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CHAPTER I 
 

Introduction 
 

Motivation 

The improper regulation of gene expression plays an important role in the etiology of complex disease. 

The vast majority of loci associated with disease in genome-wide association studies (GWAS) are in non-

protein-coding regions of the human genome, and many have been shown to contribute to disease risk by 

altering gene regulatory elements such as enhancers. In addition to single nucleotide variants, larger 

structural variants can also disrupt gene regulatory mechanisms and lead to disease by causing a loss of 

enhancer function or substantial changes to the regulatory architecture of the genome. Despite numerous 

examples of enhancers that are mutated in disease, predicting whether mutations in a given enhancer will 

influence phenotype is still a difficult task. This is partially because we still lack a comprehensive set of 

genome-wide enhancer annotations. Currently, there are many approaches to identify enhancer sequences 

on a genome-wide scale but no gold-standard validation set. This complicates the use of enhancers in 

biomedical research. Furthermore, strategies for interpreting enhancer mutation consider enhancers in 

isolation, despite evidence that redundancy in insect and mammalian enhancer landscapes buffers the 

phenotypic effects of enhancer loss on the expression of genes. We do not fully understand the effects of 

enhancer identification or enhancer landscapes on gene regulation and disease. This work highlights the 

key limitations in our understanding putative enhancer annotations, defines a integrative model of gene 

regulatory architecture, and quantifies the impact of genetic variation on enhancer landscapes. 

 

Characteristics and Identification of Gene Regulatory Enhancers 

Enhancers are traditionally defined as short genomic sequences that regulate the transcription of one or 

more target genes irrespective of distance or orientation from the target1–3. These serve as one component 

of the gene regulatory architecture of the cell, which also includes elements such as promoters and 
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insulators. Enhancers have previously been associated with a range of biochemical, functional, and 

sequence attributes that frequently serve as the primary definition of an enhancer element or are 

integrated into computational models. This section will highlight the genomic features, computational 

models, and experimental data that have previously been used to identify enhancers. 

 
Sequence features, biochemical signatures, and functional attributes of enhancers 

Enhancers regulate the expression of target genes through binding of specific transcription factors. As a 

result, active enhancers localize in regions of the genome not occupied by nucleosomes. Open chromatin 

is assayed using experimental techniques to identify features such as sensitivity to DNase I nuclease using 

DNase I sensitivity (DNase-seq)4,5, nucleosome depletion using Formaldehyde-Assisted Isolation of 

Regulatory Elements (FAIRE-seq)6,7, or accessibility to transposase using transposase Tn5 mediated 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)8. Each of these techniques 

relies on high-throughput sequencing of the resulting accessible DNA fragments that are then aligned to a 

reference genome. The alignment creates regions of enrichment for sequencing reads, or “peaks”, where 

transcription factors are able to bind4–8. Regions of open chromatin are often used alone or in conjunction 

with other features as a signature of enhancer elements9–12.  

 More directly, binding assays for known transcription factors (TFs)13 and enhancer associated 

proteins, such as the histone acetyltransferase p30014–16, have been used to identify enhancer elements2. 

An experimental protocol known as chromatin immunochromatin precipitation followed by sequencing 

(ChIP-seq) can successfully locate bound TFs genome-wide17. In ChIP-seq, protein-DNA complexes are 

cross-linked to preserve the interaction, then the DNA is broken up and the fragments of interest are 

precipitated using specific antibodies and sequenced. Much like the assays to detect open chromatin, 

ChIP-seq yields “peaks” of enrichment in genomic locations where the relevant marker was bound. ChIP-

seq results in a map of genomic locations bound by the TF of interest at the time the assay was 

performed17. However, this approach can be prohibitively expensive and time-consuming when probing 

for multiple relevant factors. Furthermore, due to the high false-positive rate for enhancer prediction from 
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TF ChIP-seq, evidence of binding in a ChIP-seq assay is not sufficient to confirm enhancer activity18. 

False-positives may result from the inability to assay the combinatorial binding patterns required for 

enhancer activity and because it is difficult to rule our ChIP-seq peaks resulting from transient 

interactions18–20. 

Where TF binding has not been experimentally determined, de novo identification of TF binding 

motifs using computational methods or calculation of enrichment for computationally derived motifs and 

known motifs of interest can serve as a proxy2,18,21. However, while the presence of relevant TF binding 

motifs suggests potential enhancer function, it is not a guarantee of activity. Successful binding of TFs is 

often context-dependent and the contribution to enhancer activity may rely on successful interactions with 

other factors in the flanking sequence. A study in mouse adipocytes showed that the activity of enhancer 

sequences relied on the interactive binding of dozens of TFs in the surrounding sequence19. Furthermore, 

the presence of a motif does not necessitate binding18. Another recent study integrating TF binding motifs 

with ChIP-seq data in K562 cells reported an average of 430 unbound motifs to one bound motif, 

suggesting that binding is rare compared the number of predicted TF motifs22. 

Early studies of enhancers often focused on evolutionarily conserved regions of the genome23–26. 

Many enhancers, especially those involved in development, are conserved; therefore, sequence 

conservation is still used as a metric to rank and validate putative enhancers. It is important to note that 

many conserved sequences do not function as enhancers, and many active enhancers are not conserved. 

Indeed, recent work suggests that activity of individual enhancer elements evolves rapidly across 

mammalian species27. 

 Combinations of specific post-translational modifications on the histone proteins of surrounding 

nucleosomes are also associated with enhancer activity. ChIP-seq is used to detect key histone 

modifications and establish putative enhancer locations, including monomethylation of lysine 4 on 

histone H3 (H3K4me1) and acetylation of lysine 27 on histone H3 (H3K27ac). These two biochemical 

modifications  are thought to mark active enhancers, both separately and in combination2,14,28. The 

trimethlyation of lysine 4 on histone H3 (H3K4me3) is also frequently used to exclude H3K27ac regions 
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with suspected promoter activity from putative enhancer sets2,29. Recent studies have suggested other 

markers to identify enhancers or subtypes of enhancers, although these are less commonly invoked30–33. 

For example, where the repressive H3K27me3 mark coincides with H3K4me1 marked enhancer regions 

are often considered bivalent or poised enhancers, suggesting a mechanism for finer control of enhancer 

activation30. 

Finally, recent work describes a subset of enhancers that are transcribed into characteristic bi-

directional enhancer RNAs (eRNAs)34–39. The FANTOM5 consortium used a technique called cap 

analysis of gene expression followed by sequencing (CAGE-seq)  to quantify and map eRNAs across a 

broad set of tissues and cell lines34. These eRNA-predicted enhancers validate at a high rate (~70%) 

relative to those predicted by other genomic properties. However, CAGE likely misses potential 

enhancers because eRNAs are unstable and quickly degraded. Other approaches focus on sequencing 

nascent RNA transcripts to more efficiently detect unstable eRNAs. These include global run-on 

sequencing (GRO-seq)40 and precision run-on sequencing (PRO-seq)38,39, as well as GRO-cap36, PRO-

cap38, and native elongating transcript-cap analysis of gene expression (NET-CAGE)37 which include 

additional capture steps to improve specificity. For example, the NET-CAGE approach identified over 

20,000 novel enhancer candidates in humans compared to CAGE-seq, which were broadly enriched for 

markers relevant to enhancer function37. Despite recent methodological improvements, there are 

limitations to the eRNA enhancer identification approach. The bi-directional transcription pattern is not 

exclusive to enhancers41 nor are all functional enhancer elements bidirectionally transcribed42,43. 

Furthermore, the numerous molecular functions proposed for noncoding eRNAs are still not well 

understood35,43 and will require continued experimental characterization to fully resolve. 

 

Limitations of using biochemical and sequence attributes for enhancer identification 

While informative, none of these attributes are comprehensive, exclusive to enhancers, or completely 

reliable indicators of enhancer activity. Because enhancers are context- and stimulus-dependent, it is 

difficult to assay a complete set of enhancer elements genome-wide. Approaches that rely on the 
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identification of eRNAs, TF binding, or histone modification signal only capture a snapshot of the 

regulatory architecture at the time of the assay in that particular biological context. Enhancers identified 

using eRNAs are a particularly limited set of regions; previous work has demonstrated that they fail to 

capture all of the sequences with validated activity in transgenic assays, suggesting that transcribed 

enhancers do not form the entire regulatory landscape34. While capturing a larger proportion of genomic 

sequence, enhancer identification based on biochemical and sequence features is prone to false-positive 

predictions of enhancer sequences because these are not exclusive to enhancer regions33,44,45. Instead, 

there is likely to be a spectrum of genetic elements, including promoters and insulators, that share similar 

attributes46–48. Indeed, recent experimental work blurs the distinction between enhancers and promoter 

elements. Enhancers across the genome can act as promoters, and a fraction of promoters can act as distal 

enhancers in some contexts49,50. The inability to defined a single ‘histone code’ to identify enhancers 

through combinations of histone modifications is another a notable example of this complexity2,30,33,44. 

H3K27ac marks both active promoters and enhancers, despite numerous studies using the single mark as 

the definition of an enhancer29,51–55. Another frequently cited enhancer mark, H3K4me1, has been 

discovered in regions without demonstrated enhancer activity30,44. Other papers highlight novel histone 

modifications correlated with enhancer states (H3K64ac, H3K122ac, H3K79me3, and H4K16ac), noting 

that these can mark active enhancer regions lacking the H3K27ac mark31–33. Low validation rates (20-

33%) in previous experimental validations of putative enhancers using small-scale transgenic assays, 

suggest that definitions of enhancers based on combinations of histone modifications alone have low 

specificity13,34. Furthermore, the impact of bias and technical limitations of current functional genomics 

assays on enhancer identification is not completely understood56.  

As implied by the limitations of the genomic attributes correlated with enhancer activity, the 

biological characteristics of the gene regulatory architecture complicate enhancer identification. First, the 

lack of enhancer activity in one cell type or cellular condition is not sufficient to rule out potential 

regulatory activity28,57. A number of case studies describe enhancer regions with activity in only one 

tissue or developmental time point28,57. Contrary to the switch-like model of enhancer activity, enhancers 
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have been shown to occupy multiple intermediate states between inactivity and activity referred to as 

‘poised’, ‘primed’, or ‘latent’ enhancers2,30,45,58. Genetic variation between individuals has been shown to 

alter epigenetic modifications and enhancer activity which may confound the generalizability of 

identification approaches built using these features59,60. However, the proportion of epigenetic 

modifications that are variable across individuals is estimated to be small on (1–15%)61. 

 

Computational approaches for enhancer identification 

Due to the large number of biological features indicative of enhancer activity combined with advances in 

machine learning techniques, many computational approaches have been developed to identify 

enhancers10,11,62–76. These can be stratified into two groups: (1) unsupervised or semi-supervised 

approaches that segment the genome into functional states, and (2) supervised approaches that classify 

sequences as either an “enhancer” or “non-enhancer” based on labeled training data. 

 Unsupervised approaches for enhancer identification often rely on chromatin segmentation 

approaches such as the popular ChromHMM, Segway, EpiCseg, or GenoSTAN72,74,75. These models use 

hidden Markov models or dynamic Bayesian networks to assign each genomic region to a specific 

functional state based on the combination of input features at that location. While the number of 

functional states much be specified in advance, these models can integrate a wide range of biochemical 

features to determine the segmentation. Following the segmentation, human experts can assign states to 

biological annotations such as “enhancer” or “promoter” using the level of enrichment for input markers 

in each state69. Recently, however, additional machine learning models have been proposed to automate 

this process76. Unsupervised approaches do not require labeled training data to make predictions, which is 

useful given the small fraction of validated enhancer sequences and the challenges involved in defining 

appropriate positive and negative training sets72. Furthermore, these methods can be leveraged to 

simultaneously predict multiple types of functional annotations, including different subtypes of 

enhancers62,63. 
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 Supervised classification algorithms used sets of known enhancer and non-enhancer regions to 

learn the features that distinguish enhancers from other functional regions and genomic background. 

These can range from simple rule-based intersections of markers associated with enhancers to more 

complex machine learning frameworks. The simple, but widely adopted, methods use intersections of 

histone modifications and other genomic annotations to identify enhancers12,14,28–30,44,77–81. For example, 

the co-occurrence of H3K4me1 and H3K27ac, or the presence of H3K27ac without H3K4me3 are often 

labeled as putative enhancers14,28,29,44,80,81. Since enhancers are typically defined as distal regulatory 

regions that do not contain protein-coding sequence, these simple intersections can be filtered to exclude 

exonic sequences and regions close to a transcription start site (TSS)10–12,77,82. However, enhancers have 

been reported in both coding sequences and intronic regions nearby genes which will be incorrectly 

classified by these rule-based approaches2,83. More recently, the application of supervised machine 

learning frameworks for enhancer prediction have become popular. These classification models are 

trained on similar input data as the unsupervised or rule-based approaches—histone modifications, 

regions of open chromatin, transcription factor binding motifs, and other genomic annotations—but 

include explicit positive and negative labels on the training data10,11,64–68,70,71. While these methods use a 

range of underlying statistical models, each one learns higher order patterns that allow the model to best 

classify the sequence or region by enhancer status. As the amount of available training data and 

computational resources continue to grow, a new wave of deep learning models for enhancer prediction 

suggest that increasingly complex modeling approached may improve our ability to efficiently and 

accurately identify enhancers in silico84–89.  

 

Limitations of computational approaches for enhancer identification 

Although computational enhancer prediction approaches are widely used, it remains difficult to accurately 

quantify their performance. Due to the lack of a gold standard enhancer set, predictions are validated 

through both low- and high-throughput transgenic reporter assays or overlap with other attributes 

correlated with enhancer activity. However, as discussed previously, attributes such as evolutionary 
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conservation, proximity to genes, or the presence of trait-associated genetic variation are not 

comprehensive or conclusive evidence of enhancer function. Biases in the validation attributes themselves 

may prevent an accurate assessment of model performance.  In addition, interpreting the statistics that 

underlie the computational enhancer predictions is nontrivial. Despite advances in model interpretation90, 

machine learning algorithms largely remain ‘black boxes’ making it difficult to obtain generalizable 

biological and mechanistic insights into the regulatory architecture from even well-performing models91.  

 

Experimental approaches for identification and validation of enhancer function 

For many years, experimental identification and validation of enhancers was limited to low-throughput 

assays in cell lines and transgenic embryos. In these transgenic reporter assays, the putative enhancer 

sequence is incorporated into a bacterial plasmid upstream of a minimal promoter and reporter gene2,92. If 

the sequence activity is able to drive expression of the reporter gene, the sequences is considered an 

enhancer. While informative and still commonly used, transgenic reporter assays are time consuming and 

require all sequences are known in advance2. However, the recent development of sophisticated high-

throughput methods allows for experimental validation of enhancer function on a much larger scale.  

Massively parallel reporter assays (MPRAs), are promising approaches to generate genome-wide 

enhancer maps with demonstrated activity in a given cellular context93. In MPRAs, reporter constructs 

containing the putative enhancer sequences include unique DNA barcodes to create libraries with 

thousands of barcode-labeled plasmids.  These constructs can all be tested in a single experiment, 

validating the activity of thousands of sequences at one time. Recent studies have used MPRA protocols 

extensively to assess the regulatory potential of a large number of candidate regions, to characterize the 

dynamics of enhancer evolution94, and to quantify the impact of genetic variation on enhancer 

activity62,95–103. Although computationally predicted enhancers validate at a relatively low rate in MPRAs 

(~26%), the results do corroborate some previously described enhancer attributes98. Active sequences in 

MPRAs are enriched for regulatory elements in DHSs and evolutionary conservation, and co-occur with 

the expected histone modifications and relevant TF binding motifs47,93,96.  
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Self-transcribing active regulatory region sequencing (STARR-seq), an MPRA variation 

originally described in Drosophila, has also recently been applied to human enhancer sequences104–106. 

STARR-seq allows the activity and strength of the enhancer to be directly quantified by incorporating the 

enhancer sequences downstream of the minimal promoter. Thus, the enhancer sequence itself transcribed 

when the enhancer is active and eliminates the need for additional barcodes104. An additional benefit of 

this protocol is that it allows for scans for enhancer activity based on libraries of randomly fragmented 

DNA sequences. This ‘shotgun’ method sidesteps the need to synthesize libraries of known candidate 

sequences and instead can assay enhancer activity of short sequences genome-wide102,104,106. 

 

Limitations of experimental approaches for enhancer identification 

Despite the recent technical advances in experimental enhancer identification, there remain limitations 

that preclude the adoption of a gold standard enhancer identification method. MPRAs are a vast 

improvement on traditional reporter assays because they are high-throughput; however, the enhancer 

sequences identified still represent only a subset of active enhancers in a given cell type93. Neither 

transgenic assays nor MPRAs can completely account for the cell-type and stimulus-dependent nature of 

enhancers, causing inactive sequences to be more difficult to interpret. Additionally, MPRAs suffer from 

high library complexities, restrictions on the length of the sequence that is able to be assayed, and remove 

the enhancer sequence from its endogenous context3,93,100. The lack of genomic context in MPRAs may 

alter an enhancer’s ability to drive gene expression and bias quantifications of activity100. Comparisons of 

a traditional episomal MPRA with that of a novel lentivirus MPRA (lenti-MPRA) that integrates the 

putative enhancer sequence into the genome demonstrated that integrated MPRAs were more 

reproducible100. Although the results from the two types of MPRAs were highly correlated with each 

other, the lenti-MPRA was more highly correlated with other relevant genomic annotations. Another 

MPRA variant, the parallel targeting of chromosome positions by MPRA (patchMPRA) highlighted the 

relevance of chromatin structure on the level activity of regulatory sequences107. This suggests that both 

noise and a lack of genomic context in episomal assays may obscure or alter relevant signals, and that it is 
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crucial to consider enhancer sequences in their endogenous context to fully explain their activity100,107. 

Furthermore, other recent studies describe promoter-dependent enhancer activity, transcription originating 

in unintended locations along the reporter constructs, and inflammatory responses induced by plasmid 

transfection, all of which can confound readouts of enhancer activity105,108. In order to reliably identify 

and validate enhancers, these caveats must be understood and addressed. 

 

3D Chromatin Structure and Interaction 

Experimental approaches to measure chromatin conformation 

Enhancers are thought to interact with their target promoters through loops in the three-dimensional 

structure of chromatin. Understanding where these loops form and the genomic landscape at each of these 

interaction points, is important for the functional characterization of gene regulatory architecture. 

Chromatin conformation assays generate long-range interaction maps of the genome, imply enhancer-

promoter interactions, and designate three-dimensional compartments with localized regulatory 

activity109,110. Chromatin conformation capture (3C), circular chromatin conformation capture (4C), 

chromosome conformation capture carbon copy (5C), and Hi-C all generate contact maps through 

formaldehyde cross-linking interacting DNA segments and sequencing2,109. These methods differ in the 

number of interactions they are able to detect; 3C, 4C, and 5C probe connections with pre-specified 

genomic loci or within specific regions, Hi-C generates all-to-all contact maps of genome-wide 

interactions111.  

 Where specific genomic loci are of interest, such as interactions with promoters or single 

transcription factors, other targeted assays such as ChIA-PET, HiChIP, and promoter-capture Hi-C can be 

used112–114. ChIA-PET combines ChIP-seq with a proximity ligation step to precipitated interaction 

genomics regions that are cross-linked to the protein or histone modification of interest112. The ChIP step 

can be targeted to elucidate enhancer-promoter contacts or other interactions associated with specific 

protein complexes. HiChIP improves the ChIA-PET protocol by performing ChIP-seq on a Hi-C 
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interaction library, allowing for more efficient capture of loci interacting with a protein of interest114. In 

promoter-capture Hi-C, known promoter sequences are used to pull down fragments of interest from Hi-C 

libraries and sequenced113. The result is a set of interacting regions enriched for promoter sequences that 

increases the ability to define enhancer-promoter interactions. Further experimental characterization 

showed differences in distal regions interacting active and inactive genes, providing evidence that 

promoter-capture Hi-C accurately links enhancers and their targets115. 

 

Topologically associating domains and their boundaries 

While mapping the 3D chromatin architecture, researchers discovered that the genome contained many 

approximately 1Mb regions that were enriched for chromatin interactions within the region. These same 1 

Mb regions were depleted for interactions with external loci. Referred to as topologically associating 

domains, or TADs, these regions are defined from properties of the contact maps derived from the 

chromatin conformation assays. Thought to act as ‘regulatory domains’, TADs restrict most interactions 

between enhancers and genes to loci within the same TAD110,116,117. TADs are largely conserved across 

developmental time points, cell types, and even species117–119, although the degree of conservation is the 

subject of some debate120. Other recent work underscores their importance by demonstrating that variants 

altering the boundaries or structure of TADs is associated with cancers and severe developmental and 

neurological disorders121–124. Disruptions to TADs can change the existing enhancer-promoter contacts, 

leading to ‘enhancer hijacking’ and the subsequent mis-expression of genes121,123,124. 

 The boundaries of TADs often contain clusters of CCCTC-binding factor (CTCF) motifs, many 

of which show evidence of evolutionary constraint119,125. The current loop extrusion model of TAD 

formation proposes that DNA slides through the ring-shaped cohesin complex until it is stopped by CTCF 

bound to convergently oriented motifs, creating a DNA loop118,126–128. These regulatory loops are thought 

to facilitate enhancer-promoter contacts and insulate promoters from ectopic enhancer activity117,129. 

Recent work suggests that direction-specific CTCF binding helps control enhancer-promoter contacts by 

insulating certain genes from enhancer activity and promoting loops that create distal interactions130. 
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Clustered CTCF binding sites in a region have also been linked to the strength of the TAD boundary and 

evolutionary conservation, further highlighting the importance of the factor in TAD maintenance and 

regulatory insulation110,125,131,132. Within TADs, a similar process creates smaller interaction loops, 

sometimes referred to as sub-TADs, that can bring regulatory elements in contact with other regulatory 

elements or transcription start sites in order to maintain gene expression118,133,134. The disruption of CTCF 

binding sites in TAD domains is associated with changes to the TAD architecture and some of the severe 

phenotypes discussed previously121,123,124,135. 

 

Limitations of current approaches 

While informative about genomic state, current approaches to map 3D genomic interactions suffer from a 

few key limitations. Chromatin interaction data published from studies across diverse sets of human 

tissues have variable read depth across tissues and relatively low resolution136. Low read depth, and a 

decreased ability to detect short (< 10 kb) interactions, results in downstream biases that lead to difficulty 

determining significant interactions and limit the ability to compare across tissues109,137,138. Poor resolution 

can especially impair enhancer-promoter mapping since the interaction anchors may encompass many 

annotations or be limited to a subset of cells and difficult to distinguish137,138. Furthermore, because 

enhancers are both cell-type and context dependent, the interactions between regulatory elements and 

their target genes may be similarly dependent139,140. To date, few biological contexts have been assayed 

using high-resolution approaches, so it can be difficult to generalize results across different cell types. 

Computational models trained on experimental results and genomic sequence information may help to 

bridge this gap by predicting chromatin interactions in novel biological contexts141,142. Despite claims that 

CTCF and TADs are conserved across species and cell types, there are distinct and potentially impactful 

differences that must be considered139,140,143,144. Although TADs and CTCF-mediated boundaries are 

crucial for maintaining appropriate enhancer-promoter contacts in specific cases, CTCF binding and TAD 

formation may actually be quite dynamic145. Variation in TAD structures or boundaries does not always 

result in a large effect on gene expression, suggesting that their role in constraining interactions may be 
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limited to a subset of elements and that the loss of a TAD boundary is not sufficient to induce new 

interactions132,146. 

 

Models of Gene Regulatory Architecture 

Due to the fact that enhancers regulate the expression of genes over large distances and with varying 

orientation to the target promoters, characterizing the effective regulatory landscape of a gene remains 

challenging2. Previous work has shown that multiple enhancers may regulate a single target gene, with 

different levels of cooperativity and redundancy12,147–149. Although long established in Drosophila150–152, 

new evidence suggests that mammalian genomes also contain redundancy in the enhancer landscape of 

genes147,153,154. This may help to maintain stable gene expression levels, both across evolutionary time and 

within a single species, and can provide robustness to genetic variation147,154. Our understanding of such 

phenomena requires appropriate models of gene regulatory architecture. 

 

Approaches to link enhancers to target genes 

Linking enhancers to their target genes is still an open area of research. The simplest approach involves 

using the nearest gene or other proximity-based rules, such as those used by GREAT155. The default 

GREAT approach creates a ‘basal regulatory domain’ around each TSS, that is then extended upstream 

and downstream until it reaches the basal regulatory domain of another gene or reaches 1 Mb. This 

reduces the number of overlapping regulatory domains in gene-dense regions. However, from the early 

case studies of enhancers, we know that they often do not interact with the nearest gene113,156,157 and can 

target genes that are further than 1 Mb away in linear sequence158,159. Despite these limitations and high 

potential for false positives, the proximity-based approach can be applied uniformly for all enhancers sets 

and is still used in current research160. 

 Variants associated with changes in gene expression across individuals have previously been used 

to inform enhancer-gene linkages161. Consortia such as the Genotype-Tissue Expression (GTEx) project 
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have conducted large-scale studies of expression quantitative trait loci (eQTL) across dozens of human 

tissues and cell lines162. Where eQTL overlap with regulatory annotations, such as enhancers, can be used 

to infer the element’s target gene78,163. However, this view is complicated by limitations of eQTL mapping 

and potential redundancy in the enhancer landscape of a gene161,164. Machine learning approaches that 

integrate eQTL with other genomic features may improve target-prediction performance in the context of 

non-coding variant interpretation. For example, the Inference of Connected eQTLs (ICE)165 algorithm 

trained a gradient-boosted decision tree classifier on known GTEx eQTL to predict the target genes of 

non-coding variants, many of which may fall inside enhancers.  

 More directly, data from chromatin conformation assays can be used to locate regions of the 

genome that are in close physical proximity. The interacting loci can be annotated with other enhancer 

and promoter regions to infer enhancer-gene linkage in a given cell type161,166 or interactions with 

enhancer and promoter-associated features can be probed directly using variants of Hi-C113,115,167. 

However, recent work claims that models using chromatin conformation alone perform poorly compared 

to CRISPR-validated enhancer target maps. They suggest a combinatorial approach, called the activity-

by-contact (ABC) model, that weights enhancer-gene links by the inferred strength of the enhancer from 

biochemical markers and the frequency of chromatin contact168.  

 An alternative approach integrates histone modification ChIP-seq with gene expression data from 

RNA-seq. The correlation between the strength of the functional genomics peak and the level of gene 

expression is considered evidence of a link between the putative regulatory element and the gene. To 

improve performance, statistical or machine learning models have been trained on the correlations and 

information about the local chromatin conformation in order to predict the enhancer-gene links51,169,170. 

Some models (TargetFinder171, EAGLE172, 3DPredictor173, PEP-motif174, EP2vec175, CT-FOCS176) use 

combinations of functional genomics, genomic window, and sequence features to make predictions about 

enhancer-promoter interactions without explicit gene expression correlations. However, predictions made 

by all of these methods are limited by the availability of training and validation data across tissues. 

Experimentally derived chromatin interactions from Hi-C or similar approaches serve as the de facto gold 
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standard for validation but suffer from their own limitations137 and the accuracy of computational models 

has been questioned177,178. Recent work to benchmark many common computational predictors will 

improve our ability to choose the appropriate and accurate enhancer-gene linkages, although further 

experimental work is required to fully validate these predictions179. 

 

Evidence for redundancy in gene regulatory architecture 

Current models of transcriptional regulation suggest that genes are often regulated by multiple enhancer 

elements12,147–149. This has been well established in Drosophila, where redundant “shadow enhancers” 

provide overlapping regulatory functions and robustness to genetic variation150–152. Shadow enhancers are 

thought to be pervasive in the Drosophila genome, occurring near the majority of genes, although their 

exact functional mechanisms are not completely known. In some cases, the enhancers may act 

redundantly, where in others they also serve to fine-tune expression across specific conditions or 

developmental stages150. A more complex role for shadow enhancers is supported by constraint at these 

loci and the recent work suggesting showing positional effects of shadow enhancer function150,180.  

Case studies of specific enhancer clusters have shown that there is some level of redundancy in 

the regulation of gene expression in mammalian species as well147,153,181,182. Similar to shadow enhancers, 

groups of enhancers in mammalian species may act additively, synergistically, or redundantly. The idea 

of enhancer cooperation speaks to lines of earlier work describing super-enhancers12,148,149,183, and more 

recently, cis-regulatory domains184. These regulatory clusters or domains are known to contribute to the 

redundant or cooperative regulation of target genes12,148,182–184; the enhancer landscape is largely an 

extension of this idea. Recent work on the contribution of enhancer landscapes to the maintenance of 

stable gene expression levels has demonstrated that the number of regulatory elements is related to gene 

expression stability154. Furthermore, deletions of individual enhancer elements often do not result in 

changes to gene expression or organismal phenotype, supporting the idea that enhancer redundancy is 

widespread147,182,185. Genes that require more precise levels of expression, such as dosage-sensitive and 
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developmental genes, have also been associated with a larger amount of enhancer sequence, suggesting 

that some genes depend on more complex enhancer landscapes164.  

 

Interpretation of Non-coding Genetic Variation 

The regulatory genome plays a large role in all essential cellular and evolutionary processes, from 

organismal development to speciation2,186–188. Not surprisingly, genetic variants that alter the function of 

gene regulatory elements can have profound phenotypic impacts124,189. Many types of functional alteration 

have been implicated in the development of disease phenotypes, including the deletion of individual 

regulatory elements and changes to the chromatin architecture inducing ectopic enhancer interactions. 

However, the effects of disrupted enhancer function are difficult to fully characterize. Studying the effects 

of enhancer variation in different genomic contexts will improve our understanding of the mechanistic 

and phenotypic effects of gene regulation and allow for more accurate prioritization of uncharacterized 

non-coding variants.  

 
Genetic variants can disrupt proper gene regulation 

Genetic variants that disrupt gene regulatory regions contribute to the architecture of complex disease2. 

Broadly, regulatory elements are enriched for overlap with disease-associated variants, including those 

identified in genome wide association studies189–192. Thus, many variant prioritization methods consider 

the impact of single nucleotide variants (SNVs) on features of gene regulatory elements, such as alteration 

of important transcription factor binding motifs189,193–196 or disruption of enhancer cooperation197, to 

predict the effects of a given variant.  

Structural variants (SVs) can also disrupt the gene regulatory architecture and lead to a gain or 

loss of enhancer function121,124,198. These include large deletions and duplications of sequences as well 

rearrangements like inversions and translocations. SVs often affect entire chromatin domains and may 

generate new enhancer-gene contacts, often referred to as ‘enhancer adoption’ or ‘enhancer 

hijacking’121,199–203. This outcome may be even more deleterious than the disruption of individual 
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regulatory elements, and SVs at TAD boundaries show evidence of purifying selection204. The effects of 

SVs on gene expression have previously been studied at specific loci or in single disease contexts, 

providing a range of mechanisms by which regulatory variation can result in disease121,124,200,201,205–208.  

 

Strategies for non-coding variant interpretation using regulatory annotations 

Predicting the effect of variation in non-protein-coding regions on phenotypes, especially through 

changes to gene regulation, is a challenging but essential task. There are many mechanisms by which 

genetic variants can lead to disease209, thus variant interpretation and variant effect prediction take many 

forms. Of particular interest are computational approaches that have been developed to predict the 

pathogenicity of non-coding variants or prioritize the most relevant set of candidates for experimental 

follow-up210–215. These incorporate a range of genome-wide annotations, including enhancer-associated 

histone modifications, DNA sequence, transcription factor binding profiles, and chromatin accessibility 

into both supervised and unsupervised machine learning algorithms to predict the effects of non-coding 

variation on gene expression or functional genomics marks214,216–220. Although many of these approaches 

do not explicitly model variant effects in terms of changes to enhancer function, the underlying 

assumptions remain that non-coding variation influences gene regulatory function and that this function 

can be captured by markers frequently associated with enhancer activity. Future work incorporating 

additional information about the broader chromatin context185,197,221, training with data from large-scale 

CRISPR and MPRA enhancer screens212, and employing more complex computational models216,219,222 

will continue to improve our ability to predict the effect of non-coding variants and causal mechanisms. 

Experimental assessment and validation of non-coding variant effects remains the gold standard; 

however, determining the causal mechanisms underlying a disease-associating can be expensive and time 

consuming. Recent advances in MPRA technology have allowed for large saturation mutagenesis assays 

to quantify the impact of all possible variants in a regulatory sequence223. CRISPR-based assays will also 

be valuable to assess the impact of regulatory alterations in vivo, especially those that influence enhancer-

gene targeting causing ectopic gene expression224. As these techniques become more sophisticated, they 
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can generate increasing amounts of functionally relevant data for future algorithm development. 

Continued additions to manually curated databases, such as DiseaseEnhancer, will also provide a record 

of causal variants with experimentally validated impacts on enhancer sequences225. 

 

Limitations of current non-coding variant interpretation approaches 

Despite considerable progress, interpreting the effect of non-coding variants on gene expression and 

downstream phenotypes remains challenging. Due to the tissue and context-specific nature of gene 

regulatory elements such as enhancers and the inherently dynamic process of gene regulation, our ability 

to accurately train computational models often lags behind our current understanding of the regulatory 

process. Supervised machine learning models in particular suffer from our limited ability to create true 

positive and negative training sets. Furthermore, there are many examples of non-coding variants that 

have large impacts on enhancer function or chromatin architecture, yet no detectable effects on gene 

expression or phenotype132,146,147. Redundancy in the gene regulatory landscape of a gene is not well 

understood and typically not included in variant effect prediction. Genetic variants rarely occur in 

isolation and studies of single variants on individual regulatory elements can miss important joint 

effects198,206. Finally, previous work has largely focused on the potential regulatory effects of SNVs, 

considering the effects of SVs on gene regulatory architecture in small-scale studies of individual 

variants. Expanding the functional annotation of all SVs to include regulatory effects will fill an important 

gap. Considering the impact of regulatory variation in combination, and across multiple scales, will 

advance our knowledge of the interactions between variants and lead to more complete interpretation and 

prediction of genome-wide effects. 

Chapters 

Non-coding regulatory regions are crucial for the maintenance of proper transcriptional programs in the 

cell. Accurately identifying the elements, such as enhancers, involved in gene regulation and how they 

maintain gene expression levels in different biological contexts is a crucial step towards understanding the 
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impact of genetic variants that alter gene regulatory architecture. While many enhancer identification 

approaches are in common use, we hypothesized that enhancers predicted by different approaches would 

differ significantly in their genomic and functional attributes. Chapter II provides a comprehensive 

quantification of the genomic, evolutionary, and functional differences between enhancer sets identified 

by different strategies. Furthermore, we conclude that our ability to generate high-confidence and 

biologically relevant sets of enhancers by focusing on enhancers identified by multiple strategies is 

limited. Combinations of available enhancer sets are not more likely to overlap markers of functional 

relevance, and machine learning models fail to distinguish between unique and reproducible enhancer 

sequences. Chapter III uses a novel cohort with genome and RNA sequencing to functionally annotate 

structural variants (SVs) impacting putative gene regulatory sequences. We demonstrate that SVs 

disrupting regulatory elements have a substantial impact on gene expression and have likely been selected 

against. In Chapter IV we develop a framework to define enhancer landscapes—groups of enhancers 

putatively regulating the same target gene—in multiple human tissues and quantify their influence on 

gene regulation. We observe that differences in gene function and constraint on gene expression are 

reflected in the features of their enhancer landscapes, including the number and tissue-specificity of 

associated enhancers. Ultimately, our results highlight the importance of accurate identification of gene 

regulatory elements and models of enhancer activity that consider the broader genomic context to our 

understanding of gene expression dynamics and ability to interpret regulatory genetic variation.   
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CHAPTER II 

 

Evaluating the Genomic and Functional Differences Between Genome-wide Enhancer Sets1  
 

Introduction 

Accurately identifying gene-regulatory enhancers remains a challenging task. This is mainly due to the 

large number of genome-wide approaches currently in use and the lack of a comprehensive gold standard. 

In practice, most studies consider enhancers defined by a single approach in downstream analyses. These 

are based on subsets of experimental features correlated with enhancer activity and complex 

computational techniques, making it difficult to compare results across studies. This chapter evaluates the 

genomic similarities between enhancer sets identified by representative strategies in four biological 

contexts. We then quantify the differences between the functional attributes of enhancer sets, including 

enrichment for transcription factor binding motifs and overlap with experimentally validated enhancer 

sequences or trait-associated genetic variation. Finally, we explore strategies to combine and prioritize 

enhancer sets to generate reliable maps of genome-wide enhancer activity. 

We find that enhancers identified by different strategies have significant dissimilarity in their 

genomic, evolutionary, and functional characteristics within each context. This disagreement is sufficient 

to influence the interpretation of candidate SNPs from GWAS studies, and to lead to disparate 

conclusions about disease mechanisms. Most regions identified by enhancers are supported by only one 

method, and we find limited evidence that regions identified by multiple methods are better candidates 

than those identified by a single method. As a result, we cannot recommend the use of any single 

enhancer identification strategy in all situations. This chapter highlights the inherent complexity of 

 
 
 
1 Adapted from Benton, M.L., Talipineni, S.C., Kostka, D. et al. Genome-wide enhancer annotations differ 
significantly in genomic distribution, evolution, and function. BMC Genomics 20, 511 (2019). 
https://doi.org/10.1186/s12864-019-5779-x   
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enhancer biology and identifies an important challenge to mapping the genetic architecture of complex 

disease. In order to enable robust and reproducible results, we must foster a deeper appreciation for the 

dynamic and complex nature of gene regulatory elements. 

  

Methods 

Enhancer identification methods 

Here, we summarize how we defined human enhancer sets across four biological contexts. All analyses 

were performed in the context of the GRCh37/hg19 build of the human genome. We used TSS definitions 

from Ensembl v75 (GRCh37.p13). 

 We downloaded broad peak ChIP-seq data for three histone modifications, H3K27ac, H3K4me1, 

and H3K4me3 from the ENCODE project9 for two cell lines, K562 and Gm12878, and from the Roadmap 

Epigenomics Consortium191 for two primary tissues, liver and heart. The ENCODE broad peaks were 

generated by pooling data from two isogenic replicates. The Roadmap Epigenomics broad peaks were 

also generated with data from two replicates. We chose broad peak files because we expect histone 

modifications to flank active enhancer regions, and the broad peaks represent wide regions of relative 

enrichment that are likely to encompass the functionally relevant sequences. See below for details on 

consistent peak calling. We downloaded the “enhancer-like” annotations from ENCODE (version 3.0); 

these combine DHSs and H3K27ac ChIP-seq peaks using an unsupervised machine learning model. We 

retrieved ChromHMM enhancer predictions74 for the K562 and Gm12878 cell lines from the models 

trained on ENCODE data69. We downloaded ChromHMM predictions for liver and heart tissues from the 

15-state segmentation performed by the Roadmap Epigenomics Consortium. For all ChromHMM sets, we 

combined the weak and strong enhancer states. We considered two enhancer sets for K562 and Gm12878 

based on supervised machine learning techniques—one described in Yip et al. 201210, and the other in Ho 

et al. 201411. Yip12 predicted ‘binding active regions’ (BARs) using DNA accessibility and histone 

modification data; the positive set contained BARs overlapping a ‘transcription-related factor’ (TRF), and 
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the negative set contained BARs with no TRF peaks. The predicted regions were filtered using other 

genomic characteristics to determine the final set of enhancers10. Ho14 used H3K4me1 and H3K4me3 

ChIP-seq peaks in conjunction with DHSs and p300 binding sites to predict regions with regulatory 

activity both distal and proximal to TSSs. The distal regulatory elements make up their published 

enhancer set11. For K562 and Gm12878 we also downloaded p300 ChIP-seq peaks from ENCODE9. We 

downloaded enhancer regions predicted by the FANTOM consortium for the four sample types 

analyzed34. We also downloaded enhancer predictions in liver from Villar et al. 201527. We downloaded 

regions of nascent bidirectional transcription from GRO-cap data generated for the two cell lines, K562 

and Gm1287836. The transcribed regions on matched positive and negative strands were merged into a 

single annotation. 

 To represent enhancer identification strategies in common use, we created two additional 

enhancer sets for this study using histone modification ChIP-seq peaks and DNase-seq peaks downloaded 

from ENCODE and Roadmap Epigenomics. The H3K27acPlusH3K4me1 track is a combination of 

H3K27ac and H3K4me1 ChIP-seq peak files28,30,44. If both types of peaks were present (i.e., the regions 

overlap by at least 50% of the length of one of the regions) the intersection was classified as an enhancer. 

Similarly, to create the H3K27acMinusH3K4me3 set for each context, we intersected H3K27ac and 

H3K4me3 ChIP-seq peak files and kept regions where H3K27ac regions did not overlap a H3K4me3 

peak by at least 50% of their length. We derived the combination of H3K27ac and H3K4me3 and the 

50% overlap criterion from previous studies14,27,44. The DNasePlusHistone track is based on the pipeline 

described in Hay et al. 201612. It combines H3K4me1, H3K4me3, DNaseI hypersensitive sites (DHSs), 

and transcription start site (TSS) locations. We filtered a set of DHSs, as defined by DNase-seq, for 

regions with an H3K4me3 / H3K4me1 ratio less than 1, removed regions within 250 bp of a TSS, and 

called the remaining regions enhancers.  

 For all enhancer sets, we excluded elements overlapping ENCODE blacklist regions and gaps in 

the genome assembly226. Additionally, due to the presence of extremely long regions in some enhancer 

sets, likely caused by technical artifacts, we removed any regions more than three standard deviations 



 23 

above or below the mean length of the dataset. This filtering process removed relatively few annotations 

(Provided in Benton et al.192 Table S11). 

 When considering the agreement between biological replicates for K562, Gm12878, and liver 

H3K27ac ChIP-seq data, we downloaded the FASTQ files from ENCODE9 and Villar et al. 201527, 

respectively, aligning each to GRCh37.p13 using BWA227 (v.0.7.15, default options). We called peaks of 

broad enrichment using MACS228 (v.1.4.2, default options). We processed each of the replicate peak files 

using the same pipeline as the published peak files. 

 

Enhancer attribute data 

We downloaded evolutionarily conserved regions defined by PhastCons, a two-state hidden Markov 

model that defines conserved elements from multiple sequence alignments229. We concatenated primate 

and vertebrate PhastCons elements defined over the UCSC alignment of 45 vertebrates with humans into 

a single set of conserved genomic regions. We downloaded the full list of 20,458 unique GWAS SNPs 

from the GWAS Catalog (v1.0, downloaded 08-10-2016)230. We also manually curated the set of GWAS 

SNPs into subsets associated with phenotypes relevant to liver or heart for context-specific analyses 

(Table S4 in Benton et al.192). We downloaded all GTEx eQTL from the GTEx Portal (v6p, downloaded 

09-07-2016)231. We concatenated the data from all 44 represented tissues and ran the enrichment analysis 

on unique eQTL, filtering at four increasingly strict significance thresholds: 10-6, 10-10, 10-20, and 10-35. 

We present the results from the p-value threshold of 10-10, although the choice of threshold did not 

qualitatively alter the results. We also performed separate context-specific analyses on liver and heart 

specific eQTL from GTEx (p < 10-10). To identify other variants tagged by the GWAS SNPs and eQTL, 

we expanded each set to include SNPs in high LD (r2 > 0.9) in individuals of European ancestry from the 

1000 Genomes Project, phase 3 232.  

Experimentally validated enhancer sequences with activity in the heart and all negative enhancer 

sequences were downloaded from the VISTA enhancer browser (downloaded 11-16-2017)92. We also 

downloaded sequences and Sharpr-MPRA activity levels for 15,720 putative enhancer regions tested for 
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regulatory activity in K562 cells using a massively parallel reporter assay (MPRA)62. The Sharpr-MPRA 

algorithm infers a regulatory score for each base pair in a region using a probabilistic model, with positive 

scores indicating activating regulatory regions and negative scores indicating repressive regions. 

Following Ernst et al., we summarized the overall regulatory activity of a given enhancer region as the 

activity value with the maximum absolute value and classified the enhancer regions into activating (n = 

5,373) and repressive (n = 10,347) based on the score’s sign62. 

 

Genomic region overlap and similarity 

To quantify genomic similarity, we calculated the base pair overlap between two sets of genomic regions, 

A and B, by dividing the number of overlapping base pairs in A and B by the total number of base pairs in 

B. We also performed this calculation on element-wise level, by counting the number of genomic regions 

in B overlapping regions in A by at least 1 bp, and dividing by the number of genomic regions in B. We 

performed both calculations for each pairwise combination of enhancer sets. All overlaps were computed 

using programs from the BEDtools v2.23.0 suite233. 

 We also evaluated the similarity between pairs of genomic region sets using the Jaccard similarity 

index. The Jaccard index is defined as the cardinality of the intersection of two sets divided by cardinality 

of the union. In our analyses, we calculated the Jaccard index at the base pair level. We also computed the 

relative Jaccard similarity as the observed Jaccard similarity divided by the maximum possible Jaccard 

similarity for the given sets of genomic regions, i.e., the number of bases in the smaller set divided by the 

number of bases in the union of the two sets. To visualize overlaps, we plotted heatmaps for pairs of 

methods using ggplot2 in R234. 

 

Genomic region overlap enrichment analysis 

To evaluate whether the observed base pair overlap between pairs of enhancer sets is significantly greater 

than would be expected by chance, we used a permutation-based approach. We calculated an empirical p-

value for an observed amount of overlap based on the distribution of overlaps expected under a null 
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model of random placement of length-matched regions throughout the genome. We used the following 

protocol: let A and B denote two sets of genomic regions; count the number of bp in A that overlap B; 

generate 1,000 random sets of regions that maintain the length distribution of B, excluding ENCODE 

blacklist regions and assembly gaps; count the number of bp in A that overlap regions in each of the 

random sets; compare the observed bp overlap count with the overlap counts from each iteration of the 

simulation and compute a two-sided empirical p-value. We used the same framework to evaluate element-

wise comparisons by counting the number of regions in A that overlap B rather than the bps. This 

approach was performed using custom Python scripts and the Genomic Association Tester (GAT)235. We 

note that this measure of overlap significance is not symmetric, and accordingly we confirmed results of 

our element-wise results for both orderings of the pairs of enhancer sets. 

 

Enhancer conservation, GWAS catalog SNP, and GTEx eQTL enrichment  

In addition to comparing the overlap between pairs of enhancer sets, we also computed enrichment for 

overlap of evolutionarily conserved regions, GWAS SNPs, and GTEx eQTL with each of the enhancer 

sets. For conserved elements, we proceeded as described above for comparisons between pairs of 

enhancer sets, but considered the conserved elements as set A and the enhancers as set B. For GWAS tag 

SNPs, we considered each variant as a region in set A and the enhancer regions as set B. We used the 

same approach for testing all variants in LD (r2 > 0.9) with GWAS tag SNPs and for testing enrichment 

for liver- and heart-specific GWAS tag SNP sets. We also tested for enrichment using only the variant 

with the maximum number of enhancer set overlaps for each GWAS SNP’s LD block. In this analysis, A 

was the set of variants with maximum enhancer set overlap for each LD block and B was the set of 

enhancers. Enrichments were computed for the eQTL SNP sets using the same strategy as described for 

GWAS SNPs. 
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Enhancer set Gene Ontology annotation and similarity 

We used GREAT to find Gene Ontology (GO) annotations enriched among genes nearby the enhancer 

sets. GREAT assigns each input region to regulatory domains of genes and uses both a binomial and a 

hypergeometric test to discover significant associations between regions and associated genes’ GO 

annotation terms155. Due to the large number of reported regions in each enhancer set, we considered 

significance based only on the binomial test with the Bonferroni multiple testing correction (<0.05). We 

downloaded up to 1,000 significant terms for each enhancer set from the Molecular Function (MF) and 

Biological Process (BP) GO ontologies. We calculated the similarity between lists of GO terms using the 

GOSemSim package in R236. GOSemSim uses sematic similarity metric that accounts for the hierarchical 

organization and relatedness of GO terms when calculating the similarity score237. For each pair of 

enhancer sets, we calculated the similarity between their associated GO terms, and converted the resulting 

similarity matrix into a dissimilarity matrix. We also calculated the number of shared GO terms between 

pairs of methods and manually compared the top ten significant terms for each enhancer set. 

 Since enhancers often target genes over long distances, we also considered target predictions 

generated by the JEME algorithm to assign enhancers to potential target genes in each context169. JEME is 

a two-step process that considers the superset of all enhancers across contexts as well as context-specific 

biomarkers to make its predictions. By intersecting each enhancer set with the corresponding enhancer-

target maps from JEME, we created a set of putatively regulated genes for each method in a given 

context. We performed GO enrichment analyses on the gene sets using the online tool WebGestalt238. We 

downloaded the top 1,000 significant terms (p < 0.05 after Bonferroni correction) for each enhancer set 

from the BP and MF GO ontologies and calculated the pairwise similarity between lists of GO terms 

using the same semantic similarity metric as above. 

 

Clustering of enhancer sets by enriched transcription factor binding motifs 

We used AME from the MEME suite to quantify enrichment for known motifs from the HOCOMOCO 

(v11) core database in each enhancer set239,240. Enrichment was calculated based on a comparison to 
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background sequences generated by randomly shuffling the enhancer sequences while maintaining their 

dinucleotide frequency distribution. We used the default E-value threshold of 10 to define significant 

enrichment.  

We calculated the similarity between sets of enriched motifs using the Jaccard index. Because 

many of the enhancer sets were enriched for a high proportion of motifs from the HOCOMOCO database 

we also generated an expected Jaccard similarity index using size-matched lists of random motifs. This 

served as a baseline level of similarity expected from an enriched motif list of that size. We clustered the 

enhancer sets based on their Jaccard similarities using multidimensional scaling (MDS). 

 

Genomic and functional clustering of enhancer sets 

To identify groups of similar enhancers in genomic and functional space, we performed hierarchical 

clustering on the enhancer sets. For genomic similarity, we converted the pairwise Jaccard similarity to a 

dissimilarity score by subtracting it from 1 and then clustered the enhancer sets based on these values.  

For functional similarity, we clustered the lists of GO terms returned by GREAT for each enhancer set or 

sets of enriched TF binding motifs from AME. We calculated similarity of GO terms using the 

GoSemSim package in R and converted it to dissimilarity by subtracting the similarity score from 1. For 

both the genomic and GO similarity, we used agglomerative hierarchical clustering in R function with the 

default complete linkage method to iteratively combine clusters241. We visualized the cluster results as 

dendrograms using ggplot2 and dendextend234,242. We performed multidimensional scaling (MDS) on the 

Jaccard, GO term, and TF motif dissimilarity matrices using default options in R241.  

 
Combinatorial analysis of enhancer sets and enrichment for functional signals 

We stratified genomic regions by the number of enhancer identification strategies that annotate them in 

order to determine whether regions predicted to be enhancers by more methods show greater enrichment 

for three signals of function—evolutionarily conserved base pairs, GWAS SNPs, or GTEx eQTL—

compared to regions with less support. We divided all regions predicted by any enhancer identification 
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method in a given context into bins based on the number of methods that predicted it. Some enhancer 

regions had varying prediction coverage and were split across multiple bins. While infrequent (<3% of 

regions), we removed all regions less than 10 bp in length since these are unlikely to function as 

independent enhancers. For each enhancer support bin, from 1 to the number of prediction methods, we 

calculated the enrichment for overlap with each functional signal using the permutation framework 

described above. We considered three different proxy sets: evolutionarily conserved base pairs as defined 

by PhastCons elements, GWAS SNPs, and GTEx eQTL. In each enrichment analysis, the functional 

signal regions were set A and the enhancer regions with a given level of support were set B. We report the 

average enrichment for each enhancer support bin with the empirical 95% confidence intervals. 

 For enhancer sets with quantitative enhancer-level scores available across contexts, we ranked 

each enhancer by its score, and then analyzed whether regions that have higher scores are more likely to 

be predicted by other identification methods. We calculated the rank using the ChIP-seq or CAGE-seq 

signal scores for a subset of methods (H3K27acPlusH3K4me1, H3K27acMinusH3K4me3, 

DNasePlusHistone, FANTOM), and the machine learning derived score for EncodeEnhancerlike regions. 

Within each set, we sorted the enhancer regions by score and assigned ranks starting at 1 for the top-

scoring region. We then partitioned the enhancer regions in each set by the number of other enhancer sets 

that overlap at least one base pair in that region. To compare the most confident enhancer predictions, we 

subset each of the ranked methods into the top 100, 500, or 800 top enhancers. We used these subsets to 

calculate the level of enrichment for overlap with GWAS Catalog SNPs, GTEx eQTL, and evolutionary 

conservation based on the number of methods that agree on each annotated region. 

 

Machine learning prediction of shared enhancers from short sequence motifs 

We trained a support vector machine (SVM) classifier to distinguish between enhancers that a 

reproducible across methods versus those that are unique to a single method. The feature set for the SVM 

classifier was the k-mer spectrum (k = 6) for enhancer sequences in each category. The positives were 

enhancer sequences in genomic regions identified by at least two methods and the negatives were 
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enhancer sequences identified by only one method. We applied our model using ten-fold cross validation 

and calculated the accuracy using the area under the receiver operating characteristic curve. 

 

Results 

A panel of enhancer identification strategies across four biological contexts 

To evaluate the variation in enhancer sets generated by different enhancer identification strategies, we 

developed a consistent computational pipeline to compare enhancer sets genome-wide. Our approach is 

based on publicly available data, and we applied it to a representative set of methods in four common cell 

types and tissues (biological contexts): K562, Gm12878, liver, and heart cells (Figure 1). Given the large 

number of enhancer identification strategies that have been proposed2,71, it is not possible to compare 

them all; so for each context, we consider methods that represent the diversity of experimental and 

computational approaches in common use.  

 For all contexts, we consider two enhancer sets derived solely from chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) for histone modifications informative about 

enhancer activity from the ENCODE Project9. The “H3K27acPlusH3K4me1” set includes all H3K27ac 

ChIP-seq peaks that also overlap an H3K4me1 peak, and the “H3K27acMinusH3K4me3” set contains 

H3K27ac peaks that do not overlap an H3K4me3 peak27,44,80. We used broad peak files processed using a 

consistent custom pipeline and quality control criteria by ENCODE. In liver only, we consider an 

additional set of enhancers identified using the H3K27acMinusH3K4me3 definition on different samples 

(“Villar15”)27. We also consider a method that incorporates DNase I hypersensitive sites (DHSs) with 

histone modifications to generate the “DNasePlusHistone” enhancer set, which is composed of DHSs 

where the ratio of H3K4me1 to H3K4me3 is less than one12. For the two cell lines we also include ChIP-

seq peaks for the transcription cofactor p300, “p300”, that is known to be associated with active 

enhancers9,15,44. Since transcriptional signatures are increasingly used to identify enhancers, we consider 

“FANTOM” enhancers identified from bidirectionally transcribed eRNA detected via cap analysis of 
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gene expression (CAGE) by the FANTOM5 Project34,243,244. For K562 and Gm12878 we include a set of 

transcribed regions defined by nascent bidirectional transcription in a modification of the global run-on 

sequencing (GRO-seq) as “GRO-cap”36. Finally, we also include several methods that combine machine 

learning with functional genomics data, such as the ENCODE consortium’s “EncodeEnhancerlike” made 

by combining DHSs and H3K27ac peaks using an unsupervised ranking method and the “ChromHMM” 

predictions generated by a hidden Markov model trained on ChIP-seq data from eight histone 

modifications, CTCF, and RNA Pol II69,245–247. For the K562 and Gm12878 cell lines we include enhancer 

predictions made by two supervised machine learning methods trained to identify enhancers based on 

ChIP-seq data in conjunction with other functional genomic features. We will refer to these sets as 

“Yip12” and “Ho14”10,11. An overview of the data and computational approaches used by each method is 

given in Figure 1and full details are available in the Methods.  

 

 

Figure 1. Eleven diverse enhancer identification strategies were evaluated across four contexts.  
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Each row summarizes the data sources, analytical approaches, and contexts for the eleven enhancer identification 
strategies we considered. The leftmost columns of the schematic represent the experimental assays and sources of 
the data used by each identification strategy. The middle columns describe the computational processing (if any) 
performed on the raw data (ML: machine learning). The rightmost columns give the contexts in which the sets were 
available. Table 1 gives the number, length, and genomic coverage of each enhancer set. 

 

Genomic coverage of different enhancer sets varies by several orders of magnitude  

Enhancer regions identified in the same context by different methods differ drastically in the number of 

enhancers identified, their genomic locations, their lengths, and their coverage of the genome (Table 1, 

Figure 2; Fig S1 in Benton et al.192). As noted above, we expected to find variation between enhancer sets 

in these attributes. Nevertheless, the magnitude of differences we observed is striking. For each attribute 

we considered, enhancer sets differ by several orders of magnitude (Table 1, Figure 2). For instance, 

FANTOM identifies 326 kilobases (kb) of sequence with liver enhancer activity, EncodeEnhancerlike 

identifies 89 megabases (Mb), and H3K27acMinusH3K4me3 identifies almost 138 megabases (Mb). 

  

Table 1. Summary of all enhancer sets analyzed in this study. 

Context Enhancer Set 
Number of Base 

Pairs (kb) 
Number of 
Enhancers 

Median 
Length 

Genome 
Coverage 

K562 H3K27acPlusH3K4me1 22,113 6,642 1,903 0.0078 
 

H3K27acMinusH3K4me3 34,072 19,698 525 0.0120 
 

DNasePlusHistone 6,620 13,402 431 0.0023 
 

ChromHMM 96,545 100,837 600 0.0339 
 

EncodeEnhancerlike 39,961 36,008 878 0.0140 
 

Ho14 29,027 35,769 556 0.0102 
 

Yip12 5,389 13,303 342 0.0019 

 p300 7,939 26,463 316 0.0028 

 GRO-cap 3,905 23,825 160 0.0014 
 

FANTOM 390 1,084 344 0.0001 

Gm12878 H3K27acPlusH3K4me1 28,355 8,019 2,749 0.0099 
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H3K27acMinusH3K4me3 20,868 11,238 701 0.0073 

 
DNasePlusHistone 9,286 19,815 386 0.0033 

 
ChromHMM 73,929 69,314 800 0.0259 

 
EncodeEnhancerlike 50,224 38,872 1,018 0.0176 

 
Ho14 41,543 39,550 674 0.0146 

 
Yip12 5,389 13,303 342 0.0019 

 p300 6,480 17,532 360 0.0023 

 GRO-cap 3,646 21,308 160 0.0013 
 

FANTOM 1,025 2,826 343 0.0004 

Liver H3K27acPlusH3K4me1 87,576 37,644 1,831 0.0307 
 

H3K27acMinusH3K4me3 137,874 77,014 1,096 0.0484 
 

DNasePlusHistone 51,292 170,212 152 0.0180 
 

ChromHMM 108,375 101,260 800 0.0380 
 

EncodeEnhancerlike 89,129 37,426 1,849 0.0313 
 

FANTOM 326 869 347 0.0001 
 

Villar15 86,139 27,725 2,545 0.0302 

Heart H3K27acPlusH3K4me1 59,892 42,910 1,102 0.0210 
 

H3K27acMinusH3K4me3 157,468 141,162 684 0.0553 
 

DNasePlusHistone 33,224 103,898 168 0.0117 
 

ChromHMM 93,067 113,092 600 0.0327 
 

EncodeEnhancerlike 186,866 47,235 2,872 0.0656 
 

FANTOM 611 1,720 335 0.0002 
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Figure 2. Enhancer identification methods vary in the number and length of predicted enhancers.  
(A) The number of K562 and liver enhancers identified by each method varies over two orders of magnitude. There 
is considerable variation even among methods defined based on similar input data, e.g., histone modifications. (B) 
The length of K562 and liver enhancers identified by different methods shows similar variation. Enhancer lengths 
are plotted on a log10 scale on the y-axis. Data for other contexts are available in Table 1 and Fig S1 (provided in 
Benton et al.192).  

 

In addition, methods based on similar approaches often differ substantially due to technical 

factors; e.g., Villar15, which uses the same enhancer definition as H3K27acMinusH3K4me3, only 

annotates 86.1 Mb with enhancer function in liver. Enhancer sets also vary in their relative distance to 

other functional genomic features, such as transcription start sites (TSSs). For example, in liver, the 

average distance to the nearest TSS ranges from 14 kb for EncodeEnhancerlike to 64 kb for 

DNasePlusHistone (Table S1 in Benton et al.192). Overall, as expected, methods based on histone 

modifications tend to identify larger numbers of longer enhancers compared with CAGE data, and 
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machine learning methods are variable. However, these differences span orders of magnitude. We 

highlight these trends in liver, but they are similar in other contexts (Table 1, Figure 2; Fig S1 in Benton 

et al.192).  

 
Enhancer sets overlap more than expected by chance but have low genomic similarity  

Given the diversity of the enhancer sets identified by different methods, we evaluated the extent of both 

bp and element-wise overlap between them. All pairs of enhancer sets overlap more than expected if they 

were randomly distributed across the genome (Figure 3A,B ~5–100x, p < 0.001 for all pairs, permutation 

test). As expected due to the greater cellular heterogeneity and genetic variation of tissue samples vs. cell 

lines, enhancer sets identified by different methods in the same cell line have more significant overlap 

than enhancer sets identified in tissues (Figure 3B). 

 

 

Figure 3. Enhancer sets have low genomic overlap.  
(A) Pairwise bp enrichment values (log2 fold change) for overlap between each K562 (upper triangle) or liver (lower 
triangle) enhancer set, compared to the expected overlap between randomly distributed, length-matched regions. (B) 
The log2 enrichment for bp overlap compared to a random genomic distribution for each pair of enhancer sets within 
each context. Only contexts with annotations across all biological contexts are included. The fold changes across 
annotations for the primary tissues—liver and heart—are significantly lower than the cell lines—K562 and 
Gm12878 (p = 6.88E-11 Kruskal-Wallis test, followed by Dunn’s test with Bonferroni correction for pairwise 
comparisons between contexts). The patterns are similar for element-wise comparisons (Fig S3 provided in Benton 
et al.192). 
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However, most (54%) predicted enhancers are “singletons” that are annotated by only a single 

enhancer identification strategy. Furthermore, the magnitude of overlap between enhancer sets is typically 

low: less than 50% for nearly all pairs of methods (median 17% bp overlap for K562 and 30% for liver; 

Figure 4A,B; Fig S2 and Table S2 in Benton et al.192). Furthermore, the largest overlaps are in 

comparisons including one enhancer set with high genome coverage or in comparisons of sets that were 

identified based on similar data. These patterns were similar when evaluating overlap on an element-wise 

basis (median element-wise overlap: 18%–34%; Figs S3-S4 and Table S2 in Benton et al.192).  

 

 

Figure 4. Enhancer sets have low genomic similarity.  
The percent base pair (bp) overlap between all pairs of (A) K562 enhancer sets and (B) liver enhancer sets. Percent 
overlap for each pair was calculated by dividing the number of shared bp between the two sets by the total number 
of base pairs of the set on the y-axis. The highest overlap is observed for pairs based on similar input, e.g., machine 
learning models trained on the same functional genomics data, or comparisons with large sets, e.g. ChromHMM. 
Comparisons between biological replicates average 76% overlap. (C, D) The Jaccard similarity between all pairs of 
(C) K562 or (D) liver enhancer sets. The upper triangle gives the Jaccard similarity, and the lower triangle gives the 
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relative Jaccard similarity in which the observed similarity is divided by the maximum possible similarity for the 
pair of sets. 

 

To further quantify overlap, we calculated the Jaccard similarity index—the number of shared bp 

between two enhancer sets divided by the number of bp in their union—for each pair of methods. Overall, 

the Jaccard similarities are also low for all contexts, with an average of 0.07 for K562 and 0.13 for liver 

and all pairwise comparisons below 0.35 (Figure 4C,D, Fig S2 in Benton et al.192, upper triangle). Since 

the Jaccard similarity is sensitive to differences in set size, we also computed a “relative” Jaccard 

similarity by dividing the observed value by the maximum value possible given the set sizes. The relative 

similarities were also consistently low (Figure 4C,D, Fig S2 in Benton et al.192, lower triangle).  To assess 

the influence of biological variation on the observed overlaps, we compared the overlap of replicates from 

H3K27ac ChIP-seq data in K562, Gm12878, and liver generated by the same laboratory and processed by 

the same peak calling pipeline. H3K27ac ChIP-seq data are used in the definition of most of the enhancer 

sets considered here, so high variability in this data would likely impact many of the predictions. We 

expected the replicates to have high overlap and serve as an “upper bound” on similarity in practical 

applications. On average, the replicates overlap 76% at the bp level (with a range of 54–88%) and 84% 

element-wise (with a range of 51-89%). The only value less than 66% comes from a single K562 

comparison. Thus, while there is variation, the amount of overlap observed between enhancers identified 

by different methods almost always falls far below the variation between ChIP-seq replicates. 

 

Enhancer sets have different levels of evolutionary conservation 

Enhancers identified by different methods also differ in their levels of evolutionary constraint. Using 

primate and vertebrate evolutionarily conserved elements defined by PhastCons229, we calculated the 

enrichment for overlap with conserved elements for each enhancer set. All enhancer sets have more 

regions that overlap with conserved elements than expected from length-matched regions drawn at 

random from the genome. However, enhancers identified by some methods are more likely to be 
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conserved than others (Figure 5). Across each context, the histone-mark-based, ChromHMM, Villar15, 

and Ho14 enhancer sets are approximately 1.3x to 1.8x enriched for overlap with conserved elements. 

Adding DNaseI hypersensitivity data, as in the DNasePlusHistone and EncodeEnhancerlike sets, 

increases the level of enrichment slightly compared to solely histone-derived enhancers (1.9x–2.3x). In 

contrast, the FANTOM, Yip12, and p300 enhancers are nearly twice as enriched for conserved regions as 

the histone-based sets (2.7x, 3.3x, and 2.9x, respectively). GRO-cap enhancers in K562 and Gm12878 are 

the most enriched for overlap with conserved elements (4.7-4.8x). Evolutionary conservation was 

considered in the definition of the Yip12 set, but not directly in the FANTOM, p300, or GRO-cap sets. 

Here we considered element-wise enrichment for the number of enhancer regions overlapping conserved 

elements; enrichment trends are similar when we consider the number of conserved base pairs overlapped 

by each enhancer set (Fig S5 in Benton et al.192). 

 

 

Figure 5. Enhancer sets vary in their degree of evolutionary conservation.  
Each point represents the enrichment (fold change compared to randomly shuffled regions) for overlap between a 
conserved element (combined primate and vertebrate PhastCons) and each enhancer set. Methods based on 
transcriptional assays and TF binding profiles (GRO-cap, FANTOM, p300, and Yip12) are the most enriched for 
conserved elements, while sets based on histone modification data alone are among the least enriched. 
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Identification strategies highlight different subsets of experimentally validated enhancers 

Though we lack unbiased genome-wide gold standard sets of enhancers, nearly two thousand human 

sequences have been tested for enhancer activity in vivo in transgenic mice at E11.5 by VISTA92 and 

thousands more have been tested in cell lines via MPRAs. Strong ascertainment biases in how regions 

were selected for testing in these assays prevent their use as a gold standard, but they do provide an 

opportunity to examine overlap between validated and predicted enhancers. We evaluated the overlap and 

enrichment of each heart enhancer set with 1,837 regions tested for enhancer activity in the developing 

heart by VISTA and for each annotated K562 enhancer with 15,720 regions tested in K562 cells by 

Sharpr-MPRA62. All heart enhancer sets are significantly enriched for overlap with the 126 VISTA heart 

positives (Fig S6 and Table S3 in Benton et al.192; p < 0.001 for all), and each set is at least ~3x more 

likely to overlap validated enhancers than expected if it was randomly distributed across the genome. 

However, the heart enhancer sets are also significantly enriched for overlap with VISTA negatives (p <= 

0.004). This is not surprising as the regions tested by VISTA were largely selected based on having 

evidence of enhancer activity, and they may have enhancer activity in other contexts not tested by 

VISTA, including adult heart. However, there is substantial disagreement among the enhancer sets about 

the status of the VISTA heart enhancers; 16% (n = 20) of validated heart enhancers are not predicted to 

have enhancer activity by any method, and 17% (22) are only predicted by one method (Fig S6 in Benton 

et al.192). Similarly, all of the enhancer sets in K562 are significantly enriched for overlap with both 

activating and repressive regions characterized by Sharpr-MPRA (Fig S7 in Benton et al.192; p < 0.001 for 

all). There is little variation between the methods in terms of overall enrichment, with most having ~2x 

relative enrichment for activating regions. Nearly half of the activating regions in the MPRA (47%; 2,508 

/ 5,373) were not identified by any of the enhancer sets, and 30% of activating regions overlapping a 

predicted enhancer are unique to a single set (Fig S7 in Benton et al.192; 891 / 2,747). Thus, comparisons 

with validated enhancers from both VISTA and MPRAs suggest that different strategies identify different 

subsets of active regulatory regions in the same context, and that all strategies miss a sizable portion of 

functional enhancer sequences. However, we again caution against interpreting the relative performance 
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of different enhancer identification strategies on these data, since there are strong ascertainment biases in 

how regions were selected for testing. For example, ChromHMM enhancer predictions and DNase I 

hypersensitivity data were used to select the regions tested by Sharpr-MPRA. 

 
Interpretation of GWAS hits and eQTL is contingent on the enhancer identification strategy used 

Functional genetic variants—in particular mutations associated with complex disease—are enriched in 

gene regulatory regions. Thus, genome-wide enhancer sets are commonly used to interpret the potential 

function of genetic variants observed in GWAS and sequencing studies. To illustrate this situation, Figure 

6A shows a 9kb region at the human chromosome 1p13 locus containing the noncoding region between 

CELSR2 and PSRC1 associated with both low-density lipoprotein (LDL) cholesterol levels and 

myocardial infarction (MI) in GWAS248. It gives the locations of variants in high LD with the tag SNP, 

rs12749374, and includes regions identified as liver enhancers by the representative methods analyzed in 

this study. A comprehensive series of studies showed that the minor allele of rs12740374 creates a C/EBP 

binding site, causing increased expression of SORT1 specifically in liver and leading to the association 

with both LDL cholesterol and increased risk of MI248. In this example, the region containing the casual 

SNP is predicted to be an enhancer by four of the seven methods (Figure 6A). This represents a case in 

which the available enhancer data help to highlight the causal locus.  
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Figure 6. Causal GWAS variants overlap with different enhancer sets. 
(A) The 9 kb region on human chromosome 1 containing genetic variants associated with LDL cholesterol levels 
and MI in GWAS and the causal SNP (rs12740374). Here, the region containing the casual SNP is predicted to be 
an enhancer by four of the seven methods. GWAS tag SNPs are colored in red and LD blocks are shown with a 
horizontal line. (B) The 60 kb region of human chromosome 9 containing loci associated with coronary artery 
disease (CAD) in GWAS. Two of the associated variants (rs10811656 and rs4977757) have been shown to 
contribute to CAD risk. However, the enhancer annotations in this region are generally non-overlapping and do not 
highlight either functional variant. 

 

As an alternative example, Figure 6B shows a 60 kb region of human chromosome 9 that contains 

ten loci associated with coronary artery disease (CAD) in GWAS and other variants in high LD with the 

GWAS tag variants. It also shows the regions identified as enhancers by six representative methods in 

heart. Two of these variants (rs10811656 and rs4977757) out of 59 evaluated were recently demonstrated 

to disrupt binding of TEAD transcription factors in vitro and in vivo in primary human aortic smooth 

muscle cells, which leads to reduced expression of the cell cycle suppressor protein, p16, and contributes 

to CAD risk249. The enhancer annotations in this region are largely non-overlapping and do not highlight 

these two functional variants. Indeed, neither overlaps any enhancer annotation. 

To explore the frequency of these scenarios genome-wide, we evaluated the overlap of GWAS 

loci with different enhancer identification strategies by intersecting each of the enhancer sets with 20,458 

unique loci significantly associated with traits from the NHGRI-EBI GWAS Catalog. Since the GWAS 
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catalog contains regions associated with diverse traits, we manually curated the set of GWAS SNPs into 

subsets associated with phenotypes relevant to liver (n = 346) or heart (n = 2,127) (Table S4 in Benton et 

al.192). We found 27% (92 / 346) of the liver associated tag SNPs and 24% (503 / 2,127) of the heart 

associated tag SNPs overlap an enhancer predicted by at least one of strategies we considered in the 

appropriate context. (We consider variants in high linkage disequilibrium (LD) below.) While the amount 

of overlap is low, the heart and liver enhancer sets are almost universally more enriched for overlap with 

GWAS SNPs that influence relevant phenotypes compared to GWAS SNPs overall (Figure 7, Table S5 in 

Benton et al.192; 1.74x–2.68x). FANTOM enhancers are the exception to this trend due to the small 

number of overlapping context-specific SNPs (Table S6 in Benton et al.192). This suggests that the 

different methods, in spite of their lack of agreement, all identify regulatory regions relevant to the target 

context. 

 

 

Figure 7. Enhancers have different levels of enrichment with GWAS SNPs.  
GWAS SNP enrichment among all enhancer sets for each biological context. All sets are significantly enriched, 
except FANTOM in K562 and liver contexts due to small sample size. 
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However, there is variation in the number of overlapping GWAS SNPs between enhancer sets, as 

is expected given the large variation in the number and genomic distribution of enhancers predicted by 

different methods (Table S6 in Benton et al.192). The majority of curated GWAS liver SNPs with any 

enhancer overlap are overlapped by a single method (53%) and none are shared by all methods (Figure 

8A). This trend is also seen in heart, where 58% (293 / 503) of the heart associated SNPs overlapping an 

enhancer are identified by only a single identification strategy (Figure 8A). This suggests that cases such 

as the one illustrated in Fig 6B are far more frequent than those like Fig 6A.  

 

 

Figure 8. Few genetic variants overlap multiple enhancer sets.  
(A) Few GWAS SNPs overlap an enhancer; the colored bars represent the number of methods that identified the 
region as an enhancer. The majority of these variants are not predicted as enhancers, and very few GWAS variants 
are overlap enhancers from multiple methods. The conclusions are similar when considering variants in high LD (r2 
> 0.9) with the GWAS tag SNPs in liver (Liver LD; Fig S8 in Benton et al.192). The pattern is also similar when 
limiting to SNPs associated with liver or heart related phenotypes (Liver Specific, Heart Specific). When 
considering the SNP in each LD block with the maximum number of enhancer overlaps there is still a large 
percentage of SNPs supported by none or only one method (Liver Max). This demonstrates that the situation 
illustrated in Figure 6B is very common. (B) Among all eQTL that overlap at least one enhancer, the majority is 
supported by only a single method. This holds for LD- expanded and context-specific sets (Liver LD, Liver Specific, 
Heart Specific; Fig S8 in Benton et al.192). Many variants remain unique to a single method, even when limiting to 
the variant in each LD block overlapping the maximum of enhancer sets (Liver Max). 
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Since tag SNPs are often not the functional variants, we also considered SNPs in high LD with 

the GWAS SNPs (r2 > 0.9). The distribution of enhancer overlaps was similar when considering all 

candidate variants in LD (Figure 8A), although the enrichments were lower (Fig S8 in Benton et al.192). 

Even after limiting to GWAS LD blocks with enhancer overlap and selecting the variant with maximum 

overlap between strategies, 47% (164 / 346) and 50% (1,055 / 2,127) are not predicted as enhancers by 

any method and 17% (60 / 346) and 18% (381 / 2,127) are only predicted by one enhancer identification 

method in liver and heart, respectively (Figure 8A). This demonstrates that enhancer maps usually 

disagree about which variants are likely to be functional, and that the situation illustrated in Figure 6A is 

rare. Across the entire GWAS Catalog, 33% (6,736 / 20,458) of SNPs overlap an enhancer predicted by at 

least one of the strategies in one of the contexts we considered. The trends are similar for heart, K562, and 

Gm12878 (Figure 8A; Fig S8 in Benton et al.192). This illustrates that the annotation of variants in regions 

highlighted by GWAS varies greatly depending on the enhancer identification strategies used. 

 To test if these patterns hold for genetic variants in other functional regions, we analyzed the 

overlap of enhancer sets with expression quantitative trait loci (eQTL) identified by the GTEx 

Consortium. Enrichment for overlap with context-specific eQTL in liver or heart is generally higher than 

enrichment for significant eQTL overall, but the distribution of shared eQTL remains similar (Figure 8B, 

Figure 9; Table S7 in Benton et al.192). Within a context, most eQTL do not overlap an enhancer, and 

there is wide variation in the number of eQTL overlapped by different enhancer sets (Figure 8B; Table S8 

in Benton et al.192). Across liver enhancer sets, 52% (2,925 / 5,585) of all overlapped liver eQTL and 50% 

(33,941 / 68,563) of general eQTL overlap an enhancer called by only one method (Figure 8B). 

Considering variants in high LD (r2 > 0.9) does not affect this trend (Figure 8B). After limiting the 

analysis to the variants with the maximum number of overlaps in each LD block, 15% (3,386 / 22,234) of 

liver eQTL with enhancer overlap are identified by only one enhancer set (Figure 8B). The lack of 

overlap is more extreme in heart, where 60% (13,925 / 22,919) heart eQTL overlap a single method, as 

well as K562 and Gm12878 (Figure 8B; Fig S8 in Benton et al.192). Thus, in regions known to influence 
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traits or gene regulation, the interpretation of which variants are causal varies substantially depending on 

the enhancer identification strategy used.  

 

 

Figure 9. Enhancers have different levels of enrichment with GTEx eQTL. 
GTEx eQTL enrichment among all enhancer sets for each biological context. Transparent points indicate 
nonsignificant enrichment (p > 0.05). 

 
Enhancers identified by different strategies have different functional contexts 

Given the genomic dissimilarities between enhancer sets, we hypothesized that different enhancer sets 

from the same context would also vary in the functions of the genes they likely regulate. To test this 

hypothesis, we identified Gene Ontology (GO) functional annotation terms that are significantly enriched 

among genes likely targeted by enhancers in each set. We used two different approaches to map to genes 

and associated GO terms: (i) using the joint effect of multiple enhancers (JEME) method for mapping 

enhancers to putative target genes and then performing gene-based enrichment analyses, and (ii) applying 

the Genomic Regions Enrichment of Annotations Tool (GREAT) (Methods)155,169. Many of the GO terms 

identified by both methods for the enhancer sets are relevant to the associated context (Table 2). 

However, most of the associated terms for the target-mapping approach were near the root of the 
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ontologies and thus lacking in functional specificity (Table 2), likely due to the large gene target lists for 

most enhancer sets (Table S9 in Benton et al.192). As a result, we focus on the results from GREAT here, 

and report the results based on JEME target mapping in Figs S9-10 (provided in Benton et al.192).  

 

Table 2. Top 5 Gene Ontology (Molecular Function) terms for liver enhancer sets.  

Enhancer Set GO MF Terms (GREAT) 
GO MF Terms 
(JEME+WebGestalt) 

H3K27acPlusH3K4me1 

cytoskeletal adaptor activity small molecule binding 
14-3-3 protein binding anion binding 
leukotriene-C4 synthase activity nucleoside phosphate binding 
nucleobase-containing compound 
transmembrane transporter activity 

nucleotide binding 

FAD binding transferase activity 

H3K27acMinusH3K4me3 

14-3-3 protein binding oxidoreductase activity  
cytoskeletal adaptor activity anion binding 
thyroid hormone receptor binding small molecule binding 
ARF guanyl-nucleotide exchange factor 
activity 

nucleoside phosphate binding 

high-density lipoprotein particle binding nucleotide binding 

DNasePlusHistone 

cytoskeletal adaptor activity small molecule binding 
glucocorticoid receptor binding anion binding 
nucleobase-containing compound 
transmembrane transporter activity 

transferase activity 

high-density lipoprotein particle binding nucleotide binding 
14-3-3- protein binding nucleoside phosphate binding 

ChromHMM 

high-density lipoprotein particle binding nucleotide binding  
nucleobase-containing compound 
transmembrane transporter activity 

nucleoside binding 

cytoskeletal adaptor activity purine nucleoside binding 
14-3-3 protein binding DNA binding 
retinoid X receptor binding RNA binding 

EncodeEnhancerlike 

cytoskeletal adaptor activity nucleotide binding 
14-3-3 protein binding transferase activity  
nucleobase-containing compound 
transmembrane transporter activity 

small molecule binding 

apolipoprotein A-I binding anion binding 
high-density lipoprotein particle binding carbohydrate derivative binding 

FANTOM 

glucocorticoid receptor binding structural constituent of ribosome  
protein kinase binding receptor binding 
kinase binding cell adhesion molecule binding 
methylglutaconyl-CoA hydratase activity molecular function regulator 
vitamin D response element binding transcription regulatory region 

DNA binding 
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Villar15 

protease binding anion binding  
phosphatidylinositol 3-kinase binding small molecule binding 
14-3-3 protein binding oxidoreductase activity 
cytoskeletal adaptor activity cofactor binding 
glucocorticoid receptor binding oxidoreductase activity, acting on 

CH-OH group of donors 
 

 The majority of the top 30 significant annotations from GREAT for each enhancer set are not 

enriched in any other set in the same context, and no terms are shared by all of the methods in a given 

context (Figure 10, lower triangle). In all of these pairwise comparisons, fewer than half of the GO terms 

are shared between a pair of enhancer sets. Furthermore, many of the terms shared by multiple enhancer 

sets are near the root of the ontology (e.g., nucleotide binding) and thus are less functionally specific. 

These results provide evidence that the different enhancer sets influence different functions relevant to the 

target biological context. These trends hold for both the Biological Process (BP) and Molecular Function 

(MF) ontologies and considering the top 10 and 50 annotations for each set (Figs S11-13 in Benton et 

al.192). 

 To further compare the enriched GO MF and BP annotations of each enhancer set in a way that 

accounts for the distance between GO terms in the ontology hierarchy and their specificity, we computed 

a semantic similarity measure developed for GO annotations236,237. The ChromHMM and 

EncodeEnhancerlike enhancer sets are among the most functionally similar, with similarity scores near 

0.80 in most contexts (Figure 10, upper triangle; Fig S12 in Benton et al.192). This is not surprising given 

that their underlying assays overlap. The functional similarity scores are lower for comparisons of the 

other histone modification sets, around 0.50–0.75. In all comparisons, the FANTOM enhancers have the 

lowest functional similarity with other enhancer sets—below 0.40 in the vast majority of comparisons in 

K562, liver, and heart (Figure 10; Fig S12 in Benton et al.192). FANTOM is more similar to other methods 

in Gm12878, with an average score of 0.59 (Fig S12 in Benton et al.192). As a benchmark, biological 

replicates of the Gm12878 H3K27ac ChIP-seq peaks received a similarity of 0.93. This suggests different 

functional influences for enhancer sets from the same context identified by different methods, with 
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FANTOM as a particular outlier. We note that enhancer target gene identification remains a challenging 

problem, and both strategies for mapping enhancers to potential target genes considered here (GREAT 

and JEME) likely include false positives and negatives. However, insofar as they reflect the genomic 

context of the different enhancer sets, they reveal significant functional differences between enhancer 

identification methods. 

 

 

Figure 10. Enhancer sets from the same biological context have different functional associations. 
We identified Gene Ontology (GO) functional annotations enriched among genes likely to be regulated by each 
enhancer set using GREAT. The upper triangle represents the pairwise semantic similarity for significant molecular 
function (MF) GO terms associated with predicted liver enhancers. The lower triangle shows the number of shared 
MF GO terms in the top 30 significant hits for liver enhancer sets. Results were similar when using enhancer-gene 
target predictions from JEME (Figs S9-10 provided in Benton et al.192). 

 

Genomic and functional clustering of enhancer sets 

Our analyses of enhancer sets within the same biological context reveal widespread dissimilarity in both 

genomic and functional features. To summarize and compare the overall genomic and functional 
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similarity of the enhancer sets across contexts, we clustered them using hierarchical clustering and MDS 

based on their Jaccard similarity in genomic space and the GO term functional similarity of predicted 

target genes.  

Several trends emerged from analyzing the genomic and functional distribution within and 

between biological contexts. First, the FANTOM eRNA and GRO-cap enhancers are consistently distinct 

from all other enhancer sets in both their genomic distribution and functional associations (Fig 6). 

Differences between eRNA and non-eRNA enhancer sets appear to dominate any other variation 

introduced by biological, technical, or methodological differences.  

A second trend in these comparisons is that similarity in genomic distribution of enhancer sets 

does not necessarily translate to similarity in functional space, and vice versa. For example, although 

EncodeEnhancerlike regions are close to ChromHMM and the histone-derived H3K27acPlusH3K4me1 

set and the machine learning models in the genomic-location-based projection (Figure 11A,C), they are 

located far from those sets in the functional comparisons and hierarchical clustering (Figure 11B,D).  

Finally, comparing enhancer sets by performing hierarchical clustering within and between biological 

contexts reveals that genomic distributions are generally more similar within biological contexts, 

compared to other sets defined by the same method in a different context (Figure 11E). For example, the 

ChromHMM set from heart is more similar to other heart enhancer sets than to ChromHMM sets from 

other contexts. In contrast, the enhancer set similarities in functional space are less conserved by 

biological context (Figure 11F). Here, the heart ChromHMM set is functionally more similar to the 

H3K27acMinusH3K4me3 set from liver cells than other heart enhancer sets. In general, cell line enhancer 

sets (red and green) show more functional continuity than heart and liver sets (blue and purple). However, 

FANTOM enhancers are the exception to these trends; FANTOM enhancers from each context form their 

own cluster based on their genomic distribution, underscoring their uniqueness. GRO-cap enhancers 

cluster with FANTOM in the genomic location clustering and with their cellular contexts in the functional 

clusters. 
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Figure 11. The genomic and functional similarities between enhancer sets are not consistent.  
(A) Multidimensional scaling (MDS) plot of liver enhancer sets based on the Jaccard similarity of the genomic 
distributions (Figure 4). (B) MDS plot for liver enhancers based on distances calculated from molecular function 
(MF) Gene Ontology (GO) term semantic similarity values with GREAT (Figure 10). (C, D) Ranked hierarchical 
clustering based on the Jaccard similarities of the genomic distributions (C) of all liver enhancer sets compared to 
clustering based on GO semantic similarity (D). FANTOM enhancers are the most distant from all other enhancer 
sets in both genomic and functional similarity, but the relationships between other sets are not conserved. Red 
branches denote identical subtrees within the hierarchy. (E) Hierarchical clustering based on genomic Jaccard 
distances for all contexts and methods with annotations in each context. (F) Hierarchical clustering of all available 
enhancer sets based on GO term distances. Terminal branches are colored by biological context. With the exception 
of FANTOM enhancers, the enhancer sets’ genomic distributions are more similar within than between biological 
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contexts. Functional similarity does not always correlate with genomic similarity, and the clustering by biological 
context is weaker in functional space. 

 

Combining enhancer sets does not strongly increase evidence for regulatory function 

Although there are large discrepancies in genomic and functional attributes between enhancer sets 

identified by different methods in the same context, we hypothesized that the subset of regions shared by 

two or more sets would have stronger enrichment for markers of gene regulatory function. To test this, we 

analyzed whether regions identified by multiple methods have increased “functional support” compared 

to regions identified by fewer methods. We evaluated three signals of functional importance: (i) 

enrichment for overlap with evolutionarily conserved elements, (ii) enrichment for overlap with GWAS 

SNPs, and (iii) enrichment for overlap with GTEx eQTL. For each, there are only small changes as the 

number of methods identifying a region increases (Figure 12A-C). Regions identified as enhancers by 

more than one method are slightly more enriched for conserved elements compared to the genomic 

background, but there is little difference among regions identified by 2–5 methods (Figure 12A). Regions 

predicted by 6 or more methods are significantly more enriched for conserved elements than those with 

less support, but effect size is modest (1.36x for 1 vs. 1.62x for 6+). There is a modest increase in the 

enrichment for overlap with GWAS SNPs among enhancers identified by more identification methods 

(1.50x for 1 vs. 1.89x for 6+); however, given the relatively small number of GWAS SNP overlaps, none 

of these differences were statistically significant (Figure 12B). We observed no increase in the enrichment 

for overlap with eQTL as the support for enhancer activity increased (Figure 12C). Thus, we do not find 

strong evidence of increased functional importance in enhancers identified by multiple methods compared 

to enhancers identified by a single method. Importantly, this implies that intersecting enhancer 

identification strategies will focus on a smaller set of enhancers with only modest evidence for increased 

functional relevance. 

 Several enhancer identification methods provide confidence scores that reflect the strength of 

evidence for each enhancer. We hypothesized that high confidence enhancers from one method would be 
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more likely to overlap enhancers identified by other methods. To test this, we ranked each enhancer based 

on its confidence or signal, with a rank of 1 representing the highest confidence in the set. There was no 

clear trend between the confidence score of an enhancer from one method and the number of methods that 

identified the region as an enhancer (Figure 12D; Figs S15-18 in Benton et al.192). Overall, enhancers 

identified by multiple methods show a similar confidence distribution when compared to regions 

identified by a single method. Indeed, for some enhancer sets the median score decreases as the regions 

become more highly shared (Figs S15 and S18 in Benton et al.192). This provides further evidence that 

building enhancer sets by simple combinations of existing methods is unlikely to lead to a higher 

confidence subset, and that filtering based on simple agreement between methods may not substantially 

improve the specificity of enhancer predictions. 

 

 

Figure 12. Enhancers identified by multiple methods have little additional evidence of function.  
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(A) Enrichment for overlap between conserved elements (n = 3,930,677) and liver enhancers stratified by the 
number of identification methods that predicted each enhancer. (B) Enrichment for overlap between GWAS SNPs (n 
= 20,458) and liver enhancers stratified by the number of identification methods that predicted each enhancer. (C) 
Enrichment for overlap between GTEx eQTL (n = 429,964) and liver enhancers stratified by the number of 
identification methods that predicted each enhancer. In (A-C), the average enrichment compared to 1,000 random 
sets is plotted as a circle; error bars represent 95% confidence intervals; and n gives the number of enhancers in each 
bin. The only significant differences are found in the enrichment for evolutionary conservation (A), but the 
difference is modest in magnitude (1.36x for 1 vs. 1.62x for 6+). (D) Boxplots showing the distribution of 
confidence score ranks for FANTOM enhancers in liver partitioned into bins based on the number of other methods 
that also identify the region as an enhancer. Lower rank indicates higher confidence; note that the y-axis is flipped 
so the high confidence (low rank) regions are at the top. The lack of increase in enhancer score with the number of 
methods supporting it held across all methods tested (Figs S14-17 provided in Benton et al.192). 

 
Enhancer sets clustered on similarity of transcription factor binding motifs have different patterns 

We calculated the enrichment for TF binding motifs within each enhancer set relative to dinucleotide-

frequency matched random sequences. Most enhancer sets were enriched for more than half of the motifs 

in the database (~300), compared to random (Table S10 in Benton et al.192). Thus, most pairs have a 

relatively high Jaccard similarity index (>0.8) for overlap between enriched motifs. For comparison, we 

calculated the baseline Jaccard similarity for random motif sets of a matched size, which produced 

average scores between 0.6-0.69. We note that due to the context-dependent nature of TF binding, the 

presence or even enrichment of a motif does not guarantee function. Alternately, the lack of a significant 

enrichment for a binding site among a set of sequences, does not necessarily indicated a lack of activity. 

We clustered the enhancer sets for each tissue based on the similarity of enriched TF binding site 

motifs (Figure 13). The FANTOM eRNA and GRO-cap enhancers are consistently distinct from all other 

enhancer sets in their in predicted TF binding site enrichment profiles. The enhancer sets based on similar 

combinations of histone modifications (H3K27acMinusH3K4me3, H3K27acPlusH3K4me1, 

ChromHMM, and Ho14/Villar15 where available) cluster together in most biological contexts. In the two 

cell lines, the DNasePlusHistone, p300, Yip12, and EncodeEnahncerlike sets are more clustered. These 

results suggest that while there are similarities in the sequence-level characteristics, this may not translate 

to similar TF binding profiles for enhancers defined by different approaches in the same cellular context. 
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Figure 13. Enhancer sets have different enriched TF binding motifs. 
We computed the enrichment of 402 TF binding site motifs in different enhancer sets and clustered the enrichment 
profiles for each enhancer set based on Jaccard similarities using multidimensional scaling (MDS) (Methods). 
FANTOM and GRO-cap are consistent outliers with the largest differences in predicted TF binding site enrichment, 
as in the genomic and GO analyses reported in Figure 11A-B; however, the clustering of other methods varies. Most 
enhancer sets are enriched for more than half of the motifs in the database (~300) compared to dinucleotide 
frequency matched random sequences, and thus most pairs of sets have Jaccard similarity >0.8. Random motif sets 
of a matched size produce average Jaccard similarities between 0.6–0.69. When combined with the observed 
dissimilarity of GO terms, these results suggest that similarities in sequence-level characteristics may not translate 
into similar regulatory targets. (A) K562, (B) Gm12878, (C) liver, and (D) heart. 
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Using the most confident predictions does not significantly improve results 

We do not find evidence that analyzing only the top enhancer predictions from each method changes the 

results reported here. Using the five enhancer identification strategies with confidence or signal rankings 

in each context we compared the top 100, 500, and 800 enhancer predictions. There remains little sharing 

between these subsets, with most enhancer regions remaining unique to a single method. Furthermore, the 

level of enrichment for overlap with functional attributes remains largely similar, but less significant in 

many cases (Figure 14; Figure S20-S21 in Benton et al.192). 
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Figure 14. Enrichment for functional attributes is similar for top 100 predictions. 
For enhancer sets in (A–C) K562, (D–F) Gm12878, (G–I) liver, and (J–L) heart, we consider the top 100 regions per 
method ranked by confidence or signal scores. This analysis was limited to enhancer sets that could be ranked 
(DNasePlusHistone, EncodeEnhancerlike, H3K27acPlusH3K4me1, H3K27acMinusH3K4me3, FANTOM). The 
dotted line represents the level of enrichment expected under a random null distribution; error bars show empirical 
95% confidence intervals. This analysis does not include p300 or GRO-cap data for K562 or Gm12878. 
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Short sequence motifs are not predictive of reproducibility across identification approaches 

We used a machine learning approach to test the hypothesis that enhancers that are predicted by multiple 

methods have consistent sequence differences from those that do not replicate. We trained a support 

vector machine (SVM) classifier to distinguish between enhancers that are reproducible across methods 

versus those that are unique to a single method. The feature set for the SVM classifier was the k-mer 

spectrum for enhancer sequences in each category. We chose a k-value of 6 to capture potential TF 

binding sites within the enhancers, where similar k-mer spectra may indicate similar TF binding profiles.  

We evaluated the approach on our enhancer datasets using ten-fold cross validation. The SVM 

model performs poorly at distinguishing reproducible enhancers (ROC AUC = 0.6, Figure 15). This 

suggests that short sequence patterns within shared enhancers are not substantially different from 

enhancers that are uniquely identified by one method. Our previous TF binding motif analyses indicate 

that there is some sharing of enriched motifs between enhancer sets, but this does not distinguish between 

shared and unique enhancer sequences. 

 

 

Figure 15. SVMs do not distinguish reproducible enhancers from unique enhancers.  
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We trained an SVM classifier to predict enhancers that are reproducible across methods versus those that are unique 
using short sequence motifs (k = 6). The model performs poorly, suggesting that the sequence patterns within shared 
enhancers are not different from those within enhancers defined by only one method. 

 
Conclusion 

Accurate enhancer identification is a challenging problem, and recent efforts have produced a variety of 

experimental and computational approaches. This chapter provides a quantification of the genomic and 

functional differences between enhancer sets identified by eleven of these approaches. We find that the 

enhancer sets analyzed here differ significantly in their genomic, evolutionary, and functional attributes. 

Although all enhancer sets analyzed here agree more than would be expected by chance, and are enriched 

for markers of functional relevance, the differences we observe are striking. Our results show that the 

choice of enhancer identification strategy has the ability to influence downstream biological conclusions 

about transcription factor binding potential, evolutionary history of enhancer elements, and regulatory 

mechanisms of complex disease. Simple approaches to generate more confident sets of enhancers by 

combining methods or using subsets of more well-supported elements does not improve performance or 

increase evidence of function. Furthermore, machine learning fails to distinguish short sequence motifs 

that are predictive of reproducibility, complicating attempts to explain overlap between existing enhancer 

sets. 

Ultimately, this work suggests that different strategies contribute unique information towards the 

identification of functionally important enhancers. Using different strategies can yield substantially 

different biological interpretations and conclusions, e.g., about the gene regulatory potential of a genetic 

variant or the degree of evolutionary constraint on enhancers. Thus, our findings in this chapter 

complicate the use of annotated enhancers to study the mechanisms of gene regulation and to elucidate 

the molecular underpinnings of disease, most notably in non-coding variant prioritization. 
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CHAPTER III 
 

Characterizing Gene Expression Consequences of Structural Variants  
Disrupting Gene Regulation2  

 

Introduction 

Structural variants (SVs) can have a profound impact on gene expression and have been implicated in 

phenotypes ranging from developmental abnormalities to cancer to neuropsychiatric disorders124,200,206,250. 

While SVs may affect protein sequence, their effects are often mediated through changes to the regulatory 

architecture198. In this context, regulatory architecture refers to both the individual regulatory elements 

involved in the maintaining the expression of genes and the three-dimensional chromatin structures that 

facilitate regulatory interactions. Effect of SVs have been demonstrated in many disease contexts, where 

duplications, deletions, translocations, inversions, and topologically associated domain (TAD) boundary 

disruptions have all been shown to cause enhancer dysfunction associated with disease risk124.  

This chapter includes a novel cohort of genome- and RNA-sequencing from the CommonMind 

Consortium—a large effort that brings together more than 1,000 brain samples. These samples include 

many individuals with schizophrenia or bipolar disorder, making this a valuable resource for examining 

the contribution of genetic variation to neuropsychiatric disease. We integrate genome- and RNA-

sequencing from 629 samples with publicly available functional genomics data to identify SVs that 

putatively alter gene regulatory architecture. We then use regulation-associated data to functionally 

annotate SVs and quantify the effects of these SVs on gene expression. We find that SVs that affect 

regulatory elements and features of the chromatin architecture are at significantly lower frequencies than 

expected, consistent with the hypothesis that SVs impacting regulatory architecture are deleterious. We 

also find that SVs altering regulatory elements have a clear effect on gene expression. Finally, we use 

 
 
 
2 Adapted from Han, L., Zhao, X., Benton, M.L. et al. Functional annotation of rare structural variation in the human 
brain. Nat Commun 11, 2990 (2020). https://doi.org/10.1038/s41467-020-16736-1 
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these results to develop a model of regulatory disruption for SVs, allowing us to annotate and prioritize 

pathogenic variants based on the inferred changes to gene regulation. This model improves the current 

approach for SV prioritization, highlighting the importance of regulatory SVs in disease. 

 

Methods 

Cohort description 

Samples were included from two different cohorts. The CommonMind Consortium (CMC) study is a 

combined collection of brain tissues from the Mount Sinai NIH Brain Bank and Tissue Repository 

(n = 127), The University of Pennsylvania Brain Bank of Psychiatric Illnesses and Alzheimer’s Disease 

Core Center (n = 62) and The University of Pittsburgh NIH NeuroBioBank Brain and Tissue Repository 

(n = 139). Tissue for the collection was dissected at each brain bank and shipped to the Icahn School of 

Medicine at Mount Sinai (ISMMS) for nucleotide isolation and data generation in one facility in order to 

reduce site-specific sources of technical variation. Postmortem tissue from schizophrenia and bipolar 

disorder cases were included if they met the diagnostic criteria in DSM-IV for schizophrenia or 

schizoaffective disorder, or for bipolar disorder, as determined in consensus conferences after review of 

medical records, direct clinical assessments, and interviews of care providers. Cases that had a history 

Alzheimer’s disease, and/or Parkinson’s disease, or acute neurological insults (anoxia, strokes, and/or 

traumatic brain injury) immediately prior to death, or were on ventilators near the time of death, were 

excluded. The CMC_HBCC study includes brain samples from the NIMH Human Brain Collection Core 

(n = 445). All specimens were characterized neuropathologically, clinically and toxicologically. A clinical 

diagnosis was obtained through family interviews and review of medical records by two psychiatrists 

based on DSM-IV criteria. Nonpsychiatric controls were defined as having no history of a psychiatric 

condition or substance use disorder. Among the 773 samples used here, there are 505 males and 268 

females. Self-reported ancestries consisted of 484 European, 264 African, 15 Hispanic, 9 Asian and 1 

other. Forty-eight percent of the samples had a psychiatric diagnosis (287 schizophrenia, 83 bipolar 
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disorder) and the remaining 403 were considered controls251. All research complied with ethical 

regulations and was approved by the Vanderbilt University Medical Center Institutional Review Board 

(IRB#161488). 

 

Genome sequencing pipeline 

Tissue was sampled from the dorsal lateral prefrontal cortex (DLPFC) and DNA isolated for all 773 

individuals in the cohort. Genome sequencing was performed by the New York Genome Center and reads 

were aligned to the GRCh37/hg19 human reference sequence.  

 

Structural variant discovery and description 

SVs were called using a previously described ensemble approach to maximize sensitivity followed by a 

refinement step to reduce the number of false positive calls252. The approach was applied to all 773 of the 

individuals from the CMC cohort, with a 99.9% (n = 772) success rate. Outliers related to technical 

aspects of the pipeline were excluded, leaving 755 (97.8%) individuals with SV data. In total, the pipeline 

yielded 125,260 SVs, including 62,948 deletions, 30,547 duplications, 31,155 insertions, 268 simple 

inversions, 341 complex SVs, and 1 reciprocal translocation. On average, 6220 SVs were identified per 

sample, consisting of 3579 deletions, 755 duplications, 1839 insertions, 15 inversions, and 14 complex 

SVs. In this chapter we focus primarily on deletions and duplications, although other SV types are 

discussed elsewhere253.  

 

RNA sequencing pipeline 

For all samples, we used RNA-sequencing (RNA-seq) data processed by the pipeline described 

previously253. RNA-sequencing reads were aligned to GRCh37 with STAR (v2.4.0g1)254 from the original 

FASTQ files. Uniquely mapping reads overlapping genes were counted with featureCounts (v1.5.2)255 

using annotations from Ensembl v75. RNA-seq samples were processed separately for each cohort and 
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normalized to adjust for batch effects and technical variation. To evaluate the impact of SVs on gene 

expression, the RNA-seq and genome sequencing were matched by individual. 

 

Measures of gene expression consequences of SVs 

To quantify expression changes associated with SVs, we considered two values: the relative expression 

and an expression z-score. Relative expression was defined as the average expression of SV carriers 

divided by noncarriers. The expression z-scores were calculated using only data from noncarriers for the 

mean and standard deviation. 

 

Genomic and cis-regulatory annotation sources 

All data were downloaded in the GRCh37/hg19 build of the human genome. We used TSS definitions 

from Ensembl v75. To map regions of open chromatin, we used a set of DNase hypersensitive sites 

(DHSs) downloaded from Roadmap Epigenomics191. We mapped the three-dimensional chromatin 

architecture using TAD domains identified by PsychENCODE from Hi-C contact matrices with 40 kb 

resolution in the prefrontal cortex (PFC)256. As a proxy for TAD boundaries or other insulated regions, we 

used a set of CTCF binding sites from ChIP-seq data downloaded from ENCODE in brain-relevant cell 

types9. We merged overlapping CTCF peaks from each tissue into a single consensus region. 

 We downloaded PFC enhancer annotations from the PsychENCODE project256. These were 

generated by overlapping cross-tissue DNase-seq and ATAC-seq assay information with H3K27ac ChIP-

seq peaks. Regions overlapping H3K4me3 peaks and within 2 kb of a TSS were excluded from the set of 

putative enhancers. All ChIP-seq, ATAC-seq, and DNase-seq data were filtered to include only high-

signal peaks with a z-score greater than 1.64. We also downloaded the high confidence set of enhancer 

annotations which, in addition to the criteria above, require high PFC H3K27ac ChIP-seq signal (z-score 

> 1.64) in both the PsychENCODE and Roadmap Epigenomics experiments. We generated a set of 

promoter annotations by using 2 kb windows upstream from each TSS. We intersected these 2 kb 

windows with PFC H3K27ac from PsychENCODE and PFC H3K4me3 from Roadmap Epigenomics to 
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create a set of  high confidence promoters191,256. As in the enhancer definition, the H3K27ac and 

H3K4me3 ChIP-seq data included only high signal peaks with a z-score > 1.64. For comparison with 

other sites with potential regulatory activity, we used the set of DNase hypersensitivity sites downloaded 

from Roadmap Epigenomics, and TAD boundary elements defined from Hi-C data136,191. For comparison 

across tissues, we downloaded H3K27ac and H3K4me3 ChIP-seq peaks in liver and Gm12878 from 

Roadmap Epigenomics and defined enhancers elements using the procedure outlined above191. 

 

Definition of gene targets for regulatory SVs 

We tested multiple approaches to define putative gene targets for SVs that impact enhancer sequences. 

We considered the nearest gene, all genes within the same TAD, all genes within 1 Mb, and genes linked 

to enhancers through Hi-C256. We chose the Hi-C linked target genes for published analyses, although we 

include some results for genes within 1 Mb here as well. 

 

Comparison of allele frequencies across SV annotation classes 

In order to assess whether SVs affecting particular functional elements (genes, enhancers, etc.) were 

present at lower frequencies than nonfunctional SVs we needed to account for differences in lengths. 

Because longer SVs are more likely to affect functional elements and, thus, are rarer (Supplementary 

Figure 1, provided in Han et al.253) we wanted to break the dependence on length to assess the role of the 

functional elements on AF. For each class of SVs affecting a particular annotation we required a matching 

intergenic SV of the same class that affected none of the annotations with a length within 500 base pairs 

or 10% of the length of the functional SV, whichever was shorter. We then tested for differences in AF 

distributions between the two equal numbers of functional and intergenic SVs using the non-parametric 

Wilcoxon test.  
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Regression model to predict gene expression changes 

We applied a generalized linear model to test the relationship between SVs overlapping annotated 

regulatory annotations and gene expression z-scores. For models using the 1 Mb window strategy to link 

enhancers to genes, we included the proportion of exonic sequence, the number of affected regulatory 

annotations (enhancers, promoters, CTCF binding sites, etc.), and the SV length. For all other models we 

used a joint linear model including the proportion of exonic sequence, SV length, and whether SV and 

gene were within the same TAD; we replaced the number of affected regulatory annotations with sum 

proportion of affected enhancers and promoters.  

 

Results 

Evidence for selection against SVs affecting gene regulatory elements 

We characterized how frequently SVs putatively alter gene dosage— the number of gene copies— based 

on overlap with genes or regulatory elements. We defined a set of regulatory elements that included 

CTCF sites (n = 100,894), enhancers (n = 79,056) derived from brain tissue and promoters (2 kb upstream 

of the TSS). Genes were defined as those in Ensembl v75 (n = 57,773); where noted we split protein-

coding genes (coding) from others which we label as other transcribed products. For comparison, we 

defined two nonfunctional categories of SVs that did not overlap any annotation including those falling 

within introns (intronic) or those falling outside of any gene (intergenic). We note that these 

nonfunctional SV categories will include some proportion of SVs altering functional elements that were 

either not included, or that have not yet been identified, which should make our comparisons 

conservative.  

The allele frequency (AF) of SVs affecting protein-coding genes (AF = 0.00168, p = 7.42E−15), 

enhancers (AF = 0.00123, p = 6.42E−30), and CTCF sites (AF = 0.00161, p = 1E−16) were significantly 

lower and singleton proportions were significantly higher than intergenic SVs (mean AF = 0.00193, 

Figure 16) after matching on SV length to account for the known relationship between frequency and SV 
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length (Supplementary Fig. 1 and Supplementary Table 1, Wilcoxon test of AF distributions, provided in 

Han et al.253). These results were consistent across both deletions and duplications (Supplementary Table 

1, provided in Han et al.253).  

 

 

Figure 16. Genic and regulatory SVs occur at significantly lower frequencies. 
Proportion of variants that are seen only a single time with bootstrapped 95% confidence interval in the sample 
stratified by overlap with any annotation, allowing for multiple (CMC), only a single annotation (CMC unique) and 
any annotation in gnomAD SV. 

 

To explore the contributions of different functional elements to this result, we stratified SVs 

based on the specific annotations (e.g., coding and enhancer, Figure 17) to isolate those that alter 

combinations of annotations classes and those that uniquely alter a single annotation class 

(Supplementary Table 2, provided in Han et al.253). We identified a significant negative correlation 

between the total number of annotation classes affected and AF indicating that SVs with more potential to 

alter dosage are less likely to be tolerated (Figure 18). Further, we show that SVs exclusively affecting 

CTCF sites (n= 100,894), enhancers (n= 79,056) derived
exclusively from brain tissue (see “Methods”) and promoters
(2 kb upstream of the transcription start site [TSS]). Genes were
defined as those in Ensembl v75 (n= 57,773) and where noted we
split protein-coding genes (coding) from others which we label
broadly as other transcribed products. For comparison, we
defined two nonfunctional categories of SVs that did not overlap
any annotation including those falling within introns (intronic)
or those falling outside of any gene (intergenic). We note that
these nonfunctional SV categories will include some proportion
of SVs altering functional elements that were either not included,
or that have not yet been identified, which should make our
comparisons conservative. The allele frequency (AF) of SVs
affecting protein-coding genes (AF= 0.00168, p= 7.42 × 10−15),
enhancers (AF= 0.00123, p= 6.42 × 10−30), and CTCF sites
(AF= 0.00161, p= 1 × 10−16) were significantly lower and
singleton proportions were significantly higher than intergenic
SVs (mean AF= 0.00193, Fig. 2) after matching on SV length to
account for the known relationship between frequency and SV
length (Supplementary Fig. 1, Supplementary Table 1, Wilcoxon
test of AF distributions between the two annotation classes).
These results were consistent across both deletions and duplica-
tions (Supplementary Table 1).

To explore the contributions of different functional elements to
this result, we stratified SVs based on the specific annotations
(e.g., coding and enhancer, Supplementary Fig. 2) to isolate those
that alter combinations of annotations classes and those that
uniquely alter a single annotation class (Supplementary Table 2).
We identified a significant negative correlation between the total
number of annotation classes affected and AF indicating that SVs
with more potential to alter dosage are less likely to be tolerated
(Supplementary Fig. 3). Further, we show that SVs exclusively
affecting CTCF sites (AF= 0.00175, p= 1.48 × 10−4) when
compared to intergenic variation showed comparable frequencies

and significance to SVs that only affected protein-coding genes
(AF= 0.00179, p= 1.48 × 10−5). These results are consistent
across SV type and this difference in AF is seen when performing
the same annotation of the gnomAD SV dataset of ~15 k samples
called from genome-sequencing using the same pipeline9 (Fig. 2).
These results suggest a strong selection against SVs that alter
CTCF sites, consistent with previous work21.

Transcriptional consequences of genic SVs. Among the samples
with genome-sequencing, 629 individuals had RNA-sequencing
data from the dorsal lateral pre-frontal cortex (DLPFC). RNA-
sequencing was done across two cohorts (CMC and
CMC_HBCC), results were consistent across cohorts as shown in
many instances below. To quantify the transcriptional con-
sequences of an SV, we defined expression in two ways. First, we
calculated relative expression as the average expression of carriers
divided by noncarriers. Second, we calculated z-scores using only
noncarriers for calculating the mean and standard deviation to
mitigate the effect of AF. We use both measures throughout,
relying on relative expression in certain cases for interpretation
but preferring z-scores for their statistical properties.

Previous literature has shown heterogeneity of effect on
expression among putative loss-of-function (LoF) variants which
is at least partly due to challenges in annotating functional
impact22,23 Here, we expect complete deletions or duplications of
all exons across all isoforms of a gene to result in an average 50%
decrease or increase in expression, respectively. Relative expres-
sion calculated using read counts per million total reads (CPM)
demonstrated the expected 50% decrease or increase from full
gene deletions or duplications, on average (Supplementary Fig. 4).
Deletions fit this expectation better than duplications, suggesting
more variability among duplication calls and/or their functional
effects. Normalization and linear covariate adjustment, which is
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CTCF sites (AF = 0.00175, p = 1.48E-4) when compared to intergenic variation showed comparable 

frequencies and significance to SVs that only affected protein-coding genes (AF = 0.00179, p = 1.48E-5). 

These results are consistent across SV type and this difference in AF is seen when performing the same 

annotation of the gnomAD SV dataset of ~15 k samples called from genome-sequencing using the same 

pipeline (Figure 16)257. These results suggest a strong selection against SVs that alter CTCF sites, 

consistent with previous work204.  

 

 

Figure 17. Counts of SVs by overlapping genomic annotations. 
Blue histogram (left) shows the counts of annotations for each genomic annotation considered here. The green 
histogram (top) shows the counts of SVs for each combination of genomic annotation. Annotations included in the 
combination are designated with filled points. 

 
 
 

 
Supplementary Figure 2. Counts of SVs by combination of annotations (green) and full set of 
any annotation (blue)  
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Figure 18. SVs altering regulatory annotations are observed at lower frequencies. 
Mean allele frequency for each of 33 combinations of annotations split by the number of unique annotations and 
then by SVs that affect all combinations that include CTCF sites, enhancers, coding genes and promoters. Each 
point represents an annotation combination (or unique annotation). The thick bar is the median and the thin bars are 
95% confidence interval.  

 

These results are also consistent across regulatory element annotations defined using brain 

samples from other publicly available datasets. We downloaded enhancers and DNase I hypersensitivity 

sites (DHSs) from Roadmap Epigenomics and the ENCODE Consortium in brain tissues. SVs deleting 

these regulatory elements are observed at significantly lower frequencies than SVs that do not, providing 

additional evidence that regulatory SVs are deleterious (MWU, enhancer p = 1.19E-16, DHS p = 3.61E-

90; Figure 19A-B). The three-dimensional chromatin architecture plays an important role in gene 

regulation, and previous results suggest that variants affecting both CTCF and TAD boundaries are under 

 
 
 
 
 
 
 
Supplementary Figure 3. Mean allele frequency for each of 33 combinations of annotations 
split by the number of unique annotations and then by SVs that affect all combinations that 
include CTCF sites, enhancers, coding genes and promoters. Each point represents an 
annotation combination (or unique annotation). The thick bar is the median and the thin bars 
are 95% confidence interval akin to standard boxplot. 
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selection. We downloaded a set of TAD boundaries defined using Hi-C in brain to test whether these 

algorithmically defined elements show similar evidence of selection136. However, we do not observe the 

same difference in SV frequency (MWU, p = 0.73), suggesting that these boundary elements do not 

contain additional functionally relevant information. 

 

 
Figure 19. SVs deleting regulatory elements in independent samples are observed at low frequencies. 
Boxplots show the allele frequency of deletions affecting (A) brain enhancers defined using histone modifications 
from Roadmap Epigenomics, (B) DHSs in the brain, and (C) algorithmically defined TAD boundary elements from 
Schmitt et al.136 Deletions are significantly less frequent for brain enhancers (MWU, p = 1.19E-16) and DHSs 
(MWU, p = 3.61E-90), but not for the TAD boundary elements (MWU, p = 0.73).  

 
SVs altering gene regulatory elements predict changes in the expression of nearby genes  

Annotating the influence of SVs on genomic sequence remains a challenging task. Although there is some 

variability in the effects of coding SVs, we expect deletions and duplications of exonic sequence to 

change the gene dosage and be reflected in the level of expression. For these SVs, we also expect changes 

gene expression to be related to the proportion of coding sequence affected. Using RNA-sequencing from 

DLPFC of individuals with SV information, we demonstrated that the SVs altering coding sequence had 

clear, directional effects on that gene’s expression253. However, this relationship is more complicated 

when considering SVs that alter non-coding or regulatory, regions. We hypothesized that many of these 

SVs would have an effect on gene expression by perturbing the regulatory architecture, either by 

disrupting regulatory elements or altering chromatin structure and enhancer-gene interactions.  

BA C
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Quantifying the transcriptional consequences of SVs that affect regulatory elements required a set 

of genes to analyze for each element. We used gene proximity to define promoters, making them gene-

specific by default. However, assigning enhancers to genes is a more complex task. We tested multiple 

approaches including the nearest gene, all genes within the same TAD, all genes within a 1 Mb window, 

and gene-targets predicted from Hi-C interactions. We determined that approach leveraging Hi-C 

interactions to link enhancers with genes was more accurate and interpretable256. The other approaches we 

considered showed similar results. Therefore, for downstream analyses we included 90,015 enhancer-

gene pairs covering 6,535 genes and 32,803 enhancers predicted from PsychENCODE Hi-C data256.  

To capture the relative contributions of all annotations, we tested the relationship between gene 

expression z-scores and SV annotations with a joint linear model that included proportion of exonic 

sequence, promoter proportion, sum proportion of all affected enhancers, whether SV and gene were 

within the same TAD and SV length. The most significant contributor to expression was the proportion of 

the exonic sequence affected (deletions: beta = −1.78, p = 9.9E-158; duplications: beta = 0.78, p = 3E-

109). Expression was significantly and positively correlated with the proportion of a promoter that was 

affected by CNVs with deletions leading to lower expression (beta = −0.17, p = 3.4E-3) and duplications 

leading to higher expression (beta = 0.37, p = 2.5E-30). Further, expression was significantly correlated 

with the cumulative sum of enhancer sequence that was affected by an SV only in duplications, but both 

deletions and duplications led to decreased expression (deletions: beta = −0.02, p = 0.067; duplications: 

beta = −0.02, p = 8.1E-9). The presence of the SV and the gene within the same TAD contributed 

significantly and directionally to expression in deletions (beta = −0.009, p = 5.7E-5) but not duplications 

(beta = 0.005, p = 0.21). The effects of these variables on expression were consistent across cohort (Table 

3; coefficients stratified by cohort available in Table 2 of Han et al.253) and while proportion of exonic 

sequence provided the strongest contributor, the effects of cis-regulatory elements remained significant in 

duplications and to a lesser extent in deletions after excluding all genic SVs (Supplementary Table 3, 

provided in Han et al.253).  

 



 69 

Table 3. Genic and regulatory features significantly contribute to predicting transcriptional consequences of CNVs. 
Coefficients of linear regression model to predict expression z-scores in deletions and duplications across samples. 

CNV class Variable Beta SE T P 
Deletions Exonic Proportion −1.7762 0.0664 −26.77 9.9E−158 

Enhancer sum −0.0152 0.0083 −1.83 6.7E−02 
Promoter proportion −0.1726 0.0589 −2.93 3.4E−03 
SV Length −2.14E−07 1.46E-08 −14.70 6.9E−49 
Within TAD −0.0090 0.0022 −4.03 5.7E−05 

Duplications Exonic Proportion 0.7825 0.0352 22.22 3.0E−109 
Enhancer sum −0.0157 0.0027 −5.77 8.1E−09 
Promoter proportion 0.3735 0.0326 11.45 2.5E−30 
SV Length 3.99E-07 2.60E-08 15.34 4.6E−53 
Within TAD 0.0046 0.0036 1.26 2.1E−01 

 

Effects of regulatory SVs are weaker for enhancers active in other tissues 

Due to the cell-type specific nature of enhancers, we expected that these results were dependent 

on the appropriate matching of regulatory annotations to the context where gene expression was 

measured. Using earlier models focused on the deletion of regulatory annotations, we considered the 

robustness of our results to the cell type of the enhancer annotation. We downloaded enhancers identified 

using the same procedure in two other human cell or tissue types, Gm12878 (n = 96,941) and liver (n = 

97,588). Although SVs that impact Gm12878 or liver enhancer annotations are less frequent (MWU, p = 

2.23E-11, p = 6.89E-17; Figure 20) than those that do not, the amount of deleted enhancer sequence is not 

a significant predictor of expression z-score (Gm12878 p = 0.328, liver p = 0.554; Table 4). Instead, the 

lower frequency for these SVs is likely related to other cell-type-relevant annotations and the length of the 

SVs. These results further support the need to consider cell-type specific regulatory architecture when 

interpreting non-coding SVs in order to define meaningful trends.  
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Figure 20. SVs disrupting enhancer regions from other biological contexts are rare. 
Boxplots show the allele frequency of deletions affecting (a) Gm12878 and liver (b) enhancers defined using histone 
modifications from Roadmap Epigenomics. Deletions are significantly less frequent for Gm12878 enhancers 
(MWU, p = 2.23E-11) and liver enhancers (MWU, p = 6.89E-17), although the amount of deleted sequence does not 
significantly predict changes in expression of nearby genes. 

 
Table 4. Coefficients of Gaussian GLM model to predict z-score of genes within 1 Mb of deleted enhancers from 
Gm12878 and liver. 

Tissue Predictor Beta SE Z P 
Gm12878 Number of deleted enhancers -0.0018             0.002      -0.979 0.328 

Number of deleted genes -0.0010     9.2E-05    -10.580       <0.001 
SV length -2.0277       0.038     -52.676       <0.001 
SV MAF 5.004E-07    4.08E-08      12.269       <0.001 

Liver Number of deleted enhancers -0.0011       0.002     -0.592       0.554 
Number of deleted genes -0.0010 9.19E-05 -10.611 <0.001 
SV length 4.943E-07    5.01E-08       9.859       <0.001 
SV MAF -2.0272 0.038     -52.668 <0.001 

 
 
Integrating transcriptional consequence and gene intolerance3 

To better understand the relationship between our variant annotations in the context of the genes affected, 

we incorporated two distinct measures of genic intolerance to variation: (1) gene intolerance to CNVs 

 
 
 
3 Analysis developed and conducted by other authors, leveraging my contribution of gene regulatory element 
annotations in the brain. 

ba
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defined empirically from exome-sequencing in nearly 60,000 individuals258, and (2) a measure of gene 

intolerance to LoF variation generated from a sample of ~141,000 individuals259. Several significant 

relationships between the functional effects of SVs and the intolerance of the genes affected existed. SVs 

that disrupted intolerant genes were significantly more likely to alter a smaller proportion of the exonic 

sequence (pLoF = 2.42E-38, pCNV = 1.31E-33, Spearman correlation test of intolerance and proportion 

of exonic sequence affected, Figure 21a). Intolerant genes were also significantly less likely to have a 

genic SV (pLoF = 2.4E-38, pCNV = 9.36E-34, Wilcoxon test of gene metric by whether SV affects 

exonic sequence or not, Figure 21b). Consistent with previous literature showing intolerance to dosage 

changes in either direction25 we saw intolerant genes less likely to be affected by both deletions 

(pLoF = 7.41E-29, pCNV = 3.02E-26) and duplications (pLoF = 3.81E-22, pCNV = 1.57E-46). Further, 

when restricting to SVs that only alter regulatory elements and not exonic sequence, we identified a 

significant decrease in the number of enhancers affected by SVs in genes with higher intolerance, 

although this was only observed for the CNV intolerance metric (pLoF = 0.62, pCNV = 7.23E-22, Figure 

21d). We did not find any effects from promoter SVs in either metric (pLoF = 0.35, pCNV = 0.37, Figure 

21c). Combined with the differences seen by CNV type these results may indicate unique properties of 

these metrics and what they reflect (e.g., haploinsufficiency vs. dosage sensitivity). In general, as with 

single nucleotide variation, genic measures of intolerance should help functionally annotate SVs. 
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Figure 21. Genes intolerant to variation are less likely to be affected by genic or regulatory SVs. 
Each plot stratifies genes using either the LoF intolerance metric or the CNV intolerance metric that have been split 
into quintiles (20% bins) ordered left to right from least to most intolerant genes and by deletion (red) and 
duplication (blue). The plots show the effect of this stratification on (a) the proportion of the exonic sequence that is 
affected showing mean and standard deviation, (b) the deviation from the expected 20% of CNV that alter exonic 
sequence, (c) the deviation from expected for noncoding CNV that alter promoters, and (d) the deviation from 
expected for noncoding CNV that alter enhancers. with four of the top ten variants being pathogenic if ranked by

length (two complete overlaps) and seven by regulatory
disruption (five complete overlaps). The regulatory disruption
score also better prioritized pathogenic deletions than number of
all genes affected, number of intolerant genes (top 10%) affected
and AF, which has limited utility since most deletions (53% or

10,776) have the same frequency, as singletons. (Fig. 6a,
Supplementary Data 1). For duplications, the regulatory disrup-
tion score performs similarly to length but still outperforms
other measures (Fig. 6b, Supplementary Data 2). These results
indicate the potential of this metric to contribute to improved
prioritization of disease causing CNVs, particularly deletions.
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A model to annotate SVs form predicted dosage and gene intolerance4 

Having demonstrated a significant role for SVs in altering expression, we sought to test whether this 

model could be used to predict expression effects of SVs in independent samples. We split our DLPFC 

sample by cohort (CMC and CMC_HBCC, Methods, provided in Han et al.253) and constructed the linear 

model described previously in each subset and then applied that model to SVs in the other set to infer 

expression effects. We identified significant correlation between the true expression value and the 

predicted value across all four pairwise comparisons (R2 CMC_HBCC into CMC = 0.35, R2 CMC into 

CMC_HBCC  = 0.17, R2 CMC into CMC = 0.36, R2 CMC_HBCC into CMC_HBCC = 0.17, Figure 22) 

with deletions (particularly when tested in CMC) consistently performing better. 

 

 

Figure 22. Transcriptional consequences of rare CNVs can be significantly predicted.  
SV expression prediction performance and associated R2 from building the same linear model using different 
training and test datasets. a CMC into CMC_HBCC, b CMC_HBCC into CMC, c CMC into CMC, and d 
CMC_HBCC into CMC_HBCC. The best fit line with confidence interval was produced using generalized additive 
model smoothing.  

 
 
 
4 Analysis developed and conducted by other authors, leveraging my contribution of gene regulatory elements in the 
brain. 

Discussion
The integration of genome and transcriptome data on post-
mortem brains from the CMC has provided one of the first
opportunities for large-scale characterization of the impact of rare
SVs on expression in the brain. Here, we demonstrate evidence of
selection on rare regulatory SVs, particularly those that alter
CTCF binding sites. We found a clear and predictable role for

genic and regulatory SVs in altering expression, and we showed
that the degree of expression influence is shaped by the intoler-
ance of a gene to deleterious variation. These results suggest the
potential to functionally predict and annotate the consequences of
SVs on expression. Illustrating this potential, we derived a model
to infer expression effects of SVs in independent samples,
and applied it to the largest SV resource currently available.
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Leveraging this model and the previously used measure of genic intolerance to LoF variation, we 

built an aggregate regulatory disruption score that was the sum of the predicted expression z-scores for 

each gene weighted by the gene’s intolerance metric (normalized between 0 and 1 with 1 being most 

intolerant) to annotate SVs. We then applied our model to annotate 210,244 variants in the gnomAD SV 

dataset260 after restricting to CNVs that were below 1% frequency. Of those, 31,492 (15%) were predicted 

to alter the expression of at least one protein-coding gene where we had an intolerance metric, 20,236 of 

these variants were deletions and 11,256 were duplications. We considered a deletion or duplication in 

gnomAD as pathogenic if it overlapped at least 50% of a CNV of the same type (3454 deletions and 1894 

duplications) labeled pathogenic for neurodevelopmental disorders (developmental delay, intellectual 

disability, or autism) in ClinGen (downloaded from UCSC Genome Browser June 2019). There were 84 

deletions and 84 duplications that met this criterion (39 deletions and 33 duplications overlapped 100% of 

the pathogenic ClinGen variant, as gnomAD includes some individuals with neuropsychiatric disorders). 

This set of pathogenic CNVs had significantly larger regulatory disruption scores in the direction of the 

dosage change with deletions having a more severe reduction in expression among intolerant genes due to 

these deletions (p = 1.78E-26, mean score in pathogenic deletions = −5.21, mean score in nonpathogenic 

deletions = −0.18, Wilcoxon test) and duplications having a dramatic increase (p = 9.76 × 10−39, mean 

score in pathogenic duplications = 12.67, mean score in nonpathogenic duplications = 0.52). Despite 

ascertainment bias leading to longer CNVs being more likely to overlap pathogenic variants, prioritizing 

variants by regulatory disruption would identify more pathogenic deletions than prioritizing by length, 

with four of the top ten variants being pathogenic if ranked by length (two complete overlaps) and seven 

by regulatory disruption (five complete overlaps). The regulatory disruption score also better prioritized 

pathogenic deletions than number of all genes affected, number of intolerant genes (top 10%) affected and 

AF, which has limited utility since most deletions (53% or 10,776) have the same frequency, as 

singletons. (Figure 23a, Supplementary Data 1 provided in Han et al.253). For duplications, the regulatory 

disruption score performs similarly to length but still outperforms other measures (Figure 23b, 
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Supplementary Data 2 provided in Han et al.253). These results indicate the potential of this metric to 

contribute to improved prioritization of disease causing CNVs, particularly deletions. 

 

 

Figure 23. Regulatory disruption scores prioritize pathogenic CNVs better than standard annotations.  
Number of pathogenic variants defined as 50% overlap with known pathogenic variant in ClinGen (84 deletions and 
84 duplications) identified based on rank ordering deletions a and duplications b by length (yellow), number of 
genes deleted (green), number of intolerant genes deleted (purple) allele frequency (red), and regulatory disruption 
(blue). Where multiple variants had the same value, the order was random.  

 
Conclusion 

Although previous work has highlighted the role of SVs in a wide range of diseases124,200,206,250, predicting 

the influence of an SV on expression or disease risk is a challenge. SVs can disrupt gene regulatory 

mechanisms and cause substantial changes to the regulatory architecture of the genome. Interpreting the 

effects of regulatory changes is difficult, as is disentangling the relative contributions of protein-coding 

and non-protein-coding sequence disruptions.  

This chapter leverages a novel dataset of genome and RNA sequencing across hundreds of 

individuals with publicly available functional genomics annotations to characterize the features of 

Discussion
The integration of genome and transcriptome data on post-
mortem brains from the CMC has provided one of the first
opportunities for large-scale characterization of the impact of rare
SVs on expression in the brain. Here, we demonstrate evidence of
selection on rare regulatory SVs, particularly those that alter
CTCF binding sites. We found a clear and predictable role for

genic and regulatory SVs in altering expression, and we showed
that the degree of expression influence is shaped by the intoler-
ance of a gene to deleterious variation. These results suggest the
potential to functionally predict and annotate the consequences of
SVs on expression. Illustrating this potential, we derived a model
to infer expression effects of SVs in independent samples,
and applied it to the largest SV resource currently available.
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Fig. 5 Transcriptional consequences of rare CNVs can be significantly predicted. SV expression prediction performance and associated R2 from building
the same linear model using different training and test datasets. a CMC into CMC_HBCC, b CMC_HBCC into CMC, c CMC into CMC, and d CMC_HBCC
into CMC_HBCC. The best fit line with confidence interval was produced using generalized additive model smoothing.
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regulatory SVs and quantify their effects on expression. We conclude that both genic and regulatory SVs 

can substantially alter gene expression. In our models, the level of disruption is proportional to the 

amount of altered functional sequence. We also show that SVs impacting regulatory elements, such as 

enhancers, promoters, and CTCF binding sites are significantly lower in frequency than those that impact 

unannotated sequence. This suggests that perturbation of the gene regulatory architecture is deleterious 

and provides evidence that regulatory SVs have been selected against because of their potential to 

negatively influence fitness. This trend is especially striking for CTCF binding sites. CTCF has been 

implicated in the proper maintenance of 3D genomic architecture and enhancer-promoter contacts; our 

results suggest a crucial role for this factor that should be explored in future variant effect prediction 

efforts. 
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CHAPTER IV 
 

Quantifying the Role of Enhancer Landscapes in Maintaining Gene Expression Patterns  
 

Introduction 

Non-protein-coding distal regulatory elements, often referred to as enhancers, control the regulation of 

gene expression by binding to transcription factors and modulating transcription. These elements play 

crucial roles in the development and maintenance of transcription across cell types. Although many 

definitions of enhancers exist in the literature, most are associated with regions of open chromatin and 

key histone modifications and are thought to regulate genes through three-dimensional chromatin looping. 

It has been widely shown that multiple enhancers can act additively, synergistically, or redundantly to 

mediate gene expression12,147–149,153,181,182. In this work, we define “enhancer landscapes” as the set of 

enhancer elements involved in regulating the expression of a gene in a specific biological context. We 

consider many attributes of these enhancer landscapes, including the number of active enhancers and the 

physical interactions between enhancers and a given target gene.  

 Some aspects of enhancer landscapes are well established in Drosophila where studies have 

demonstrated that the presence of multiple enhancers for a gene often provides robustness to genetic 

variation. These redundant “shadow enhancers” maintain appropriate gene expression when other 

enhancers regulating the same target gene are inactivated152. Other early investigations of enhancer 

landscapes in humans suggest that the number and DNA sequence conservation of enhancers are 

associated with differences in target gene function and partially explain the highly correlated expression 

patterns of orthologous genes across mammalian species160,164. Thus, consideration of the landscape of 

enhancers is crucial to understanding a gene’s expression level, dynamics, and the effects of variation 

across individuals. 

 Despite growing evidence that enhancer landscape will be important when interpreting the effect 

genetic variation will have on gene expression, it is not frequently considered. Furthermore, much of the 

previous work on enhancer landscapes is confined to studies on model organisms and does not leverage 
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the growing amount of three-dimensional (3D) chromatin interaction data now available for a range of 

cellular contexts. We do not yet understand how features of the enhancer landscape relate to constraints 

on gene expression, alter the impact of genetic variation, or the dynamics of enhancer turnover across 

species. In this chapter, we develop a framework using 3D chromatin interaction data to define enhancer 

landscapes in multiple human tissues. We then assess how different enhancer landscapes influence gene 

regulation. We observe that differences in gene function and constraint on gene expression are reflected in 

features of enhancer landscapes, including the number and tissue-specificity of associated enhancers. We 

also find that enhancer landscape attributes are associated with differences in enrichment for non-coding 

genetic variants. Our results demonstrate that the enhancer landscape of a gene should be considered 

when studying gene expression dynamics and interpreting regulatory genetic variation. 

 

Methods 

Genomic annotations and chromatin interaction data 

All analyses were conducted using the GRCh37/hg19 build of the human genome. We used gene and 

transcription start site (TSS) definitions from Ensembl v75 (GRCh37.p13).  

We obtained liver enhancer annotations for six mammalian species (human, macaque, marmoset, 

mouse, rat, rabbit) defined using histone modification peaks from ChIP-seq29. H3K27ac peaks were called 

as enhancers if the peak was present in that species and it overlapped by less than 50% of its length with 

an H3K4me3 peak, as defined previously29. We exclude H3K4me3 peaks since these are considered 

markers of promoters. We filtered these putative enhancer regions to remove any that overlap an 

ENCODE blacklist or UCSC gap region226. For cross-tissue analyses, we downloaded H3K27ac and 

H3K4me3 ChIP-seq peaks from the Roadmap Epigenomics Consortium for 10 tissues: brain (prefrontal 

cortex, hippocampus), heart (left ventricle), liver, lung, ovary, pancreas, psoas muscle, spleen, and small 

intestine191. We used the same protocol to identify putative enhancer regions (H3K27ac peaks without an 

overlapping H3K4me3 peak) across tissues. 
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 For each of the 10 tissues with enhancer data, we downloaded normalized, 40 kb resolution Hi-C 

interaction frequency matrices from human samples136. The matrices were normalized using FitHiC261. 

The locations of topologically associating domain (TAD) regions were derived from the same Hi-C 

interaction data by the 3D Genome Browser using the approach described in Dixon et al.110,262.  

 

Definition of genome-wide enhancer landscapes 

We defined a gene-level enhancer landscape using chromatin conformation data to associated putative 

enhancer elements and the transcription start sites of genes. For each gene, the landscape definition is 

based on the combination of enhancer, gene, and Hi-C annotations. The number of enhancer elements 

with evidence of a significant interaction from the Hi-C data (Q < 0.05) is one main attribute of the 

landscape. The significance of a Hi-C interaction is determined by comparing the frequency of the 

observed interaction to an empirical null model adjusted for known technical biases. The Q-value is the p-

value of the Hi-C interaction adjusted for a false discovery rate of 5%. Enhancers elements that overlap 

the anchor of a significant Hi-C interaction (Q < 0.05) are assigned to all genes with a TSS inside the 

other anchor and considered part of the landscape. Where there are multiple enhancers or TSSs within a 

single anchor, all enhancers are linked to all potential gene targets. To account for the known role of 

TADs in constraining regulatory interactions, we limit the enhancer-gene assignment to intra-TAD 

interactions. 

We also define a region-level enhancer landscape that is not focused on a single gene. This 

includes the number of enhancers, number of genes, and the number of interactions in a region. To create 

genomic regions, we tiled the genome into nonoverlapping 1 Mb windows. These were filtered to exclude 

any windows that are comprised of more than 5% ENCODE blacklist or UCSC gap regions. Within the 

chosen windows, we consider the number of genes and enhancer annotations that overlap that window by 

at least 1 bp. Based on the evolutionary history of each enhancer element, they are divided into ‘ancestral’ 

and ‘gained’ enhancers. This classification is described in more detail below. We limited the number of 

genes in the window to the number of protein-coding genes. We also counted the number of significant 
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Hi-C interactions (Q < 0.05) with at least one anchor point within the region. If both anchor points are 

within the region, the interaction was counted twice. We also considered other methods for defining 

genomic regions of interest, including TADs and the gene-regulatory domain strategy proposed by 

GREAT155. 

 

Evolutionary model to infer ancestral enhancer state 

We classify enhancers into two categories: ancestral and gained. We leverage cross-species ChIP-seq data 

to define these categories using the Wagner evolutionary parsimony model implemented by Count263. We 

set the penalty (g) for a gain of enhancer function to 2, where g = 1 represents an equal likelihood of 

independent gain and loss. Under this model, gained enhancers are those that are inferred to have gained 

activity in the human lineage based on the observed patterns of activity at terminal branches of the species 

tree. This model was also used to derive the ancestral enhancer state at each branchpoint. We consider the 

ancestral enhancer state for humans as the inferred activity of the enhancer at the most recent common 

ancestor of humans and macaque. Ancestral enhancers have activity at that branchpoint.   

 

Calculating tissue-specificity of genes 

We downloaded RNA-seq gene expression data from GTEx (v7) in transcripts per million (TPM) for ten 

tissues with matching Hi-C data: prefrontal cortex, hippocampus, heart, liver, lung, ovary, pancreas, 

skeletal muscle, spleen, and small intestine136,198. We calculated the tissue-specificity using the relative 

entropy of each gene’s expression profile across tissues compared to the median gene expression 

distribution across tissues. We then scaled the resulting value to between 0 and 1, where genes closer to 0 

are broadly expressed and genes closer to 1 are tissue specific. Another tissue-specificity metric, 𝜏, and 

tissue-specific genes classified using the tissue-specificity score (TSPS) from Ravasi et al., produced 

similar results264,265.  

Although most genes are more broadly expressed under this metric, we defined a set of “tissue-

specific” genes using a threshold on the relative entropy score. We tested multiple cutoffs at varying 
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levels of stringency (Table 5). For our final cutoff we selected the most conservative score (> 0.8) which 

classifies 483 genes (2.8%) as tissue-specific and has been used previously266.  

 

Table 5. Entropy thresholds for tissue-specific genes. 

Threshold # Genes % Genes 

>= 0.8 483 2.8 

>= 0.6 1,172 6.8 

>= 0.4 2,752 15.9 

>= 0.2 5,277 30.5 
 

Calculating tissue-specificity of enhancers 

We also calculated the tissue-specificity of enhancers using the scaled entropy score. However, because 

enhancers do not have consistent lengths or locations across tissues, we standardized the enhancer lengths 

before calculating the number of tissues where each enhancer was active. We tested three possible 

standard lengths: 1) the median enhancer length across tissues with lower quality ChIP-seq data (220 bp), 

2) the median enhancer length in the liver (460 bp; no quality flags), and 3) the median enhancer length 

for the histone-modification-defined liver enhancers from Villar et al. (2500 bp)27. We centered the 

standardized enhancer on the midpoint of the existing annotation and either expanded or truncated each 

region to the desired length. We selected the most conservative standard length of 220 bp for our final 

entropy calculations; the scores for the other two were strongly to moderately correlated with our chosen 

conservative threshold (𝜌	= 0.82 for 460 bp, 𝜌 = 0.53 for 2500 bp). We then intersected the standardized 

enhancers from all tissues and, for each enhancer, counted the number of tissues where it had activity. We 

assigned this number of active tissues back to the original enhancer element and used these to calculate 

the entropy. This value was scaled to create a score between 0 and 1, with low scores corresponding to 

broad activity and high scores corresponding with tissue-specific activity.  
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Defining relevant gene sets with constraint on expression 

We created three gene sets that we expected to experience higher levels of constraint on their expression 

than genes overall: housekeeping genes, essential genes, and loss-of-function intolerant genes. The 

housekeeping genes were downloaded from earlier study which defined them based on expression at the 

similar levels across sixteen tissues in RNA-seq (n = 3804)267. We downloaded a set of essential genes 

from a study that used CRISPR screens in five human cell lines to define genes required for growth and 

proliferation across cell types (n = 1580)268. Finally, we downloaded a set of likely loss-of-function (LoF) 

intolerant genes from gnomAD (v2)259. Following the gnomAD threshold, we defined LoF intolerant 

genes as those with a 90% confidence interval upper bound of the observed/expected (o/e) metric less 

than 0.35. Lower o/e scores indicate greater intolerance to protein variants. 

 

Gene Ontology enrichment stratified by enhancer landscape attributes 

We calculated enrichment for Gene Ontology (GO) annotations enrichments for gene sets of interest 

using WebGestalt238 with default options. We quantified enrichment for Biological Process (BP) terms 

against a background of protein-coding genes. We considered significant terms with FDR <= 0.05.  

 

Identifying transcription factor binding motifs in enhancer sequences 

We used the FIMO269 tool from the MEME suite to scan for the presence of known TF motifs from the 

HOCOMOCO (v11)240 core database in all human liver enhancers defined by Villar et al.27 We ran FIMO 

with default options. We calculated the number of motifs, unique motifs, and the density of motifs for 

each scanned enhancer element. 

 

Enrichment for GWAS variants and GTEx eQTL in different enhancer landscapes 

We used permutation testing to determine whether the enhancers in different enhancer landscapes are 

enriched for overlap with genetic variation compared to genomic background. We calculated an empirical 

p-value for the observed number of overlapping variants compared to a null distribution of length-
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matched random genomic regions. For a comparison of variant set A with enhancer set B, we calculate the 

number of observed overlaps between A and B. To generate the null distribution, we then randomly 

shuffle the locations of enhancer set B, maintaining the length distribution of B, and repeat the overlap 

process 1000 times. We use this empirical null distribution to compute a two-sided empirical p-value.  

We performed this analysis for overlap between trait-associated variants from the GWAS Catalog 

and GTEx eQTL for enhancers in regions with a large number of enhancer elements (n > 5), and 

enhancers in regions with few other enhancer elements (n <= 5). We chose this cutoff based on the 

median number of ancestral enhancers in a 1 Mb window. We also stratified the enhancers based on the 

level of enhancer activity conservation across species. We considered an enhancer conserved if it had 

evidence of activity in at least 3 of the 6 species.  

 We downloaded expression quantitative trait loci (eQTL) from GTEx (v6p) using the liver eQTL 

(p-value < 10E-10)231.  We also downloaded variants associated with phenotypes in the GWAS Catalog (n 

= 20,458; v1.0, downloaded 08-10-2016)230. We manually curated the subset of GWAS Catalog variants 

into those associated with phenotypes relevant to the liver (n = 346). To capture variants tagged by the 

downloaded GWAS SNPs and eQTL, we included SNPs in high LD (r2 > 0.9) in individuals of European 

ancestry from the 1000 Genomes Project phase 3 and calculate overlap with haplotype blocks232. 

 

Regression model to predict enhancer gain in a regional enhancer landscape 

We regressed the number of gained enhancers in a region (1 Mb window, TAD, or GREAT domain) on 

the other regional enhancer landscape features using a negative binomial model. The features considered 

are the number of genes in the region, the number of ancestral enhancers in the region, and the number of 

significant Hi-C interactions with at least one anchor point in the region and within the same TAD. We 

used a negative binomial model rather than a Poisson model to account for overdispersion in the data. 
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Quantifying enhancer conservation in regional enhancer landscapes 

We quantified enhancer conservation in two ways: DNA sequence conservation and enhancer activity 

conservation across species. We used conserved elements from vertebrates and primates defined by the 

two-state hidden Markov model, PhastCons229. We merged the two sets of PhastCons conserved elements 

using Bedtools mergeBed233, and then calculated the proportion of each enhancer that overlaps one of 

these elements. To measure enhancer activity conservation, we aligned enhancer sequences across species 

using cross-species histone modification data from six mammalian species. Enhancers were scored from 1 

to 6 based on the number of species where that enhancer showed evidence of activity. 

 

Results 

Definitions of genome-wide enhancer landscapes 

We define two approaches to characterize enhancer landscapes genome-wide. The first is a gene-level 

definition based on using chromatin conformation data to define interactions between putative enhancer 

elements and the transcription start sites (TSSs) of their target genes (Figure 24). This approach links 

enhancer elements with putative target genes by overlapping the anchor points of significant Hi-C 

interactions with enhancer and TSS annotations. Interactions that overlap an enhancer with one anchor 

and a TSS with the other anchor are paired. If more than one enhancer or TSS exists in the anchor, we 

consider all pairs of annotations. 
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Figure 24. Schematic illustrating gene-level enhancer landscape definition. 
Gene-level enhancer landscapes are defined as all enhancers with a Hi-C interaction with the TSS of a gene. The 
black horizontal line represents the genome, and triangle represents a TAD. Enhancers are shown using filled 
(included) and dotted (excluded) rectangles, and the significant Hi-C interactions within the TAD are shown as arcs 
underneath the genome line. The red arcs highlight within TAD interactions with the gene of interest. 

 

Genes do not exist in isolation. The density of genes and regulatory elements varies across the 

genome. To account for this, we also define region-level enhancer landscapes that account for the number 

of enhancers, number of genes, and the number of interactions in a given genomic region (Figure 25). 

More specifically, for each region we count the number of ancestral enhancers, the number of expressed 

genes, and the number of significant Hi-C interactions with at least one interaction anchor overlapping the 

region. We considered multiple ways of defining the genomic regions of interest, including 1 Mb non-

overlapping windows tiled across the genome, dynamically-size windows centered on TSSs155, and TADs 

defined by the 3D Genome Browser262. We focus on 1 Mb windows, although other approaches provide 

similar results.  

We infer ancestral enhancer state using an evolutionary parsimony model applied to cross-species 

histone modification profiles (Figure 25, inset; Methods). This allows us to explore both the relationship 

between the ancestral state of the human enhancer landscape and current attributes and the enhancers that 
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gained activity along the human lineage. We incorporate the ancestral or gained enhancer annotations into 

the region-level liver enhancer landscapes. 

 

 

Figure 25. Schematic illustrating region-level enhancer landscape definition. 
Gene-level enhancer landscapes are defined as the number of ancestral enhancers, the number of genes, and the 
number of significant Hi-C interactions in a 1 Mb genomic window. The black horizontal line represents the 
genome, and triangles represent TADs. Enhancers are shown using filled (included) and dotted (excluded) 
rectangles, and the significant Hi-C interactions are shown underneath the genome line. The ancestral (red) and 
recently gained (green) enhancers are defined using an evolutionary parsimony model (inset, Methods). 

 

Region and gene-level enhancer landscapes vary across the genome 

Using the 1 Mb region definition of an enhancer landscape in the liver, 64% of the windows contain both 

multiple liver enhancers and multiple genes, and 98% contain at least one significant Hi-C interaction 

(Figure 26A-C). Furthermore, most of the significant Hi-C interactions occur between functional regions 

(e.g. genes, enhancers; Figure 26D).This supports the use of Hi-C interactions to link enhancers to genes 

and provides evidence that the significant interactions identify biologically meaningful functional 

connections in a region.  
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Figure 26. Distribution of regulatory attributes in region-level enhancer landscapes. 
Distribution of the (A) number of genes, (B) number of enhancers, (C) number of Hi-C interactions within non-
overlapping 1 Mb bins tiled across the genome. (D) Plot of the cumulative density function of significant Hi-C 
interactions in the liver with anchors that link functional elements (blue; e.g. genes, enhancers) versus those that do 
not (orange). Most of the interactions linking enhancers and genes are highly significant. 
 

Using the gene-level definition of an enhancer landscape in the liver, 71% of genes are linked to 

enhancers and 68% are associated with multiple enhancers. Across tissues, most genes that are able to be 

linked with enhancers are linked with multiple, supporting previous claims that many genes are regulated 

by groups of enhancer elements (Figure 27; Table 6).  
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Figure 27. Genes have variable numbers of linked enhancers across tissues. 
Histograms of the number of enhancers per gene in gene-level enhancer landscape by tissue. Across tissues, most 
genes that can be linked to enhancers have multiple enhancers. However, the proportion of genes linked varies by 
tissue due to differences in the number of Hi-C interactions. 

 
Table 6. Proportion of genes linked to multiple enhancers in the gene-level enhancer landscape. 

Tissue Proportion of genes 
linked to 1+ enhancers 

Proportion of genes 
linked to 2+ enhancers 

Percent linked to 
multiple enhancers 

Ovary 0.07 0.06 80% 
Muscle 0.25 0.22 89% 
Heart 0.84 0.82 97% 
Lung 0.34 0.31 92% 
Spleen 0.62 0.58 94% 
Small intestine 0.1 0.09 88% 
Pancreas 0.41 0.35 86% 
Liver 0.71 0.68 95% 
Prefrontal cortex 0.3 0.28 91% 
Hippocampus 0.35 0.32 91% 

 

It is important to note, however, that the number of enhancers and genes able to be linked varies 

widely across cell types. This is likely due to differences in the number of significant Hi-C contacts 

ascertained in each cell type (Figure 28). For example, in the liver there are 492,187 significant contacts 

that link 72% of the enhancers and 73% of the expressed genes in that context. By contrast, in the 

prefrontal cortex there are only 37,889 significant contacts. These link only 25% of enhancers and 32% of 
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genes expressed in the prefrontal cortex. The large differences in the number of Hi-C contacts and 

potential enhancer-gene links are consistent across multiple significance thresholds, suggesting that the 

threshold choice of Q < 0.05 for identifying significant connections is not responsible for differences in 

the distribution of connections across tissues (Figure 28). This may be due to both biological differences 

in the number of chromatin interactions between tissues and the known technical limitations of chromatin 

interaction mapping across Hi-C experiments with varying read depth.  This result complicates direct 

comparisons across tissues, so we will instead focus on trends within tissues and the consistency of these 

across tissues. 

 

Table 7. Number of linked enhancers, genes, and Hi-C contacts per tissue. 

Tissue 

Number of 
enhancers % enh 

linked 

Number of genes % genes linked Number 
of 
contacts total linked linked 

(tot) 
linked 
(exp) total exp 

Heart 136,844 116,396 85.1 14,575 10,003 84.2 85.1 868,904 

Liver 100,060 71,794 71.8 12,247 7,818 70.7 72.6 492,187 

Spleen 119,958 68,299 56.9 10,777 8,182 62.2 65.6 87,828 

Muscle 91,424 33,248 36.4 4,276 2,900 24.7 27.4 32,962 

Hippocampus 124,590 43,928 35.3 6,065 4,757 35.0 38.6 49,052 

Lung 199,237 57,575 28.9 5,799 4,684 33.5  35.0 30,600 

Prefrontal cortex 184,426 45,502 24.7 5,237 4,147 30.2 32.3 37,889 

Pancreas 153,214 30,106 19.6 7,139 4,560 41.2 41.8 79,924 

Small intestine 181,197 11,808 6.5 1,738 1,400 10.0 10.6 14,483 

Ovary 188,908 9,237 4.9 1,251 953 7.2 7.7 12,762 
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Figure 28. Variability in the number of Hi-C contacts by tissue is not sensitive to the significance cutoff. 
Histograms showing variability in the number of Hi-C contacts (connections) across tissues at three significance 
cutoffs. We used a cutoff of Q < 0.05; the tissue variability exists at both more lenient and more conservative 
cutoffs. 

 

Expressed genes are associated with the number of enhancers in the gene-level enhancer landscape 

We evaluated whether properties of genes’ enhancer landscapes associated with gene-level attributes. We 

found that genes expressed in a tissue have a larger number of active enhancers in that tissue than genes 

that are not expressed. For example, in the liver, the median number of enhancers for an expressed gene is 

12, compared to 6 for gene not expressed in the liver (Figure 29; MWU p = 3.01e-50). Due to the 

resolution of the Hi-C data, some enhancers are linked to multiple TSSs in the corresponding anchor 

point. Because we are unable to disentangle the precise number of enhancers associated with each of 

these TSSs in this case, we also stratified this analysis by TSS number. Although the trend is weaker as 

the number of potential gene targets increases, we still observe that genes expressed in the liver are 

associated with more liver enhancers than those that are not expressed (Figure 29B). This trend is 

consistent across the ten tissues we considered. We observed a higher number of enhancers associated 

with expressed genes compared to those that are not expressed in each tissue (Figure 29C).  

Q < 0.01 Q < 0.05 Q < 0.1
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Figure 29. Expressed genes are linked to more enhancers than non-expressed genes. 
(A) Genes expressed in the liver have more linked enhancers than non-expressed genes. Liver genes with expression 
in the liver have a median of 12 liver enhancers, while genes without expression in the liver have a median of 6 liver 
enhancers (MWU, p = 3.01e-50). Expressed genes are shown in purple and non-expressed genes are shown in gray. 
(B) Liver genes with expression in the liver have more linked enhancers than those that do not, even when 
controlling for the number of TSSs in the 40 kb Hi-C anchor points. This suggests that the difference between 
expressed and non-expressed genes is robust, despite our inability to separate interactions that occur within 40 kb.  
(C) Across tissues, genes with expression (1, purple) in a tissue have a larger number of enhancers active in the 
same tissue than non-expressed genes (0, gray). Outliers only shown for ovary and small intestine.  

 

Features of the gene-level enhancer landscape are associated with tissue-specific genes 

Genes vary in their expression across tissues. When considering expressed genes, we observe wide 

variability in the number of associated enhancers. The tissue-specificity of the gene and the activity 
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patterns of the enhancer elements should contribute to this variability. For example, we hypothesized that 

genes with tissue-specific expression patterns would have a higher proportion of tissue-specific 

enhancers. We find that the proportion of tissue-specific enhancers in a landscape is higher for genes with 

tissue-specific expression than for expressed genes overall (Figure 30). In some contexts, such as the 

liver, tissue-specific genes also have a greater number of associated enhancers (Figure 30). However, this 

is not true across all tissues we considered, suggesting that the proportion of the tissue-specific elements 

may be more important than the number of elements overall. We also observe that some tissues have 

more genes associated with completely tissue-specific landscapes, although this may be partially due to 

the differences in the number of enhancers linked to genes across tissues (Figure 31). 

 

 

Figure 30. Tissue-specific genes have a higher proportion of tissue-specific enhancers. 
Boxplots of the fraction of tissue-specific enhancers in gene-level enhancer landscapes for all ten tissues considered. 
Plots are stratified by gene type: tissue-specific genes and all expressed genes. Outliers are shown. 
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Figure 31. Some tissues have a higher proportion of genes associated with tissue-specific enhancer landscapes. 
Some tissues (e.g. ovary, psoas muscle, pancreas) have more genes associated with completely tissue-specific 
landscapes than others (e.g. heart, liver, spleen), although this may be due to the differences in the number of 
enhancers linked to genes across tissues. 

 

Although tissue-specific genes generally have more tissue-specific enhancer landscapes, some 

genes do not follow this pattern (n = 1391). At the extremes, some highly tissue-specific genes are linked 

to only broadly active enhancers, or broadly active genes have only tissue-specific enhancers. The first 

case occurs only once in our dataset with SLC22A25, a transmembrane transport gene. This gene is 

expressed specifically in the liver, but all of the linked enhancers show evidence of activity across 

multiple tissues. It is difficult to draw any conclusions from a single example, but this will be an 

interesting category to revisit as enhancer-gene assignments improve. The second case (broadly active 

genes, tissue-specific enhancers) is more common, occurring for 1390 unique genes. These cases in 

particular are interesting because they represent instances where different enhancer landscapes can lead to 

similar gene expression patterns across tissues. These genes are enriched for GO annotations related to 

membrane fission, endomembrane system organization, regulation of GTPase activity, and central 

nervous system development. This may suggest a role for tissue-specific enhancers in regulating 

processes that are not limited to a single cell type. 
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Features of the enhancer landscape are not strongly associated with gene-level constraint 

Previous work in mouse suggested that the number of enhancers regulating a gene was associated with 

gene function. Housekeeping genes were shown to have few enhancers, while genes coding for important 

developmental transcription factors had a median of three enhancers147. We sought to evaluate this trend 

in human tissues and hypothesized that other gene attributes would be also be associated with gene-level 

enhancer landscape features because of constraint on their expression. We expected that genes under 

stronger constraint would have more associated enhancers because this provides the potential for 

regulatory buffering or finer control of expression. We curated three gene sets likely to be under higher 

levels of constraint than expressed genes overall: housekeeping genes, essential genes, and loss-of-

function intolerant genes. We then asked whether these subsets of genes were associated with different 

numbers of enhancers. We found that housekeeping, loss-of-function intolerant, and essential genes are 

not associated with a higher number of enhancers than expressed genes outside of these categories (Figure 

32). This trend was similar across tissues, although the median number of enhancers associated with the 

gene subsets varied. This is likely due to differences in Hi-C resolution across tissues. 

 

 

Figure 32. Number of enhancers in a gene-level landscape is not strongly associated with gene constraint. 
We curated three gene sets we expected to be under stronger constraint than genes overall: housekeeping genes, 
essential genes, and loss-of-function intolerant genes. Boxplots for each tissue show only modest differences in the 
median number of enhancers associated with genes in each of these categories. We conclude that housekeeping, 
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loss-of-function intolerant, and essential genes are not strongly associated with a higher number of enhancers than 
expressed genes outside of these categories. 

The result that housekeeping genes do not have fewer associated enhancers is contradictory to the 

previously published results discussed earlier147. However, that result was described using a different 

enhancer-gene linkage approach that is based on patterns of co-activity across tissues. In contrast, our 

approach uses physical evidence of proximity in the tissue of interest from Hi-C to link enhancers and 

genes. Since there is no gold standard set of enhancer-gene links, it is difficult to evaluate individual 

methods. To reconcile these contradictory results, we downloaded an additional set of published 

enhancer-gene links that uses third strategy to make predictions169. This approach, called JEME, predicts 

enhancer-gene links using a two-step process. First, JEME uses lasso regression to filter the set of all 

enhancers within 1 Mb of a TSS to those that best predict TSS activity. Second, it uses the regression 

output in combination with histone modification ChIP-seq to train a random forest model to predict 

enhancer-gene links derived from ChIA-PET, Hi-C, and eQTL studies. Our previous result holds when 

using this approach to define enhancer-gene links (Figure 33), suggesting that our conclusions are robust 

and reflect of real attributes of the enhancer landscapes of housekeeping genes. 

 

 

Figure 33. The distribution of the number of enhancers stratified by gene-level attributes is reproducible across 
enhancer-gene linking strategies. 
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We applied a second approach to link liver enhancers with their target genes that uses an activity-linking approach 
described previously169. This figure shows boxplots of the number of enhancers in each gene-level enhancer 
landscape, stratified by gene type. We still observe no difference between the number of enhancers in the enhancer 
landscapes associated with housekeeping, essential, and LoF intolerant genes. We also find that tissue-specific genes 
are associated with more enhancers using this approach, which is also consistent with our previous results (Figure 
32). 

 

Gain of enhancer activity is correlated with features of region-level enhancer landscapes 

Although gene expression is highly correlated across species, the individual enhancer elements regulating 

gene expression are known to turnover rapidly27,160. This may be due to robustness provided by 

redundancy in the region-level enhancer landscape. We hypothesized that a large number of active 

enhancers decrease the chance that an individual enhancer gain or loss would disrupt gene expression 

levels. Therefore, the gain of new enhancer activity would be positively correlated with the number of 

enhancers in a region. To test this hypothesis, we leveraged a dataset of genome-wide profiling of 

enhancer activity and gene expression in liver across mammalian species to evaluate the stability of 

enhancer activity in different landscape contexts over time. In these analyses, we quantify enhancer 

landscapes using 1 Mb regions tiled across the genome; this enables us to account for the varying gene 

density and varying potential for a gained enhancer to influence the regulation of multiple genes across 

the genome. 

The gain of human enhancer activity in liver is positively correlated with both the number of 

enhancers and the number of genes in a landscape (Figure 34; 𝜌 = 0.72 for enhancers, 𝜌 = 0.61 for genes). 

This suggests that enhancers are more likely to be gained in regions with a higher level of existing 

regulatory activity and with more potential gene targets. We also observed a negative correlation between 

the number of Hi-C interactions in the landscape and the number of gained enhancers (𝜌 = -0.26). This 

may be related to physical constraints on the number of chromatin interactions possible in a 1 Mb window 

at one time, where new enhancers are more likely to be gained in regions that have space to acquire new 

functional interactions. All of these features of the region significantly predict the number of gained 
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enhancers in a negative binomial model (Table 8), providing evidence that greater numbers of enhancers 

in a region is associated with increased turnover of enhancer activity. 

 

 

Figure 34. Gain of enhancer activity is associated with a larger number of ancestral enhancers and genes in the 
region-level enhancer landscape. 
Plots show the association between the number of ancestral enhancers (A), number of genes (B), and number of Hi-
C interactions (C) versus the number of gained enhancers in region-level enhancer landscapes. Data are binned into 
evenly sized bins along the x-axis with points representing the median and vertical lines displaying bootstrapped 
95% confidence intervals. The plotted linear regression is fit to the original data. 

 

Table 8. Region-level enhancer landscape features predict the number of gained enhancers. 

Predictor Beta SE Z P 
Number of ancestral enhancers 0.0867 0.0037 23.517       2.7E-122 
Number of genes 0.0198 0.0016 12.630 1.4E-36 
Number of Hi-C interactions -0.0006 0.0001 -4.164 3.1E-05 

 

The number of enhancers in a landscape is correlated with the level of evolutionary conservation 

In the previous section, we showed that enhancers are more likely to be gained in regions with a larger 

number of ancestral enhancers. Although we can profile the dynamics of enhancer activity across species 

using ChIP-seq, conserved activity is not necessarily correlated with the underlying DNA sequence 

conservation in these enhancer elements. DNA sequence conservation of enhancer regions in different 

enhancer landscapes has yet to be explored. We hypothesized that ancestral enhancers would have a 

higher proportion of evolutionarily conserved bp than enhancers that are gained in the human lineage. In 
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the liver, ancestral enhancers have a higher proportion of overlap with conserved PhastCons elements 

than gained enhancers (Figure 35A; MWU, p = 2.3e-168). Across 1 Mb regions, this translates into a 

slight positive relationship between the total proportion of conserved enhancer bp and the number of 

ancestral enhancers in the window (Figure 35B). This suggests more enhancer-dense regions also have a 

greater proportion of conserved sequence, which supports previous work showing that evolutionary 

conservation is associated with enhancer function. The gained enhancers may be evidence of exaptation 

of less conserved or younger sequences to create novel regulatory pathways. 

 

 

Figure 35. Ancestral enhancers are correlated with conserved sequences in region-level enhancer landscapes. 
(A) Ancestral enhancers have a higher proportion of overlap with evolutionarily conserved sequences than 
enhancers that have gained activity after divergence from macaque. (B) The number of ancestral enhancers in a 
region-level enhancer landscape is modestly correlated with the total proportion of conserved enhancer bp in the 
region. The proportion of conserved enhancer sequence in the region-level landscape is quantified as the number of 
enhancer bp in the region overlapping a PhastCons element divided by the total number of enhancer bp in the 
region. The color of the hexbins represent increasing density of observations, scaled from white to dark blue. On the 
outside of the plot are histograms of the x-axis (top) and y-axis (right) values. The red line is a linear regression line 
fit to the original data with bootstrapped 95% confidence intervals (number of bootstraps = 500).  

 We next evaluated whether the relationship between the number of enhancers and the proportion 

of evolutionarily conserved sequences holds for a the Hi-C-based enhancer landscape definition. We 

regressed the proportion of conserved bp on the number of enhancers associated with each gene using our 
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Hi-C based landscape definition. Across the ten tissues we considered, we observed a positive 

relationship between the number of enhancers linked to a gene and the proportion of conserved sequence 

(Figure 36). This is consistent with the previous finding that region-level enhancer landscapes with more 

elements are also more conserved and with the known relationship between evolutionary conservation 

and enhancer function. 

 

 

Figure 36. The number of enhancers in the gene-level enhancer landscape is correlated with the proportion of 
evolutionarily conserved enhancer sequence. 
Across the ten tissues considered in this study, the number of enhancers in a gene-level enhancer landscape is 
positively correlated with the proportion of evolutionarily conserved enhancer sequence in the enhancer landscape. 
The proportion of conserved enhancer sequence in the gene-level landscape is quantified as the number of enhancer 
bp in the landscape overlapping a PhastCons element divided by the total number of enhancer bp in the landscape. 
The color of the hexbins represent increasing density of observations, scaled from white to dark blue. The red line is 
a linear regression line fit to the original data with bootstrapped 95% confidence intervals (number of bootstraps = 
500).  

 

Region-level enhancer landscapes with more enhancers have higher TFBS density 

Enhancers bind to specific transcription factors in order to regulate the expression of their target genes. 

Recent work using synthetic enhancer sequences in mouse suggests that the density of transcription factor 

binding sites (TFBSs) is the best indicator of the strength of enhancer activity270. In these analyses we use 

the region-level definition of enhancer landscapes to test whether the number of enhancers in a region is 

associated with the TFBS density of those enhancers. We identified putative TFBSs using a motif 
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scanning program, FIMO, that looks for matches with canonical TF motifs from HOCOMOCO core 

database (v11). We hypothesized that regions with a greater number of active enhancers would also have 

a higher TFBS density. We observe a positive relationship between the number of enhancers in a region 

and the TFBS density of the enhancers in that region (Figure 37A). Limiting to the density of unique 

TFBSs diminished the strength of the trend. This is consistent with the hypothesis that regulatory activity 

is related to the amount of potential TF binding in a region and not necessarily the diversity of binding 

sites. Stratifying enhancers by evolutionary history, we observe that, on average, ancestral enhancers have 

higher TFBS densities than recently gained enhancers (Figure 37B). This may contribute to the 

maintenance of activity in these sequences over evolutionary time. 

 

 

Figure 37. The number of enhancers in a region-level enhancer landscape is associated with TFBS density. 
(A) In the liver, the number of enhancers in a region-level enhancer landscape is positively correlated with the TFBS 
density of the enhancers in that region. The color of the hexbins represent increasing density of observations, scaled 
from white to dark blue. On the outside of the plot are histograms of the x-axis (top) and y-axis (right) values. The 
red line is a linear regression line fit to the original data with bootstrapped 95% confidence intervals (number of 
bootstraps = 500). (B) Ancestral enhancers have higher TFBS densities than enhancer that have gained activity in 
the human lineage. 

BA



 101 

 

Enhancer landscapes with more enhancers are depleted for eQTL, but enriched for GWAS variants  

After establishing that enhancer landscapes vary across genes and are associated with attributes of gene-

level constraint, we asked whether the enhancer landscape influences a gene’s robustness to genetic 

variation. Focusing on the liver, enhancer sequences in regions with a large number of enhancers (n > 5; 

Methods) are slightly depleted for overlap with genetic variation associated with the expression of genes 

(eQTL; Figure 38A). This is possibly because redundancy in the enhancer landscape buffers against 

changes in gene expression, although further study is required to confirm this hypothesis. However, 

enhancers with conserved activity across species in regions with a large number of enhancers are enriched 

for variants influencing liver traits identified by genome-wide association studies (Figure 38B). It is 

possible that, rather than providing redundancy, some enhancer landscapes have multiple enhancer 

elements that require cooperation. We hypothesize that disruption of these landscapes would be more 

likely to result in disease phenotypes. Enhancers in landscapes with few enhancers (n <= 5) have even 

less overlap with eQTL, although the trend is not statistically significant. Similarly, these enhancers do 

not show significant evidence of depletion for variants associated with relevant GWAS traits (Figure 38). 

The non-significant GWAS results may be due to a lack of power because of the relatively small number 

of liver-relevant GWAS variants. 
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Figure 38. Region-level liver enhancer landscapes have variable enrichment for non-coding variants. 
We tested liver enhancers for enrichment with genetic variation stratified along two axes: (1) the number of 
enhancers in region-level enhancer landscapes; (2) whether the activity of the enhancer was conserved across at least 
two mammalian species. We expected that the number of enhancers in a region could buffer the effects of genetic 
variation, and that the enhancers with conserved activity would be more likely to be enriched for trait-associated 
variation. (A) For all groups of enhancers considered, there is not significant depletion for overlap with GTEx 
eQTL, although enhancer landscapes with fewer enhancers have less overlap. (B) Enhancers with conserved activity 
in landscapes with more regulatory elements are significantly enriched for overlap with liver-relevant GWAS 
variants.     

 

Conclusion 

Enhancers are crucial for the proper regulation of gene expression; the disruption of these elements has 

been linked to a range of disease phenotypes. Despite new work showing that multiple enhancers can 

work in combination to regulate the expression of their target genes, enhancer elements are often studied 

in isolation. Considering the enhancer landscape of a gene is required to fully understand the dynamics of 

gene expression and the influence of genetic variation on regulatory elements. 

In this chapter we leverage experimental data across six mammalian species and ten different 

human tissues to define enhancer landscapes on a genome-wide scale. Using both a region- and gene-

level definition of an enhancer landscape, we show that most genes are associated with multiple 

regulatory elements. We quantify the number of regulatory elements in these landscapes and show this is 
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correlated with other measures of functional activity, such as sequence conservation and transcription 

factor binding site density. We also find that the size and tissue-specificity of the enhancer landscape is 

associated with the tissue-specificity of the gene target. Using the enhancers profiled across mammalian 

species, we explore the relationship between enhancer landscapes attributes and enhancer turnover; we 

find that the ancestral enhancer landscape is predictive of the amount of enhancer turnover in that region. 

Finally, we show that features of the enhancer landscape are associated with differences in enrichment for 

expression- and trait-associated genetic variation. This chapter highlights the features of enhancer 

landscapes associated with differences in gene expression across tissues and enhancer turnover across 

species. In order to more comprehensively capture the relationship between enhancers and genes, future 

work must consider enhancer landscapes, especially when interpreting regulatory variation. 
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CHAPTER V 
 

 
Discussion 

 
In this dissertation, we explore strategies for identifying enhancers and incorporating them into models of 

gene regulatory architecture. We begin with a comprehensive comparison of existing enhancer 

identification strategies in order to understand the features and limitations of these elements. We then 

build on our current understanding of individual enhancers by integrating experimentally derived genomic 

interaction data to define regulatory units, which we refer to as enhancer landscapes. The enhancer 

landscapes provide a more complex view of enhancer function than simply considering individual 

elements. This broader context enables us to interpret gene expression dynamics and the impact of genetic 

variation on these elements. Throughout the dissertation, we quantify the enrichment and gene expression 

consequences of single nucleotide and structural variation on regulatory elements. The advances made 

here improve our understanding of gene regulation and our ability to interpret non-coding genetic 

variation that impacts enhancer elements. 

Enhancer identification remains a challenging and unsolved problem, despite the wide range of 

existing experimental and computational approaches. Each method, either explicitly or implicitly, 

represents a different perspective on what constitutes an enhancer and which identifiable signatures are 

most informative about enhancer activity. For example, histone modifications characteristic of enhancers 

are found on histones that flank active enhancers, while eRNA is thought to be bidirectionally transcribed 

from the active sequence itself. As a result, despite the use of the term “enhancer” to describe all these 

regions in the literature, we expected different assays and algorithms to identify somewhat different sets 

of regions. However, given the lack of comprehensive genome-wide gold standard enhancer sets, 

evaluation of the accuracy of these approaches is challenging. Thus, in Chapter II, we compared existing 

strategies with respect to one another and to proxies for regulatory function. All pairs of enhancer sets 

overlap more than expected by chance, but we found substantial differences in the genomic, evolutionary, 

and functional characteristics of identified enhancers within similar tissues and cell types. Enhancer sets 
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vary significantly in their overlap with conserved genomic elements, GWAS loci, and eQTL. 

Furthermore, the majority of GWAS loci and eQTL have inconsistent evidence of enhancer function 

across enhancer sets. In addition, regions identified as enhancers by multiple methods do not have 

significantly stronger evidence of regulatory function.  

The consistent lack of agreement between methods demonstrates that many working definitions 

of “enhancer” have very low overlap. Focusing on functional annotations, we find agreement between 

methods about basic functions, but substantial differences in more specific annotations. This suggests that 

different strategies contribute unique information towards the identification of functionally important 

enhancers. In general, enhancers defined by eRNA (FANTOM, GRO-cap) have modestly more 

enrichment for proxies of functional activity than other methods, but this comes at the expense of low 

sensitivity. Our results argue that, given the lack of a clear gold standard and the substantial disagreement 

between strategies, it does not make sense to identify a single “best” method given current knowledge. 

Furthermore, because enhancer identification strategies have such substantial differences, one strategy 

cannot and should not be used as a proxy for another. Different strategies may produce substantially 

different conclusions, especially when predicting whether a genetic variant will alter regulatory function 

or quantifying the level of evolutionary constraint on enhancer regions. Understanding this is particularly 

important given that studies of gene regulation commonly use only a single approach to define enhancers. 

GWAS have identified thousands of non-coding loci associated with risk for complex disease, and a 

common first step in the interpretation of a trait-associated locus is to view it in the context of genome-

wide maps of regulatory enhancer function54,55,78,80,81,244,247,271. Our work complicates the standard 

application of genome-wide enhancer predictions to understand the molecular mechanisms underlying 

disease and highlights the need for more precise terminology51,272,273. 

We must acknowledge both the biological and technical differences between enhancer sets, 

especially when applying them to study non-coding genetic variants. Enhancer sets identified by different 

approaches rely on different underlying assumptions about what constitutes an active enhancer element in 

a given context. When choosing which identification strategy to employ, we must weigh the tradeoffs 
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between sensitivity and specificity. For example, enhancers defined using DNase hypersensitivity or 

histone modification ChIP-seq generate predictions with higher genome coverage than other methods, but 

at the expense of more false positive predictions. These methods may be more appropriate for hypothesis 

generation where a more inclusive definition is beneficial. Alternatively, enhancers defined using eRNA 

or specific TF binding profiles generate enhancer sets with fewer putative regions and stronger evidence 

of active transcription or relevant protein binding in a given cell type. These methods may be more useful 

when studying molecular mechanisms in biological contexts that are well-defined. Finally, it is useful to 

examine the robustness of all downstream conclusions to the enhancer definition used. Our results suggest 

that many conclusions will differ based on the chosen enhancer identification strategy; it is important to 

understand how specific conclusions change based on the enhancer set and interpret downstream 

biological conclusions with this additional context.  

Technical and biological variation in the underlying experimental assays and data processing 

pipelines contribute to the variation between putative enhancer sets. However, we minimized technical 

variation by calling and comparing enhancers using consistent computational pipelines. Furthermore, 

comparisons of biological replicates of histone modification ChIP-seq data suggest that the level of 

difference we observe between enhancer sets is larger than among biological replicates. Genetic variation 

between individuals could also explain some of the discordance. Previous work shows that chromatin 

states associated with weak enhancer activity exhibit some variation between individuals, and QTL 

associated with changes in epigenetic modifications and enhancer activity between individuals have been 

identified59,274. However, the proportion of epigenetic modifications that are variable across individuals is 

estimated to be small (1–15%)61. Thus, variation between individuals is unlikely to be the main cause of 

the lack of agreement we observe between methods, in particular for enhancer sets defined from cell lines. 

Furthermore, there are strong similarities between enhancers and other regulatory elements, like 

promoters, and some promoters even have enhancer activity46,47,49. We focus on methods designed to 

distinguish enhancers to reduce the impact of disagreement due to the comparison of different elements 

from the broader regulatory spectrum; nevertheless, some identification strategies may include or exclude 
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functional elements with variable activities. However, while the proxies we use for regulatory function 

(evolutionary conservation, GWAS loci, and eQTL) each have weaknesses, we observe similar 

disagreement across each proxy. This supports the functional relevance of the differences we demonstrate 

between enhancer sets. Taking each of these limitations into account, the disagreements we observe 

remain striking. 

Despite substantial differences in the enhancers identified by different strategies, disruption of 

predicted enhancers regions is known to contribute to a range of disease phenotypes189,193–196. SVs in 

particular have been previously shown to alter individual enhancer elements as well as the larger three-

dimensional chromatin architecture121,124,198. These alterations can lead to regulatory disruption by 

removing important enhancer elements or changing the interactions between enhancers and their target 

genes. The latter often refers to enhancer hijacking, where inappropriate enhancer-gene contacts can lead 

to ectopic gene expression and disease121,199–20. In Chapter III, we used a novel cohort with both genome 

and transcriptome data to quantify the gene expression effects of SVs on gene regulatory elements and 

architecture. We demonstrate that SVs altering regulatory elements, including enhancers and promoters, 

have a clear impact on the expression of associated genes. These expression effects are present even when 

coding sequence is unaffected and are proportional to the amount of regulatory sequence disrupted, 

underscoring the importance of proper gene regulatory function. Our results provide an additional layer of 

information that is crucial for more accurate functional annotation of SVs. Indeed, the regulatory 

disruption scores developed using these data successfully distinguished known pathogenic SVs. Deletions 

and duplications with the most extreme regulatory disruption scores were enriched for overlap with 

pathogenic variants identified by gnomAD. Many of these were uniquely identified using our approach, 

suggesting that integrating regulatory annotations provided useful orthogonal information for variant 

prioritization. 

In addition to gene expression consequences, we also provide evidence of selection on SVs that 

influence regulatory elements and binding sites of an architectural protein, CTCF. Since variants affecting 

fitness are subject to selection, we expect that SVs with negative fitness effects will be observed at lower 
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frequencies. We find that SVs altering enhancer and CTCF binding sites are observed at significantly 

lower frequencies than SVs in other non-coding (intronic and intergenic) contexts. The low frequency of 

SVs affecting CTCF sites is particularly notable since it is similar to that of SVs affecting coding 

sequence. We hypothesize that the disruption of CTCF has significant potential to be deleterious because 

CTCF plays a large role in the establishment and maintenance of three-dimensional chromatin loops. 

These loops are important for creating regulatory domains, such as TADs, bringing regulatory elements 

into close proximity to genes, and insulating certain enhancer-promoter interactions117,129. Disruption of 

these functions may be more likely to have an effect on multiple enhancer-promoter interactions and gene 

expression than the disruption of individual regulatory elements. Broadly, our results suggest that the 

disruption of regulatory elements and CTCF sites is often deleterious and SVs altering these elements are 

under negative selection.  

Quantifying the gene expression consequences of SVs requires several assumptions that may 

impact the results presented here. As discussed in Chapter II, the accurate identification of enhancer 

elements is non-trivial. Differences in enhancer identification strategy have the ability to influence 

downstream conclusions. We chose enhancers defined using histone modification ChIP-seq data in a 

relevant brain cell-type in order to provide a broad set of putative elements. However, there are likely to 

be both false-positive and false-negative predictions in this set; additional work is required to determine 

whether our results are robust to the enhancer identification strategy used. Similarly, regulatory elements 

must be linked to their putative target genes in order to test for gene expression changes from SVs. 

Enhancer-gene mapping remains open problem in the regulatory genomics, and CTCF binding sites are 

not easily linked with the genes. For enhancers, we chose a commonly adopted approach based on Hi-C 

interactions in the same biological context. Using this method, we were able to link enhancers with 

approximately 30% of genes. As experimental and computational approaches for enhancer-gene mapping 

improve, we can expand our original analyses to include a greater proportion of genes. Additionally, 

better models of the regulatory architecture will allow us to make predictions about the potential gene-

specific effects of CTCF disruption. 
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While individual enhancer elements make important contributions to the proper regulation of 

gene expression, there is a growing body of evidence to support the more complex view of enhancers as 

part of a broader enhancer landscape12,147–149,184. In Drosophila, enhancer landscapes have been shown to 

provide robustness by buffering the effects of genetic variation in enhancer elements150–152. Literature 

describing super-enhancers, enhancer domains, and early studies of enhancer landscapes in mice and 

humans suggest that similar mechanisms exist in mammalian species12,147,148,160,164,183. Chapter IV 

leverages Hi-C interaction data and ChIP-seq profiling across six mammalian species and ten human 

tissues to develop a framework to define human enhancer landscapes. The features of enhancer 

landscapes vary in multiple dimensions, including the number of enhancers, level of sequence or activity 

conservation, TFBS density, and enrichment for genetic variants. Across tissues, we find that these 

enhancer landscape features are reflective of the gene expression dynamics of associated genes. For 

example, we observe that tissue-specific genes have a larger proportion of tissue-specific enhancer 

elements. Aside from providing a framework to define gene regulatory landscapes in human tissues, these 

results inform future work in genetic variant interpretation by highlighting differences in enrichment for 

variants with different effects between enhancer landscapes. 

Previous work has demonstrated that, although gene expression is highly conserved across 

species, regulatory elements turnover quickly between species27,160. We hypothesized that this 

phenomenon is partially due to robustness provided by redundancy in enhancer landscapes that allows for 

the emergence of novel regulatory elements while maintaining overall gene expression levels. By 

integrating enhancer profiling across six mammalian species with our definition of an enhancer landscape, 

we find that enhancers are more likely to be gained in regions that have a greater number of existing 

enhancers and gene targets. This is consistent with our hypothesis that multiple regulatory elements can 

provide stability of expression as novel elements emerge. These ancestral enhancers overlap a higher 

proportion of evolutionarily conserved elements and have a greater TFBS density, further suggesting that 

they serve an important regulatory role.  
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As in Chapter III, the results in Chapter IV are limited by our ability to accurately identify active 

enhancer regions in a given biological context. We again use a histone-modification-derived approach, 

which likely provides sensitivity at the expense of specificity. Furthermore, we rely on interaction 

matrices from Hi-C to assign putative enhancers to their target genes. The 40 kb resolution of the Hi-C 

data is a limiting factor. It prevents us from distinguishing interactions within a 40 kb window, which 

precludes us from recognizing proximal regulatory interactions or disentangling the precise gene target 

when multiple TSSs fall into the same window. Because enhancers are thought to act as distal regulatory 

elements, we expect to capture the majority of the functional interactions. As Hi-C and other technologies 

continue to advance, higher resolution datasets will become available to refine our current results.  

This dissertation highlights several key limitations in the field of regulatory genomics and areas 

of future work. First, we must resist the convenience of ignoring the lingering complexity of enhancer 

identification. When interpreting non-coding variants of interest or characterizing the enhancer landscape 

in a new biological context, we must be mindful that using a single identification strategy is insufficient 

to comprehensively catalog enhancers. Different assays and algorithms have different attributes, and we 

suggest employing a range of approaches to obtain a more robust view of the regulatory landscape. 

However, simply focusing on variants with multiple lines of evidence of enhancer activity will not solve 

the problem, especially when our ability to quantify the false positive rate in a genome-wide enhancer 

map is limited. More sophisticated statistical models of enhancers and their properties are needed in order 

to interpret non-coding variants of interest. Previous work has shown that integrating diverse genomic, 

evolutionary, and functional data can improve the ability to distinguish validated enhancers from the 

genomic background70, but obtaining a concordant and functionally relevant set of enhancers remains 

challenging. We are hopeful that new experimental techniques, like MPRAs, and biologically motivated 

machine learning methods for integrating different definitions of enhancers will yield more consistent and 

specific annotations of regions with regulatory functions. Furthermore, functional genomics datasets and 

three-dimensional chromatin interaction assays performed in the same samples are required to improve 

our ability to determine accurate links between regulatory elements and genes. Because gene regulation is 
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a dynamic and context-dependent process, experimental assays performed in the same samples and across 

multiple time points will provide more robust information about the underlying molecular mechanisms 

and improve computational models trained on these data. 

 Second, this work highlights the need for more refined models of the architecture and dynamics 

of cis-regulatory regions. Many different classes of regions with enhancer-like regulatory activities have 

been discovered14,28,30,33,44,51,275. We argue that collapsing the diversity of vertebrate distal gene regulatory 

regions into a single category is overly restrictive. Simply calling all of the regions identified by these 

diverse approaches “enhancers” obscures functionally relevant complexity and creates false dichotomies. 

While there is appreciation of this subtlety within the functional genomics community, there is still a need 

for more precise terminology and improved statistical and functional models of the diversity of cis-

regulatory “enhancer-like” sequences and their architectures. Given this diversity, we should not expect 

all results to be robust to the enhancer identification strategy used. Furthermore, gene regulatory regions 

do not act in isolation. While this has been explored extensively in model organisms and through case 

studies of specific enhancer clusters, we still require more comprehensive modeling of human regulatory 

landscapes. Our work begins this process using computational approaches and publicly available datasets, 

but more precise data on chromatin interactions across tissues will refine and validate our framework. 

 Finally, we believe that ignoring enhancer diversity impedes research progress and replication, 

since “what we talk about when we talk about enhancers” includes diverse sequence elements across an 

incompletely understood spectrum, all of which are likely important for proper gene expression. Efforts to 

stratify enhancers into different classes, such as poised and latent, are steps in the right direction, but are 

too coarse given our incomplete current knowledge. We suspect that a more flexible model of distal 

regulatory regions is appropriate, with some displaying promoter-like sequence architectures and 

modifications and others with distinct regulatory properties in multiple, potentially uncharacterized, 

dimensions46,276,277. Consistent and specific definitions of the spectrum of regulatory activity and 

landscapes are necessary for further progress in enhancer identification, successful replication, and 

accurate genetic variant interpretation.  
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