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	 Chapter 1 

 

Introduction 

 

Randomized controlled trials (RCTs) are considered the gold standard approach for 

estimating the effects of treatments, interventions, and exposures on outcomes. However, when 

RCTs are unethical or impractical to conduct, observational studies are increasingly used as a 

valuable alternative1. One of the primary challenges of observational studies is confounding by 

indication bias. In the presence of uncontrolled confounding, any observed difference between 

the treatment group and the control group cannot be attributed solely to a causal effect of the 

exposure on the outcome2.  

To address the challenge of confounding by indication bias, propensity scores are often used 

in observational studies to mimic some of the particular characteristics of a randomized 

controlled trial1. The propensity score is defined to be the conditional probability of assignment 

to a particular treatment given a vector of observed covariates. It is a balancing score because 

conditional on the propensity score, the distribution of measured baseline covariates is similar 

between individuals in the treatment group and individuals in the control group3. Among other 

methods, inverse probability of treatment weighting (IPTW) uses weights based on the 

propensity score to create a synthetic sample in which the distribution of measured baseline 

covariates is independent of treatment assignment1. However, methods that use inverse 

probabilities as weights are sensitive to misspecification of the propensity model when some 

estimated propensities are small. To overcome the sensitivity of using inverse probabilities as 

weights, a new class of estimators called doubly robust (DR) estimators was introduced4.  



2	

	 Doubly robust estimators, also known as augmented inverse probability treatment weighted 

estimators, were proposed as a refinement of a weighted estimating-equation approach to 

regression with incomplete data5, 6. DR estimators require specification of two models: one that 

describes the population of responses, and another that describes the process by which the data 

are selected to produce the observed sample. The distinguishing feature of DR estimators is that 

they apply both models simultaneously and they remain asymptotically unbiased of the 

parameter even if the outcome regression model or the propensity score model is misspecified7.  

Extensive explanation and evaluation of DR estimators have been done, including their 

empirical performance. Kang and Schafer demonstrated via simulation that the usual DR 

estimator can be severely biased when both models are misspecified, even if they are nearly 

correct. And that bias is especially problematic when some estimated propensity scores are close 

to zero, yielding very large weights4. Cao, Tsiatis and Davidian proposed alternative DR 

estimators that achieve comparable or improved performance relative to existing methods, even 

with some estimated propensity scores close to zero8.  

I first became interested in the topic of this paper because two of my committee members, 

Pingsheng Wu and Chang Yu, among other collaborators, were interested in how a data adaptive 

estimator could be more efficient and produce smaller standard error of the difference between 

control group and treatment group means in an observational study compared to the usual DR 

estimator. The method that will be proposed in this paper is a data adaptive estimator based on 

the usual DR estimator with the introduction of a tuning parameter. The method is data adaptive 

because the tuning parameter determines the control group and treatment group means, hence the 

difference between the two group means and the standard error of the difference. Wu and Yu 

also attempted to determine the optimal solution of the tuning parameter that achieves the 
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	 minimum standard error of the difference. Their work led me want to understand if the 

proposed modification actually does produce a more efficient estimator of the standard error of 

the treatment-control mean difference.  

The purpose of this paper is to present results from simulation studies of the proposed data 

adaptive method. This paper also discusses how alterations of simulation parameters, such as the 

sample size, standard deviations of the covariates, and standard deviation of the outcome, could 

affect the standard error of the difference between the control group and treatment group means. 

The rest of the paper is organized as follows. Chapter 2 introduces inverse probability treatment 

weighting estimator, doubly robust estimator, and data adaptive estimator. Chapter 3 presents the 

methods used in the simulation studies. Chapter 4 shows results from the simulation studies 

compared to those from the doubly robust estimator. Finally, Chapter 5 discusses the findings, 

limitations of the current study, and directions of future study.  
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	 Chapter 2 

 

Estimators of Average Treatment Effect 

 

2.1 Average Treatment Effect 

In most randomized controlled medical studies, there are two possible study groups and an 

outcome for each subject. A subject is either in the control group, getting outcome Y"(0), or in 

the treatment group, getting outcome Y"(1). Let δ be an indicator variable denoting being in the 

treatment group and define Y" = 	 δ"Y" 1 	+ (1 − δ")Y" 0 	to be the outcome under the actual 

treatment received1.  

For each subject, the (unobservable) effect of treatment is Y" 1 − Y" 0 . The average 

treatment effect (ATE) is defined to be the expectation of the effect of treatment, 

E ︎ Y" 1 − Y" 0 9. The ATE is the average effect, at the population level, of moving an entire 

population from the control group to the treatment group. In RCTs, since treatment is assigned 

by randomization, an unbiased estimate of the ATE can be directly estimated from the study data 

as E ︎ Y" 1 − Y" 0 ≈ E Y(1) − E[Y(0)] ︎10, where E Y(t)  is the estimated mean corresponding 

to group t where t = 0,1. 

In observational studies, however, the treated subjects often differ systematically from 

untreated subjects. In general,  E Y 1 |δ = 1 ≠ E Y(1)  and E Y 0 |δ = 0 ≠ E Y(0) 1. Thus, 

an unbiased estimate of the average treatment effect cannot be obtained by directly contrasting 

outcomes between the two treatment groups. In the next section, propensity scores will be used 

in a method to estimate ATE for observational studies.  
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	 2.2 Propensity Score and Inverse Probability of Treatment Weighting 

The propensity score is viewed as the probability of treatment assignment conditional on 

observed baseline characteristics. Rosenbaum and Rubin formalized propensity score methods 

and showed that all confounding can be controlled through the use of the propensity score3. In 

their paper they defined treatment assignment to be strongly ignorable if the following two 

conditions hold: (a) 𝑌 1 , 𝑌 0 ⊥ 𝛿|𝑋 and (b) 0 < 𝑃 𝛿 = 1 𝑋 < 1. The first condition says 

that treatment assignment is independent of the potential outcomes conditional on the observed 

baseline covariates. The second condition says that every subject has a nonzero probability to 

receive either treatment. If treatment assignment is strongly ignorable, conditioning on the 

propensity score allows one to obtain unbiased estimates of ATE1,3.  

The propensity score is found by regressing treatment group membership, 𝛿:, on the 

confounding covariates and using the fitted equation to form prediction probabilities, propensity 

scores, of group membership. The prediction could be done by a logistic regression or 

discriminant analysis. Each subject in the dataset is assigned a propensity score, which is the 

estimated probability of being in the treatment group rather than the control group. This 

propensity score is then the single confounding covariate that summarizes all observed baseline 

characteristics11. This reduction from many characteristics to one composite characteristic allows 

the straightforward assessment of whether the treatment and control groups overlap enough with 

respect to background characteristics to allow a sensible estimation of treatment versus control 

effects from the dataset. Moreover, when such overlap is present, the propensity score approach 

allows a straightforward estimation of treatment versus control effects that reflects adjustment 

for differences in all observed background characteristics11.  
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	 Propensity scores can be used to generate weights to control confounding. The purpose of 

propensity score weighting is to reweight the individuals within the original control and 

treatment groups to create a pseudopopulation in which there is no longer an association between 

the confounders and treatment12. One type of weighting that is commonly used is inverse 

probability of treatment weighting (IPTW). 

IPTW is defined as the inverse of the estimated propensity score for treated subjects and the 

inverse of one minus the estimated propensity score for control subjects. Subjects who receive an 

unexpected treatment are weighted up to account for the many subjects like them who did 

receive treatment. Subjects who receive a typical treatment are weighted down because they are 

essentially overrepresented in the data. These weights create a pseudopopulation where the 

weighted treatment and control groups are representative of the subject characteristics in the 

overall population. Therefore, IPTW results in estimates that are generalizable to the entire 

population from which the observed sample was taken2. By applying IPTW, an observational 

study mimics many characteristics of an RCT allowing the ATE to be estimated.  

Let 𝛿: be an indicator variable denoting whether or not the ith subject is in the treatment 

group and let 𝜋: denote the propensity score for the ith subject. Then weights can be defined as 

𝑤: =
=>
?>
	+ 	 (@A=>)

(@A?>)
. A subject’s weight is equal to the inverse of the probability of receiving the 

treatment that the subject actually received. Let 𝑌: denote the outcome variable measured on the 

ith subject. Then an estimate of the ATE is shown in equation (1) below 

 𝜃CDEF =
1
𝑛

𝛿:𝑌:
𝜋:

−
1
𝑛

(1 − 𝛿:)𝑌:
(1 − 𝜋:)

H

:I@

H

:I@
 (1) 

where n denotes the number of subjects1.  



7	

	 Despite the broad utility of IPTW, it has some shortcomings. IPTW methods assign large 

weights, for example, to treatment subjects who closely resemble control subjects, causing the 

estimates to have high variance. IPTW estimates are also sensitive to misspecification of the 

propensity score model, because even mild lack of fit in outlying regions of the covariate space 

where	𝜋: ≈ 0 translates into large errors in the weights4. Due to the limitations of IPTW 

estimators, another class of estimators, doubly robust estimators, are often used for better 

performance. 

 

2.3 Doubly Robust Estimators 

In a causal inference model, an estimator is doubly robust (DR) if it remains asymptotically 

unbiased when either the outcome regression model or the propensity score model is 

misspecified7. Due to this property, DR estimators are highly desirable when making inferences 

in causal inference contexts. The DR estimator of the treatment mean is shown below 

 𝜇KL =
1
𝑛

𝛿:𝑌:
𝜋:

−
1
𝑛

𝛿: − 𝜋:
(1 − 𝜋:)

𝑚(𝑋:, 𝛽)
H

:I@

H

:I@
 (2) 

where 𝑚(𝑋, 𝛽) is a correctly specified outcome model and 𝛽 is consistent for 𝛽O8. The 𝑚(𝑋:, 𝛽) 

is the predicted value for the ith subject based on the fitted model using only the treatment 

subjects. The DR estimator is also called augmented inverse probability treatment weighted 

estimator (AIPTW) because it makes use of the information in the conditioning set for the 

prediction of the outcome variable in order to improve on the basic IPTW estimator13.  

DR estimators of the mean of Y can be generalized to provide an estimator of the ATE of a 
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	 binary treatment from observational data under the assumption of no unmeasured 

confounders14. From their simulation studies, Bang and Robins demonstrated that the usual DR 

estimator was virtually unbiased when either the outcome regression model or the propensity 

score model is misspecified, although the DR estimator was considerably biased when both 

models were misspecified14. They also demonstrated that whenever the regression model was 

correctly specified, the DR estimator was nearly as efficient as the MLE estimator. By using a 

DR estimator, there is a very small price paid in terms of efficiency loss. Furthermore, simulation 

studies by Kang and Schafer showed that when selection bias in moderate, good predictors of 

𝑌:	are available, both the outcome regression model and the propensity score model are 

approximately but not exactly true, and some estimated propensity scores are nearly zero, a DR 

estimator that does not rely on inverse probability of treatment weighting may perform 

reasonably well, but there is no guarantee that it will outperform an estimator based only on an 

outcome regression model4. 

 

2.4 Data Adaptive Estimators 

While we may be interested in the control group and treatment group estimated means, in this 

paper we will focus on the difference in their estimated means: 𝜇@ − 𝜇O. The estimator we are 

proposing is a weighted average of the observed responses and the predicted study group t 

responses. A tuning parameter provides an adjustment of the weights. Specifically, we are 

interested in the standard error of the difference and the tuning parameter that minimizes it. The 

new estimator is an adaptation of the DR estimator where the adaptation is data driven, thus we 

use the label data adaptive robust estimator (DAR).  
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	 We now define the following. Let 

• 𝒀 = (𝒀OQ , 𝒀@Q )Q be a 𝑛×1 vector of responses where 𝒀S is the 𝑛S×1 vector of responses 

corresponding to study group 𝑡	for 𝑡 = 0,1. For convenience we denote  

𝒀 = (𝑌@, 𝑌U, … , 𝑌HW, 𝑌HWX@, …𝑌H)′	

where 𝑛 = 	𝑛O + 𝑛@.  

• 𝑿 = (𝑿OQ , 𝑿@Q )Q be a 𝑛	×	(𝑝 + 1) matrix of 𝑝 covariates with the first column being the 

vector of ones. The rows of X correspond to the rows of Y. That is, 𝑿S corresponds 𝒀S for 

𝑡 = 0,1.  

• 𝜹 be the 𝑛	×	1 vector of indicator variables that corresponding observations in the 

treatment group. The indicator of observation i is denoted 𝛿:.  

• 𝝅 be the 𝑛	×	1 vector of propensity scores determined by the logistic regression of 𝜹 on 

𝑿, indexed by 𝑖 = 1,… , 𝑛, targeting 𝛿 = 1. The propensity score for observation i is 

denoted 𝜋:. 

It is assumed that 𝐸 𝒀S	 𝑿S = 𝑿S𝜷S for 𝑡 = 0,1, where  

𝜷S = (𝜇S, 𝛽S@, … , 𝛽Sa) 

is a 	 𝑝 + 1 	×	1 vector of regression coefficients. We assume that  

𝑉𝑎𝑟 𝒀|𝑿 = 𝜎U𝑰. 

Using OLS, we estimate 𝜷S with 𝜷S, the 𝑝 + 1 	×	1 vector of estimated regression 

coefficients defined as  

𝜷S = (𝑿SQ𝑿S)A@(𝑿SQ	𝒀S) 
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	 for 𝑡 = 0,1. 

Let 

• 𝑌S: be the predicted value of observation i with respect to the group t regression. Then 

𝑌S: would be the 𝑖Sg element of 𝑿𝜷S.  

• 𝒘S be a 𝑛	×	1 vector of weights where 𝑤S: =
=>
?>

 if 𝑡 = 1 and 𝑤S: =
@A=>
@A?>

 if 𝑡 = 0.  

• 𝝁S be a 𝑛S×1 vector consisting of the positive elements of 𝒘S for 𝑡 = 0,1. Then the 

mean response for observation 𝑖, 𝐸 𝑌: = 𝜇, is defined as 

𝜇 = 𝛿:𝜇@ + (1 − 𝛿:)𝜇O 

The proposed DAR estimator of 𝜇S is given as  

 𝜇S =
𝒘S
Q𝒀 + 𝟏Q − 𝛼S𝒘S

Q 𝑿𝜷S
𝑛 + 1 − 𝛼S 𝒘S

Q𝟏
 (3) 

 =
[𝑤S:𝑌: + (1 − 𝛼S𝑤S:)𝑌S:]H

:I@

[𝑤S: + (1 − 𝛼S𝑤S:)]H
:I@

 (4) 

 

where the 𝛼S, 𝑡 = 0,1, are tuning parameters.  

For computational purposes, this may be expressed as  

 

 𝜇S =
𝐸S − 𝛼S𝑅S

𝑛 + 1 − 𝛼S 𝑊S
 (5) 
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	 where  

 

𝐸S = 𝒘S
Q𝒀 + 𝟏Q𝑿𝜷S = (𝑤S:𝑌: +

𝒏

𝒊I𝟏
𝑌S:) 

𝑅S = 𝒘S
Q 	𝑿𝜷S = 𝑤S:𝑌S:

𝒏

𝒊I𝟏
 

𝑊S = 𝒘S
Q𝟏 = 𝑤S:

𝒏

𝒊I𝟏
 

(6) 

Equations (5) and (6) are essential for computational purposes because by collecting the three 

terms, 𝐸S, 𝑅S, and 𝑊S, in Equation 6, we will be able to calculate 𝜇O and 𝜇@ using Equation 5. 

Moreover, Equation 5 shows that we can alter 𝜇S by simply changing 𝛼S. From here on in 

simulations, we will make 𝛼O = 𝛼@ = 𝛼. That is, the tuning parameter will be the same for the 

treatment group and the control group.   
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	 Chapter 3 

 

Simulation  

 

In this chapter, we used simulation and bootstrap methods to search and compare minimum 

standard error and the minimum median absolute deviation under different simulation parameters 

for the sample size, standard deviation for the outcome, and standard deviation for covariates. 

The data generation procedure closely followed the setting in Kang and Schafer’s paper4. 

 

3.1 Simulation Settings 

For each unit 𝑖 = 		1, … , 𝑛, suppose that 𝑿′ = (𝑋:@, 𝑋:U, 𝑋:p, 𝑋:q)′ is distributed as 𝑁(0, 𝐷) 

where 𝐷 is the 4×4 diagonal matrix representing the variance matrix of 𝑿. The outcome 

measures, 𝑌S:, are generated as the true mean model plus random error  

𝑌S: = 210 + 27.4𝑋:@ + 13.7𝑋:U + 13.7𝑋:p + 13.7𝑋:q + 𝜀: 

where 𝜀: ∼ 𝑁(0, 𝜎). The true propensity score model is  

𝜋: = 𝑒𝑥𝑝𝑖𝑡 −𝑋:@ + 0.5𝑋:U − 0.25𝑋:p − 0.1𝑋:q  

where 𝑒𝑥𝑝𝑖𝑡 𝑥 = @
@X~�a	(A�)

 .  

For each simulation, fitted propensity scores, 𝜋:, are obtained by performing a logistic 

regression on 𝑿. Then the fitted outcome values, 𝑌S:, are obtained by performing a least-squares 

regression on 𝑿. With fitted propensity scores, fitted outcome values, and equations from section 

2.4, we will be able to calculate and minimize the standard error as well as the median absolute 
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	 deviation of the difference between the control group mean and the treatment group mean.  

 

3.2 Finding Minimum Standard Error and Minimum Median Absolute Deviation 

The minimum standard error of the difference between treatment group and control group 

means was found using the optimize function which is part of the stats package in R15. As we can 

see from Figure 1 below, the standard errors of the mean difference form a smooth convex curve 

as a function of 𝛼. In the scenario shown, the minimum standard error occurs around 𝛼 = 0.8 

(indicated by the dashed red line).  

The median absolute deviation values do not form a smooth curve as a function of 𝛼. 

Therefore, we used the smooth function in R to smooth the curve (shown in the dashed blue 

curve) and then found the minimum median absolute deviation using the smoothed values 

ranging 𝛼 from −1.99 to 1.99 with an increments of 0.0115. In the scenario shown, the minimum 

median absolute deviation occurs around 𝛼 = 0.65 (indicated by the dashed red line).   
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	 3.3 Parameter Scenarios 

In the simulations, three parameters are allowed to vary: the two values for sample size 𝑛 are 

50 and 500, the two values for the variance of the outcome variable 𝜎 are 20 or 50, and the two 

values for the variance of the covariates 𝜏 are 1 or 3. Since there are three parameters that are 

allowed to vary and there are two values for each parameter, there are 8 different combinations 

of the simulation scenarios.  

We chose the sample size to be 50 and 500 because they represent a small sample size and a 

relatively large sample size. We have 4 covariates and 2 propensity scores to estimate for the 

control group. Similarly, we have 6 regression coefficients to estimate for the treatment group. 

So in each scenario we have a total of 12 regression coefficients to estimate. In the scenarios 

with sample size 50, there are about 4 subjects for each regression coefficient. These scenarios 

illustrate how different estimators perform with small sample sizes. In the scenarios with sample 

size 500, there are about 42 subjects for each regression coefficient. And these scenarios 

illustrate how different estimators perform with relatively large sample sizes.  

For each scenario, 5000 simulations were performed and summary statistics collected. 

Summary statistics and results will be further discussed in later sections.  

 

3.4 Bootstrap Method 

Apart from simulations, a simple bootstrap method was used to explore minimum standard 

error and the minimum median absolute deviation of the group mean difference for each 

scenario. For each simulated dataset, 250 bootstrap samples were generated and minimum 
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	 standard error and the minimum median absolute deviation of the group mean difference were 

found based on those bootstrap samples. After bootstrap procedure, all minimum standard errors 

and the minimum median absolute deviations of the group mean differences were collected and 

averaged to produce the results under the bootstrap method.  

We also calculated trimmed-mean summaries of the bootstrap values to account for positive 

skewness in dispersion measures. Among the minimum standard errors and the minimum median 

absolute deviations of the group mean difference obtained from all bootstrap samples, the top 5% 

and the bottom 5% were trimmed to get a more stable result. The 𝛼Qs corresponding to the 

minimum standard errors and the minimum median absolute deviations of the group mean 

difference were also obtained and their means calculated.  

 

3.5 Summary Statistics 

For each simulation scenario there are four summary statistics related to the standard error of 

the simulated group mean differences: the minimum standard error, the 𝛼 (tuning parameter) 

corresponding to the minimum standard error, the standard error assuming 𝛼 = 1, and the 

average minimum standard error obtained from the bootstrap samples. Similar summaries are 

also presented for the median absolute deviation of the simulated group mean differences. 
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	 3.6 Results 

3.6.1 Standard Error Results 

The results of the minimum of the standard errors of the difference between the treatment 

group and control group means and their corresponding tuning parameters, 𝛼’s, from both the 

simulation and bootstrap are shown in Tables 3.1 and 3.2.  

From Table 3.1 we see that for the scenarios (𝑛 = 50, 𝜎 = 20, 𝜏 = 3) and (𝑛 = 500, 𝜎 =

20, 𝜏 = 3), the 𝛼’s that correspond to the minimum standard error are close to 𝛼 = 1, the value 

that produces the standard error using a DR estimator. We also observe that the standard errors 

of the differences between the treatment group and control group means using the DAR method 

are smaller than those obtained using the doubly robust method in all scenarios, the reductions 

range from 0.8% to 11.2%. In particular, the reduction of the standard errors using the DAR 

estimator is most prominent when 𝑛 is small but the difference between 𝜎 and 𝜏 is large. In the 

scenario where (𝑛 = 50, 𝜎 = 50, 𝜏 = 1), the DAR estimator reduces the standard error of the 

difference between the two group means from 20.140 to 18.500, a reduction of 8.1%.  In the 

scenario where 𝑛 = 50, 𝜎 = 50, 𝜏 = 3, the DAR estimator reduces the standard error of the 

difference between the two group means from 29.152 to 25.989, a reduction of 11.2%.  

Lastly, we observe from Table 3.1 that the square root of mean optimized variance from 

bootstrap samples are close to but all lower than those obtained from the data adaptive method 

using simulation.  
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	 Table 3.1 Summary of the Standard Error of the Mean Difference 

 

 

3.6.2 Median Absolute Deviation Results 

The results of the minimum of the median absolute deviations of the difference between the 

treatment group and control group means and the 𝛼’s from the simulation are shown in Table 

3.2. From Table 3.2 we see that, similar to Table 3.1, for the scenarios (𝑛 = 50, 𝜎 = 20, 𝜏 = 3) 

and (𝑛 = 500, 𝜎 = 20, 𝜏 = 3), the 𝛼’s that correspond to the minimum median absolute 

deviations are close to 𝛼 = 1. We also observe patterns of median absolute deviation reduction 

that are similar to what we observed in Table 3.1. The median absolute deviation of the 

difference between the treatment group and control group means using the DAR estimator are 

smaller than those obtained using 𝛼 = 1	in all scenarios. The reduction of median absolute 

deviation using the DAR estimator is most prominent when 𝑛 is small but the difference between 

𝜎 and 𝜏 is large. In the scenario where 𝑛 = 50, 𝜎 = 50, 𝜏 = 1, the DAR estimator reduces the 

MAD of the difference between the two group means from 19.106 to 17.625, a reduction of 

7.8%.  In the scenario where 𝑛 = 50, 𝜎 = 50, 𝜏 = 3, the DAR estimator reduces the MAD of the 
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	 difference between the two group means from 26.458 to 24.480 a reduction of 7.5%. Lastly, 

we can observe from Table 3.2 that the MAD from bootstrap samples are close to but all lower 

than those obtained from the DAR estimator using simulation.  

 

Table 3.2 Summary of the Median Absolute Deviation of the Mean Difference 

 

 

3.6.3 Trimmed Bootstrap Results 

The trimmed bootstrap results for both the standard error and the median absolute deviation 

of the difference between the treatment group and control group means are similar to those from 

the bootstrap, suggesting that the bootstrap values were not too extreme. Those results are 

included in the Appendix.  



20	

	 Chapter 4 

 

Discussion 

 

In this paper, we presented the results from simulation studies of a data adaptive method 

which aimed to minimize the standard error of a modified doubly robust estimator of the 

difference between the treatment group and control group means derived from observational 

data. We investigated how alterations of the sample size, standard deviation of the covariates, 

and standard deviation of the outcome could affect the optimal tuning parameter related to the 

minimum standard error and minimum median absolute deviation. The results show that the 

DAR estimator has a smaller standard error than the usual DR estimator.   

The DAR estimator has standard errors which are less than DR, though the reduction is small 

or negligible in most cases. For example, in the scenario of (n = 50, σ = 20, τ = 1), the DAR 

method reduces the standard error of the difference between the treatment group and control 

group means from 8.056 to 7.892, a reduction of 2.0%. Using the asymptotic formula for a 95% 

Wald confidence interval, this translates to a 0.643 reduction in the confidence interval width. 

The reduction in standard error is larger, 11.2%, for (n = 50, σ = 50, τ = 3)	with 29.152 for 

DR compared to 25.898 for DAR. The corresponding reduction in the 95% Wald confidence 

interval width is 12.755. The significance of the reduction of the	95% Wald confidence interval 

may vary depending on area of study.  

From Table 3.1 we can see that for standard error, DAR estimator performs better than DR 

estimator since it produces smaller standard errors. We can also observe larger outcome variance 

σ causes larger reduction of standard errors, larger covariate variance τ causes larger reduction 
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	 of standard errors, but larger sample size causes smaller reduction of standard errors. As for the 

median absolute deviation, the trends are similar except for the scenarios between (n = 50, σ =

50, τ = 1) and n = 50, σ = 50, τ = 3  and the scenarios between (n = 500, σ = 20, τ = 1) 

and n = 500, σ = 20, τ = 3  , where a larger covariate variance τ is related to a slightly smaller 

reduction of median absolute deviation. And in the scenarios (n = 50, σ = 20, τ = 1) and 

n = 500, σ = 20, τ = 1 , a larger sample size is related to a larger reduction of median absolute 

deviation. With results from Tables 3.1 and 3.2, we recommend that the DAR estimator be used 

over DR estimator when the sample size is small and the outcome variance is moderate or large.  

There are several limitations to this paper. The first one is that we used simple bootstrap 

method for both the standard error and the median absolute deviation of the difference between 

the treatment group and control group means and compared the results to those obtained using 

simulation studies. In Table 3.1 we can see that the bootstrap results are consistently smaller than 

those obtained from simulation studies. The results from bootstrap should be used with scrutiny.  

A second limitation of this paper is that in the simulation studies, we used only the correct 

outcome model and the correct propensity score model for simulation settings. By doing so, we 

did not allow the opportunity for the DR or the DAR estimator to demonstrate their robustness 

under the scenarios of model misspecification. Since one of the most distinguished features of 

the DR method is that it performs well even when one of the models fails, scenarios with model 

misspecification should be considered in future studies.  

Another limitation is that we only have 8 scenarios in the simulations with 2 choices for each 

of the three parameters. Because of this, it is difficult to reach conclusions about each 

parameter’s influence on the reduction of standard error of the difference between treatment 

group and control group means.  
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	 The last limitation of this paper is that in simulation studies, we performed 5000 

simulations with 250 bootstraps in all scenarios. This combination may not be enough to provide 

the precision needed in some practical settings.  

For future studies, there are three directions that could be pursued. Firstly, it would be 

beneficial to do simulation studies when one or both of the outcome and the propensity score 

models are misspecified. In those scenarios, we can further explore the properties of DR and 

DAR estimators as well as the effectiveness of tuning parameters for DAR estimators. Secondly, 

since the simple bootstrap method consistently gives smaller standard errors compared to 

simulation results, corrections to the current simple bootstrap method should be applied to 

compare their results with those obtained using DR and DAR estimators. Lastly, in the current 

simulation studies, the sample sizes are set to be 50 and 500. It would be advantageous in future 

studies to explore other options for different sample sizes and see how tuning parameter and 

results using DAR estimator could change under those circumstances. For smaller sample sizes, 

it could be more precise to use statistics such as mean squared error or root mean squared error 

rather than standard error to describe the performance of different estimators.  
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	 APPENDIX 

A.1 Summary of the Standard Error of the Mean Difference with Trimmed Bootstrap 

Results 

 

 

A.2 Summary of the Median Absolute Deviation of the Mean Difference with Trimmed 

Bootstrap Results 
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