Let Y (v) be the set of

vertices in T (D,W , v) corresponding to half-arcs leaving v. Since the edges of T (D,W , v) are

determined by directed walks inW , every edge must be between a vertex in X(v) and a vertex in

Y (v). So every transition graph T (D,W , v) is bipartite with the two parts being X(v) and Y (v).

Since either T (D,W , v) is a cycle or the components of T (D,W , v) are paths and T (D,W , v) is

bipartite with partite sets of equal order, by Lemma 5.4.3 we can then complete T (D,W , v) to a

cycle Zv that respects this bipartition.

At each vertex v, assign a clockwise direction for Zv. Use this clockwise direction along Zv to

determine the clockwise ordering of half-arcs around v in an embedding. Observe that since we

do not care whether or not the embedding is orientable, the choices for local clockwise orientation

are arbitrary. Since the cycle Zv alternates between half-arcs directed in and half-arcs directed out,

this embedding will be a directed embedding, regardless of what choices we make for the edge

signatures.

Once the clockwise directions have been selected, we then determine whether or not each arc

should have a twist. For each arc a ∈ A(D) that belongs to a walk in W with incident vertices

v1 and v2 we observe the preceding and succeeding arc(s) along walk(s) inW . If the previous arc

a1 in a walk W ∈ W is on the clockwise side of the half-arc of a along Zv1 and the next arc a2

of W is also on the clockwise side of the other half-arc of a along Zv2 , then assign the signature
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−1 to a. Likewise if a1 and a2 are on the counterclockwise sides, assign the signature −1 to a.

Assign the signature +1 to a if one of a1 or a2 is on the clockwise side and the other is on the

counterclockwise side. Notice that if two walks inW travel through the arc a, then the two choices

of signatures in this process agree.

If an arc a is not traversed by a walk inW , then we may arbitrarily choose the assignment of

+1 or−1 to a. Now we have a full embedding scheme that gives a corresponding embedding ofD.

Furthermore, it is clear from the process outlined above that in this embeddingW is a subcollection

of the facial walks of the embedding (if we trace faces in the embedding, we make the same turns

as the walks inW). So we have found an embedding of D withW as a subcollection of the facial

walks.

Notice that in the proof of this theorem, there was quite a bit of leeway in the construction of

the embedding. Any extension of the partial transition graphs to full transition graphs could then

be extended into a full embedding scheme. The edge twists (signatures) were also arbitrary choices

so long as they were not already determined by the walks inW . Much more care would need to be

taken if the embedding were required to be orientable. In fact, stronger conditions must be met in

order to ensure an orientable embedding. Applying the same modification to Theorem 5.4.4 as we

did to Theorem 5.4.1 to obtain Theorem 5.4.2 does not yield a correct result for orientable directed

embeddings. In this way extensions of directed embeddings are more complicated than they are

for ordinary embeddings. We now begin with a few preliminary definitions and observations as we

set out to characterize when there exists an orientable embedding of D withW as a subcollection

of the facial walks.

If a linear forest L is given a proper 2-edge-coloring with colors a and b, then we can refine

the partition of the components into X , Y , and U by splitting U into two parts. Observe that all

components in X and Y are even length and thus alternate between edges colored a and edges

colored b with an equal number of edges of each color. Components in U either begin and end with

an edge colored a or else begin and end with an edge colored b. Let A be the set of components

beginning and ending with an a edge. Let B be the set of components that begin and end with a b
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x1x2

y1 y2

Figure 5.2: A non-extendable properly 2-edge colored linear forest.

edge.

We wish to characterize when L can be extended to a properly 2-edge-colored Hamiltonian

cycle H in Kn,n. By extended we mean that the proper 2-edge-coloring of L is inherited and

extended by H and the original bipartition of Kn,n is respected by the extension.

A properly 2-edge-colored linear forest L that is a spanning subgraph of Kn,n is called extend-

able if L can be extended to a properly 2-edge-colored Hamiltonian cycle in Kn.n.

First we note that there are situations where L cannot be extended to a properly 2-edge-colored

Hamiltonian cycle H in Kn,n. Consider a graph L ⊆ K2,2 with two disjoint edges (Figure 5.2).

Let X = {x1x2} and Y = {y1, y2} be the partite sets and color the edges with with two different

colors a (blue) and b (red). There is no way to extend L to a properly 2-edge-colored Hamiltonian

cycle in K2,2.

Lemma 5.4.5. A properly 2-edge-colored linear forest that is a spanning subgraph of Kn,n can be

extended to a properly 2-edge-colored Hamiltonian cycle in Kn,n if and only if at least one of the

following conditions is satisfied:

1. There is at least one component in X .

2. There is at least one component in Y .

3. There are no components in A.

4. There are no components in B.

Corollary 5.4.6. A properly 2-edge-colored linear forest that is a spanning subgraph of Kn,n

cannot be extended to a properly 2-edge-colored Hamiltonian cycle in Kn,n if and only if every

component belongs to U = A ∪ B and there is at least one component in each of A and B.
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Proof. Let L be a properly 2-edge-colored linear forest that is a spanning subgraph of Kn,n. Let

X and Y be the partite sets of size n in Kn,n. Let a and b be the colors in the 2-edge-coloring of

L. Recall that |X | = |Y|.

We will think of extending L by adding new edges one at a time. In order to remain a linear

forest, each edge added to L must combine two components into a new component by adding an

edge between a terminal vertex in one component and a terminal vertex in the other.

Now we observe which types of components can be joined together by an edge while remaining

properly 2-edge-colored and respecting the bipartition. A component inA can be joined to another

component in A by connecting the terminal vertex in X from one of the two components with the

terminal vertex in Y from the other component and coloring this new edge with b. This creates a

single component in A. Similarly a component in B can be joined to another component of B by

connecting the terminal vertex in X from one of the two components with the terminal vertex in Y

from the other component and coloring this new edge with a. This creates a single component in

B.

A component in A cannot be joined to a component in B. Indeed, the terminal edges of a

component in A are colored with a while the terminal edges of a component in B are colored with

b. If the two components are joined by an edge, there is no way that this edge can be assigned a

color while inheriting the prior proper 2-coloring.

A component in A can be joined to a component in X in a unique way. The terminal vertex in

Y from theA component must be joined to the terminal vertex in the X component that is incident

to the terminal edge colored a. This new edge must be colored b.

Similarly, a component in A can be joined to a component in Y in a unique way. The terminal

vertex in X from the A component must be joined to the terminal vertex in the X component that

is incident to the terminal edge colored a. This new edge must be colored b.

From these two unique ways to join a component in A to a component in X or Y , we see

that joining a component in A to a component in X results in a component in X and joining a

component in A to a component in Y results in a component in Y .
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Connecting components in B and X or connecting components in B and Y works in an analo-

gous way. Joining a component in B to a component in X results in a component in X and joining

a component in B to a component in Y results in a component in Y .

A component in X cannot be joined to another component in X without adding an edge be-

tween two vertices of X , violating the bipartition. Similarly, we cannot join two components in

Y .

There are two distinct ways to join a component in X to a component in Y . We can join the

terminal vertex in X incident to an edge colored a to the terminal vertex in Y incident to an edge

colored a. The new edge will then be colored b. Likewise we can join the terminal vertex in X

incident to an edge colored b to the terminal vertex in Y incident to an edge colored b. The new

edge will then be colored a. The first option will result in a component in B while the second

option will result in a component in A.

This gives a complete picture of which types of components can be joined and what results

after adding the additional edge.

Now, we begin by showing that if at least one of the conditions is satisfied, then we can extend

L. Assume there is at least one component in X . Then there is also a component in Y . If there

is more than one component in X , and hence more than one component in Y , select a component

in X and a component in Y and join them to create a component in A or B. The choice of which

type of component to create may be made arbitrarily. Iterate this process until there is only one

component in X and one component in Y . Next, if there is a component in A combine it with the

component in X , resulting in a new single component in X . Iterate until there are no components

in A. Similarly, if there is a component in B combine it with the component in Y , resulting in a

new single component in Y . Iterate until there are no components in B.

What remains is one component in X and one component in Y . Connect the two ends of the

component in X to the two ends of the component in Y by connecting the two terminal vertices

incident to edges colored awith an edge colored b and connecting the two terminal vertices incident

to edges colored b with an edge colored a. The result is a 2-edge-colored Hamiltonian cycle in
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Kn,n. So we have shown that the result holds for the condition that L has at least one component

in X (or equivalently the condition that L has at least one component in Y).

Now suppose there are no components in X ∪ Y . Assume that there are either no components

in A or no components in B. Without loss of generality, assume that there are no components in

A. Then L consists only of components in B. Join pairs of components in B until there is only one

component in B. This component must be a Hamiltonian path in Kn,n. Connect the two terminal

vertices of the component by an edge of color a to create the desired Hamiltonian cycle.

Now we show that if none of the conditions are met then there is not an extension of L to

a Hamiltonian cycle. Assume that none of the conditions are met. Then L has no components

in X , no components in Y , at least one component in A, and at least one component in B (as

in the statement of Corollary 5.4.6). Recall that there is no way to join a component in A and a

component in B. So the only choice we have for adding edges to L is by joining two components in

A to create another component in A or joining two components in B to create another component

in B. After continuing this process we eventually have one component in A and one component

in B. Then there are no edges that can be added, and thus we cannot extend to a Hamiltonian

cycle.

A walk coloring of a collection of walks or directed walks W is an assignment of a color to

each walk W ∈ W . A walk coloring is proper if any two walks inW that share an edge or arc are

assigned a different color. Note, ifW is a collection of facial walks, this definition is equivalent to

the definition of (proper) face coloring.

Given an Eulerian digraph D and a collection of colored closed directed walks W in D, at

each vertex v ∈ V (D) the induced partial colored transition graph or colored transition graph

T (D,W , v) is constructed as follows:

1. Place a vertex at each half-arc incident with v.

2. Join two vertices by an edge if their corresponding half-arcs occur in succession along a

walk W ∈ W .

3. Color this edge with the color assigned to W . This coloring of T (D,W , v) is the inherited
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coloring from the walk coloring of W . If the coloring of W is proper then the coloring of

T (D,W , v) is also proper.

Theorem 5.4.7. Given an Eulerian digraph D and a collection of closed directed walksW in D,

there exists an orientable directed embedding of D withW as a subcollection of the facial walks if

and only if there exists a proper 2-coloring ofW such that the colored transition graph T (D,W , v)

is either a cycle or an extendable linear forest subgraph of the complete bipartite graph Qv with

partite sets corresponding to incoming and outgoing half-arcs at v for every v ∈ V (D).

In other words we can find the orientable directed embedding if and only ifW can be colored

so that each T (D,W , v) is either a cycle or satisfies the conditions of Lemma 5.4.5.

Proof. Let D be an Eulerian digraph and W be a collection of closed walks in D. Assume that

there exists a proper 2-coloring of W with colors a and b such that the colored transition graph

T (D,W , v) is a cycle or an extendable linear forest subgraph of Qv for every v ∈ V (D). Proceed

by extending each T (D,W , v) to a Hamiltonian cycle Zv inQv. Now each cycle Zv is a properly 2-

edge-colored cycle containing T (D,W , v) as a subgraph, respecting the bipartition of the half-arcs

at v, and extending the edge coloring of T (D,W , v) inherited from the coloring ofW .

As seen in the proof of Theorem 5.4.4, we can use this set of cyclesZv to construct a embedding

scheme corresponding to a directed embedding of D withW as a subcollection of the facial walks

and with Zv as the transition graph at each vertex v. Once we assign local clockwise directions

to the vertices (or equivalently to each Zv) this procedure automatically chooses an edge signature

for each arc belonging toW . We need to be careful in the assignment of clockwise directions and

edge signatures not automatically assigned to ensure that this embedding is orientable.

Let X(v) be the set of half-arcs entering v and Y (v) be the set of half-arcs leaving v. Assign a

direction, representing the local clockwise orientation, to Zv in the following way. Orient the edges

in Zv colored a from the end in set X(v) to the end in the set Y (v). Orient the edges in Zv colored

b from the end in the set Y (v) to the end in the set X(v). Since Zv is a properly 2-edge-colored

cycle respecting the bipartition of the arcs at v, this orientation of Zv is consistent and induces a

local clockwise orientation of Zv. Then if c is an arc from v1 to v2 used by a walk W inW colored
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a, this means that W also uses the arc counterclockwise from c at v1, and the arc clockwise from c

at v2, so the procedure in the proof of Theorem 5.4.4 assigns a signature of +1 to c. Similarly, c is

assigned a signature of +1 if it is used by a walk W ofW colored b.

By assigning a signature of +1 to the edges non used byW , all signatures are +1. We therefore

have the desired orientable directed embedding.

The condition for this particular type of 2-edge-coloring ofW given in Theorem 5.4.7 can be

checked by constructing a related graph and determining whether or not it is bipartite. The issue is

that the walks inW may not all be ‘connected together,’ where ‘connected together’ means that for

every two walks U, V ∈ W there is a list W1W2...Wk with U = W1, V = Wk, and each Wi ∈ W ,

such that Wi and Wi+1 share an arc for i = 1, ..., k − 1. If they are connected together, then there

are either zero or two proper 2-colorings ofW . If there are two, they are equivalent up to swapping

colors, and we can check the condition of Theorem 5.4.7 for one of those 2-colorings. However, if

the walks are not connected together, then each ‘walk component’ may have a 2-coloring, but we

need to check whether we can find 2-colorings for all the components that are mutually consistent.

The next theorem gives a way to check whether we can find consistent 2-colorings in polynomial

time, and thus shows that we can check whether or not the condition of Theorem 5.4.7 is satisfied

in polynomial time.

Theorem 5.4.8. Given an Eulerian digraph D and a collection of closed directed walksW in D,

let X(v) be the set of vertices corresponding to half-arcs entering v and Y (v) be the set of vertices

corresponding to half-arcs leaving v for all T (D,W , v). Let X (v) be the set of components of

T (D,W , v) that begin and end with a vertex in X(v). Similarly let Y(v) be the set of components

of T (D,W , v) that begin and end with a vertex in Y (v). Let U(v) be the set of components of

T (D,W , v) that have one end inX(v) and the other end in Y (v). Let V1 = {v ∈ V (D) | |X (v)| =

|Y(v)| = 0} ⊆ V (D). Define H to be a graph with V (H) = W ∪ V1. Connect the vertices in H

corresponding to two walks W1,W2 ∈ W if they share an arc. For each v ∈ V1 and component

C of U(v) choose one terminal edge e of C and add an edge from v to the walk W ∈ W that

corresponds to e.
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Suppose that every T (D,W , v) is a cycle or a linear forest. Then there exists an orientable

directed embedding of D withW as a subcollection of the facial walks if and only if H is bipartite.

Proof. We will show that H is bipartite if and only if there exists a proper 2-coloring ofW such

that the colored transition graph T (D,W , v) is an extendable linear forest subgraph of the complete

bipartite graphQv with partite sets corresponding to incoming and outgoing half-arcs at v for every

v ∈ V (D).

Suppose that H is bipartite. Choose a 2-coloring of H with colors a and b. Color each walk

in W according to its color in H . Assume that there exists a transition graph T (D,W , v) that

is not extendable for this proper 2-coloring of W . Then by Corollary 5.4.6, every component of

T (D,W , v) is in U(v), so that v ∈ V1, and A(v) and B(v) are nonempty, meaning there is a walk

colored a and a walk colored b adjacent to v in H . Then v cannot be given a color in the bipartition

of H , giving a contradiction.

Now suppose that there exists a proper 2-coloring of W such that T (D,W , v) is extendable

for every vertex v. Color the vertices in H corresponding to walks inW according to this proper

2-coloring. By Lemma 5.4.5 every vertex v ∈ V (D) with |X (v)| = |Y(v)| = 0 either has all

components in A(v) or all components in B(v) using the inherited coloring. For v ∈ V1 color v

with a if all components of T (D,W , v) are in B(v) and color v with b if all components are in

A(v). This gives a 2-coloring of H .

Now we can combine the results of Theorems 5.4.4 and 5.4.7 with Theorem 5.3.3 to determine

when, given a mixed graph G = (V,A,E) and a collection of directed walks W in the mixed

graph, there exists a directed embedding of a direction of the mixed graph G such that W is a

subcollection of the facial walks.

The following results follow directly from Theorems 5.4.4 and 5.4.7 with Theorem 5.3.3, not-

ing that determining a direction for a mixed graph and determining an embedding for the resulting

digraph can be done in two independent steps. Indeed, since walks inW are directed, adding di-

rections to the edges of a mixed graph does not alter the partial transition graphs T (D,W , v) for
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the resulting digraph D. So the conditions for applying Theorem 5.4.4 or Theorem 5.4.7 do not

depend on the exact direction provided by Theorem 5.3.3.

Theorem 5.4.9. Given a mixed graph G = (V,A,E) and a collection of closed directed walksW

in G, there exists a directed embedding of a direction of G withW as a subcollection of the facial

walks if and only if

1. G is underlying-Eulerian.

2. For every X ⊆ V (G), e(X, X̄) + a(X.X̄) ≥ a(X̄,X).

3. Arcs in D occur no more than twice along the walks inW .

4. For each vertex v ∈ V (D) the partial transition graph T (D,W , v) is a cycle of length d(v)

or a linear forest. In other words T (D,W , v) is isomorphic to a subgraph of a cycle of

length d(v).

Theorem 5.4.10. Given a mixed graphG = (V,A,E) and a collection of closed directed walksW

in G, there exists an orientable, directed embedding of a direction of G withW as a subcollection

of the facial walks if and only if

1. G is underlying-Eulerian.

2. For every X ⊆ V (G), e(X, X̄) + a(X.X̄) ≥ a(X̄,X).

3. There exists a proper 2-coloring ofW such that the colored transition graph T (D,W , v) is

a cycle or an extendable linear forest subgraph ofQv for every v ∈ V (G), or in other words,

such that each (T,D,W) is a cycle or satisfies the conditions of Lemma 5.4.5.

In the case of mixed graphs there may be some (undirected) half-edges at a given vertex v. So

there are some vertices of T (D,W , v) that are not initially assigned to one partite set or the other.

However, these unassigned vertices are all isolated vertices of T (D,W , v), and by condition 2 we

can assign them to X(v) or Y (v) so as to end up with |X(v)| = |Y (v)|. Upon this assignment

T (D,W , v) is a vertex-2-colored subgraph of Qv that is well defined up to isomorphism. Then

condition 3 can be checked in the same manner that we showed in Theorem 5.4.8. We can define

X (v), Y(v), and U(v) as before.
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Chapter 6

Introduction to Pseudosurface Duality

6.1 Definitions

A pseudosurface is a closed, connected topological space obtained by identifications of finite

sets of points on a disjoint union of surfaces. We use the formal definition from Heidema [23]:

Let Σ1, ...,Σk be pairwise disjoint surfaces and letX1, ..., Xt be a collection of finite, nonempty,

pairwise disjoint subsets of ∪ki=1Σi. Let ∼ be an equivalence relation defined by x ∼ y if and only

if x = y or x, y ∈ Xj for some j = 1, ..., t. If the space ∪ki=1Σi/ ∼ is a connected topological

space then it is called a pseudosurface. Other names for these spaces are pinched manifolds and

pseudomanifolds. The finite number of points where the pseudosurface fails to be a surface are in

one-to-one correspondence with the sets X1, ..., Xt and are called singular points or pinchpoints

(see Figure 6.1). The multiplicity of each of these singular points, respectively, is |Xj| for j =

1, ..., t.

We are interested in embeddings of graphs into pseudosurfaces. The definition for embedding

graphs in pseudosurfaces is the same as the definition for embedding graphs in surfaces with the

added condition that each pinchpoint must be the image of a vertex in the graph.

LetG be an abstract graph and let Γ(G) be an embedding of the graphG such that each singular

point of G is the image under Γ of a vertex in G. This is a pseudosurface embedding of G. As

is common we will abuse notation and often think of G and its image Γ(G) as the same object.

As with embeddings in surfaces the components of Θ − Γ(G) are called regions or faces in the

Figure 6.1: A vertex at a pinchpoint in a pseudosurface (Ellis-Monaghan and Moffatt [15]).
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embedding and a cellular embedding is an embedding where each component of Θ − Γ(G) is

homeomorphic to a disc.

We wish to generalize this concept of a cellular embedding and under this generalization define

duality for graph embeddings on pseudosurfaces. A pseudocellular embedding is an embedding

where each component of Θ− Γ(G) is homeomorphic to a sphere with finitely many punctures.

Note that a cellular embedding is also a pseudocellular embedding under this definition. We

now wish to define duality for pseudocellular embeddings of graphs on pseudosurfaces. We will

see in this definition the need to look at pseudocellular embeddings instead of cellular embeddings

in pseudosurfaces. Namely, the dual of a vertex at a pinchpoint is a face that is not homeomorphic

to a disc. Because of this, there are cellular embeddings in pseudosurfaces that have duals that are

not cellular.

The dual of a pseudocellular embeddingG in a pseudosurface Θ is obtained as follows. We will

use a generalization of gems. A pseudocellular pseudosurface embedding can be represented by a

gem with two added equivalence relations. We need an equivalence relation on the v-gons that tells

us which vertices get identified together into a pinchpoint, and we need an equivalence relation on

the f-gons to denote which sets of faces get deleted and replaced with a single punctured sphere.

Then the operation of duality is performed in the same manner as for cellularly embedded graphs.

We swap the colors cv and cf on all e-squares in the generalized gem and the former equivalence

relation on v-gons becomes the new equivalence relation on f-gons, and vice versa. Using this gem

representation it is unclear how the equivalence relations should be handled when trying to dualize

with respect to a subset of the edges. This problem, among other issues, will come up as we seek

to define the operation of partial duality on pseudosurfaces in the next section.

An example is given in Figures 6.2 and 6.3. Figure 6.2 shows two gems and Figure 6.3 shows

the corresponding embeddings. The gem J on the left represents two loops embedded in spheres.

If we give this gem an equivalence relation on the v-gons where both v-gons are equivalent and an

equivalence relation on the f-gons where f-gons are only equivalent to themselves, then we obtain

a pseudosurface embedding with one vertex embedded at a pinchpoint between two spherical com-
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Figure 6.2: A gem J (left) and its dual gem J∗ (right)

Figure 6.3: A pseudocellular, pseudosurface embedding corresponding to J and a pseudocellular
embedding corresponding to J∗

ponents and a loop edge in each spherical component. In the dual, the two f-gons are equivalent

and the four v-gons are only equivalent to themselves. This gives an embedding of two disjoint

edges in a sphere. Notice that the gem J with its equivalence relations yields a cellular embedding

while its dual gem J∗ gives an embedding that is pseudocellular (but not cellular).

Remark 6.1. Duality of Faces and Vertices

If a vertex v ∈ G has multiplicity m, then the corresponding face of G∗ is homeomorphic to a

sphere with m punctures, and vice versa.
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6.2 Partial Duality on Pseudosurfaces

Since we are able to define duality for pseudocellular embeddings on pseudosurfaces, we would

also like to be able to extend our definition for partial duality to these embeddings. Again we

would like similar properties to hold as in our discussion of the uniqueness of the operation of

partial duality (Chapter 7). We hope that there is a way where we can take the dual of a part of the

graph in such a way that if we dualize several parts of the graph that together make up the “whole

graph” we should arrive at the dual of the original graph. We notice that since vertices and faces

are being interchanged in duality, the only consistent way to define parts of the graph is by using

the edges.

However, unlike the situation for cellularly embedded graphs on surfaces there are nontrivial

duals for pseudocellular embeddings on pseudosurfaces that can be formed for graphs without

edges. For example, consider the pseudosurface arising from identifying two points of a sphere.

Then take the pseudocellular embedding of a graph with two vertices and no edges with one vertex

at the pinchpoint and one vertex somewhere else on the pseudosurface. This embedding has two

vertices of multiplicities one and two respectively and one face (region), which is homeomorphic

to a sphere with three punctures. Thus the dual of this embedded graph is a single vertex of

multiplicity three with two adjacent faces that are homeomorphic to spheres with one and two

punctures respectively. This dual embedding is on the pseudosurface obtained by beginning with

two spheres and identifying two points of the first sphere with one point of the second sphere. The

embedding is a single vertex at the pinchpoint. So, we see from this example that a graph with no

edges can have a meaningful and distinct dual. Thus, there is no way for us to define partial duality

solely with respect to an edge set.

This problem persists in any case where one of the surface components does not have an edge.

Since edges are the only consistent way to divide up the graph into parts to dualize, we do not

see any sensible way to define partial duality for pseudosurfaces. However, an area for further

research is the search for a restricted class of pseudocellular pseudosurface embeddings where we

can obtain a consistent and meaningful definition of partial duality.
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Remark 6.2. An objection may be made that the same issue arises in the definition of partial

duality for cellular embeddings on surfaces. Namely we could have a component without an edge.

However, the only example of a cellular embedding of a nonempty graph with no edges on a

connected surface is the embedding of one vertex on the sphere. This graph is self-dual, so taking

the dual of the graph is trivial.
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Chapter 7

Uniqueness of Partial Duality

Since taking partial duals seems to be a fundamental operation for cellularly embedded graphs,

we would like to know if this is indeed the only way that it can be “naturally defined.” By this

we mean that we would like to prove that Chmutov’s original definition of partial duality is the

unique operation satisfying certain desired properties. Here we will elaborate on what we mean by

“naturally defined” as well as describe these desired properties. To this point we have been unable

to obtain a result of this type, however, we have made interesting discoveries as to why a result of

this type is difficult to pin down. Here we will describe our approach and what we have found thus

far.

7.1 Basic Properties

Since taking the dual of a graph requires the graph to be embedded in some topological space,

it only makes sense for partial duality to also have this requirement. Furthermore, duality is an op-

eration on cellularly embedded graphs and so we will also require partial duality to be an operation

defined for cellularly embedded graphs. With this in mind we now turn our attention to outlining

which properties should naturally be desired for such an operation on cellularly embedded graphs.

The concept of “partial duality” was defined out of a desire to be able to take the dual of part

of the graph. In other words we wanted some set of operations (and inverses for these operations)

that each dualize part of the graph. When we perform these operations on parts of the graph that

together make up the entire graph we should arrive at the dual of the original graph. This is the

first observation of what must be included in a natural definition for partial duality. There must be

some sense in which taking several partial duals is the same as taking the dual.

Also, if the two parts of the graph that we dualize are disjoint, then the order in which we dual-
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ize them should not matter. So, at least for disjoint parts, partial duality should be a commutative

operation. (It will become clear that partial duality should be a commutative operation for arbitrary

parts after making the following observations about what the “parts” are and how to maintain the

meaning of “duality.”)

Since we want to take a dual of a part of the graph we must have a way to define which part

we are talking about. We notice in the operation of duality that faces and vertices are exchanged,

so in any definition of partial duality we cannot have fixed faces or vertices to refer to. However,

there is a nice one-to-one correspondence between the edges in the original graph and its dual.

Thus, we may regard an embedded graph G and its dual as having the same set of edges. Hence, it

makes sense to assume that there is a single edge set that represents the set of edges in G and all of

its partial duals. This means that all partial duals have the same edges even though the faces and

vertices change. Moreover, we should define partial duality as an operation that uses parts to mean

sets of edges. This is the second observation of what seems reasonable for a natural definition of

partial duality.

A third observation is that partial duality should inherit the meaning of “dual.” When we take

the partial dual of any part of the graph twice, we should arrive at the original graph. Thus we

will require that the operation of partial duality be defined by a set of involutions i.e., self-inverse

operations, in order to preserve this property.

In what follows we need to be precise about what we mean by equality for edge labeled cellu-

larly embedded graphs. To do this, we introduce the following equivalence relation for cellularly

embedded graphs. We regard a graph as consisting of vertices and edges, which are atomic ob-

jects, with an incidence relation between them. For two embedded graphs G1 ⊆ Σ1 and G2 ⊆ Σ2

with the same edge set E we write G1 ∼ G2 if there is a homeomorphism from the surface Σ1 to

the surface Σ2 that maps G1 to G2 and moreover maps each edge e in G1 to the same edge e in

G2. Thus, the homeomorphism must preserve edge labels but not necessarily vertex or face labels.

Equivalently, if two cellularly embedded graphs G1 and G2 have corresponding gems J1 and J2,

then G1 ∼ G2 if J1 ∼ J2, by which we mean that J1 and J2 are isomorphic as edge-colored,
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e-square labeled graphs with exact color preservation (colors cannot be nontrivially permuted).

In this chapter we will consider ∼ to be the natural equivalence relation for cellularly embedded

graphs when dealing with partial duals, and so when we write G1 = G2 (or J1 = J2) we always

mean G1 ∼ G2 (or J1 ∼ J2).

When Chmutov defined partial duality he was working in the context of ribbon graphs. In the

ribbon graph definition of duality G and G∗ have exactly the same set of edges; it is not just a

one-to-one correspondence. We also note that since he was working with ribbon graphs having the

same edge sets, when Chmutov wrote = he generally meant ∼. Moreover, in the gem definition of

duality, the gem of G and the gem of G∗ have the same e-squares (with the colors swapped). This

gives further credence to the idea that it is natural to work with the same set of edges for partial

duality and to consider ∼ as the appropriate definition of when two cellularly embedded graphs

are the same.

Now we give a more precise explanation for what we mean by a partial duality operation

that inherits the meaning of dual and uses edge sets for the parts. Given a fixed edge set E =

{e1, ..., em} we require partial duality to be a set of m operations δe1 , ..., δem that are defined on

all cellularly embedded graphs with this edge set. Let CE denote all cellularly embedded graphs

with edge set labeled by E, where we consider G1, G2 ∈ CE to be identical if G1 ∼ G2. In other

words, CE is a set of equivalence classes under ∼. The vertices and faces in elements of CE are

considered to be unlabeled, but the edges are labeled as specific elements of E. Each of these m

operations δe1 , ..., δem is an involution on CE . We use the notation δei(G) = Gei where G ∈ CE .

We will write Geiej = δej(δei(G)) and, since the operations are involutions, Geiei = G.

Then from the first observation, if E(G) = {e1, e2, ..., em} we must have that Ge1e2...em =

G∗. Furthermore it should be true that for any permutation σ of the set 1, 2, ...,m we have

Geσ(1)eσ(2)...eσ(m) = G∗, which leads us to our next observation.

We can show that this set of involutions must commute with one another in order to main-

tain a natural meaning of partial duality. Since for any permutation σ of the set 1, 2, ...,m we

have Geσ(1)eσ(2)...eσ(m) = G∗, we know that Ge1e2e3...em = G∗ = Ge2e1e3...em , i.e., (Ge1e2)e3...em =
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(Ge2e1)e3...em . But, for any partial dual of a cellularly embedded graphH ⊆ CE ,He3...emem...e3 = H

since Heiei = H . So Ge1e2 = Ge2e1 . Since the labels were arbitrary, any two of the m operations

commute.

Since the operations commute, we can define partial duality with respect to a set of edges. For

A ⊆ E(G) we write GA to denote the partial dual of G with respect to A, meaning we take the

partial dual of G with respect to each edge in A in any order. The commutativity properties give

us that, for two edge sets A,B ⊆ E(G) with A∩B = ∅, (GA)B = (GB)A = GA∪B. Furthermore,

using the involution property Geiei = G and commutativity, we see that (GA)A = G.

We also want this operation of partial duality to be invariant under isomorphism. Recall that

two cellularly embedded graphs,G1 andG2, are isomorphic as cellularly embedded graphs, written

G1
∼= G2, if there is a homeomorphism between their surfaces that carries one embedding to the

other; equivalently, their corresponding gems J1 and J2 are isomorphic as abstract graphs and this

isomorphism exactly preserves edge colors. Notice that if G1 ∼ G2 then G1
∼= G2 so ∼ is a

stronger relation than∼=. Isomorphism invariance means that taking a partial dual should commute

with renaming the edges of an embedded graph, i.e., applying an isomorphism. Specifically, taking

a partial dual with respect to a a fixed edge set A and then applying an isomorphism σ should be

the same as applying σ and then taking partial duality with respect to the image of A, σ(A). Thus,

for any two cellularly embedded graphs G and H with σ : G → H an isomorphism, for any

A ⊆ E(G) there exists an isomorphism φ : GA → σ(G)σ(A) = Hσ(A) such that φ(e) = σ(e) for

all e ∈ E(G). So φ and σ agree on edges but not necessarily on vertices and faces (since, as we

noted before, we cannot clearly identify vertices and faces, and we consider them to be unlabeled

in graphs in CE). We can also state this condition in terms of the gems. Given two gems J1 and J2

corresponding to cellularly embedded graphs G1 and G2, if there is an isomorphism σ : J1 → J2

that preserves edge colors, then for any A ⊆ E(G1) there is an isomorphism φ : JA1 → σ(J1)σ(A)

that preserves edge colors and such that φ(K) = σ(K) for each e-square K.

These properties allow us to assume a fixed edge set and to only consider cellularly embedded

graphs up to isomorphism. So at this point we arrive at a preliminary set of properties that we re-
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quire for any definition of partial duality for cellularly embedded graphs. For cellularly embedded

graphs G and H with A,B ⊆ E(G) those properties are as follows.

(a) GE(G) = G∗.

(b) (GA)B = GA∪B if A and B are disjoint.

(c) (GA)A = G.

(d) If σ : G→ H is an isomorphism, for any A ⊆ E(G) there exists an isomorphism φ : GA →

σ(G)σ(A) such that φ(e) = σ(e) for all e ∈ E(G).

We notice that properties (b) and (c) together are equivalent to the property (GA)B = GA∆B for

any A,B ⊆ E(G), where A∆B is the symmetric difference of the sets A andB. Indeed, assuming

properties (b) and (c) if we let C = A\B, D = A ∩ B, and E = B\A, then C, D, and E are

disjoint, so:

(GA)B = (G(C∪D))(D∪E) = (((GC)D)D)E = (GC)E = GC∪E = GA∆B

It is clear that (GA)B = GA∆B implies properties (b) and (c). This also tells us that under the three

properties above, (GA)B = (GB)A for any two edge sets A,B ⊆ E(G). If we wish, we can restate

these properties as:

1. GE(G) = G∗.

2. (GA)B = GA∆B .

3. If σ : G→ H is an isomorphism, for any A ⊆ E(G) there exists an isomorphism φ : GA →

σ(G)σ(A) such that φ(e) = σ(e) for all e ∈ E(G).

We now show that these properties are not sufficient for a unique definition of partial duality

(considered as an operation on CE for each finite set E).

Proposition 7.1.1. The set of properties below does not yield a unique definition for partial duality.

1. GE(G) = G∗.

2. (GA)B = GA∆B for all A,B ⊆ E(G).

3. If σ : G→ H is an isomorphism, for any A ⊆ E(G) there exists an isomorphism φ : GA →

σ(G)σ(A) such that φ(e) = σ(e) for all e ∈ E(G).
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In this proof, and for the rest of the results in this chapter, we will use Ge and GA to denote the

Chmutov partial dual with respect to e and A, respectively. We will use G ∗′ e and G ∗′A to denote

an alternate partial dual with respect to e and A, respectively. Here G always denotes a cellularly

embedded graph with gem J .

Proof. As we showed earlier, Chmutov’s definition of partial duality satisfies all of these prop-

erties. Now we will give an alternate definition for partial duality that satisfies these properties

as well and is not equivalent to the Chmutov definition. We will denote this operation by ∗′ and

write G ∗′ e to mean the alternate partial dual with respect to an edge e and similarly G ∗′ A to

mean the alternate partial dual with respect to the set of edges A. For each edge e0 ∈ E(G), e0

represents a vertex in the medial graph M . In the medial graph the vertex v(e0) has four neighbors

that correspond to four edges e1, e2, e3, e4 in G. Note that these edges e0, e1, e2, e3, and e4 need not

be distinct. Let Ae0 = {e0}∆{e1}∆{e2}∆{e3}∆{e4}. Now we define a new operation ∗′ so that

G ∗′ e0 = Ge0e1e2e3e4 , i.e., the Chmutov partial dual of G with respect to Ae0 . Even if the edges e0,

e1, e2, e3, and e4 are not distinct, we still are taking the Chmutov partial dual with respect to five

edges. We will show that this operation satisfies the four properties above.

Since each edge e in G corresponding to a vertex v(e) in M has exactly four neighbors, we see

each edge occurs five times in the sets Ae for every e ∈ E(G). Note here that we are counting with

multiplicity. For example, if we are taking the alternate partial dual of a graph with a single edge e,

then e occurs five times inAe. In general,G∗′E(G) = GE(G)E(G)E(G)E(G)E(G) = ((((G∗)∗)∗)∗)∗ =

G∗. Thus property (a) is satisfied by the alternate partial dual.

Properties (b), (c), and (d) are inherited by alternate partial duality directly from Chmutov par-

tial duality. Indeed we see that each alternate operation corresponding to an edge e is an involution.

These involutions commute with each other since they correspond to five Chmutov involutions.

Thus, we see that G ∗′ A ∗′ B = G ∗′ (A∆B). We also see that the bijection between edges in

G and edges in G∗ or any alternate partial dual is held intact by the operation of alternate partial

duality.

It is clear that this operation is not equivalent to Chmutov partial duality. Therefore, Chmutov
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partial duality is not the only operation satisfying the above properties.

Even though we have shown an alternate definition of partial duality satisfying these properties,

this new definition definitely is not convincing as a natural way to define partial duality. The

alternate definition limits which parts of the graph we can dualize by forcing five edges to be

dualized (in the Chmutov sense) at a time. There are other ways that we could similarly define an

operation that satisfies the above properties but is not equivalent to Chmutov partial duality. For

example, for any integer s, let W be the set of all walks starting at v(e) in the medial graph of

length s, let t(W ) be the final vertex of each path W ∈ W , let Ae = {e}∆(∆W∈Wt(W )), and

define G ∗′ e = GAe for each edge e. The operation defined in the proof of Proposition 7.1.1

corresponds to the case s = 1. This gives us infinitely many distinct operations that also satisfy

these conditions.

However, each of these operations is a modification of Chmutov partial duality where the part

of the graph that is altered becomes larger and the operation becomes less local. We do not wish

to include these formulations as other “natural” ways to define partial duality. So in order for

Chmutov’s definition of partial duality to be the unique operation satisfying certain properties,

there must be another condition included. We suspect that such a condition would need to restrict

partial duality to being a local operation. As we saw previously, under the Chmutov partial dual

operation we have some compatibility of minors and partial duals, namelyG/e = (Ge)\e. Perhaps

this would be a natural condition to include for any definition of partial duality.

We also could require that all partial duals of G have the same rigid-vertex, vertex-labeled

medial graph. By rigid-vertex we mean that we allow only for flips of vertices (reversals of the

cyclic ordering of edges around a vertex) in the embedding of the medial graph. Recall that by

Proposition 2.2.5 taking the Chmutov partial dual of an edge e in a cellularly embedded graph G

corresponds to flipping v(e) in the checkerboard-colored, rigid-vertex, vertex-labeled medial graph

M of G. So perhaps this condition should be included in a list of properties of partial duality. The

property is that for any partial dual of an edge-labeled cellularly embedded graph G with vertex-

labeled medial graph M , the vertex-labeled medial graph of G ∗A where A ⊆ E(G) is equivalent
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to M up to a reversal in the cyclic edge ordering at the vertices in M . Equivalently, the gem of

G ∗ A may be obtained from the gem of G by swapping the colors cv and cf on some subset of

the e-squares. Notice that this property is also satisfied by the family of operations defined above

in the proof of Proposition 7.1.1 and the generalization thereafter to similar operations for longer

walks in the medial graph. Indeed, since these operations are defined in terms of a set of Chmutov

partial duals, the vertex-labeled medial graph is fixed up to a reversal in the cyclic edge ordering

at the vertices in M .

7.2 Minor Conditions

An alternative approach that may provide a locality condition is applying the compatibility of

minors and partial duals. The simplest minor-related conditions say that deletion and contraction

are duals. In other words, recalling that by = we mean ∼, for every edge e we have:

1. G ∗ e/e = G\e.

2. G ∗ e\e = G/e.

In verifying whether or not two cellularly embedded graphs are equivalent under ∼, it will be

helpful to understand the effects of ribbon graph minor operations on gems. To delete an edge e

in a gem J we remove the edges colored cf in the e-square for e and then replace each maximal

path with at least one internal vertex of degree 2 by a single edge of color ca, or a cycle of degree

2 vertices by a free loop of color ca. To contract an edge e we proceed in the same way except

that we remove the edges colored cv, not cf , in the e-square for e. In the process of deletion or

contraction, any labels on edges colored ca that were replaced by a new single edge or free loop of

color ca are transferred to this new ca edge.

To add an edge e to a graph G represented by a gem J we select two edges colored ca.

• If the two edges colored ca are distinct, replace each by a path with colors ca then cv then ca.

• If the two edges colored ca are the same and this edge is not a free loop, replace this edge

with a path of length 5 with linear colors ca, cv, ca, cv, and ca.

• If the two edges colored ca are the same and this edge is a free loop, replace this edge with
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a cycle of length 4 with linear colors ca, cv, ca, and cv.

Then we add two edges colored cf connecting ends of the two edges labeled cv so as to create an

e-square labeled e. Note that there are two choices for this connection and under a fixed drawing

of J in the plane (with crossing edges allowed) we can describe the new edge e as twisted or

untwisted. We will write G+ e to denote “G add e.”

To uncontract an edge e in a graph G represented by a gem J we select two edges colored ca.

• If the two edges colored ca are distinct, replace each by a path with colors ca then cf then ca.

• If the two edges colored ca are the same and this edge is not a free loop, replace this edge

with a path of length 5 with linear colors ca, cf , ca, cf , and ca.

• If the two edges colored ca are the same and this edge is a free loop, replace this edge with

a cycle of length 4 with linear colors ca, cf , ca, and cf .

Then we add two edges colored cv connecting ends of the two edges labeled cf so as to create an

e-square labeled e. Note that there are two choices for this connection and under a fixed drawing

of J in the plane (with crossing edges allowed) we can describe the new edge e as twisted or

untwisted. We write G × e to denote “G uncontract e.” (We previously used G × e to denote the

partial Petrie dual with respect to e, but here the notation is exclusively used for uncontraction).

During the uncontraction process, if the two edges colored cf of the new e-square are inserted

in an untwisted way on the same v-gon of the original gem, then the new e-square represents a

link and the number of vertices increases by one. If they are inserted in a twisted way on the same

v-gon, then the new e-square represents a twisted loop and the number of vertices is unchanged. If

they are inserted on different v-gons, then the new e-square represents an untwisted loop and the

number of vertices decreases by one.

Observe that unlike the operations of deletion and contraction, there is not a unique way to add

or uncontract an edge labeled e. However, if G\e = G1 and G/e = G2 then there is a way to add

an edge labeled e toG1 and uncontract an edge labeled e inG2 so thatG = G1 +e andG = G2×e.

The statement that the two minor conditions uniquely determine the partial dual can be restated

as follows. If H is a cellularly embedded graph such that (1) G\e = H/e and (2) G/e = H\e then
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H = Ge.

Next we explore whether or not the Chmutov definition of partial duality is the unique operation

for cellularly embedded graphs satisfying these minor related conditions.

Proposition 7.2.1. The set of minor related properties (1 and 2 above) does not yield a unique

definition of partial duality (considered as an operation on CE for each finite set E).

An isolated loop in a cellularly embedded graph G is a loop e incident with a vertex v0 such

that in the gem J corresponding to G the two edges colored cv in the e-square associated with e

occur in succession along the v-gon associated with v0. An isolated loop can be either twisted or

untwisted. An isolated twisted loop remains an isolated twisted loop in all Chmutov partial duals

of G. In particular, for an isolated twisted loop e we see that Ge = G and G\e = G/e.

Proof of Proposition 7.2.1. We define the following operation ∗′ for cellularly embedded graphs.

Again we will use Ge to denote the Chmutov partial dual with respect to e. Begin with a cellularly

embedded graph G. First, for every isolated twisted loop e label the edge colored ca in between

the two edges colored cv associated with e with the label ae. Then arbitrarily select another distinct

edge colored ca that is neither incident with the e-square associated with e in J nor incident with

an e-square in J associated with any other twisted loop in G, and label it with ae in such a way

that all edges colored ca are labeled with at most one edge label. We call an edge labeled with ae

colored ca active if it is between two edges colored cv associated with e. We call an edge labeled

with ae colored ca dormant if it is not active. So, for each twisted loop e, there is exactly one active

and exactly one dormant edge colored ca and labeled ae.

Now we define ∗′ as follows. For any edge that is not an isolated twisted loop, G∗′ e = Ge. For

any edge e that is a twisted loop, G ∗′ e is formed by (1) performing the gem operation associated

with deleting e in G so that the active ca edge labeled ae becomes dormant and (2) adding an

isolated twisted loop labeled e encompassing the previously dormant ca edge labeled ae so that

it becomes active. By encompassing we mean that we replace the dormant ca edge by a path of

length 5 with edges colored ca, cv, ca, cv, and ca. Then we complete the two edges colored cv to
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an e-square representing a twisted loop labeled e. The middle edge labeled ca is now the active ca

edge labeled ae.

In this way the definition of ∗′ is simply taking Chmutov partial duals with the exception being

that isolated twisted loops are allowed to “float” between their active and dormant locations. We

now verify that the desired conditions are satisfied.

Since there is not an overlap between dormant and active edges, we see that for all edges

e1, e2 ∈ E(G), G ∗′ e1 ∗′ e2 = G ∗′ e2 ∗′ e1. We also observe that G ∗′ e1 ∗′ e1 = G. Therefore, for

all A,B ⊆ E(G), G ∗′ A ∗′ B = G ∗′ (A∆B).

As we previously observed, for an isolated twisted loop e, Ge = G. By the definition of ∗′,

G ∗′ e ∗′ e = G = Ge.

For all edges that are not isolated twisted loops, the minor related conditions are inherited

directly from Chmutov partial duality. For the isolated twisted loops, we previously noted that

G\e = G/e. This is because in both cases after removing the edges colored either cf in the case

of deletion or cv in the case of contraction, there forms a single maximal path of length five with

internal vertices of degree two. The endpoints of this maximal path are the same in the case of

deletion and contraction, so when it is replaced by a single edge colored ca, the resulting gem is

the same.

So, in this case it also does not make a difference whether the twisted loop was moved and then

deleted or simply deleted. In other words G ∗′ e\e = G\e = G/e. Similarly, G ∗′ e/e = G/e =

G\e. So the minor related conditions are satisfied.

As with the first example in Proposition 7.1.1, this sort of bouncing around of isolated twisted

loops seems artificial in nature and so this alternate definition of a partial dual does not seem

convincing for something that should fit under what would be considered “natural” partial duality.

First of all, this definition is not intrinsically isomorphism invariant if the active and dormant

locations of each isolated twisted loop are decided arbitrarily. However, we can restrict the defini-

tion of ∗′ from Proposition 7.2.1 to the case when the gem of G minus all isolated twisted loops

has a unique nontrivial automorphism of order 2 so that each orbit of ca edges corresponds to at
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most one isolated twisted loop. We use the automorphism to swap active and dormant locations. In

any other case we simply perform Chmutov partial duality. This creates an isomorphism invariant

operation.

In addition we observe that under ∗′ it is not guaranteed thatG∗′E(G) = G∗. So this operation

does not satisfy the basic conditions from Proposition 7.1.1. In particular this means that the minor

related conditions do not imply the basic conditions. This leads us to two new questions.

7.3 Combined Conditions

In the case of isolated twisted loops, we have G\e = G/e. The first question is therefore (1)

do the minor conditions force any alternate definition of partial duality ∗′ to satisfy G ∗′ e = Ge

for edges e that do not have G\e = G/e? In particular, are isolated twisted loops the only “bad”

cases. It turns out they are not.

The second question is (2) does the set of minor properties and basic properties yield a unique

definition of partial duality? We will refer to these conditions as the combined conditions. We will

first answer this question while still allowing for isolated twisted loops.

So, the full list of proposed conditions would be:

1. G ∗ E(G) = G∗.

2. G ∗ A ∗B = G ∗ (A∆B) for all A,B ⊆ E(G).

3. If σ : G → H is an isomorphism, for any A ⊆ E(G) there exists an isomorphism φ :

G ∗ A→ σ(G) ∗ σ(A) such that φ(e) = σ(e) for all e ∈ E(G).

4. G ∗ e/e = G\e for all e ∈ E(G).

5. G ∗ e\e = G/e for all e ∈ E(G).

Proposition 7.3.1. The set of conditions listed above does not yield a unique definition of partial

duality.

Proof. Let Tn be the embedded graphG consisting of a cycle v1e1v2e2...vnenv1 of length n together

with two isolated twisted loops t1 and t2 next to each other in the clockwise cyclic ordering of the
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half-edges at v1. The cyclic order of the edges corresponding to the half-edges at v1 is t1t1t2t2e1en.

Let T be the set of all cellularly embedded graphs isomorphic to Tn or one of its partial duals for

some n. The embedded graphs in T are readily recognizable from their gems, and they all have

exactly two twisted loops that occur next to each other in the rotation around some vertex.

Define ∗′ to be the operation where G ∗′ e is obtained by simply swapping the labels of the two

twisted loops if G ∈ T and e is a twisted loop, and G ∗′ e = Ge otherwise. Since the labels are

swapped it is clear that Tn ∗′ ti 6= T tin for n ≥ 2. The minor related properties hold by the same

logic used in Proposition 7.2.1 since U ∗′ ti\ti = U\ti = U/ti, U ∗′ ti/ti = U/ti = U\ti for any

partial dual U of Tn, and the minor properties for the other edges are inherited from the Chmutov

definition. In this case it is clear that G ∗′ E(G) = G∗. Commutativity is clear since the isolated

twisted loops do not impact the operation of ∗′ on the other edges and vice versa. The definition of

∗′ did not make use of edge labels so it is isomorphism invariant.

Now we look to address question (1). Twisted loops played an important role in the examples

in Propositions 7.2.1 and 7.3.1, so it would be reasonable to look at situations where there are

no twisted loops. However, every nonorientable embedding has a (Chmutov) partial dual with

at least one twisted loop. Indeed, for a cellularly embedded graph G, if we take the partial dual

with respect to the edges of a spanning tree A ⊆ E(G), then GA is a bouquet (a single-vertex

embedding). Since Chmutov partial duals do not alter orientability, if G is nonorientable then GA

has a twisted loop. Therefore, in order to exclude twisted loops we need to consider only orientable

embeddings.

Because of this, we could next explore if the minor conditions provide added locality for the

operation of partial duality with the added condition of orientability. In the case of orientable

graphs, progress is made as shown in Theorem 7.3.5. However, in the orientable case, the combined

properties do not yield a unique definition for partial duality, answering question (2).

Observation 7.3.2. Note that to show G = H for two orientable cellularly embedded graphs

we need only to show that G and H have the same cyclic edge labelings around their vertices.

Indeed, since there are no twisted edges i.e., all edge signatures are +1, the rotation scheme (here
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Figure 7.1: A chain of 5 vertices in the medial graph

described by the cyclic edge labels around vertices) completely determines the embedding.

Proposition 7.3.3. The set of basic properties plus minor related properties above does not yield

a unique definition of partial duality for the class of orientable cellularly embedded graphs.

For the proof of Proposition 7.3.3 we will need to note a special class of edges in a cellularly

embedded graph G whose vertices have a distinct structure in the medial graph that is invariant

under Chmutov partial duality. Let G be a cellularly embedded graph with corresponding gem

J . If there are two distinct lists of edge labels in the clockwise rotation around a single vertex

or around two separate vertices in G, which may overlap or wrap around a vertex, of the form

a, e1, e2, e3, ..., ek, b and c, e1, e2, e3, ..., ek, d where ei 6= ej for i 6= j, then the edges e1, ..., ek form

a chain. Furthermore, if a 6= c, b 6= d, and a, b, c, d 6= ei for all i, then the edges e1, ..., ek form

a strict chain. Note that a strict chain is also a maximal chain. We call the edges e1, ..., ek chain

edges because of their structure in the medial graph that we will now describe.

Another way to think of chain edges is by observing the structure of the medial graph of G. In

the medial graph M , the vertices v(e1), ..., v(ek) are such that there are two parallel edges between

v(ei) and v(ei+1) for i = 1, ..., k−1. Furthermore, the half-edges corresponding to the two parallel

edges are opposite one another in the cyclic ordering of edge labels around v(ei) and v(ei+1) for

i = 1, ..., k − 1. We call such a structure a chain in M and we call the vertices v(e1), ..., v(ek)

chain vertices. In the medial graph, if v(e1) has three distinct neighbors v(a), v(c), and v(e2), and

similarly v(ek) has three distinct neighbors v(b), v(d), and v(ek−1) then v(e1), ..., v(ek) forms a

strict chain in M . The order of such a chain or strict chain is the number of chain vertices, k.

Proof of Proposition 7.3.3. Let ∗′ be an operation on orientable cellularly embedded graphs de-
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fined as follows. Let G be a cellularly embedded graph with corresponding gem J . For every edge

e ∈ E(G) define G ∗′ e = Ge unless the vertex v(e) is a part of a strict chain of even order 2k

in the medial graph M . In this case, G ∗′ ei for i = 1, ..., 2k is obtained by swapping the edge

labels ei and ei+1 if i is odd or swapping the edge labels ei and ei−1 if i is even and then taking

the Chmutov partial dual with respect to ei. Since G is orientable, there is a consistent global

clockwise direction so this operation is well-defined. The operation also does not depend on the

choice of global clockwise direction.

Note that under both ∗′ and Chmutov partial duality the rigid vertex medial graph is unchanged

(though vertices can be flipped and can change label). So chains cannot be extended or broken

under either operation. Therefore, the property of being a chain edge is invariant under ∗′ and

Chmutov partial duality.

Next we observe that under this definition of ∗′ for i odd, G ∗′ ei ∗′ ei+1 = G ∗′ ei+1 ∗′ ei =

Geiei+1 = G and G ∗′ ei ∗′ ei = G. We will give an example for the case k = 1 that captures the

general argument. Below is a partial drawing of the gem J representing G with the edges colored

cv (red) labeled. We use blue for cf and yellow for ca. The three figures below are partial drawings

of gems, but they give a complete picture of the changes made by ∗′ and Chmutov partial duality.

The first drawing is of the gem J representing G.

e1

d

a

e2

b

e2

c

e1

Then in the gem forG∗′e1 we have the following (noting that in general this is not an equivalent

gem to that of Ge1). Also, we see that by applying ∗′e2 to the gem below, we get the gem for G
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above, so G ∗′ e1 ∗′ e2 = G. A symmetric argument shows that G ∗′ e2 ∗′ e1 = G. Remember that

‘=’ means equivalent under ∼, but actually the gems here are identical, not just related by ∼.

e2

d

a

e1

b

e1

c

e2

Then the partial gem for G ∗′ e1 ∗′ e1 is given below. This is the same partial gem as for Ge1e2 .

Similarly, G ∗′ e2 ∗′ e2 = Ge1e2 . Again, the gems are identical.

e1

d

a

e2

b

e2

c

e1

We also observe that if the cyclic edge labels around the vertex or vertices incident to e1 and

e2 in G contain ae1e2b and ce1e2d, then the cyclic edge labels around the vertex or vertices in

G ∗′ e1 ∗′ e1 also contain ae1e2b and ce1e2d. None of the other cyclic edge labels around other

vertices were changed so by Observation 7.3.2 we see that G = Ge1e2 , where ‘=’ here means ∼.

So we get G = G ∗′ e1 ∗′ e1 = G ∗′ e2 ∗′ e2 = G ∗′ e1 ∗′ e2 = G ∗′ e2 ∗′ e1 = Ge1e2 . In general, for

arbitrary values of k and i odd, this same effect is happening locally for any pair {ei, ei+1}, so we

have G = G ∗′ ei ∗′ ei = G ∗′ ei+1 ∗′ ei+1 = G ∗′ ei ∗′ ei+1 = G ∗′ ei+1 ∗′ ei = Geiei+1 .
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We now show that the operation is commutative. Recall that the property of being a chain edge

is invariant under ∗′. We have shown that for two chain edges ei and ei+1 that are paired up in the

label swaps of ∗′, the operation ∗′ is commutative. In the following situations there is no overlap in

the effects on the gem so G∗′ e∗′ f = G∗′ f ∗′ e holds when e and f are two chain edges that never

swap labels, a chain edge and a non-chain edge, or two non-chain edges. Since the identification of

strict chains does not rely on edge labels, ∗′ is isomorphism invariant. SinceG∗′ei∗′ei+1 = Geiei+1

for a chain edge ei with i odd and G ∗′ f = Gf for a non-chain edge f , and using the fact that the

operation is commutative, we see that G ∗′ E(G) = GE(G) = G∗. So the basic properties hold for

∗′.

Now we show that the minor related conditions are satisfied. We need only to check chain

edges. In what follows we will only focus on vertices that (possibly) differ amongst those in G,

G∗′ei,G\ei, andG/ei and will not mention those whose clockwise edge labels remain unchanged.

Suppose ei is a link and a chain edge that is part of two distinct edge label lists e1e2e3...e2kS

and e1e2e3...e2kT at two distinct vertices, where S and T are ordered edge lists. Assume without

loss of generality that i is odd. Then G\ei has vertices cyclically labeled e1...ei−1ei+1...e2kS and

e1...ei−1ei+1...e2kT . In G/ei, there is a single vertex with edge labels e1...ei−1ei+1...e2kTe1...ei−1

ei+1...e2kS. In G ∗′ ei the edge label around the single vertex is e1...ei−1ei+1eiei+2...e2kTe1...ei−1

ei+1eiei+2...e2kS. From this we see that G ∗′ ei\ei has the same edge labels around vertices as

G/ei. Similarly G ∗′ ei/ei has the same edge labels around vertices as G\ei. Since all of these

graph embeddings are orientable, by Observation 7.3.2 G ∗′ ei\ei = G/ei and G ∗′ ei/ei = G\ei

as desired. The proof for the case when ei is a loop is similar.

We have shown that the operation ∗′ satisfies all of the basic properties as well as the minor

related properties. It is also clear that this operation is not equivalent in general to Chmutov

partial duality. Therefore Chmutov partial duality is not the unique operation satisfying the listed

properties for orientable cellularly embedded graphs.

Thus far we have shown three negative results concerning the uniqueness of partial duality.

Next, we give a positive result, in the sense that there is a restriction as to how an alternate partial
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Figure 7.2: A chain shift σ = (e1e2e3) of e1 applied to the chain in Figure 7.1

dual can affect the cellularly embedded graph when requiring the minor related conditions.

A pendant edge is an edge that is incident to at least one vertex of degree one. The dual of a

pendant edge is an isolated untwisted loop.

Given a chain in the medial graph of an orientable cellularly embedded graph with vertices

v1, ..., vk in order along the chain and corresponding labels e1, ..., ek, a chain shift of e1 is the

permutation of the edge labels σ = (e1e2...ek). The magnitude of the chain shift is k − 1. If

k = 1, then the permutation and the chain shift are called trivial. Otherwise, the chain shift is

nontrivial. Then σ is a permutation of edge labels in G and a permutation of e-square labels in J

corresponding with this chain shift. We write σ(G) to denote this permutation of the edge labels

applied to G. Figure 7.2 shows the effects of the chain shift σ = (e1e2e3) on the chain in Figure

7.1.

For a sequence of edge labels A, we will use |A| to denote the length of the sequence, and we

denote an empty sequence by ∅.

Lemma 7.3.4. Suppose A and B are cyclic edge labels around a vertex with A,B 6= ∅. If AB =

BA then A = B.

Proof. Assume that AB = BA with A = a1, ..., ak and B = b1, ..., bl where k, l > 0. Considering

the first label in AB = BA, we see that a1 = b1 and this label occurs nowhere else in AB because

no edge label occurs more than twice. Thus, if A = a1A
′ and B = b1B

′ we get a1A
′a1B

′ = AB =

BA = a1B
′a1A

′ from which A′ = B′ and hence A = B.

Theorem 7.3.5. Suppose G is an orientable cellularly embedded edge labeled graph and e ∈

E(G) with G\e = H/e and G/e = H\e for some cellularly embedded graph H . If e is not an
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isolated (untwisted) loop or pendant edge, then H = σ(G)e if e is a loop and H = σ(Ge) if e is a

link where σ is a chain shift of e. If σ is a trivial chain shift then H = Ge.

Note that in the proof of Proposition 7.3.3 for every chain edge ei, G ∗′ ei = σ(G)ei = σ(Gei)

where σ is a chain shift of ei of magnitude 1. In this case the result of a chain shift followed by a

partial dual is the same as the result of a partial dual followed by a chain shift, but this is not true

in general.

For sequences of edge labels A and B we will write (A) = (B) to mean that A is a cyclic shift

of B and A = B to mean that they are exactly equal.

Proof. Let G be an orientable cellularly embedded edge labeled graph with e-square-labeled gem

J . The cyclic order of the edge labels around vertices in G is equivalent to the cyclic order of the

e-square labels of the edges colored cv on the v-gons in J . Assume G\e = H/e and G/e = H\e

for some edge e ∈ E(G) that is not an isolated loop or pendant.

Let us first recall howGe is obtained fromG in terms of edge deletions, additions, contractions,

and uncontractions. We assume G is orientable. In this case, Ge = G\e× e where the two choices

of edges labeled ca are exactly edges labeled ca that replaced the maximal path or cycle of vertices

of degree 2 in the edge deletion process. Then the edges labeled e colored cf are connected by

edges labeled cv to form an untwisted e-square. Similarly Ge = G/e + e where the two choices

of edges labeled ca are exactly edges labeled ca that replaced the maximal path or cycle of vertices

of degree 2 in the edge contraction process. Then the edges labeled e colored cv are connected by

edges labeled cf to form an untwisted e-square.

Consider the previously chosen edge e. Then e is either a loop that is not isolated or a link with

both incident vertices having degree at least 2. Let us first assume that e is a loop with incident

vertex v. Then the two occurrences of the label e on edges colored cv in J occur on the same v-gon

that represents v in J . Let ed1d2 . . . dkedk+1 . . . dl be the cyclic ordering of edge labels around v.

Let A = d1d2 . . . dk and B = dk+1 . . . dl where A and B are nonempty since e is not isolated.

Then G\e has a vertex vAB with edge labels AB by definition of G\e. Similarly G/e has two

distinct vertices vA and vB with edge labels A and B, respectively, by definition of G/e. Since
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G\e = H/e and G/e = H\e we must be able to uncontract an edge labeled e from G\e and add

an edge labeled e to G/e in such a way that G\e× e = H and G/e+ e = H .

Let n = V (G). Then G\e has n vertices and G/e has n + 1 vertices. Adding an edge to G/e

does not change the number of vertices so H must have n + 1 vertices. This means that we must

add a vertex by uncontracting an edge from G\e to form H . Uncontracting an edge can only add a

vertex if the two edges labeled ca that we select at the beginning of the uncontraction process occur

on the same v-gon. Furthermore, in this case we must uncontract the edge in the untwisted manner

otherwise the number of vertices is unchanged. This means H has n+ 1 vertices and is orientable.

So we would now like to show that the two edges labeled ca we select when uncontracting an edge

e from G\e must be from a vertex with edge labels AB.

Suppose to the contrary that the two edges colored ca chosen are from a v-gon with different

edge labels. Then the vertex vAB in G\e (where A,B 6= ∅) survives the uncontraction process

unaffected and so H has the vertex vAB labeled AB. But then vAB must have been present in G/e

since G/e = H\e and so vAB is unchanged by deleting e from H . Furthermore, since A and B are

nonempty vAB must be distinct from the vertices vA and vB inG/e. So vAB must have been present

inG since it was unchanged going fromG toG/e. SoGmust have vertices labeled eAeB andAB.

This means that G\e has two vertices with edge labels AB, the vertex we named vAB originally

and another vertex we call uAB. Since by our assumption the two edges colored ca chosen in the

uncontraction of e fromG\e do not occur on a vertex with labels AB, this meansH must have two

vertices with edge label AB, vAB and uAB. Recall that G/e has two vertices vA and vB with edge

labels A and B respectively. Since H is obtained from G/e by the addition of an edge labeled e,

H also has two distinct vertices vA′ and vB′ with edge labels A′ and B′ (A and B with the possible

addition of an edge(s) labeled e to one or both of these vertices). Thus H has three occurrences

of the label di on its vertices. This is a contradiction. Therefore, the two edges in the gem of G\e

colored ca during the uncontraction creating H from G\e must be chosen from a vertex labeled

AB. Note that if two vertices in G\e have edge labels AB then they are indistinguishable, and so

we can assume this vertex is vAB from above.
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Figure 7.3: Diagram for the relationship between G, H , and the minor operations.

Next we observe possible candidates for the two gem edges colored ca, g1 and g2, from the

v-gon associated with the vertex vAB. As noted above, H has two distinct vertices vA′ and vB′ with

edge labels A′ and B′. Since g1 and g2 are chosen from the same v-gon in G\e, the two edge labels

for e on edges colored cv occur on different v-gons in H = G\e × e. Thus, one occurrence must

be on vA′ and one occurrence must be on vB′ , so d(vA′) = k + 1 and d(vB′) = l − k + 1. Thus g1

and g2 must be k edges apart in the edge label ordering around vAB, meaning that there are k edge

labels on edges colored cv between the two chosen ca edges g1 and g2. Without loss of generality

suppose |A| ≤ |B|. Then at most one of g1 and g2 can be interior to A (chosen between the edge

labels di and di+1 for 1 ≤ i ≤ k − 1). However, if |B| ≥ |A| + 2, both g1 and g2 can be interior

to B (both chosen between the edge labels di and di+1 for k + 1 ≤ i ≤ l − 1). This gives us two

cases.

Case 1: If both g1 and g2 are interior to B then we can write B = B1B2B3 where g1 and g2 are

between B1 and B2 and between B2 and B3. Then B1 and B3 are nonempty, |B2| = k = |A|, and
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H has vertices with labels eB2 and eB3AB1, where |B3AB1| = |B| > k. Then in H\e = G/e,

these two vertices correspond to vA and vB so (B2) = (A) and (B3AB1) = (B1B2B3). Note that

all the edge labels in A occur once in A and again in B2, so none of the edge labels in A occur

in B1 or B3. Since (A) = (B2), we can write A = A1A2 and B = A2A1 where, without loss of

generality, A1 6= ∅ but it is possible that A2 is empty.

Then (B3AB1) = (B1B2B3) implies (B3A1A2B1) = (B1A2A1B3). Since edges in A do not

occur in B1 or B3 and A1 6= ∅, we have A1A2B1B3 = A1B3B1A2. Eliminating A1 from both

sides we get A2B1B3 = B3B1A2. Therefore, A2 = ∅, so B1B3 = B3B1 and A = B2. Since

B1B3 = B3B1, by Lemma 7.3.4 we have B1 = B3. In Ge we have a vertex with labels eB1B2B3

and a vertex with labels eA, which are exactly the same as the vertices labeled eB3AB1 and eB2 in

H since B1 = B3 and A = B2. These are the only two vertices that change in the minor operations

so we see that H = Ge.

Case 2: If g1 and g2 are not both interior to B, then we may assume that A = A1A2 where g1

occurs between A1 and A2, and B = B1B2 where g2 occurs between B1 and B2. Here A1, A2,

B1, or B2 may be empty. During the uncontraction of e, we create two vertices in H = G\e × e

with edge labels eA2B1 and eB2A1. In G/e (H\e) these two vertices have edge labels B1A2

and A1B2 and correspond to the pair of vertices vA and vB and therefore have the same cyclic

edge labels (up to a cyclic shift). Without loss of generality suppose that (B1A2) = (B1B2) and

(A1B2) = (A1A2).

Suppose first that A1 6= ∅. Consider the first edge label d1 of A1, which can occur at most once

elsewhere amongst the edge labels in A1, A2, B1, and B2. The edge label d1 appears in A2 if and

only if it also occurs inB2 since (A1A2) = (A1B2). Therefore, it occurs in neitherA2 norB2 since

d1 already occurs in A1 and it cannot occur three times. Thus, if d1 occurs only once in A1, not

only do we have (A1A2) = (A1B2), but also A1A2 = A1B2 so A2 = B2 = S, say. If d1 occurs

twice in A1 then we can write A1 = d1Cd1D so A1A2 = d1Cd1DA2 and A1B2 = d1Cd1DB2.

Since (A1A2) = (A1B2) either (1) d1Cd1DA2 = d1Cd1DB2 (meaning A2 = B2 = S) or (2)

d1Cd1DA2 = d1DB2d1C. From (2) we see that C = DA2 = DB2 so A2 = B2 = S. Therefore
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we have that the edge labels for v can be written as eAeB = eA1SeB1S meaning that the vertices

in the medial graph corresponding to the edges Se form a chain. Therefore, H can be formed from

G by first performing a chain shift of e of magnitude |S| and then taking the Chmutov partial dual

with respect to e, as desired.

Now suppose that A1 = ∅. If we also have B1 = ∅ then g1 and g2 are the edges colored ca

formed in the deletion process of e to obtain G\e, and so H = Ge. Therefore, we may suppose

that B1 6= ∅. Then we may repeat the argument for A1 6= ∅, swapping A1 with B1 and A2 with B2.

This does not alter the conditions (B1A2) = (B1B2) and (A1B2) = (A1A2), and the argument did

not depend on the fact that |B| ≥ |A|.

For the case where e is a link that is not a pendant we know that e is a nonisolated loop in Ge.

If G\e = H/e and G/e = H\e then Ge\e = He/e and Ge/e = He\e so by the above argument,

He = σ(Ge)e. Therefore, H = σ(Ge).

As previously mentioned another possible condition to consider is forcing the same rigid-

vertex, vertex-labeled medial graph for every partial dual of G. We note that the counterexam-

ple from Proposition 7.1.1 satisfied this property, but the counterexamples from Propositions 7.2.1

and 7.3.3 do not satisfy this property (at least in general). We will note this and other remaining

questions in the next chapter.
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Chapter 8

Future Directions

Many of the clear future directions for research stem from our endeavors to prove that Chmu-

tov’s original definition of partial duality is the unique operation satisfying certain desired proper-

ties. The next natural step seems to be to examine the following set of conditions. The addition of

condition 6 below eliminates the possibility of chain shifts (up to equivalence under ∼) and so in

the case of orientable embeddings, Theorem 7.3.5 gives us that G ∗ e = Ge for every edge e that

is not an isolated loop or pendant. We view this as a sort of “kitchen sink” type approach to this

problem in search of a positive result.

1. G ∗ E(G) = G∗

2. G ∗ A ∗B = G ∗ A∆B

3. If σ : G → H is an isomorphism, for any A ⊆ E(G) there exists an isomorphism φ :

G ∗ A→ σ(G) ∗ σ(A) such that φ(e) = σ(e) for all e ∈ E(G).

4. G ∗ e/e = G\e

5. G ∗ e\e = G/e

6. The vertex labeled medial graphs for G and G ∗ e are equivalent up to reversals in the

clockwise cyclic ordering at each vertex.

Other possible conditions include more restrictive locality conditions. One idea is to have

conditions involving more than one edge. For example, we may include the property that G ∗

e\f = G\f ∗ e for distinct edges e and f . Another idea is to have a condition that somehow

fixes vertices and faces that are not incident with the edge being partially dualized. This would

most likely take the form of an adaptation of the isomorphism invariance property to incorporate

labels on vertices and faces that are not expected to change. We could also consider the inclusion

of a condition regarding the interaction between partial duality and partial Petrie duality, namely

G ∗ e× e ∗ e× e ∗ e× e = G.
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Another area for future study is a structural description of important subclasses of the classes

of embedded graphs that we classified in Chapter 4. Especially for the properties that are partial

dual invariant, we would like to be able to describe the bouquets (one-vertex embeddings) in these

embedding classes.

In our work on pseudosurfaces, we would like to be able to find a method for applying minor

operations. In addition, we would like to find a class of pseudosurface embeddings where partial

duality can be naturally defined.
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