

Non-Invasive Venous Waveform Analysis (NIVA) for Estimation of Pulmonary Capillary
Wedge Pressure

By

Monica Polcz

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Biomedical Engineering

August 31, 2020

Nashville, Tennessee

Approved:

Professor Colleen Brophy, MD

Professor Cynthia Reinhart-King, PhD

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Dr. Colleen Brophy for her unwavering support

and guidance throughout my medical and graduate career. Without her mentorship I would not

have had this tremendous opportunity for personal and professional growth. I would like to thank

Dr. Cynthia Reinhart-King for her mentorship and collaboration. I would also like to thank Dr.

Kyle Hocking and Dr. Bret Alvis for their ongoing mentorship and invaluable guidance and

assistance with performing this research. I would like to thank Dr. Jessica Huston for her clinical

insight and assistance with interpretation of hemodynamic tracings for this experiment, and Dr.

JoAnn Lindenfeld who is an expert in Cardiology and assisted greatly with experimental design

and analysis. I would like to thank Jon Whitfield for his programming expertise and development

of the automated algorithm described in this thesis. I would also like to thank Dr. Joyce Cheung-

Flynn and Dr. Padmini Komalavilas for their mentorship and guidance throughout my research.

I would like to acknowledge the Division of Cardiovascular Medicine at Vanderbilt

University Medical Center for the opportunity to enroll patients in the catheterization lab for this

study. This research was supported by a National Institutes of Health Postdoctoral Individual

National Research Service Award (F32) # 5F32HL140849-02.

iii

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS……….………………………………………………………….…..ii

LIST OF TABLES……………………………………………………..…………………………v

LIST OF FIGURES………………………………………………..……………………………..vi

LIST OF ABBREVIATIONS……………………………....……...…………………………....vii

INTRODUCTION………………………………………………………..……………………….1

 Clinical Assessment of Intravascular Volume…………………………………………….1

Venous Waveform Analysis………………………………………………………………..2

Current State of Non-Invasive Venous Waveform Analysis……………………………….7

METHODS………………………………………………………………………………..………8

 Cardiac Catheterization…………………………………………………………....……..8

 Signal Analysis………………………………………………………………..…….…….9

 Algorithm Training…………………………………………………………………...….10

 Statistical Analysis………………………………………………………………….……11

RESULTS………………………………………….…………………………………………….12

 Study Population…………………………………………………………………………12

 NIVA Algorithm………………………………………………………………………….14

 Thoracic Impedance (ZOE®)……………………………………………………………18

DISCUSSION……………………………………………………………………………………18

 Limitations……………………………………………………………………………….22

Conclusion……………………………………………………………………………….23

Potential Impact and Future Directions…………………………..……………………..24

REFERENCES…………………………………………………………………………………..29

iv

TABLE OF CONTENTS (cont.)

PAGE

APPENDIX………………………………………………………………………………………35

 A. C++ Script for AlgorithmRunner.exe………………………………………….……..35

 B. Supplementary Information for Selected Lasso Model……………………….………51

v

LIST OF TABLES

TABLE PAGE

1. Characteristics of included and excluded right heart catheterization subjects……….….13

SUPPLEMENTARY TABLE

1. Lasso linear model………………………………………………………………...……..51

2. Goodness of fit of in-sample predictions…………………………………………...……51

vi

LIST OF FIGURES

FIGURE PAGE

1. Comparison of central and peripheral venous waveforms………………………………...4

2. NIVA device………………………………………………………………………………5

3. Representative venous waveform signals of a patient with volume overload………….…7

4. Correlation between pulmonary capillary wedge pressures (PCWP) obtained from report
versus blinded review of hemodynamic waveform……………………………………...14

5. Correlation of NIVA value to measured PCWP, right atrial pressure (RAP) and
pulmonary artery diastolic pressures (PAD) in subjects undergoing right heart
catheterization……………………………………………………………………………15

6. ROC curve for ability of NIVA to detect PCWP>18mmHg…………………………….16

7. Predictive accuracy of NIVA to estimate PCWP based on clinical variables and
catheterization data………………………………………………………………………17

8. Correlation between ZOE® and PCWP…………………………………………………18

9. Hemodynamic flow loop………………………………………………………………...27

10. NIVA signal obtained in patient with atrial fibrillation………………………………….28

SUPPLEMENTARY FIGURE

1. Cross Validation Function…………………………………………………………….…52

vii

LIST OF ABBREVIATIONS

AUC = Area under the curve

BMI = Body mass index

CKD = Chronic kidney disease

CO = Cardiac output

EF = Ejection Fraction

GFR = Glomerular filtration rate

HF = Heart failure

HTN = Hypertension

LVEDV = Left ventricular end diastolic volume

MAP = Mean arterial pressure

NIVA = Non-Invasive Venous waveform Analysis

PAC = Pulmonary artery catheter

PAD = Pulmonary artery diastolic pressure

PCWP = Pulmonary capillary wedge pressure

PIVA = Peripheral Intravenous waveform Analysis

PVR = Pulmonary vascular resistance

viii

RAP = Right atrial pressure

RHC = Right heart catheterization

RHF = right heart failure

ROC = Receiver Operating Characteristic

SNR = Signal to noise ratio

SVR = Systemic vascular resistance

1

Introduction:

Clinical Assessment of Intravascular Volume

Accurate assessment of intravascular volume status remains a challenge for clinicians.

Pathological volume overload is particularly problematic in patients with heart failure (HF),

renal failure, and in the critically ill population that is prone to over-resuscitation with crystalloid

solutions. Such volume overload ultimately results in decreased cardiac output due to

overstretching of the myocardium, hypertension, tissue and pulmonary edema, and increased

morbidity and mortality.1,2 Current measures of volume status rely largely on clinical signs

which have proven unreliable including vital signs, jugular venous distention, subjective

shortness of breath, weight changes, extent of peripheral edema, and laboratory values.3

Hemodynamic measures of volume status, though more accurate, are largely limited to

the inpatient setting and require an invasive approach which limits their utility. Pulmonary

capillary wedge pressure (PCWP) is the gold standard measure for volume status utilized by

clinicians and represents left-sided cardiac filling pressures, a surrogate for preload. This is

obtained through insertion of a Swan-Ganz catheter (PAC) into a central vein -- risking infection,

arterial, or pulmonary injury. The catheter is then advanced past the right heart and into a

terminal pulmonary artery which is occluded by a balloon for distal pressure measurements,

associated with the low but finite risk of pulmonary artery rupture. Its use is supported by the

observation that elevated cardiac filling pressures have been associated with increased

hospitalizations and mortality,4,5 and often precede the development of symptoms related to HF

decompensation.6 Other hemodynamic parameters that have more limited accuracy for

estimation of volume status include absolute central venous pressure measurements,7 absolute

2

peripheral venous pressure measurements,8 and arterial waveform analysis [which is limited in

accuracy to mechanically ventilated patients with high tidal volumes (>8cc/kg)].9

 There has been increasing interest in developing non-invasive methods to estimate

volume status for use in the inpatient and outpatient settings to guide volume management and

prevent costly hospital readmissions. Thoracic impedance is one such method developed for this

purpose. This technique quantifies the resistance encountered by an electrical current through the

chest, with decreased resistance (lower values) corresponding to increased fluid content. Such

devices demonstrate moderate correlation with PCWP,10,11 but the specificity of static impedence

measurements is limited by patient positioning,12 body tissue (fat) composition,13 presence of

cutaneous hair or sweat, and lead placement. Other described techniques utilize changes with

Valsalva in the pulse amplitude or slope of non-invasively obtained plethysmograph14,15 or

arterial signals16-18, respectively. Although these techniques also have moderate to strong

correlations with PCWP, performance of a sustained Valsalva maneuver may present difficulties

in patients with shortness of breath due to congestion. Thus, there remains an unmet clinical

need for accurate, reliable, easy to use, non-invasive technologies that assess volume status.

Venous Waveform Analysis

Venous waveform analysis has recently been developed as a novel, alternative approach

for monitoring intravascular volume status. The venous system consists of the central venous

compartment which contains ~18% of the total blood volume and the peripheral venous

compartment which contains ~45%.19 The peripheral venous system has a high capacitance and

serves as the body’s main blood volume reservoir. This is because the peripheral venous system

3

is more compliant (110 mL/mmHg) than the arterial (2 mL/mmHg) or even the central venous

compartment (4 mL/mmHg).20 In response to physiological demand, neurohumoral input of

venous tone allows shifting of blood between the peripheral and central venous compartments in

order to maintain cardiac stroke volume. The central venous waveform consists of various peaks

and troughs representing forward and backward waves as blood flows through the heart.

Peripheral venous waveform morphology differs from the central venous waveform, potentially

due to the direction of the waveform (forward vs. backward compression wave), dampening

related to the presence of valves, increased compliance, and/or distance from the heart (Figure

1).

4

Figure 1 Comparison of central and peripheral venous waveforms. (A)
Electrocardiogram (EKG) time-synced with directly transduced (B) central venous

waveform obtained from the superior vena cava and (C) peripheral venous waveform
obtained from the extremity in a pig. In the central venous waveform (B), the a-wave

corresponds to atrial contraction, which is followed by the c-wave which occurs due to
bulging of the tricuspid valve during early systole. The v-wave occurs in late systole with

filling of the right atrium.

5

 Because the peripheral venous system serves as a volume reservoir, storing a majority of

the total blood volume, it is a logical focus of technology aiming to estimate intravascular

volume status. Acquisition of venous waveforms is most directly performed via direct

transduction through a peripheral intravenous catheter. Venous signals may also be captured

non-invasively with a piezoelectric sensor placed on the volar aspect of the wrist, directly over

the superficial veins, known as Non-Invasive Venous waveform Analysis (NIVA, Figure 2). The

piezoelectric sensor is connected to a control box that amplifies the venous waveform detected

from vibrations related to the low amplitude pulsatile flow of venous blood.

Figure 2 NIVA device. (A) Photograph of the NIVA device (sensor and control box) used for venous waveform
capture. (B) Photograph of the NIVA device sensor placed on subject’s wrist for waveform capture.

6

Mean peripheral venous pressures, which change minimally with volume due to the high

compliance of peripheral veins, do not correlate strongly with PCWP.8 Venous waveform

parameters demonstrated in small studies to change with hypovolemia include time-domain

parameters such as venous pulse pressure, mean venous pressure, pulse width, and maximum and

minimum slope over the whole peak.21 Analysis of the venous waveform in the frequency

domain also yields predictable changes with changes in venous volume. Similar to other vascular

waveforms, the raw venous signal is characterized most prominently by a wave generated by the

cardiac cycle. Although this fundamental frequency (f0), equal to the pulse rate is easily observed

by eye in the time-domain, deconvolution of the waveform into the frequency domain with a

Fourier transformation exposes additional frequencies which are not otherwise visible -- this

includes a wave (low-frequency) generated by the respiratory cycle, as well as higher harmonics,

or multiples, of the pulse rate (f1-f7, Figure 3). The harmonics of the pulse rate are generated and

transmitted as a result of local resonance, and therefore are more prominent in non-invasively

obtained signals as the result of the soft tissue layer between the sensor and the vein. Ratiometric

algorithms incorporating the relative amplitude or power contributions of these cardiac

frequencies to their overall sum have been developed and validated in states of hypo- and

hypervolemia in both directly transduced and non-invasively obtained waveforms.22-26 These

algorithms are referred to as Peripheral IntraVenous waveform Analysis (PIVA) in directly

transduced waveforms and Non-Invasive Venous waveform Analysis (NIVA) in waveforms

obtained non-invasively with a piezoelectric sensor placed on the wrist.

7

Current State of Non-Invasive Venous Waveform Analysis

NIVA holds particular promise as an easy to use, non-invasive method of venous

waveform capture and analysis for assessment of volume status. In addition to the ability to

detect small amounts of blood loss in normal human subjects donating blood (AUC 0.94,

p<0.05),22 an early prototype and algorithm have demonstrated strong correlation with a wide

range of PCWP in patients undergoing elective right heart catheterization (r=0.69, p<0.05, n=83,

Figure 3 Representative venous waveform signals of a patient with volume overload (PCWP=28). (A) and
(C) display the raw waveform and fast Fourier transform (FFT), respectively, of the peripheral intravenous
pressure waveform (PIVA) obtained from an intravenous pressure transducer. (B) and (D) display the raw

waveform and fast Fourier transform, respectively, of the peripheral venous waveform obtained noninvasively
utilizing a piezo electric sensor (NIVA).

Time

A

N
IV

A
 S

ig
n

al
P

o
w

er
 x

 1
0

-4
(V

²)

2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

Frequency(Hz)

f0

f1

f2

C

Raw Waveform Raw Waveform

8

PCWP 4-40 mmHg) and ability to accurately predict PCWP >18 mmHg, a clinically accepted

value indicating venous congestion, with a sensitivity of 80% and a specificity of 53%.23

Subsequent technological improvements to improve signal acquisition have included the

incorporation of a charge amplifier. With an improved prototype, the aim of this thesis was to

use machine learning to refine an algorithm for estimation of PCWP from NIVA signals with the

updated sensor. As input for algorithm development, non-invasively obtained venous signals

were obtained from patients undergoing elective right heart catheterization. For comparison, the

correlation between PCWP and thoracic impedance scores were also investigated (ZOE®).

Methods:

Cardiac Catheterization

Seventy-eight subjects undergoing elective right heart catheterization (RHC) were

enrolled under approval from the University of Alabama Birmingham and Vanderbilt University

Medical Center Institutional Review Boards. Indications for RHC included management of

congestive heart failure, post-heart transplant biopsy, and workup for dyspnea. Subjects with

severe valvular disease, active atrial fibrillation, congenital heart disease, or cardiac assist

devices were excluded from this study.

The sensor of the NIVA device was secured to the middle volar aspect of the wrist

overlying the superficial veins with Coban elastic wrap (3M; Minneapolis, MN). Placement

laterality was preferential to an upper extremity without any existing peripheral IV lines. Signals

were acquired for at least two minutes within one hour of catheterization keeping the extremity

9

still. All subjects were positioned in the semi-recumbent position (head of bed elevated to 30-60

degrees). Additional information obtained included demographic information, comorbidities,

hemodynamic parameters obtained from the final catheterization report, and vital signs at the

time of signal acquisition.

In twenty patients without visible chest hair, a ZOE® measurement was obtained per

manufacturer’s instructions. Prior to placement of the leads, it was ensured that the placement

area was dry. Three consecutive ZOE® measurements were obtained and averaged for each

subject.

RHC was performed by an experienced interventional cardiologist per standard protocol.

An 8 French sheath was placed into either the internal jugular or femoral vein depending on

anatomy. A 7 French Swan-Ganz catheter (Edwards Lifesciences; Irvine, CA) was introduced

into the sheath and transducer was zeroed at the mid-axillary line. The Swan-Ganz catheter was

positioned in the right heart system to record pressures and cardiac outputs. All subjects were

spontaneously breathing with PCWP measurements obtained at end-expiration. RHC tracings

were reviewed and PCWP values were assigned by an independent cardiologist. The PCWP

values were assigned at an end expiratory measurement of the mean of the “a” wave, determined

based on simultaneous electrocardiogram.

Signal Analysis

Data was collected using a three dimensional printed housing containing a mu rata

piezoelectric sensor fashioned to the volar aspect of the wrist. This prototype device was

attached via a cable to the monitoring data-logger device which used a low (~0.9 Hz) cutoff

10

frequency created by changing the input impedance on the charge amplifier. The data was then

ported to a PC computer where an automated application (AlgorithmRunner.exe, Appendix A)

was used to determine the pulse rate as well as the power of various harmonics of the signal (f0-

f7). This program used 50% overlapping 8K windows. The sampling rate for the device was 500

Hz. Adequate signal was defined as three or more signal segments with a signal to noise ratio

estimation of greater than 20. This threshold was chosen based on previous data that examined

the minimal threshold at which reproducibility of amplitude measurements with low variance

could be obtained.

Algorithm Training

An algorithm was trained using data from 3-5 windows for each subject in Stata 16/IC

(StataCorp; College Station, TX) to generate a “NIVA value” that estimates PCWP. In addition

to heart rate, the raw powers of f0-f7 computed by the automated algorithm were used as input for

model development, as well as calculated variables that included the relative power of each

frequency, the ratio of each power to the power of f0, and the high frequency component (sum of

powers f3-f7) relative to total power or the power of f0. Lasso technique was used to select and fit

covariates to create a linear regression model. Lasso is a commonly used method invented by

Tibshirani for building prediction models, and avoids overfitting by limiting the number of

included predictor variables and minimizing an estimate of the out-of-sample prediction error.27

Lasso orders models on a scalar parameter (λ) which is a parameter of the penalty function,

defined over 0 to +∞. A large λ corresponds to a large penalty and a model with few or no

variables, while a model with smaller λ has more variables. Model selection was performed

using cross-validation with ten folds to select a λ that minimizes an estimate of the out-of-sample

11

prediction error. Once a model was chosen, final predicted PCWP was calculated by averaging

the NIVA values across the 3-5 windows for each subject.

Statistical Analysis

Statistical analysis was performed using Stata 16/IC (StataCorp; College Station,TX) and

GraphPad Prism (GraphPad Software Inc.; La Jolla, CA). Results for continuous variables are

reported as mean + standard deviation. Pearson correlation coefficients were calculated for

NIVA value compared to PCWP, pulmonary artery diastolic pressure (PAD), and right atrial

pressure (RAP), as well as ZOE® value compared to PCWP. Residual analyses were performed

to evaluate the effects of clinical right heart failure (RHF), systemic vascular resistance (SVR,

Wood units), pulmonary vascular resistance (PVR, Wood units), cardiac output (CO, L/min),

pulmonary hypertension (defined as mean pulmonary artery pressure >25 mmHg)28, presence of

diabetes, estimated glomerular filtration rate (GFR, mL/min/1.73m2), heart rate, mean arterial

blood pressure (MAP, mmHg), body mass index (BMI, kg/m2), and wrist circumference (cm) on

the predictive accuracy of NIVA to PCWP. Residuals were plotted as the standardized residual

calculated from the linear regression of NIVA vs PCWP. Of note, SVR and PVR were recorded

in the catheterization reports as Wood Units, with 1 Wood Unit = 80dynes*sec*cm-5. A

Receiver Operating Characteristic (ROC) curve was used to determine whether NIVA could

predict clinical congestion, defined as a PCWP >18 mmHg, a threshold chosen based on prior

literature defining a resting PCWP >18 mmHg as indicative of congestion and decompensation

in heart failure. 3,29 P-values <0.05 were considered significant for all analyses.

12

Results:

Study Population

Of the 78 subjects enrolled, 23 (29.4%) were excluded due to a NIVA signal-to-noise

ratio (SNR) <20 throughout the entire signal. An additional 5 (6.4%) were excluded because

there were less than three windows with a SNR>20.

Demographic information for the analyzed cohort (n=50) and characteristics of excluded

patients are displayed in Table 1. Mean age was 53 (±15) years, 64% of subjects were male, and

10 (20%) were black. Indications for RHC included heart failure evaluation in 15 (30%), post-

cardiac transplant rejection surveillance in 28 (56%), or as diagnostic workup in 7 (14%). Of

those patients undergoing RHC for heart failure evaluation that had an echocardiogram within

the preceding year, ejection fraction was reduced (EF<40%) in 8 (53%) and preserved in 7

(47%).

13

Right Heart Catheterization
(n= 78)

 Included
(n=50)

Excluded
(n=28)

p-value

Age (years) 53 (±15) 60 (±13) 0.04
Gender

Male
Female

32 (64%)
18 (36%)

17 (61%)
11 (39%)

0.77

Race
Black

White/Asian
Other

10 (20%)
39 (78%)
1 (2%)

2 (7%)
25 (93%)
0

0.25

BMI (kg/m2) 31.1 (±9.2) 29.4 (±1.0) 0.06
Indication for RHC

Diagnostic
Heart Failure Evaluation
Transplant Follow-up

7 (14%)
15 (30%)
28 (56%)

6 (21%)
11 (39%)
11 (39%)

0.36

Comorbidities
Diabetes

HTN
CKD (GFR<60 mL/min)

20 (40%)
34 (68%)
29 (58%)

10 (36%)
17 (61%)
14 (50%)

0.71
0.52
0.43

Ejection Fraction
Reduced (EF<40%)
Preserved (EF>40%)

8 (17%)
39 (83%)

7 (28%)
18 (72%)

0.28

Edema grade
0
1
2
3
4

31 (62%)
12 (24%)
4 (8%)
2 (4%)
1 (2%)

16 (57%)
8 (29%)
1 (4%)
2 (7%)
1 (4%)

0.86

Heart rate (bpm) 83 (±16) 78 (±14) 0.18
Mean arterial pressure (mmHg) 93 (±13) 95 (±16) 0.45
Hemodynamic Data

Pulmonary capillary wedge pressure
(mmHg)

16 (±6) 14 (±6) 0.11

Cardiac output (L/min) 5.3 (±1.4) 4.7 (±1.2) 0.052
Right atrial pressure (mmHg) 8 (±4) 8 (±5) 0.77
Mean pulmonary artery pressure

(mmHg)
24 (±7) 24 (±10) 0.85

Systemic vascular resistance (Woods
Units)

18.4 (±5.4) 19.7 (±5.4) 0.34

Pulmonary vascular resistance (Woods
Units)

2.01 (±1.31) 2.38 (±1.86) 0.40

Table 1. Characteristics of included and excluded right heart catheterization subjects. Data presented as mean (+SD)
for continuous variables or count (%) for categorical variables.

PCWP measurements used in the analysis were those obtained from a post hoc

independent review of the hemodynamic tracings. These correlated with PCWP measurements in

14

the computerized report (r=0.83, p<0.05, Figure 4). PCWP in the analyzed cohort ranged from 7

to 30 mmHg, with a mean of 16 (±6) mmHg. Other hemodynamic indices obtained during

catheterization are displayed in Table 1. Other than age, no notable differences were noted

between included and excluded subjects.

NIVA Algorithm

Of the 26 potential predictor variables included in the Lasso, 22 were included in the final

model with a λ=0.015 selected (Appendix B). Goodness of fit of predictions using penalized

coefficients from the selected model demonstrated an R-squared of 0.49. Final NIVA values

demonstrated a significant positive correlation with PCWP (r=0.76, p<0.05, Figure 5A). NIVA

values also demonstrated a positive correlation with RAP (r=0.54, p<0.05, Figure 5B) and PAD

(r=0.60, p<0.05, Figure 5C).

Figure 4 Correlation between pulmonary capillary
wedge pressures (PCWP) obtained from report versus
blinded review of hemodynamic waveform.

15

ROC analysis demonstrated that NIVA is able to identify a PCWP >18 mmHg with a

sensitivity of 73% and a specificity of 80% (AUC=0.83, p<0.05, Figure 6).

Figure 5 Correlation of NIVA value to measured PCWP, right atrial pressure (RAP) and pulmonary
artery diastolic pressures (PAD) in subjects undergoing right heart catheterization. (A) NIVA values

correlate with PCWP (mmHg) in elective right heart catheterization (n=115, r=0.89, p<0.05). (B) NIVA values
correlate with right atrial pressure (n=114, r=0.60, p<0.05) and (C) pulmonary artery diastolic pressure (n=115,

r=0.55, p<0.05) measurements (mmHg) in elective right heart catheterization. Abbreviations: NIVA= non-
invasive venous waveform analysis, PCWP=pulmonary capillary wedge pressure, RAP= right atrial pressure,

PAD= pulmonary artery diastolic pressure.

0 10 20 30
0

10

20

30

40

NIVA Value
P

C
W

P

 r 0.76

 r 0.6 r 0.54

A

B C

16

Residual analyses demonstrated that the accuracy of NIVA to predict PCWP was not

significantly affected by SVR, PVR, CO, GFR, RHF, diabetes, BMI, wrist circumference, heart

rate, or mean arterial pressure (Figure 7). Residuals were higher (mean 0.41 vs -0.38, p<0.05) in

subjects with pulmonary hypertension.

Figure 6 ROC curve for ability of NIVA to detect
PCWP>18mmHg.

S
en

si
ti

vi
ty

%

 Area 0.83

17

Figure 7 Predictive accuracy of NIVA to estimate PCWP based on clinical variables and catheterization
data. * signifies p-value <0.05. All other correlations were nonsignificant (p>0.05). Pulmonary hypertension is

defined as a mean pulmonary arterial pressure > 25 mmHg.

18

Thoracic Impedance (ZOE®)

With impedance technology, lower resistance is associated with increased thoracic fluid

content (thus, ZOE® values inversely correlate with volume status). ZOE® demonstrated a

nonsignificant negative correlation with PCWP (r= -0.03, p=0.89, Figure 8).

Discussion:

The NIVA value is a numerical value generated from algorithmic analysis of the

harmonics of peripheral venous waveforms derived from a non-invasive sensor. This report

demonstrates the ability to use machine learning to generate an algorithm to calculate a NIVA

value that estimates PCWP with a high degree of accuracy (r=0.76, p<0.05) over a range of

clinical variables including systemic vascular resistance, pulmonary vascular resistance, and

Figure 8 Correlation between ZOE® and PCWP.
ZOE® did not correlate significantly with PCWP (r=-

0.03, p=0.89, n=20)

P
C

W
P

 (
m

m
H

g
)

 r -0.033

19

cardiac output. Unlike PCWP, which requires invasive catheterization, NIVA is non-invasive

and therefore may be used to monitor congestion in the inpatient, outpatient, and home settings

with minimal risk. NIVA was able to detect a PCWP>18, clinically indicative of congestion,

with a sensitivity of 73% and a specificity of 80% (AUC=0.83, p<0.05). These findings

represent an improvement from the earlier prototype23 and demonstrate the ability of venous

waveform analysis to accurately and non-invasively estimate PCWP, which has the potential to

help guide therapy in patients with heart failure in and out of the hospital.

The current clinical gold standard utilized by clinicians to assess volume status is

pulmonary capillary wedge pressure, which represents left-sided cardiac filling pressures, a

surrogate of preload, and carries inherent risks due to the invasive nature of the procedure. In

2005, data from the multicenter Evaluation Study of Congestive Heart Failure and Pulmonary

Artery Catheterization Effectiveness (ESCAPE) trial was published evaluating 433 patients

admitted with acute decompensated heart failure, assigned to receive therapy guided by clinical

assessment alone or in conjunction with PAC targets.30 Although use of the PAC demonstrated

improvements in exercise and quality of life endpoints, patients in this cohort also had increased

risk of adverse events with no differences in observed mortality. Therefore, although the routine

use of PAC-obtained measurements in management of HF has not been established, the 2013

ACCF/AHA Guidelines for the Management of Heart Failure continue to support the use of

invasive hemodynamic monitoring in select patient populations. These include “patients who

have respiratory distress or clinical evidence of impaired perfusion in whom the adequacy or

excess of intracardiac filling pressures cannot be determined from clinical assessment” as well as

patients with worsening renal function and/or persistently low systolic blood pressure in the

setting of unclear fluid status.31

20

Additionally, there has been data to support the use of an implantable wireless pulmonary

artery pressure monitor to guide outpatient management of HF to reduce hospitalizations. The

CHAMPION trial (2010) evaluated patients with persistent NYHA Class III heart failure

randomized to usual disease management strategies versus therapy guided by daily pressure

measurements from an implanted pulmonary artery pressure monitor, and demonstrated a

significant reduction in heart failure related hospitalizations in the latter group.32 Therefore, these

hemodynamic measurements, although risky to obtain, have clinical value in patient

management and quality of life. Therefore, a device that could provide a similar measure while

abolishing the risks involved with an invasive procedure has clear promise toward improving

inpatient and outpatient care of patients with HF with expansion toward other disorders that lead

to pathological alterations in intravascular volume. These results demonstrate that NIVA, a

noninvasive device, correlates strongly with a wide range of PCWP (r=0.76) and PAD (r=0.60).

Given these promising results, further studies are warranted to determine if the NIVA device can

provide the same improved clinical outcomes as the invasive measures with which it correlates.

In comparison, the correlation between PCWP and existing thoracic impedance

technology (ZOE®) was not significant. A limitation is that only a small number of enrolled

patients lacked chest hair and were thus able to participate in obtaining an impedance

measurement, and future comparisons should attempt to obtain a higher number of subjects.

Impedance technology relies on downstream effects of congestion, such as pulmonary edema

and intrathoracic fluid content, rather than estimation of intracardiac filling pressures, and it is

unclear whether resolution of pulmonary edema correlates with complete intravascular

decongestion.33,34 Another difficulty in interpreting measures of thoracic impedance is that the

output value (Ohms) is difficult to understand clinically as it does not equate to any existing

21

understood measures of intravascular volume, and the scale is inverse to volume status (lower

number = higher intravascular volume). NIVA is simple to use and can provide a numeric output

that predicts a widely understood clinical measure of intravascular volume, PCWP.

Though the algorithm used in this report was tailored to correlate with PCWP, which may

raise the concern of overfitting, use of a Lasso regression model avoids overfitting by limiting

the number of included predictor variables and minimizing an estimate of the out-of-sample

prediction error. As displayed in Supplementary Table 1, selection of the described model using

cross-validation has an estimated out-of-sample R-squared of 0.37 – future enrollment of patients

undergoing RHC to generate a “test” dataset not involved in model training will be useful for

validation of this algorithm and to determine a more accurate R-squared. Alternatively, future

enrollment of a larger dataset with lasso model selection using the plugin estimator, rather than

the cross-validation method, may further control for overfitting by calculating a value for λ that

dominates the noise in the estimating equations, which results in fewer variables in the final

model and ensures that the variables selected belong to the true model with high probability.

Data was obtained at a single institution (VUMC). The RHC population incorporated a

wide range of demographics, BMI, and PCWP. Residual analysis demonstrated that prediction

error was not altered over a range of systemic vascular resistance, pulmonary vascular resistance,

cardiac output, heart rate, mean arterial blood pressure, and presence of diabetes (which may

affect vessel compliance). Additionally, although a linear relationship between predictor

variables and PCWP is assumed in the model development chosen for this study, future iterations

of algorithm development may use more sophisticated machine learning techniques, such as

neural networks, to better identify and quantify complex nonlinear relationships between

waveform parameters and PCWP.

22

Limitations

The major limitation of this study is the large number of waveforms excluded due to

signal noise, accounting for approximately one-third of enrolled subjects. This is almost certainly

related to the low-amplitude nature of the peripheral venous signal (10-15 mmHg), which is

easily obscured by motion artifact. A comparison of the included and excluded cohorts did not

identify any other obvious explanations for poor signal quality in excluded subjects (Table 1).

This suggests that ongoing improvements in sensor apposition, signal acquisition and

amplification are required for future prototypes if they are to be used in awake patients. A SNR

threshold of 20 was chosen for this study based on previous data that examined the minimal

threshold at which reproducibility of amplitude measurements with low variance could be

obtained. A minimum of three windows was also employed to enhance reproducibility during

algorithm development. As newer prototypes are developed, these threshold values can be

reassessed to ensure optimization of maximal signal capture with minimal signal variance.

Potential future sensor and analysis improvements include incorporation of a

photoplethysmograph to assist with validation of the pulse rate by the automated program,

incorporation of an accelerometer to automatically discard signal segments with significant

motion artifact, use of band or notch filters to attenuate signals due to respiration or motion,

adjustment of amplifier gain, or attempts to subtract noise from the signal through incorporation

of additional piezos to detect motion.

Strict exclusion criteria were utilized including subjects with active atrial fibrillation,

congenital heart disease, or cardiac assist devices as it remains unclear whether accurate

measurements can be obtained in these populations, and further studies are warranted to further

investigate these. Although not relevant in this particular study population, the effect of

23

vasoactive drugs and altered venous tone on the venous signal also remains incompletely

understood. Henry et al. demonstrated that isoflurane, a vasodilating volatile anesthetic, affects

the peripheral venous waveform morphology in a dose-dependent manner, which may directly

impact waveform analysis.35 Further studies are needed to quantify these effects and how they

may affect assessment of volume. Another limitation of this study is that inherent to the question

of whether PCWP accurately reflects left ventricular end-diastolic volume (LVEDV),35 however

this correlate was chosen given the improved clinical outcome data described earlier as well as

its relative availability for ease of data collection and objectivity over radiographic measures of

LVEDV, which may be more user-dependent. Another inherent limitation in comparison of

NIVA to PCWP lies in the reproducibility and accuracy of PCWP measurements.35 To overcome

this, PCWP measurements were analyzed in patients undergoing RHC, a controlled setting, and

tracings reviewed by an independent, blinded cardiologist.

Conclusion

NIVA is a promising non-invasive technology for estimation of volume status. This study

demonstrates a process of iterative algorithm development as the sensor is modified and

improved, resulting in an improved correlation with PCWP and specificity in detection of

congestion. Machine learning is used to incorporate the amplitude changes of the cardiac

component of the venous waveform, a fundamental concept of venous waveform analysis for

volume assessment, toward estimation of a clinical gold-standard, PCWP. Further validation of

this algorithm in a separate test set is needed. Importantly, this study also highlights that ongoing

improvements in signal acquisition and reduction of noise are still required. As the device is

24

updated, and this process repeated, additional machine learning techniques such as neural

networks may be used to improve accuracy through identification of complex nonlinear

relationships between waveform parameters and volume status.

Potential Impact and Future Directions

 Future applications for a user-friendly, non-invasive device that can accurately estimate

volume status are broad, including in resource scare environments and the inpatient and

outpatient settings. The ability to quickly identify and guide resuscitation in life-threatening

states of hypovolemia, such as that due hemorrhage, would have great impact not only in the

hospital and operating room, but for emergency triage, in combat, and globally. Dehydration,

another etiology of hypovolemia, is rampant in the elderly, athletes, and worldwide secondary to

malnutrition, malignancy, and gastrointestinal illness. To be most useful, application of NIVA to

these settings may also benefit from expansion of the current device output. For example,

development of an algorithm that quantifies rate of volume loss may be more practical in the

setting of hemorrhage; this could be elucidated first in a porcine model of controlled hemorrhage

and subsequently validated in human studies. In a small number of patients undergoing

hemodialysis, rate of volume loss as detected by an early NIVA prototype has demonstrated the

ability to predict intradialytic hypotension – highlighting a potential use for NIVA to guide both

ultrafiltration amounts and rate.36

Prevention and treatment of volume overload, or congestion, is an every day worry in the

inpatient and outpatient setting for patients with heart failure or end stage renal disease.

25

Hemodynamic congestion and pulmonary edema may also occur in the acute setting as a

complication of sepsis and critical illness; early identification has the potential to improve

outcomes and prevent progression to respiratory failure and prolonged intubation. Additionally,

in the setting of highly contagious infectious disease (i.e. COVID-19), a non-invasive device that

can be monitored from a distance may assist in guiding care for critically ill patients while

minimizing provider contact and potential exposure. Future studies in these populations are

warranted to define the areas in which NIVA can improve clinical care.

 For the use of NIVA to be practical and safe in such a wide assortment of clinical

pathology, further work toward understanding additional physiologic parameters that may be

altered by disease and affect non-invasively obtained venous waveforms are required. Local

resonance of the venous waveform through soft tissue results in amplification of the higher

harmonics of the pulse rate in non-invasively obtained signals compared to directly transduced

waveforms (Figure 3). In clinical states of volume overload, varying degrees of edema alter the

stiffness of the extravascular tissue in between the vein and NIVA sensor, potentially altering the

amplitudes of the higher harmonics. Vessel compliance, altered by venous tone, may also affect

the transmission of these higher harmonics.

Future work will examine these potential effects with an in vivo porcine model and an ex

vivo hemodynamic flow loop. Phenylephrine, a vasoconstrictor, or sodium nitroprusside, a

vasodilator, can be administered during controlled blood loss or crystalloid volume overload in a

porcine model to determine the effect of venous tone on captured venous waveforms at various

volume states. Venous compliance will be measured through diameter and pressure changes

recorded with an intravenous ultrasound (ComboWireXT, Philips). Ongoing work is also

26

underway to design a hemodynamic flow loop (Figure 9) for controlled benchtop tuning of

physiologic parameters that may confound or differentially affect the NIVA signal. This will

consist initially of a single synthetic vein construct with tunable dimensions and mechanical

properties to reflect altered compliance and tone, and will eventually be expanded to include an

arterial and microvascular system. Sacrificial molding with ice allows for the creation of

freestanding hierarchal synthetic vessels from a variety of natural or synthetic polymers, with

wall thickness determined by dipping time.37 Alternatively, vessel scaffolds can be created using

a 3-D printer. These synthetic vessels will be embedded in a poly-vinyl alcohol (PVA) hydrogel

that represents soft tissue. A 6% PVA hydrogel mimics normal fatty tissue and will be covered

by a 2mm layer of 10% PVA hydrogel to mimic skin.38,39 The effect of soft tissue mechanical

properties on the NIVA signal will be investigated through variation in PVA concentration to

represent altered levels of edema. A physiological flow pump (Compuflow 1000, Simutec) will

be used that contains a database of pre-programmed waveforms and also allows user input of

venous waveforms obtained directly from patients. 40% glycerol solution will be used as a

blood-mimicking fluid.

27

The closed flow loop will also assist with device testing in the setting of various

arrhythmias, which can be programmed using the pump. Atrial fibrillation, the most common

arrhythmia in patients with heart failure, is characterized by an irregularly irregular heart rate.

This results in multiple peaks corresponding to f0 and its harmonics (Figure 10). It is unknown at

this time whether NIVA can accurately estimate volume status in these patients. The flow loop

will assist with determining whether NIVA can consistently differentiate between atrial

fibrillation (or other arrhythmias) and normal sinus rhythm, and whether the NIVA algorithm can

be accurately tailored to this setting. After defining the noise floor to identify “true peaks”,

examples of power estimation at each frequency for analysis include direct summation of peak

amplitudes or calculation of the integral of a gaussian curve fit to the peaks.

Figure 9 Hemodynamic flow loop. Various parameters of the closed flow loop can be altered for benchtop testing
of the NIVA device.

28

In conjunction with additional clinical validation studies, these in vivo and in vitro

experiments will help ensure the safe and accurate broadening of future clinical applications for

the NIVA device.

Figure 10 NIVA signal obtained from
patient with atrial fibrillation. Frequency
distribution demonstrates multiple peaks
corresponding to the pulse rate and its
harmonics.

29

REFERENCES

1. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute

kidney injury. Nat Rev Nephrol. 2010;6(2):107-115.

2. Murphy CV, Schramm GE, Doherty JA, et al. The importance of fluid management in

acute lung injury secondary to septic shock. Chest. 2009;136(1):102-109.

3. Chakko S, Woska D, Martinez H, et al. Clinical, radiographic, and hemodynamic

correlations in chronic congestive heart failure: conflicting results may lead to

inappropriate care. Am J Med. 1991;90(3):353-359.

4. Nauta JF, Hummel YM, van der Meer P, Lam CSP, Voors AA, van Melle JP. Correlation

with invasive left ventricular filling pressures and prognostic relevance of the

echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and

in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart

failure with preserved ejection fraction. Eur J Heart Fail. 2018;20(9):1303-1311.

5. Grodin JL, Drazner MH, Dupont M, et al. A disproportionate elevation in right

ventricular filling pressure, in relation to left ventricular filling pressure, is associated

with renal impairment and increased mortality in advanced decompensated heart failure.

Am Heart J. 2015;169(6):806-812.

6. Adamson PB. Pathophysiology of the transition from chronic compensated and acute

decompensated heart failure: new insights from continuous monitoring devices. Curr

Heart Fail Rep. 2009;6(4):287-292.

30

7. Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ. Central venous pressure, pulmonary artery

occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic

volume as indicators of cardiac preload. J Crit Care. 1996;11(4):180-188.

8. Sperry BW, Campbell J, Yanavitski M, Kapadia S, Tang WHW, Hanna M. Peripheral

Venous Pressure Measurements in Patients With Acute Decompensated Heart Failure

(PVP-HF). Circ Heart Fail. 2017;10(7).

9. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to

predict fluid responsiveness: influence of tidal volume. Intensive Care Med.

2005;31(4):517-523.

10. Uriel N, Sayer G, Imamura T, et al. Relationship Between Noninvasive Assessment of

Lung Fluid Volume and Invasively Measured Cardiac Hemodynamics. J Am Heart

Assoc. 2018;7(22):e009175.

11. Maines M, Catanzariti D, Cirrincione C, Valsecchi S, Comisso J, Vergara G.

Intrathoracic impedance and pulmonary wedge pressure for the detection of heart failure

deterioration. Europace. 2010;12(5):680-685.

12. Lozano-Nieto A, Turner AA. Effects of orthostatic fluid shifts on bioelectrical impedance

measurements. Biomed Instrum Technol. 2001;35(4):249-258.

13. Kauppinen PK, Hyttinen J, Malmivuo JA. Effects of fat resistivity changes on

measurement sensitivity of impedance cardiography determined by a 3D finite element

model of the visible human man. Paper presented at: Proceedings of 18th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society1996.

14. Gilotra NA, Tedford RJ, Wittstein IS, et al. Usefulness of Pulse Amplitude Changes

During the Valsalva Maneuver Measured Using Finger Photoplethysmography to

31

Identify Elevated Pulmonary Capillary Wedge Pressure in Patients With Heart Failure.

Am J Cardiol. 2017;120(6):966-972.

15. Gilotra NA, Wanamaker BL, Rahim H, et al. Usefulness of Noninvasively Measured

Pulse Amplitude Changes During the Valsalva Maneuver to Identify Hospitalized Heart

Failure Patients at Risk of 30-Day Heart Failure Events (from the PRESSURE-HF

Study). Am J Cardiol. 2020;125(6):916-923.

16. Sharma GV, Woods PA, Lindsey N, et al. Noninvasive monitoring of left ventricular

end-diastolic pressure reduces rehospitalization rates in patients hospitalized for heart

failure: a randomized controlled trial. J Card Fail. 2011;17(9):718-725.

17. McIntyre KM, Vita JA, Lambrew CT, Freeman J, Loscalzo J. A noninvasive method of

predicting pulmonary-capillary wedge pressure. N Engl J Med. 1992;327(24):1715-1720.

18. Sharma GV, Woods PA, Lambrew CT, et al. Evaluation of a noninvasive system for

determining left ventricular filling pressure. Arch Intern Med. 2002;162(18):2084-2088.

19. Bartelstone HJ. Role of the veins in venous retunr. Circ Res. 1960;8:1059-1076.

20. Mohrman DE, Heller LJ. Hemodynamic Interactions. In: Cardiovascular Physiology, 9e.

New York, NY: McGraw-Hill Education; 2018.

21. Alian AA, Galante NJ, Stachenfeld NS, Silverman DG, Shelley KH. Impact of lower

body negative pressure induced hypovolemia on peripheral venous pressure waveform

parameters in healthy volunteers. Physiol Meas. 2014;35(7):1509-1520.

22. Alvis BD, McCallister R, Polcz M, et al. Non-Invasive Venous waveform Analysis

(NIVA) for monitoring blood loss in human blood donors and validation in a porcine

hemorrhage model. J Clin Anesth. 2020;61:109664.

32

23. Alvis BD, Polcz M, Huston JH, et al. Observational Study of Noninvasive Venous

Waveform Analysis to Assess Intracardiac Filling Pressures During Right Heart

Catheterization. J Card Fail. 2020;26(2):136-141.

24. Hocking KM, Alvis BD, Baudenbacher F, et al. Peripheral i.v. analysis (PIVA) of venous

waveforms for volume assessment in patients undergoing haemodialysis. Br J Anaesth.

2017;119(6):1135-1140.

25. Hocking KM, Sileshi B, Baudenbacher FJ, et al. Peripheral Venous Waveform Analysis

for Detecting Hemorrhage and Iatrogenic Volume Overload in a Porcine Model. Shock.

2016;46(4):447-452.

26. Miles M, Alvis BD, Hocking K, et al. Peripheral Intravenous Volume Analysis (PIVA)

for Quantitating Volume Overload in Patients Hospitalized With Acute Decompensated

Heart Failure-A Pilot Study. J Card Fail. 2018;24(8):525-532.

27. Tibshirani R. Regression Shrinkage and Selection Via the Lasso. 1996;58(1):267-288.

28. Kovacs G, Dumitrescu D, Barner A, et al. Definition, clinical classification and initial

diagnosis of pulmonary hypertension: Updated recommendations from the Cologne

Consensus Conference 2018. Int J Cardiol. 2018;272S:11-19.

29. Yamamoto K, Nishimura RA, Redfield MM. Assessment of mean left atrial pressure

from the left ventricular pressure tracing in patients with cardiomyopathies. Am J

Cardiol. 1996;78(1):107-110.

30. Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure

and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA.

2005;294(13):1625-1633.

33

31. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management

of heart failure: a report of the American College of Cardiology Foundation/American

Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol.

2013;62(16):e147-239.

32. Adamson PB, Abraham WT, Bourge RC, Stevenson LW, Yadav JJJoCF. CardioMEMS

heart sensor allows monitoring of pressures to improve outcomes in NYHA class III heart

failure patients (CHAMPION) trial: impact of hemodynamic guided care on patients with

preserved ejection fraction. 2010;16(11):913.

33. Uhley HN, Leeds SE, Sampson JJ, Friedman M. Role of pulmonary lymphatics in

chronic pulmonary edema. Circulation research. 1962;11:966-970.

34. Chase SC, Taylor BJ, Cross TJ, Coffman KE, Olson LJ, Johnson BD. Influence of

Thoracic Fluid Compartments on Pulmonary Congestion in Chronic Heart Failure. J

Card Fail. 2017;23(9):690-696.

35. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central

venous pressure fail to predict ventricular filling volume, cardiac performance, or the

response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691-699.

36. Alvis BD, Polcz M, Miles M, et al. Non-invasive venous waveform analysis (NIVA) for

volume assessment in patients undergoing hemodialysis: an observational study. BMC

Nephrol. 2020;21(1):194.

37. Wang R, Ozsvar J, Aghaei-Ghareh-Bolagh B, Hiob MA, Mithieux SM, Weiss AS.

Freestanding hierarchical vascular structures engineered from ice. Biomaterials.

2019;192:334-345.

34

38. Akki RS, Arunachalam K. Breast tissue phantoms to assist compression study for cancer

detection using microwave radiometry. Conf Proc IEEE Eng Med Biol Soc.

2014;2014:1119-1122.

39. Bader DL, Bowker P. Mechanical characteristics of skin and underlying tissues in vivo.

Biomaterials. 1983;4(4):305-308.

35

APPENDIX

Appendix A: C++ Script for AlgorithmRunner.exe

/**
 * @file: main.cpp
 *
 * @date: Sep 5, 2018
 * @author: Volumetrix, Jonathan Whitfield
 *
 * @copyright Copyright (c) 2018 VoluMetrix LLC
 *
 * All Rights Reserved.
 *
 * All information contained herein is, and remains the
 * property of VoluMetrix LLC. and its suppliers, if any.
 * The intellectual and technical concepts contained herein are
 * proprietary to VoluMetrix LLC. and its suppliers and may
 * be covered by U.S. and Foreign Patents, patents in process,
 * and are protected by trade secret or copyright law.
 * Dissemination of this information or reproduction of this material
 * is strictly forbidden unless prior written permission is obtained
 * from VoluMetrix LLC.
 *
 */

#include <string>
#include <vector>
#include <iostream>
#include <istream>
#include <fstream>
#include <iterator>
#include <algorithm>
#include "dirent.h"
#include <map>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "algorithm.hpp"
#include "fir.hpp"
#include "ppg_detection.hpp"

typedef struct {
 std::string absolutePath;

36

 std::string fileName;
}inputFile_t;

typedef struct {
 inputFile_t niva;
 inputFile_t ppg;
}nivaPpgFilePair_t;

/**
 * @ingroup algorithm-host
 * @{
 */

typedef enum {
 TXT = 0,
 AFE,
 RAW,
 RENE,
 OTHER,
}FileType_t;

float getStd(float * data, size_t len, float mean) {
 float sum = 0.0f;

 /* sanity check */
 if (len < 1) {
 return NAN;
 }

 /* sum sample minus mean squared */
 for (int i = 0; i < (int)len; i++) {
 float temp = data[i] - mean;
 sum += temp * temp;
 }

 /* scale ny number of samples */
 sum /= (float)len;

 /* square root for standard deviation */
 return (float)std::sqrt(sum);
}

static constexpr float PPG_SCALE = 5.72204589843750e-07;
static constexpr float NIVA_SCALE = 2.88486480712891e-07; //!< (2.42 / 2^23)

/**
 * @brief Print help for the program to the console
 */
void printHelp() {
 std::cout << std::endl;

 std::cout << "Usage: algorithmRunner <path> [-e <file extension>] [-o <path>] [-s <value>]"
<< std::endl;

 std::cout << "Must include input path" << std::endl << std::endl;

 std::cout << "options: " << std::endl;
 std::cout << "\t-e\tSupply file extension, program will find analyze all files found in -- if
omitted '.txt' is used -- '.rene' for niva/ppg analysis" << std::endl;
 std::cout << "\t-o\tSupply output path for analysis file to be stored -- if omitted input
path is used" << std::endl;
 std::cout << "\t-s\tSupply start sample, number of lines to skip at the beginning of the file
-- if omitted 25 is used" << std::endl;
 std::cout << "\t-x\t1 for extended algorithm output, 0 for normal output" << std::endl;
 std::cout << "\t-d\t1 to enable taking the derivative of the input signal before analysis, 0
for normal input" << std::endl;
}

/**

37

 * @brief Parse input arguments for a
 * @param argc: argument count
 * @param argv: argument array
 * @param option: option to search for
 * @return empty string on failure
 */
const std::string getOption(int argc, char * argv[],
 const std::string option) {

 /* populate options */
 std::vector<std::string> inputs;
 for(int i = 1; i < argc; i++) {
 inputs.push_back(std::string(argv[i]));
 }

 std::vector<std::string>::const_iterator itr;
 itr = std::find(inputs.begin(), inputs.end(), option);

 /* check that we found the option and an option parameter exists */
 if(itr != inputs.end() && (itr + 1) != inputs.end()) {
 /* return option */
 return *(++itr);
 }

 static const std::string empty("");
 return empty;
}

/**
 * @brief Check if path is an actual directory
 * @param path: path to check
 * @return: non-zero if path is not a directorys
 */
int directoryExists(const std::string& path) {
 DIR * dir = opendir(path.c_str());

 if(dir != nullptr) {
 return 0;
 }

 return -1;
}

/**
 * @brief Get list of files in directory of a given file type
 * @param path: path to directory
 * @param extension: file extension to filter by
 * @param files: output list of files
 * @return number of files found in directory
 */
int getFilesForDirectory(const std::string& path, const std::string& extension,
 std::vector<std::string>& files) {
 DIR * dir = opendir(path.c_str());
 struct dirent * d;
 while((d = readdir(dir)) != nullptr) {
 std::string fName = d->d_name;
 std::size_t found = fName.find(extension);

 if(found != std::string::npos) {
 files.push_back(fName);
 }
 }
 closedir(dir);

 return files.size();
}

int getFileSize(const std::string &fileName) {
 std::ifstream file(fileName.c_str(), std::ifstream::in | std::ifstream::binary);

 if(!file.is_open()) {

38

 return -1;
 }

 file.seekg(0, std::ios::end);
 int fileSize = file.tellg();
 file.close();

 return fileSize;
}

/**
 * @brief Get list of files in directory of a given file type
 * @param path: path to directory
 * @param extension: file extension to filter by
 * @param files: output list of files
 * @return number of files found in directory
 */
int getFilesForDirectory(const std::string& path, const std::string& extension,
 std::vector<inputFile_t>& files) {
 DIR * dir = opendir(path.c_str());
 if(dir == nullptr) {
 return -1;
 }
 struct dirent * d;
 while((d = readdir(dir)) != nullptr) {
 std::string fName = d->d_name;
 std::size_t found = fName.find(extension);

 if(found != std::string::npos) {
 inputFile_t file;
 file.absolutePath = std::string(path);
 if(file.absolutePath.back() != '/') {
 file.absolutePath.append("/");
 }
 file.absolutePath.append(fName);
 file.fileName = fName;

 files.push_back(file);
 } else if (directoryExists(fName)) {
 std::string downPath = std::string(path);
 if(downPath.back() != '/') {
 downPath.append("/");
 }
 downPath.append(fName);
 getFilesForDirectory(downPath, extension, files);
 }
 }
 closedir(dir);

 return files.size();
}

int getRawFilesForDirectory(const std::string& path, std::vector<inputFile_t>& files) {
 DIR * dir = opendir(path.c_str());
 if(dir == nullptr) {
 return -1;
 }
 struct dirent * d;
 while((d = readdir(dir)) != nullptr) {
 std::string fName = d->d_name;
 std::string fPath = ((std::string)path).append(fName);

 /* No file extension */
 std::size_t found = fName.find(".");

 if(found == std::string::npos && (getFileSize(fPath) != 0)) {
 inputFile_t file;
 file.absolutePath = std::string(path);
 if(file.absolutePath.back() != '/') {
 file.absolutePath.append("/");
 }

39

 file.absolutePath.append(fName);
 file.fileName = fName;

 files.push_back(file);
 } else if (directoryExists(fName)) {
 std::string downPath = std::string(path);
 if(downPath.back() != '/') {
 downPath.append("/");
 }
 downPath.append(fName);
 getRawFilesForDirectory(downPath, files);
 }
 }

 closedir(dir);

 return files.size();
}

int getReneFilesForDirectory(const std::string& path, std::vector<nivaPpgFilePair_t>& files) {
 DIR * dir = opendir(path.c_str());
 if(dir == nullptr) {
 return -1;
 }
 struct dirent * d;
 while((d = readdir(dir)) != nullptr) {
 std::string fName = d->d_name;
 std::string fPath = ((std::string)path).append(fName);

 /* No file extension */
 std::size_t found = fName.find(".niva");

 if(found != std::string::npos && (getFileSize(fPath) != 0)) {
 /* Extract NIVA file */
 inputFile_t nivaFile;
 nivaFile.absolutePath = std::string(path);
 if(nivaFile.absolutePath.back() != '/') {
 nivaFile.absolutePath.append("/");
 }
 nivaFile.absolutePath.append(fName);
 nivaFile.fileName = fName;

 inputFile_t ppgFile;
 ppgFile.absolutePath = std::string(path);
 if(ppgFile.absolutePath.back() != '/') {
 ppgFile.absolutePath.append("/");
 }

 std::string ppgName = fName.substr(0, fName.length() - 4);
 ppgName.append("ppg");
 ppgFile.absolutePath.append(ppgName);
 ppgFile.fileName = ppgName;

 nivaPpgFilePair_t filePair = {nivaFile, ppgFile};

 files.push_back(filePair);
 } else if (directoryExists(fName)) {
 std::string downPath = std::string(path);
 if(downPath.back() != '/') {
 downPath.append("/");
 }
 downPath.append(fName);
 getReneFilesForDirectory(downPath, files);
 }
 }

 closedir(dir);

 return files.size();
}

40

/**
 * @brief Write header to analysis file
 * @param fileStream: open file stream to write to
 * @return non-zero on failure
 */
int writeResultsHeader(std::ofstream& fileStream) {
 if(fileStream.is_open()) {
#ifdef TASK
 fileStream << "Time [s]\t\tSNR\t\tRMS\t\tPR\t\tPPG_PR\t\tNIVA\t\tERROR" << std::endl;
#else
 fileStream <<
"time\tniva_score\tsnr\tpulse_rate\tpulse_rate_ppg\tf0\tf1\tf2\tf3\tf4\tf5\tf6\tf7\ta0\ta1\ta2\ta
3\ta4\ta5\ta6\ta7\trms\thf\tclassifier\t+30\terror\n";
#endif
 return 0;
 }
 return -1;
}

/**
 * @brief Parse line with given delimiter
 * @param line: line to parse
 * @param delim: delimiter to parse file
 * @param lineContents: output vector of contents after parsing
 * @return non-zero on failure
 */
int readFromLine(std::string line, char delim, std::vector<std::string>& lineContents) {
 std::stringstream ss(line);
 std::string item;
 while(std::getline(ss, item, delim)) {
 lineContents.push_back(item);
 }

 return 0;
}

/**
 * @brief Callback for algorithm
 * @param results: results strucure from algorithm
 * @param outputFile: pointer to output file stream to write results to
 * @return None
 */
static void processResults(Algorithm::Results_t results, void * outputFile) {
 std::pair<std::string, std::ofstream*> * resultsPair =
 (std::pair<std::string, std::ofstream*> *)outputFile;
 std::ofstream * nivaResults = resultsPair->second;

// float nivaScore = (2 * results.amp[0] +
// 0.4 * results.amp[1] +
// 0.2 * results.amp[2]) /
// (results.amp[0] + results.amp[1] + results.amp[2]);

 float hf = (results.amp[3] + results.amp[4] + results.amp[5] + results.amp[6] +
results.amp[7]) /
 (results.amp[0] + results.amp[1] + results.amp[2] + results.amp[3] + results.amp[4] +
 results.amp[5] + results.amp[6] + results.amp[7]) * 100;

 if(nivaResults->is_open()) {
 /* time */
 *nivaResults << (results.startSample * .002) << "\t";
 /* niva score */
 *nivaResults << results.nivaScore << "\t";
 /* signal to noise */
 *nivaResults << results.snr << "\t";
 /* pulse rate */
 *nivaResults << results.freq[0] * 60 << "\t";
 /* ppg pulse rate */
 *nivaResults << results.ppgPulseRate << "\t";

 /* Frequencies */
 for(int i = 0; i < Algorithm::NUM_HARMONICS + 1; i ++) {

41

 *nivaResults << results.freq[i] << "\t";
 }

 /* amplitudes */
 for(int i = 0; i < Algorithm::NUM_HARMONICS + 1; i ++) {
 *nivaResults << results.amp[i] << "\t";
 }

 *nivaResults << results.rms << "\t";

 *nivaResults << hf << "\t";

 *nivaResults << results.classifier << "\t";

 *nivaResults << results.niva30plus << "\t";

 *nivaResults << results.errorFlags.errorFlags << "\t";

 *nivaResults << std::endl;
 }
}

static constexpr uint32_t NUM_CLEAN_WINDOWS = 15; //!< Number of clean windows
static constexpr uint32_t MAX_NUM_WINDOWS = 30; //!< Maximum number of windows
static constexpr uint32_t SNR_THRESH_DEFAULT = 20; //!< Signal to Noise Ratio default threshold
static constexpr uint32_t NUM_WIN_ABOVE_HIGH_THRESH = NUM_CLEAN_WINDOWS / 2;

static constexpr uint32_t NUM_THRESHOLDS = 3;

static constexpr uint32_t SNR_THRESH_ONE = SNR_THRESH_DEFAULT;
static constexpr uint32_t SNR_THRESH_TWO = 40;
static constexpr uint32_t SNR_THRESH_THREE = 60;

static constexpr uint32_t SNR_COUNT_ONE = 15;
static constexpr uint32_t SNR_COUNT_TWO = 10;
static constexpr uint32_t SNR_COUNT_THREE = 5;

typedef struct SnrThreshold_t{
 int thresholdSnr;
 int thresholdCount;
 int count;
 bool exceededThreshold;
} SnrThreshold_t;

typedef struct IncomingResults_t {
 uint32_t count;
 SnrThreshold_t snrThreshold[NUM_THRESHOLDS];
 Algorithm::Results_t results[MAX_NUM_WINDOWS];

 void reset() {
 count = 0;
 memset(results, 0x00, sizeof(Algorithm::Results_t) * MAX_NUM_WINDOWS);

 snrThreshold[0] = {SNR_THRESH_ONE, SNR_COUNT_ONE, 0, false};
 snrThreshold[1] = {SNR_THRESH_TWO, SNR_COUNT_TWO, 0, false};
 snrThreshold[2] = {SNR_THRESH_THREE, SNR_COUNT_THREE, 0, false};
 }
} IncomingResults_t;

IncomingResults_t mHighResults; //!< High results
IncomingResults_t mLowResults; //!< Low results
IncomingResults_t mValidResults; //!< All valid results

uint32_t mTotalResultsIndex = 0; //!< Total (valid and invalid results) index

bool mLastWindowGood = false; //!< Flag to allow measurement to complete if good
windows are still coming in

bool checkSnrThresholdCount(IncomingResults_t * results, float snr) {
 for (int i = 0; i < (int)NUM_THRESHOLDS; i++) {
 if (snr >= results->snrThreshold[i].thresholdSnr) {

42

 if (++results->snrThreshold[i].count >= results->snrThreshold[i].thresholdCount) {
 results->count = results->snrThreshold[i].count;
 results->snrThreshold[i].exceededThreshold = true;
 return true;
 }
 }
 }

 return false;
}

void averageResults(IncomingResults_t validResults, Algorithm::Results_t * averageResults) {
 memset(averageResults, 0x00, sizeof(Algorithm::Results_t));
 SnrThreshold_t snrThreshold;

 /* check which threshold we've crossed */
 for (int i = 0; i < (int)NUM_THRESHOLDS; i++) {
 if (validResults.snrThreshold[i].exceededThreshold) {
 snrThreshold = validResults.snrThreshold[i];
 break;
 }
 }
 int count = 0;
 int i = 0;
 float stdIntermediate[MAX_NUM_WINDOWS];
 while ((count < (int)validResults.count) && (i < (int)MAX_NUM_WINDOWS)) {
 /* Accumulate niva scores */
 float snr = validResults.results[i].snr;
 if (snr >= snrThreshold.thresholdSnr) {
 float score = validResults.results[i].nivaScore;

 stdIntermediate[count++] = score;
 if (!std::isnan(score) && (score > 0)) {
 averageResults->nivaScore += score;
 }

 /* Accumulate fundamental frequencies */
 float freq = validResults.results[i].freq[0];

 if (!std::isnan(freq)) {
 averageResults->freq[0] += freq;
 }

 /* Accumulate snr's */
 if (!std::isnan(snr)) {
 averageResults->snr += snr;
 }
 }
 i++;
 }

 /* Calculate averages */
 averageResults->nivaScore /= snrThreshold.count;
 averageResults->freq[0] /= snrThreshold.count;
 averageResults->snr /= snrThreshold.count;

 /* calculate the standard deviation of the scores */
 float std = getStd(stdIntermediate, snrThreshold.count, averageResults->nivaScore);

 averageResults->rms = std;
}

static void processResultsTask(Algorithm::Results_t results, void * outputFile) {
 std::pair<std::string, std::ofstream*> * resultsPair =
 (std::pair<std::string, std::ofstream*> *)outputFile;
 std::ofstream * nivaResults = resultsPair->second;
 nivaResults->precision(4);

 /* Check to see that we've run out of time (or windows) -- continue if we're on a streak */
 if (++(mTotalResultsIndex) >= MAX_NUM_WINDOWS && !mLastWindowGood) {
 /* we've taken too long, measurement incomplete */

43

 *nivaResults << "Measurement Incomplete" << std::endl;

 //reset();
 mTotalResultsIndex = 0;
 mLastWindowGood = false;

 mHighResults.reset();
 mLowResults.reset();
 mValidResults.reset();
 } else if (results.snr > SNR_THRESH_DEFAULT) {

 /* set last good window flag */
 mLastWindowGood = true;

 /* add results to array to later average */
 mValidResults.results[mValidResults.count++] = results;

 /* Check to see if how good the window is */
 bool enoughWindowsHigh = false;
 bool enoughWindowsLow = false;

 /* split results into high/low */
 if (results.above18) {
 mHighResults.results[mHighResults.count++] = results;
 enoughWindowsHigh = checkSnrThresholdCount(&mHighResults, results.snr);
 } else {
 mLowResults.results[mLowResults.count++] = results;
 enoughWindowsLow = checkSnrThresholdCount(&mLowResults, results.snr);
 }

 if (enoughWindowsHigh || enoughWindowsLow) {//(mLowResults.count >= NUM_CLEAN_WINDOWS ||
mHighResults.count >= NUM_CLEAN_WINDOWS) {
 /* Send the last window to the storage task */
 //Progress Update
 /* Update status */
 *nivaResults <<
 results.startSample << "\t\t" <<
 results.snr << "\t\t" <<
 results.rms << "\t\t" <<
 results.freq[0] * 60 << "\t\t" <<
 results.ppgPulseRate << "\t\t" <<
 results.nivaScore << "\t\t" <<
 results.errorFlags.errorFlags << "\t\t" <<
 results.above18 << std::endl;
//
// if (results.above18) {
// *nivaResults << "High window: "<< results.nivaScore << " SNR: " << results.snr
<< std::endl;
// } else {
// *nivaResults << "Low window: " << results.nivaScore << " SNR: " << results.snr
<< std::endl;
// }

 /* average results */
 Algorithm::Results_t avgResults;

 if (enoughWindowsHigh) { /* Measurement is high */
 /* check classifier outputs */
 int over30Count = 0;

 /* Get count of windows over 30 */
 for (int i = 0; i < (int)mHighResults.count; i++) {
 /* Accumulate windows that are 30+ */
 if (mHighResults.results[i].niva30plus) {
 over30Count++;
 }
 }

 /* If we've got enough over */
 if (over30Count >= ((int)mHighResults.count / 2)) {

44

 /* just set the flag true -- we dont need to average results here */
 avgResults.niva30plus = true;
 } else {
 /* Average results here */
 averageResults(mHighResults, &avgResults);
 }

 } else {
 /* Measurement is low */
 averageResults(mLowResults, &avgResults);
 }

 /* we got enough windows, send results */
 /* Construct message to let everyone know that we're done */
 /* niva score */
 *nivaResults <<
 "000000" << "\t\t" <<
 avgResults.snr << "\t\t" <<
 avgResults.rms << "\t\t" <<
 avgResults.freq[0] * 60 << "\t\t" <<
 avgResults.ppgPulseRate << "\t\t" <<
 avgResults.nivaScore << "\t\t" <<
 avgResults.errorFlags.errorFlags << "\t\t" <<
 avgResults.above18 << std::endl;

// *nivaResults << avgResults.nivaScore << "\t";
// /* standard deviation*/
// *nivaResults << avgResults.rms << '\t';
// /* signal to noise */
// *nivaResults << avgResults.snr << "\t";
// /* pulse rate */
// *nivaResults << avgResults.freq[0] * 60 << "\t";
//
// *nivaResults << avgResults.niva30plus << "\t";
//
// *nivaResults << avgResults.errorFlags.errorFlags << "\t";
//
// *nivaResults << std::endl;

 //reset();
 mTotalResultsIndex = 0;
 mLastWindowGood = false;

 mHighResults.reset();
 mLowResults.reset();
 mValidResults.reset();
 } else {
 /* Update status */
 *nivaResults <<
 results.startSample << "\t\t" <<
 results.snr << "\t\t" <<
 results.rms << "\t\t" <<
 results.freq[0] * 60 << "\t\t" <<
 results.ppgPulseRate << "\t\t" <<
 results.nivaScore << "\t\t" <<
 results.errorFlags.errorFlags << "\t\t" <<
 results.above18 << std::endl;

// if (results.above18) {
// *nivaResults << "High window: "<< results.nivaScore << " SNR: " << results.snr
<< std::endl;
// } else {
// *nivaResults << "Low window: " << results.nivaScore << " SNR: " << results.snr
<< std::endl;
// }
 }
 } else {
 /* SNR below threshold */
 mLastWindowGood = false;
 }
}

45

static void processExtendedResults(Algorithm::ResultsExtended_t resultsEx, void * outputFile) {
 /* handle extended results here */
 std::pair<std::string, std::ofstream> * resultsPair =
 (std::pair<std::string, std::ofstream> *)outputFile;

 std::ofstream extendedOutput;
 std::string path = resultsPair->first.substr(0, resultsPair->first.length() - 8);
 path.append("_");
 path.append(std::to_string(resultsEx.results.startSample));
 extendedOutput.open(path, std::ofstream::out | std::ios::binary | std::ofstream::trunc);

 if(extendedOutput.is_open()) {
 extendedOutput.write((const char *) resultsEx.detectedPeaks, sizeof(int32_t) * 100);
 extendedOutput.write((const char *) resultsEx.magnitudeOut, sizeof(float) * 2000);
 }

 extendedOutput.close();
}

/**
 * @brief Algorithm Host Runner main function
 * @param argc: argument count
 * @param argv: argument array
 * @return non-zero on failure
 */
int main(int argc, char *argv[]) {
 /* check for help */
 for(int i = 0; i < argc; i ++) {
 if(std::string(argv[i]) == "--help") {
 printHelp();
 return 0;
 }
 }

 /* Input path */
 std::string dataPath;
 if(argc < 2) {
 std::cout << "Too few arguments -- No path to data supplied" << std::endl;
 printHelp();
 return -1;
 } else {
 /* Assign first to path string*/
 dataPath = std::string(argv[1]);
 if(dataPath.back() != '/') {
 dataPath.insert(dataPath.end(), '/');
 }

 if(directoryExists(dataPath) != 0) {
 std::cout << "Supplied path not a directory" << std::endl;
 return -3;
 }
 }

 /* check file extension parameter*/
 FileType_t fileType;
 std::string fileExtension = getOption(argc, argv, "-e");
 if (fileExtension.empty()) {
 std::cout << "no file extension supplied, using '.txt'" << std::endl;
 fileExtension = std::string(".txt");
 }

 /* check if this is a valid option */
 if (fileExtension.compare(".txt") == 0) {
 fileType = FileType_t::TXT;
 } else if (fileExtension.compare(".afe") == 0) {
 fileType = FileType_t::AFE;
 } else if (fileExtension.compare(" ") == 0 || fileExtension.compare(".raw") == 0) {
 fileType = FileType_t::RAW;
 } else if (fileExtension.compare(".rene") == 0) {

46

 fileType = FileType_t::RENE;
 } else {
 fileType = FileType_t::OTHER;
 }

 /* Check if the output path is supplied */
 std::string outputPath = getOption(argc, argv, "-o");
 if(outputPath.empty()) {
 std::cout << "no output path supplied, using input data path" << std::endl;
 outputPath = std::string(dataPath);
 } else if(outputPath.back() != '/') {
 outputPath.insert(outputPath.end(), '/');
 }

 /* check if the output path exists */
 struct stat outputPathInfo;
 if (stat(outputPath.c_str(), &outputPathInfo) != 0) {
 std::cout << "Output directory does not exist -- attempting to create..." << std::endl;
#ifdef MINGW_X64
 if (mkdir(outputPath.c_str()) == 0) {
#else
 if (mkdir(outputPath.c_str(), ALLPERMS) == 0) {
#endif
 std::cout << "Directory created -- moving on" << std::endl;
 }
 }

 int startSample = 25;
 std::string startSampleStr = getOption(argc, argv, "-s");
 if(startSampleStr.empty()) {
 std::cout << "no start sample supplied, default (25) is being used" << std::endl;
 }

 bool extended = false;
 std::string extend = getOption(argc, argv, "-x");
 if(extend.back() == '1') {
 extended = true;
 }

 bool derivative = false;
 std::string deriv = getOption(argc, argv, "-d");
 if (deriv.back() == '1') {
 derivative = true;
 }

 /* get files in directory */
 std::vector<inputFile_t> files;
 std::vector<nivaPpgFilePair_t> nivaPpgFiles;

 if(fileType == FileType_t::TXT || fileType == FileType_t::AFE || fileType ==
FileType_t::OTHER) {
 if(getFilesForDirectory(dataPath, fileExtension, files) < 1) {
 std::cout << "No files found in directory!" << std::endl;
 return -1;
 }
 } else if (fileType == FileType_t::RENE) {
 if (getReneFilesForDirectory(dataPath, nivaPpgFiles) < 1) {
 std::cout << "No files found in directory!" << std::endl;
 return -1;
 }
 } else {
 /* raw files */
 if(getRawFilesForDirectory(dataPath, files) < 1) {
 std::cout << "No files found in directory!" << std::endl;
 return -1;
 }
 }

 for(unsigned int i = 0; i < nivaPpgFiles.size(); i++) {
 /* reset 'task' results */
 mHighResults.reset(); //!< High results

47

 mLowResults.reset(); //!< Low results
 mValidResults.reset(); //!< All valid results

 mTotalResultsIndex = 0; //!< Total (valid and invalid results) index
 mLastWindowGood = false; //!< Flag to allow measurement to complete if good
windows are still coming in

 /* Algorithm Object */
 Algorithm nivaAlgorithm;

 /* Algorithm buffers */
 Algorithm::NivaAlgorithmMemMap_t algorithmBuffers;

 /* Set memory map */
 nivaAlgorithm.setMemMap(&algorithmBuffers);

 /* PPG detection memory map */
 PpgDetection::PpgDetectionMemMap_t ppgBuffers;

 /* PPG detection algorithm */
 PpgDetection ppgDetection(&ppgBuffers);

 /* get filename (without extension) */
 std::string outputFile;
 std::pair<std::string, std::ofstream*> results;
 outputFile = nivaPpgFiles[i].niva.fileName.substr(0,
nivaPpgFiles[i].niva.fileName.length() - fileExtension.length());
 outputFile.append(".results");

 /* output path */
 std::string resultsOutputPath = outputPath;
 resultsOutputPath.append(outputFile);

 /* results output file stream */
 std::ofstream nivaResults;
 nivaResults.open(resultsOutputPath, std::ofstream::out | std::ofstream::trunc);

 results.first = resultsOutputPath;
 results.second = &nivaResults;

 /* Write header to file */
 writeResultsHeader(nivaResults);

 /* assign callback */
 if(extended) {
 nivaAlgorithm.init(&processResults, &processExtendedResults, &results);
 } else {
#ifdef TASK
 nivaAlgorithm.init(&processResultsTask, &results);
#else
 nivaAlgorithm.init(&processResults, &results);
#endif
 }

 /* open the files */
 std::ifstream mNivaFile (nivaPpgFiles[i].niva.absolutePath);
 std::ifstream mPpgFile (nivaPpgFiles[i].ppg.absolutePath);

 float currentBpm = -1;

 /* Setup the moving average filter */
 float mvgAvgBuffer[8192];
 memset(mvgAvgBuffer, 0x00, sizeof(float) * 8192);
 CircularBufferFloat mvgAvg;
 mvgAvg.assign(&mvgAvgBuffer[0], 8192);

 float coefficients[4] = {0.25f, 0.25f, 0.25f, 0.25f};
 Fir movingAverage;

 movingAverage.setCoefficients(&coefficients[0], 4);

48

 if (mNivaFile.is_open() && mPpgFile.is_open()) {
 std::cout << "******** START " << nivaPpgFiles[i].niva.fileName << " ********" <<
std::endl;
 int index = 0;
 std::string line;
 float previousSample = 0;
 float nivaStartTime = 0;
 float ppgStartTime = 0;

 for(index = 0; index < startSample; index++) {
 std::getline(mNivaFile, line);
 std::vector<std::string> lineContents;
 readFromLine(line, '\t', lineContents);

 if (index == 1) {
 nivaStartTime = std::stod(lineContents[0]);
 }

 std::string ppgLine;
 std::getline(mPpgFile, ppgLine);
 lineContents.clear();

 readFromLine(ppgLine, '\t', lineContents);

 if (index == 1) {
 ppgStartTime = std::stod(lineContents[0]);
 }
 }

 ppgStartTime = (ppgStartTime - nivaStartTime);

 while(std::getline(mNivaFile, line))
 {
 if ((index & 3) == 0 && (((float)index/125.0f) > ppgStartTime)) {
 std::string ppgLine;
 std::getline(mPpgFile, ppgLine);

 std::vector<std::string> lineContents;
 readFromLine(ppgLine, '\t', lineContents);

 if(lineContents.size() < 1) {
 continue;
 }

 float ppgSample = std::stod(lineContents[1]);

 ppgDetection.process(ppgSample, PPG_SCALE);

 if (ppgDetection.getBeats()->getTotalSampleCount() >
PpgDetection::VALID_BEAT_SIZE) {
 currentBpm = ppgDetection.getBeats()->getMean();
 }
 }

 std::vector<std::string> lineContents;
 readFromLine(line, '\t', lineContents);

 float sample = std::stod(lineContents[1]);
 float expectedBpm = (currentBpm > 0) ? currentBpm : -1;

 if (derivative) {
 float diff = sample - previousSample;
 previousSample = sample;
 mvgAvg.add(diff);
 float output = 0;
 movingAverage.update(&mvgAvg, &output);

 nivaAlgorithm.process(output * NIVA_SCALE, sample, expectedBpm);
 } else {

49

 nivaAlgorithm.process(sample * NIVA_SCALE, sample, expectedBpm);
 }

 index++;
 }
 std::cout << "******** END " << nivaPpgFiles[i].niva.fileName << " ********" <<
std::endl;
 mNivaFile.close();
 mPpgFile.close();
 nivaResults.close();
 }
 }

 for(unsigned int i = 0; i < files.size(); i++) {
 /* Algorithm Object */
 Algorithm nivaAlgorithm;

 /* Algorithm buffers */
 Algorithm::NivaAlgorithmMemMap_t algorithmBuffers;

 /* Set memory map */
 nivaAlgorithm.setMemMap(&algorithmBuffers);

 /* get filename (without extension) */
 std::string outputFile;
 std::pair<std::string, std::ofstream*> results;
 if(fileType == FileType_t::TXT || fileType == FileType_t::AFE || fileType ==
FileType_t::OTHER) {
 outputFile = files[i].fileName.substr(0, files[i].fileName.length() -
 fileExtension.length());
 } else {
 outputFile = files[i].fileName;
 }
 outputFile.append(".results");

 /* output path */
 std::string resultsOutputPath = outputPath;
 resultsOutputPath.append(outputFile);

 /* results output file stream */
 std::ofstream nivaResults;
 nivaResults.open(resultsOutputPath, std::ofstream::out | std::ofstream::trunc);

 results.first = resultsOutputPath;
 results.second = &nivaResults;

 /* Write header to file */
 writeResultsHeader(nivaResults);

 /* assign callback */
 if(extended) {
 nivaAlgorithm.init(&processResults, &processExtendedResults, &results);
 } else {
 nivaAlgorithm.init(&processResultsTask, &results);
 }

 /* Setup the moving average filter */
 float mvgAvgBuffer[8192];
 memset(mvgAvgBuffer, 0x00, sizeof(float) * 8192);
 CircularBufferFloat mvgAvg;
 mvgAvg.assign(&mvgAvgBuffer[0], 8192);

 float coefficients[4] = {0.25f, 0.25f, 0.25f, 0.25f};
 Fir movingAverage;

 movingAverage.setCoefficients(&coefficients[0], 4);

 std::string inputFilePath = files[i].absolutePath;
 std::ifstream mFile;

50

 if(fileType == FileType_t::TXT || fileType == FileType_t::AFE || fileType ==
FileType_t::OTHER) {
 mFile.open(inputFilePath, std::ios::in);
 if(mFile.is_open())
 {
 std::cout << "******** START " << files[i].fileName << " ********" << std::endl;
 int index = 0;
 std::string line;
 float previousSample = 0;
 while(std::getline(mFile, line))
 {
 if(index++ > 25)
 {
 std::vector<std::string> lineContents;
 readFromLine(line, '\t', lineContents);

 float sample = std::stod(lineContents[1]);

 if (derivative) {
 float diff = sample - previousSample;
 previousSample = sample;
 mvgAvg.add(diff);
 float output = 0;
 movingAverage.update(&mvgAvg, &output);

 nivaAlgorithm.process(output, (int32_t)output, -1);
 } else {
 nivaAlgorithm.process(sample, (int32_t) sample, -1);
 }
 }
 }
 std::cout << "******** END " << files[i].fileName << " ********" << std::endl;
 mFile.close();
 nivaResults.close();
 } else {
 continue;
 }
 } else if (fileType == FileType_t::RAW) {
 mFile.open(inputFilePath, std::ios::binary | std::ios::in);
 if(mFile.is_open())
 {
 std::cout << "******** START " << files[i].fileName << " ********" << std::endl;
 int index = 0;
 int32_t rawSample;
 float previousSample = 0;
 while(mFile.read((char*)&rawSample, 4))
 {
 if(index++ > 25)
 {
 float sample = (float)((float)rawSample * 2.43425369262695e-07);

 if (derivative) {
 float diff = sample - previousSample;
 previousSample = sample;
 mvgAvg.add(diff);
 float output = 0;
 movingAverage.update(&mvgAvg, &output);

 nivaAlgorithm.process(output, rawSample, -1);
 } else {
 nivaAlgorithm.process(sample, rawSample, -1);
 }
 }
 }
 std::cout << "******** END " << files[i].fileName << " ********" << std::endl;
 mFile.close();
 nivaResults.close();
 } else {
 continue;
 }
 }

51

 }

 return 0;
}

/**
 * @}
 */

Appendix B: Supplementary Information for Selected Lasso Model

Supplementary Table 1. Lasso linear model and out-of-sample goodness of fit with lambda
selected by 10-fold cross-validation. * signifies the selected lambda.

Supplementary Table 2. Goodness of fit of in-sample predictions using penalized (top) and
postselection (bottom) coefficients from the selected model.

52

Supplementary Figure 1. Selected lasso penalty parameter λ is at the minimum of the cross-
validation function, which is the mean squared error of the predictions in the cross-validation

samples.

