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Chapter 1. Introduction and Background 

 

 

Evaluation of the structural integrity of a material is crucial for ensuring safety and serviceability of mechanical 

systems. There are many techniques dedicated to detecting and evaluating damage in different types of materials. 

These evaluations can be performed during manufacturing, assembly, or the service life of mechanical systems.  

During manufacturing or assembly of a structural part, the structural integrity of the part must be evaluated before 

shipping the part out for use. In-situ evaluations are also performed, once a part has been installed for its use, in order 

to determine whether the part is close to failing due to wear and tear and needs to be replaced. Manufacturing and in-

situ inspections can both prevent costly and dangerous failures of parts in the field [1][2][3].  

A class of structural integrity evaluation methods, known as destructive testing methods, involves loading 

the mechanical component or system of interest until failure; and ascertaining the structural integrity based on failure 

characteristics. These methods typically render the component/system useless after the test, and hence are not suitable 

for evaluations during manufacturing or service life of the component/system. Non-destructive evaluation (NDE) 

techniques, on the other hand, identify flaw or potential failure locations without damaging the part in question, 

allowing the part to be used in the future if no issues are detected [4]. Both active and passive NDE methods can be 

used. Active methods involve the application of a stimulus to a material to produce a measurable response that can be 

related to damage. Examples of active inspection techniques include flash and lock-in thermography [5][6][7], 

ultrasonic inspection results [8] [9], and magnetic flux leakage [10][11]. 

Passive NDE does not require an input to the system being investigated, but instead leverages stimuli provided 

to the part in the course of normal manufacturing operations or routine system operations. Systems that naturally 

produce a measurable output that can be related to damage can be monitored for differences in the output that indicate 

flaws. Passive NDE is advantageous in that the only equipment required for NDE are sensors. No time is spent setting 

up actuators to provide an input to the part.  

Thermal passive NDE methods can be widely applied, due to the many processes that either directly involve heat 

transfer or output heat as a by-product. Deviation of the thermal behavior of a material from the expected behavior 
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during a thermal process can indicate differences in the material’s composition or geometry, which, in turn, could 

either form a flaw or already constitute a flaw in the material.  

The two challenges discussed in this dissertation can be addressed using passive, thermal NDE methods. The 

first challenge, identifying flaws in fiber-reinforced polymer (FRP) composite materials, involves the detection of an 

unexpected thermal behavior in a region of a curing FRP composite part related to a flawed material composition. The 

curing process is an exothermic reaction, so the heat released during the process produces temperature responses that 

can be measured passively during manufacturing. These temperature measurements can be used to identify unexpected 

thermal behavior related to potential flaws in the composition of the composite material.  

The second challenge, identifying corrosion in carbon steel nuclear power plant pipes, involves the detection of 

a changing thermal behavior resulting from both a change in the pipe’s geometry (a thickness reduction in the pipe) 

and a change in the composition of the pipe (oxidation layers) at a corrosion site. The water flowing through the pipes 

has a different temperature than the temperature of the air surrounding the outside of the pipes, and this temperature 

gradient causes heat transfer to occur through the pipe. Temperature measurements can therefore be passively 

collected from the outside radius of the pipe while the piping system is in use in the power plant (an in-situ application). 

These temperature measurements can then be used to identify thermal behaviors associated with corrosion. The two 

passive, thermal NDE techniques outlined above are proposed as new techniques for their particular applications. The 

motivation and background information regarding the two applications of interest are discussed next.  

 

1.1 Motivation 

FRP composite materials are currently being used in a number of applications (aerospace, performance 

automotive, etc.) requiring high-performance, lightweight materials [12][13][14][15]. There are a number of other 

(high-volume) industries (wind, consumer automotive, and compressed gas storage [16]) that might benefit from the 

use of FRP composites as well. However, higher cost and longer manufacturing lead times associated with FRP 

composites hinder their utilization in high-volume industries. As a result, improvements to the manufacturing process 

that reduce cost, increase energy efficiency, and improve production speed are high priorities within the composites 

industry [17]. A real-time cure monitoring technique that enables passive detection and localization of potential curing 

abnormalities during the manufacturing process can help in process optimization, improvement of part quality, and 
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material characterization. This, in turn, can contribute to reducing the time and cost of manufacturing [18]. Adaptive 

decision-making regarding cycle time, energy usage, and potential flaw repair during the manufacturing process 

requires real-time measurement or estimation of process parameters, such as the temperature or degree of cure. Surface 

as well as internal temperature and degree of cure values in a curing composite part can, potentially, be used for 

residual stress estimation [18][19][20], as well as identification of manufacturing flaws related to resin distribution. 

Performing these analyses passively and in real time (during the manufacturing process), as opposed to after 

manufacturing is completed, can reduce post-manufacturing inspection time and cost. Degree of cure estimation also 

provides information about the completion time of the curing process, which can improve production speed. 

Pipe rupture due to wall thinning as a result of corrosion is the leading cause of accidents in nuclear power 

plants [21]. There are many cases of flow accelerated corrosion (FAC)-related pipe ruptures causing fatalities, power 

plant damage, and costly outages and repairs [3], including the pipe rupture event at the Surry Power Station in the 

U.S. that resulted in four casualties and extensive damage to the plant [2]. One of the most susceptible locations for 

wall thinning due to FAC is either at or directly downstream of pipe elbows [3][22] due to the change in flow direction. 

Development of non-destructive evaluation methods for the detection of wall thinning and corrosion at pipe elbows is 

a crucial for identifying pipe sections that are at risk of rupture and thus preventing large-scale accidents. Some of the 

current corrosion or wall thinning detection techniques are either costly (e.g. magnetic or robotic techniques) or cannot 

be performed while the power plant is active (e.g.  internal inspection techniques). All of the current techniques require 

manual setup of equipment for each use, and some, such as ultrasonic methods, also require the removal of insulation 

from the pipe. A cost-effective NDE technique that can be performed while the plant is active (improving upon the 

temporal resolution of techniques that cannot do this) and can perform passive measurements from the pipe without 

the need for equipment setup or insulation removal (aside from the initial installation) would therefore be beneficial. 

Such a technique could be used as an initial detection method to inform plant operators of at-risk pipes to reduce the 

number of pipes that must be manually checked.  

In this chapter, overview and background information are presented regarding topics related to both internal flaw 

determination in FRP composites and corrosion detection in pipes. This discussion will a) highlight the gaps in the 

current NDE methods used for FRP composite cure monitoring, FRP composite flaw detection, and corrosion in 

nuclear power plant pipes, b) provide justification for the development of the methods presented in this work, and c) 

discuss the goals, rationale, and requirements for the development of the proposed NDE techniques. Three techniques 
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will be discussed in this work, with the first two related to the identification of resin distribution-based flaws in curing 

FRP composites, and the third related to the identification of corrosion in nuclear power plant pipe fittings. The first 

technique utilizes (non-contact) infrared (IR) thermography measurements and Bayesian state estimation to monitor 

key process variables during the curing process of FRP composites. The second technique utilizes the correction 

factors outputted by the Bayesian estimation from the first technique to locate potential flaws during the curing 

process. The third technique will utilize surface measurements from the surface of nuclear power plant pipes and a 

Gaussian Process Regression (GPR) model to identify corrosion-related thickness reductions. A brief overview of the 

current state of cure monitoring for composite parts is provided next. 

 

1.2 Cure Monitoring Methods for FRP Composites 

 

1.2.1 Cure Monitoring Methods 

FRP composites manufacturing is a highly variable process. The composite part is made by reinforcing a 

stack of fiber preforms, such as fiberglass or carbon fiber, with a polymer resin matrix. The resin is infused throughout 

the fiber layers in liquid form, and through a chemical reaction, the resin then cures into a solid and bonds with the 

fibers. The chemical reaction is exothermic, so heat is released from the resin during cure. Many resins require an 

external heat input to initiate the chemical reaction as well, while others cure without any external heat input (referred 

to as “room temperature cure” resins). Regardless of the type of cure, heat is a by-product of the curing process, and 

the real-time measurement of the temperature response or degree of cure during the curing process can be crucial for 

adaptive decision-making regarding cycle time, energy usage, and potential flaw identification and repair. Various 

sensing systems for in-situ cure monitoring have been reported in the literature and used in practice [18][19]. A brief 

overview of some of the most common sensing techniques and their capabilities is given below. Three important 

features of each sensing technique are: a) position of the sensors (embedded, contact, or non-contact), b) 

dimensionality of the field of measurement/sensing (point, line, surface, or volume), and c) ability to measure or detect 

the important process states (e.g., temperature or degree of cure). In general, a non-contact sensing technique that can 

monitor the important process states in a curing part (volume) is desirable. 

Various types of embedded sensors have previously been used for either direct or indirect measurements of 

process states. For example, optical fiber sensors (Fabry-Perot or Bragg grating sensors) can measure a shift in the 
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Bragg wavelength, which can be used for temperature measurements, strain measurements, and to determine the 

degree of cure of the resin [18][23][24][25]. Dielectric sensors measure electrical impedance, and can be used to 

estimate the dielectric constant of the resin when a voltage is applied across the curing composite part [26]. Both the 

impedance and the dielectric constant are indicative of the resin viscosity [27], which can be used to estimate the 

degree of cure. Thermocouples have been used as embedded sensors to measure temperature inside a composite part 

both during infusion [28] and during cure [25]. Embedded thermocouple measurements can also be used both to 

identify the degree of cure and to monitor the flow front [28][29]. One advantage of embedded sensors is that they 

can be used for non-destructive evaluation during the service life of the part. However, this approach can potentially 

compromise the structural integrity of the part [19]. 

Non-embedded sensors do not risk compromising the structural integrity of the part being monitored, but 

they usually require an interface (or contact) with the part being monitored. For example, thermocouples can be used 

to measure surface temperature, instead of the internal temperature in a curing part. Dielectric sensors can also be 

mounted to the surface of a Ultrasonic measurements are also used for monitoring the degree of cure and flow front 

in the entire volume of a curing composite part [18]. An ultrasonic pulse is sent into the material, and the arrival time 

for the reflected pulse is indicative of the density and elastic modulus of the medium. An increase in density and elastic 

modulus over time can be related to an increase in the degree of cure [19]. Both contact [30] and air-coupled [31] 

ultrasonic sensors are used. For both of these techniques, an interface with the material is required. The coupling 

interface can affect the accuracy of the measurement and, therefore, the estimation of the infusion states [19][27]. 

Acoustic methods have also been used for cure monitoring, but they are limited to monitoring the degree of cure. For 

these methods, the curing part is acoustically excited, and the natural frequency shifts that occur due to the increase 

in stiffness of the bulk material during cure are used to estimate the degree of cure [19]. Regardless of whether an 

embedded or non-embedded sensor is used, time must be spent to mount or position the sensors on the composite 

layup before infusion, which can slow the manufacturing process. In summary, although both embedded and interface-

based sensors used for cure monitoring can successfully monitor process states, they can potentially interfere with 

infusion operations and increase the manufacturing time. 

By contrast, Infrared (IR) Thermography offers a means of cure monitoring that does not require an interface 

with the part being monitored. The technique uses an IR camera to measure the IR radiation emitted by an object to 

estimate the temperature of the object. Each pixel in the thermal image created by an IR camera is essentially a sensor, 
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allowing thousands of temperature measurements to be taken at each moment in time. IR thermography is, therefore, 

the only cure monitoring technique that provides non-contact surface temperature measurements over a large area of 

a curing composite part [18][19]. The placement of the camera needs to be performed only once, so the sensor 

placement does not contribute to increased lead time for each part in this case. IR thermography can be used to 

passively monitor the composite surface temperature during cure. In addition, degree of cure can be calculated using 

temperature measurements [18][19][32]. Thus, IR thermography is a non-contact, non-intrusive, data-rich, and passive 

sensing technique that can be used to monitor temperature and degree of cure during FRP composite curing processes 

and can, potentially, fulfill the demands of fast, high-volume manufacturing. However, the technique does require an 

open mold (i.e. the camera must be able to view the lay-up) in order for this technique to be applied. Table 1.1 provides 

a summary of the cure monitoring techniques discussed above. 

 

Table 1. 1: Summary of Cure Monitoring Techniques (“y”: yes, “n”: no) 

Technique Sensor Position 

Measurement 

Dimension 

Measured Process States 

Temperature Degree of Cure 

IR Thermography Non-Contact Surface y y 

Thermocouples Embedded/Contact Point y y 

Optical Fibers Embedded Point or Line y y 

Dielectric Sensors Embedded/Contact Volume n y 

Ultrasonic Sensors Contact/Coupled Interface Volume n y 

Acoustic Sensors Contact Volume n y 

 

 

1.2.2 Temperature Estimation Techniques 

IR thermography can be readily used for determining process states on the part surface (e.g. the rate of change 

of surface temperature may enable estimation of the cure completion time), but cure monitoring through the thickness 

of the part requires a method to estimate the temperatures within the part. Methods for estimation of internal 

temperature in a body using the body’s surface temperature have been extensively studied in literature, including 

analytical solutions (utilizing surface temperature as a boundary condition) and inverse problems [33][34][35]. For 
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example, eigenfunction interpolation was shown to be effective for reconstructing the internal temperatures in a body 

using temperature measurements on the boundary [36][37]. These methods attempt to estimate the temperature field 

in a body by computing a weighted sum of a finite number of eigenfunctions of the corresponding Sturm–Liouville 

eigenproblem. The optimal weights are obtained by minimizing the error between the measured temperature data and 

the weighted sum at those locations (by solving an optimization problem). Once computed, the optimal weights can 

be used to estimate the temperature at any other location inside the body. This technique has been shown to yield 

accurate results for linear heat conduction problems. However, for the nonlinear heat conduction problems (such as 

the one considered for the case of a curing composite), the eigenfunction interpolation is both difficult to implement 

and does not yield accurate results. Bayesian filtering techniques (such as the Kalman filter (KF), extended KF, 

unscented KF, etc. [38][39][40]) have been used to estimate internal temperatures [40][41][42] and are able to fuse 

the information from an approximate model and external temperature measurements. However, their utility for 

passive, IR-thermography-based cure monitoring for FRP composites has not been explored.  

Techniques have been studied in the context of estimating internal temperatures in curing composites as well 

[20][40][43][44][45][46]. Forward simulation-based techniques have been utilized [46], though techniques that do not 

include model-data fusion can suffer from inaccuracy in the context of curing composites due to the variability in the 

process. The method of using a forward simulation-based estimation aided by leveraging surface temperature data has 

also been studied. The technique was studied only in the context of simulation-based experiments, however [45]. 

Thermal property estimation techniques requiring the estimation of internal temperatures have been performed using 

optimization-based techniques or inverse problem solutions [43][44]. However, these techniques are not suitable real-

time estimation due to the high computational expense of solving the pertinent inverse problem. A recent numerical 

study also focused on estimation of composite material states and properties during curing using an Ensemble KF 

[40], though the utilization of an Ensemble KF also prohibits real-time estimation due to the computational expense. 

Real-time internal temperature estimation using surface data has also been performed in the context of active 

temperature control of a curing composite part [20].  

All of the aforementioned studies were performed for resin systems with computationally inexpensive 

(Arrhenius or Williams-Landel-Ferry equation-based) cure kinetics models. However, the estimation of internal 

temperature and degree of cure for resin systems with computationally-expensive cure kinetics models, such as free-

radical polymerization reactions [47], have not been studied extensively. Therefore, in summary, the previous 
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investigations on surface-temperature-based FRP cure monitoring suffer from at least one of the following drawbacks: 

a) the methodology does not consider process monitoring data and is unable to account for part-specific anomalies 

such as non-uniform resin distribution, b) the methodology is not fast enough to allow real-time estimation, c) the 

methodology is not validated by performing experimental investigation, or d) the methodology is not suitable for real-

time estimation involving complex cure kinetics (such as, free-radical polymerization reactions [47]). 

A methodology that addresses these drawbacks, by utilizing an approximate heat conduction model, an 

approximate model for the complex cure kinetics, measured surface temperature data from passive IR thermography, 

and a Kalman filter is discussed in this dissertation. It is shown that the method is fast enough to allow real-time 

estimation of process states and can potentially enable process optimization and in-situ flaw detection during the 

composite manufacturing process. The development of a scalable, real-time cure monitoring technique for FRP 

composites that integrates passive IR thermography (a data-rich sensing method) with recursive Bayesian state 

estimation, and an experimental investigation of the effectiveness of the proposed method for a resin system with a 

complex free-radical polymerization reaction with autoacceleration [47] are the key contributions of this work. The 

proposed methodology can provide a balance between accuracy and computational speed, which is a key requirement 

for industrial implementation for these resin systems. 

 

1.3 Flaw Identification in FRP Composites 

Flaws in FRP composite parts can lead to dangerous and costly failures of the parts in application [1]. In 

order to prevent this, manufactured composite parts are inspected for flaws before being sent out into the field. All 

flaw inspection techniques for FRP composites are currently performed in post-manufacturing, which contributes to 

the long lead times for these parts. Developing a technique to perform flaw inspection during the manufacturing 

process, as opposed to after, can help reduce lead times and increase the volume of FRP composites produced for new 

applications. 

The flaws that typically cause failures in FRP composites are cracks, delaminations, debonding, and fiber 

breakage. Microcracks form in the matrix material and propagate over time as loads are continuously applied to the 

part [REF]. Delaminations occur when the bonding between two fiber layers becomes weak, and the layers begin to 

separate [48]. Debonds refer to instances when fibers separate from the matrix [48]. These flaws are not independent, 

and often one flaw will lead to another (for example, delaminations can lead to crack propagation). Occasionally, these 
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flaws develop in the field as a result of a damage event, but often, the genesis of the flaws occurs during the 

manufacturing process [49][50]. Fiber damage and misaligned fibers can occur during layup of the fiber layers before 

infusion or during infusion. Cracks can originate in both resin-rich regions, due to the brittle nature of low fiber-

volume fraction regions of a composite, and in resin-deficient regions, due to a lower stiffness in that region compared 

to the surrounding areas. Delaminations typically occur in locations where there are discontinuities in the load path 

[48], including locations where the ratio of fiber to resin is different from that of the rest of the composite part. Debonds 

can also occur in regions of low resin concentration. Residual stresses built up in the composite part due to non-

uniform resin distribution can also contribute to both crack initiation, delaminations, and broken or weakened fibers, 

along with other effects that have a negative impact on the properties of the composite part [51][52]. The technique 

discussed in this dissertation will focus on the identification of flaws related to non-uniform resin distribution that 

occur during manufacturing. Identification of the presence of non-uniform resin distribution (noted above to be an 

underlying cause of flaw formation) during the manufacturing process enables adaptive decision making regarding 

potential corrective action and, as noted above, can aid in reducing cycle times. 

Post-manufacturing inspection techniques of FRP composites are trending towards entirely non-destructive 

techniques in order to avoid damaging the part during inspection (in other words creating a flaw in an attempt to find 

flaws). The most common NDE techniques for inspection of FRP composites are summarized below. Note that eddy 

currents are omitted from the review, as they can only be used with conductive fibers. The composites studied in this 

dissertation will focus on glass FRP composites. IR thermography is most often used for post-manufacturing 

inspection of composites to check for manufacturing flaws or damage [53][54]. Active thermography techniques such 

as flash thermography [5] or lock-in thermography [6][7] are used, where a heat pulse or series of pulses is applied to 

the part, and IR thermography is used to measure the temperature of the part surface as the heat diffuses. 

Thermography has also been used for monitoring between the layup and infusion steps of FRP composite 

manufacturing to identify layup process errors or damaged fiber sheets [55]. These techniques involve active, external 

heating of the parts to identify temperature gradients on the surface that can indicate a flaw is present at that location. 

Identifiable flaws include fiber orientation, fiber-volume fraction, voids, and delaminations. These active 

thermography techniques cannot be applied during cure, as the application of the heat pulse(s) may interfere with the 

curing process. Additionally, the application(s) of the pulse(s) can be inconsistent and non-uniform, and these active 

thermography techniques are typically only effective for thin composites. 
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Ultrasonic transducers are a very common method for flaw detection in FRP composites. Pulse-echo, pitch-

catch, and through transmission ultrasonic techniques can all be used for NDE in FRP composites. Pulse-echo and 

pitch-catch methods are both performed by applying an ultrasonic pulse through the material and measuring the return 

time of reflections of the pulse. Abnormal return times indicate flaw positions in the material. The through 

transmission method places the receiver on the opposite side of the part from the pulse transmitter. A pulse is sent 

through the part, and if the pulse does not reach the receiver, a flaw is likely present at a location in the part between 

the transmitter and receiver. Ultrasonic techniques have been shown to produce effective results when identifying 

delaminations and voids but are not as effective for identifying differences in fiber-volume fraction. Disadvantages of 

ultrasonic techniques for NDE of FRP composites include the presence of edge effects, where the reflection of the 

pulse from the edge of an internal feature can produce poor results [8], and potential overlapping, scattering, and 

attenuation of the reflected ultrasonic waves [9]. 

Acoustic methods can also be applied for NDE of FRP composites. The part is excited acoustically, producing 

a vibrational response that can be measured. Flaws, such as cracks and delaminations, can cause both a measurable 

shift in the vibrational frequency of the composite part and a shift in the displacement of the part. Acoustic methods 

can be performed using local sensors to register local motion, or globally using acoustic sensors that measure the 

global motion of the component [48][9]. Acoustic emission testing is also an option for NDE. This consists placing 

the composite part under load and measuring acoustic emissions that occur due to the release of elastic energy. This 

energy releases typically occur from a flaw location, so flaw can be identified by the acoustic emission from a 

particular region of the part (using multiple sensors to identify the particular region). The magnitudes of the acoustic 

emissions are also indicative of fiber-volume fraction [49]. 

Dielectric sensors can be applied for post-manufacturing inspection as well. This is employed by producing 

an electric field in the composite part and measuring the capacitance of the material. Variations in the dielectric 

signatures for different regions of the part can indicate differences in composition [56]. The technique has been shown 

to successfully identify delaminations in composite materials.  

X-ray radiography is another NDE technique sometimes used for FRP composites. Photographs are produced 

by applying X-rays through the composite part and onto a medium on the opposite side of the part. The spatial 

distributions of the amount of X-ray photons allowed to pass through the composite part are indicative of the density 
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distribution in the part. Flaws can be identified quantitatively from the backscatter photograph, and the technique has 

very good contrast [9]. Despite the detail obtained through the photograph, X-ray equipment is expensive, X-rays are 

potentially harmful to both the composite itself and humans, and access to both sides of a composite part, which can 

be impractical [8][56][57]. X-ray radiography has been shown to effectively identify cracks and fiber orientations but 

are not as effective for detecting fiber-volume fraction, voids, or delaminations [49]. X-ray radiography cannot be 

performed during manufacturing.  

Terahertz ray (T-ray) spectroscopy is a non-contact NDE method performed by applying a terahertz pulse (a 

laser pulse) to the composite specimen and measuring the time for the pulse to reflect back to a detector. This technique 

has an advantage over X-ray radiography, as the T-rays are not harmful to biological tissue. The technique has been 

shown to be a successful method for identifying delaminations in FRP composites, as multiple reflections occur at the 

delamination location, while only one occurs for non-delaminated areas [8]. It has also successfully been applied for 

detection of water content [58] and fiber waviness [59] in FRP composites. However, the expense of the equipment 

and the inability to perform this technique during manufacturing are detriments to the method.  

Microscopy is another method used for post-manufacturing inspection of FRP composites. The technique 

involves visual inspection of the part via a microscope. A scanning electron microscope can also be utilized to 

determine the material composition of the part in certain areas, which allows the user to determine the fiber-volume 

fraction in the region. This can be indicative of voids as well. [50].  

 Manual inspection of the surface can also be performed to search for potential flaws. Parts with a high void 

content and/or too high of a fiber-volume fraction will appear dry and white (or closer to the color of the fiber being 

used). Parts manufactured using Vacuum-assisted resin transfer molding (VARTM) can appear like this when too 

much air got into the part during manufacturing, creating voids as the resin hardened around the air pockets, or if less 

resin than intended ended up in the part. However, the surface appearance of a part is not entirely indicative of the 

potential flaws underneath the surface, hence more advanced methods are favorable [49].  

 The NDE technique discussed in this dissertation will focus on a new technique that allows for the evaluation 

to be performed during the manufacturing process. Performing NDE during the manufacturing process, as opposed to 

after, can speed up the flaw detection process, which, in turn, can improve the efficiency of the manufacturing process 

in general. Passively monitoring a curing FPR composite with IR thermography can successfully identify surface 
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anomalies that occur during cure. For example, as shown in Figure 1.1, a pinhole in the vacuum bag during a Vacuum-

Assisted Resin Transfer Molding (VARTM) infusion was detected using passive IR thermography.  

 

 

(a) 

 

(b) 

Figure 1. 1: Image from a video taken using an IR camera during a VARTM infusion when there was a pinhole in the 

vacuum bag (a) and an image of the resulting composite panel (b) 

 

However, in order to identify flaws below the surface, information about the sub-surface temperatures can 

be critical. As was discussed in Section 1.2 IR thermography can be used in conjunction with a heat transfer model 
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and a KF to produce internal temperature measurements in an FRP composite during the curing process. The use of a 

KF is crucial towards the new NDE technique. As noted in Section 1.2, KF’s provide a correction term to the unfiltered 

model based on measurement data. This correction is indicative of a difference between the expected behavior (the 

model) and the actual behavior (the measurement). Assuming the model describing the curing process is accurate to a 

certain extent, any corrections required from the KF would indicate unexpected deviations in the process. Non-uniform 

resin distribution is a significant factor in temperature variations in an FRP composite, particularly for a resin system 

that has a room-temperature cure, due to the fact that much of the heat transfer in the part is driven by the heat generated 

by the resin. Therefore, regions that require a greater amount of correction from the KF can be indicative of regions 

with an unexpected resin distribution (fiber-volume fraction). Notably, this passive IR thermography technique is 

performed during the manufacturing process, whereas typical NDE techniques for FRP composites are only performed 

in post-manufacturing inspection. Table 1.2 shows a summary of the NDE techniques discussed above, including the 

new technique presented in this dissertation. 
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Table 1. 2: Summary of the Capabilities of FRP Composite NDE techniques to Detect Manufacturing Flaws 

Technique Types of manufacturing flaws 

detected 

Inspection during manufacturing 

possible? 

Active thermography Fiber-volume fraction, voids, 

delaminations, fiber orientation 

No 

Ultrasonic sensors Delaminations, voids No 

Acoustic sensors Cracks, delaminations No 

Dielectric sensors Delaminations No 

X-ray radiography Cracks, fiber orientation No 

T-ray spectroscopy Delaminations, water content, fiber 

waviness 

No 

Microscopy Fiber-volume fraction, indicative of 

potential voids 

No 

Manual Inspection Surface fiber volume fraction, 

indicative of potential surface voids 

No 

Passive thermography with KF1
 Fiber-volume fraction, indicative of 

potential voids, delaminations, and 

cracks 

Yes 

 

 

1.4 Corrosion Detection in Piping Systems 

Corrosion occurs in carbon steel pipes due to the buildup of oxide layers on the inner surfaces of the pipes. 

The oxide layers, which can include maghemite (γ-Fe2O3), magnetite (Fe3O4), and Lepidocrocite (γ-FeOOH) [22], 

form due to the chemical interaction of the steel with impurities in the water. These reactions break down the steel, 

leading to a reduction in thickness of the steel pipe beneath the oxide layers. The flow of the water inside the pipe can 

then erode the oxide layers that have built up, exposing the steel to the water again and repeating the cycle of wall 

                                                           
1 Method proposed in this work 
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thickness reduction [60][61][62]. This is referred to as flow-accelerated corrosion (FAC). The removal of these oxide 

layers leads to the development of surface flaws, which differ depending on the flow. The inner-pipe surface features 

of FAC for single-phase flow (i.e. only water flow) are “scallops”, while “tiger striping” occurs for two-phase flow 

(i.e. water and steam). These patterns become more apparent once the degradation has occurred to a large extent [63]. 

In addition to scallops, pitting is also a feature of single-phase flow [22][60]. The study performed for this dissertation 

will focus on water temperatures (and pressures) typically applicable for single-phase flow. Regardless of the flow, 

these features are a result of the breakdown of the steel pipes themselves, leading to the thinning of the pipe walls. 

Excessive thinning of the pipe walls pipe can lead to rupture of the pipes [3][60][64]. Corrosion rates can increase 

depending on the flow conditions. For example, enhanced turbulence in the flow, which can occur downstream of 

flow restrictions that increase flow rate, can lead to an increase in corrosion rate [60]. This effect is also seen at 

locations where there is a change in direction of the flow, such as at T-joints or elbows. As was noted in Section 1.1, 

locations at or directly downstream of pipe elbows are one of the most susceptible locations for wall thinning due to 

FAC [3][22]. As such, the focus of the work performed for this dissertation is on the identification of wall thinning 

and corrosion at pipe elbows. 

Many techniques have been studied for the detection of corrosion and wall thinning in power plant pipes. 

Ultrasonic methods (including guided wave tomography) have been shown to be effective at detecting changes in wall 

thickness resulting from corrosion in pipes. As described in Sections 1.2 and 1.3, ultrasonic methods are performed 

by applying an ultrasonic pulse to the material being evaluated and measuring the time required for the reflection of 

the pulse to reach a mounted transducer [21][64][65][66]. Although these methods produce accurate results for wall 

thickness measurement, it is less effective for detecting features, such as pitting or slotting. In addition, the insulation 

of the pipe must be removed (if the pipe has insulation) in order to mount the transducers to the pipe. Despite this, the 

technique can still produce accurate wall thickness estimates while the plant is active, though the water speed in the 

pipe does have an effect on measurement accuracy [67]. 

Magnetic NDE techniques are particularly common for wall thickness detection in ferrous materials, such as 

carbon steel pipes. Pulsed eddy current (PEC) testing is one of these methods. A pulsed voltage or current is applied 

to an electrical conductor (often a coil) placed on or around the pipe (or pipe insulation), inducing a magnetic field 

around the conductor. The abrupt application of the magnetic field then induces electrical eddy currents in the pipe, 
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and when the magnetic field is turned off, the decay of the eddy currents can be measured. This decay behavior can 

be related to pipe wall thickness. Notably, the technique can be used without removing the pipe insulation [68][69]. 

As with ultrasonics, this method can accurately detect wall thickness, but is not effective at detecting features, such 

as pitting or slotting. In addition, the cost and relative difficulty of use can be prohibitive [67].  

Another magnetic NDE technique is magnetic flux leakage (MFL). The pipe is magnetized to the point of 

flux saturation using a non-contact magnet or excitation coil. Once saturated, locations with defects, such as pitting or 

slotting, will “leak” magnetic flux due to the local change in magnetic permeability, and the leakage field can be 

measured (typically using three hall sensors or other magnetic flux sensors oriented along perpendicular axes). The 

leakage field can then be analyzed to determine locations of defects [10][11]. MFL techniques are effective for 

detecting the sizing of defect features, such as slots or pitting, but cannot directly measure pipe wall thickness [67]. 

As with the PEC methods, MFL can also be performed with insulation on the pipe. 

Internal pipe inspection methods have also been studied, including Closed-Circuit TV (CCTV) cameras. 

These cameras are carried through a pipe on a platform connected to a cable that controls that platform’s movement. 

The camera records video footage of the inside of the pipe, and defects can be visually identified from the images by 

a plant operator. However, non-severe defects can sometimes be difficult to identify with the human eye, particularly 

since the images are taken inside a dark pipe. The process is also time-consuming and greatly increases inspection 

costs as a result [70]. Modern approaches to CCTV inspection utilize the projection of lasers onto the pipe walls to 

improve the quality of inspection. For example, laser scattering and light intensity-based methods have been employed 

to improve flaw identification and remove the human element from the technique [70][71]. 

Robotic inspection methods have also been studied recently for inspection both internal to [72] and external 

to the pipe [73][74]. Robotic inspection eliminates the need for manual inspection by plant operators, and several of 

the techniques described above can be performed via a robot. However, the cost of the inspection robots is likely large 

compared to some of the other methods discussed here.  

Thermal NDE techniques that utilize thermocouples mounted to the outside of the pipe (underneath the 

insulation) are have not been studied in the past. Though water temperatures vary greatly across different pipe 

applications in power plants, in general, the difference in temperature between the water flowing in the pipe and the 

surrounding air temperature leads to heat transfer occurring through the pipe. The steady-state temperature on the 
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outside of the pipe will depend on several parameters, including the properties of the pipe and insulation, the speed of 

the water, the surrounding air temperature, etc. In addition, changes in the wall thickness of the pipe and the build-up 

of an oxide layer on the inside of the pipe can have the effect of changing the steady-state temperature of the outside 

of the pipe over time. This change in steady-state temperature can be measured by a thermocouple mounted on the 

outside of the pipe, and a relationship between the steady-state temperature and the corrosion effects (pipe wall 

thickness and oxide build-up) can be established by building a model. This model can then be used to estimate the 

amount of FAC that has occurred at a particular pipe location. This method is advantageous in that it is cost-effective, 

easy to implement, and can be performed passively during active plant operation without the need for manual 

measurements by a plant engineer. However, this technique is not likely suited for the identification of defect features, 

such as pitting. The development and implementation of this method are discussed in this dissertation. The strengths 

and weaknesses of each technique discussed above are summarized in Table 1.3. 
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Table 1. 3: Summary of Corrosion Detection Techniques for Carbon Steel Pipes 

Technique Is access to the 

inside of the pipe 

required? 

Does insulation 

cause issues? 

Strengths Weaknesses 

Ultrasonics No Yes Can detect wall 

thickness 

accurately, can be 

performed while 

plant is active 

Poor at detecting 

pitting and slotting, 

accuracy depends 

on flow speed, 

requires removal of 

insulation 

Pulsed eddy current No No Can measure wall 

thickness through 

insulation, can be 

performed while 

plant is active 

Better as a 

screening tool, cost, 

user-friendliness 

Magnetic flux 

leakage 

No No Good at detecting 

sizing of defect 

features, can be 

performed through 

insulation, can be 

performed while 

plant is active 

Cannot directly 

measure wall 

thickness 

CCTV/CCD camera Yes No Direct view of 

defects via images 

Access to inside of 

pipe required, can 

only be performed 

during shutdown 

period 

Robotic inspection Sometimes Depends on the 

inspection method 

used by the robot 

Does not require 

manual 

measurement 

Cost 

Thermocouples2 No No Cost, ease of use, 

passivity, can be 

used while plant is 

active 

Poor at detecting 

specific features 

 

 

1.5 Summary of Work  

The work completed for the dissertation can be summarized by three objectives: 

1) Develop a temperature and degree of cure estimation technique using surface temperature measurements 

from IR thermography, a heat conduction model, an approximate cure kinetics model, and a Kalman Filter. 

The correction factors output by the Kalman Filter (equal to the product of the Kalman gain matrix and the 

vector of differences between the measured and model-predicted temperatures) output by this technique will 

                                                           
2 Method proposed in this work 
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be used for Objective 2 outlined below. The contribution of this work is an accurate, full-field temperature 

and degree of cure estimation in a curing composite while using an approximate cure kinetics model. A 

journal paper detailing this work has been submitted after reviews. 

2) Develop a flaw detection method for FRP composites using surface temperature measurements from IR 

thermography, the Kalman Filter-based state estimator from objective 1. The correction factors (which are 

added to the model-predicted temperatures for all points of the domain as part of the Kalman Filter) can be 

summed over time for each individual point in the domain to indicate which points required the greatest 

correction. These points correspond to the locations of the flaw(s) in the FRP composite. The contribution of 

this objective is a flaw detection method that can provide a high-spatial-resolution 3D map of potential flaw 

locations and helps to improves the efficiency of the FRP composite manufacturing process. A journal paper 

discussing this work is currently being prepared for submission. 

3) Develop a technique for identifying FAC-induced wall thinning in pipe elbows in nuclear power plant piping 

systems. Measurements from thermocouples mounted to the outsides of the pipes (underneath the insulation 

can provide information regarding the change in steady-state temperature over the lifetime of the pipe elbow. 

The change from the initial steady-state temperature after installation of the elbow is indicative of the amount 

of corrosion that has occurred at the elbow. The contribution of this objective is a corrosion detection method 

that is cost-effective, can be performed while the plant is active, and requires no manual input from plant 

operators after installation. The likely role of this technique will be as an early-detection method to identify 

at-risk pipes. A journal paper discussing this work is currently being prepared for submission. 

This dissertation is organized as follows: Chapter 2 discusses the Kalman Filter-based temperature and degree of 

cure estimation technique, Chapter 3 details the flaw detection methods, and Chapter 4 focuses on the corrosion 

identification technique for power plant pipes. Chapter 5 summarizes the completed work and highlights 

extensions of the work that can be performed in the future. 

 

 

 

 



20 
 

Chapter 2. Real-Time Cure Monitoring of FRP Composites using Infrared Thermography 

and Recursive Bayesian Filtering 

  

 

In this chapter, the real-time internal temperature and degree of cure estimation technique for curing 

composites is described. First, the methodologies of the estimation technique itself, the simulations used for 

verification, and an experiment used for validation are described. The results of the verifications and validation of the 

method are then presented and discussed. 

 

2.1 Methodology  

In this section, an approximate model for the governing physics of heat diffusion in an FRP composite during 

the curing process is first described. Approximations are made regarding the dimensionality of the domain, material 

properties of the composite, and the exothermic heat source model. A Kalman filter, which fuses the information 

obtained from the (approximate) physics model (the state evolution model) and IR thermography data to enable cure 

monitoring, is also discussed. Simulation-based studies for the verification of the implementation and effectiveness of 

the technique are described as well. Lastly, a laboratory experiment used to demonstrate the cure monitoring 

methodology is described.  

 

2.1.1 Computational Model of Governing Physics 

 

2.1.1.1 Governing Equation and Spatiotemporal Discretization 

The heat conduction in the composite part of interest is governed by the first law of thermodynamics. It is 

assumed that there is no mass transfer, and the energy loss due to radiation is negligible. The heat is generated in the 

part due to an exothermic chemical reaction as dictated by the cure kinetics. Therefore, the governing equation is given 

by: 

𝜌𝐶𝑝

𝜕𝜃(𝒙, 𝑡)

𝜕𝑡
− 𝛁 ∙ (𝑘𝛁𝜃(𝒙, 𝑡)) = 𝑓(𝜃(𝒙, 𝑡), 𝜑(𝒙, 𝑡)), for 𝒙 ∈ Ω, (2.1) 
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where x denotes the position vector, t represents time, ρ is the density of the composite part, Cp is the specific heat 

capacity of the part, and k is the thermal conductivity of the part. 𝜃 is defined as temperature, which is a function of 

position and time, f denotes the heat per unit volume generated during the exothermic reaction, 𝜑 is the degree of cure, 

and 𝛁 is the gradient operator. FRP composite materials are heterogeneous and anisotropic. In reality, the thermal 

properties of resin evolve as the resin cures, creating local differences in the material properties of the composite 

material. There are no models available in the literature for the evolution of resin properties during cure or the final 

thermal properties of the cured resin. Hence, in this work, the material is assumed to be homogeneous and isotropic, 

and the heat conduction simulation is performed using time-invariant, effective thermal properties of the composite 

part. Numerical heat conduction simulations with similar assumptions have been shown to produce accurate results in 

the context of cure monitoring [43][44][45][46]. Heat conduction in a 2D slice (Ω) is modeled as opposed to that in a 

three-dimensional domain in order to reduce computation time (Figure 2.1). The curvature of the mold and some 

variations in the thickness of the part across its length were assumed to be negligible, and the 2D cross-section was 

assumed to be rectangular. Note that the simplifying assumptions (homogeneity, isotropy, reduced dimensionality, 

approximate geometry) allow the evaluation of the utility of the proposed methodology when using a relatively simple 

physics model.  The investigation of the utility of simple models and easily obtainable data for cure monitoring is 

important to facilitate implementation of the proposed methodology in industrial setting.  

 

 

Figure 2. 1: 2D slice taken out of a 3D domain. The heat transfer physics were considered within this 2D domain 

 

The governing equation is subjected to initial and boundary conditions. Robin [75] boundary conditions are 

assumed for all four boundaries, with the boundaries ΓL, ΓR, and ΓT in Figure 2.1 being convective boundaries. The 

boundary at ΓB was non-convective, and the heat transfer at this boundary was directly proportional to the difference 

between the current temperature and the mold temperature (instead of the surrounding air temperature). The initial 

and boundary conditions are given by: 
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(𝑘𝛁𝜽) ⋅ 𝒏 = ℎ(𝜽 − 𝜃𝑠𝑢𝑟𝑟 ⋅ 𝒆𝐼𝐷), for 𝒙 ∈ Γ𝐿 ∪ Γ𝑅 ∪ Γ𝑇 , (2.2𝑎) 

(𝑘𝛁𝜽) ⋅ 𝒏 = ℎ𝑏𝑜𝑡(𝜽 − 𝜃𝑚𝑜𝑙𝑑 ⋅ 𝒆𝐼𝐷), for 𝒙 ∈ Γ𝐵 , (2.2𝑏) 

𝜽(𝒙, 0) = 𝜃𝑖𝑛𝑖𝑡 ⋅ 𝒆𝐼𝐷 , ∀ 𝒙, (2.2𝑐) 

where 𝜃𝑠𝑢𝑟𝑟 is the temperature of the surrounding air, 𝜃𝑚𝑜𝑙𝑑 is the temperature of the mold underneath the layup, and 

𝜃𝑖𝑛𝑖𝑡 is the initial temperature of the part. 𝒆𝐼𝐷 is a vector of ones with the same length as 𝜽. The resin used for the 

studies in this article cures at room temperature, therefore the only heat input to the system comes from the exothermic 

reaction. The well-known, forward in time, centered in space (FTCS) finite difference approximation of the heat 

equation [76] is used to discretize the governing equation. An explicit FTCS scheme was chosen as opposed to an 

implicit (e.g., the Crank-Nicolson) scheme in order to speed up the computation [76] and to enable cure monitoring 

in near-real-time. The heat equation can be approximated using FTCS as follows, 

𝜽𝑖 = 𝑴𝜽𝑖−1 + 𝒃 +
∆𝑡

𝜌𝐶𝑝

𝒇𝑖−1, (2.3) 

where M is the diffusivity matrix, 𝜽𝑖 is the temperature vector containing the temperatures of all nodes at time step i, 

b is a vector containing boundary condition terms which are not related to the temperature states, 𝒇𝑖−1 is the heat 

generation vector at time step i-1, and ∆𝑡 is the time step used for the time marching scheme [76]. Note that Equation 

1 is a nonlinear PDE (due to the state-variable-dependent heat generation term), whereas an approximation has been 

made to obtain a linear discretized FTCS equation (Equation 3). The contents of the M matrix and the b vector are 

shown in the Appendix, where a brief derivation of the discretized form of the equations is shown.  

 

2.1.1.2 Heat Source Modeling 

The exact cure kinetics for the resin used in the experiment are unknown, but the resin’s behavior during cure 

is known to be similar to that of (methyl methacrylate) (MMA). A cure kinetics model for the polymerization of MMA 

has been reported in the literature, and the free-radical polymerization reaction experiences autoacceleration during 

the process [47]. The model consists of a system of six coupled, nonlinear, stiff ordinary differential equations (ODEs), 

and coupled equations for many other state-dependent parameters. Resolving the system of ODEs for all finite 

difference nodes while considering the diffusion of heat is computationally expensive and difficult to perform in real 

time. Instead, a lookup table that estimates the cure rate (𝜑̇) as a function of the temperature (𝜽) and degree of cure 

(𝜑) is created using the data generated by multiple isothermal cure kinetics simulations, and a two-dimensional linear 
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interpolation scheme is employed to estimate the cure rate given the current temperature and the degree of cure at each 

computational node at each time step. The heat generated by the resin is directly proportional to the rate of cure, and 

the two are related by the following equation: 

The heat generated by the resin and the rate of cure, are related by the following equation: 

𝒇𝑖−1 = (1 − 𝑣𝑓)𝐻𝑟𝑒𝑠𝑖𝑛𝜌𝑟𝑒𝑠𝑖𝑛𝝋̇𝑖−1(𝜽𝑖−1, 𝝋𝑖−1), (2.4) 

where 𝐻𝑟𝑒𝑠𝑖𝑛 is the heat of reaction for the resin, 𝜌𝑟𝑒𝑠𝑖𝑛 is the density of the resin, and 𝑣𝑓 is the fiber-volume fraction 

[40]. The density of the resin was assumed to be constant and was provided to the authors by the resin manufacturer, 

as was the heat of reaction for the resin. The rate of cure vector, 𝝋̇𝑖−1, can be determined using the look up table 

described above and the temperature and degree of cure from the previous time step. The degree of cure vector for 

time step i is computed via the following approximation 

𝝋𝑖 = 𝝋𝑖−1 + ∆𝑡𝝋̇𝑖−1. (2.5) 

If the input vector, 𝒖𝑖−1, is defined as 

𝒖𝑖−1 =
∆𝑡

𝜌𝐶𝑝

𝒇𝑖−1, (2.6) 

then Equation 2.3 can then be expressed as: 

𝜽𝑖 = 𝑴𝜽𝑖−1 + 𝒃 + 𝒖𝑖−1. (2.7) 

The discretized governing equation (Equation 2.7) is then used in the temperature and degree of cure estimation 

technique. 

 

2.1.2 Temperature Estimation Technique 

A temperature estimation technique is needed to compute the temperature (and the degree of cure) through 

the thickness of the part, as the IR thermography data only provides surface temperature measurements. The model 

described in section 2.1.1 involves approximations in the dimensionality of the problem (2D vs 3D), material behavior 

(time-invariance, homogeneity and isotropy), geometry, and the cure kinetics model. A temperature estimation 

methodology that can leverage the information contained in the measured temperature data (up to the present time) to 

correct estimates made by this simplified model (at the current time instant) is needed to enable accurate, real-time 

cure monitoring. Bayesian filtering methods, in general, and the Kalman filter and its variants, in particular, provide 
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a suitable alternative to carry out the fusion of information contained in the measured data and the physics model. 

These techniques also quantify the uncertainty in the estimate of the quantity of interest. 

For nonlinear state evolution equations (similar to the one being considered here), either an extended Kalman 

Filter (EKF), unscented Kalman Filter (UKF), or Ensemble Kalman Filter is typically used [39][40][77]. However, 

the EKF technique, which relies on linearization of the state evolution equations, can suffer from instability; and the 

UKF technique requires Monte Carlo sampling, which reduces the speed of the temperature estimation. Ensemble 

Kalman filters are also prohibitive for real-time monitoring due to computational expense. The Kalman filter offers a 

closed form solution of the Bayesian estimation (filtering) problem based on the assumptions of linearity and normality 

of the state evolution and measurement models. The KF thus provides the most efficient filtering method and can be 

used provided the assumptions of linearity and normality are valid. The assumption of linearity is valid due to the fact 

that Equation 2.7 is linear for a particular time step. The normality assumption can be validated by first using a Monte 

Carlo simulation to generate N samples of the entire time history of the forward model for each node. A Chi-Square 

test can then be used to test whether the collection of N temperatures predicted at the final time step for a node can be 

described by a normal distribution for a particular significance level, α.  

A brief summary of the well-known, Kalman filtering equations is given below. In these equations, the vector 

of mean estimated temperatures, µ, and the corresponding covariance matrix, P, are calculated for each time step, i. 

𝝁̂𝑖 is the temperature vector predicted by the unfiltered model, and 𝑷̂ is the corresponding covariance matrix. Q is the 

covariance matrix for the process error (𝑸 =  𝜎𝑝 
2𝑰, where 𝑰 is an identity matrix). Equation 2.7 can now be recast to 

yield the state evolution model as: 

𝝁̂𝑖 = 𝑴𝝁𝑖−1 + 𝒃 + 𝒖𝑖−1 + 𝒒𝑖 , (2.8) 

where 𝑞𝑖 ∼ 𝑁(𝟎,𝑸) is the process noise. The (discretized) observation model is governed by H, a matrix defining the 

locations (indices) of the measurement nodes. The column corresponding to the index of a measurement node has a 1 

in the row corresponding to the measurement node. The rest of the matrix contains zeros. Thus, the measurement 

model is given by: 

𝒎𝑖 = 𝑯𝝁̂𝑖 + 𝒓𝑖 , (2.9) 

where 𝒎𝑖 is the vector containing the measurement data at time step i, 𝒓𝑖 ∼ 𝑁(𝟎, 𝑹), and R is the covariance matrix 

for the measurement error (𝑹 =  𝜎𝑚 
2 𝑰, where 𝑰 is an identity matrix). If the innovation vector is defined as v, and the 

Kalman gain matrix as K, then the recursive Kalman Filter equations are as follows: 



25 
 

𝑷̂𝑖 = 𝑴𝑷𝑖−1𝑴𝑇 + 𝑸, (2.10) 

𝒗𝑖 = 𝒎𝑖 − 𝑯𝝁̂𝑖 , (2.11) 

𝑺𝑖 = 𝑯𝑷̂𝑖𝑯𝑇 + 𝑹, (2.12) 

𝑲𝑖 = 𝑷̂𝑖𝑯𝑇𝑺𝑖−1
, (2.13) 

𝝁𝑖 = 𝝁̂𝑖 + 𝑲𝑖𝒗𝑖 , (2.14) 

𝑷𝑖 = 𝑷̂𝑖 − 𝑲𝑖𝑺𝑖𝑲𝑖𝑇 . (2.15) 

In the proposed cure monitoring technique, Equations 2.8, and 2.10 through 2.15 are used in real-time to estimate 

internal temperatures, and Equation 2.5 is used with the mean values of temperatures at each computational node to 

update the degree of cure in a curing composite part.  

 

2.1.3 Simulation-based Verification of Estimation Technique 

The performance of the Kalman-filter-based cure monitoring algorithm discussed in Section 2.1.2 is 

evaluated using synthetic data. To this end, first, simulation data is produced using a commercial finite element 

program (COMSOL Multiphysics®[78]). In COMSOL, heat conduction in a rectangular domain is simulated to mimic 

the assumed domain for the experiment discussed in this chapter. The domain is discretized using a structured mesh 

of nine-node (quadratic), rectangular elements (5 mm in the x-direction in 3.75 mm in the y-direction). Two Coefficient 

Form PDE interfaces, the first describing the heat conduction and the second describing the cure kinetics, are defined 

in the COMSOL model. The heat transfer equation is the heat equation described in Section 2.1.1, and the heat 

generation is computed using Equation 2.4. The lookup table used to approximate the cure kinetics model is accessed 

by COMSOL, and the cure rate is interpolated using the current temperature and degree of cure values. A Multifrontal 

Massively Parallel Sparse (MUMPS) direct solver is used to solve the systems of differential equations at each time 

step. The time marching is performed using variable-order backward differentiation formulas (BDF). The heat of 

reaction is changed for the COMSOL model compared to the model assumed for the estimation technique, which 

simulates a real-life scenario where there are differences between an approximate model (the model used for the 

estimation technique) and the true physics (the model used for the COMSOL simulation). Robin boundary conditions 

are chosen for all four boundaries to mimic the assumed boundaries for the experiment discussed in this chapter. The 

top, left, and right boundaries are assumed to be convective boundaries, with the reference temperature being the 

surrounding air temperature, θsurr, and the bottom boundary used a different reference temperature, θmold.  
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In order to generate synthetic data from the high-fidelity, COMSOL model, a (forward) heat conduction 

simulation is performed, and the temperature time histories on the top edge of the 2D slice (the top surface) are 

recorded. Gaussian white noise is added to these time histories, and this synthetic data is used as measurement data 

for the KF-based estimator to perform estimations. The resulting internal estimations performed by the KF-based 

technique are compared to the results of the COMSOL simulation to determine the accuracy of the estimation. In 

addition, a forward simulation of the assumed model is performed without the benefit of correction via a KF, and these 

results are compared to those of the COMSOL simulation and the KF-based estimator as well. This non-corrected 

model provides a baseline from which the improvement provided by the KF correction and measurement data is 

quantified.  

 

2.1.4 Laboratory Experiments 

 

2.1.4.1 Estimation of Effective Material Properties 

Before performing the validation experiment, a calibration experiment is performed, where a genetic 

algorithm (GA) is employed to estimate the effective thermal properties of a fully-cured FRP composite panel 

manufactured in the laboratory using the same fiber and resin specifications as in the validation experiment presented 

later in this section. Thermocouples are embedded in the panel during manufacturing, and internal temperature data is 

recorded as the panel cools after being heated in an oven. A 2D heat conduction model for the cooling process is used 

to produce model-predicted temperatures for different combinations of properties. The thermal conductivity, k, the 

product of density and specific heat capacity, ρCp, the convection coefficient, h, for convective heat transfer between 

the surrounding air and the composite, and the bottom surface heat transfer coefficient, hbot, for heat transfer between 

the composite and the mold are considered as parameters to be estimated using the GA.  

Though all four of these parameters are estimated in the calibration experiment, a sensitivity analysis could 

be used to determine parameters that significantly affect the quantity of interest (the metric used for calibration). For 

example, a sensitivity analysis (not reported here) revealed that only ρCp and hbot have a significant effect on the early-

time cooling rate of the composite part. In the future, sensitivity analysis-informed thermal property calibration can 

be performed to improve the efficiency of the process and reduce the number of parameters to be calibrated. The 

properties that produced the best fit between the measurement data from the embedded thermocouples and the model-
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predicted temperatures are returned by the GA. These properties are used as effective, time-invariant thermal properties 

of the homogeneous, isotropic 2D domain to simulate the 3D heat diffusion problem of interest. Note that 

determination of these effective properties may be unnecessary in an industrial setting, where material properties of 

manufacturing materials are typically well-known.  

 

2.1.4.2 Validation Experiment 

The temperature estimation methodology proposed in this article was validated for an FRP composite 

manufactured at the National Renewable Energy Lab (NREL) Composites Manufacturing Education and Technology 

(CoMET) facility. The manufactured part was a 2-meter-long max chord section of a wind turbine blade (the chord 

section closest to the root of the blade). The Vacuum-Assisted Resin Transfer Molding (VARTM) process was used 

for the infusion of the resin. The spar cap region of the part was chosen to test the performance of the temperature 

estimation method, as this region of the part did not contain any additional layup materials aside from fiberglass (other 

regions contained a layer of balsa wood). Although the layer of balsa wood could be included in the heat conduction 

model, it was avoided for simplicity. Therefore, the chosen 2D domain for the experimental validation was a vertical, 

2D slice out of the spar cap region, where the x direction was the max chord length and the y direction was the max 

chord thickness. 

The IR camera was placed above the mold at the maximum height of the stand to which it was attached in 

order to maximize the view of the camera. The camera view did not encompass the entire surface of the part but 

covered about 1775 mm of the full 2000 mm length. The camera placement and view along the width dimension is 

shown in Figure 2.2 (a), and the field of view along the length dimension is shown in Figure 2.2 (b). The relative 

location of the spar cap region as seen in the IR images recorded by the camera, the vertical plane containing embedded 

thermocouples, and the extents of the camera’s view along the length from a top view are also shown in Figure 2.2(b).  

Four thermocouples were embedded in the part to provide temperature measurements for comparison to the 

temperature estimated by the proposed method. Note that the thermocouple measurements were not used as 

measurements for the estimation technique.  

An additional thermocouple was placed at the bottom of the part between the part and the surface of the mold 

and was used to measure the mold temperature (θmold). This measurement was fed to the model so that the heat transfer 

between the part and the mold could be calculated accurately. The mean temperature values of KF-based temperature 
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estimates are used for comparison to the measured thermocouple data for validation. Two infusion lines were placed 

on top of the part and run across the full length of the part to aid in the distribution of resin. The placement of these 

infusion lines as well as the location of the spar cap region are shown in the IR image in Figure 2.3.  

 

(a)  
 

(b) 

Figure 2. 2: Experimental Setup: (a) A schematic showing the position of the IR camera with respect to the VARTM 

mold; (b) View of the surface of the composite from the perspective of the IR camera. The extents of spar cap region, 

location of chosen domain for model (2D slice) and length of IR camera view are also shown. Note that image (a) 

shows the plane of the width and thickness dimensions, while image (b) shows the top plane of the length and width 

dimensions. The 2D analysis is performed in the plane of the length and thickness dimensions. 

 

 

Figure 2. 3: IR image of part before infusion: the location of the infusion lines and the spar cap region are highlighted, 

and the temperature scale on the right is shown in Celsius 
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2.2 Results and Discussion  

 

2.2.1 Estimation of Thermal Properties of Composite Material using Genetic Algorithm 

A Genetic algorithm was used to estimate the thermal properties of an FRP composite part using the 

procedure described in Section 2.1.4.2. The finished FRP composite part used for thermal property calibration is 

shown in Figure 2.4. The approximate location of the cross section that was modeled to perform the calibration is also 

shown. Four thermocouples were embedded in the part before cure and placed along a 2D plane perpendicular to the 

length of the part, as shown in Figure 2.4. The approximate dimensions of this 2D slice are shown in Figure 2.5, as 

are the approximate locations of the thermocouples.  

 

 

Figure 2. 4: FRP Composite panel used to estimate thermal properties with GA 

 



30 
 

 

Figure 2. 5: Diagram showing the relative positions of the four thermocouples within the 2D plane through the 

thickness of the panel 

 

As discussed in section 2.1.1, the part was heated in an oven, removed from the oven, and as it cooled, the 

temperature time histories were recorded by the thermocouples. The recorded time histories were used to estimate the 

material properties using a GA. The GA was run for 40 generations, with a population size of 160, a mutation 

probability of 0.04 and a crossover probability of 0.8. An Elitist approach was used, and parents for each generation 

were selected using a Roulette Wheel approach.  

The results of the GA are shown in Figure 2.6 and Table 2.1. Figure 2.6 shows the result of the heat 

conduction simulation at the four thermocouple locations using the best-fit properties, and Table 2.1 shows the best-

fit properties. The resulting error between the model-predicted temperatures when using the properties given in Table 

2.1 and the measured thermocouple temperatures was less than 1% for all four thermocouple locations, indicating that 

the properties estimated by the algorithm can be considered to represent the material behavior well. 
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Figure 2. 6: Time histories of the temperatures; measured temperatures and temperatures predicted using properties 

given in Table 2.1 are shown. “Sim T1” through “Sim T4” correspond to simulated temperature variation at Points 1 

through 4 in Figure 2.5, respectively, while “TC1” through “TC4” correspond to the thermocouple measurements at 

those points, respectively. 

 

Table 2. 1: Properties Determined by Genetic Algorithm 

Property (units) Value 

Thermal Conductivity, k (W/m*K) 0.42 

Density*Specific Heat, ρCp (J/(m3*K) 1.3 x 106 

Convection Coefficient, h (W/m2*K) 5.6 

Bottom Heat Transfer Coefficient, hbot (W/m2*K) 28.4 
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2.2.2 Simulation-based Verification of Estimation Technique 

 

2.2.2.1 Determination of the Validity of Normality Assumption 

The validity of the normality condition necessary for the applicability of the KF-based estimation algorithm 

and the performance of the temperature estimation algorithm were evaluated as described in Section 2.1.2. For both 

tests, the lookup table used to estimate the rate of cure was generated by assuming a 2% initiator concentration by 

weight. The temperature ranged from T1 = 265 K (-8.15 oC) to Tmax = 400 K (125.85 oC), while the degree of cure 

ranged from 𝜑1 = 0.2 to 𝜑max = 1, with 1 indicating a full cure. The range began at 0.2 because for the particular resin 

discussed in this work, 20% weight of reacted monomer was pre-dissolved into the bulk of the non-initiated resin. 

First, the normality assumption was tested using a Monte-Carlo simulation with N = 100. The FTCS forward model 

described in section 2.1.1 (Equation 2.7) was used to generate the samples, and a 4 x 401 nodal network was used. A 

time step of 1 s was used. A Chi-Square test with α = 5% and f = 5 was run to evaluate whether a normal distribution 

could be used to describe the distribution of the temperatures at the final time step of the simulation. The results 

showed that for the three points shown in Figure 2.7, the Chi-Square metric was less than the Chi-Square bound for α 

= 5% and f = 5. This indicated that the assumption of normality was valid, and, along with the validity of the linearity 

assumption described in Section 2.1.2, indicated that the use of a linear Kalman filter was valid.  

 

2.2.2.2 Verification of KF-based estimator for a Pristine Part 

Next, the performance of the KF-based estimation algorithm was tested using synthetically generated surface 

temperature data. Synthetic data was generated by adding Gaussian white noise to surface temperature data computed 

using a commercial finite element program (COMSOL Multphysics®). That data was fed into the estimation 

algorithm, and the resulting estimated mean temperatures were compared to the finite element results at the locations 

defined in Figure 2.7. The heat of reaction for the estimation algorithm was assumed to be 20% higher than that of the 

COMSOL model. In this manner, the COMSOL model was assumed to simulate the “correct”, real-life behavior of 

the physics at play, while the state evolution model was erroneous (the heat generation was assumed to be 20% greater 

than the “actual” value). A 2D rectangular domain of length 2 m and thickness 7.5 mm was modeled in COMSOL and 

for the FTCS model. A 4 x 401 nodal network was used for the estimation algorithm, and the same (2% weight) lookup 
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table was used as was used above. A structured, quadrilateral mesh with 800 elements was used for the COMSOL 

simulation, and the same lookup table was used to define the heat source in the COMSOL model as well. A time step 

of 1 s was used the estimation algorithm, and a time step of 0.1 s was used for the COMSOL simulation. For the BDF 

solver, a maximum order of 5 and automatic time stepping were selected. The relative tolerance was set to 10-4. A 

necessary condition for the stability of the FTCS approximation is that the Courant-Friedrichs-Lewy (CFL) condition 

must be met. The CFL condition, which is defined as: 

𝐶𝐹𝐿𝑥 =
𝑘∆𝑡

𝜌𝐶𝑝∆𝑥2
< 0.5, (3.1𝑎) 

𝐶𝐹𝐿𝑦 =
𝑘∆𝑡

𝜌𝐶𝑝∆𝑦2
 < 0.5, (3.1𝑏) 

was met for the chosen properties and network, with 𝐶𝐹𝐿𝑥 and 𝐶𝐹𝐿𝑦 equaling 0.013 and 0.052, respectively. For both 

the algorithm and the COMSOL simulation, k, ρCp, h, and hbot were set equal to the values determined by the GA 

(given in Table 2.1). θsurr and the initial temperatures for each node in the network were all set equal to 20.87 °C (the 

average initial temperature measured by the IR camera for the experiment outlined in Section 2.1.4). θmold was set 

equal to the time history temperature data collected by the mold thermocouple referenced in Section 2.1.4. 

 

 

Figure 2. 7: Diagram indicating the relative locations of the points of interest (presented as “thermocouples”) within 

the domain for simulation-based verification 

 

The data from 400 top surface points corresponding to 400 top surface nodes in the FD network were 

extracted from COMSOL, with the center point (Point 2 in Figure 2.7) being the one surface node that was excluded 
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as a measurement point. The temperature recorded at these 400 points simulated the use of IR thermography for the 

surface measurements, which allows for many points to be used as measurement points. Gaussian white noise was 

added to the COMSOL surface temperature data as measurement noise (standard deviation, 0.1°C). The process noise 

and the measurement noise for the Kalman filter were also assumed to have a standard deviation of 0.1°C. The mean 

estimated temperatures of the algorithm at the three points of interest are shown in Figure 2.8 (a) through 2.8 (c), the 

error between the estimation and the COMSOL simulation at those points is shown in Figure 2.8 (d), and the degree 

of cure estimates and COMSOL predictions are shown in Figure 2.9. The FTCS simulation results are also included 

in Figures 2.8 and 2.9 for comparison. The temperature estimation algorithm is denoted by “KF” in both figures. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. 8: Temperature and Error Plots Showing Algorithm Results Compared to COMSOL 
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(a) 

 
(b) 

 
(c) 

 

Figure 2. 9: Estimated Degree of Cure over Time for the COMSOL simulation, Estimation Algorithm, and FTCS 

Forward Simulation 

 

The results shown in Figures 2.8 and 2.9 indicate that the use of the surface temperature measurements in 

conjunction with a Kalman Filter was able to improve the accuracy of the erroneous model assumed for the FTCS 

forward simulation (that is, the erroneous state evolution equation). The maximum error between the temperature 

predictions of the FD simulation and the COMSOL simulation at all three points of interest exceeded 100% when 

using the stand-alone FTCS model, but this was reduced to less than 6% at Points 1 and 2 and less than 10% at Point 

3 when using the Kalman Filter. Figure 2.9 shows that the accuracy of the degree of cure estimates were also improved 

with use of the KF, with the COMSOL degree of cure predictions nearly overlapping with the degree of cure estimated 

by the algorithm.  
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2.2.3 Laboratory Experiment and Estimation Results 

The experimental setup was described in Section 2.1.4. The model outlined in Section 2.1.2 was used in 

conjunction with experimental surface temperature to estimate internal temperatures of a curing composite part. 

Surface temperature data was collected on the curing composite part using an IR camera at 1 Hz for 11,220 seconds, 

starting just before infusion began and ending during the cooling period after the exothermic reaction of the resin had 

completed. Both a low-pass filter and a median filter (to remove measurement dropouts that result from the IR camera 

performing automatic recalibrations to maintain accuracy) were applied to the IR surface temperature data before 

using it in the temperature estimation method.  

A 2D slice of thickness (width) 7.5 mm and length 2 m was modeled to obtain the state evolution model 

(using the FTCS scheme discussed in section 2.1.1). The thickness for the assumed rectangular domain was 

approximated as 7.5 mm based on thickness measurements of the max chord part after the part was de-molded, while 

a length of 2 m was chosen to match the length of the max chord section. The properties estimated using the GA 

discussed in Section 2.2.1, given in Table 2.1, were used in the heat conduction model. The fiber-volume fraction was 

assumed to be 𝑣𝑓 = 0.6, as this was the target value for the spar cap region. A 2% initiator concentration by weight 

was used for the resin in the experiment, and the same was also used to generate the lookup table for estimation of the 

heat source intensity. The temperature and degree of cure for the lookup table ranged from T1 = 265 K (-8.15 oC) to 

Tmax = 400 K (125.85 oC) and 𝜑1 = 0.2 to 𝜑max = 1, respectively. θmold was set equal to the time history temperature 

data collected by the mold thermocouple referenced in Section 2.1.4.  

A 4 x 401 nodal network was used for the state evolution model. A mesh convergence study was performed 

for the nodal network, and refinement beyond a 4 x 401 mesh did not provide significant improvement in the model 

accuracy. The locations of the rows of the FD nodal network within the domain and relative to the thermocouple 

locations are shown in Figure 2.10. The field of view of the IR camera did not encompass the entire length of the max 

chord, so only 356 of the 401 surface nodes (nodes lying on the top edge of the 2D slice) were used as measurement 

points. The camera had 1280 pixels in the length direction, so the temperature-time histories for the 356 measurement 

points were taken from the pixels which were closest to the evenly-spaced surface node locations. The locations of 

the four measurement points used for comparison to the estimation results are shown in Figure 2.10.  
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Figure 2. 10: Measurements and nodal network rows relative to approximate spar cap thickness. Note that the length 

and thickness of the part are not to scale in the figure. 

 

As shown in Figure 2.10, the locations of the four embedded thermocouples do not coincide with the rows 

of the nodal network used in the state evolution model. In order to compare the results of the KF-based estimation 

method to measurements at those locations, the temperatures were approximated by linearly interpolating between the 

values of the nearest nodes directly above and below the thermocouples.  

In the laboratory, the part was placed under vacuum for about 30 minutes before infusion without any heat 

input. As a result, the initial measured temperature of the part was assumed to be equal throughout the domain and 

was assumed to be equal to the temperature of the surrounding air. Therefore, the surrounding air temperature, 𝜃𝑠𝑢𝑟𝑟, 

and the initial temperatures, 𝜃𝑖𝑛𝑖𝑡 for each node in the network were all set equal to 20.87 °C, which was the average 

initial temperature measured by the IR camera. The initial standard deviation between all of the estimated temperatures 

was assumed to be small, at only 0.02 °C. In order to estimate the typical measurement error for the IR camera, the 

standard deviation in the IR camera measurements was computed separately from this experiment. 118 samples 

measuring the temperature of an object at room temperature were collected in time by the IR camera. The standard 

deviation of these measurements (𝜎𝑚) was computed and found to be 0.05 °C. This standard deviation was used to 

define the covariance matrix for the measurement error in the estimation method. 𝜎𝑝 was assumed to be 1.0 °C, 

approximately 20 times greater than 𝜎𝑚. The estimated mean temperatures at the four measurement locations and the 

error between the estimates and the measured temperatures are shown in Figure 2.11. Standard deviation bounds of 

the mean +/- σ (estimated standard deviation) are also included. The degree of cure estimations over time are shown 

in Figure 2.12. The results are shown at the same locations as those shown in Figure 2.11. The root mean squared 
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(RMS) error between the estimated temperatures and the measured temperatures at the internal thermocouples during 

three different phases is shown in Table 2.2. These three phases are: pre-cure acceleration (Phase 1, 0 to 6000 s), 

temperature rise (Phase 2, 6000 s to 8000 s), and cooling (Phase 3, 8000 s to 11,220 s). Figure 2.12 shows that the 

estimated curing behavior matches well with the expected curing behavior for a resin used [47]. The reaction began 

to accelerate (Trommsdorff effect [79]) after about 6000 seconds, and within about 1000 to 2000 seconds after the 

acceleration, the resin was nearly completely cured. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. 11:  Comparison of estimated mean temperatures and measured temperatures at a) TC1, b) TC2, c) TC3, and 

d) TC4 depicted in Figure 2.10 
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Table 2. 2: Root Mean Squared (RMS) error between the estimated and measured temperatures at all 

thermocouples during Phase 1, Phase 2, and Phase 3 

RMSE (°C) TC1 TC2 TC3 TC4 

Phase 1 0.52 0.55 0.57 0.61 

Phase 2 1.40 2.65 1.06 2.18 

Phase 3 1.12 0.67 0.82 0.34 

 

 

 

Figure 2. 12: Estimated Degrees of cure at the four thermocouple locations 

 

As shown in Figure 2.11, the error in temperature estimation at times other than the peak was quite small for 

locations both close to the surface and deeper down, largely remaining below 5%. The errors at the peak were about 

5% for all thermocouples, while the largest errors for the estimation occurred for thermocouples 2 and 4 during the 

temperature rise. At these locations, the estimated temperatures merely lag behind the measured temperatures by about 

100 s during a period of rapid temperature increase. This lag and the slightly higher temperature reached at 

thermocouple 2 are both likely due to variations in the spatial distribution of resin between the different regions of the 

part (note the locations of thermocouples 2 and 4 in Figure 2.10). This can lead to differences in curing behavior 

between different regions, such as the times at which the Trommsdorff effect [47][79] initiates and the peak 
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temperatures that are reached. This is supported by the fact that cure acceleration occurred slightly later at the 

thermocouple 2 and 4 locations than for the other thermocouples, as shown in Figure 2.12. Additionally, as shown in 

Figure 2.13, the right side of the spar cap heats up sooner than the left side. The image in Figure 2.13 (a) was taken 

about 8 minutes before the image in Figure 2.13 (b). This potentially contributes to the estimation lagging behind the 

measured temperatures at these locations, as the cure acceleration in these regions (and as a result, the rate of 

temperature rise) would have been amplified by the higher temperatures in nearby regions that were further along in 

the curing process. Despite this, observing the rise periods of the temperature plots in Figure 2.11 qualitatively, it is 

clear that the estimation remains in good agreement with the measurements during the rise period, despite the lag.  

 

 
(a) 

 
(b) 

Figure 2. 13: IR images showing the surface temperature distribution in the spar cap at 13:11 (a) and 13:19 (b). The 

temperatures on the right side of the images are in °C.  

 

For the estimation results shown in Figure 2.11, the magnitude of the error increases sharply at the beginning, 

during the infusion period of the process. This is due to the resin cooling to below room temperature during the 

degassing process before infusion, which causes the part to cool during infusion. This cooling is not considered in the 

model. The standard deviation bounds in the thermocouple plots also show that the variance is greater at estimation 

locations further away from the surface. The higher variance deeper in the part is expected, since the information being 

fed to the KF is from the surface.  

The ability to maintain accuracy despite the use of an approximate model for complex cure kinetics is a 

feature that has not been demonstrated in past temperature estimation studies for curing FRP composites. As shown 

in Table 2.2, the root mean squared (RMS) error between the estimated temperatures and the measured temperatures 

at the internal thermocouples remains below 3 °C for all four locations during the pre-cure acceleration (Phase 1, 0 to 
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6000 s), temperature rise (Phase 2, 6000 s to 8000 s), and cooling (Phase 3, 8000 s to 11,220 s) phases of the curing 

process. Crucially, the method was able to provide real-time estimations as well. It performed about 1.6 estimations 

per second (computation time of about 7000 seconds) on a personal computer with an Intel core i5 vPro processor, so 

it is fast enough to be performed in real time with data taken at 1 Hz. A direct comparison between the computational 

speed of this method with other temperature estimation techniques for curing composite materials is difficult, on 

account of the dearth of reported computational speeds of these other techniques in the literature. However, it is 

reasonable to expect execution of a KF-based method to be faster than those utilizing inverse methods, optimization-

based solutions, or an Ensemble KF (discussed in Section 1). Thus, the cure monitoring methodology is likely the 

most suitable choice for performing real-time cure process monitoring with model-data fusion.  

The accuracy of the temperature estimation, the capacity to perform real-time estimations for complex cure 

kinetics, and the ability to estimate the uncertainty in the temperature estimate using this technique all provide qualities 

for internal state estimation of FRP composites that are not currently found in previously-studied methods. Real-time 

estimation, the quantification of the uncertainty in the temperature estimation, and the estimation of degree of cure 

values can all be crucial features for adaptive decision making during and immediately after the manufacturing 

process.   

 

2.3 Conclusions 

In this chapter, a methodology was discussed for estimating both the internal temperatures as well as the 

degree of cure of a composite during the curing process using surface temperature measurements. A heat diffusion 

model for a curing composite and a KF-based temperature estimation method was implemented and validated using 

laboratory experiments. The technique was capable of real time cure monitoring, even for large parts, such as the wind 

turbine blade max chord section used in the validation experiment. Despite various simplifying approximations made 

in the model, the method was able to accurately estimate the internal temperatures. The error in mean estimated 

temperatures as compared to measured temperatures was less than 5% for all times not including the initial infusion 

period and the temperature rise. The estimated mean temperature at during the temperature rise experienced 5-15% 

errors at all thermocouple locations. To the best of authors’ knowledge, this is the only study to date to discuss real-

time monitoring for resin systems with complex free-radical polymerization reactions experiencing autoacceleration. 

Utilization of the true cure kinetics model for the resin used in the experiment to generate the simplified cure kinetics 
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model would likely improve the accuracy of the technique. Using models with higher fidelity (i.e. those that 

incorporate a more sophisticated cure kinetics model or the temperature- or cure-dependent variation in properties) 

would also improve accuracy (at the cost of the capability to perform real-time estimation). 
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Chapter 3. Flaw Detection in Curing Composites 

  

 

The ultimate goal of the FRP composites work is not only to estimate internal temperatures in real-time, but 

also to identify flaws in an FRP composite from data measured during the curing process. This requires a non-

destructive flaw identification technique with sufficient speed to identify flaws in real-time. The following sections 

detail a flaw detection method that utilizes the correction terms used in the temperature estimation technique described 

in the previous chapter. The goal is to verify whether the temperature estimation technique described in the previous 

chapter is capable of producing accurate estimates in the presence of flaws and whether the flaw detection method can 

accurately identify flaws. Despite the importance of the method’s ability to perform real-time detection, this study 

will focus first on the technique’s ability to accurately detect flaws. Three case studies are performed during the 

verification process for both the temperature estimation technique and the flaw detection method. The results of the 

verifications are presented and discussed in this chapter. 

 

3.1 Methodology 

 In this section, a model of the governing physics of the heat diffusion in an FRP composite during the curing 

process is first described. This model is very similar to that which was used in the previous chapter, but a 3D domain 

is utilized instead of a 2D domain. A Kalman filter that fuses the information obtained from the assumed physics 

model (the state evolution model) and IR thermography data is utilized. A method for performing flaw detection in 

curing composites using the cumulative magnitudes of the corrections provided by the KF is discussed. The 

methodology of simulation-based case studies for the verification of the effectiveness of the flaw detection technique 

are described as well. 
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3.1.1 Computational Model of the Governing Physics 

 As was stated in Chapter 2, the heat transfer in the composite part is governed by the first law of 

thermodynamics. As with the model in Chapter 2, mass transfer is ignored and energy loss due to radiation is 

considered to be negligible. Additionally, the material is assumed to be homogeneous, and the heat conduction 

simulation is performed using time-invariant, effective thermal properties of the composite part. In contrast to the 

model described in Chapter 2, the domain is now hexahedral (3D), and the material is no longer modeled as isotropic. 

The 3D domain is shown in Figure 3.1.  

 

 

Figure 3. 1: 3D domain (Ω) used for computational model 

 

The composite is assumed to be unidirectional (i.e. the fibers are all oriented in the same direction), and the 

differences in thermal conductivity between the longitudinal direction (the direction along the fiber direction) and the 

transverse directions are considered. The x-direction is chosen to be the longitudinal direction, while the y- and z-

directions were chosen as the transverse directions. For unidirectional composites, the thermal conductivity in the 

longitudinal direction can be determined using the rule of mixtures, while the conductivities in the transverse directions 

can be determined using the inverse rule of mixtures [1]. The approximate upper and lower limits of volumetric 

properties, such as density and specific heat, can also be computed using the rule of mixtures and the inverse rule of 

mixtures, respectively. For the purposes of this study, the mean values of the upper and lower limits for the two 

properties can be used. The rule of mixtures equations used to compute the conductivities (and the upper and lower 

limits of the volumetric properties by substituting their respective values) are: 
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𝑘𝑥 = 𝑣𝑓𝑘𝑓 + (1 − 𝑣𝑓)𝑘𝑚, (3.1𝑎) 

𝑘𝑦,𝑧 = (
𝑣𝑓

𝑘𝑓

+
1 − 𝑣𝑓

𝑘𝑚

)

−1

, (3.1𝑏) 

where 𝑘𝑥 is the thermal conductivity in the x-direction, 𝑘𝑦,𝑧 is the thermal conductivity in the y and z (transverse) 

directions, 𝑣𝑓 is the fiber-volume fraction, 𝑘𝑓 is the thermal conductivity of the fiber material, and 𝑘𝑚 is the thermal 

conductivity of the matrix material. As such, the thermal conductivity vector, k, can be defined as {𝑘𝑥, 𝑘𝑦, 𝑘𝑧}, and 

the governing equation stated in Equation 2.1 in Chapter 2 can be restated as: 

𝜌𝐶𝑝

𝜕𝜃(𝒙, 𝑡)

𝜕𝑡
− 𝛁 ∙ (𝒌𝛁𝜃(𝒙, 𝑡)) = 𝑓(𝜃(𝒙, 𝑡), 𝜑(𝒙, 𝑡)), for 𝒙 ∈ Ω, (3.2) 

The initial and boundary conditions to which the governing equation is subjected are given by: 

(𝑘𝛁𝜽) ⋅ 𝒏 = ℎ(𝜽 − 𝜃𝑠𝑢𝑟𝑟 ⋅ 𝒆𝐼𝐷), for 𝒙 ∈ Γ𝑋𝑌,1 ∪ Γ𝑋𝑌,2 ∪ Γ𝑌𝑍,1 ∪ Γ𝑌𝑍,2  ∪ Γ𝑋𝑍,𝑡𝑜𝑝, (3.3𝑎) 

(𝑘𝛁𝜽) ⋅ 𝒏 = 0, for 𝒙 ∈ Γ𝑋𝑍,𝑏𝑜𝑡 , (3.3𝑏) 

𝜽(𝒙, 0) = 𝜃𝑖𝑛𝑖𝑡 ⋅ 𝒆𝐼𝐷 , ∀ 𝒙. (3.3𝑐) 

where 𝜃𝑠𝑢𝑟𝑟 is the temperature of the surrounding air, 𝜃𝑖𝑛𝑖𝑡 is the initial temperature of the part, and ℎ is the convective 

heat transfer coefficient. All boundaries aside from the bottom boundary in the XZ plane are convective boundaries 

with the surrounding air, while the bottom boundary is assumed to be insulated. As with the study performed in 

Chapter 2, the resin used for the studies in this article cures at room temperature, therefore the only heat input to the 

system comes from the exothermic reaction. The well-known, forward in time, centered in space (FTCS) finite 

difference approximation of the heat equation [2] is again used to discretize the governing equation to enable cure 

monitoring in near-real-time. The heat equation can be approximated using FTCS as follows, 

𝜽𝑖 = 𝑴𝜽𝑖−1 + 𝒃 +
∆𝑡

𝜌𝐶𝑝

𝒇𝑖−1, (3.4) 

where M is the diffusivity matrix, 𝜽𝑖 is the temperature vector containing the temperatures of all nodes at time step i, 

b is a vector containing boundary condition terms which are not related to the temperature states, 𝒇𝑖−1 is the heat 

generation vector at time step i-1, and ∆𝑡 is the time step used for the time marching scheme [2]. The same heat source 

model that was used in Chapter 2 is also used in Chapter 3. The heat generated by the resin and the rate of cure, are 

related by the following equation: 
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𝒇𝑖−1 = (1 − 𝑣𝑓)𝐻𝑟𝑒𝑠𝑖𝑛𝜌𝑟𝑒𝑠𝑖𝑛𝝋̇𝑖−1(𝜽𝑖−1, 𝝋𝑖−1), (3.5) 

where 𝐻𝑟𝑒𝑠𝑖𝑛 is the heat of reaction for the resin, 𝜌𝑟𝑒𝑠𝑖𝑛 is the density of the resin, and 𝑣𝑓 is the fiber-volume fraction 

[3]. The density of the resin was assumed to be constant and was provided to the authors by the resin manufacturer, 

as was the heat of reaction for the resin. The rate of cure vector, 𝝋̇𝑖−1, can be determined using the look up table 

described in Chapter 2, and the degree of cure can be determined as discussed in Chapter 2. If the input vector, 𝒖𝑖−1, 

is defined as 

𝒖𝑖−1 =
∆𝑡

𝜌𝐶𝑝

𝒇𝑖−1, (3.6) 

then Equation 3.4 can then be expressed as: 

𝜽𝑖 = 𝑴𝜽𝑖−1 + 𝒃 + 𝒖𝑖−1. (3.7) 

The discretized governing equation (Equation 3.7) is then used in the temperature and degree of cure estimation 

technique. 

 

3.1.2 Kalman Filter-based Flaw Detection Technique 

 A Kalman Filter (KF) provides correction to state variable values predicted by an assumed (process) model. 

If these predicted values require a large amount of correction, then the assumed model does not accurately predict the 

true behavior of the physics involved. This would occur either if the model does not describe the expected physics 

well, or if the physics behave differently than expected. An example of the latter is a situation when flaws are present 

that cause the physics to behave out of the ordinary. Therefore, provided the model describes the expected physics 

well enough, the magnitude of correction the KF provides for a location in the domain can be used as an indicator for 

potential flaw formation. 

 Restating Equation 2.14 from Section 2, the corrected state variables output by the KF at time step i, 𝝁𝑖, can 

be expressed as 

𝝁𝑖 = 𝝁̂𝑖 + 𝑲𝑖𝒗𝑖 , (3.8)

where 𝝁̂𝑖 are the state variables predicted by the assumed model, 𝑲𝑖 is the Kalman Gain, and 𝒗𝑖 is the vector of 

differences between the measured values of certain state variables and the predicted values of those state variables. 

The product, 𝑲𝑖𝒗𝑖 , will be referred to as the “correction term” for the remainder of this work and is a key component 
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for the proposed flaw detection methodology. This vector provides an additive correction to the model-predicted 

values at each of the FD nodes in the domain at the time step, i.  

 The “cumulative correction term” (CCT), to which it will be referred in this work, can be used as a metric 

for flaw detection. The term is defined as: 

𝐶𝐶𝑇 = ∑ 𝑲𝑖𝒗𝑖

𝑛

𝑖=1

, (3.9) 

where n is the number of samples solved-for by the KF-based estimator. A metric that utilizes the actual values of the 

correction terms rather than the magnitudes and is cumulative in nature should help in reducing the effect of 

measurement noise-induced correction. 

 Identification of which metric values correspond to flaw locations can be performed using outlier detection. 

One important note related to this is that the magnitudes of the correction terms will decrease through the depth of the 

composite part. This is due to the fact that the correction will be greater at the top surface due to the noise from the 

measurements. The impact of the noise will be reduced through the depth, as the material itself will serve as a filter 

of sorts to reduce high-frequency content during the diffusion of heat through the part. As a result, each Nx by Ny 

“slice” through the material, where Nj corresponds to the number of nodes along the jth direction in the FD grid, will 

need to be considered separately, otherwise the CCT values from the top surface would dominate. Both the mean and 

standard deviation of the collection of CCT values from each slice can be computed. Locations within a slice with 

CCT values greater than or less than three standard deviations from the mean value for that slice can be determined to 

be outlier locations and can therefore be deemed potential flaw locations.  

A matrix, M, with dimensions equal to Nx x Ny x Nz, can be formed, with each index corresponding to a nodal 

location. The matrix can be filled with 1’s and 0’s. Locations with a 1 are those with CCT values greater than or less 

than a certain number, n, of standard deviations (σ) from the mean, while locations with a 0 are not. In order to 

minimize the effect of noise, which is random, a median filter with a region of 3 nodes by 3 nodes can be applied to 

each slice of M along the z-direction (i.e. each Nx x Ny section of M). The median filter changes the value of the central 

point in each 3x3 region to the median value of all points in that region. The central value of regions with few outliers 
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are thus changed to 0’s, which, on account of the randomness of noise, eliminates outliers identified due to noise. The 

filtered, binary M matrix is the final identifier for potential flaw locations. 

 

3.1.2 Verification of Temperature Estimation Technique in the Presence of Flaws 

 In order for the technique outlined in Section 3.1.1 to work effectively, the KF-based estimator must be able 

to accurately estimate temperatures in the presence of flaws. The model used for the estimator will have no knowledge 

of the size, location, or effect of a flaw, so the only information about the presence and location of the flaw comes 

from the measurement data. In order to show that the estimator can estimate temperatures accurately in the presence 

of flaws, a simulation-based verification study is performed. Simulation data is produced using the model that assumes 

there are not flaws, for comparison to the results that will include flaws. Simulation data can also be produced using 

a model that includes a flaw in the 3D domain. A flaw is introduced by changing the fiber-volume fraction in the flaw 

region, 𝑣𝑓,𝑓𝑙𝑎𝑤 , relative to the fiber-volume fraction of the rest of the domain, 𝑣𝑓. The data produced by this simulation 

represents the measured, real-life data from an actual part. The data from the top face nodes is then used as 

measurements for the KF-based estimator. Gaussian White Noise is added to the simulation data used as measurement 

data to simulate measurement noise.  

The temperature and degree of cure time history results produced by the KF-based estimator using both a 

model that has no knowledge of the flaw(s) and the measurement data from the flawed simulation(s) is compared to 

the data from the simulation(s) with a flaw modeled at the selected nodes. Verification is deemed successful if there 

is relatively small error between the mean temperatures estimated by the KF-based estimator and the simulation data 

than there was between the temperatures predicted by the non-filtered model and the simulation data. Essentially, 

verification is successful if the KF-based estimator improves the accuracy of the assumed model using the 

measurement data.  

 

3.1.3 Verification of Flaw Detection Technique 

 Once the temperature estimation technique’s ability to improve the accuracy of the model estimates using 

measurement data is verified, the flaw detection technique’s ability to accurately identify flaw locations can be 
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verified. The simulation data used for verification of the temperature estimation technique can also be used for 

verification of the flaw detection technique. The correction terms used by the estimation technique is recorded for all 

FD nodes and times, and the CCT is computed for all points. As described in section 3.1.2, locations that are outliers 

in terms of their CCT are determined to be probable flaw locations. Verification is deemed successful if the actual 

flaw locations (locations of the flaws in the simulation model) are correctly identified as likely flaw locations by the 

flaw detection technique. 

 In order to verify the generality of the accuracy of both the estimation technique and the flaw detection method 

in the presence of flaws, three case studies can be performed. All three case studies involve the use of an assumed 

model that has no knowledge of a flaw. The case studies are outlined below: 

1. The assumed model has no knowledge of a flaw. The measurement data fed to the KF will be from a 

simulation with one flaw. 

2. The assumed model has no knowledge of a flaw, and the assumed cure kinetics model is incorrect. The 

measurement data fed to the KF will be from a simulation with one flaw (the same data from Case 1). 

3. The assumed model has no knowledge of a flaw. The measurement data fed to the KF will be from a 

simulation with two flaws. 

 

3.2 Results and Discussion  

 

3.2.1 Verification of Temperature Estimation Technique in the Presence of Flaws 

 The ability of the KF-based temperature estimation algorithm to improve the internal temperature estimates 

compared to that of an assumed simulation model was tested using simulation data. The chosen domain size was 0.1 

m by 0.1 m by 0.02 m. A finite-difference network of 31x31x7 was chosen for this domain, and a time step of 5 

seconds was used for the simulations. The fiber-volume fraction of the non-flawed region of the part was chosen to 

be 0.5. 𝑘𝑓 was 1.3 W/mK, and 𝑘𝑚 was 0.20 W/mK. ρf was 2500 kg/m3, and ρm was 1200 kg/m3. Cp,f was 800 J/kgK, 

and Cp,m was 1000 J/kgK. Using Equation 3.1 and selecting the mean values of the upper and lower bounds for the 

volumetric properties, kx = 0.75 W/mK, ky = kz = 0.35 W/mK, Cp = 894.4 J/kgK, and ρ = 1736 kg/m3. The convection 
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coefficient was 5.6 W/m2K. The heat generation model utilized the lookup table described in Chapter 2 as the cure 

kinetics model.  

 Two different cases were studied for this verification: one with 𝑣𝑓,𝑓𝑙𝑎𝑤  = 0.1, and one with 𝑣𝑓,𝑓𝑙𝑎𝑤 = 0.9. The 

flaws were 1 cm by 1 cm squares in the XY plane and were placed in the center of the domain in the XY plane. The 

flaws were located on the 4th and 5th surfaces through the thickness (with the 1st surface being the bottom XY surface 

of the FD network). Simulations were performed to produce measurement and verification data for both cases. 

Gaussian white noise with a standard deviation of 0.1°C was added to the measurement data to simulate the 

measurement data being collected by the IR camera used in Chapter 2. This measurement data was then used in 

conjunction with the KF-based estimator to produce estimates of the temperatures in the simulated curing composite 

part. The model assumed for the estimator had no knowledge of the flaws, i.e. the assumed fiber-volume fraction was 

equal to 0.5 for the entire domain. Any information about the flaws was only known via the measurement data. The 

results produced by the estimator for both cases were compared to simulation results of the unfiltered, assumed model 

to show that the KF-based estimator is able to improve the accuracy of the estimation in the presence of flaws. The 

results of the verification study are shown below in Figure 3.2. The comparison point for the verification is directly in 

the center of the part, which is where the flaw is located.  

 

 

(a) 

 

(b) 

Figure 3. 2: Comparison of estimated temperatures using the assumed model and the KF-based estimator for 𝑣𝑓,𝑓𝑙𝑎𝑤  

= 0.1 (a) and 𝑣𝑓,𝑓𝑙𝑎𝑤 = 0.9 (b) 
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 The results indicate that the KF-based estimator produces a greatly-improved temperature estimate at the 

flaw location over the model with no knowledge of the flaw. The maximum error for the assumed model was about 

60% for 𝑣𝑓,𝑓𝑙𝑎𝑤  = 0.1 and 100% for 𝑣𝑓,𝑓𝑙𝑎𝑤  = 0.9, while the error reduced to about 27% and 12%, respectively, with 

the correction applied by the KF-based estimator. Qualitatively, the estimates produced by the KF-based estimator 

show a better match with the true process state values than do the predictions of the assumed model. The correction 

at this location was large, and this will be captured by the CCT value that is computed for the flaw detection method. 

Therefore, the results of this verification study are promising for the evaluation of the flaw detection method. 

 

3.2.2 Verification of Flaw Detection Technique 

 Next, the performance of the flaw detection method itself was evaluated using simulation data. The domain, 

finite-difference network, time step, and material properties used for these simulations were the same as those used 

for the verification study performed in Section 3.2.1.  

For Case Studies 1 and 2, flaws were 1 cm by 1 cm squares in the XY plane and were placed in the center of 

the domain in the XY plane. The flaws were located on the 4th and 5th surfaces through the thickness (with the 1st 

surface being the bottom XY surface of the FD network). For each of the Studies, simulation data was produced for 

cases with 𝑣𝑓,𝑓𝑙𝑎𝑤  = 0.1 up to 𝑣𝑓,𝑓𝑙𝑎𝑤  = 0.9, in steps of 0.1. As with the verification study in Section 3.2.1, Gaussian 

White Noise with a standard deviation of 0.1°C was added to the simulation data used as measurement data, which is 

a typical amount for measurements being collected with an IR camera. The measurement data for each case was 

utilized, along with a KF, to correct the temperature predictions of the assumed model with no knowledge of the flaws. 

The CCT was computed for each case, and subsequently, the outlier nodes were determined, as described in Section 

3.1.2. A criterion of 3σ was used for the outlier detection, meaning only locations with CCT values greater or less than 

three standard deviations from the mean CCT value for their particular surface in the XY plane were chosen as outliers. 

This strict criterion was chosen in order to potentially reduce the number of false positives for the flaw detection. The 

locations of the outlier nodes, if any were identified, were then compared to the locations of the actual flaws to verify 

that the locations matched. Images of the outlier maps for surfaces 4 and 5 for a case of 𝑣𝑓,𝑓𝑙𝑎𝑤  = 0.1 are shown in 

Figure 3.3. The regions of the surface identified as flaws are highlighted in red, while regions without identified flaws 

are highlighted in blue. As shown in the maps, the flaw (located in the centers of surfaces 4 and 5) was detected.  
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(a) 

 

(b) 

Figure 3. 3: Outlier maps for surfaces 4 (a) and 5 (b) for 𝑣𝑓,𝑓𝑙𝑎𝑤 = 0.1 

 

Full results for Case Studies 1 and 3 when using a 3σ criteria are shown in Table 3.1. If the technique correctly 

identified the flaw region, then the case was assigned a “correct” description in the table, and if the technique did not 

correctly identify the flaw region, then the case was assigned an “incorrect” description in the table. Additionally, the 

descriptive label “FP” was used to identify situations when the technique incorrectly identifies a region as a flaw (false 

positive). For example, the technique may correctly identify a flaw region while also producing a false positive in 

another region. In that case, the description would read “correct, FP”. The “correct” descriptions are also highlighted 

in green, while the “incorrect” descriptions and the false positive descriptor are highlighted in red. Cases marked with 

a red asterisk were cases for which flaws were identified using n = 2.8 but not for n = 3. 

 

 

 

 

 



53 
 

Table 3. 1: Results of Flaw Detection for Case Studies 1 and 2. Cases marked with a * indicate that the flaw 

was detected for n = 2.8 but not for n = 3 

𝒗𝒇,𝒇𝒍𝒂𝒘  Study 1 Study 2 

0.1 Correct Correct 

0.2 Correct Correct 

0.3 Correct Correct 

0.4 Correct Correct 

No Flaw Correct Incorrect, FP 

0.6 Correct Correct* 

0.7 Correct Correct 

0.8 Correct* Correct* 

0.9 Correct* Correct* 

 

 

The results of the Case Studies 1 and 2 indicate that the technique performs very well when identifying resin-

rich regions (low fiber-volume fraction), while identification of dry regions (high fiber-volume fraction) required a 

slightly less-strict outlier criterion (n = 2.8 as opposed to n = 3). The incorrectly-assumed cure kinetics model utilized 

for Case Study 2 did not appear to affect the results of the resin-rich flaw identifications, but extent of the flaw was 

identified in this Study was smaller compared to Case Study 1. A false positive was also produced for the non-flawed 

case in Case Study 2, which was small and occurred in an innocuous location somewhat close to the right boundary 

of the XY plane. The non-symmetry and random location of false positive indicates that the occurrence is due to the 

magnitude of the noise correction in that region relative to others, and not due to the correction related to the erroneous 

model. While such false positives are possible when using this technique, utilizing a low-pass filter or some other 

means of noise reduction for the measurement data would reduce the chances of false positives occurring. 

Implementation of a low-pass filter for real-time measurement would likely require the measurement data to pass 

through an electrical filtering circuit or a digital filter (rather than applying the low-pass filter to the data once all data 

had been collected), but it is a realistic approach.  
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For Study 3, two flaws were placed in the part. The flaw locations for Study 3 are shown in the XZ plane in Figure 

3.4.  

 

 

Figure 3. 4: Diagram showing the locations of the centers of the two flaws for Case Study 3 

 

Flaw 1 was located closer to the top surface, on the 5th and 6th surfaces through the thickness, while Flaw 2 

was located deeper in the part, on the 2nd and 3rd surfaces. The reasoning for studying this particular situation is to 

observe whether the deeper flaw is able to be identified by the technique, even if a different flaw, closer to the 

measurement surface, is present. Only three specific cases were tested for Study 3. For the first, both Flaw 1 and Flaw 

2 had fiber-volume fractions of 0.2. For the second, Flaws 1 and 2 had fiber volume fractions of 0.2 and 0.6, 

respectively. For the third, Flaws 1 and 2 had fiber-volume fractions of 0.6 and 0.2, respectively. The reasoning for 

studying these particular cases was to study a case where the both the near-surface and deep flaws were strong flaws 

(i.e. having a fiber-volume fraction deviating from 0.5 by a large amount) (Case 1), a case where the deeper flaw was 

weaker (Case 2), and a case where the deeper flaw was stronger (Case 3). For each of the three cases, the two flaws 

were both 1 cm by 1 cm in the XY plane. Results showing whether each flaw was detected or not for the three cases 

are shown in Table 3.2. Similar to Table 3.1, flaws that were “detected” are highlighted in green, while flaws that 

were not are highlighted in red. 
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Table 3. 2: Results of Flaw Detection for Case Study 3 when using 3σ criteria 

Case  Flaw 1 Flaw 2 

𝒗𝒇,𝒇𝒍𝒂𝒘𝟏 = 𝟎. 𝟐, 𝒗𝒇,𝒇𝒍𝒂𝒘𝟐 = 𝟎. 𝟐 Detected Not Detected 

𝒗𝒇,𝒇𝒍𝒂𝒘𝟏 = 𝟎. 𝟐, 𝒗𝒇,𝒇𝒍𝒂𝒘𝟐 = 𝟎. 𝟔 Detected  Not Detected 

𝒗𝒇,𝒇𝒍𝒂𝒘𝟏 = 𝟎. 𝟔, 𝒗𝒇,𝒇𝒍𝒂𝒘𝟐 = 𝟎. 𝟐 Detected Detected 

 

 

The results show that when there are multiple flaws present, the technique is more likely to identify the flaw 

that is closer to the measurement surface than the flaw that is deeper in the part. In order for the deeper flaw to be 

identified in the presence of a near-surface flaw, the flaw must be fairly significant relative to the near-surface flaw. 

The inability to detect deeper flaws when a strong surface flaw is present is not a significant detriment to the 

technique’s usefulness in the field. The goal of this technique is to identify potential flaws during cure to inform 

decision making in regards to post-manufacturing inspection. This means that if no flaws are detected by the method 

during manufacturing, post-manufacturing inspection can be performed, with the goal being to reduce the overall 

inspection time. However, if any flaw is detected, such as a strong near-surface flaw, this would likely prompt a more 

thorough post-manufacturing inspection of the part. Such an inspection could then uncover the presence of the deeper 

flaw as well.  

Each run of the flaw detection method, including the Kalman-filtered based estimation in the 3D domain, the 

evaluation of the CCT values, and the determination of outliers, required approximately 8 hours. Almost all of this 

time was spent performing the KF-based estimation. In order for the technique described in the Chapter to be of use 

for real-time cure monitoring, the computational efficiency of the technique will need to be improved, particularly if 

the technique is applied to larger composites.  

 

3.3 Conclusions 

 In this chapter, a technique for detecting flaws in FRP composites during the curing process using IR 

thermography measurements, the temperature estimation method described in Chapter 2, and the CCT (a metric 

computed from the Kalman filter corrections) was described. The ability of the temperature estimation technique to 

improve temperature estimation accuracy in the presence of flaws was verified using simulation-based data. The flaw 
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detection method’s effectiveness was also evaluated using simulation-based verification case studies. The method 

showed the ability to identify resin-rich areas of an FRP composite very well, but identification of resin-deficient 

regions internal to the part required a slightly less-strict outlier criterion. An incorrectly-assumed model was utilized 

as the base heat conduction model for Case Study 2, and the technique was still able to detect the presence of the flaw 

in resin-rich cases. One false positive was also produced for a non-flawed case, but this issue can likely be solved with 

the use of noise-reduction measures. The technique’s ability to identify multiple flaws was also evaluated. When both 

a near-surface and deep flaw were present, the technique only identified the near-surface flaw, unless the deeper flaw 

resulted in significant deviation from the expected behavior than the near-surface flaw. This would not be an inhibition 

to implementing this technique in an industrial setting, however, as the identification of one flaw would indicate that 

the part should be thoroughly evaluated in post-manufacturing inspection. The deeper flaw would be captured by this 

thorough inspection.  
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Chapter 4. Corrosion Detection in Nuclear Power Plant Pipes 

 

 

In this chapter, an NDE method for detecting wall thinning resulting from flow-accelerated corrosion (FAC) 

in nuclear power plant pipes is described. First, the details of methodology and the simulations used for verification 

are discussed. The results of the verification study are then presented and discussed, followed by conclusions. 

 

4.1 Methodology 

 In this section, two models for the governing physics of heat diffusion through an insulated carbon steel pipe 

are first discussed. The wall thickness estimation technique is then described. The technique utilizes a surrogate (GPR) 

model that estimates wall thickness for a pipe based on the change in measured steady-state temperature between the 

initial and the current state (wall thickness) of the pipe. These measurements would be collected using thermocouples 

attached to the outside of the pipe in practice, but the focus here is on proving out the estimation methodology using 

simulations. Lastly, the methodology is verified using numerical experiments. 

 

4.1.1 Model of Governing Physics 

 Two different mathematical models can be utilized to describe the physics of the heat transfer through an 

insulated pipe. One model includes the effect of the layer of insulation surrounding the pipe directly, while the other 

model approximates the effects of the insulation. While both models will be described, the approximate model will be 

utilized for future analyses. For both models, a two-dimensional, circular cross-section of a pipe is considered, with 

water flowing in the direction normal to the plane of the paper. Heat flows from the water, through the pipe, and to 

the surrounding air outside the pipe, due to the water having a higher temperature than the surrounding air. The heat 

equation governs the heat transfer inside the pipe wall. Given that the domain is a circular cross-section, polar 

coordinates are well-suited for the mathematical model. A diagram showing the 2D domain including the insulation 

is shown in Figure 4.1(a). This domain is that which would be used for the first model. The cross-section has an inner 

radius of ri, and an outer radius of ro. A layer of insulation with thickness dins surrounds the pipe on the outside. The 
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domain utilized for approximate model is shown in Figure 4.1(b). This domain only consists of the metallic pipe, and 

the model utilizes an approximate convective boundary condition to account for the effect of the insulation. When a 

domain discretization method is used to solve the governing equations numerically, the approximate model incurs 

lower computation cost as compared to the model that explicitly considers the insulation. The approximate model is 

used for performing the simulations required for both the implementation and verification of the technique. 

 

 

(a) 

 

 

(b) 

Figure 4. 1: Diagram of 2D pipe domain with (a) and without insulation (b) 

 

The metallic pipe has a thermal conductivity of kpipe, a density of ρpipe, and a specific heat of Cp,pipe, while the 

insulation has properties of kins, ρins, and Cp,ins. The heat equation in polar coordinates, where 𝒓 = {𝑟, 𝜑}, can be 

expressed for both the metallic pipe region of the domain (Ω𝑝𝑖𝑝𝑒) and the insulation region of the domain (Ω𝑖𝑛𝑠) as: 

𝜌𝑝𝑖𝑝𝑒𝐶𝑝,𝑝𝑖𝑝𝑒

𝜕𝜃(𝒓, 𝑡)

𝜕𝑡
− 𝑘𝑝𝑖𝑝𝑒 [

1

𝑟
(
𝜕𝜃(𝒓, 𝑡)

𝜕𝑟
+ 𝑟

𝜕2𝜃(𝒓, 𝑡)

𝜕𝑟2
) +

1

𝑟2

𝜕2𝜃(𝒓, 𝑡)

𝜕𝜑2
] = 0, for 𝒓 ∈ Ω𝑝𝑖𝑝𝑒 , (4.1𝑎) 

𝜌𝑖𝑛𝑠𝐶𝑝,𝑖𝑛𝑠

𝜕𝜃(𝒓, 𝑡)

𝜕𝑡
− 𝑘𝑖𝑛𝑠 [

1

𝑟
(
𝜕𝜃(𝒓, 𝑡)

𝜕𝑟
+ 𝑟

𝜕2𝜃(𝒓, 𝑡)

𝜕𝑟2
) +

1

𝑟2

𝜕2𝜃(𝒓, 𝑡)

𝜕𝜑2
] = 0, for 𝒓 ∈ Ω𝑖𝑛𝑠 , (4.1𝑏) 

 

The initial and boundary conditions for the first model are given by: 
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(𝑘𝛁𝜽) ⋅ 𝒏 = ℎ𝑖(𝜽 − 𝜃𝑤 ⋅ 𝒆𝐼𝐷), for 𝒓 ∈ Γ𝑖, (4.2𝑎) 

(𝑘𝛁𝜽) ⋅ 𝒏 = ℎ𝑜(𝜽 − 𝜃𝑠𝑢𝑟𝑟 ⋅ 𝒆𝐼𝐷), for 𝒓 ∈ Γ𝑜, (4.2𝑏) 

𝜽(𝒓, 0) = 𝜃𝑖𝑛𝑖𝑡 ⋅ 𝒆𝐼𝐷 , ∀ 𝒓. (4.2𝑐) 

where 𝒆𝐼𝐷 is a vector of ones with the same length as 𝜽. The convective heat transfer coefficient at the boundary 

between the insulation and the surrounding air is ho. The convective heat transfer coefficient at the boundary between 

the pipe and the water is hi. The boundary conditions for the second model are slightly different, due to the convective-

boundary approximation of insulation. The boundary condition at the inner boundary remains the same, and the 

boundary conditions at Γ𝑖𝑛𝑠 is given by: 

(𝑘𝛁𝜽) ⋅ 𝒏 = ℎ𝑖𝑛𝑠(𝜽 − 𝜃𝑠𝑢𝑟𝑟 ⋅ 𝒆𝐼𝐷), for 𝒓 ∈ Γ𝑖𝑛𝑠. (4.2𝑑) 

This boundary condition combines the effects of the conductive heat transfer through the insulation and the 

convective heat transfer between the insulation and the surrounding air. The heat transfer coefficient, ℎ𝑖𝑛𝑠, can be 

approximated via a parameter estimation method that minimizes the difference between the temperature output of the 

model that does include the insulation and the approximate model that does not. 

The value of the internal convection coefficient, hi, can be approximated using an empirical relationship 

between convective heat transfer and characteristics of the flow in a circular pipe. Determination of which empirical 

relationship is most applicable depends on the dimensionless quantities, the Reynolds number (Re) and the Prandtl 

number (Pr). The simplest of these correlations for turbulent flow is: 

𝑁𝑢𝐷 = 0.023𝑅𝑒𝐷
4

5⁄ 𝑃𝑟𝑛 , (4.3) 

where 𝑁𝑢𝐷 is the Nusselt number and 𝑅𝑒𝐷 is the Reynolds number. The exponent, n, has a value of 0.3 if the 

temperature of the pipe is greater than the temperature of the water, and it has a value of 0.4 if the temperature of the 

water is greater than the temperature of the pipe [76]. This correlation applies for smooth pipes, so although the inside 

surface of the pipe has roughness, its effect on the convection will be ignored. The convective heat transfer coefficient 

can be approximated with this correlation by using the definitions of the dimensionless quantities, the Nusselt number, 

and the Reynolds number, which are defined in Equation 4.4. 

𝑁𝑢𝐷 ≡
ℎ𝑖𝐷

𝑘𝑤

, (4.4𝑎) 
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𝑅𝑒𝐷 ≡
𝜌𝑤𝑢𝐷

𝜇
, (4.4𝑏) 

where D is the inner diameter of the pipe, 𝑘𝑤 is the thermal conductivity of the water, 𝜌𝑤 is the density of the water, 

𝜇 is the dynamic viscosity of water, and 𝑢 is the mean water speed through the cross-sectional plane. These properties 

(excluding the water speed), as well as the Prandtl number, can be determined based on the temperature of the water 

and the pressure in the pipe [76]. Substituting Equation 4.4 into Equation 4.3 and rearranging, the following expression 

is achieved: 

ℎ𝑖 =
0.023𝑘𝑤𝜌𝑤

4
5⁄ 𝑃𝑟𝑛

𝐷
1

5⁄ 𝜇
4

5⁄
𝑢

4
5⁄ . (4.5) 

 

4.1.2 Corrosion Detection Technique 

As described in Section 1.4, the utility of detecting wall thinning in pipes based on steady-state temperature 

measurements has not been studied previously. Thermocouples mounted to the outside of the pipe are an easy-to-use 

and cost-effective measurement method for this purpose. In addition, the utilization of these thermocouples would not 

require the removal of insulation from the pipe, and the steady-state temperatures can be measured passively at any 

time during plant operation due to the natural heat transfer occurring in the pipe.  

Differences in the steady state temperature of a pipe over time can be an indication of a number of changes, 

including a change in water temperature, water speed (which affects the inner convection coefficient), and surrounding 

air temperature. FAC-related features can also cause a change in steady-state temperature, such as the change in wall 

thickness. However, variables such as water temperature, water speed, or surrounding air temperature can be assumed 

to follow a Normal distribution, so the effect of variations in these three variables would, in turn, only produce 

fluctuations in the steady-state temperature around a mean value as well. The change in wall thickness is a permanent 

change in the geometry of the pipe that produces a shift in the mean steady-state temperature. Therefore, the change 

in mean steady-state temperature from the initial temperature taken at the original wall thickness and the mean steady-

state temperature at a future time after corrosion had occurred, can be related to the change in wall thickness. 
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A model can be established to estimate wall thickness change using the change in steady-state temperature 

as an input using a Gaussian Process Regression (GPR) model. A GPR model is utilized due to the fact that the 

functional form of the model for the relationship between wall thickness change and the change in steady-state 

temperature is not known, and GPR is a nonparametric method (i.e. the method is not limited to a single, user-defined 

functional form). Training data for the GPR model can be produced using simulations of the heat transfer through the 

pipe to establish the change in steady-state temperature for various wall thickness values. Expected values for the 

parameters of the model, such as water temperature, water speed, pipe properties, and insulation properties can be 

used for the simulations.  

Pipe fittings, like elbows, are an ideal candidate for application of this technique both due to the fact that they 

are highly susceptible to FAC (along with pipe section immediately following elbows) and they consistently show 

wall thinning at the outer bend of the elbow [65]. The knowledge of the location where the most wall thinning will 

occur around the circumference would ideally require the placement of only a single thermocouple at that 

circumferential location for monitoring. 

 

4.1.3 Numerical Experiments 

 

4.1.3.1 Estimation of Heat Transfer Coefficient 

The heat transfer coefficient used to approximate the heat flow through the insulation, hins, can be determined 

using parameter estimation. Simulations of the heat transfer in a domain composed of the pipe, the surrounding 

insulation, and the internally-flowing water can be performed for various combinations of surrounding air 

temperatures, while maintaining the same water temperature. These simulations do not include thickness reductions. 

The temperature time histories produced by these simulations at the outer radius of the pipe can then be used as the 

target results for the optimization. A 1D FTCS model of the pipe can be used to approximate the heat transfer physics 

of the insulated model, including the approximated boundary condition described by Equation 4.2(d). Though this 

equation is presented for a 2D domain, the circumferential aspect can be ignored for this study, since there would be 

no heat transfer in the circumferential direction without a thickness reduction.  
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An optimization technique can be used to minimize the difference between the results of each simulation that 

includes insulation and the corresponding non-insulated simulation by adjusting the hins parameter value for each. The 

mean of the hins values produced for each of the cases can be used as the value for the approximation of the insulation’s 

behavior.  

 

4.1.3.2 Sensitivity Analysis 

 In order to establish the significance of variations in model parameters on the steady-state temperature, a 

sensitivity analysis can be performed. This analysis is necessary in order to decide the set of parameters to be used to 

generate simulation-based training data is sufficient. That is, the sensitivity analysis helps determine model parameters 

that significantly affect the output of the model (quantity of interest).  The steady-state temperature at the outer radius 

of the pipe, which is where the measurement thermocouple would be placed, can be used as the output. Pipe thickness, 

thermal conductivity, density, specific heat, inner convection coefficient, external heat transfer coefficient, water 

temperature, and surrounding air temperature are the candidate model parameters. 

A variance-based sensitivity analysis can be performed using Sobol indices as metrics for the significance of 

each parameter. The first-order Sobol index is indicative of the relative effect of the variations in each parameter on 

the variance of the output (the steady-state temperature) individually, while the Total Effect Sobol index also accounts 

for the interactions between the parameters. The first order index is defined as: 

𝑆𝑖 =
𝑉𝑖

𝑉𝑎𝑟(𝑌)
, 

where 𝑆𝑖 is the first-order index for the ith parameter, 𝑉𝑎𝑟(𝑌) is the variance in the output, Y, and 𝑉𝑖 is the variance 

in the expected value of the output with respect to the ith parameter. The total effect index is defined as: 

𝑆𝑇,𝑖 =
𝐸𝑋~𝑖

(𝑉𝑎𝑟𝑋𝑖
(𝑌|𝑋~𝑖))

𝑉𝑎𝑟(𝑌)
, 
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where 𝑆𝑇,𝑖 is the total effect index for the ith parameter and 𝑋𝑖 is the ith parameter. Both the first order and total effect 

indices can be estimated using the quasi-Monte Carlo method [80][81]. A 1D forward in time, centered in space 

(FTCS) model for heat conduction can be utilized to produce simulation data for each parameter sample.  

 

4.1.3.3 Verification of Gaussian Process Regression Models  

 Simulation-based verification studies is performed to determine the effectiveness of the method discussed in 

this chapter. Two different GPR models are analyzed, one that only uses the change in steady-state temperature from 

the initial steady-state temperature as an input (GPM1) and one that uses both water temperature and the change in 

steady-state temperature (GPM2). These two models are analyzed in order to determine the effectiveness of the method 

with and without knowledge of the current mean water temperature. Note that the training data for both GPR models 

was produced using the approximate model of the governing physics described in Section 4.1.1. 

First, training data can be produced for a range of water temperature and wall thickness reduction values 

using simulations of the heat transfer physics described by Equations 4.1 and 4.2. An expected value for the water 

temperature can be chosen, and the training data can be produced for a range of water temperature values within a 

chosen deviation range. The thickness reduction values can range from zero to a value that is fairly close to the actual 

thickness of the pipe. For example, pipe ruptures have been reported for thicknesses of about 0.4 to 1.4 mm [60]. The 

change in steady-state temperature at the thermocouple measurement location (shown in Figure 4.2) from the zero-

thickness reduction case can then be computed for all other thickness reductions for each water temperature. GPM1 

and GPM2 can then be trained for the thickness reduction values for their respective input(s). 

The thickness reduction for a pipe elbow cannot be considered to be uniform around the circumference, given 

that FAC has the largest effect at the outer curve of the pipe. Instead, the geometry of the thickness reduction can be 

assumed to follow a semi-elliptical path through the pipe material on only one side of the pipe (assumed to be the 

outer curve), as shown in Figure 4.2, where the cross-section has an inner radius of ri, and an outer radius of ro. rred is 

the long-side radius of the half ellipse and corresponds to the radius at the point of greatest reduction (assumed to be 

directly in-line with the thermocouple along the outer curve of the pipe). Any pipe material between the half-elliptical 
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path and the original inner boundary is removed. Any wall thickness changes for the other side of the pipe (assumed 

to be the inner curve) are neglected. The thermocouple measurement location is labeled in the Figures as “TC”. 

 

 

(a) 

 

(b) 

Figure 4. 2: Diagrams of the pipe geometry before (a) and after (b) reduction of thickness. The thermocouple 

measurement location is denoted as “TC” 

 

Testing data is produced for the purpose of verifying the accuracy of both of the GPR models. Simulation 

data can be produced for thickness reduction values that had not been trained. Additionally, the parameters of the 

model discussed for the sensitivity analysis, including water temperature, are all allowed to vary by up to 10% from 

the expected values used to produce the training data. Random combinations of the thickness reductions and parameter 

values are produced, and simulations are performed to determine the steady-state temperatures for the test data. Two 

simulations should be performed for each combination. For the first simulation, the varied parameter values can be 

used, but the thickness reduction is set to zero. The second simulation can utilize the varied thickness reduction value 

as well. The change in the steady-state temperature between the “current” thickness reduction and the initial thickness 

reduction are then computed by determining the difference in steady-state temperatures between the second and first 

simulations. The steady-state temperatures are then fed to GPM1 and GPM2 (along with the known water temperature 

for GPM2) and the resulting thickness reduction estimates can be compared to the true values for the testing cases for 

verification. 
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4.2 Results and Discussion 

 

4.2.1 Estimation of Heat Transfer Coefficient 

Simulations of an insulated pipe were performed in a 2D domain using the simulation software, ABAQUS 

[82]. The insulation properties, kins, ρins, and Cp,ins were defined as 0.05 W/mK, 80.1 kg/m3, and 700 J/kgK, 

respectively, and the insulation thickness was defined as 3.81 cm. The inner radius of the pipe, ri, and the outer radius 

of the pipe, ro, were defined to be 24.6 and 30.2 mm, respectively. The values of the pipe properties, kpipe, ρpipe, and 

Cp,pipe, were defined as 15.0 W/mK, 7850 kg/m3, and 600 J/kgK, respectively.  

The mean water speed was chosen to be 2.8 m/s and was used to approximate the expected value for the 

internal convection coefficient, hi, as described in Section 4.1.1 (Equations 4.3 through 4.5). The value of this 

coefficient was determined to be 59 W/m2K. As described in Section 4.1.3.1, the surrounding air temperature was 

varied from 0°C to 100°C in steps of 10°C for the eleven simulations used to produce the target data, while the water 

temperature was kept constant at 55°C for all simulations. 12.81 W/m2K was found to be the value of hins that best fit 

the simulation data produced using the model with the fully-insulated domain, regardless of the surrounding air 

temperature value. The implementation of this approximation for the heat transfer of the insulation significantly 

reduces the computation time of subsequent ABAQUS simulations by reducing the size of problem domain. 

 

4.2.2 Sensitivity Analysis 

 The sensitivity analysis was performed for 100,000 samples and all eight parameters. The parameter values 

assumed for the model described in Section 4.2.1 were used as mean values, and each parameter was allowed to vary 

by ±10%. The steady-temperature values produced by all of the simulations were used to compute the Sobol indices. 

The results are shown in Table 4.1. Higher values indicate higher relative influence and lower values indicate a lower 

relative influence. 
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Table 4. 1: Values of the Sobol indices for each parameter: Pipe thickness, thermal conductivity (k), density 

(ρ), specific heat (Cp), inner convection coefficient (hi), external heat transfer coefficient (hins), water 

temperature (Tw), and surrounding air temperature (Tsurr) 

Parameter Thickness k ρ Cp hi hins Tw Tsurr 

Si 0.02 ~0 ~0 ~0 0.02 0.02 0.94 ~0 

St,i 0.02 ~0 ~0 ~0 0.02 0.02 0.94 ~0 

 

 

 The results of the sensitivity analysis indicate that the only parameter whose variation has a significant impact 

on the variation in the steady-state temperature is the water temperature. This is significant, as training data need not 

be reproduced for each individual instance of pipe sections with these same conditions. This also indicates that 

variations in water temperature can have a relatively significant impact on the steady-state temperature. As such, 

including the water temperature as an input to the estimation model is an option that should be explored.  

 It should be noted that although these results seem to indicate that the steady-state temperature is not a good 

metric for the identification of changes in wall thickness, this is not the case. As was noted in section 4.1.2, the change 

in steady-state temperature after installation of the pipe is more sensitive to the change in wall thickness, due to the 

fact that wall thickness is the only parameter that has an effect on shifting the mean value of the steady-state 

temperature over time. It should also be noted that a simplified 1D model was used to perform the sensitivity analysis. 

Reducing the thickness of the pipe in the 1D model is different from reducing the thickness for the 2D model used for 

verification, as the thickness is not uniformly changed for the 2D model.  

 

4.2.3 Verification of Gaussian Process Regression Models 

 As described in section 4.1.3.3, training data for the GPR estimation model was produced using simulations 

performed in the ABAQUS simulation software [82]. The values of the parameters of the model used for the training 

data were the same as those chosen in section 4.2.1. As determined in Section 4.2.1, the chosen value for the external 

heat transfer coefficient was 12.81 W/m2K. Training simulations were performed assuming an expected water 
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temperature of 80°C. Data was produced for water temperatures of 72°C to 88°C (a 10% variation from the expected 

value) and for thickness reductions from 0 mm to 4.5 mm in steps of 0.25 mm (for a 5.5 mm thick pipe). The simulation 

data for the 80°C simulations and all thickness reductions was used to train GPM1, while the simulation data for all 

temperatures and thickness reductions was used to train GPM2. The change in steady-state temperature for each 

training case was determined by subtracting the steady-state temperature for the 0 mm reduction case from the steady-

state temperature for the case in question (for example, for the case of a water temperature of 80°C and a reduction of 

2.25 mm, the steady state temperature for 80°C water temperature and 0 mm reduction was subtracted from the steady-

state temperature for 2.25 mm reduction to determine the damage metric value).  

 Simulations to produce data for ten test cases were also performed. Wall thickness, water temperature, 

thermal conductivity, density, specific heat, internal convection coefficient, external heat transfer coefficient, and 

surrounding air temperature were all assigned uniform distributions varying between ±10% of their expected values, 

and values for each parameter were randomly selected for the ten cases. Two simulations were performed to produce 

the test data for each of the ten cases. The first simulation used the varied parameter values but used no thickness 

reduction, while the second simulation utilized the varied thickness reduction value as well. The change in the steady-

state temperature between the “current” thickness reduction and the initial thickness reduction could then be computed 

by determining the difference in steady-state temperatures between the second and first simulations. Gaussian white 

noise (GWN) was added to the testing data. To ensure that the standard deviation value used for the GWN was a 

realistic amount, a suitable value was determined by collecting room temperature data with several calibrated T-type 

thermocouples and determining the mean standard deviation of the measured temperatures for all tested 

thermocouples. The standard deviation value determined from this test was 0.1°C, so that value was used for the GWN 

added to the testing data. The parameter values used for the ten test cases are shown in Table 4.2. A plot of the 

temperature time histories at steady state (including noise) for all cases, and a plot showing the change in mean steady-

state temperature between the initial state and the current state for all cases are shown in Figure 4.3. The results shown 

in Figure 4.3 highlight how different the steady-state temperatures are for each case.  
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Table 4. 2: Parameter values for each of the ten test cases 

Parameter Thickness 

reduction 

(mm) 

k (W/mK) ρ (kg/m3) Cp 

(J/kgK) 

hi 

(W/m2K) 

hins 

(W/m2K) 

Tw (°C) Tsurr (°C) 

Case 1 1.66 14.2 7638 584 60.2 12.7 72.5 24.8 

Case 2 0.80 15.2 8056 617 63.8 14.0 77.5 21.2 

Case 3 2.14 15.6 7176 627 57.3 13.6 81.1 25.1 

Case 4 3.20 14.6 7924 595 56.4 12.1 84.5 21.8 

Case 5 1.03 16.0 7248 607 53.4 12.5 82.2 22.5 

Case 6 2.90 15.6 7442 551 62.8 12.0 86.4 20.8 

Case 7 0.37 14.0 8425 660 58.1 11.6 79.7 22.7 

Case 8 2.60 16.5 7803 561 59.3 12.8 76.4 23.4 

Case 9 4.47 13.6 8250 572 62.4 13.2 74.6 23.7 

Case 10 3.67 14.7 8569 640 54.7 13.7 86.3 24.2 

 

 

 

(a) 

 

(b) 

Figure 4. 3: Plots showing the temperature time histories at steady-state for each case (a) and the change in steady-

state temperature from the zero-reduction state for each case (b) 
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 In practice, the effect of measurement noise can be reduced by averaging the measured temperatures over a 

long period of time. Therefore, the steady-state temperatures for the testing data were determined by averaging the 

noisy simulation data over a period of 1000 seconds (100 samples). These mean steady-state temperatures were then 

used as inputs into both GPM1 and GPM2 to estimate the thickness reduction value. GPM2 was also fed the correct 

water temperature as an input. The results of the estimations are shown below in Figure 4.4. 

 

 

(a) 

 

(b) 

Figure 4. 4: Thickness reduction estimates of GPM1 (a) and GPM2 (b) compared to actual thickness reductions  

 

 As shown in Figure 4.4(a), GPM1 is able to produce accurate results, despite the inclusion of measurement 

noise and up to 10% variations in the model parameters compared to the expected parameter values used for training 

of the model. Errors remain below 0.5 mm for all cases, meaning that the errors remain below 9% of the original pipe 

thickness.  

 If the mean water temperature is known during the measurement periods for both the initial, non-reduction 

case and the current measurement, the accuracy of the technique can be improved, in general. As shown in Figure 

4.4(b), when using both the water temperature and the change in steady-state temperature from the non-reduction state 

as inputs to GPM2, the errors between the estimated thickness reductions and the actual thickness reductions reduce 
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for most cases. Despite the fact that the errors for some cases increase slightly, the maximum error produced for any 

of the cases decreased. Errors remained below 0.2 mm for all cases, or 3.6% of the original pipe thickness.  

 

4.3 Conclusions 

 In this chapter, a technique for estimating the reduction in wall thickness of an insulated carbon steel pipe 

elbow in a nuclear power plant piping system was described. A heat conduction model for the heat transfer between 

the water in the pipe and the pipe itself was implemented. An approximation of the heat transfer physics of the 

insulation was performed in order to reduce computation time for the training and testing simulations required for 

both implementation and verification of the estimation technique. A sensitivity analysis was also performed to 

establish which model parameters had the greatest effect on the steady-state. Water temperature was found to dominate 

the other parameters in terms of the impact of its variance on the variance of the steady-state temperature. Because of 

this, two surrogate (GPR) models to estimate wall thickness reduction were studied, one using just the change in 

measured steady-state temperature from the initial measurement with no thickness reduction and the “current” 

measurement as an input, and one using water temperature as an additional input. Both GPR models were shown to 

be fairly accurate, despite variations in the model parameters from those that were used to train the GPR models. 

GPM2 was shown to me more accurate in general, though this model also required one more input that GPM1. The 

study of this technique provides a promising outlook for the possibility of applying the technique to detect wall 

thinning in pipe elbows. The ease of use and cost-effectiveness of the technique are primary advantages that the 

method has over current pipe inspection methods.  
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Chapter 5. Conclusions and Future Work 

 

 

5.1 Conclusions 

In this dissertation, two passive NDE methods that utilize temperature measurements were developed and 

analyzed. For the first method, described in Chapter 2, a flaw identification technique for curing FRP composites, a 

KF-based temperature estimation technique that utilized IR thermography surface temperature measurements to 

perform estimations in real-time was first developed. Despite various simplifying approximations made in the model, 

the method’s ability to accurately estimate internal temperatures was validated using experimental data collected from 

a section of a wind turbine blade during cure. The error in mean estimated temperatures as compared to measured 

internal temperatures was less than 5% for all times not including the initial infusion period and the temperature rise. 

The estimated mean temperature at during the temperature rise experienced 5-15% errors at all internal measurement 

locations. The method was demonstrated to have the ability to perform real-time estimations. To the best of authors’ 

knowledge, this is the only study to date to discuss real-time monitoring for resin systems with complex free-radical 

polymerization reactions experiencing autoacceleration.  

In Chapter 3, a technique for detecting flaws in FRP composites during the curing process using IR 

thermography measurements, the temperature estimation method described in Chapter 2, and the CCT (a metric 

computed from the Kalman filter corrections) was described. The ability of the temperature estimation technique to 

improve temperature estimation accuracy in the presence of flaws was verified using simulation-based data. The flaw 

detection method’s effectiveness was also evaluated using simulation-based verification case studies. The method 

showed the ability to identify resin-rich areas of an FRP composite well, but identification of resin-deficient regions 

internal to the part required the use of a less-strict outlier criterion. Similar performance was observed when using an 

incorrectly-assumed model as the base heat conduction model. One false positive was produced, but this issue can 

likely be solved with the use of noise-reduction measures. The technique’s ability to identify multiple flaws was also 

evaluated. When both a near-surface and deep flaw were present, the technique only identified the near-surface flaw, 

unless the deeper flaw resulted in significant deviation from the expected behavior than the near-surface flaw. This 

would not be an inhibition to implementing this technique in an industrial setting, however, as the identification of 

one flaw would indicate that the part should be thoroughly evaluated in post-manufacturing inspection.  
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In Chapter 4, a technique for estimating the reduction in wall thickness of an insulated carbon steel pipe 

elbow in a nuclear power plant piping system was described. A sensitivity analysis was performed to establish which 

model parameters had the greatest effect on the steady-state temperatures. Water temperature was found to dominate 

the other parameters in terms of the impact of its variance on the variance of the steady-state temperature. Because of 

this, two surrogate (GPR) models to estimate wall thickness reduction were studied, one using just the change in 

measured steady-state temperature from the initial measurement with no thickness reduction and the current 

measurement as an input, and one using water temperature as an additional input. Both GPR models were shown to 

be fairly accurate, despite variations in the model parameters from those that were used to train the GPR models. The 

GPR model with water temperature as an additional input was shown to me more accurate in general. The ease of use 

and cost-effectiveness of the technique are primary advantages that the method has over current pipe inspection 

methods for identifying FAC-induced wall thinning. 

 

5.2 Future Work 

In the future, the temperature estimation technique described in Chapter 2 can potentially be used to aid in 

identifying flaws such as poor resin distribution or residual stresses during the curing process, which can save time 

and resources by reducing the amount of post-manufacturing inspection required for the part. As noted in Chapter 1, 

residual stress estimation requires the use of both temperature and degree of cure fields, both of which are estimated 

using the technique described in Chapter 2. The aforementioned flaw identification, along with degree of cure 

estimation, can help reduce the time and resources spent on FRP composite manufacturing, which will in turn aid in 

bringing FRP composites into lower-cost, higher volume manufacturing applications. 

Future work for the flaw detection method for curing FRP composite, described in Chapter 3, can include the 

verification of the technique in other situations when the assumed model does not match the true physics of the curing 

composite. An incorrectly-assumed cure kinetics model was studied in this work, but cases such as those when the 

properties of the composite part (or the evolution of those properties, omitted from this study) are incorrectly assumed 

can also be evaluated. An investigation into methods to improve the detection capabilities of the technique in resin-

deficient regions would be greatly beneficial. The improvement of the computational efficiency of the technique is 

also a necessity in order to enable real-time flaw detection in curing composites. The potential for the use of an 
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ensemble of KF-based estimators, each performed for one measurement point and a one-dimensional domain through 

the thickness can be evaluated for this purpose. Performing many 1D KF-based estimations, as opposed to one 3D 

estimation, is computationally-efficient due to the removal of the most computationally-demanding step of the KF 

computation, the inversion of S (which becomes a scalar when there is only one measurement point). As such, an 

optimization of the number of measurement points required in order to maintain accuracy can also be performed to 

potentially aid in reducing the computation time. In order to utilize the ensemble of KF-based estimators approach, 

the improvement in computational speed would need to be weighed against any reductions in accuracy as a result of 

omitting the effects of internal heat conduction in the XY plane. Some information about the heat conduction in the 

XY plane would be captured in the variations in the measurements across the top surface, but it is unclear whether 

this information would be enough to identify flaws in the XY plane or not. 

The potential utility of the technique explored for identifying FAC-induced wall thinning in pipes in Chapter 

4 as a passive, first-warn method for identifying wall thinning, or possibly as a standalone technique, requires further 

research to be fully evaluated. The ability to estimate the water temperature using additional mounted thermocouples 

on the pipe would allow water temperature to be used as an input to the GPR model (assuming the mean water 

temperature was not already being measured), which was shown to improve accuracy. Future work studying the 

effectiveness of a steady-state temperature-based technique for other pipe features that are susceptible to FAC-induced 

rupture, such as T-joints or sections immediately following valves or reducers can be performed. The technique 

described above is well-equipped to identify wall thinning in pipe sections that experience non-symmetrical FAC, 

such as elbows or T-joints. Further research is required to determine its effectiveness for pipe sections that experience 

symmetrical FAC. Additionally, the effect of the oxide layer that builds up on the inside surface of the pipe on the 

heat transfer properties was not considered in this study. The oxide layer has been shown to provide a thermal 

resistance, so inclusion of these effects in the simulation model used to train GPR model would both enable a more 

thorough study of the utility of the technique and would potentially enable the technique to be effectively demonstrated 

for field use. Experimental validation of the technique would also be a useful endeavor for evaluating the method’s 

suitability for real application.  
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Appendices 

 

 

Appendix A: Details of the Finite Difference Scheme for Heat Conduction 

The finite-difference nodal network used for the approximation of the heat equation was set up so that node 

1 was at the top-left corner of the domain, and final node was at the bottom right corner of the domain. A diagram 

describing the nodal layout is shown below in Figure A.1. The number of nodes in the x-direction is M and the number 

of nodes in the y-direction is N.  

 

 

Figure A. 1: Diagram showing the numbered nodal layout 

 

A five-point stencil can be used to describe the relative position of nodes for a 2D centered-in-space FD approximation.  

 

Solving for the value of the states at the central node requires values from the four surrounding nodes. The five-point 

Stencil is shown in Figure A.2.  
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Figure A. 2: Five-point Stencil for a 2D centered-in-space FD network 

 

In Chapter 2, the form of the FTCS approximation of the heat equation was shown. Below is a derivation 

showing the specifics of the diffusivity matrix, M, for non-boundary nodes. Assuming an isotropic, homogeneous 

medium and no heat transfer in the z direction, the heat equation can be represented as: 

𝜕𝜽

𝜕𝑡
=

𝑘

𝜌𝐶𝑝

(
𝜕2𝜽

𝜕𝑥2
+

𝜕2𝜽

𝜕𝑦2
) +

1

𝜌𝐶𝑝

𝑓(𝜽,𝝋). (𝐴. 1.1) 

Equation A.1.1 can be approximated using FTCS for 2D at time step i, column m, and row n as: 

𝜃𝑚,𝑛
𝑖 − 𝜃𝑚,𝑛

𝑖−1

∆𝑡
=

𝑘

𝜌𝐶𝑝

𝜃𝑚−1,𝑛
𝑖−1 − 2𝜃𝑚,𝑛

𝑖−1 + 𝜃𝑚+1,𝑛
𝑖−1

∆𝑥2
+

𝑘

𝜌𝐶𝑝

𝜃𝑚,𝑛−1
𝑖−1 − 2𝜃𝑚,𝑛

𝑖−1 + 𝜃𝑚,𝑛+1
𝑖−1

∆𝑦2
+ 

1

𝜌𝐶𝑝

𝑓𝑚,𝑛
𝑖−1, (𝐴. 1.2) 

where the spatial steps in the x and y direction for the finite difference network were defined as Δx and Δy, 

respectively. Let 

𝑟𝑥 =
𝑘∆𝑡

𝜌𝐶𝑝∆𝑥2
;  𝑟𝑦 =

𝑘∆𝑡

𝜌𝐶𝑝∆𝑦2
 . 

Therefore, Equation A.1.2 above can be simplified as: 

𝜃𝑚,𝑛
𝑖 = (1 − 2𝑟𝑥 − 2𝑟𝑦)𝜃𝑚,𝑛

𝑖−1  +  𝑟𝑥(𝜃𝑚−1,𝑛
𝑖−1 + 𝜃𝑚+1,𝑛

𝑖−1 ) + 𝑟𝑦(𝜃𝑚,𝑛−1
𝑖−1 + 𝜃𝑚,𝑛+1

𝑖−1 ) + 
∆𝑡

𝜌𝐶𝑝

𝑓𝑚,𝑛
𝑖−1, (𝐴. 1.3) 

which can be represented in matrix form as: 

𝜽𝑖 = 𝑴𝜽𝑖−1 +
∆𝑡

𝜌𝐶𝑝

𝒇𝑖−1, (𝐴. 1.4) 

where 𝒇𝑖−1 is computed as described in Chapter 2. For non-boundary nodes, the M matrix is: 
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𝑴 = 

[
 
 
 
 
 
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋱ 0 𝑟𝑦 0 ⋯ 0 𝑟𝑥 1 − 2𝑟𝑥 − 2𝑟𝑦 𝑟𝑥 0 ⋯ 0 𝑟𝑦 0 ⋱

⋱ 0 𝑟𝑦 0 ⋯ 0 𝑟𝑥 1 − 2𝑟𝑥 − 2𝑟𝑦 𝑟𝑥 0 ⋯ 0 𝑟𝑦 0 ⋱

⋱ 0 𝑟𝑦 0 ⋯ 0 𝑟𝑥 1 − 2𝑟𝑥 − 2𝑟𝑦 𝑟𝑥 0 ⋯ 0 𝑟𝑦 0 ⋱

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱]
 
 
 
 
 

  . 

For boundary nodes, an equation for ghost nodes must be derived in order to substitute into Equation A.1.4 above. 

The equation for the rate of heat flow at the boundaries is: 

𝒏 ∙ 𝑘𝛁𝜽 = 𝒒, (𝐴. 1.5) 

where q is the heat transferred through the boundary, and n is the unit normal vector for the surface. The boundaries 

are labeled in Figure 2.1, but for convenience, the top boundary is ΓT, the left boundary is ΓL, the right boundary is 

ΓT, and the bottom boundary is ΓB. The boundaries at ΓT and ΓB will be used as examples. For the boundary at ΓT, 

Equation A.1.5 can be approximated using a central difference equation as follows: 

−𝑘
𝜃𝑚,0

𝑖 − 𝜃𝑚,2
𝑖

2∆𝑦
= ℎ(𝜃𝑚,1

𝑖 − 𝜃𝑠𝑢𝑟𝑟), (𝐴. 1.6) 

which simplifies to the following expression for the top ghost nodes: 

𝜃𝑚,0
𝑖 =

−2ℎ∆𝑦

𝑘
𝜃𝑚,1

𝑖 + 𝜃𝑚,2
𝑖 +

2ℎ∆𝑦

𝑘
𝜃𝑠𝑢𝑟𝑟 . (𝐴. 1.7) 

For the boundary at ΓB, Equation A.1.5 can be approximated using a central difference equation as follows: 

𝑘
𝜃𝑚,𝑛+1

𝑖 − 𝜃𝑚,𝑛−1
𝑖

2∆𝑦
= −ℎ𝑏𝑜𝑡(𝜃𝑚,𝑛

𝑖 − 𝜃𝑚𝑜𝑙𝑑), (𝐴. 1.8) 

which simplifies to the following expression for the bottom ghost nodes: 

𝜃𝑚,𝑛+1
𝑖 =

−2ℎ𝑏𝑜𝑡∆𝑦

𝑘
𝜃𝑚,𝑛

𝑖 + 𝜃𝑚,𝑛−1
𝑖 +

2ℎ𝑏𝑜𝑡∆𝑦

𝑘
𝜃𝑚𝑜𝑙𝑑 . (𝐴. 1.9) 

These expressions were substituted into Equation A.1.4 at the boundary nodes. For example, substituting Equation 

A.1.7 into Equation A.1.4 yields: 

𝜃𝑚,1
𝑖 = (1 − 2𝑟𝑥 − 2𝑟𝑦)𝜃𝑚,1

𝑖−1  +  𝑟𝑥(𝜃𝑚−1,1
𝑖−1 + 𝜃𝑚+1,1

𝑖−1 ) + 𝑟𝑦 (
−2ℎ∆𝑦

𝑘
𝜃𝑚,1

𝑖−1 + 𝜃𝑚,2
𝑖−1 +

2ℎ∆𝑦

𝑘
𝜃𝑠𝑢𝑟𝑟 + 𝜃𝑚,2

𝑖−1) + 
∆𝑡

𝜌𝐶𝑝
𝑓𝑚,1

𝑖−1, (𝐴. 1.10) 

which simplifies to: 

𝜃𝑚,1
𝑖 = (1 − 2𝑟𝑥 − 2𝑟𝑦 −

2ℎ𝑟𝑦∆𝑦

𝑘
)𝜃𝑚,1

𝑖−1  +  𝑟𝑥(𝜃𝑚−1,1
𝑖−1 + 𝜃𝑚+1,1

𝑖−1 ) + 2𝑟𝑦𝜃𝑚,2
𝑖−1 + 

2ℎ𝑟𝑦∆𝑦

𝑘
𝜃𝑠𝑢𝑟𝑟 + 

∆𝑡

𝜌𝐶𝑝

𝑓𝑚,1
𝑖−1. (𝐴. 1.11) 

Therefore, the row of the M matrix row for this particular node (with an index of l) is: 

𝑀𝑙,1:𝑚∗𝑛 = [⋯ 0 𝑟𝑥 1 − 2𝑟𝑥 − 2𝑟𝑦 −
2ℎ𝑟𝑦∆𝑦

𝑘
𝑟𝑥 0 ⋯ 2𝑟𝑦 0 ⋯], 
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while the term for the b vector for this particular node is: 

𝑏𝑙 =
2ℎ𝑟𝑦∆𝑦

𝑘
𝜃𝑠𝑢𝑟𝑟 . 

 


