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BACKGROUND AND PURPOSE

Emerging evidence indicates that hypertension is mediated by immune mechanisms. We hypothesized that exposure to
Porphyromonas gingivalis antigens, commonly encountered in periodontal disease, can enhance immune activation in
hypertension and exacerbate the elevation in BP, vascular inflammation and vascular dysfunction.

EXPERIMENTAL APPROACH

Th1 immune responses were elicited through immunizations using P. gingivalis lysate antigens (10 ng) conjugated with
aluminium oxide (50 pg) and IL-12 (1 pg). The hypertension and vascular endothelial dysfunction evoked by subpressor doses of
angiotensin Il (0.25 mg-kg~'-day~") were studied, and vascular inflammation was quantified by flow cytometry and real-time
PCR.

KEY RESULTS

Systemic T-cell activation, a characteristic of hypertension, was exacerbated by P. gingivalis antigen stimulation. This translated
into increased aortic vascular inflammation with enhanced leukocyte, in particular, T-cell and macrophage infiltration. The ex-
pression of the Th1 cytokines, IFN-y and TNF-a, and the transcription factor, TBX21, was increased in aortas of P. gingivalis/IL-12/
aluminium oxide-immunized mice, while IL-4 and TGF-$ were unchanged. These immune changes in mice with induced T-helper-
type 1 immune responses were associated with an enhanced elevation of BP and endothelial dysfunction compared with control
mice in response to 2 week infusion of a subpressor dose of angiotensin Il.

CONCLUSIONS AND IMPLICATIONS

These results support the concept that Th1 immune responses induced by bacterial antigens such as P. gingivalis can increase
sensitivity to subpressor pro-hypertensive insults such as low-dose angiotensin Il, thus providing a mechanistic link between
chronic infection, such as periodontitis, and hypertension.
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Introduction

It has become increasingly evident that the immune system
plays a critical role in the development of hypertension and
its attendant end-organ damage. Both adaptive and innate
immune responses have been implicated in the pathogenesis
of primary and secondary forms of hypertension (Harrison
et al., 2011). In the 1960s, Okuda and Grollman proved
that immunosuppression attenuates hypertension in rats
(Okuda and Grollman, 1967). Similar BP-lowering effects
were observed upon treatment with anti-thymocyte serum
in hypertensive rats (Bendich et al., 1981). In 2007, we
reported that RAG1-deficient mice, which lack B and T cells
have blunted hypertensive responses following the infusion
of angiotensin II (Ang II). The development of vascular
dysfunction in these mice is attenuated and their vascular
production of free radicals in response to Ang II infusion is
reduced (Guzik et al., 2007). T cells have been observed in
the vessels and kidneys of humans with hypertension,
and hypertensive humans have an increased number of
circulating T cells that produce both type 1 T-helper cell
(Ti1) and IL-17-producing CD4" effector cell lineage (T17)
cytokines (Youn et al., 2013; Itani ef al., 2016).

The mechanisms for T-cell activation in hypertension and
its effects on hypertension and vascular dysfunction remain
incompletely understood (Meissner et al., 2017). Classically,
T cells require antigen presentation by antigen-presenting
cells, and we have recently identified a role for
isolevuglandin-modified proteins as potential neoantigens
in hypertension (Guzik and Channon, 2005; Kirabo et al.,
2014). It is also possible that chronic infections, such as peri-
odontitis, could lead to skewing of T-cell populations and
prime the host to exhibit enhanced immune responses to
promote diseases such as hypertension. In hypertension,
the immune responses have been shown to be skewed
towards the Th1 type (Shao et al., 2003), but this has not yet
been linked to vascular and BP phenotypes. Indeed, it has
become recognized that the oral and gut microbiome can
impact the immune system and that chronic localized
inflammation can influence systemic health (Hansen et al.,
2016; Regnault and Lacolley, 2017). Epidemiologically, peri-
odontal disease represents one of most common examples
of protracted inflammation. Inflammatory processes taking
place in the gingivae and adjacent bone are initiated by the
oral microbiome. In periodontitis, bacteria of the gingivae
activate both innate and adaptive immunity and increase
systemically circulating pro-inflammatory cytokine levels
and activated immune cells. Memory T cells formed in the
setting of chronic infection can be activated to divide and
proliferate in a heterologous fashion by non-specific antigens
and cytokines (Kim ef al., 2002; Freeman et al., 2012). These
cells could migrate to the vasculature and kidneys and alter
vascular function, promote renal damage and contribute to
hypertension. In line with this hypothesis, several studies
show the coexistence of periodontal and cardiovascular
disease in patients (Tsakos ef al., 2010; Ricardo et al., 2015;

Schmitt et al., 2015; Winning et al., 2015; Zeigler et al.,
2015; Hansen et al., 2016). However, most of these studies
suffer from clinical limitations related to confounding
factors. Thus, direct evidence linking immune activation
and hypertension is lacking. We therefore used an immuniza-
tion model to study the role Thl responses induced by
antigens of the oral cavity, red complex bacteria
Porphyromonas gingivalis antigens, in the development of
Ang II-dependent hypertension and vascular dysfunction.
We chose to study P. gingivalis Th1 responses as previous
studies, using the same system, have demonstrated a key role
for these responses in periodontal pathology including bone
loss and systemic inflammation (Stashenko et al., 2007;
Leshem et al., 2008).

Methods

Animals and immunization protocol

Animal studies are reported in compliance with the ARRIVE
guidelines (Kilkenny et al., 2010). C57BL/6] male (Jackson
Laboratories, Bar Harbor, ME, USA), 12-14 weeks old, 25-30 g
mice were immunized i.p. with P. gingivalis lysate reconstituted
with aluminium oxide (alum) as an adjuvant and IL-12 to skew
Tyl cell-mediated T-cell responses. Immunizations were
performed twice, 3 weeks apart. Sham mice were administered
alum alone at the same time. Mice were randomly assigned to
either the immunization or the alum-only group. Individual
mice were assigned numbers during randomization, and
operators and data analysts for all subsequent endpoints were
blinded for the treatment assignment groups. This model of
immunization in C57BL/6] mice has been well-characterized
before in relation to a myriad of antigens, including P. gingivalis
antigens (Goncalves et al., 2006; Stashenko et al., 2007; Leshem
et al.,, 2008). Six days after the second i.p. immunization,
osmotic minipumps (Alzet, model 2002, Cupertino, USA)
were implanted s.c. under ketamine/xylazine anaesthesia
[i.p. injection of ketamine/xylazine (100 mg-kg '/ 10 mg-kg )]
for infusion of a subpressor dose of Ang II, 0.25 mg-kg~'-day .
The dose of Ang IT was determined in a preliminary experiment
(Supporting Information Figure S1). Ang I was administered for
14 days. During 14 days, Ang II infusion systolic BP was
measured by tail-cuff plethysmography (Hatteras MC 4000 — BP
analysis system, Hatteras Instruments, Inc, Cary, USA) as
previously described (Moore et al., 2015; Itani et al., 2016).
The Emory University Institutional Animal Care approved all
the experiments as the initial studies were performed at Emory
University. Subsequent protocols were approved by the
Jagiellonian University Institutional Animal Care Committee
and Home Office Project Licence (led by Dr Delyth Graham)
at the University of Glasgow. Mice were cared for in accordance
with the Guide for the Care and Use of Laboratory Animals and
housed five per cage in cages using standard bedding, fed
ad libitum and maintained in the same room under a 12:12 h
light/dark photoperiod at 22°C.
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P, gingivalis lysate formulation

P. gingivalis was chosen because it is a critical bacteria for the de-
velopment of periodontitis (Rescala et al., 2010; Teles et al.,
2010). The P. gingivalis lysate was a generous gift of Professor
A. Campos-Neto from Forsyth Institute, Boston, USA. The
lysate was stored at —80°C. On the day of administration, the ly-
sate was thawed, and 10 pg of P. gingivalis lysate was formulated
with 50 pg of alum (Rehydragel HPA; Reheis, Berkeley Heights,
NJ, USA). One microgram of recombinant mouse IL-12 (Genetic
Institute, Cambridge, MA, USA) was added prior to i.p. injec-
tions to additionally stimulate Th1 responses. In separate con-
trol experiments, IL-12 (1 pg) alone was injected i.p. at the
parallel time points to the ones used during immunizations.

Flow cytometric analysis of leukocytes
After 14 days of Ang II administration, animals were killed,
and flow cytometric analysis of leukocyte subsets in single-
cell suspensions of blood and the digested thoracic aorta
was performed as previously described (Guzik et al., 2007).
For analysis of blood, leukocytes were isolated from the
whole heparin-treated blood after osmotic lysis of excess red
blood cells. Cells were centrifuged (400x g), washed twice with
PBS and 0.5% BSA (FACS buffer), counted, resuspended in 1%
BSA/PBS and stored on ice for <30 min. Within 30 min, 10° cells
were stained for 15 min at 4°C with antibodies and washed
twice with FACS buffer. Antibodies (all from Pharmingen,
San Jose, CA, USA) used for staining in different multicolour
combinations as follows: PerCP anti-CD4, APC anti-CD8, PE
anti-CCRS, FITC anti-CD69, PE anti-CD3. Mouse aortas were
digested using collagenase type IX (125 U-mL™"), collagenase
type IS (450 U-mL™') and hyaluronidase I-S (60 U-mL")
dissolved in 20 mM HEPES-PBS buffer containing calcium and
magnesium for 30 min at 37°C, with constant agitation. Aortas
were then passed through a 70 um sterile cell strainer (Falcon;
BD Biosciences, San Jose, CA, USA), yielding single-cell
suspensions. Cells were washed twice with 1% BSA/PBS buffer
and additionally incubated for 30 min in 37°C with complete
media (RPMI; 10% FCS), then washed again, counted and stained
in different multicolour combinations as follows: FITC
anti-CD45, PerCP anti-CD8, APC anti-CD3, PE anti-CD4, PerCP
anti-CD11b, APC anti-CD11c, PE arm'-I-Ab, PerCP anti-CD19,
APC anti-Grl and PE anti-NK1.1. After the immunostaining
procedure, cells were resuspended in FACS buffer and analysed
immediately on an LSR-II flow cytometer with DIVA software
(Becton Dickinson Franklin Lakes, NJ, USA). Data were analysed
with FlowJo software (Tree Star, Inc., Ashland, Oregon, USA). T
cells were analysed as a percentage of the peripheral blood mono-
nuclear cells (PBMCs) and also expressed in absolute numbers.

Quantitative mRNA analysis

RNA was extracted using 1-bromo-3-chloro-propane (Sigma-
Aldrich Gillingham, UK) and reverse transcribed with oligo
d(T)16 (Applied Biosystems, Branchburg, NJ, USA) according
to the manufacturer’s protocol. The cDNA served as a template
for the amplification of genes of interest by real-time PCR, using
TagMan Gene Expression Assays (TBX21 - Mm00450960_m1,
GATA3 - Mm00484683_m1, IL-4 - Mm00445259_m1, TGFp —
MmO00441724_m1, IFN-y — Mm00801778_m1 and TNF-a —
MmO00443258_m1) (all Applied Biosystems, Foster City, CA,
USA), Universal PCR Master Mix (Applied Biosystems,
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Warrington, UK) and the 7900HT Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). Target gene
expression was calculated using the comparative method for
relative quantitation upon normalization to 18S mRNA, and
relative quantification was calculated as 2~ **",

Measurements of vascular reactivity

Relaxations to the endothelium-dependent and -indepen-
dent vasodilators ACh and sodium nitroprusside (SNP)
were measured in isolated 3 to 4 mm segments of aorta in
organ chambers as previously described (Guzik et al., 2007).

Statistical analysis

Data in the article are presented as mean + SEM. Data analysis
and plot generation were performed with GraphPad Prism for
MacOSX version 6.0c. To compare BP measurements in mice
over time as well as vascular function studies, repeated
measures ANOVA was used. Repeated measures ANOVA was
chosen for examination of the same response over time (such
as with BP or in response to an increasing dose of drug), as it
reduces the impact of individual point variability and allows
us to assess the difference as a whole. To compare numbers
of T cells in aortas, Mann-Whitney U-tests were performed.
To show the effect of immunizations on hypertensive im-
mune cell phenotype and aortic mRNA expression, we used
one-way ANOVA or Mann-Whitney U-tests to analyse the
flow cytometry data with Bonferroni correction. For compar-
ison of the frequency of immune cell subsets, x> analysis with
Bonferroni correction was used. P values reported in the fig-
ures and tables represent the adjusted values after multiple
testing. P < 0.05 was considered as statistically significant.

Nomenclature of targets and ligands

Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al.,
2018), and are permanently archived in the Concise Guide to
PHARMACOLOGY 2017/18 (Alexander et al., 2017).

Results

Systemic T-cell activation in the peripheral blood
Immunizations with P. gingivalis antigen, i.p., caused prolonged
T-cell activation, manifested by an increased proportion of cir-
culating CD4" T cells expressing the early activation marker
CD69 and the chemokine receptor CCR5 when compared with
control mice that received only i.p. alum (Figure 1A,B).

Aortic inflammation is increased in
Th1-type-immunized mice

Flow cytometric analysis of single-cell suspensions of aortas
obtained from mice after 14 days of Ang II low-dose infusion
revealed that total aortic leukocytes, as reflected by CD45-
positive cells, were significantly increased in mice immu-
nized with P. gingivalis compared with mice that received
alum alone (Figure 2A). The composition of infiltrating im-
mune cells was also altered in the P. gingivalis injected mice.
These animals exhibited an increase in vascular T cells
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Figure 1

Systemic activation of peripheral blood T cells in immunized mice infused with a subpressor dose of Ang Il. Mice were immunized with an i.p. in-
jection of P. gingivalis formulated with alum and IL-12 (Alum/PG/IL-12) and the results are compared with control mice that received an i.p. injec-
tion of alum only (Alum). Six days after the second immunization, both groups received a 14 day infusion of a low dose of Ang II
(0.25 mg-kg'-day ). Increased circulating CD4 T cells expressing CD69 (A) and CCRS5 (B) in mice following i.p. injection of P. gingivalis formu-
lated with alum and IL-12 (Alum/PG/IL-12) compared with control mice injected with alum alone (Alum) prior to a 14 day infusion of low dose of
Ang 11 (0.25 mg'kg’1 ~day’1). CD69 and CCR5 were measured by flow cytometry in whole blood following red blood cell lysis as described in the
Methods section. *P < 0.05 compared to control, n = 8 in each group.
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Figure 2

Characterization of aortic leukocytes following P. gingivalis immunization and low-dose Ang Il infusion. Mice were immunized with an i.p. injec-
tion of P. gingivalis formulated with alum and IL-12 (Alum/PG/IL-12) and are compared with control mice that received an i.p. injection of alum
only (Alum). Following immunization, both groups received a 14 day infusion of a low dose of Ang Il infusion (0.25 mg-kg ' -day ). Flow cytom-
etry was used to quantify total leukocytes (A, CD45™), *P < 0.05 compared to control, n= 8 in each group. Within the CD45" cells, the percentage
of T cells, B cells, macrophages, NK cells and dendritic cells were quantified (B). T cells— CD3"; lymphocytes B (B cells) - CD19*; macrophages (Mf)
~1-A®*/CD11b*; dendritic cells (DC) - I-A®*/CD11c*; and NK cells (NK) - NK1.1%, *P < 0.05 versus control, n= 8 (C). T-cell infiltration in aortas of
P. gingivalis-immunized mice and controls. T-cell subpopulations (CD4* and CD8" T cells were studied) by flow cytometry following a 14 day in-
fusion of a low-dose of Ang Il, *P < 0.05 compared to control, n = 8 in each group.
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compared with mice that received alum alone. The percent-
age content of other major leukocyte subsets including B
cells, macrophages, dendritic cells, NK cells and granulocytes
remained unchanged (Figure 2B). Further characterization
showed that the vascular content of both CD4 and CD8 sub-
sets of lymphocytes were significantly increased (Figure 2C),
although the increase in CD4" cells was greatest.

To further define vascular inflammation, we used RT-PCR
to measure mRNA levels of T-cell cytokines and correspond-
ing transcription factors after low-dose Ang II infusion. In
mice immunized with alum/PG/IL-12, the levels of TBX21
mRNA, a transcription factor characteristic of a Ty1 immune
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Figure 3

Characterization of Th1-type inflammation following P. gingivalis im-
munizations and low-dose Ang Il infusion. Mice were immunized and
treated with Ang Il as in Figure 1. The aortic levels of mRNA for the
transcription factor TBX217 and GATA3 (A), IFN-y and IL-4 (B) and
TNF-o and TGF-f (C) were measured using real-time PCR. *P < 0.05
versus control, n = 6 in each group.
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response, were significantly increased, while mRNA for the
type 2 T-helper cell (Ty2) transcription factor GATA3
remained unchanged (Figure 3A). This was associated with
increased aortic mRNA levels of IFN-y and TNF-o, further
characteristic of a Tyl response (Figure 3B,C) in the
alum/PG/IL-12 low Ang II mice compared with the alum
control/low Ang II mice. Notably, very low mRNA levels of
Ty2 specific transcription factors or cytokines were detected.

Blood pressure responses to low-dose Ang I are
exacerbated by Th1 immune activation by

P, gingivalis antigens

BP was monitored daily during alum/PG/IL-12 immunization
and alum injections. There was no difference in BP following
the initial injection, and upon the second injection of
alum/PG/IL-12, there was a moderate but insignificant
increase in BP when compared with alum alone (Figure 4A).
Importantly, low-dose Ang II administration caused a
substantially greater increase in BP in alum/PG/IL-12-immu-
nized mice than in alum control mice (Figure 4B).

Endothelial dysfunction is exacerbated by Th1
immune activation by P, gingivalis antigens in
hypertension

Endothelial dysfunction is a prominent determinant of
hypertension; therefore, we next studied endothelium-
dependent vasodilatation in alum/PG/IL-12 injected and
alum control mice. Following 14 days of low-dose Ang II,
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Figure 4

BP responses to low-dose Ang Il in mice immunized using P. gingivalis
antigen (Alum/PG/IL-12) and controls. Mice were immunized as in
Figure 1. BP was measured daily before and after the second i.p. in-
jection and before Ang Il administration (A) and during a 14 day in-
fusion of Ang Il (0.25 mg~kg’]‘day’], B). n = 8 in each group. NS,
not significant.
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Figure 5

Effect of P. gingivalis immunization on endothelial function. Mice
were immunized with an i.p. injection of P. gingivalis formulated with
alum and IL-12 (Alum/PG/IL-12) and are compared with control
mice that received an i.p. injection of alum only (Alum). Six days after
the second immunization, both groups received a 14 day infusion of
low dose of Ang Il infusion (0.25 mg'kg’1 ~day’1). Isolated aortic seg-
ments were studied after a 14 day Ang Il infusion in organ chambers.
Following preconstriction with 3 x 1077 M of PGF,,, vasodilatation
to increasing concentrations of ACh (A) and SNP (B) was recorded
and analysed by repeated measures ANOVA.

endothelium-dependent vasodilatation was significantly
impaired in the mice that had undergone prior immunization
with alum/PG/IL-12 compared with control mice that had
received injections of alum alone (Figure 5A). In contrast,
endothelium-independent vasodilatation to SNP was not
affected by alum/PG/IL-12 (Figure 5B). Surprisingly, an
increased sensitivity of blood vessels to low doses of ACh and
SNP was observed in response to low dose of Ang II (Figure 5A,
B). Importantly, IL-12 injected alone did not have an effect on
vascular function or BP (Supporting Information Figure S2).

Discussion

In the present study, we demonstrated that the induction of Th1-
type responses to P. gingivalis antigens, one of the key oral bacteria
responsible for periodontal disease, exacerbates the hypertensive
response to Ang II, worsens vascular inflammation and impairs
endothelial function. These data are valuable in the light of the
ongoing discussion regarding the importance and potential
mechanisms of immune activation that may play a modulatory
role in hypertension. While we have not demonstrated specificity
of these responses for P. gingivalis, we provide a proof of concept
that is particularly valuable in light of the ongoing discussion

about these associations between periodontal diseases and hyper-
tension. Our study provides a mechanistic background and clear
justification for subsequent investigations of the effects of oral
periodontal infections on hypertension and vascular disease. Of
relevance to the present findings, Th1-type immune responses
to similar immunization protocols have been shown to be essen-
tial for the development of periodontitis-associated pathology, in-
cluding bone loss (Stashenko et al., 2007).

Periodontal disease is a chronic inflammatory disease
caused by oral microbiota, which leads to destruction of the
soft tissue of the gingiva and bone of the alveolus. Epidemio-
logically, periodontal inflammation is probably the most
common chronic inflammatory process in humans, affecting
about half of Western populations (Patel, 2012; Tsukasaki
et al., 2018). The junctional epithelium, which acts as a
physiological zipper by binding the oral mucosa with the sur-
face of the tooth, is destroyed in this process. Bacteria that
subsequently invade the gingival tissue interact directly with
the cells of the immune system and lead to immune activa-
tion. For this reason, we chose the P. gingivalis antigen as a
stimulus for in the current studies. The demonstration of pos-
sible link between periodontal pathogens and hypertension
is important in light of ongoing controversies regarding the
relationships between periodontitis and hypertension. Ahn
et al. (2015) showed a clear association between periodontal
disease and hypertension in 14 625 women. Moreover, a
recent meta-analysis confirmed a relationship between
periodontal diseases and high BP with an odds ratio of
1.15-1.67 (Martin-Cabezas et al., 2016). This magnitude of
risk is significant and is similar to the odds ratio of 1.51 for
the association of obesity with hypertension. However, it is
essential to note that this epidemiological evidence is based
primarily on observational associations. The difficulty of
establishing a cause—effect association between periodontal disease
and hypertension is primarily linked to confounding factors. Both
diseases have common risk factors including age, smoking, diabe-
tes and poor nutrition. Another difficulty is related to the lack of
unequivocal and uniform standards in diagnosis of periodontal
disease across different studies (Grossi et al., 1996; Highfield,
2009). Some studies have included patients with severe periodon-
titis, while others have included moderate gingivitis in whom the
junctional epithelium is intact and tissue invasion of microbiota is
absent. This difficulty was emphasized in 2012, by an American
Heart Association statement that although observational studies
support an association between periodontitis and cardiovascular
disease, there is insufficient evidence to unequivocally support
causal relationship (Lockhart et al., 2012).

Our data provide new insight into the pathogenesis of
hypertension. Classically, T cells require presentation of
specific antigens to be activated. We have previously shown
that T-cell co-stimulation is necessary for both Ang II and
DOCA-salt hypertension, supporting the idea that classical
T-cell activation via T-cell ligation is needed. In keeping with
the idea that specific antigens are presented in hypertension,
we have found that isolevuglandin—protein adducts are pre-
sented by dendritic cells and can prime hypertension. We
have also found that Ang II-induced hypertension is associ-
ated with increased clonality of CD8" T cells in the kidney,
again suggesting a specific antigenic stimulus. In contrast,
we have not observed clonality of T cells in the vasculature,
despite an increase in the presence of both CD8" and CD4"
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T cells and most cells that accumulate in the kidney are not
clonal. Of note, effector memory CD8" cells, and to a lesser
extent CD4" T cells, are avidly recruited to localized sites of
inflammation in an antigen-independent fashion (Ely et al.,
2003; McKinstry et al., 2010). In keeping with this, we found
a striking increase in vascular CD4" and CD8" T cells in mice
immunized with P. gingivalis and subsequently given Ang II.
We have studied aorta, as it has been shown that periaortic
inflammation contributes to endothelial dysfunction as well
as vascular stiffening in these vessels. Therefore, studies of
the aorta provide a good model reflecting a functional effect
of immune activation in hypertension. These results support
a ‘two-hit’ hypothesis of hypertension development
involving first a state of immune activation by stimuli like
P. gingivalis and secondly a pro-hypertensive effects of Ang
1T (Guzik et al., 2017).

Our study further emphasizes a role of Ty 1-like cytokines
including IFN-y and TNF-o in hypertension. We have
previously shown that immune clearing of TNF-a blunts
Ang Il-induced hypertension in mice (Guzik et al., 2007)
and that IFN-y-deficient mice likewise develop blunted hyper-
tension during Ang II infusion (Kamat ef al., 2015). In con-
trast, Garcia et al. (2012) have shown that IFN-y-deficient
mice develop more hypertrophy than wild-type mice during
aldosterone infusion but exhibit blunted hypertension to
this stimulus. Recently, Sun et al. (2017) have shown that
the mineralocorticoid receptor on T cells modulates IFN-y
production and that specific deletion of this receptor mark-
edly blunts experimental hypertension. IFN-y has been
shown to enhance NADPH oxidase activity in macrophages
and TNF-o can stimulate superoxide production by vascular
smooth muscle cells (De Keulenaer et al., 1998), thus could
worsen hypertension via several related mechanisms
(Cassatella et al., 1990). Another Tyl marker increased by
our immunization strategy is CCRS, which interacts with
the chemokine RANTES (CCL5). We have previously shown
that the RANTES-CCRS interaction plays an important role
in activating T-cell chemotaxis, adhesion and migration in
hypertension (Mikolajczyk et al., 2016). Thus, the skewing
of Ty1 responses by our immunization protocol likely primed
development of hypertension in response to the low dose of
Ang II administered in these experiments. While our study
was designed to test the effects of Th1 responses on BP and
vascular dysfunction, it is important to emphasize that
Th17 responses are known to play a critical role in hyperten-
sion and have also been associated with periodontitis (de
Aquino et al., 2014; Souto et al., 2014). Our immunization
protocol did not induce Th17 cells in alum/PG/IL-12 mice
(not shown). Indeed, IL-12 is widely known to inhibit IL-17
production (Hoeve et al.,, 2006), while inducing Thl
responses. Finally, in the present study, we did not measure
circulating levels of cytokines. While this can be considered
as a limitation, increased vascular infiltration of immune cells
into the perivascular fat of immunized mice and increased
Thl-type cytokine expression may suggest the particular
importance of the local inflammatory response.

Th1-type-inducing immunizations were associated with
significant endothelial dysfunction, which could provide at
least in part a mechanism for the exacerbated BP increases
in this group of mice. It was intriguing that in our vasomotor
experiments the sensitivity of blood vessels to low doses of
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ACh and SNP was increased in the presence of a low dose of
Ang II. This may reflect increased VSMC responsiveness to
NO that has been described in a number of disorders
(Jebelovszki et al., 2008) and unquestionably would warrant
further studies in the future. This is also interesting as inflam-
mation is known to functionally modulate vascular smooth
muscle cells (Allagnat ef al., 2017; Fan et al., 2017).

Itis important to note that we have used exclusively male
mice in this study. This is related to the fact that it has been
convincingly shown by several studies that female T cells
are not participating in the pathogenesis of Ang Il-induced
or salt-sensitive hypertension in mice (Ji et al., 2014; Pollow
etal.,, 2014).

While the search for hypertension-specific antigens
continues (Kirabo et al., 2014), one should not overlook the
possibility that chronic inflammatory processes such as
periodontal disease or obese adipose tissue inflammation
(Akoumianakis and Antoniades, 2017) can contribute
through pre-activating T cells and monocytes and
enable their migration to target organs (Barhoumi et al.,
2017). This may reflect the involvement of both innate and
adaptive immunity (Regnault and Lacolley, 2017; Zhang
etal., 2017).

While the current studies provide proof of concept, there
are limitations that should be acknowledged. The peritoneal
mode of administration of the P. gingivalis antigen does not
mimic the oral exposure encountered in periodontitis. An
ideal model would involve oral infection; however, such
approaches using oral gavage or a silk ligature to introduce
the bacteria have not allowed either successful oral infection
of mice or evidence for systemic activation and thus do not
mimic the human disease. We would emphasize that our
studies have only used P. gingivalis as a model antigen and
that the main conclusion is that Thl responses caused by
antigens, including other pathogens, may likely lead to
similar endpoints.

In summary, in the current study, we have provided proof
of principle that Th1 responses induced by bacterial antigens
such as P. gingivalis can increase sensitivity to subpressor pro-
hypertensive insult evoked by low-dose Ang II. This supports
the idea of ‘two-hit’ hypothesis in which immune activation
at sites of chronic inflammation exacerbates responses to
otherwise minor stimuli such as low-dose Ang II, therefore
providing a link between chronic immune activation and
hypertension.
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Figure S1 Titration experiment to precise the sub-threshold
dosage of Ang II which is still not elevating blood pressure
alone in the experimental mice without any additional bacte-
rial antigen exposure. Blood pressure was measured on the
tail using tail-cuff plethysmography (Hatteras MC 4000 -
blood pressure analysis system). Ang II dosage used: 0,25;
0,45; 0,7 mg-kg~"-day ', *P < 0.05 vs. Pre-Ang II; **P < 0.05
vs. 0,25 mg-kg '-day ', n = 8 in each group.

Figure $2 Effect of IL-12 intraperitoneal administration on
development of vascular dysfunction (Panel A) upon low

dose (0.25 mgmin kg ') Ang Il administration and
changes in systolic blood pressure (Panel B) upon two lug
IL-12 i.p. injections (21 days apart) followed by low dose
(0.25 mg-min " '-kg ') administration started 6 days after sec-
ond immunization. Isolated aortic segments were studied af-
ter 14 day Ang II infusion in organ chambers as described
before. Following pre-constriction with 3x10-7M of PGF2a,
vasodilatation to increasing concentrations of acetylcholine
(Panel A; ACh, left) and sodium nitroprusside (Panel A; SNP,
right), were recorded and analysed by repeated measures
ANOVA. IL-12 administration effects on blood pressure at
different stages of the experimental protocol were studied
by tail cuff plethysmography. Data are expressed as normal-
ized to no IL-12 control for better visualization. n = 6
mice/group.

Data S$1 Supporting information.
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