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Chapter I. Introduction 

 

 

Functional magnetic resonance imaging (fMRI) is widely used to study the characteristics of 

the human brain activities. Most of the analysis methods are based on voxels. Some summary 

statistics characterizing the temporal response in each voxel are computed and represented in the 

spatial domain by a brain map for visual inspection or additional inference (see, e.g., Bandettini et 

al., 1993; Worsley and Friston, 1995; Xiong et al., 1996; and Lange and Zeger, 1997). This method 

usually relies on some model and assumption about the fMRI acquisition, e.g., concerning the 

stimulus, the haemodynamic response, among others. This work attempts to explore the avalanches 

of resting-state fMRI via K-means clustering, the co-activation pattern (CAP) analysis, Markov 

chains and sliding window principle components analysis (PCA) in Alzheimer’s disease (AD) and 

cognitive normal (CN) subjects. The K-means clustering is used to establish states for the Markov 

chain. Different brain activation patterns among Alzheimer’s disease (AD) and cognitive normal 

(CN) subjects can be found according to the analysis. These findings suggest that functional 

neuroimaging can be used as a method of identifying pre-clinical Alzheimer’s disease. 

 

1. Related Works on fMRI Analysis 

 

A traditional fMRI analysis method focuses on describing the relationship between cognitive 

variables and individual brain voxels (volumetric pixels). This approach is proved to be 

tremendously productive. However, there are limits on what we can learn from cognitive states by 

examining voxels in isolation. 

 

A recent approach on neuroimaging using fMRI relies on exploratory data analysis (EDA). 

Different from principal component analysis (PCA) (Sychra et al., 1994) and recent developments 
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in independent component analysis (ICA) (Mckeown et al., 1998), EDA in neuroimaging is applied 

using clustering methods. A most popular method is fuzzy c-means (Baumgartner et al., 1997, 

1998; Moser et al., 1997; Golay et al., 1998; Moser et al., 1999). The standard K-means algorithm 

has also been used successfully (Ding et al., 1994; Toft et al., 1997; Goutte et al., 1999), including 

hierarchical approaches to clustering (Goutte et al., 1999; Filzmoser et al., 1999). Also, innovative 

methods using hierarchical arguments with a nonparametric approach are starting to appear (e.g., 

Wismu¨ ller et al., 1998; Domany, 1999; Goutte, unpublished research). 

 

2. Introduction to Alzheimer's Disease 

 

Alzheimer's disease (AD) is a chronic neurodegenerative disease that starts slowly and 

gradually gets worse over time. It is the main cause of cases of dementia. The most common early 

symptom is starting to forget about recent events. With the disease advances, symptoms can 

include language barrier, disorientation (including easily getting lost), mood swings, loss 

of motivation, not managing self-care, and behavioral issues. The Alzheimer's disease causes a 

person's condition declines, and they often withdraw from family and society. Gradually, the 

patients lose bodily functions, ultimately leading to death. Although the speed of progression can 

vary according to the patient, the typical life expectancy after the diagnosis is three to nine years. 

 

The cause of Alzheimer's disease is quite uncertain. About 70% of the risk may be inherited 

from a person's parents, with related to genes. Other risk factors may include a history of head 

injuries, depression, and hypertension. The disease is associated with plaques and neurofibrillary 

tangles in the brain. A probable diagnosis is based on the history of illness and cognitive tests. 

Initial symptoms of Alzheimer's disease are often mistaken for normal ageing. Examination of 
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brain tissue is necessary for a definite diagnosis. The risk of AD may be reduced by mental and 

physical exercises. However, there is no strong evidence supporting this idea. Also, there are no 

medications that have been shown to decrease risk. 

 

No treatments can stop or reverse its progression, though some may improve symptoms 

temporarily. Affected patients increasingly rely on others for assistance, often placing a burden on 

the one who take care of them. The pressures are from social, psychological, physical, and 

economic elements. Physical and mental exercise programs may be beneficial and can potentially 

improve symptoms. Behavioral problems due to dementia are often treated with antipsychotics, 

but this is not usually effective, as there is little improvement in symptoms and an increased risk 

of early death.  

 

In 2015, there were about 29.8 million people worldwide affected with AD. It begins mostly 

in people over 65 years of age, although 4–5% of cases are early-onset Alzheimer's.  About 6% of 

people older than 65 years old are affected by AD. In 2015, dementia resulted in about 1.9 million 

deaths worldwide. AD was first described by, and named after, German psychiatrist and 

pathologist Alois Alzheimer in 1906. AD is one of the most financially cost diseases in many 

developed countries. 

 

3. Introduction to Cognitive Normal Elderly  

 

Cognitive change with the normal process of aging has been well documented in the scientific 

literature. Some cognitive abilities, such as vocabulary, are resilient to aging and may even 

improve with age. Other abilities, such as conceptual reasoning, memory, and processing speed, 

decline gradually when a person gets elderly. There is significant difference among older adults in 

about:blank
about:blank
about:blank
about:blank
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the rate of decline in some abilities, such as perceptual reasoning and processing speed.  

4. K-means Algorithm 

 

        Let { }, 1,...,iX x i n= =  be the set of n-dimensional points. Cluster it into a set of K clusters,

{ , 1,..., }kC c k K= = . The K-means algorithm is to segment all the points so that the squared error 

between the empirical mean of a cluster and the points in the cluster is minimized. Define k  as 

the mean of cluster kc . The squared error between k  and the points in cluster kc  is calculated as 

( ) 2|| ||
i k

k i k

x c

J c x 


= −  

The aim of K-means algorithm is to minimize the sum of the squared error in K clusters, 

( ) 2

1

|| ||
i k

K

i k

k x c

J C x 
= 

= −
 

        Minimizing this function is an NP-hard problem (even for K = 2) (Drineas et al., 1999). So 

K-means is a greedy algorithm. It can only converge to a local minimum, even though a study has 

shown with a large probability K-means could converge to the global optimum when clusters are 

separated well (Meila, 2006). K-means starts to generate K clusters and assign patterns to clusters 

in order to reduce the squared error. Since the squared error always when the number of clusters 

K increases (with J(C) = 0 when K = n), it should be minimized only for a fixed number of clusters. 

The main steps of the K-means algorithm are listed as follows (Jain and Dubes, 1988): 

 

1. Put all the points in K clusters; repeat steps 2 and 3 until K clusters stabilizes. 

2. Generate a new partition by assigning patterns to its closest cluster center. 

3. Calculate new cluster centers. 
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5. Markov Chains 

 

        A Markov chain is a mathematical system that has transitions from one state to another. The 

transitions can be marked with its own probability. The characteristic of a Markov chain is that no 

matter how the process arrived at its present state, the future states are fixed. In other words, the 

probability of transitioning to any particular state is dependent on the current state and time. The 

states defined can be anything according to our needs, including letters, numbers, weather 

conditions and so on. 

 

        The changes of states in the system are called transitions. The probabilities associated with 

the state changes are called transition probabilities. The process is characterized by a state space, 

a transition matrix describing transition probabilities, and an initial state (or initial distribution) 

across the state space. We can assume that all possible states and transitions are included in the 

definition of the process, so there is always a next state, and the process of state changes does not 

terminate. 

 

6. Sliding window PCA 

 

       The sliding window PCA is based on principle component analysis (PCA). In this method, a 

window is defined as a set of fMRI data of voxN  brain voxels within a range of time, winN  . A 

sliding window is defined to be the window shifted by hopN   timepoints from the beginning of the 

previous window. (Khairi et al., 2019) MATLAB is used to apply this method because it is based 

on matrix calculation. In the experiment,  is chosen as 20 and is chosen as 4. Thus, the 

first window is from timepoint 1 to timepoint 20, and the second window is from timepoint 5 to 

winN hopN
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timepoint 24. 

 

A. The Proposed Method 

        Let X  be the whole-brain fMRI data with T timepoints and N voxels. In MATLAB, X  is a 

T N  matrix. The cross-correlation of all the voxels with size of T T  can be calculated as 

TR XX=  

Let I  be a diagonal matrix with ones on the diagonal with size of win winN N  . Then, let tI  

be an T T  matrix with zeros except at row t   to ( 1)wint N+ −   and column t    to ( 1)wint N+ −  

which is replaced with matrix I . 

1 0 0

0 0

0 0 1

I

 
 

=
 
  

  

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

t

I
I

 
 
 =
 
 
 

  

The target of sliding window PCA is to calculate the components ic   and observe their 

changes in each window. The components generated by PCA explains the variance in the fMRI 

data between AD and CN subjects because the dimensionality of dataset is reduced. The defined 

components can be more reliable to see the brain activities from one window to another. The 

principle components point in the direction of maximum variation and indicate the set of times 

over which maximum changes occurs. For the first component values for each timepoint, 1c  is 

obtained from first column of the left singular vectors of the normal singular value decomposition 
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(SVD) method. This will result in 1c   as a vector size of 1T   . For the subsequent component 

values, we want to choose the 1i t ic I c +  to be as minimum as possible to ensure the components to 

be as orthogonal as possible. 

If we use PCA strictly, the orthogonality rules require that 1

T

i ic c +  has to be equal to 1 and thus 

forcing 1i t ic I c +  to be zero. Our method is designed to loosen the constraint to at least a minimum 

instead of strictly orthogonal as in PCA. 

 

B. Maximization of Subsequent Components Fractions 

 

To obtain the subsequent components, we need to maximize 

( )

T

i i

T T

i i

c Rc

c D D c
 

        where 

1 1

1 2

1

T

i

T

i

T

i n

c I

c I
D

c I

−

−

−

 
 
 

=  
 
 
 

 

        and n  is the total number of windows. 

        This can be done by minimizing the denominator  through restricting the 

component i  . 

The whole algorithm is summarized in Algorithm 1. As the final outcome, each window will 

have a set of basis vectors. For example, a set of data containing 1200 timepoints and processed 

( )T T

i ic D D c



8 
 

with sliding-window configuration of winN  and hopN  of 20 and 4 respectively will have five basis 

vectors of length 1200. 

 

 

Algorithm 1 Ratio Maximization 

1: 
TR XX=  

2: 1c    First component from PCA(R) (In MATLAB, it is calculated as[U1,~,~]=svd(R); 

c1 = U1(:,1); ) 

3: for each subsequent component i, ic  do 

4:    for each window j do 

5:       Create  

6:    end for 

7:    Create D   

8:    Find ic   that minimizes ( )T T

i ic D D c   

9: end for 

  

tI
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Chapter II. Methods 

 

 

1. Data Collection 

 

The source of data is from the database of Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), which is called Image and Data Archive (IDA, https://ida.loni.usc.edu/). Raw MRI data 

of different subjects can be found in the IDA. To get the exact type of raw data we need, in 

advanced search (beta), research group is chosen as Alzheimer’s disease (AD) and cognitive 

normal (CN), and modality as fMRI. Then 17 Alzheimer’s disease (AD) and 12 cognitive normal 

(CN) subjects are randomly chosen from a variety of ages, so that the results and conclusions can 

be robust enough for difference between Alzheimer’s disease (AD) and cognitive normal (CN) 

subjects. The last step is adding them to data collections and downloading them as NIFTI files, 

including fMRI data and Magnetization Prepared - RApid Gradient Echo (MPRAGE, T1-weighted) 

data. 

 

For all the fMRI data, the field strength is 3.0 tesla, the resolution is 64x64x48, the TR is 

3000.0 ms, the slice thickness is 3.3ms or 3.4ms, the manufacturer is Philip Medical systems or 

SIEMENS. For all the MPRAGE data, the acquisition plane is SAGITTAL, the field strength is 

3.0 tesla, the manufacturer is Philip Medical systems or SIEMENS, the slice thickness is 1.0mm 

or 1.2 mm, the resolution is different for all the subjects, and a typical one is 256x256x211. And 

for all the subjects, the number of timepoints is 140 or 197. 

A major advantage of using thicker slices is that the time to scan a given brain volume is 

inversely proportional to the slice thickness used (Howseman et al., 1999). On the other hand, 

brain areas most affected by magnetic susceptibility artifacts will be less susceptible to signal 
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dropout problems if imaged using thinner slices. Furthermore there is some evidence that the use 

of small gaps between the imaging slices may help to reduce the extreme sensitivity of functional 

MRI to stimulus-correlated motion. 

 

2. Preprocessing of Raw Data 

 

For the convenience of the following analysis, the data need to be transformed to the same 

space. I use FMRIB Software Library (FSL) to do the preprocessing of the fMRI data from the 

lower dimensional space to the standard MNI (Montreal Neurological Institute) space (91x109x91) 

as well as the alignment. First, I run Brain Extraction Tool (BET) on the raw MPRAGE files to 

get the brain-extracted MPRAGE image and the binary brain mask image. BET deletes non-brain 

tissue from an image of the whole head. The main parameters I adjust in BET is fractional intensity 

threshold and threshold gradient. The larger the fractional intensity threshold is, the smaller the 

brain outline is. The negative threshold gradient can give smaller brain outline at bottom. Then, I 

run FMRIB's Automated Segmentation Tool (FAST) segmentation on the brain-extracted 

MPRAGE image. FAST segments a 3D image of the brain into different tissue types (Grey Matter, 

White Matter, CSF, etc.). Note that I click on “Binary segmentation: Also output one image per 

class”. There should be four outcome files. The one we need is seg_1, which is the gray matter 

mask, and seg_2, which is the white matter mask. FMRIB's Linear Image Registration Tool (Flirt) 

can be used to transform the mask files to the MNI space. FLIRT is a fully automated robust and 

accurate tool for linear (affine) intra- and inter-modal brain image registration. The reference 

image I choose is MNI152_T1_2mm_brain_mask. Finally, I do the registration on the fMRI data. 

Before that, I have transformed all the fMRI data to a 4d one in each subject. Steps and codes are 

listed as following. 



11 
 

1. EPI TO T1_brain (output: trans matrix for EPI to T1brain) 

flirt -in fMRI.nii -ref MPRAGE_brain.nii -dof 12 -omat func2struct.mat 

2. T1_brain to MNI (output: T12MNI.nii & trans matrix for T1brain to MNI) 

flirt -in MPRAGE_brain.nii.gz -ref /usr/local/fsl/data/standard/MNI152_T1_2mm_brain -omat 

T1_to_MNI_affine.mat -bins 256 -cost mutualinfo -searchrx -90 90 -searchry -90 90 -searchrz -

90 90 -dof 12 -out T12MNI.nii.gz 

3. T1 to MNI (output: nonlineartrans matrix for T1 to MNI - additional matrix) 

fnirt --in=MPRAGE.nii --aff=T1_to_MNI_affine.mat --cout=nonlinear_trans --

config=T1_2_MNI152_2mm 

4. EPI to MNI (output: EPI2MNI.nii) 

applywarp --in=fMRI.nii --ref=/usr/local/fsl/data/standard/MNI152_T1_2mm_brain --

warp=nonlinear_trans --premat=func2struct.mat --out=EPI2MNI 

 

        Then, spatial filter and temporal filter is applied to get xcell and xcellmask. Each voxel time 

series was filtered using a finite impulse response (FIR) bandpass filter with TR=3.  

 

3.  Data Analysis 

 

The Instantaneous Whole Brain Correlation (IWBC) of each subject is computed and figured 

(Bell, 2018). At each of the time points, a whole brain correlation (WBC) for a single time point 
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is performed. The instantaneous WBCs for a single time point t  were calculated according to 

following equation: 

, ,

( )( )1 1

2

ji
i i j j

t

x i y j

x x y y
WBC

n  

− −
=   

        where x  and y  are voxels, and i  and j  iterate over v  voxels for i j . The entry i  and j  

indicates how similar the brain activity is at times i  and j . 

   

Feature matrix characterized by activation level of six rough brain regions is computed. The 

feature matrix includes the number of active voxels in it. Then, feature matrix characterized by 

activation level of Brodmann areas (von Economo, 1925) are computed, including frontal lobe, 

parietal lobe, temporal lobe, occipital lobe and cingulate cortex. K-means clustering characterized 

by rough brain regions and Brodmann areas is performed. All the time points are classified into K 

clusters. The K-means clustering results show the average number of active voxels in the featured 

regions. The results are used to perform Markov chains and CAP analysis to find differences in 

the brain activity patterns between AD and CN subjects. The K-means algorithm iterates the 

following steps: 

1. Initialize K clusters kC  , 1,...,k K= , with centers ( )i

kc  , for iteration 0i =  . 

2. Assign each data vector ju  to the cluster kC  with the nearest center ( )i

kc , based on a distance 

metric between the cluster center and the data vector 
( )( , )i

j kd u c  . 

3. Set new cluster center ( 1)i

kc +  to the average of its members: 
( 1) 1

k

i

k j

j Ck

c u
C

+



=  . 
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Then, a Markov chain model (Metropolis, 1953) is estimated and plotted. The Markov chain 

shows the exact transition probabilities for time points in K clusters that transit to next time point. 

From the Markov chain, different patterns of AD and CN can be found. Spatial and temporal co-

activation pattern (CAP) is figured (Liu et al., 2018). Temporal CAP shows the classification of 

states on IWBC for each time point. Spatial CAP shows the average number of active voxels in 

Major resting-state networks (RSNs) (Doucet et al., 2018), including default-mode (DMN), central 

executive (CEN), salience (SAL), visual (VIS), and sensorimotor (SMN) networks. Sliding 

window Principle Component Analysis (PCA) is applied to provide some insight on the changes 

in the fMRI data where there could be the possibility of brain synchronizing when most of the 

brain regions are highly correlated. The values of five transform coefficient are displayed in the 

results. 
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Chapter III. Results 

 

 

1. Preprocessing 

 

Preprocessing is done on all the 17 AD and 12 CN subjects. Figure 1 shows an original 

structural MRI image. Figure 2 shows the structural MRI image in MNI space with the skull 

removed. 

 

 

 
Figure 1 Original structural MRI image of AD subject 006_S_4153  
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Figure 2 Skull-removed structural MRI image of AD subject 006_S_4153 in MNI space 

 

 

2. Clustering 

 

K-means clustering is done in Brodmann areas within major brain lobes, including frontal 

lobe, parietal lobe, temporal lobe, occipital lobe and cingulate cortex, for all the AD and CN 

subjects. Different k values are tried. Figure 3 and Figure 4 show the clustering results for AD 

subject 002_S_5018 when k is 10 and 6, respectively. In each case the numbers of active voxels in 

each lobe and Brodmann area are counted. 
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Figure 3 Clustering result of AD subject 002_S_5018, k=10 

 

 

 
Figure 4 Clustering result of AD subject 002_S_5018, k=6 

 

 

Figure 5 shows the clustering results of AD subject 003_S_6264 when k=10. Figure 6 shows 

the clustering results of CN subject 002_S_0295 when k=10. Figure 7 shows the clustering results 

of CN subject 002_S_0413 when k=10. 
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Figure 5 Clustering result of AD subject 003_S_6264, k=10 

 

 

 
Figure 6 Clustering result of CN subject 002_S_0295, k=10 
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Figure 7 Clustering result of CN subject 002_S_0413, k=10 

 

 

3. Markov Chain Model 

 

Markov chain model is applied by estimating the probabilities of the state transitions. Figure 

8 and Figure 9 are the Markov chain result of AD subject 002_S_5018 when k = 6 and 10.  
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Figure 8 Markov chain result of AD subject 002_S_5018, k=10 
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Figure 9 Markov chain result of AD subject 002_S_5018, k=6 

 

 

Figure 10 shows the Markov chain of CN subject 002_S_0295 when k=10. Figure 11 shows 

the Markov chain of CN subject 002_S_0413 when k=10. 
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Figure 10 Markov chain result of CN subject 002_S_0295, k=10 
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Figure 11 Markov chain result of CN subject 002_S_0413, k=10 

 

 

4. CAP Analysis 

 

The CAP analysis consists of two parts, spatial CAP and temporal CAP. In the spatial CAP, 

we can observe the changes of clusters in Major resting-state networks (RSNs) (Doucet et al., 

2018), including default-mode (DMN), central executive (CEN), salience (SAL), visual (VIS), and 

sensorimotor (SMN) networks. In temporal CAP, we can observe the IWBC with the states marked 

on it. Figure 12 and Figure 13 show the spatial CAP and temporal CAP of AD subject 002_S_5018 

when k=10. 
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Figure 12 Spatial CAP result of AD subject 002_S_5018, k=10 
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Figure 13 Temporal CAP result of AD subject 002_S_5018, k=10 

 

 

Figure 14 and Figure 15 shows the spatial CAP and temporal CAP of AD subject 003_S_6264 

when k=10. 
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Figure 14 Spatial CAP result of AD subject 003_S_6264, k=10 
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Figure 15 Temporal CAP result of AD subject 003_S_6264, k=10 

 

 

Figure 16 and Figure 17 shows the spatial CAP and temporal CAP of CN subject 002_S_0295 

when k=10. 
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Figure 16 Spatial CAP result of CN subject 002_S_0295, k=10 
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Figure 17 Temporal CAP result of CN subject 002_S_0295, k=10 

 

 

5. Sliding Window PCA 

 

According to the sliding window algorithm, the Nwin I use is 20, the Nhop is 4. Win 1 

includes timepoint 1 to 20. Win 2 includes timepoint 5 to 24, etc. Figure 18 shows the timescore 

of AD subject 130_S_4982. 
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Figure 18 IWBC of AD subject 130_S_4982 

 

 

From the IWBC, we can capture the two large peaks at timepoint 21 and timepoint 50. So we 

do sliding window PCA around these two timepoints. Figure 19 shows the sliding window results 

for timepoint 21. Figure 20 shows the sliding window results for timepoint 50. 
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Figure 19 Sliding window result of AD subject 130_S_4982 for timepoint 21 

 

 

 
 

Figure 20 Sliding window result of AD subject 130_S_4982 for timepoint 50 

 

 

Similarly, the sliding window PCA is applied on CN subject 037_S_0303. Figure 21 shows 

the IWBC for it. 
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Figure 21 IWBC of CN subject 037_S_0303 

 

 

Figures 22, 23 and 24 shows the sliding window results of CN subject 037_S_0303 for its 

three peak timepoints 115, 158 and 174. 

 

 

 
Figure 22 Sliding window result of CN subject 037_S_0303 for timepoint 115 
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Figure 23 Sliding window result of CN subject 037_S_0303 for timepoint 158 

 

 

 
Figure 24 Sliding window result of CN subject 037_S_0303 for timepoint 174 
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Chapter IV. Discussion 

 

 

1. Clustering 

 

From Figure 3 and Figure 4, different k values may have a similar pattern of clustering results. 

When k is greater, it is more easily to see lines of different clusters intersecting with each other. 

From Figure 3, 5 ,6 and 7, by contrasting the clustering results of AD and CN subjects with the 

same k value, it can be seen that the frontal lobe is always the most active part of the whole brain, 

then the parietal lobe. Also, in AD subjects, the left temporal lobe, the right temporal lobe, the 

occipital lobe and the cingulate cortex are smoother than they are in CN subjects. Actually, the 

occipital lobe and the cingulate cortex have more crossing lines in AD subjects, which can be seen 

from the whole brain part. It reveals that the occipital lobe and the cingulate cortex are more active 

in AD subjects than they are in CN subjects. 

 

2. Markov Chain Model 

 

From Figure 8 and Figure 9, different k values may have a similar pattern of clustering results. 

From Figures 8, 10 and 11, when the k value is the same, some similarity and different points can 

be obtained from the Markov chain model results in AD and CN subjects. First, the state one 

always has a high probability when the transition is to itself. Second, we can separate the Markov 

chain model results in two parts, a part with many states densely connecting with each other, and 

a part for some states that only transition to one or two specified states. For example, in Figure 10,    

states 10, 9 and 7 is the second characteristic. And the rest of the states consist of the part 
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connecting densely to each other. In the CN subjects, the first part may have more connections in 

states, and the two-part pattern is more obvious in CN subjects than it is in AD ones. 

 

3.  CAP Analysis 

 

From Figures 12, 14 and 16, in spatial CAP results, the VIS is more active in AD subjects 

than it is in CN ones. From Figure 10 and Figure 17, when combining the results of the Markov 

chain model and the IWBC, it can be observed that most points in state one are on the horizontal 

line of zero, and most points that have a value of nearly zero are in state one. So it explains why 

state one has a high probability when the transition is to itself. Additionally, the highest peak is in 

state 10, the second highest one is in state 8, which shows large peaks are more likely to be in the 

last several states.  

 

4. Sliding Window PCA 

 

From Figure 19, the peak timepoint 21 is in window 2 to window 6. The five transform 

coefficients may have some kind of changes when the peak point is in the window. And from 

Figure 20, the peak timepoint 50 is in window 9 to window 13. By contrasting window 8 and 

window 9, it can be seen that when the peak point enters a window, this window may have a greater 

change in the five transform coefficients than the former window. This can also be noticed in 

Figures 22, 23 and 24. Also, after the peak point leaves the window, the window may have a 

tendency to have a slighter change on the five transform coefficients. Future work can be done to 

explore those changes of the transform coefficients. 
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Chapter V. Conclusions 

 

 

        In this thesis, we applied several data analysis methods on fMRI data to detect the different 

patterns in brain activation levels between AD and CN patients. MPRAGE and fMRI raw data 

files of AD and CN subjects are downloaded from IDA. Preprocessing is done with FSL to remove 

the non-brain part in the raw fMRI and MPRAGE data. To investigate brain behavior during 

avalanches, a WBC was performed for each of the AD and CN subjects at each of time points at 

which the BOLD fMRI data was sampled. K-means clustering is performed by rough brain regions 

and Brodmann areas. The results reveal that different patterns of brain activation levels can be find 

between AD and CN patients, especially in the occipital lobe and the cingulate cortex. A Markov 

chain model (Metropolis, 1953) is estimated and plotted for each of AD and CN subjects. The 

Markov chain shows the exact transition probabilities for time points in K clusters that transit to 

next time point. From the Markov chain, different patterns of AD and CN can be found. CAP 

analysis is done for each of the AD and CN subjects. Spatial CAPs show that there may be some 

difference in RSNs for AD and CN subjects, exactly the VIS network. Temporal CAPs show they 

are consistent with IWBC magnitudes and Markov chain results. A sliding window PCA is applied 

to discover how five transform coefficients change in AD and CN subjects. 

 

        In conclusion, in-depth understanding of the structure and functionality of the brain is 

essential, from both a scientific and clinical standpoint. Pre-clinical Alzheimer’s disease can be 

defined according to the differences in brain activities discovered in this work. Future work can 

be done based on the IWBC and more analysis can be applied, including head motion and phase 

transition to find more differences. 
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