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CHAPTER 

 Introduction 

 

1. Overview 

The relationship between the brain tissue and human behavior has intrigued people for centuries. 

Neurosurgical exploration can be traced back to the ancient Incan Empire and the ancient Egyptians, who 

opened the skull to treat head injuries [3-5]. Consequently, these cultures noticed functional deficits as a 

result of  injuries to the brain or the spinal cord. In ancient Rome, Galen performed neurological dissections 

and identified the effects of peripheral nerves extending from the brain and spinal cord [5, 6]. It wouldn’t 

be until the Renaissance, when Thomas Willis described the vascular supply to the brain in 1664, that the 

term neurology was first used [5, 7]. In the following centuries, two different perspectives on neurologic 

physiology emerged: One approach used discoveries in electricity and magnetism to put forth the idea of a 

specialized cell called a neuron that can transmit electricity to communicate with other cells far away using 

long extensions called axons [5]. A bundle of neuronal axons form nerves. This allowed for the notion of 

an intricate system of communicating cells that form a central nervous system, consisting of nerves in the 

brain and spinal cord, and a peripheral nervous system, consisting of peripheral nerves that communicate 

with the rest of the body. However, complex neurologic functions such as memory, speech, planning, and 

visuo-spatial reasoning could not be easily explained with cell theory alone [5].  

The second approach involved a series of clinical observations in patients with lesions to parts of 

the brain that caused specific defects [5]. Landmark cases like Broca’s localization of speech,  Fritsch and 

Hitzig localization of motor movement to the cortex, or even the strange case of Phineas Gage, who 

survived having an iron bar going through his skull harming his frontal lobe, resulting in a dramatic change 

in personality [5]. Observations on the effects of lesions continued to provide an insight into complex 

neurological function well into the 20th century. For example, cases like patient H.M., who was unable to 
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form new memories after a temporal lobectomy to treat his seizures, illustrated the importance of the 

hippocampus for memory formation [8]. These cases suggested a structural cause for higher cognitive 

function and therefore a possible localization of disease [5]. As human longevity increased, an association 

between age and cognitive changes emerged, raising the question of what structural changes inside the brain 

may be driving this change in behavior [9, 10]. Capturing the structural changes present in the brain in vivo 

would allow for a further understanding the effects of aging and its associated diseases. Medical imaging 

would provide the opportunity to look inside a patient’s body without resorting to an invasive procedure.  

Medical imaging began with the discovery of X-Rays in 1896 by Wilhelm Röntgen [11]. The first 

clinical application of X-Rays occurred only a few days after Röntgen’s publication, where a radiograph 

was used to identify an industrial needle inside a worker’s hand and assist in its removal, making this the 

first image-guided surgery [12, 13]. Since then, many medical imaging modalities have been developed and 

implemented in clinical practice, such as computed tomography (CT), ultrasound, or magnetic resonance 

imaging (MRI). MRI has the advantage over CT and X-Rays in that it can generate 2D and 3D volumes of 

the brain without using ionizing radiation. Instead, it uses magnetic fields and radio waves to produce high-

quality images [1]. By specifying different acquisition parameters, an MR signal can be obtained from 

different tissue types, thus highlighting soft-tissue contrast [1]. This has particular utility in the brain, which 

is composed of gray matter, consisting mostly of neuronal bodies, and white matter, consisting of neuronal 

axon projections. White matter and gray matter, both soft-tissue, have distinct material compositions, which 

can be seen in MRI [14].  

With the advent of neuroimaging, a large amount of quantifiable data was made available to 

clinicians and researchers alike. The modern field of diagnostic radiology consists of human experts who 

rely on medical imaging for diagnosis and tracking of disease. However, achieving that level of expertise 

and precision takes years of training and decades of practice [15]. As an increasing number of patients seek 

medical care and neuroimaging becomes faster and more accessible, there is a growing need to retrieve the 

information contained in medical imaging in a time- and cost-efficient manner for both researchers and 

physicians [16]. The field of medical image analysis seeks to extract quantitative information from medical 
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imaging with comparable accuracy and reliability as human experts. In an effort to replicate human 

accuracy, much attention has been dedicated to supervised learning, a subfield of machine learning. In 

supervised learning, an algorithm is trained to find patterns in the data that best represent a known output 

or “ground truth” [17]. However,  obtaining the “ground truth”  requires experts to provide high-quality 

examples. As algorithms become more complex, more examples are required, which does not scale well 

with expert human raters [17].  

Recent advancements in data retrieval, sharing, and storage has provided access to large amount of 

contextual information, particularly data derived in the electronic health record (EHR), thus introducing the 

idea of Big Data to medical image analysis [18, 19]. This is a paradigm shift. In the past, medical image 

analysis studies consisted of small cohorts of subjects with low variability between them and high-quality 

outcomes curated by experts [17, 20-25]. Unfortunately, such studies are difficult to generalize to other 

sites, different populations, or other imaging scanners due to user and hardware variability [22, 24, 25]. Big 

Data provides the opportunity of deriving meaningful imaging phenotypes from a large sampling of the 

general population [20]. The goal then is to leverage medical image analysis on a large dataset to assist in 

higher-level clinical reasoning [22, 23]. Despite the technical limitations of crafting accurate and reliable 

neuroimaging phenotypes, a key component in medical image analysis lies in describing clinical utility in 

the metrics derived [22]. Therefore, medical image analysis requires an iterative process of technical 

validation paired with clinical validation [22, 26, 27]. Clinical validation can be defined as the ability of an 

imaging biomarker to reliably discriminate or track the progression of disease. If the method does not meet 

the mark for clinical validation, the technique should to be revisited. As algorithms continue to increase in 

performance, clinical utility will be a key component of integrating machine learning and medical image 

analysis in the healthcare workflow.  

 As mentioned earlier, supervised learning consists of reproducing examples, or labels, provided in 

an annotated training set. Strong labels include annotations on medical imaging provided by experts, such 

as medical diagnoses, localization coordinates of lesions or pathologies, and even a manual delineation of 

a volume of interest (i.e., pathology, anatomical structure, or functional domain). However, strong labels 
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require reliable visualization by humans and enough resources to produce a ground truth for a given 

application [24]. More training data may be readily available if weaker labels are used. Weak labels include 

data that do not necessarily come from experts, but can be accessed in a semi-automatic manner, such 

demographic information (i.e., age, gender, socio-economic status), disease classification obtained from 

Electronic Health Record (EHR) billing codes, a bounding box localization, or even the presence of a 

lesions instead of its location. Importantly, both strong and weak labels have sources of variability. For 

example, the delineation of a volume of interest may be affected by patient anatomy, bias inherent to the 

expert, and noise in the raw image. Weak labels also have inherent variability as well, which is sought to 

be minimized by using a larger sample size and robust models. A key challenge in medical image processing 

is to develop robust and reliable models that can achieve similar performance with weak and strong labels 

to solve important clinical problems.  

As the percentage of the elderly population in the United States and worldwide is projected to 

increase, clinical problems associated with aging and its associated diseases have become a priority in order 

to ensure good health during later years. However, aging is a complex process, characterized by the 

interplay of physiological, structural, functional, and external factors as well as large interindividual 

differences [28]. Consequently, understanding the physiological processes of aging as well as its 

interactions with diseases associated with aging, such as cardiovascular disease (CVD) or dementia, is an 

active area of research. Much of this research has focused on the link between cognitive performance and 

structural changes observed, particularly in the brain [28-30]. Recent advances in storing and accessing 

large amounts of clinical data and its annotations make it possible to study aging directly from patients 

undergoing clinical interactions as opposed to subjects recruited for research. The benefit of studying aging 

through clinical data is to measure directly how changes in patient health affect the progression of aging 

and its associated disease in a large, cross-sectional patient population. However, clinical data can be 

unstructured, unreliable, and highly variable [31].   

New technical approaches are needed to best integrate clinical and imaging information in the 

context of aging to answer the following open questions: (1) Does information from image intensity alone 
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provide enough information to predict age, or is there benefit in introducing hand-crafted features to guide 

algorithm training? (2) Does predicting age from imaging data provide a reliable, normative metric for 

aging that can be used to detect disease? (3) Can we generalize existing brain segmentation algorithms to 

be robust to large intensity changes in clinical imaging? (4) Can clinical and imaging data be used to identify 

the neuroimaging signature of heart failure with reduced ejection fraction in the setting of dementia? 

 In this dissertation, I present several new methods to address the challenge of using heterogenous 

annotations on medical data in order to extract meaningful information from neuroimaging to better 

understand aging and associated disease. For the remainder of this chapter, I will provide a contextual 

overview of structural imaging in the brain, neuroimaging in aging, and key methods in medical image 

analysis that have informed and influenced the work presented here. This chapter concludes by defining 

open problems in the field and the respective contributions provided.   

2. Context for Structural Imaging in the Brain 

2.1. Magnetic Resonance Imaging (MRI) 

Magnetic resonance (MR) imaging is a versatile noninvasive imaging modality capable of 

providing contrast between soft tissues in the human body [14]. MR scanners use a strong magnetic field 

to align the nucleus of hydrogen atoms. It is then possible to excite regions within the body using a radio 

frequency (RF) pulse, which causes hydrogen atoms to tip away and oscillate around the vector of the 

applied magnetic field [1, 14]. As the protons return to equilibrium alignment with the magnetic field, a 

radio-frequency signal is emitted. This signal may be sensed and measured to produce an MR signal [1, 14]. 

Using MRI, protons with hydrogen atoms in different compartments of the body can be excited. 

The tissue composition in each compartment determines the rate at which the protons return to equilibrium 

alignment with the applied magnetic field [1]. Therefore, imaging acquisition parameters can be exploited 

to highlight contrast between different kinds of tissues. In particular, two time-constants are used to describe 

the return to equilibrium alignment: T1 and T2. T1 is the time constant of the longitudinal relaxation, or the 
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parallel vector component of the oscillating proton to the external magnetic field. Conversely, T2 is the time 

constant for transverse relaxation, or the vector component perpendicular to the applied magnetic field [1, 

14]. A set of specific acquisition parameters on the RF excitation, such as Echo Time (TE), Repetition Time 

(TR), and tip angle are used to highlight contrast between the three main components of the brain: white 

matter, gray matter, and cerebrospinal fluid (CSF). Consider Equation I.1, which describes the signal 

equation for a spoiled Gradient Echo sequence, which is a common sequence for T1- and T2-weighted 

images:  

𝑆 = 𝑘 ∙ 𝑃𝐷 ∙ (
sin 𝛼 ∙ (1 − 𝑒!"# "$% )

1 − (cos 𝛼 ∙ 𝑒!"# "$% )
) ∙ (𝑒!"& "'∗% ) (I.1) 

where PD represents the proton density, 𝛼 is the flip angle generated from the RF excitation, and k is a 

constant. To obtain T1-weighted contrast, differences in longitudinal relaxation between tissues are 

emphasized. A shorter TR increases T1-weighting. TE is short to deemphasize the transverse relaxation 

effects from T2*. Table I.1 shows the relative T1, T2, and PD values for CSF, white matter, and gray matter. 

Since white matter has a lower T1 than gray matter, which is in turn lower than CSF, the signal is brighter 

in the white matter (Figure I.1) [1]. Conversely, T2-weighted images produce contrast that highlights the 

differences in transverse relaxation. A long TE will maximize the T2 signal while a long TR with a  small 

flip angle will minimize T1-weighting [1]. As shown in Table I.1, CSF has a faster transverse decay (larger 

T2) than the tissue around it, resulting in stronger signal and high contrast between CSF and brain tissue. 

However, it is also possible to see contrast between gray matter and white matter due to respective 

differences in transverse relaxation [1]. Another common imaging modality is fluid-attenuated inversion 

recovery (FLAIR), which has acquisition parameters similar to those of T2-weighted MRI, except for an 

initial RF pulse that suppresses the intensity of CSF to improve contrast [14].  

Tissue Type T1 (ms) T2 (ms) Relative PD 

CSF 2,650 280 1.00 
Gray Matter 760 77 0.69 
White Matter 510 67 0.61 

Table I.1 Typical brain tissue parameters as measured at 1.5 T 
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In addition to the modalities mentioned above, MRI parameters can be manipulated along with 

magnetization gradients to visualize motion effects within the tissue, such as the diffusion of water 

molecules. Consider Equation I.2, which describes the diffusion-weighted signal: 

𝑆 = 𝑆((𝑒!)*) where 𝑏 = (𝛾𝐺𝛿)'(Δ − +
,
)   (I.2) 

𝑆!  is the MR signal without diffusion weighting and D is the diffusion coefficient intrinsic to the tissue. 

The exponential terms is analogous to the T2-weighting term in Equation I.1 [32]. The b-value is an 

acquisition parameter that describes the sensitization of diffusion in one gradient direction, with values for 

the gradient pulse magnitude (G), duration (𝛿), and time interval (Δ), while 𝛾 is the gyromagnetic ratio. 

Each compartment in the brain will have a distinct diffusion signature and therefore different contrast 

between them [14, 33]. It is expected that CSF will show the largest diffusion in all directions, since it 

consists of largely unrestricted water molecules, thus showing low signal (Figure I.1). White matter is 

believed to have diffusion restricted to the direction perpendicular to white matter tracts. Therefore, a 

diffusion signal will be high parallel to a gradient applied in the same direction, whereas it will be low in 

the perpendicular direction [33]. Gray matter tissue has largely isotropic tissue, so diffusion of water is 

 
Figure I.1 Three different modalities of brain Magnetic Resonance Imaging (MRI) in a single subject. Each imaging 
modality highlights contrast between types of tissue in the brain [1]. 
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uniformly restricted by the extracellular space, thus resulting is a low signal [33]. Diffusion motion is 

particularly sensitive to pathologies, such as the presence of inflammation or blood, which can be visualized 

using the magnetization signal, often called the diffusion-weighted image, or as apparent diffusion 

coefficient (ADC) map, which is a measure of the magnitude of diffusion in each voxel [14].  

Diffusion Tensor Imaging (DTI) is a technique that enables the measurement of the restricted 

diffusion of water in 3D space using a large number of gradient directions. By measuring the diffusion 

signal in several directions, it is possible to quantify the directionality of diffusion, which reflects the 

underlying tissue architecture [34]. The displacement of diffusion in 3D space is described by a diffusion 

tensor, which is a 3D matrix describing the covariance along each direction (Equation I.3). 

𝐷 =	 8
𝐷-- 𝐷-. 𝐷-/
𝐷.- 𝐷.. 𝐷./
𝐷/- 𝐷/. 𝐷//

9  (I.3) 

Diagonalization of the diffusion tensor will yield eigenvalues (𝜆", 𝜆#, 𝜆$) and corresponding eigenvectors 

(𝑒", 𝑒#, 𝑒$), which describe the direction and diffusivity along the axes of principal diffusion [35]. If the 

eigenvalues are equal, then diffusion is considered isotropic, as seen in gray matter, and if eigenvalues are 

largely different, then the diffusion is considered anisotropic, suggesting an organized microarchitecture, 

such as the white matter [35].  It is possible to represent these data as diffusion metrics for each voxel, such 

as mean diffusivity (MD) across all directions (Equation I.4), or the fractional anisotropy (FA) in each voxel 

(Equation I.5) [35].  

𝑀𝐷 =	 (𝜆$ + 𝜆' + 𝜆,) 3>   (I.4) 

𝐹𝐴 =	A
(𝜆$ −𝑀𝐷)' + (𝜆' −𝑀𝐷)' + (𝜆, −𝑀𝐷)'

2(𝜆$
' + 𝜆'

' + 𝜆,
')

 (I.5) 

These metrics will highlight contrast between different kinds of tissue architecture and even provide a 

general sense for the directionality of white matter tracts. This can be very useful to find structural 

connections between non-adjacent gray matter regions [34].  
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2.2. Computed Tomography (CT) 

Another common imaging neuroimaging modality is computed tomography (CT). CT uses x-rays 

emitted in a fan formation and allowed to pass through a patient’s tissue and absorbed before being detected 

and measured [1]. The amount of x-ray energy received by the detector is inversely proportional to the 

amount of energy absorbed by the tissue. Thus, each fan beam generates a projection of the tissue [1]. The 

fan beam is rotated around the patient, and a high-resolution rendering of the internal organs can be 

reconstructed from the set of projections [1]. CT is used to visualize contrast between soft-tissue and hard 

tissue, such as bones. Contrast is achieved by the relative absorption of X-ray energy by different tissues. 

For example, bones will absorb more energy than the lungs, so bones will appear bright while lungs, which 

are filled with air, will appear dark. Due to its high resolution and low acquisition time, CT has many 

clinical applications in neuroimaging, such as detecting acute bleeding or infarct inside the skull, fractures, 

and vascular malformations [1]. 

2.3. Challenges 

There are still many limitations with neuroimaging in clinical and research applications. Like all 

imaging modalities, both MRI and CT are affected by issues such as noise, artifact, and resolution 

limitations [1]. Research scans are usually high-resolution, with a low signal-to-noise ratio since these are 

acquired with a study in mind and relaxed constraints like acquisition time. Therefore, an image with high 

resolution and reduced artifact could be obtained in the research setting with enough resources and time. It 

was already described above that such studies also require large amount of resources and may not generalize 

well to images under different circumstances. Conversely, clinical data is affected by motion artifact, low 

resolution due to limited acquisition times, and a prior probability of disease that may affect the utility of 

the scan for research purposes. However, large amounts of data can be obtained after parsing the entire 

medical record. It is therefore an important challenge to develop medical image analysis that are robust and 

generalizable across both domains of clinical and research neuroimaging.   
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3. Context for Medical Image Analysis in Neuroimaging 

Due to the increasing amount of imaging data produced by medical centers and research 

laboratories, there is an increasing demand for extracting quantitative and actionable information that can 

enhance and inform a clinical pipeline, whether it be in diagnosis, lesion detection, or normative biomarkers 

[22, 24, 36]. At Vanderbilt University Medical Center alone, the electronic medical record shows there are 

over 100,000 MRI of the brain and almost 200,000 head CT.  The field of medical image analysis has 

adapted to this need, influenced by two key trends: (1) the development of robust models able to handle big 

data representative of a large population, and (2) the development of deep learning, which does not require 

hand-crafted, expert features in order to perform machine learning on imaging datasets [17, 20, 37, 38]. 

Automated medical image analysis promises the opportunity of timely, efficient, and robust imaging 

biomarkers to assist a clinical workflow [18, 19]. Previous work in this field has focused on smaller datasets, 

so new challenges will arise as the field strives to provide high-quality biomarkers on larger datasets, to 

solve more difficult clinical problems, and find meaningful signal in weak annotations [18-20].  

3.1. Machine Learning on Medical Images 

Large-scale structural image analysis seeks to automate the process of extracting valuable, 

quantifiable information from an image and present it in the context of a larger population or disease cohort. 

Historically, this is done by a human expert who is able to extract meaningful features from the image, 

either implicitly or directly by annotating the image, and associating these findings with a broader context 

relevant to the patient or the research study, such as age, pathologies, or normal variants [17]. However, 

with increasing demand of fast and reliable analysis of an even larger supply of medical imaging, many 

have strived to use machine learning in order to provide these services to scale [25]. Consequently, medical 

image analysis consists of two key steps: image processing, where important features are extracted from 
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the raw image, and image analysis, where these features are placed in the context of a population or 

statistical model.   

Machine learning is a subfield of computer science and artificial intelligence, where algorithms are 

used to fit statistical and mathematical models to a set of sample data called training data in order to 

understand a desired outcome [25, 39]. In other words, given a set of N observations from P subjects, herein 

represented as X, we wish to find the function f that best maps the input data into  desired output y, also 

referred to as “ground truth” or “labels”. The goal is then to apply the function learned from the training 

data to a separate dataset called the testing set in order to assess accuracy and generalizability (Figure I.2). 

Broadly, machine learning applications to medical imaging can be summarized into two main tasks: 

regression and classification [39]. In regression, the outcome is a continuous variable, while the input data 

again is a set of N observations from P subjects. Regardless of what model is chosen to represent the 

function f, most algorithms seek to minimize the error in prediction, which is the difference between y and 

f(X). In a classification problem, the output y is not continuous, but discrete, and the algorithm seeks to find 

the function g that best places the data X into its respective categories g(X) while minimizing the error of 

misclassification.  

Machine learning is well-suited for medical image analysis for several reasons. Not only does it 

perform its analyses in a timely manner, but it can represent highly nonlinear relationships between input 

 

Figure I.2 Machine learning framework for medical image analysis. Medical data is acquired and processed to extract 
features. Features can be organized as the matrix X, which includes N observations from P subjects. The goal of machine 
learning is to find the best function f that best maps X to y.  
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data and outcomes that are difficult for humans to compose intuitively [39]. A main drawback of machine 

learning, up to recent years, was its reliability on the quality of the input data and its annotations [17, 22, 

24, 25]. In other words, machine requires an initial preprocessing step to convert the raw into the organized 

format of X with N observations from P subjects. In order to organize the input data, a set of features would 

have to be extracted. These features also require an expert annotation. For instance, consider the task of 

modelling the volume of different brain regions across an individual’s lifetime, as done by Huo et al [40, 

41]. In this case, the raw data consists of a series of brain MRI and the corresponding age. However, we do 

not know the volume of the brain regions or how to draw the brain regions on the brain MRI. Therefore, an 

expert would have to manually trace the regions of interest on all subjects or there would need to be a 

trustworthy automatic segmentation algorithm that can provide the delineations. From each region of 

interest, the volume can be computed and thus a regression model can be crafted to explain how volume 

changes with age. The first step of extracting the volume delineations, or “features,” is the image processing 

step and, until the recent development of deep learning, was a key element of medical image analysis.  

3.2. The Benefits and Pitfalls of Deep Learning  

Deep learning, or deep neural networks, is a subfield of machine learning developed in the 1980’s, 

where the goal is to learn the relationship between the input data and a desired output. These algorithms 

were designed to emulate neuronal connections in the brain by linking a series of linear activation functions, 

or “neurons,” in order to learn complex relationships in the data [42, 43]. A deep neural network consists 

of a series of “layers,” which, in turn, are a weighted linear combination of the elements of a previous layer. 

By stacking several layers deep and adding an activation criteria to each element, it is possible to 

approximate any nonlinear function, given that the model and training data are large enough [42]. This 

made it possible to model increasingly complex relationships in the data [17, 42]. In the 1990’s neural 

networks were largely forgotten due to hardware restrains: the models were too large and too complex to 

solve and test in a time-efficient manner. Deep networks re-emerged in the late 2000’s when Graphics 
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Processing Units (GPUs) were adapted to training deep neural networks, resulting in algorithms training 10 

to 20 times faster with current hardware [43, 44]. 

The meaningful contribution of deep learning to medical image analysis came with the advent of 

convolutional neural networks to solve image-based classification problems with networks such as LeNet 

[45]  and AlexNet  [46]. The key contribution here was that instead of learning the weight of individual 

nodes in each layer, the network will learn the kernel of a convolution operation. Through a series of 

convolution operations, it is possible to automatically extract information from the image that best predicts 

the outcome [17, 38, 43, 47]. By doing so, deep learning effectively merged several steps of image 

processing and image analysis in a “end-to-end” framework. This was a paradigm shift in medical image 

analysis, since there is no longer the need to craft and extract features from raw images in order to train an 

algorithm (cf. Figure I.2). Useful features can be automatically learned from raw images without having an 

expert rater provide strong labels. The powerful feature-extraction of deep learning, along with weak labels 

obtained from biomedical informatics, opens the possibility to understand complex relationships between 

healthcare data and patient outcomes. Due to the many arrangements of elements in a deep convolutional 

neural networks, there are many possible network configurations to solve a problem in medical image 

analysis. In this proposal, we intentionally limit the scope of network architecture by using three common 

networks as general purpose functions to solve challenges in medical imaging: A fully-connected 

convolutional network based on LeNet [45],  the U-Net [48], and the ResNet [49]. More detail on each of 

these networks is provided below.     

Like any other machine learning algorithm, deep learning has many limitations. First, deep learning 

models have a tendency to overfit if the size of the training data is too small  [17, 38, 42]. Overfitting is a 

phenomenon in machine learning where the model is learning the training data too well [39].  In other 

words, the real signal in the training data is too weak due to a small sample size, so the model will capture 

individual variability, or noise, as a representation of the signal. Consequently, the model will not generalize 

well when presented with the testing set, and therefore the applicability of this model to future test-cases is 

reduced. Second, deep learning models have been shown to be unstable. Small perturbations in the input 
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data can cause severe deviations in prediction [50]. This is an important drawback, as machine learning and 

deep learning algorithms are implemented in life-or-death situations such as self-driving cars or healthcare 

decision making. Lastly, deep learning models are difficult to interpret compared to linear models [51-54]. 

Due to the many connections between elements in each layer, it is often very difficult to provide inference 

on what features are extracted from a raw image and how each contributes to the final prediction. Previous 

attempts have used attention maps [55], saliency maps[56], sensitivity maps [57], or direct visualization of 

the convolutional kernels [46], but this area remains an open problem in the field [51-53].  

4. Neuroimaging Medical Image Analysis on Aging and Associated Diseases 

It is estimated that by 2050, the United Stated population over the age of 65 will reach 83.7 million 

(20.9%), almost double that in 2012 at 43.1 million (13.7%) [58]. Additionally, the proportion of Americans 

aged over 65 who reported having one or more chronic disease increased from 86.9% to 92.2% between 

1998 and 2008 [59]. This trend is believed to continue given the increased longevity and increasing obesity 

[59]. Diseases associated with the aging population include cardiovascular disease, diabetes, 

cerebrovascular disease, hypertension, dementia, all of which are systemic diseases with a wide array of 

risk factors, complex physiological changes, and a need for well-orchestrated care [28, 59]. Studying 

clinical data in the elderly is imperative in order to improve our understanding of the interplay between 

these diseases as well as provide evidence-based and cost-effective care to all.  

One active area of research has been to study the effect of aging on the brain through the lens of 

neuroimaging. Several longitudinal research studies such as the Baltimore Longitudinal Study of Aging 

(BLSA), the Framingham Heart Study group, or the Mayo Clinic Study of Aging have been following 

subjects for decades to study how aging and associated diseases affect neuroanatomy, with the goal of 

describing the relationship between longitudinal disease cognitive function [60-65]. Several studies have 

identified changes in cortical thickness, dilation of sulcal and ventricular spaces, and white matter 

hyperintensities to be associated with aging independent of disease [30].  These findings help discriminate 

between normative brain atrophy and degeneration associated with aging compared to a pathological 
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process [66, 67]. However, the effect of disease interactions on neuroanatomy have not yet been studies in 

large clinical imaging cohorts. Medical image analysis is well suited to study aging because it provides 

quantitative, actionable data to better understand the diagnosis and progression of disease. Medical imaging 

along with healthcare data found in the electronic health record (EHR) provide a non-invasive alternative 

to measure and track the changes associated with aging and associated diseases directly from the patient 

population [67].  

5. Open Problems 

The application of deep learning to medical image analysis has allowed the field to investigate many 

unanswered questions about the nature of medical imaging and its applicability to clinical practice.  In this 

dissertation we explore the following open problems in medical image analysis when applied to strong and 

weak labels alike when obtained from a clinical setting. 

5.1. Brain Age Estimation 

Aging is a complex, multifactorial process by which the human body changes over time.  Aging is 

not only a universal biological phenomenon but an independent risk factor for many human diseases [68]. 

Understanding how aging affects individuals as well as its effect on specific diseases has incredible 

therapeutic potential. This has motivated research efforts towards deriving an “aging biomarker” that is 

predictive of disease risk and residual lifespan [68]. One such strategy has been to predict age from 

healthcare data, such as brain imaging and imaging-derived metrics [69-71]. The idea of age prediction 

from healthcare data aims at finding a normative biomarker for aging and disease. Complex data such as 

raw imaging may contain information encoded in it that is difficult to extract with imaging metrics alone. 

Moreover, imaging might have information hinting at the onset of disease that is not yet visible through 

signs and symptoms. Brain age provides the opportunity to place the appearance of an individual’s brain in 

the context of thousands of others in order to assess whether it is within the norm. An advanced brain age 

has been previously associated with Alzheimer’s Disease [72-76], Schizophrenia [77-79], traumatic brain 
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injury[80], amongst others [68]. Deep learning provides the opportunity to accurately learn a weak label, 

such as age, from thousands of subjects with minimal preprocessing, thus making a large-scale biomarker 

feasible. Thus, predicted age can act as a non-invasive biomarker of aging as well as a biomarker for disease. 

Such tools can be used to study the effects of neurodegenerative and mental health illnesses on brain aging.  

Previous studies that predict age have used classical image processing methods to extract features 

followed by a regression model in order to predict age including kernel methods [72], Markov models [81], 

and Bayesian models [82]. More recently, deep learning models have used the raw image to predict age 

with great success [83]. Despite the success of deep learning in achieving similar or better performance at 

this task, it is still unclear whether deep learning captures the same information available from expert 

features. In other words, would deep learning benefit from combining expert features, usually rich in 

anatomical context, along with the features learned automatically? Does adding anatomical context in the 

form of expert features make age estimation more stable against perturbations to the input image? In this 

dissertation, we describe a combined age estimator using deep learning and expert features that not only 

improves on previous accuracy but is more robust against adversarial perturbations. 

The following open problems were identified for this dissertation: 

• Brain age estimation using expert features as well as raw MRI has been previously described 

by several groups. However, it is not clear whether these two sources of data contain different 

information such that integrating dual context would result in improved accuracy. 

• Age prediction has been extensively studied in brain MRI, but it has not yet been that age can 

be predicted from other imaging modalities, such as orbital CT, or whether differences in 

predicted age from orbital CT can discriminate between diseases of the eye.  

• It is not yet known to what degree deep learning tools on medical imaging tools are susceptible 

to adversarial attacks or the levels of adversarial noise necessary to achieve it.  
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• While it is well known that deep learning networks are unstable, it is unclear whether including 

expert features will result in a more robust network against adversarial attacks due to enforced 

anatomical context.  

• Different image-based algorithms have been proposed to compute age. However, many of these 

methods lack clinical validation via testing differences in brain age gap between disease groups 

and healthy controls. For instance, it is not known if brain age gap changes in subjects with 

depression, particularly in the elderly population. 

• Similarly, it is now known whether age prediction metrics correlate with changes in cognitive 

performance in healthy controls or in patients with depression.  

5.2. Segmentation of Brain Structures Across Imaging Modalities 

Segmentation has constantly been a common application in image processing.  In many ways, 

segmentation can be thought of as a pixel-wise classification problem. The goal of segmentation in a 

supervised learning framework is to use previously annotated medical images to automatically generate 

annotations on new samples. This annotation consists of a manual delineation of a region of interest. In the 

brain, such regions include functional regions, anatomical divisions of brain tissue, or detection of lesions 

and pathologies. Automatic segmentation can provide additional clinical information in volume estimation, 

lesion detection, and surgical planning; as well as research support, with region seeding for tractography 

and functional studies and feature extraction. Due to small variability in the anatomy between subjects, 

generalizability across subjects is a key challenge in segmentation.  

In the past, segmentation was achieved with considerable success using deformable registration of 

labelled atlases. A labelled atlas consists of an image-delineation pair, where the delineation is often 

generated by an expert rater and considered the ground truth. Initial success was achieved using a single-

atlas in some applications [84-86], but a boost in performance was achieved when multiple atlases were 

registered to the test subject and the labels were fused according to the likelihood of correspondence [87, 

88]. Segmentation was revolutionized with the advent of deep convolutional neural networks, particularly 
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the U-Net [48] and ResNet [49], which showed a significant increase in accuracy across many different 

modalities. A particular advantage of deep learning models over multi-atlas segmentation is that once an 

adequate model is trained, generating a segmentation takes a matter of seconds, while multi-atlas 

segmentation is on the scale of hours to days [89]. However, deep learning models trained on small datasets 

are difficult to generalize across different contrasts, making it difficult to share trained models across 

applications that use different imaging modalities or different anatomical locations [17].  

Transferring information from one imaging modality to another has great value in medical imaging, 

since different contrasts may highlight important structures. For example, the dentate nucleus (DN) is a 

small gray matter structure deep in the cerebellum, which is involved in motor coordination, sensory input 

integration, executive planning, language, and visuospatial function [90]. The DN and its associated white 

matter tracts have been implicated in the development of movement disorders, such as PD or essential 

tremor (ET) [91-95]. Previous studies have used a delineation of the DN for imaging-based studies of 

connectivity and volumetry to detect structural differences [96-98]. An accurate and reliable segmentation 

of the DN would allow to perform these studies on a large-scale.  

A major challenge in DN segmentation is its generalization across modalities. Many clinical and 

research MRI uses T1-weighted sequences, in which the DN is difficult to visualize [90]. However it is 

clearly visible using T2-weighted MRI or DWI. Learning a segmentation encoded in DWI and accurately 

applying it on T1-weighted MRI would enable the application of such a segmentation across multiple 

studies [2, 99, 100]. In this dissertation, we propose a segmentation method of the DN learned from strong 

labels such as manual delineations on DWI and applied to T1-weighted imaging. We assess the 

reproducibility of the automatic segmentation by showing that volumetric differences between groups are 

preserved between the manual and automatic segmentations. 

The challenges in harmonizing multi-site and multi-sequence imaging datasets for segmentation 

have been described previously, recognizing that the variability in tissue contrast can come from scanner 

factors (number and sensitivity of head coils, imaging gradients, magnetic field homogeneity, or scanner 

noise) or software factors (image reconstruction methods or software updates) [101]. Many of the efforts 
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directed at image harmonization have sought to find a mapping of tissue contrast intensities to account for 

small changes in acquisition parameters [101-104], while recognizing that these methods may not be robust 

to large changes [101, 103], such as those found in clinical data like the presence of intravenous contrast or 

large variations in flip angle. These large variations result in a different representation of the underlying 

anatomy and harmonizing across them requires a robust technique that does not only map tissue intensities. 

Improving algorithm generalizability on clinical data will allow for larger learning datasets and translation 

to the bedside.  

The following open problems were identified for this dissertation: 

• An automatic segmentation of the DN has previously only been done using single-atlas 

methods. Deep learning methods have shown improved technical accuracy and generalizability 

over single atlas segmentations in other brain structures. There is yet no consistent 

segmentation of the DN.  

• Deep learning can be susceptible to irregularities in the data. However, with an increasing need 

to translate modern algorithms to the bedside, these should be made robust to heterogeneities 

in the data. It is still an open problem on how to perform domain adaptation from a research 

domain to heterogenous clinical data, such as different acquisition parameters or the presence 

of intravenous contrast. Furthermore, it is still unknown how improvement in performance for 

local factors may result in a degradation of performance in the whole brain segmentation task 

on the original dataset. 

• In order to achieve domain adaptation towards heterogenous data, new training examples are 

needed to refine the algorithm via transfer learning. However, generation of manual tracings 

by experts can be time- and resource-prohibitive. There are large amounts of unlabeled research 

and clinical imaging  data. It is still an open problem as to how to leverage these data to improve 

local performance using weak labels in a supervised or semi-supervised learning framework. 
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• Although performance of whole brain segmentation is known to drop between imaging 

domains, it is not known how bias and variance of volume measurements from segmentations 

change or if this can be minimized with transfer learning.  

5.3. Neuroimaging Effects of Heart Failure in the Setting of Dementia  

Alzheimer’s Disease and other dementias affect more than 5.3 million Americans and result in over 

$259 billion in medical expenditures annually [105]. Extensive epidemiologic evidence suggests that HF 

not only shares many risk factors with dementia, but is itself an important risk factor for dementia [106-

109].  Other studies have shown that there are clinical variables in HF associated with a higher risk of 

dementia, such as hypotension, diabetes, hyperglycemia, anemia, and electrolyte levels [108, 110-112]. 

However, the clinical comorbidities influencing development of HF-associated dementia have not been 

studied in a phenome-wide, unbiased fashion; therefore, it is unclear whether HF confers risk 

independently, in combination with, or through interactions with other comorbidities. Similarly, patients 

with HF have specific changes in neuropsychological testing and brain morphology, such as atrophy in the 

parahippocampal gyrus, compared to controls [109, 113, 114]. Epidemiologically, the proportion of 

vascular dementia to Alzheimer’s disease increases in patients with HF [112, 115]. This evidence suggests 

that HF has a distinct effect on brain morphology, which may result in a different dementia phenotype. An 

improved understanding of the clinical and imaging predictors of dementia in the setting of HF may help 

characterize a pathophysiologic mechanism and lead to improved diagnostic and therapeutic strategies.  

Recent advances in clinical informatics have allowed investigators to introduce tools such as 

phenome-wide association (PheWAS) as systematic and efficient methods to leverage EHR phenotype data 

for research [116, 117]. The PheWAS method uses a validated, curated medical phenome that hierarchically 

groups the ~18,000 International Classification of Disease (ICD) billing codes into about 1,800 phenotypes, 

each with defined control groups. The PheWAS phenome compares favorably to other methods such as the 

Agency for Healthcare Research and Quality’s Clinical Classifications Software (CCS), with PheWAS 

codes representing over twice as many common problems as the CCS. PheWAS phenotypes have been used 
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successfully to replicate known genetic and clinical associations [118]. These methods are flexible and have 

been applied to discover patterns in phenotype clustering and to show that patterns of comorbidity 

associations can provide important insights regarding etiologies of complex diseases [116, 119, 120]. 

PheWAS can be a powerful tool to identify new, modifiable clinical phenomena in the setting of HF. 

The field of neuroimaging has been especially active in the search for imaging disease biomarkers 

and the brain regions contributing to the signal. These efforts demonstrate associations between 

cardiovascular disease and imaging features associated with cognitive and brain function. Beason-Held et. 

al. showed that a high Framingham Cardiovascular Disease Risk Profile (FCRP) score, an aggregate score 

of cardiovascular risk factors, is associated with longitudinal decline of cerebral blood flow in several 

regions grey matter of the brain [121]. Similarly, Romero et. al. showed that well-known cardiovascular 

risk factors such as age, sex, and hypertension influence the amount of cerebral microbleeds seen in T2 

MRI [122, 123]. Moore et al. showed that left ventricular mass index, a precursor of left ventricular 

hypertrophy and HF, is associated with changes in white matter microstructure [124]. These studies show 

that changes in cardiovascular health have structural sequelae in the brain, making neuroimaging a 

promising tool for understanding disease as well as early diagnosis and prevention. However, these studies 

are highly dependent on engineered structural features and pre-selected regions of interest (ROI) – a 

limitation that can be overcome by integrating high-quality crafted features with the data-driven features 

obtained from deep learning. 

• Recruiting elderly patients with several comorbidities for imaging research studies can be 

costly and time-consuming. It is an open problem whether retrospective clinical data can be 

leveraged to extract high-quality imaging and clinical variables relevant for a small clinical 

cohort, such as patients with comorbid heart failure and dementia.  

• Extracting clinical data allows for discovery of clinical comorbidities associated with heart 

failure. It is not yet known if these associations may lead to novel links between clinical 

comorbidities to advise and inform future targeted studies.   
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• Although it is known that heart failure shares neuroimaging features with aging and dementia, 

a heart failure neuroimaging signature has not been previously described. Furthermore, it is 

unknown if this signature can be observed from a heterogenous clinical imaging dataset.  

• It is unknown if the discovery of an imaging signature can inform future imaging studies 

targeted at specific brain regions under a research setting or how  these morphological changes 

affect cognition. 

6. Contributions 

Medical image analysis is undergoing a transformation due to the unprecedented amount of data 

available, as well as new, complex models suited to interpret it. With the interpretation of Big Data in 

medical imaging, new challenges will arise as many of these algorithms are translated into clinical practice. 

It is often straightforward to show technical validation in medical image analysis by producing a small error 

on a withheld dataset. However, clinical validation will be an essential step in making these algorithms 

available for clinical practice.  

6.1. Brain Age Estimation 

• We trained a deep learning network on a large cohort to predict age using both raw MRI and 

volumetric features to supply additional anatomical context, which shows improvement over 

each respective input alone. 

• We trained a deep neural network on a large cohort of clinically acquired orbital CT to predict 

age using the raw volume and volumetric features, again showing improvement against 

separate feature sources.  

• We show how some diseases of the orbit resulted in changes in the orbital CT age gap, 

suggesting this as a possible non-invasive biomarker of eye disease. 
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• We present an adversarial model to measure the effect of adversarial noise levels on MRI brain 

age predictions and show that while deep learning networks are largely susceptible to 

adversarial noise, the inclusion of volumetric features largely diminishes this effect. 

• We show the clinical applicability of our MRI brain age estimator in finding differences in the 

Brain Age Gap between patients with depression and controls in an adult and a geriatric 

population. Furthermore, we show associations between Brain Age Gap and cognitive 

performance in the geriatric cohort.  

6.2. Segmentation of Brain Structures on Across Imaging Modalities 

• We generated an automatic segmentation of the DN on multiple imaging modalities learned 

from manual tracings done on diffusion imaging. We showed that a diffusion-based 

segmentation of the DN can reliably reproduce manual labels, but differs greatly from 

segmentations achieved by single-atlas registration. 

• We generated augmented labels for unlabeled brain MRI to perform transfer learning. We 

explored the use of semi-automated labels via manual correction of labels obtained from multi-

atlas segmentation in a pediatric dataset. We also used paired, unlabeled clinical brain MRI to 

generate automated labels on a post-contrast image using the co-registered pair without 

contrast. 

• We performed transfer learning from the pretrained whole brain segmentation tool SLANT 

towards heterogenous clinical datasets, such as multiple acquisition parameters and a pediatric 

sample. These efforts will improve on the generalizability of image processing tools in order 

to translate to the bedside.  

• We showed the importance of domain adaptation for volumetric estimation of brain regions of 

interest. Specifically, we estimated the error in volume estimation of the hippocampus between 

imaging pairs of the same subject and showed a drop in error compared to non-harmonized 

methods such as baseline SLANT or the FreeSurfer segmentation pipeline.  
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6.3. Neuroimaging Effects of Heart Failure in the Setting of Dementia  

• We completed cohort definition and data extraction from the VUMC EHR using ICD-9 and 

ICD-10 codes for dementia and the presence of heart failure. We further filtered to include only 

subjects who have at least one head MRI documented in the clinical imaging database 

ImageVU and evidence of some form of cognitive testing on their medical chart supporting the 

diagnosis of dementia. We have identified 5,913 subjects who meet all of these inclusion 

criteria for dementia and brain imaging.  

• We completed visual quality control on all brain MRI and identified high-quality imaging T1 

and T2 FLAIR brain MRI. We found over 400 subjects with high-resolution, high-quality 

imaging appropriate for medical image processing. We further analyzed how the clinical profile 

according to EHR codes changes between patients with and without high resolution imaging.  

• We completed automatic segmentation on all T1-weighted MRI using the preciously developed 

tools on heterogenous clinical data. We described the neuroimaging signature of heart failure 

with preserved ejection fraction.in this population. 

7. Previous Grants & Publications 

The contributions in this dissertation have been previously published or are currently under review.  

The brain age estimator as well as the adversarial were published at Magnetic Resonance Imaging [125]  

and Neurocomputing [126], respectively. Clinical validation of brain age gap on a clinical cohort is under 

review at Translational Psychiatry. Our tool for multimodal segmentation of the dentate nucleus was 

published in the Journal of Medical Imaging [127]. The initial work on domain adaptation of whole brain 

segmentation was originally published the conference proceedings for SPIE: Medical Imaging 2020 [128] 

and a full journal version is currently under review at Journal of Medical Imaging. The work focused on 

translating these tools to describe the clinical and imaging features of heart failure was funded by the 

American Heart Association Predoctoral Fellowship. Consequent work on the neuroimaging signature of 

heart failure in dementia is currently under review at the Journal of the American heart Association.  
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8. Conclusions 

The rest of this document is as follows. In Chapter II, we will introduce the literature on brain age estimation 

and show that deep learning age estimation can result in improved accuracy when expert features are 

introduced in training in two different imaging modalities. Chapter III is a continuation of this work, which 

further shows that a model with additional anatomical context is less susceptible to adversarial noise. In 

Chapter IV, we present the application of predicted brain age to discriminate between patients with 

depressions in adults and a geriatric population, as well as the relationship between predicted age and 

cognitive performance. We then focus on deep learning methods of segmentation. Chapter V presents an 

accurate deep learning segmentation of the DN learned across different modalities of MRI. We show that 

volumetric differences between groups are preserved when using the automatic segmentation. In Chapter 

VI we propose a new approach to generalize whole brain segmentation to heterogenous datasets with 

augmented labels, and in Chapter VII we take this a step further to validate the performance of transfer 

learning on clinical data for variable acquisition parameters. Chapter VIII then brings these tools together 

in the description of a neuroimaging signature of heart failure using clinical data. Chapter IX outlines future 

research directions focused on using clinical data from imaging and medical charts to better understand 

aging and associated disease. The novelty in this dissertation lies in the integration of high-quality research 

tools across technical domains and implementing them to heterogenous datasets in order to better 

understand the effects of aging and associated diseases through neuroimaging. 
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 Anatomical Context Improves Deep Learning on the Brain Age Estimation Task 

 

1. Introduction 

In a recent special issue, Greenspan et al. reviewed the role of deep learning in medical image analysis, 

concluding that “In the majority of works presented, use of a deep network is shown to improve over the 

state-of-the-art. As these improvements seem to be consistent across a large variety of domains, and as is 

usually the case, development of a deep learning solution is found to be relatively straight-forward, we can 

view this as a major step forward in the medical computing field.” [17] The authors state that networks 

excel at tasks of lesion detection, segmentation, registration, and predictive models. A key challenge of 

deep learning applied to medical imaging in a supervised learning framework, is the need for large training 

sets with high-quality, expertly labelled features. Generating high-quality labels for medical images, in 

tasks such as detection, diagnosis, or segmentation, requires expert knowledge which does not scale well 

to the large number of training examples needed for a robust deep learning algorithm. The authors identify 

a second key issue with the shifting paradigm towards deep learning: “Can we rely on learned features 

alone or may we combine them with handcrafted features for the task?”[17].  

Advances in deep learning have provided an approach for learning a highly non-linear function of 

a dataset when an appropriate kernel or feature manifold is not known. Historically, feature extraction in 

the field of computer vision has relied on automatically detecting intensity patterns or textures in an image. 

However, recent work on deep convolutional neural networks has shown that an adaptive learning of image 

features through convolutional filters can results in more accurate results. Unlike many datasets used in 

computer vision, medical imaging is unique in that there is already extensive a priori expert human 

knowledge associated with the image, such parcellation of tissues into anatomical or functional units. This 
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knowledge can be formulated as imaging features grounded in medicine and physiology, which can direct 

computer vision tasks to find better relationships in the data. Decades of work on medical image processing 

have focused on engineering and refining meaningful features to capture the dimensionality of a small 

imaging dataset. While deep learning has shown remarkable improvements, it has not been shown whether 

engineered features are redundant. For example, age prediction from medical imaging is a task that has 

relied heavily on pre-processed regions of interest (ROIs) from T1w structural brain MRI using the volumes 

of ROIs such as the white matter, ventricles, and the cortex [69-71]. Recently, these measures have become 

efficiently extractable from a standard T1-weighted (T1w) brain MRI using a multi-atlas segmentation 

approach [69]. 

Recently, Cole and Franke evaluated the clinical utility of predicting brain age from hand-crafted 

imaging features and showed that predicted brain age can be used to better understand differences between 

individuals during the aging process, understand disease processes, and design treatment strategies [70, 

129]. The authors pose that the absolute difference between predicted age and chronological age, herein 

called Brain Age Gap (BAG) biomarker, is a valuable imaging metric, since it has been shown to correlate 

with aging as well as neurodegenerative diseases [129]. A recent study showed a correlation between BAG 

and mortality in subjects over 73 years old, attributing an increase of 6% to mortality risk for every year 

predicted older [130]. BAG also correlated with common metrics of age such as decreased grip strength, 

decreased expiratory volume, and slower walking time [130]. Moreover, an increased BAG has been shown 

to correlate with several neurodegenerative diseases like Alzheimer’s disease, bipolar disorder, diabetes, 

Down syndrome, epilepsy, major depression, mild cognitive impairment, traumatic brain injury, and 

schizophrenia [70, 129]. These clinical correlations suggest common secondary effects on the brain, such 

as inflammation or oxidative stress [129]. Some of the challenges with this technology moving forward 

include incorporating multimodal data, such as orbital computed tomography (CT) to produce new 



28 
 
 

 

 

biomarkers like orbital brain age gap (OrbitBAG), and the use of deep learning, which the authors identify 

as beneficial due to the “removal [of] the reliance on data pre-processing to extract meaningful features.” 

[129] Predicting age from neuroimaging may provide a new, noninvasive biomarker of aging as well as a 

discovery tool for positive and negative effectors on aging. 

Some of the best results that predict age report a BAG between 4-5 years [72], but these models 

have been difficult to generalize due to small sample size [72, 82, 131], limited age-range [81, 132], or 

extensive multimodal data requirements [70, 132, 133]. Cole et. al proposed a convolutional deep neural 

network technique on raw T1w MRI images which showed an mean absolute error of 4.65 years in 2,001 

healthy adults ages 18 to 90 years [83]. This method showed competitive results in age prediction without 

any a priori feature extraction or image preprocessing. The work by Cole [83] exemplifies the improved 

performance of deep networks over handcrafted features. However, it does not explore how using both 

types of features affect prediction accuracy. Understanding the functional difference between engineered 

features and machine learning tasks can provide insight into structural and functional changes seen in 

medical imaging.   

Deep learning has shown a remarkable improvement over hand-crafted feature-based learning, but 

it is still unclear whether deep neural networks capture all the information available from expert features. 

Deep neural networks learn convolutional filters that minimize an objective loss function, such as mean 

squared error, but do not enforce specific anatomic of physiological principles present in the image. 

Conversely, using engineered features based on anatomy or function requires a priori expertise and will 

necessarily limit the information available in the image to the chosen features. The rationale for merging 

expert features with deep learning is to leverage the existing knowledge present in expert features to direct 

learning of the convolutional network towards intensity patterns predictive of age that are not captured in 

the engineered features. The principal contribution of this method is to show that deep learning can be used 
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to enhance prediction along with engineered features. A strength of deep convolutional networks is the 

ability to find patterns in the data that are not immediately obvious. Therefore, it is best to leverage this 

powerful tool to find new patterns instead of enforcing the learning of features that we can already obtain 

through classical methods. 

In this chapter, we hypothesize that deep learning is complementary to traditional feature 

estimation. We propose to build upon previously validated network designs to include traditional structural 

imaging features alongside deep convolutional ones and illustrate this approach on the task of imaging-

based age prediction on two separate datasets: T1-weighted brain MRI and CT of the head. We show that 

deep learning can enhance tasks in medical image processing when learned features are combined with 

handcrafted features. As the field of medical image processing continues to adopt techniques in deep 

learning, it will be important to preserve hand-crafted features that enhance the task at hand, instead of 

replacing the features altogether. The work presented in this chapter was published at Magnetic Resonance 

Imaging with Camilo Bermudez as first author. 

2. Methods 

2.1. Imaging Datasets and Preprocessing 

The complete MRI cohort aggregates 9 datasets with a total 5,048 T1w 3D images from normal 

healthy subjects, as curated by [41]. This cohort includes subjects marked as controls from nine studies 

(Table II.1). The data include subjects with ages ranging between 4 and 94 years old, with a mean age and 

standard deviation of 29.1 ± 22.6 years. Of 5,048 subjects, 52.4% were male and 47.6% were female. Data 

were also acquired from different sites so there is a difference in field strength, of which 77% of scans were 

acquired at 3 Tesla and 23% were acquired at 1.5 Tesla. ROI volumes, sex, and field strength were all used 

as input features for age prediction.   
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For feature extraction, 45 atlases are non-rigidly registered [134] to a target image and non-local 

spatial staple (NLSS) label fusion [135] is used to fuse the labels from each atlas to the target image using 

the BrainCOLOR protocol [136]. A total of 132 regional volumes were calculated by multiplying the  

volume of a single voxel by the number of labeled voxels in original image space. Total intracranial volume 

(TICV) was calculated using SIENAX [137] and used for volume normalization for a total of 132 raw 

volumes and 132 normalized volumes.  

The cohort of head CT images consists of 1,313 clinically acquired scans as part of a larger study 

on eye disease. All images were acquired at Vanderbilt University Medical Center (VUMC) with variable 

imaging protocols and scanners (Table II.2). Images were retrieved and deidentified for retrospective study 

under Institutional Review Board (IRB) approval. Since these subjects were undergoing CT imaging for 

regular clinical care, it includes patients with eye diseases such as glaucoma, intrinsic optic nerve disease 

(IOND), optic nerve edema, orbital inflammation, or thyroid eye disease (TED), as well as healthy controls 

who received imaging but were not clinically diagnosed with these diseases. CT images were normalized 

to a range between -100 and 200 Hounsfield Units (HU) for optimal visualization of orbital structures. The 

CT images were processed for structural features of the orbit using the protocol described in [138]. The 

data includes subjects of ages ranging between 1 and 97 years old, with a mean age and standard deviation 

Site Mean Age Young Age 
(0 - 30 y/o) 

Middle Aged 
(30 -50 y/o) 

Older Adult 
(50 - 96 y/o) Site total 

ABIDE 17.2 ± 7.8 523 (95) 39 (3) 1 (0) 563 (98) 
ADHD-200 11.6 ± 3.3 950 (367) - - 950 (367) 
BLSA 68.1 ± 12.7 1 (0) 61 (31) 552 (311) 614 (342) 
Cutting 12.5 ± 5.0 583 (293) 3 (1) - 586 (294) 
FCON-1000 28.3 ± 13.8 823 (469) 130 (56) 116 (68) 1,069 (593) 
IXI 48.8 ± 16.4 98 (54) 166 (80) 259 (162) 523 (296) 
NDAR 11.0 ± 3.8 328 (168) - - 328 (168) 
NKI-Rockland 33.9 ± 21.5 58 (26) 21 (8) 24 (14) 103 (48) 
OASIS 45.2 ± 23.8 139 (78) 43 (24) 130 (93) 312 (195) 
Total 29.1 ± 22.7 3503 (1550) 463 (203) 1082 (648) 5,048 (2,401) 
Table II.1Demographics for brain MRI cohort per site. Our study uses brain MRI of subjects marked as healthy controls 
from nine different sites. Parenthesis indicate number of female subjects.  
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of 52.1 +/- 20.7 years. This dataset includes healthy control subjects (70.0%) as well as subjects with 

glaucoma (7.7%), IOND (15.2%), optic nerve edema (14.7%), orbital inflammation (2.5%), or TED (5.0%). 

Seventy-five structural metrics were extracted using multi-atlas segmentation and used as input variables 

along with disease classes for each subject, using the method proposed by Harrigan et. al. [138]. 

Cohort Mean Age Young Age 
(0 – 30 y/o) 

Middle Aged 
(30 -50 y/o) 

Older Adult 
(50 – 96 y/o) Total 

Healthy Control 56.5 ± 19.5 108 107 651 866 
Glaucoma 61.0 ± 18.7 8 15 78 101 
IOND 44.6 ± 20.0 54 64 82 200 
Optic Nerve Edema 32.0 ± 14.7 97 75 21 193 
Orbital 
Inflammation 46.1 ± 21.6 9 10 14 33 

TED 53.3 ± 14.0 2 25 38 65 
Total 52.1 ± 20.7 242 252 819 1,313 
Table II.2 Demographics for head CT cohort per disease status. Our study uses clinically acquired head CT from healthy 
subjects as well as five different eye disease status. Note: Some of these subjects have multiple diagnoses. IOND: Intrinsic 
optic nerve disease; TED: Thyroid eye disease.  

 

2.2. Model Architecture 

In this work, we adopt the network developed and validated by Cole et. al and extend it to include 

anatomical features derived from multi-atlas segmentation [83]. In Cole’s work, a series of convolutional 

operations result in a high-dimensional convolutional representation of imaging data, which is then used to 

directly predict age. In this work, we concatenate the anatomic representation, which consists of volumetric 

estimates of key ROI’s identified with multi-atlas segmentation. Figure II.1 shows the convolutional 

representation obtained using a 3D convolutional neural network. This consists of 5 layers each with two, 

3D convolution operations, ReLU activation, and max pooling; resulting in a representation of the brain 

imaging with 15,360 features or 3,584 features in the case of orbital CT.  
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After concatenation of the convolutional and volumetric features these features undergo ReLU 

activation and densely connected layer to a single node with linear activation to directly predict age (Figure 

II.1). In addition, we trained two more baseline models for a comparison: 1) the baseline Cole et. al model 

using our data, and 2) a volumetric features only model, which consisted of two densely-connected layers 

of 128 nodes.  As with previous work, the learning rate was initiated at 0.01 with a 3% decay each epoch. 

All models were trained using stochastic gradient descent optimization with momentum of 0.9. The loss 

function was mean absolute error. Training was allowed to continue until the loss function on the validation 

set did not change by more than 0.1 in 20 epochs. All models were developed using Keras version 2.2.4 

with Tensorflow 1.5 and trained on an NVIDIA Titan Graphics Processing Unit (GPU). 

2.3. Statistical Analysis 

We performed a five-fold cross-validation scheme by withholding 20% of the data for testing while using 

the remaining 80% for training and validation (70% and 10% respectively). This process was repeated five 

 
Figure II.1 Pipeline for age prediction. Two sets of features are used: intensity-derived features (red) derived from 
a convolutional neural network of increasing filter size (red boxes), and structural features (blue) using multi-
atlas segmentation (bottom). These features are concatenated and used as inputs to directly predict age. BN: Batch 
Normalization; ReLU: Rectified Linear Unit Activation; Max Pool: Max Pooling Layer.  
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times until the entire dataset was used for testing only once. Therefore, a total of five networks were trained 

for each method (ie. volumetric features only, raw image only, or combined) and evaluated on the testing 

set for each fold. This way, every subject in the data is used as a testing subject only once. All results shown 

below represent the evaluation of the testing set in each fold grouped together. The BAG biomarker was 

calculated for all models and compared using a Wilcox signed rank test. We corrected for multiple 

comparisons using Bonferroni corrections.  

Additionally, we test the hypothesis that the BAG biomarker is increased in subjects with existing 

eye disease compared to healthy controls in the testing set.  We tested for significance of the BAG 

biomarker between each disease group and healthy controls using a linear regression model with disease 

state as a dummy variable and true age as a covariate. Significance between groups was set to p < 0.05 in 

the dummy variable.   

2.4. Network Visualization with Grad-CAM 

We use the Gradient Class Activation Maps (Grad CAM) method described by [55] and implemented by 

the publicly available library keras-vis [139] to visualize the areas of the raw MRI with higher attention in 

the combined model. We created nine categories based on three age cutoffs for true age and predicted age: 

young (< 30 years old), middle aged (30 – 50 years old), and older adult (> 50 years old). The nine categories 

consist of young predicted young, young predicted middle aged, young predicted older adult, middle aged 

predicted young, middle aged predicted middle aged, middle aged predicted older adult, older adult 

predicted young, older adult predicted middle aged, and older adult predicted older adult. We randomly 

selected 10 subjects from each category, calculated the Grad CAM for each and showed the resulting 

average for each category overlaid on a subject from that sample.   
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3. Results 

In this work, we show that intensity-derived features from a deep convolutional network can 

enhance learning from structural features by improving the accuracy of age prediction in both brain MRI 

and head CT datasets.  

3.1. Context-Aware Deep Neural Network Best Predicts Age in T1-Weighted MRI 

This study investigates the ability to predict age from brain MRI in healthy individuals. We use 

two sets of inputs to train and validate a fully-connected network: 1) intensity features derived from a 

convolutional neural network representation, and 2) context features including volumetric estimates for 

known regions of interest in the brain obtained via atlas-based segmentation. We also introduce sex and 

scanner field strength with structural features as additional contextual features. Figure II.2A shows that 

 

Figure II.2 Deep Learning Improves Age Prediction in Brain MRI. Age can be predicted more accurately when 
using convolutional and structural features on a fully connected network model (A). Most subjects can be predicted 
within 2.81 years using the combined model (B). Subjects who are predicted old have features of young patients and 
vice versa (C).  
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intensity-derived features outperform structural features with a mean absolute error of 5.00 vs 8.26 years 

(p<0.001). However, age prediction improves when both feature sets are used as inputs, resulting in a 

median absolute of 4.08 years (p<0.001).  

Figure II.2B shows the cumulative probability of accurate prediction within an acceptable error 

range. This shows that 73.2% of subjects fall within an absolute error of 5 years in the combined model. 

This is an improvement from the intensity features model, which can only predict 64.6% of the subjects 

within 5 years while the features only can predict 54.9% within 5 years. Figure II.2C presents a 

representative 3-by-3 matrix of subjects where the vertical axis represents true age of a young individual, a 

middle-aged adult, and an older adult. Some of the canonical features of old age, such as enlarged ventricles 

are seen in young patients predicted as old. Conversely, anatomical features of young age such as small 

cortical sulci are apparent in the older subjects.  

 

3.2. Context-Aware Age Prediction Generalizes to Orbital CT  

We applied the same network architecture to predict age on a dataset of head CT used in [140], which 

includes healthy and eye disease populations.  Again, we use two inputs: 1) intensity features derived from 

a convolutional neural network representation, and 2) volumetric estimates of important orbital structures 

proposed by [138] as well as structural features. Figure II.3A shows that intensity-derived features alone 

outperform hand-crafted features, resulting in a mean absolute error of 11.02 years and 13.28 years 

Imaging Modality Input Data MAE (yrs) RMSE R R2 

Brain MRI Volumetric Features 8.23 12.91 0.84 0.70 
Raw Image [83] 5.00 7.25 0.95 0.90 
Combined Features 4.08 5.93 0.97 0.93 

Orbital CT Volumetric Features 13.28 18.02 0.45 0.20 
Raw Image [83] 11.02 14.11 0.75 0.56 
Combined Features 9.99 13.19 0.76 0.58 

Table II.3 Accuracy of all three models on brain MRI data. MAE: mean absolute error. RMSE: Root mean 
squared error. R: Pearson correlation coefficient.  
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respectively (p<0.001). However, using both feature datasets as inputs allows for a significant improvement 

in prediction, resulting in a median absolute error of 9.99 (p<0.001).  

In the CT dataset, 60.3% of subjects predicted within 10 years (Figure II.3B) using the combined 

model, whereas the 10-year limit only covers 53.2% and 52.5% of the intensity-only or feature-only models, 

respectively. Representative images are shown in the 3-by-3 matrix in Figure II.3C, where the vertical axis 

represents true age of a teenager, a middle-age adult, and an older adult. 

  

 

 
Figure II.3 Deep Learning Improves Age Prediction in head CT. Age can be predicted more accurately when using 
convolutional and structural features on a fully connected network model (A). Most subjects can be predicted within 
7.90 years using the combined model (B). Accuracy of prediction does not show characteristic features of aging 
with our model (C). Note that while the older adult predicted young is 48 years old and technically in the middle 
aged bin, this was the oldest subject predicted within the young category, so we include it as a proxy.  
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3.3. OrbitBAG as a Marker of Disease 

We further extend the development of a new imaging biomarker and validate it against 5 different 

diagnoses of eye disease. We estimate OrbitBAG for healthy controls in the testing set as well as unseen 

subjects with glaucoma, intrinsic optic nerve disease, orbit nerve edema, orbital inflammation, or thyroid 

eye disease. Figure II.4 shows that the OrbitBAG biomarker is significantly elevated in patients with 

intrinsic optic nerve disease (p < 0.001) and orbital edema (p < 0.001) when controlling for true age. A 

trend of increased OrbitBAG is observed with glaucoma, orbital inflammation, and thyroid eye disease, 

albeit not significant (p = 0.48 , p = 0.51, p=10, respectively). In the case of orbital edema and thyroid eye 

disease, OrbitBAG biomarker was not markedly elevated.   OrbitBAG values for each condition are shown 

in Table II.4. 

Cohort MAE (yrs) RMSE R R2 

Controls 9.62 12.25 0.82 0.68 
Glaucoma 9.97 12.97 0.73 0.53 

Intrinsic Optic Nerve Disease 13.92 17.12 0.66 0.44 
Optic Nerve Edema 15.66 18.32 0.62 0.38 
Orbital Inflammation 11.36 14.11 0.77 0.60 
Thyroid Eye Disease 11.69 15.03 0.43 0.19 
Table II.4 OrbitBAG accuracy results for each disease cohort. MAE: mean absolute error. RMSE: Root mean squared 
error. R: Pearson correlation coefficient. 

 
Figure II.4 OrbitBAG biomarker for respective cohorts within the Orbital CT dataset. Intrinsic optic nerve disease 
(IOND) shows a significant increase in OrbitBAG. A similar trend is observed in glaucoma and orbital 
inflammation, but not statistically significant. Edema and thyroid eye disease (TED) do not show an increase in 
OrbitBAG.  
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4. Discussion 

In the task of age prediction, deep learning performance can be enhanced by providing context features, 

such as volumetric estimates of important anatomical structures. We provide a more accurate method of 

age prediction compared to the literature. Additionally, we show that the proposed method of integrating 

deep learning with anatomical, hand-crafted features is not unique to brain MRI, but generalizes to orbital 

CT. We provide a new biomarker OrbitBAG based on orbital CT to estimate age and show it is elevated in 

patients with intrinsic optic nerve disease. Together, these results provide an accurate biomarker of aging 

in two different imaging modalities and demonstrate that there is still valuable information in classical 

image processing that is not being captured by deep learning. 

4.1. Image Processing Features Enhance Deep Learning 

Several studies have shown that deep neural networks are highly susceptible to changes in output to small 

adversarial perturbations or irregularities in the data [141-146]. For example, scene recognition, a task 

mastered by deep learning, has been shown to be disrupted by single pixel changes [141, 143]. Similarly, 

Nguyen et. al were able to produce images that are unrecognizable to humans but deemed recognizable by 

a convolutional neural network with 99.99% confidence [144] .In this regard, anatomical features provide 

a robust representation of the image, compared to the learned convolutional filters. By providing contextual 

information, the model proposed here can help stabilize the network and capture information not available 

in the known features. Moreover, the large spatial extent of deep convolutional networks can learn to ignore 

unnecessary information such as background noise or artifacts. Together, features derived from a 

convolutional representation as well as features derived from classical image processing can enhance 

prediction tasks. Here, we see a significant improvement in age prediction accuracy in both brain MRI and 
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head CT, suggesting that the improvement achieved by incorporating anatomical features is not specific to 

one modality. 

Besides a general improvement in accuracy in computer vision tasks like object recognition and 

segmentation, deep learning has also shown improvements in computational time required for evaluating 

new images. Although training a deep neural network may take hours to days, evaluating a new image for 

segmentation or age prediction takes a matter of seconds. This shows a dramatic improvement over 

common image processing techniques such as multi-atlas segmentation, which can take hours to days to 

evaluate a single subject. In the work presented here, we propose the incorporation of  deep learning with 

expert features. One limitation of our method is that producing an estimate of age will be dependent on the 

time needed to craft expert features for a test subject. If these are generated using multi-atlas segmentation, 

it may take hours. However, new techniques in deep learning are emerging that can replicate common deep 

learning tasks in a fraction of the time. For instance, Huo et. al. were able to generate a whole-brain 

volumetric segmentation using deep learning with similar accuracy to multi-atlas segmentation [147]. We 

believe that incorporating anatomical context via hand-crafted features in deep learning pipelines can boost 

performance and generalizability while still being time-efficient.  

Decades of work in image processing before deep learning have developed contextual features such 

as functional and anatomic regions of interest, surface parcellation, regional connectivity, and deformation 

models. Unlike the feature maps used in deep learning, these hand-crafted features are often built on 

underlying principles of anatomy and physiology. A large sample size of these features can possibly capture 

the entire manifold of possible human values. However, such restrictions do not exist in deep learning and 

extensive datasets are needed to arrive at plausible solutions. Contextual features could be used to limit the 

search-space of deep neural networks, diminish the number of parameters needed and avoid overfitting. 

This work also raises the question of robustness against adversarial attacks when a neural network is 
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grounded by contextual features. Future work may benefit of exploring the role of such features in 

preventing adversarial attacks in medical imaging.  

An alternative method to enhance image processing techniques is to iterate between deep learning 

and traditional feature engineering. New attention networks like the one used by Huo et. al. [148] could 

help identify key regions of valuable anatomical information for the specified task. These maps can be used 

along with anatomic and physiological context to craft better manual features. These hand-crafted features 

can then inform a future network to improve algorithm accuracy and refine feature maps. It is possible that 

with more data and more complex deep learning models, similar accuracy can be achieved with imaging 

alone. In this work, we propose a method to guide training with imaging features that are already available. 

Instead of focusing on improving prediction accuracy, a stable model that integrates clinical and imaging 

context can be a fruitful ground for inference on key anatomical features preferentially affected by ageing. 

4.2. Brain Age Gap Used as an Imaging Biomarker of Aging 

Previous studies have shown that BAG correlates with aging in a healthy population as well as 

neurodegenerative diseases in brain MRI [129].  In this study, we show that an age prediction biomarker 

can be developed on a new imaging modality, Orbital CT, and validated against diseased populations. We 

show that the OrbitBAG biomarker is generally increased in populations that show structural changes such 

as glaucoma, edema, and orbital inflammation. We also observe a wide distribution of error in age 

prediction (Figure II.2 and II.3) in a healthy population. It is possible that these changes are a result of 

normal anatomical variability or susceptibility of disease. A longitudinal study of these subjects, along with 

clinical data, would show whether having an outlier BAG is predictive of future disease. 
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Here, we have demonstrated that while much attention has been dedicated to predicting 

chronological age from brain MRI, it is also possible to predict age from different imaging modalities 

obtained from different parts of the human body. With the increase in usage of medical imaging and 

processing capabilities, it may be possible to predict age from multiple body parts and multiple imaging 

modalities at once. A whole-body age prediction algorithm may better reflect the state of the entire body 

and find interesting associations in the aging process of different human organs. 

4.3. Network Visualization on Raw MRI Input using Grad CAM  

We proposed the integration of contextual anatomical figures along with raw imaging to inform the task of 

age prediction. A key open question in the field of medical image processing with deep learning is whether 

deep neural networks capture all available information in an image, or if these algorithms can be better 

trained by enforcing high-quality a priori information, such as volumetric estimates in regions of interest. 

It is often difficult to interpret the meaning of each convolutional layer in a deep convolutional network. 

However, a common tool for data visualization in deep learning are Gradient Class Activation Maps (Grad 

CAMs), which highlight areas of attention in the input image. Here, we have generated Grad CAMs for the 

 
Table II.5 Gradient Class Activation Maps (Grad CAM) visualization for raw MRI (left) and raw CT (right) used in the 
combined networks. Visualizations were binned according to true and predicted age. Ten random subjects were chosen from 
each category to compute the Grad CAM and the maps were averaged. Activation maps are overlaid over a representative subject 
from the sample.    
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subjects in the testing set for both the MRI and CT task (Figure II.5).  In the case of MRI, we see wide 

activation throughout the brain, but particularly centered around head size, the cerebral cortex, and the size 

of the ventricles. Although volume measurements of the ventricles are included as features in the combined 

model, the attention maps simultaneously encompass other areas of the brain, suggesting a complex 

interaction between areas of the brain. Importantly, we do not observe a clear and consistent segmentation 

of the brain structures which were included as volumes. Interestingly, the subjects off the diagonal, which 

show the worst prediction of age, have the least activation compared to the other subgroups. In the case of 

Orbital CT, there is a focus on the skull bones and the nose, which were not included as features, but may 

be indicative of aging. Interestingly, the activation in younger subjects was more wide-spread than in older 

subjects, suggesting higher variation across younger subjects, while bone structures may be a stronger 

indicator of age in older subjects.  

Overall, Grad CAMs offer an interesting heuristic for visualization of attention from convolutional 

neural networks. In both CT and MRI, the attention maps seem to reiterate common changes associated 

with age such as head size or bone structures. It is reassuring that none of the activation maps uniquely 

highlight a segmentation corresponding to the volumetric features. However, it is still an open research 

question on how to interpret these maps and a deeper study is needed. 

5. Conclusions 

Applications in deep learning have focused on raw images due to the power in automatic feature 

recognition. However, we show that there remains valuable information in the features derived from image 

processing. These features with anatomical context can be used to complement deep learning tasks, 

especially, when there is finite training data. This work has significant implications in the field of medical 
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image processing, as decades of work on feature optimization can be used to improve on already 

groundbreaking deep learning breakthroughs. 
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 Using Anatomical Features to Protect Against Adversarial Attacks in Brain Age 
Prediction 

 

1. Preface 

The work done in this chapter emerged from a collaboration with Dr. Yevgeniy Vorobeychik’s group while 

at Vanderbilt University. I was closely involved in the conception, design, and improvement during the 

duration of this project, but I did not perform the experiments of adversarial training. I wrote drafts for the 

introduction, methods, and discussion of the work in this chapter. This chapter was included in this 

dissertation not only for my involvement in the project, but because we believe it is a relevant and 

innovative application of the work presented in Chapter II. The work presented here was published at 

Neurocomputing with Camilo Bermudez as the third author. Here, I present my contributions and a 

summary of the published work.  

2. Introduction 

Deep learning methods are transforming the way scientists approach data with machine learning 

across disciplines, and have recently become prominent in medical imaging. For example, Esteva et al. [149] 

showed the same accuracy as a dermatologist in the detection of malignant skin lesions using deep learning 

techniques. Gulshan et al. [150] used similar methods for the detection of diabetic retinopathy in retinal 

fundus photographs with great accuracy, while Bejnordi et al. [151] were able to accurately detect lymph 

node metastasis in patients with breast cancer, and Cole et al. [83] used deep learning to produce a more 

accurate brain age prediction, which has been shown to correlate with neurodegenerative diseases. Given the 

remarkable results that deep learning methods have shown compared to standard clinical practice, these have 
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started to be implemented into clinical practice, with several deep learning applications already approved by 

the United States Food and Drug Administration (FDA) [152-154].  

Concerns regarding the clinical safety of deep learning models persist due to high-complexity of the 

model and the consequent difficulty in explainability of the features driving model prediction. This “black 

box” effect may hide the context being learned, such as learning the difference between a dog and a wolf 

based on the snow in the background [155]. Specifically, potential adverse consequences have been recently 

explored by introducing imperceptible perturbations to the image, resulting in large deviations in the 

predicted output [143-145, 156-158]. Relevant to medical imaging, these adversarial perturbations to the 

image capable of altering predictions can be indistinguishable to human vision and could have great 

implications in computer-assisted radiologic reading studies.  This effect has been previously observed in 

medical image analysis systems [159].  

Meanwhile, efforts of integrating engineered imaging features as contextual information into deep 

learning models have demonstrated an improvement in performance while driving model interpretability 

[160] [161]. However, it is yet unknown if introduction of contextual features offers a protective effect 

against adversarial perturbations.  

Herein, we show that the medical imaging applications are susceptible to adversarial attack and 

that this susceptibility can be partially mitigated by integrating contextual anatomical features in a deep 

learning model. Specifically, We use Brain Age prediction as an application to show the following: i) A 

single visibly imperceptible noise field will reduce task accuracy ii) A general visibly imperceptible noise 

field can be generated which will reduce task accuracy on any subject iii) Adversarial attacks are less 

effective on deep learning models that have anatomical context. 
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3. Methods 

3.1. Dataset 

Our imaging dataset is an aggregate of 7 datasets with a total 3921 T1w 3D images from normal, 

healthy subjects. For a full description of the datasets used, these are the same publicly-available datasets 

used in Chapter II. The data include subjects with ages ranging between 4 and 94 years old, with a mean 

age and standard deviation of 25.5 ± 18.6 years.  Of the 3921 subjects, 54.2% were male and 45.8% were 

female. Data were also acquired from different sites so there is a difference in field strength, of which 71.5% 

of scans were acquired at 3 Tesla and 28.5% were acquired at 1.5 Tesla. ROI volumes, gender, and field 

strength were all used as input features for age prediction. For these experiments, all brains were co-

registered using an affine transformation to the MNI-305. All image intensities were normalized to [0,1] 

during training and testing of Brain Age algorithms and for the adversarial learning experiments.  

3.2. Deep Learning Models 

We considered two models for predicting age: 1) a conventional deep neural network (DNN), and 

2) a context-aware model which combines deep learning with image segmentation techniques as shown in 

Figure III.1. These networks are based on the work of Bermudez et al. [125] The conventional deep neural 

 

Table III.1 Models for brain age prediction. (left) Shows the model with raw MRI alone as input. (right) Shows the 
context-aware model with raw MRI and volumetric features. 
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network model takes a 3D brain MRI image as input and produces a subject’s age as output. The architecture 

consists of five 3D convolution layers of increasing size followed by two densely connected layers and one 

output layer. The ReLU activation function was used for all hidden layers. The neural network was trained 

using a learning rate of 0.001. The structure of this model is shown  in Figure III.1. The context-aware 

model has a similar structure to the conventional deep neural network model, with the exception that 132 

volumetric features are introduced after the convolutional layers followed by two densely connected layers 

and, finally, the output layer.  Volumetric estimates for 132 regions of interest in the brain were obtained 

using multi-atlas segmentation [136, 162].  

3.3. Adversarial Noise 

The methods for adversarial attacks will be summarized here. For a detailed overview and rationale 

of adversarial learning in the context of Brain Age, please see [126]. The goal in this work is to introduce 

imperceptible noise to the input image such that the change in predicted age is maximized. Three kinds of 

noise patters are used: 1) modifies each pixel independently, putting a limit on the maximum change to any 

pixel intensity, 2) limits the total number of pixels that can be modified, and 3) limits the Euclidian norm 

of the intensity of the noise field inserted in the image. In this experiments, we also test different levels of 

imperceptibility limits to the noise for each method.  The measure of success for adversarial learning will 

be the deviation, or absolute difference, between the original predicted age and the perturbed predicted age. 

The noise field is learned by following the gradient of the brain age prediction function in the direction of 

maximizing or minimizing predicted age in order to design the noise field that best maximizes deviance 

predicted age.   
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4. Results 

In order to establish a baseline, we tested the impact of adversarial noise on the conventional DNN 

for a single image. All three methods of adversarial noise showed a large deviance in predicted age of 20 

to 80 years, with increasing deviance as the noise limit increased. Age can be amplified by at least 30 years 

by introducing noise up to 0.001 in any noise pattern.  Similar results are observed when minimizing 

predicted age.  

Next, we tried to learn a noise field that can maximize deviance for any one image. While 

adversarial attacks are best suited to affect performance in a single image, a general adversarial noise field 

would be able to impact any image without having to learn subject-specific patterns. Using noise pattern 

(1), bounding the most a single pixel can be changed, we showed a predicted age deviation of over 10 years. 

We noticed that this effect was not dramatically affected by the number of samples used, as the average 

deviation was stable at 10 years for 300, 500, and 1,500 subjects.  

We then tested adversarial attacks on the Integrated DNN, which uses anatomical context features 

to improve predictive performance of brain age. We showed that using anatomical features significantly 

reduced the adversarial perturbations by an average factor of two throughout all noise patterns at increasing 

noise thresholds. However, the adversarial effect was still significant enough to cause an average deviation 

of 20 years while maximizing age or 10 years while minimizing age. This effect was maintained when 

learning an adversarial noise field for a large number of images.  

5. Discussion 

Deep learning has revolutionized the field of medical image analysis with unprecedented accuracy 

and speed. However, here we show possible concerns with robustness and safety of these algorithms when 

presented with adversarial noise. Thus, adversarial attacks are a reasonable concern that should be 
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addressed when translation algorithms to assist in clinical decision making in the future. These kinds of 

perturbations may appear naturally in unanticipated situations such as scanner noise or artifact, or they may 

appear in the context of malicious tampering with the goal of introducing bias in computer-assisted 

diagnosis or driving healthcare costs through false positive outputs. Current radiology pipelines have robust 

security protocols but these are not uniformly implemented or applied [163]. While breach of healthcare 

security systems is difficult, our results show that we can generate a standard perturbation to introduce error 

in a large number of images, thus making the introduction of imperceptible noise relatively easier. Lastly, 

the lack of explainability in “black box” deep learning models make it difficult to detect and understand 

where erroneous predictions are originating. 

In this work, we proposed a method to mitigate the effect of adversarial attacks by integrating 

contextual knowledge into a DNN via anatomical measurements. This high-level information introduced in 

the model may be less susceptible to voxel-level changes. Unfortunately, the absolute effect on the 

integrated DNN, despite reducing deviation by half, would be enough to significantly alter predictions, thus 

introducing concerns of the possible applicability during clinical workflows. Possible alternate approaches 

include introducing adversarial noise to the input images during training to reduce susceptibility to future 

adversarial attacks [143, 164].  Overall, we showed that while deep learning methods have shown significant 

advances in the field of medical image analysis, there are still robustness issues that need to be explored 

and understood before these tools can be deployed in clinical practice. It is likely that a combination of 

tools like anatomical context and learning with adversarial noise may be enough for deep learning 

algorithms to translate safely and assist during clinical decision-making. 
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 Accelerated Brain Aging Predicts Impaired Cognitive Performance and Greater 
Disability in Late but not Midlife Depression 

 

1. Introduction 

Aging has an inevitable effect at molecular, cellular, and organ levels, with biological aging 

resulting in degeneration or reduction in the organ’s reparative or regenerative potential [165].  

“Accelerated aging” refers to biological aging processes that occur more rapidly than expected, resulting in 

biological characteristics appearing older than expected based on the individual’s chronological age. 

Accelerated aging may result from numerous disease processes and can be quantified using a variety of 

markers such as oxidative stress measures [166], telomere length [167] or epigenetic measures of 

methylation such as Horvath’s epigenetic clock [168].  Differences in these markers of accelerated aging 

are reported in neuropsychiatric disorders including schizophrenia, post-traumatic stress disorder, anxiety 

disorders, and depression [169].  Depression is specifically associated with decreased telomere length [167], 

while a multi-biomarker index of aging derived from measures of inflammation, metabolism, and organ 

function predicted greater depression severity in older adults [170].  Importantly, rates of aging as measured 

by biomarkers differ across organ systems.  As the central nervous system may age differently than the rest 

of the body [171], brain-specific markers of biological aging may be particularly germane to 

neuropsychiatric disorders. 

By building on large databases of normative aging, examination of structural MRI data allows for 

examination of accelerated aging in the brain itself. One approach, the Brain Age Gap Estimation 

(BrainAGE) method [125], utilizes a machine-learning technique for identifying individual-level variability 

in brain aging. Using standard structural MRI sequences, a prediction model generated from a learning 

sample of neurologically healthy adults can be applied to a new individual brain MRI to estimate that 

individual’s apparent biological age. The difference between this estimated biological age and the subject’s 

chronological age yields the brain-age “gap” (BAG), a marker of how much “older” or “younger” a given 



51 
 

brain appears relative to the individual’s chronological age. This technique has been applied in psychiatric 

populations including schizophrenia, where particularly obese individuals exhibit older-appearing brains, 

although differences in estimated brain age are not seen in patients with bipolar disorder [79, 172, 173].  

Past studies using brain age estimation techniques examining adult major depressive disorder (MDD) report 

that individuals with MDD tend to exhibit older estimated brain ages than expected [174], although this 

finding is not universal [175].  If MDD is indeed associated with accelerated brain aging, this may be related 

to the fact that development of depressive episodes often involve environmental stress exposures [176], 

resulting in increases in allostatic load [177] that in turn contribute to accelerated aging processes.  Thus, 

if MDD is associated with accelerated aging, that effect may be time dependent and require repeated 

stressors or depressive episodes.  Such a hypothesis is supported by past work associating greater chronicity 

or duration of depression is associated with volumetric differences in key regions such as the hippocampus 

[178-180]. 

If this theory is correct, examination of brain aging may have greater utility in older populations 

and late-life depression, or geriatric MDD.  Geriatric MDD is associated with cerebrovascular pathology 

[180], higher risk for dementia [181], and greater medical morbidity [182] that may contribute to 

impairment in multiple cognitive domains [183] and accelerated brain aging. For example, diabetes 

mellitus, a risk factor both for cerebrovascular disease, dementia, and depression, is also associated with an 

increased brain-age gap [184].  The potential utility of brain-age estimation is supported by work in 

Alzheimer’s disease, where  patients exhibit a greater brain-age gap than seen in cognitively intact elders 

[185] and a greater discrepancy between estimated biological brain age and chronological age predicts 

conversion from mild cognitive impairment to dementia [186]. Structural MRI as a marker of accelerated 

aging may therefore provide new insights in the interactions between aging, depression, cognition, and 

disability. 

In this study, we calculated the BAG in two separate MDD cohorts, one of young- to midlife-adults 

and one of older adults. The goal of this study was to determine, using BAG as a cross-sectional marker of 

accelerated aging, whether depressed individuals exhibited accelerated brain aging and if this measure is 
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related to clinical outcomes, specifically cognitive performance and disability. We hypothesized that the 

estimated biological brain age of depressed participants would be older than their chronological age, and 

that this effect would be greater in the older cohort.  We further hypothesized that a greater BAG indicating 

older biological age would be associated with poorer cognitive performance and greater disability, and that 

this effect would be particularly pronounced in depressed patients.The work presented in this chapter us 

currently under review at Translational Neuropsychiatry with Camilo Bermudez as co-first author.  

2. Methods 

2.1. Participants 

The two cohorts included a group of young-to-midlife adults with and without MDD (“adult 

cohort” or “adult MDD”) and a group of older adults with and without MDD (“geriatric cohort” or “geriatric 

MDD”).  Other than the age criterion, these studies had similar entry criteria, with depressed participants 

being required to have a current diagnosis of MDD (DSM-IV-TR) and a Montgomery-Asberg Depression 

Rating Scale (MADRS) [187] score of 15 or greater.  The studies shared common exclusion criteria 

including acute suicidality, current or past psychosis, current psychotherapy, electroconvulsive therapy in 

the previous 6 months, presence of central neurological disease, diagnosis of dementia, or unstable medical 

conditions, developmental disorders, and MRI contraindications.  Never-depressed participants had neither 

a history of psychiatric diagnoses nor a history of mental health treatment.  Both cohorts were outpatients 

recruited from clinical referrals and community advertisements. 

The adult MDD cohort was enrolled at Duke University Medical Center. The eligible age range 

was 20 to 50 years.  For depressed participants, entry criteria further specified a diagnosis of recurrent MDD 

with the onset of a first depressive episode prior to age 35 years and no antidepressant medication use in 

the last month.  Exclusion criteria included other lifetime DSM-IV Axis I disorders including substance 

abuse or dependence, Axis II disorders identified by the SCID-II [188], use of illicit substances in the last 

month, a first-degree relative family history of bipolar disorder, or history of clinically relevant head injury. 
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Geriatric MDD participants were recruited at Vanderbilt University Medical Center as part of three 

separate studies with common entry criteria. Participants were age 60 years or older without a diagnosis of 

dementia or significant cognitive impairment assessed by a Montreal Cognitive Assessment (MoCA)[189] 

score greater than 24 or a Mini Mental State Exam (MMSE)[190] score greater than 24. For depressed 

participants, exclusion criteria included current or past Axis I disorder diagnoses, except for anxiety 

symptoms occurring during a depressive episode, history of substance abuse or dependence over the prior 

three years, and acute grief.  Antidepressant medications were allowed in one geriatric study, with 9 of 14 

depressed participants taking stable-dose antidepressant monotherapy at the time of MRI.  The other two 

studies mandated no antidepressant use in the two weeks prior to MRI.  

The Duke University Medical Center Institutional Review Board and the Vanderbilt University 

Institutional Review Board approved the studies conducted at each institution. All study participants 

provided written informed consent.  Data from the adult MDD cohort has previously been reported [191, 

192], while we have also reported cognitive data from the geriatric MDD cohort [183]. 

2.2. Clinical Assessments 

For both studies, the DSM-IV-TR diagnosis of MDD was made using the Mini-International 

Neuropsychiatric Interview (MINI, version 5.0) [193]  and confirmed by interview with a study psychiatrist. 

In all studies, participants were assessed for depression severity with the MADRS and medical burden with 

the geriatric Cumulative Illness Rating Scale (CIRS). In one but not the other two geriatric MDD studies, 

disability burden was measured using the World Health Organization Disability Schedule 2.0 (WHODAS 

2.0) [194].   

Using procedures similar to past reports [179, 192], we quantified age of initial depression onset 

and duration of depression using a life-charting approach in a detailed clinical interview, supplemented by 

acquisition of medical records.  For the adult MDD cohort, this was for lifetime duration of depression. For 

the geriatric MDD cohort, this was limited to the current episode. 
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2.3. Cognitive Assessments 

Participants completed a broad battery of neuropsychological tests that assessed cognitive domains relevant 

to depression or aging.  As previously detailed [191, 195],  we combined tests to create composite domain 

variables.  We created z-scores for each measure based on the performance of all participants within each 

age cohort and averaged the z-scores for all tests within that domain.  This resulted in a z-score for each 

domain for each participant.  As previously published [191], for the adult cohort, tests in each domain 

included: 

 

• Episodic Memory: Logical Memory 1 and 2 from the Wechsler Memory Scale, Benton Visual 

Retention Test, Rey's Verbal Learning Test (total I-V and total VII);  

• Executive Function: Controlled Oral Word Association (COWA) test (letters: C, F, L), Trail 

Making B time (reverse scored), semantic fluency (Animal Naming), Stroop Color-Word 

interference condition; 

• Processing Speed: Symbol-Digit Modality, Trail Making A time (reverse scored), Stroop Color 

Naming condition; 

• Working Memory:  Digit Span forward and Digit Span backward from the Wechsler Memory 

Scale. 

 

Two of the geriatric studies used identical neuropsychological test batteries and so were included in 

analyses examining cognitive performance.  As previously published [183], for the geriatric cohort, tests in 

each domain included: 

• Episodic Memory: Word List Memory Recall (immediate and delayed), Paragraph Recall test, 

Constructional Praxis test, Benton Visual Retention Test; 
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• Executive Function: COWA test (letters: C, F, L), Trail Making B time (reverse scored), Stroop 

test color-word interference condition, Mattis Dementia Rating Scale, Initiation-Perseveration 

subscale; 

• Processing Speed: Symbol-Digit Modality Test, Trail-Making A time (reverse scored), Stroop 

color naming condition; 

• Working Memory: Digit Span forward, Digit Span backward, and Ascending Digits from the 

Wechsler Memory Scale; 

• Language Processing: Stroop word reading condition, Boston Naming Test, Shipley vocabulary 

test. 

2.4. MRI Acquisition 

The adult cohort was imaged on a research-dedicated whole-body Siemens 3.0 T Trio Tim scanner 

at Duke University Medical Center using an 8-channel head coil. Parallel imaging was employed with an 

acceleration factor of 2.  Duplicate sagittal MPRAGE sequences were obtained using a repetition time (TR) 

of 2300 ms, echo time (TE) of 3.46 ms, a flip angle of 9°, a 256 × 256 matrix, FOV 240 mm, 160 slices 

with a 1.2 mm slice thickness for voxel size of 0.9 × 0.9 × 1.2 mm. 

The geriatric cohort was imaged on a research-dedicated 3.0T Philips Achieva whole-body scanner 

at Vanderbilt University Medical Center using a 32-channel head coil.  The MPRAGE images were 

obtained using TR = 8.75ms, TE = 4.6ms, flip angle=9 degrees, and spatial resolution = 0.89 × 0.89 × 1.2 

mm3 plus a FLAIR T2-weighted imaging conducted with TR = 10,000ms, TE = 125ms, TI = 2700ms, flip 

angle = 90 degrees, and spatial resolution = 0.7 x 0.7 x 2.0mm3. FLAIR T2-weighted imaging was also 

conducted using TR = 10,000ms, TE = 125ms, TI = 2,700ms, flip angle = 90 degrees, and spatial resolution 

= 0.7 x 0.7 x 2.0mm3. 
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2.5. MRI Analyses and Calculation of Brain Age 

The brain age estimator is an automated deep learning tool used to predict or estimate age from a 

T1-weighted brain MRI. The first step in the brain age biomarker pipeline is to align the subject T1-

weighted brain MRI with the MNI-305 template [196] using the affine registration from the NiftiReg library 

[197]. Images also undergo N4 bias field correction [198] to alleviate bias from acquisition. The input to 

the brain age estimation algorithm consists of the preprocessed brain MRI described above as well as the 

volume of 132 distinct regions of interest in the brain, obtained from a whole-brain segmentation using a 

multi-atlas technique [162]. The BAG algorithm described by Bermudez et. al, uses a deep convolutional 

neural network regression model trained on over 5,000 healthy controls ages 4 to 96 to predict age with 

high accuracy [125]. The innovation presented from this work is the addition of anatomical context in the 

form of volumetric estimates of regions of interest throughout the brain, which resulted in a more accurate 

prediction of age. The output is the estimated age for that subject, with the BAG biomarker being the 

difference between chronological true age and algorithm estimated age.  For this study, we conducted model 

inference in our two cohorts using the BAG algorithm without any further model optimization or changes. 

Brain age calculations were performed on an NVIDIA GeForce Titan GPU with 12 GB memory and all 

deep learning algorithms were implemented and tested using Tensorflow v1.4 with a Keras backend v2.2. 

In order to analyze this cohort, we used a large-scale medical image processing infrastructure [199] and 

high performance computing cluster at Vanderbilt University.  

The Lesion Segmentation Toolbox [200] was used to measure white matter hyperintensity (WMH) 

volumes, findings on T2- weighted or FLAIR images related to cerebral ischemia. These analyses were 

implemented through the VBM8 toolbox in SPM8 and have been previously described [183, 201].  This 

lesion map is then used to calculate total cerebral WMH volume. 

2.6. Analytic Plan 

Statistical analyses were conducted using SAS Studio 3.8 (SAS Institute, Cary, NC).  Participant 

demographics within each cohort were summarized and univariate comparisons conducted using pooled, 
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two-tailed t-tests for continuous variables and chi-square tests for categorical variables.  Data were graphed 

to facilitate identification of outliers and one geriatric participant exhibited cognitive domain z-scores 

several standard deviations lower than the rest of the geriatric cohort.  This individual was excluded from 

analyses.   

The primary imaging measure was the BAG, calculated as the difference between the algorithm-

determined estimated age and the chronological age.  A negative BAG indicated that the brain appeared 

younger than anticipated based on chronological age, while a positive BAG indicated a brain appearing 

older than anticipated (Figure IV.1).  As we anticipated that the BAG might exhibit more variability in the 

geriatric cohort than the midlife cohort, we included chronological age as a covariate in statistical models.  

Statistical analyses used general linear models (PROC GENMOD) using a similar approach for 

both age cohorts.  Initial models tested for diagnostic group differences in BAG, including covariates of 

chronological age, sex, education, and medical morbidity by CIRS.  This was followed by examining the 

effect of BAG on z-scored cognitive domains, including covariates of diagnostic group, chronological age, 

sex, education, and medical morbidity measured by CIRS.  As part of these analyses, we tested for a 

 
Figure IV.1 Comparison of structural MRI of participant brains in mid-life and older adult cohorts. Each image is a 
separate participant, displaying coronal and axial images and actual (chronological) age and estimated (calculated) 
age.  The top row is from the midlife adult cohort and the bottom row is from the geriatric cohort. 
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statistical interaction between diagnostic group and BAG affecting cognitive domain score.  Similar 

approaches were used to assess the effects of BAG on disability measured by the WHODAS 2.0. 

Subsequent models focused on effects of depression history or depression severity, so included 

only depressed subjects.  These models included covariates of chronological age, sex, education, CIRS, and 

depression severity by MADRS.  We first tested for the relationship between BAG and depression exposure, 

examined both as age of onset of the initial depressive episode and duration of depression, calculated as 

lifetime exposure for the adult MDD group and duration of current episode for the geriatric MDD group.  

We next examined the effect of BAG on z-scored cognitive domain performance in the depressed groups 

alone, also testing for a statistical interaction between depression severity and BAG. 

As WMHs are common in geriatric MDD, associated with aging [202, 203], and a potential marker 

of accelerated cerebrovascular aging, we examined the relationship between WMH volume, BAG, and 

clinical measures.  As WMH volumes are often not normally distributed, our primary measure was log-

transformed WMH volume.  These exploratory analyses examined the same models as detailed above but 

included transformed WMH volume as an additional covariate.  

3. Results 

3.1. Brain Age Analyses in the Midlife Adult Sample 

The adult cohort included 76 depressed and 94 non-depressed adults (Table IV.1). Depressed 

participants were significantly older than never-depressed participants in chronological age and estimated 

age but exhibited a comparable BAG.  Depressed participants exhibited significantly higher medical 

comorbidity severity (via CIRS) and, in univariate analyses, poorer episodic memory and processing speed 

performance. The depressed cohort’s mean age of onset was 20.8 years (range 6-35), with mean lifetime 

depression duration of 2,115 days (5.8 years; range 90-7500 days). 

After controlling for covariates (chronological age, sex, education, CIRS) BAG did not differ 

between depressed and non-depressed participants (Wald Χ2=0.40, 164 df, p=0.5294).  BAG was also not  
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significantly associated with episodic memory (Wald Χ2=1.56, 163 df, p=0.2112), executive function 

(Wald Χ2=1.94, 163 df, p=0.1637), processing speed (Wald Χ2=0.01, 163 df, p=0.9210), or working 

memory (Wald Χ2=0.02, 163 df, p=0.8837.)  Tests for an interactive effect between MDD diagnosis and 

BAG on cognitive performance were not statistically significant, thus the relationship between BAG and 

cognitive performance did not appear to differ based on a diagnosis of MDD (data not shown). 

In analyses of depressed participants only, depression severity by MADRS was not significantly 

associated with BAG (Wald Χ2=0.25, 70 df, p=0.6141).  We further did not observe significant relationships 

between BAG and age of onset (Wald Χ2=0.06, 68 df, p=0.8098) or lifetime duration of depression (Wald 

Χ2=0.35, 68 df, p=0.5515). In depressed participants alone, there were neither significant direct effects of 

 Adult Sample Geriatric Sample 

 Depressed 
(N=76) 

Never-
Depressed 
(N=94) 

test 
value p-value Depressed 

(N=118) 

Never-
Depressed 
(N=36) 

test 
value p-value 

Age, years 
(chronologic) 36.21 (9.04) 30.14 (9.2) -4.3 <0.0001 66.41(5.45) 70.06(6.65) 3.33 0.0011 

Age, years 
(calculated) 

43.67 
(11.27) 37.48 (10.09) -3.77 0.0002 70.09(8.12) 68.83(10.59) -0.66 0.5117 

Brain-age gap 
(BAG) 7.46 (7.56) 7.33 (5.54) -0.12 0.9027 3.69 (7.16) -1.23 (7.62) -3.55 0.0005 

Sex, % female 
(N) 

68.42 
(52/76) 61.7 (58/94) 0.83 0.3621 61.0 (72/118) 55.6 (20/36) 0.34 0.5586 

Education, 
years 15.34 (2.43) 15.69 (2.06) 1.01 0.3123 16.79 (2.21) 17.17 (1.93) 0.92 0.3573 

CIRS 0.67 (1.16) 0.31 (.75) -2.36 0.0199 5.45 (3.22) 4.72 (2.77) -1.22 0.2234 
MADRS 23.62 (4.33) 0.80 (1.16) -44.7 <0.0001 26.21 (5.20) 0.75 (1.02) -50.11 <0.0001 
     N=103 N=36   
MMSE     29.20 (1.1) 29.3 (1.1) 0.23 0.8186 
Episodic 
memory -0.68 (4.24) 0.85 (3.68) 2.49 0.0137 -0.03 (0.73) 0.15 (0.74) 1.27 0.21 

Executive 
function -0.36 (3.05) 0.46 (2.92) 1.79 0.0754 -0.08 (0.69) 0.29 (0.51) 3.33 0.0013 

Processing 
speed -0.51 (2.49) 0.51 (2.20) 2.82 0.0053 -0.05 (0.72) 0.30 (0.54) 3.03 0.0033 

Working 
memory -0.21 (1.67) 0.20 (1.88) 1.49 0.1370 -0.02 (0.82) 0.15 (0.81) 1.12 0.2632 

Language 
Function     -0.004 (0.65) 0.06 (0.50) 0.49 0.6246 

     N=85 N=15   
WHODAS     23.91 (14.82) 4.51 (4.05) -10.21 <0.0001 
Table IV.1 Demographic and clinical differences across samples. Data presented as mean (standard deviation) for continuous 
variables and percent (N) for categorical variables.  Analyses used pooled, two-tailed t-tests for continuous variables and chi-
square tests for categorical variables.  The exceptions requiring the use of Satterthwaite t-tests due to unequal variances for the 
adult sample included analyses of CIRS (122.8 df) and MADRS (83.7 df) and for the geriatric sample MADRS (141.05 df), 
calculated age (48.2 df), processing speed (87.7 df), and WHODAS score (82.0 df).  Adult sample pooled t-tests had 168 degrees 
of freedom. For the geriatric sample, for the overall demographics df=152, for the cognition sample df= 137, and for the 
disability sample df=98. CIRS = Cumulative Illness Rating Scale; MADRS = Montgomery-Asberg Depression Rating Scale; 
MMSE = Mini-Mental State Examination; WHODAS = World Health Organization Disability Assessment Schedule (Version 
2.0). 
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BAG nor interactive effects between MADRS and BAG on cognitive domain performance (data not 

shown). 

3.2. Brain Age Analyses in the Geriatric Sample 

The geriatric cohort included 118 depressed and 36 never-depressed elders (Table IV.1). Compared 

to non-depressed participants, depressed elders were younger with a lower mean chronological age but 

exhibiting comparable estimated age.  This resulted in depressed elders exhibiting a significantly higher 

BAG. Depressed elders exhibited poorer performance on unadjusted measures of executive function and 

processing speed. For depressed elders, the mean age of onset was 34.7 years (range 5-84 years), with a 

mean current episode duration of 953 days (2.6 years, range 15-5141 days).  

After adjusting for chronological age, sex, education, and CIRS, BAG was significantly higher in 

depressed elders (Wald Χ2=8.84, 148 df, p=0.0029) indicating that brains of depressed participants 

appeared older than expected by chronological age alone. After adjusting for covariates including diagnosis, 

a higher BAG was associated with poorer episodic memory performance (Wald Χ2=4.10, 132df, p=0.0430; 

Figure IV.2a) but not executive function (Wald Χ2=0.03, 132df, p=0.8643), processing speed (Wald 

Χ2=2.78, 132df, p=0.0957), working memory (Wald Χ2=0.00, 132df, p=0.9974), or language function 

(Wald Χ2=0.02, 132df, p=0.8877). Tests for an interactive effect between MDD diagnosis and BAG on 

cognitive performance were not statistically significant (data not shown). 

Examining depressed elders only, there was no statistically significant relationship between BAG 

and depression severity by MADRS (Wald Χ2=0.96, 112 df, p=0.3271). We also did not observe significant 

relationships between BAG and either age of onset (Wald Χ2=0.31, 110 df, p=0.5769), or duration of current 

episode (Wald Χ2=0.05, 110 df, p=0.8225). In models examining depressed elders only (N=103), 

controlling for age, sex, education, CIRS and MADRS, there was a primary effect of BAG on processing 

speed (Wald Χ2=4.43, 96 df, p=0.0354; Figure IV.2b) but not episodic memory (Wald Χ2=1.07, 96 df, 

p=0.2999), executive function (Wald Χ2=0.30, 96 df, p=0.5836), language (Wald Χ2=1.05, 96 df, 
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p=0.3056), or working memory (Wald Χ2=1.00, 96 df, p=0.3164). We further observed statistically 

significant interactive effects between MADRS and BAG on executive function (Wald Χ2=5.89, 95df, 

p=0.0152) and working memory (Wald Χ2=4.47, 95 df, p=0.0346). In these analyses, a greater BAG had 

an increasingly negative effect on executive function and working memory in context of worsening 

MADRS score.  In other words, the effect of a higher BAG (or having an older-appearing brain than 

expected) on executive function and working memory performance is greater in context of more severe 

depressive symptoms.  No significant interaction effects were observed between MADRS and BAG on 

episodic memory (Wald Χ2=0.98, 95 df, p=0.3213), processing speed (Wald Χ2=0.04, 95 df, p=0.8448) or 

language function (Wald Χ2=0.04, 95df, p=0.8346). 

Disability data measured by WHODAS was available from one study, consisting of data from 85 

depressed and 15 never-depressed older participants.  After adjusting for covariates, BAG was associated 

with greater disability (Wald Χ2=6.00, 93 df, p=0.0143; Figure IV.3). We did not observe a statistically 

significant interactive effect between BAG and MDD diagnosis on disability. 

 
Figure IV.2 Association between Brain Age Gap and cognitive testing. a) Association between brain-age gap and 
episodic memory in geriatric subjects. Episodic memory has no units, presented as an average z-score across 
tests.  Brain-age gap (BAG) is in years, calculated as the difference between the calculated estimated age and the 
chronological age. b) Association between brain-age gap and processing speed in older depressed subjects. 
Processing speed has no units, presented as an average z-score across tests.  Brain-age gap (BAG) is in years, 
calculated as the difference between the calculated estimated age and the chronological age. 
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3.3. Effect of EMH on the BAG and its Clinical Correlates in Geriatric MDD  

As greater severity of WMH is also an aging-related marker of vascular damage in geriatric MDD, 

in secondary analyses we examined the relationship between log-transformed WMH volume, BAG, and 

diagnosis.   When adding log-transformed WMH volume to the models described above, WMH was 

positively associated with BAG (Wald Χ2=7.01, 147 df, p=0.0081), but this did not appreciably change the 

relationship between MDD diagnosis and BAG (Wald Χ2=7.00, 147df, p=0.0082). 

We next examined whether the addition of log-transformed WMH volume to models examining 

cognitive performance and disability changed the results described above.  The addition of WMH did not 

appreciably change our observed associations between BAG, cognitive performance, or disability (data not 

shown), except for the interactive effect observed in the geriatric depressed cohort between BAG and 

MADRS on executive function.  Despite WMH not being significantly associated with executive function 

 
Figure IV.3 Association between brain-age gap and disability (WHODAS) in older adults. Disability measured by the 
WHODAS 2.0, calculated as percent disabled.  Brain-age gap (BAG) is in years, calculated as the difference 
between the calculated estimated age and the chronological age. 
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in this model (Wald Χ2=0.99, 94 df, p=0.3202), the interaction between BAG and MADRS was also no 

longer statistically significant (Wald Χ2=0.28, 94 df, p=0.5979). 

4. Discussion 

Differences in brain aging can be observed comparing chronological age with estimated calculated 

age using the BAG metric (Figure IV.1, video displaying geriatric MRI data with both chronological and 

estimated ages at: https://vimeo.com/393048773).  We observed marked differences in the clinical 

implications of the difference between estimated brain age and chronological age between younger and 

older cohorts.  In the young to middle-aged adult cohort, BAG did not differ by diagnosis and we observed 

no significant relationships between BAG and cognition. In contrast, depressed elders exhibited a higher 

BAG, indicating that the estimated age based on structural MRI was higher than expected.  This higher 

BAG was associated with poorer episodic memory performance and greater disability. In depressed elders 

only, higher BAG was further associated with slower processing speed while a higher BAG exhibited an 

interactive effect with depression severity on executive function and working memory performance.  

Greater WMH volume, another MRI finding associated with geriatric depression and aging [202, 203], was 

associated with a higher BAG, but largely did not change observed relationships between BAG and 

cognition or disability. 

Our findings in adult MDD are generally concordant with some past work in this population [175], 

suggesting that accelerated brain aging is not prominent in midlife adults even in context of recurrent 

depressive episodes. We now extend this approach to older adults. To our knowledge, this is among the 

first reports to use a deep learning approach to examine a brain-based biomarker of accelerated aging in 

geriatric MDD. The difference in findings between younger and older cohorts suggests that over the 

lifetime, at some point depressed subjects may diverge from never-depressed individuals and the aging 

process accelerates.  Although we did not observe any diagnostic group differences in the BAG in the 

younger cohort, the difference we observe in older depressed subjects must have started at a younger age. 

It remains unclear whether such a process might be linear or if depressed and nondepressed groups diverge 
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in a specific midlife window. We may also not have had sufficient statistical power to detect smaller 

between-group differences earlier in the aging process. Notably, despite the implication that the depressed 

group exhibits accelerated brain aging over time, we did not find support for the hypothesis that longer 

depression exposure is associated with increased BAG. However, our findings may be constrained by using 

retrospective measures to assess duration of depression that are based primarily on remote patient recall. 

Beyond diagnostic group differences, in geriatric MDD BAG is associated with cognition and 

disability. The association between increased BAG and poorer episodic memory is consistent with work 

showing episodic memory to is particularly vulnerable even to normal aging [204]. Episodic memory is the 

hallmark domain affected in mild cognitive impairment and shows steeper decline in pathological aging 

such as in Alzheimer’s dementia. Similarly, other biomarkers of accelerated aging are associated with worse 

episodic memory performance in neuropsychiatric populations, including decreased telomere length and 

gray matter volume [205]. Conversely, in older adults, lower epigenetic age calculated from DNA 

methylation was predictive of intact episodic memory [206].  The primary effect of BAG on processing 

speed in depressed elders is also consistent with past reports of decreased processing speed in geriatric 

MDD [207, 208] that may serve as a core cognitive impairment, mediating deficits in working memory and 

verbal capabilities [207, 208]. Intriguingly, we found an interaction between increased BAG and depression 

severity on executive function and working memory, although the effect on executive function did not 

persist after adjusting for WMH volume. It is well established that active depressive symptoms can worsen 

cognitive performance, even with treatment [209].  Our current findings suggest that the effect of 

accelerated brain aging on executive function and working memory may be mediated by depression 

severity, or that an individual with an older-appearing brain may exhibit greater decline in these cognitive 

domains as their depression severity worsens. This may help explain variability in executive processes in 

late-life depression, and furthermore why performance may improve with successful antidepressant 

treatment. Such a “two-hit” hypothesis of an older-looking brain becoming increasingly vulnerable to the 

cognitive effects of a depressive episode is consistent with clinical experience.  
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Our observed association of higher BAG with greater disability is supported by past work in older 

adults.  Repeatedly, biomarkers of accelerated brain aging in both gray matter and the white matter are 

associated with increased disability and impairment in activities of daily livings.  These findings include 

associations between disability and hippocampal volume loss, cortical gray matter changes, WMH, infarcts, 

and other measures of white matter microstructure [210-212].  Our observation utilizing a BAG measure 

derived from structural differences, is concordant with this past work.  It also identifies biological 

contributors to disability in geriatric MDD that extend beyond severity of depressive symptoms. 

A strength of the study includes two large cohorts across the adult lifespan.  Limitations include 

the examination of cross-sectional rather than longitudinal data, limiting our ability to make causal 

inferences or determine whether BAG measures may have prognostic utility in predicting cognitive decline 

or worsening disability. We additionally did not have the ability to look at potentially protective behaviors 

that may be positively associated with a negative BAG, where brain age is younger than expected, such as 

physical activity or aerobic exercise.  

Although the size of our cohorts and the age range examined is a strength, there are additional 

limitations to our approach.  First, we cannot combine neuroimaging data across cohorts.  MRI data from 

each study were gathered at different sites using different scanners, so cohort age is confounded with 

scanner parameters.  Additionally, while our participants include younger and older adults, we have an age 

gap between the studies, with no participants between the ages 50-59 years. These factors make it difficult 

to suggest where a divergence in estimated brain age and chronological age may be observed between 

younger and older depressed adults. These issues are highlighted by differences in the accuracy in age 

prediction between the two cohorts. We saw that the average BAG in the midlife diagnostic groups about 

7 years, whereas the average BAG in the geriatric cohort was 3.7 years for depressed and -1.2 years for 

never-depressed subjects (Table IV.1). The model of age prediction used in this work relies on patterns in 

image intensity from the T1-weighted brain MRI to predict age. Deep neural networks are susceptible to 

small, systemic changes in image intensity [126], so site or scanner effects, such as the differences between 

the two cohorts in this study, may bias age prediction. However, true age and predicted age are highly 
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correlated, suggesting strong associations between these values. For these reasons, we analyze the BAG 

biomarker in the context of each study separately as a comparative biomarker between patients with 

depression and healthy controls. Observed differences in brain age prediction between diagnostic groups 

will thus be due to clinical differences instead of bias due to site effect, despite reducing the possible sample 

size if both cohorts were analyzed together.  

 Future work should continue to examine the clinical significance of measuring BAG and whether 

BAG may be predictive of short- or long-term outcomes such as acute antidepressant response or risk of 

recurrence following remission [177]. It should also be determined whether it has long-term prognostic 

value to identify individuals at increased risk of cognitive decline. Such work would be valuable in geriatric 

MDD but also early in the course of neurodegenerative disorders such as Alzheimer’s disease. This 

longitudinal work should examine BAG not only as a cross-sectional predictor, but also how BAG changes 

with aging, and whether such change trajectories may be more informative than cross-sectional assessments 

alone.  Although this study does not support brain age as a clinically useful marker of accelerated aging in 

midlife adults with MDD, it does support a potential role for disorders of aging.
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 Automated Dentate Nucleus Segmentation and Its Clinical Application in Movement 
Disorders 

 

1. Introduction 

The dentate nucleus (DN) is a gray matter structure deep in the cerebellum, which is involved in 

motor coordination, sensory input integration, executive planning, language, and visuospatial function [90]. 

The DN is believed to be an important target for network-based functional and structural connectivity 

studies [90]. DN segmentations have been previously used to assist in planning of deep brain stimulation 

surgical approaches that stimulate the DN directly [213, 214]. In these applications, stimulation of related 

white matter tracts, like the dento-rubro-thalamic tract (DRTT), may alleviate tremor, or improve post-

stroke neuroplasticity and remodeling [166, 213, 215]. Changes in the DN and the DRTT resulting in 

cerebellar dysfunction have been previously linked to the pathophysiology of essential tremor (ET) and PD 

[91-95]. These two disorders of movement affect over 4% and 1% of the population over 60 years old, 

respectively [216]. Nicoletti et al. used magnetic resonance imaging (MRI) methods to detect reductions in 

fractional anisotropy and elevated mean diffusivity in the DN of patients with familial ET relative to PD 

patients and controls [217]. While existing literature has demonstrated the importance of the DN in 

neurological disease, no highly reproducible multimodal method of automatic segmentation exists for this 

key structure. Establishing an accurate and reliable method to define the DN will allow for large-scale 

studies and a better understanding of this structure in the evolution of disease.  

Previous work has used manual or automatic segmentation of the DN in MRI as the seed region to 

initiate MRI processing pipelines such as white matter tractography [96-98] or resting state functional 

connectivity [218-220]. DN segmentation can also be used for volumetric analysis. Solbach et al. found a 

decrease in DN and cerebellum volumes of patients with Friedreich’s ataxia compared to healthy controls 

[221]. This study used susceptibility-weighted MRI acquired in a 7 Tesla scanner to visualize and delineate 

the DN. Unfortunately, manual segmentations of the dentate on large datasets can be resource-prohibitive, 
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making automatic segmentations an attractive alternative in the field of medical image processing and 

clinical imaging biomarkers [222-224]. A critical impediment in imaging is the lack of accurate and broadly 

available methods to quantify the volume of deep cerebellar structures, such as the DN.  

Prior attempts at automatic segmentation of the DN have largely applied single atlas [90, 100, 225, 

226]. Atlas-based segmentation relies on a reference anatomical image and a set of labels, where every 

voxel in the anatomic image has been manually labelled [227]. Unfortunately, single-atlas segmentation 

has a limited ability to capture the wide variability between subjects [228]. Moreover, the DN and other 

deep cerebellar nuclei are difficult to visualize with MRI due to their small size and convex structures [90]. 

High magnetic fields (7 Tesla) or specific MRI sequences such as T2*-weighted or susceptibility weighted 

imaging (SWI), are required to provide enough contrast to visualize these structures with millimetric 

resolution. High field strength and SWI methods have achieved a mean overlap of only 30-50% between 

the automatic segmentation of the DN and a manual tracing [2, 99, 100].  

Deep learning methods have shown remarkable improvements on image processing tasks including 

segmentation, lesion detection, and computer-assisted diagnosis [38]. In particular, the U-Net [48] has been 

shown among the highest accuracy in 2D and 3D segmentation tasks [37]. Deep learning networks tend to 

require large sets of labelled training data to achieve sufficient performance and avoid overtraining. 

However, increasing labeled dataset size is a key challenge for medical imaging applications, since 

producing high-quality labels is resource-intensive. Creating additional training data is a problem for 

structures that are difficult to visualize, like the DN, since these require acquisition parameters that are often 

specific to a given research study. The development of a reliable segmentation pipeline using common 

clinical MRI modalities such as T1, T2, and diffusion-weighted imaging (DWI), would provide a useful 

alternative strategy for post-processing studies. The goal of this work is to produce an accurate and reliable 

segmentation of the DN across common clinical imaging modalities. The work presented in this chapter 

was published in the Journal of Medical Imaging with Camilo Bermudez as first author. 
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2. Methods 

2.1. Imaging Datasets and Manual Labelling 

We used two different multimodal datasets obtained under IRB approval: one of healthy subjects and one 

of subjects diagnosed with PD or ET. The demographics of the three cohorts are shown in Table V.1. 

The first dataset consists of 83 healthy controls across a broad adult age range with T1-weighted, 

fluid-attenuated inversion recovery (FLAIR), and diffusion tensor imaging (DTI). All participants provided 

written informed consent [229]. All modalities were acquired on a 3T Phillips Scanner (Phillips Healthcare 

Inc.). T1-weighted imaging was acquired with a magnetization-prepared sequence and rapid gradient echo 

sampling (MP-RAGE) (TR/TE = 8.9/4.6 ms, FOV=256x256x170) at 1 mm isotropic spatial resolution. 

FLAIR imaging (TR/TE = 4000/120 ms; FOV = 256x156x176) was acquired at 1 mm isotropic spatial 

resolution. Diffusion weighted imaging was acquired with 32 diffusion directions (TR/TE=10000/60 ms; 

b-val=1000 s/mm2; FOV:240x240x50) at a 2.5 mm isotropic spatial resolution.  

 

 

The second dataset consists of 98 subjects diagnosed with either PD or ET who provided written 

informed consent. These subjects were recruited from the Vanderbilt University Medical Center (VUMC) 

patient population under consideration for deep brain stimulation surgery. All patients underwent evaluation 

by a neurologist and a neuropsychiatrist at VUMC as part of preoperative to rule out other movement or 

psychiatric disorders. All subjects underwent T1-weighted imaging, T2-weighted imaging, and DTI, which 

were acquired on a 3T Phillips Scanner. (Phillips Healthcare Inc.). T1-weighted imaging (TR/TE = 7.9/3.8 

ms, 256x256x170 voxels) was acquired with a SENSE parallel imaging sequence (T1W/3D/TFE) at 1 mm 

isotropic spatial resolution. T2-weighted imaging (TR/TE = 3000/80 ms, FOV = 512x512x45) was acquired 

 Controls (N = 83) Essential tremor (N =38) Parkinson’s disease (N = 60) 
Age (years) 48.71 +/- 17.47 67.29 +/- 5.54 63.61 +/- 8.69 
Gender ratio (M:F) 32:51 18:20 37:23 
Dentate nuclei volume (mm3) 716.5 +/- 203.3 896.9 +/- 202.3 904.7 +/- 195.2 
Posterior fossa volume (cm3) 171.3 +/- 18.1 182.5 +/- 15.0 185.9 +/- 20.4 
Table V.1 Demographic data for all three cohorts. Age and volumes are presented as mean +/- standard deviation.  Bold 
represents a statistically significant difference between  the disease cohorts and healthy controls, p<0.025 using Mann-Whitney 
test with Bonferroni corrections. 
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using a SENSE parallel imaging technique (T2W/TSE) at 0.47-by-0.47-by-2 mm spatial resolution. 

Diffusion tensor imaging was acquired with 32 diffusion directions (TR/TE=10000/60 ms; b-val=1000 

s/mm2; FOV = 128x128x60) at a 2 mm isotropic spatial resolution. 

 

 
Figure V.1 Visualization of the dentate nucleus in the cerebellum across several modalities. MRI modalities used in 
this study, including T1-weighted, T2-weighted (T2) or FLAIR (T2-F), and FA maps derived from diffusion 
tensor imaging. All images are shown registered to the SUIT template. Dentate labels were manually traced on 
the FA maps due to ease of visualization. For comparison, we also show the SUIT template labels for the dentate 
nucleus on the bottom row [2]. 
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2.2. Image Preprocessing 

Diffusion imaging underwent eddy current and motion corrections using the FDT toolbox in the 

FMRIB software library (FSL). This toolbox was also used to calculate diffusion tensors and fractional 

anisotropy (FA) maps were computed for manual labeling of the DN [230]. The DN appears as a 

hypointense area on FA maps surrounded by cerebellar white matter. The left and right DN were manually 

labelled by the same expert rater on all subjects in both datasets using the FA maps due to easier 

visualization on both datasets (Figure V.1). The rater labelled any contiguous hypointense voxels 

surrounded by hyperintense cerebellar white matter. All algorithms were trained on these manual labels as 

truth. The volumes of the DN was calculated by multiplying the number of marked voxels in the DN mask 

by the resolution of FA maps.   The average volume of the dentate nuclei was 716.5 +/- 203.3 mm3 for the 

healthy controls, 896.9 +/-  202.3 for the ET cohort, and 904.7 +/- 195.2 for the PD cohort (Table V.1). 

These measurements are consistent with volumetric estimates in the literature, which report similar volumes 

for healthy controls and PD subjects(35).  There was a significant difference in age between both disease 

cohorts and the healthy controls (p < 0.001 on both, Mann-Whitney test with Bonferroni corrections). The 

manual labels for the DN in both ET (p<0.001) and PD (p = 0.002) are significantly larger than those of 

healthy controls. This difference persisted after normalizing the DN volume by the posterior fossa volume 

for ET (p = 0.0012) and PD cohorts (p = 0.0029).   

The initial step in preprocessing the images was to co-register each modality to a single modality 

in subject space. The FA maps and the corresponding labels were up-sampled to 0.83 mm isotropic spatial 

resolution in the healthy dataset and to 1 mm isotropic spatial resolution in the PD/ET dataset in order to 

approximate the resolution to that of the T1 and T2 modalities and improve registration accuracy. 

Afterwards, T1 and FLAIR/T2 were skull-stripped and registered to the FA maps using an affine 

transformation in order to align all modalities within each subject using the publicly available software 

NiftiReg. The affine transformation algorithm reg_aladin is based on the work by Ourselin et al (36), which 

uses normalized cross-correlation as a loss function for registration accuracy. Lastly, all imaging modalities 

and labels were registered to the SUIT cerebellar template space using an affine transformation, so all 
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subjects would be aligned (1). The SUIT template from the Neuroimaging & Surgical Technologies Lab 

was used at a resolution of 1 mm3 isotropic voxels and a matrix size of 172 x 220 x 156 mm. Visual QA of 

the registered image of the SUIT template was done to ensure accurate registration. Each modality was 

intensity-standardized to have a zero mean and variance of one. For multimodal experiments, the 3D 

volumes were stacked along the fourth dimension to produce a single image for each subject. 

2.3. Segmentation Network Architecture 

The segmentation network consists of a four-layer 3D U-Net [48] with increasing filter size and feature 

concatenation at each layer. The convolutional kernel had a size of 5 voxels. The number of filters at each 

level of the U-Net was 8, 16, 32, 64, and 128 with Batch Normalization and ReLU activation. Max Pooling 

of 2 voxels was used in the encoding portion and 3D upsampling of 2 voxels was used in the decoding 

portion. A graphical representation of the network architecture can be seen in Figure V.2. All networks 

were trained at a learning rate was 1x10-5 using the Adam optimizer (37). Four separate networks with 

identical architecture were trained: 3 for each modality (T1, T2 or FLAIR, FA) and one multimodal network 

(T1 + T2 or FLAIR + FA). The network takes the image volume as input and produces the label as output. 

All networks were trained using the Dice Similarity Coefficient (DSC) between the predicted label and the 

manual label of a single rater as the cost function [37]. DSC is the proportion between twice the intersection 

between a manual label M and an automatic label A over the total number of voxels between both labels, 

defined mathematically as: 

𝐷𝑆𝐶 =	
2	|𝐴 ∩ 𝑀|
|𝐴| + |𝑀| 

(Equation V.1) 

 

All models were trained with an Adam optimizer for 500 epochs, when the DSC on the validation set was 

no longer changing more than 1% over 20 epochs. All networks were written using Tensorflow version 1.5 

and Keras version 2.2.4, and were trained on an NVIDIA Titan Graphics Processing Unit (GPU). All trained 

models and analysis code will be made publicly available on (https://github.com/MASILab). The raw 



73 
 

imaging datasets will not be made available due to the data usage agreement that precludes data 

redistribution.  

To further validate that the networks are learning the appropriate features, we use the Gradient Class 

Activation Maps (Grad CAM) method described by [55] and implemented by the publicly available library 

keras-vis [139] to visualize the areas of the raw MRI with higher attention in the combined model. 

2.4. Statistical Analysis for Segmentation Models 

All models were trained with 80% of each of the subjects as the training set, while the remaining 20% was 

evenly split between validation and testing. A five-fold cross-validation scheme was employed in 

independently trained models. Model accuracy was evaluated using three metrics of label quality: DSC, 

Mean Surface Distance (MSD), and Hausdorff Distance (HD). Surface error metrics are used as 

complementary measurements for the accuracy of the segmentation. All models were compared using 

Wilcoxon signed-rank test with Bonferroni corrections. Significance was established at p < 0.0125 due to 

four comparisons. 

 

 
Figure V.2 Pipeline for multimodal segmentation of the dentate nucleus. A modified U-Net was used to segment the 
dentate nucleus. A total of four networks were trained: three unimodal (T1, T2/T2-FLAIR, or FA) and one multimodal (T1 + 
T2/T2-FLAIR + FA). 
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3. Results 

We wish to find which input imaging modality can generate the best automatic segmentation. The automatic 

segmentation models for each input were evaluated on the testing set of each cross-validation fold. We also 

perform a comparison against single atlas registration using the SUIT template. Table V.2 shows that there 

was small agreement between the SUIT template and the manual labels drawn on the FA maps. Of the 

unimodal U-Net models, the FA maps performed best, with a mean DSC of 0.83 +/- 0.22. Including all 

modalities as separate channels in a multimodal network, did not improve the DN segmentation, achieving 

a lower DSC of 0.80 +/- 0.23 (p < 0.001). A representative example of a segmentation for each method is 

shown in Figure V.3. 

 

 

 

 Dice Coefficient Mean Surface Distance (mm) Hausdorff Distance (mm) 
 Mean +/- SD Median Mean +/- SD Median Mean +/- SD Median 
Unimodal T1 U-Net 0.76 +/- 0.26 

(p<0.001) 
0.89 0.85 +/- 2.91 

(p<0.001) 
0.35 3.00 +/-3.48 

(p<0.001) 
2.20 

Unimodal T2 U-Net 0.79+/- 0.26 
(p<0.001) 

0.93 0.84 +/- 3.63 
(p<0.001) 

0.24 3.05 +/- 3.63 
(p=0.0328) 

2.00 

Unimodal FA U-Net 0.83 +/- 0.22 
(Ref.) 

0.95 0.66 +/-  2.71 
(Ref.) 

0.18 2.58 +/- 3.24 
(Ref.) 

1.41 

Multimodal U-Net+ 0.80 +/-  0.23 
(p<0.001) 

0.93 0.78 +/- 2.84 
(p<0.001) 

0.25 2.88 +/- 3.51 
(p<0.001) 

1.87 

SUIT Atlas  
Registration 

0.23 +/- 0.09 
(p<0.001) 

0.23 1.92 +/- 2.14 
(p<0.001) 

1.71 5.12 +/- 2.45 
(p<0.001) 

4.47 

Table V.2 Mean and median metrics of segmentation quality for segmentation networks with different inputs. 
+The unimodal FA network is used as reference for statistical comparisons. Wilcoxon rank sum test corrected for multiple 
comparisons using Bonferroni corrections. Significance was established as p < 0.0125. 



75 
 

In Figure V.4, we show an example of an outlier automatic segmentation with DSC outside of the 

range of the standard deviation. Here, the DSC was 0.48 for the unimodal T1 network, 0.27 for the unimodal 

T2 network, 0.54 for the FA network, 0.45 for the multimodal network, and 0.14 for the SUIT template. 

 

 
Figure V.3 Qualitative results of the DN segmentation. Here, we show the output of the automatic segmentation 
using unimodal U-Net, a multimodal U-Net, and single atlas registration of the SUIT template in the same 
subject. The manual label is shown in green while the predicted label is shown in red. Overlap between the two 
structures is shown in yellow. The dice coefficient is 0.95 for the unimodal T1 network, 0.95 for the unimodal 
T2 network, 0.97 for the unimodal FA network, 0.93 for the multimodal network, and 0.41 for the SUIT atlas.   
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Figure V.4 Results of the DN segmentation for an outlier subject. Output segmentations from a representative 
subject with a dice coefficient over one standard deviation below average across all network modalities. The 
manual label is shown in green while the predicted label is shown in red. Overlap between the two structures is 
shown in yellow.  



77 
 

4. Discussion 

Here, we applied a deep neural network for automatic DN segmentation using single imaging modalities as 

well as a combined multi-modal approach. Like many other deep gray matter structures, the DN is difficult 

to visualize on T1 images and therefore has required time and resource-intensive multimodal specialized 

imaging sequences in previous studies. We provide a method to translate DN labels traced in FA maps 

derived from diffusion imaging in order to achieve reliable automatic delineation on other modalities such 

as T1, T2, or FLAIR. We find that a deep learning-based DN segmentation can better reproduce FA labels 

than single-atlas registration using the SUIT template. The proposed automatic method shows a substantial 

increase in performance compared to available methods in the literature, which showed agreement in the 

range of 30-50% using a probabilistic atlas [2, 99, 100]. This work can be further extended to other deep 

gray matter structures to translate information across modalities. While, a multi-modal approach does not 

substantially increase performance, high agreement can be achieved with FA maps and even T1 and T2-

weighted MRI. This is not entirely surprising, since the labels were drawn on the FA maps, and may contain 

all necessary information to successfully delineate the DN. Including additional modalities may introduce 

errors in registration between modalities that decrease accuracy. It is encouraging that each unimodal U-

Net achieves superior performance compared to the literature. This will make such tools widely applicable 

across research and clinical domains.  

We use FA maps to delineate the DN and train the proposed algorithm. FA measurements act as a 

surrogate for water diffusivity molecules, contrasting isotropic gray matter structures with adjacent white 

matter tracts. The DN, given its larger size relative to other nuclei and location surrounded by cerebellar 

white matter, is an apt candidate for detection using FA maps. Unfortunately, the resolution of typical 

diffusion studies is 2.5 x 2.5 x 2.5 mm3, resulting in a coarser automatic delineation, even when transferred 

to higher resolution scans like T1-weighted MRI. Notably, it is not possible to visualize the characteristic 

gyri of the DN at this resolution. It is exciting to see that we can transfer structural information from the 

manual labels in FA maps to learn the delineation of the DN in other modalities like T1- or T2-weighted. 

If a large number of high-quality manual segmentations can be obtained from sophisticated imaging 
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techniques that better visualize the DN, then it is possible to apply these to common clinical imaging 

sequences.  

A benefit of using FA maps over T1- or T2-dependent sequences is the effect of age-dependent 

iron deposition in the DN. Previous studies have shown that iron deposition is not only associated with age, 

but is also increased in PD [225, 231]. A higher concentration of iron has been shown to shorten the 

longitudinal relaxation time in MRI and cause local field inhomogeneities. These inhomogeneities may 

artificially increase volumetric measurements of the DN compared to a diffusion-based measurement. Iron-

related changes have been exploited for better visualization of the DN in proton density [232] or through 

quantitative susceptibility imaging [233]. This may explain the discrepancy between the SUIT atlas and the 

manual segmentation seen in Figure V.3 and V.4. The SUIT template was created by visualizing deep 

cerebellar structures in SWI at 7T (1), which is affected by iron content. We provide an accurate and reliable 

method of segmenting the DN that may be less correlated with iron content. It is still an open question of 

how iron content may change in the deep structures of the cerebellum with age and with disease, particularly 

movement disorders. Further work may explore how a diffusion-based measurement of the DN differs from 

a iron-dependent measurement such as the SUIT atlas. A longitudinal study may provide some valuable 

insights about structural changes in the cerebellum that occur with age.   

The diffusion-based quantification of DN structure proposed here offers a reliable and accurate 

method of automatic delineation. Deep learning models have shown a dramatic improvement in accuracy 

over conventional methods in many medical imaging applications, but frequently require large training 

datasets in order to generalize well to new test cases [17]. Our model can generalize well within a subset of 

imaging data and reproduce manual labels with high fidelity to manual labels. Inevitably, the method is 

limited by the quality of the manual labels provided by the rater. Figure V.3 shows that we can reproduce 

the manual labels with high fidelity. This provides a rough regional estimate to delineate and detect the DN. 

Future applications of this work may include using the DN segmentation as a  region of interest for 

connectivity studies in functional and structural imaging or as transfer learning for other deep cerebellar 

structures.  
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We probe the accuracy of our method by observing the output of a segmentation over one standard 

deviation below the mean DSC for each modality. In Figure V.4, the output segmentation for this subject 

does not fail entirely, but a difference of a few pixels can largely affect accuracy as measured by the dice 

coefficient. The low performance in this subject may be due to errors in registration, since we see the 

inferior part of the image is cut off. Deep convolutional networks can be affected by heterogeneity in the 

data [141-146], so irregular boundaries in the inferior portion of the image could affect the output. 

Regardless, the segmentations from the convolutional networks better reproduce the manual labels than a 

single SUIT atlas. We further probe the accuracy of our model by looking at the Grad CAMs for each 

 
Figure V.5 Grad CAMs for each deep convolutional network with unimodal or multimodal inputs. We see that the 
attention is focused around the areas of the DN, which correspond to the output segmentations.  
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network (Figure V.5). While interpreting these maps remains an open problem in the field of image 

processing, these maps provide a valuable heuristic for locating where the network is “paying attention” or 

if there is additional off-target data informing the segmentation. Figure V.5 shows that the attention across 

all networks is highly concentrated around areas corresponding to the DN. These maps may even be used 

to inform a probabilistic segmentation of new test subjects to improve generalizability.  

One limitation of this study is that labels were drawn at different image resolution for both the 

healthy controls and the disease cohorts. A direct comparison of DN volume between the healthy controls 

and either of the disease populations will be impossible due to partial volume effects, which make the DN 

tracing in the disease population artifactually larger than the healthy controls. We observe this in Table V.1, 

where the DN volumes are significantly larger in the disease cohorts, even after normalization by posterior 

fossa volume. We believe this to be an artifact of the image resolution, since evidence in the literature 

supports no difference in the size of the DN between healthy controls and PD patients [234].  

The methods proposed here demonstrate that automatic segmentation of MRI can achieve a reliable 

and accurate delineation of structures difficult to visualize on common imaging modalities. Moreover, we 

test the applicability of this volumetric method to discriminate between cohorts with movement disorders 

and controls. This work will assist volumetric and functional studies as the role of the cerebellum in motor 

function, sensation, and cognition continues to be elucidated. 
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 Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Contrast MRI 
with Transfer Learning 

 

1. Introduction 

Whole brain segmentation is an important task in medical image analysis in order to provide a 

quantitative, noninvasive measurement of neuroanatomy from magnetic resonance imaging (MRI). 

Although a manual delineation of brain structures is considered the gold standard, this process can be 

largely time- and resource-intensive [235]. For many years, atlas-based segmentation was considered the 

standard for automatic whole brain segmentation due to high accuracy across over 100 labels [87, 88, 235]. 

However, a key limitation of atlas-based segmentation is the extensive computational time required, which 

limited the ability to analyze large-scale cohorts [228, 235]. Recently, Huo et al. proposed a complete 3D 

deep learning pipeline to produce fast, full-resolution, whole brain segmentation with over 100 labels. This 

pipeline, called spatially localized atlas network tiles (SLANT), uses a tile-based method to divide a T1-

weighted brain MRI into overlapping tiles and train independent networks, which are then fused via 

majority voting [147, 236]. This method exhibited better performance than multi-atlas and other deep 

learning-based methods on brain MRI acquired for research[237]. Since then, SLANT has been used as a 

benchmark for whole-brain segmentation [238, 239] and the tile-based method has been adapted by other 

groups to solve segmentation problems with a large number of labels [240-242]. 

When evaluating the SLANT segmentation on same-subject clinical data, investigators found a 

high coefficient of variation between volume estimates of several ROIs across clinical T1 MRI acquisition 

modalities within the same subject [243]. This observation highlights a key obstacle in deep learning-based 

image processing tools: most algorithms are trained and tested on high-quality research scans, due to high 

resolution and SNR and reported accuracy that reflects performance on research data. However, rarely is 

there a description of performance on clinical data, which can be heterogenous due to resolution, noise, 

artifact, or the presence of intravenous contrast. For instance, Figure VI.1 shows T1w brain MRI from the 



82 
 

same subject acquired under two different acquisition parameters, as well as with and without intravenous 

contrast. These images highlight the heterogeneity in clinical data due to differences in acquisition, tissue 

contrast, or noise. It is unclear how deep learning algorithms trained on research data will generalize to 

heterogeneous clinical datasets. 

The challenges in harmonizing multi-site and multi-sequence imaging datasets have been described 

previously, recognizing that the variability in tissue contrast can come from scanner factors (number and 

sensitivity of head coils, imaging gradients, magnetic field homogeneity, or scanner noise) or software 

factors (image reconstruction methods or software updates) [101]. Many of the efforts directed at image 

harmonization have sought to find a mapping of tissue contrast intensities to account for small changes in 

acquisition parameters [101-104], while recognizing that these methods may not be robust to large changes 

[101, 103], such as those found in clinical data like the presence of intravenous contrast or large variations 

in flip angle. These large variations result in a different representation of the underlying anatomy and 

harmonizing across them requires a robust technique that does not only map tissue intensities. Similarly, it 

has been shown that image processing algorithms have decreased performance in young children due to 

differences in gray matter to white matter contrast during development and limited training examples [244]. 

 
Figure VI.1 Representative clinical magnetic resonance imaging of the same subject acquired under different 
acquisition parameters (Groups 1 and 2), with and without intravenous contrast. 
  



83 
 

Consequently, most efforts dedicated at pediatric brain segmentation have focused on the development and 

application of age-specific atlases, which can be time- and resource-intensive [245, 246]. 

There is extensive work done on supervised, semi-supervised, and unsupervised domain adaptation 

in deep learning, as reviewed by Cheplygina et al. [247]. For example, van Opbroek et al used weights on 

the distribution of training images to improve voxel-wise lesion classification from different research MRI 

studies [248]. Kouw et al. used a Siamese network to learn the invariant representation of different research 

MR acquisitions to improve on brain tissue classification [249]. Other approaches, have aligned image 

manifolds to exploit correspondences between domains [250]. Similarly, spatial alignment between 

corresponding images would facilitate domain adaptation between corresponding spatial features. 

Improving algorithm generalizability on clinical data will allow for larger learning datasets and translation 

to the bedside.  

One common approach towards generalizability across sites or scanners is to use transfer learning 

(TL) to update the neural network weights for local factors [251, 252]. For instance, if SLANT were applied 

at a new site, its performance could be refined by taking a number of training examples and updating the 

weights of the original network. However, this technique is commonly recognized to risk degradation of 

performance on the original validation/test cohorts, thus limiting its generalizability [251]. Nevertheless, it 

is often desirable to improve performance on datasets that deviate from the original training data. For 

instance, the presence of intravenous contrast may affect the performance of intensity-based methods such 

as deep neural networks [243]. Although most algorithms are trained on adult images exclusively with or 

without intravenous contrast, it would be ideal to generate reproducible results in image processing 

pipelines despite the presence of contrast, since contrast-enhanced data are common, but underrepresented 

in deep learning algorithms. Recent work in medical image processing has focused on analysis of contrast-

enhanced MRI, particularly when using deep learning methods [253-257]. It is unclear whether commonly 

used algorithms, such as SLANT, can generalize to imaging data acquired in the clinical scenarios. TL 

offers an alternative to improve the generalizability of algorithms across imaging contrasts, but the 

degradation on the training set performance is unknown. This approach is superior to intensity 
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harmonization [102, 258, 259] or image hallucination [260-262] because it does not alter to the original 

image, but rather can adapt to differences in acquisitions. Achieving reproducible results on heterogeneous 

clinical imaging data would largely increase the data available for medical image analysis in patient 

populations and translate the tools from engineering to the patient bedside.  

In this work, we explore how TL applied to unlabeled clinical data can address these concerns in 

the context of adapting SLANT to scanning protocol variations. We hypothesize that the existing algorithm 

SLANT can be refined using TL to improve performance across acquisition parameters and the presence 

of intravenous contrast with a minimal loss in performance on the original SLANT training dataset. We 

optimize for acquisition with 480 pairs of clinically acquired T1w MRI with and without intravenous 

contrast and the accuracy of the post-contrast segmentations assessed relative to the pre-contrast automated 

assessment. We compare our results against the original SLANT algorithm without fine-tuning as well as 

FreeSurfer v6.0.1.  We perform five-fold cross-validation on paired clinical data and then evaluate on a 

completely withheld paired clinical dataset (N = 29 scan pairs), which has a different acquisition domain, 

for withheld validation on all algorithms. We show that we can leverage unlabeled clinical data to refine a 

pre-existing segmentation algorithm against unknown image heterogeneities using TL, while preserving 

segmentation performance on the original dataset. This work emphasizes the feasibility of sharing pre-

existing algorithms and refining models for data of a different domain instead of generating new manual 

labels and retraining from scratch. The work extends our previous conference work [128] with the following 

new efforts: (1) the extension of the clinical dataset from 36 to 255 subjects with paired imaging, (2) a 

detailed characterization of acquisition parameters and subsequent formation of subgroups, (3) the inclusion 

of a withheld test set with different acquisition parameters in addition to the cross-validation efforts, (4) A 

comparison to another commonly used whole brain segmentation pipeline (i.e. FreeSurfer).  

To further demonstrate the challenge of reproducible segmentations, we consider the automatic 

segmentation of the hippocampus. The hippocampus is a small gray matter structure located in the medial 

temporal lobe. There has been extensive work dedicated to the segmentation of the hippocampus [263-268] 

since it is an important structure involved in learning and memory [269] as well as spatial navigation [270]. 
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The hippocampus has also been demonstrated as an important imaging biomarker for Alzheimer’s disease 

[271], psychosis [272], and epilepsy [273], thus making it a desirable anatomical target for reproducible 

segmentation and volumetric segmentation across scans within the same subject [89, 263, 274, 275]. 

However, the location of the hippocampus makes it challenging to segment due to proximity of 

heterogenous tissue, such as cortical folds, white matter, and vasculature, each of which has different image 

texture and contrast [268]. Changes in any of the image intensity patterns in these structures due to aging, 

disease states, acquisition parameters, or contrast may affect segmentation reproducibility between subjects, 

in the case of cross-sectional studies, or within subjects, in the case of longitudinal studies [268, 275]. We 

tested the application of our pipeline on volumetric estimates of the hippocampus, where we show a 

decrease the RMSE between paired imaging of the same subject by 67%. Overall, this work proposes a 

solution to preserve generalizability of whole brain segmentation through a TL pipeline with unlabeled 

clinical data to translate algorithms optimized for research data towards heterogeneous clinical acquisitions.  

The work presented in this chapter was initially published in the conference proceedings of SPIE Medical 

Imaging 2020. Further expansion of this work focused on clinical, contrast MRI was done and submitted 

for review at the Journal of Medical Image, both works with Camilo Bermudez as first author.   

2. Methods 

2.1. Subjects and Imaging Data 

The original SLANT whole brain segmentation algorithm consists of two stages: (1) Pretraining by 

leveraging a large dataset (N = 5,111 subjects) with automatically-generated labels from multi-atlas 

segmentation [147], (2) Transfer learning for refinement using a small dataset of manually labelled ground 

truth atlases from the Open Access Series on Imaging Studies (OASIS) dataset [147, 236]. In this work, we 

began with the pretrained model (https://github.com/MASILab/SLANTbrainSeg) and use a paired clinical 

dataset with pre- and post-contrast brain MRI without manual labels to refine the segmentation. 
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The original OASIS dataset used for TL in SLANT consists of 45 subjects with T1-weighted brain 

MRI with ages 18-96 years old. These scans were acquired at 3T field strength at a field of view which 

varies from 256x270x256 to 256x334x256 voxels all with 1mm isotropic resolution. Each scan has 133 

manual labels traced according to the BrainCOLOR protocol used as ground truth [136]. Accuracy was 

measured using the Dice Similarity Coefficient (DSC) between the predicted whole brain segmentation and 

manual labels [37]. 

In this work, we use two datasets to perform TL on two different applications. The first dataset 

consists of 30 pediatric subjects (ages 2.34 – 4.31) with T1-weighted brain MRI. These datasets were 

acquired with the approval of the Institutional Review Board at the University of Calgary. Imaging was 

acquired at 3T field strength with field of view 256x210x256 at 0.9 mm isotropic resolution. Initial 

automatic whole brain segmentation was obtained into the same 133 regions using multi-atlas segmentation 

 

Figure VI.2 Clinical dataset used for transfer learning. We split the clinical data given the acquisition parameters TR, 
TE, and flip angle into three groups. The figure shows the total number of subjects and paired scans within and 
between groups. We used Groups 1 and 2 for training and cross-validation and Group 3 for withheld validation.  
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from 35 adult atlases as outlined by [89, 135, 276]. These labels were then manually corrected by a rater 

expert in pediatric imaging.  

In the second dataset, we use unlabeled, paired clinical imaging to improve reproducibility across 

heterogeneous clinical datasets. All datasets were acquired in a deidentified manner under the approval of 

the Institutional Review Board (IRB) at Vanderbilt University Medical Center.  We used a clinical dataset 

consisting of 272 subjects with clinically acquired, paired T1-weighted brain MRI with and without 

intravenous contrast for a total of 509 scanning sessions with paired imaging.  These subjects were acquired 

with 3T field strength and a field of view of 256x170x256 at 1mm isotropic resolution. Paired images were 

registered to MNI-305 space using affine registration [197]. Image intensity normalization was performed 

using the method described by Huo et al. [147].  Since the paired clinical imaging is unlabeled, we use the 

original SLANT to generate labels on the pre-contrast image. Since these images are co-registered, we use 

these same labels to train on the post-contrast images.  

Clinical imaging sequences may be acquired with a broad range of acquisition parameters. In order 

to assess the ability to generalize within and between groups, we found three clusters of scans when 

organized according to echo time (TE), repetition time (TR), and flip angle. We found the following three 

groups:  

1. 538 total scans with a flip angle of 5°, TE < 4 ms (range 3.65 – 3.94 ms; median = 3.65), and 

TR in the range of 7.92 – 8.55 ms (median = 7.92 ms). 

2. 603 total scans with a flip angle of 8° and TE < 4 ms (range 3.16 – 4.00 ms; median = 3.16) 

and a TR in the range of 6.98 – 8.76 ms (median = 6.99 ms).  

3. 195 all other scans with a flip angle > 8° and a wide range of TE (range 8.06 – 25.0 ms; median 

= 9.80) and TR in the range 2.21 – 5.41 ms (median = 4.60). 

 

We decided to use Group 3 as the withheld test set and use Groups 1 and 2 for training and testing. We 

further refine the groups by finding those subjects who have both pre-and post-contrast imaging within the 
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same group (intra-group harmonization) and those subjects who have imaging across groups (inter-group 

harmonization). Figure VI.2 shows the total numbers within each group having pre- and post-contrast 

imaging, as well as the count of subjects that span across groups. We pooled Group 1 and Group 2 for 

training, validation, and testing of the segmentation algorithm to harmonize across contrast and acquisition 

modalities. We then evaluated the resulting algorithm on the withheld test set (Group 3) subjects. 

2.2. Transfer Learning Pipeline 

Throughout this work, we begin all of our experiments with a SLANT model of whole brain 

segmentation that has been pretrained in 5,111 subjects using automatically generated manual labels, as 

described by Huo et al [147]. Therein, Huo performed TL using the dataset of 45 adults with manual labels 

for best results [147]. Here, we use this result from Huo et al. as the baseline comparison. Instead of refining 

on the 45 adults with manual labels, we refine on either a) the manually corrected pediatric labels or b) the 

training set of paired imaging using the labels generated on the pre-contrast image to train on the co-

registered post-contrast image. We did not freeze any weights or alter the network in the learning process, 

since our goal was to use SLANT without alterations to improve local performance. Instead, we drive 

reproducibility by leveraging the pediatric or paired, unlabeled clinical data. We seek to train a network 

that achieves high performance in a new, unseen dataset while preserving performance on the original adult 

cohort.  

Here, we aim to refine the whole brain segmentation in the context of different acquisition 

parameters and the presence of intravenous contrast. In the case of pediatric imaging we trained on the 

manually corrected labels obtained from multi-atlas segmentation to generate a model called pediatric 

SLANT (pSLANT). In the case of contrast imaging, we generated labels on the pre-contrast MRI in the 

case of paired contrast imaging, or on the image in Group 1 in the case of comparisons between Groups. 

We use TL to train a model using the contrast-enhanced images exclusively called contrast SLANT 

(cSLANT). We sought to maximize reproducibility DSC (rDSC), or the accuracy between the pre-contrast 



89 
 

and post-contrast image, which represents similarity of automatic segmentation between two images of the 

same subject. All models and TL code is available at (https://github.com/MASILab). 

2.3. Performance Analysis 

All models were trained with 70% of each of the subjects as the training set, with 10% of the 

subjects dedicated to model validation and hyperparameter tuning and the remaining 20% for testing. Model 

accuracy was evaluated on the validation set using rDSC, with the final model chosen as having the highest 

validation set rDSC after 30 epochs of TL as in [147, 236].  A five-fold cross-validation scheme was 

employed in five independently trained models such that each subject was included in the testing set only 

once. All the results reflect the performance on the testing set. All performance metrics were compared 

using Wilcoxon signed-rank test with Bonferroni corrections for multiple comparisons. All experiments 

were performed on an NVIDIA GeForce Titan GPU. The original SLANT algorithm as well as TL 

modifications were implemented in PyTorch v0.4 [277]. TL training was performed with the Adam 

optimizer using the Dice coefficient loss function at a learning rate of 0.0001 [37, 278].  

We further evaluate the trained models on a withheld dataset consisting of subjects with imaging 

in Group 3. This cohort includes paired imaging pre- and post-intravenous contrast as well as subjects with 

paired imaging in Groups 1 and 2. Since we trained five different models in the initial TL phase, we evaluate 

all models and aggregate the results using majority vote. Last, in order to assess the performance against 

the original manual labels on the OASIS dataset, we evaluate the accuracy of segmentation first with the 

original SLANT and then with the fine-tuned cSLANT. 

2.4. Hippocampal Volume Estimation 

We tested an application of our method by measuring the volume of the hippocampus across paired 

images between intravenous contrast and between acquisition parameters. We used the full segmentation 

pipeline in Freesurfer 6.0 [279] to generate a whole-brain segmentation and extract the volume of the whole 

left and right hippocampus (Labels 17 and 53 in the FreeSurferColor LUT) ran on XNAT distributed 
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computing at Vanderbilt University [199]. In order to account for the differences in atlas delineations 

between FreeSurfer and the atlases used in this work, we only look at the root mean squared error (RMSE) 

between imaging pairs. Again, we evaluate the change in hippocampal volume within each Group for pre- 

and post-contrast imaging and between Groups of acquisition parameters. We evaluate in the five-fold 

testing set (Groups 1 and 2) as well as the withheld dataset (Group 3). We perform three analyses: volume 

changes using the original SLANT, the TL cSLANT, and FreeSurfer. 

3. Results 

3.1. Pediatric Imaging Reproducibility 

The first set of experiments seeks to improve performance on the whole brain segmentation of a 

pediatric population. As a baseline, we perform a prospective evaluation of the original SLANT algorithm 

on the pediatric dataset, which achieves a mean rDSC of 0.82. After TL, we achieved a significant 

improvement on rDSC of 0.90 on the pediatric labels using pSLANT. Performance on the original OASIS 

dataset dropped from 0.72 to 0.70 (p < 0.001) (Table VI.1). An important goal of this task is to enforce the 

modifications introduced during manual correction of the automatic labels from multi-atlas segmentation 

in order to introduce expert context. We examined the bilateral occipital poles as a region of interest (ROI) 

that underwent extensive manual editing as a representative ROI for this task. Figure VI.3 shows the output 

segmentation overlaid on a representative subject with median performance. 

 

Method  Pediatric Labels OASIS Labels 
Original SLANT 0.82 +/- 0.01 0.72 +/- 0.05 
Pediatric SLANT 0.90 +/- 0.01 0.70 +/- 0.07 

Table VI.1 Qualitative results of SLANT generalization on pediatric labels measured using reproducibility DSC. There 
is a significant increase in performance on the pediatric labels using pSLANT (p<0.001) with a smaller but yet significant 
decrease in performance on the original OASIS labels (p<0.001).  
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3.2. Contrast Imaging Reproducibility 

First, we test whether using TL on paired, unlabeled clinical data can improve same-subject 

reproducibility of whole-brain segmentation. Table VI.2 shows the results for inter- and intra-group 

comparisons for subjects in Groups 1 and 2. We observe that at baseline, the original SLANT (OS) has an 

average reproducibility of 0.72 DSC. Once we perform TL, we can compare the OS labels against the labels 

produced on the re-scan image of the subject that has either intravenous contrast or different acquisition 

parameters for a mean rDSC of 0.80 (p < 0.001). We note a larger increase in rDSC to 0.82 (p< 0.001) 

between the original labels and the labels after TL between the scan-rescan images. This effect was also 

observed when analyzing ROIs separately (Appendix Table IX.1). Furthermore, if we compare the TL 

labels on the pre- and post- images of the same subjects, we see even higher agreement across all groups. 

The FreeSurfer comparison shows lower reproducibility overall (DSC = 0.53, p < 0.001) as well as a larger 

variance across subjects. Representative segmentations on the pre- and post-contrast image are shown for 

all methods in Figure VI.4, highlighting areas of disagreement that are fixed via TL. In addition, Figure 

VI.5 shows the disagreement overlaid on imaging from subjects with median performance across 

experiments. 

 OS:OS OS:TL TL:TL FreeSurfer 
G1c 0.71 +/- 0.06 0.78 +/- 0.05 0.81 +/- 0.05 0.57 +/- 0.23 
G2c 0.76 +/- 0.04 0.82 +/- 0.04 0.84 +/- 0.04 0.52 +/- 0.23 
G12 0.72 +/- 0.07 0.79 +/- 0.05 0.82 +/- 0.05 0.51 +/- 0.24 

Table VI.2 Transfer learning cross-validation performance of reproducibility DSC (rDSC) between and within Group 1 
and Group 2.  Bold represents the method with highest rDSC for each group. OS: Original SLANT, TL: Transfer Learning. 

 

Figure VI.3 Qualitative results on pediatric SLANT on the occipital lobe labels. The original multi atlas labels are shown 
on the left, followed by the manual corrections by the neuroimaging expert. Next are the results from the original SLANT 
and the pediatric SLANT. Pediatric SLANT is able to reproduce many of the corrections made during manual editing.  
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Figure VI.4 Segmentation results between pre- (left) and post-contrast (right) images. Top row shows the original image. 
Second row indicates the original SLANT followed by SLANT with transfer learning (TL). Fourth row shows FreeSurfer 
segmentation results. Green insets show segmentation at the third ventricle. Red inset shows segmentation at the lateral 
ventricle.  
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3.3. Rescue of Original Manual Labels on cSLANT 

After we perform TL on the scan-rescan images, we wish to evaluate whether the performance on 

the original SLANT dataset has changed. We note that the average DSC before TL against manual labels 

in this dataset was 0.70 +/- 0.02 (Table VI.3). There was a slight decrease in the average DSC after (TL 

0.69 +/- 0.02, p < 0.001 Wilcoxon signed-rank test). Despite this being a statistically significant difference 

 
Figure VI.5 Areas of disagreement between labels during cross-validation of transfer learning on Groups 1 and Group 
2. The disagreement labels are color-coded according to the original label. OS: Original SLANT, TL: Transfer Learning, FS: 
FreeSurfer. 

 
 



94 
 

across subjects, the slight drop in performance against manual labels is smaller than the gain in 

reproducibility in clinical imaging.  

 Manual : OS Manual : TL 
OASIS 0.70 +/- 0.02 0.69 +/- 0.02 

Table VI.3 Results on the original manual labels from the OASIS dataset before transfer learning and after transfer 
learning. There is a slight significant decrease between OS and TL (p<0.001, Wilcoxon signed-rank test). 

3.4. Withheld sample of Group 3 

We used the subjects from Group 3 as a withheld validation set and generated three cohorts: paired 

imaging with Groups 1 and 2, as well as pre- and post-contrast imaging of the same subject within Group 

3. In total, we have 29 scans from 17 subjects. Table VI.4 shows the results on the withheld dataset are 

consistent with the cross-validation data, showing an increase in the learning task versus the original 

SLANT (OS:TL rDSC = 0.74 vs OS:OS rDSC = 0.66, p < 0.001 Wilcoxon signed-rank test) as well as a 

further increase when generating labels after TL on both scans from the same subject (TL:TL rDSC = 0.76, 

p < 0.001 Wilcoxon signed-rank test). Note that the results obtained from FreeSurfer are much lower than 

those from cSLANT and with a wider standard deviation (FreeSurfer rDSC = 0.34, p < 0.001 Wilcoxon 

signed rank test) . Figure VI.6 shows the areas of disagreement between predictions overlaid on subjects 

with median performance across experiments. 

 OS:OS OS:TL TL:TL FreeSurfer 
G3c (N = 3) 0.76 +/- 0.05 0.84 +/- 0.02 0.87 +/- 0.04 0.31 +/- 0.33 
G13 (N = 4) 0.72 +/- 0.08 0.78 +/- 0.09 0.80 +/- 0.09 0.52 +/- 0.14 
G23 (N = 22) 0.64 +/- 0.13 0.72 +/- 0.11 0.73 +/- 0.13 0.30 +/- 0.28 

Table VI.4 Transfer learning results on the withheld validation set. Bold represents the method with highest rDSC for each 
group. OS: Original SLANT, TL: Transfer Learning. 
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3.5. Volumetric Analysis of the Hippocampus 

As an application of our method, we test the difference in volume of the hippocampus as estimated with 

three different methods: original SLANT, after transfer learning (cSLANT), and with FreeSurfer. First, we 

test it on the cross-validation dataset, which showed a decrease in volume RMSE between paired scans of 

64% (Table VI.5). Similarly, we observe a large decrease in RMSE in the withheld dataset, except for 

subjects between Groups 1 and 3, which already had a low RMSE (Table VI.6). The RMSE obtained with 

 
Figure VI.6 Areas of disagreement between labels of the withheld dataset in Group 3. The disagreement labels are color-
coded according to the original label. OS: Original SLANT, TL: Transfer Learning, FS: FreeSurfer. 

 
 



96 
 

FreeSurfer was higher in both datasets than the original SLANT.  Figures VI.7 and VI.9 show the change 

in hippocampal volume between pre- and post- imaging for all experiments. The difference in hippocampal 

segmentations overlaid on imaging is shown for the cross-validation dataset (Figure VI.8) and the withheld 

dataset (Figure VI.10). 

 

 
Figure VI.7 RMSE of hippocampus volume on the cross-validation data. Subplots represent performance on paired 
subgroups for A) Group 1c, B) Group 2c, and C) Group 12.  

 

 

Figure VI.8 Areas of disagreement between pre- and post- segmentations of the hippocampus in the cross-validation 
dataset. 
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 OS:OS TL:TL FreeSurfer 
G1c 568.48 197.13 1,196.77 
G2c 497.71 188.82 1,160.79 
G12 582.21 203.05 1,018.78 

Table VI.5 RMSE between hippocampal volume of paired images in the cross-validation set. First, with the original SLANT 
(OS), after transfer learning (TL:TL), and with FreeSurfer. 

 

 OS:OS TL:TL FreeSurfer 
G3c 790.79 169.40 513.82 
G13 223.30 251.70 435.04 
G23 962.23 480.96 1,586.03 

Table VI.6 RMSE between paired images in the withheld dataset. First, with the original SLANT (OS), after transfer learning 
(TL:TL), and with FreeSurfer. 

 

 

 

 
Figure VI.9 Hippocampus volume RMSE on withheld data. Subplots represent performance on paired subgroups for A) 
Group 3c, B) Group 1-3, and C) Group 2-3. 
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4. Discussion 

In this work, we explore the effect of TL on the performance of deep neural networks. Our aim was 

to show the feasibility of taking a well-known segmentation tool such as SLANT and perform domain 

adaptation with TL by leveraging unlabeled clinical data instead of changing or generating the available 

code. We used TL to enforce similarity in manually corrected pediatric labels as well as automated 

segmentation between the pre- and post-contrast images and paired images with different acquisition 

parameters. We showed that the original SLANT segmentation algorithm has decreased performance in 

pediatric brains, likely due to smaller volume and altered gray/white matter proportions in the younger 

subjects compared to the initial training data used in SLANT. However, we can improve performance by 

0.08 rDSC when we introduce pediatric subjects in the TL process in addition to the original adult subjects. 

 
Figure VI.10 Areas of disagreement between pre- and post- segmentations of the hippocampus in the withheld dataset. 
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We showed that segmentation of difficult regions, such as the occipital poles, can be improved by providing 

mixed training examples. Importantly, we showed that the proposed method can reproduce the manual 

corrections done on the original multi-atlas labels using only 30 training examples. Furthermore, the manual 

corrections used as training examples were generated in a semi-automated method, which provides a time- 

and resource-efficient alternative to generate training data.  

In the context of clinical imaging, we showed an improvement in performance of rDSC of about 

0.1 between paired scans across all groups. This shows a significant increase in generalizability as well as 

robustness to heterogeneous clinical imaging. There is an improvement in the segmentation of the gray-

white matter junction as well as areas with intravenous contrast particularly at the ventricles, as shown in 

Figures VI.4, VI.5 & VI.6. With an increasing demand for larger sample size in deep learning, the field will 

likely turn to clinically acquired medical data for examples rather than acquiring more research scans. 

Segmentation algorithms will likely need to be robust to inhomogeneities present in clinically acquired 

data, such as intravenous contrast, movement, noise, or artifacts.  

Volumetric estimates, both in research and in clinical applications, will need to be consistent and 

reproducible within the same subject despite acquisition parameters or throughout a longitudinal timeline. 

We showed that cSLANT decreases the RMSE of volumetric estimation within the same subjects by 67%, 

which will result in more reliable and reproducible image processing on clinical data. The disagreement in 

segmentations of the hippocampus show that our method performs better at describing the boundary 

consistently across imaging sequences, with fewer confluent areas of disagreement (Figure VI.8 & VI.10).  

We showed that we can achieve domain adaptation on the SLANT algorithm through TL on 

pediatric and clinically acquired imaging data. This work has great implications for medical and research 

domains, since it shows that pretrained algorithms can be translated to similar data in a different domain 

without resorting to separate segmentation pipelines for each domain [280, 281] or alterations to the original 

image, such as image synthesis [253, 257, 282]. Improving the generalizability of deep learning algorithms 

across large variability in imaging domains using TL can complement harmonization efforts which achieve 

a remapping of tissue intensities across small changes in acquisition parameters. Existing harmonization 
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frameworks may still achieve tissue mapping across the large variability found on clinical data, but such 

studies are still limited in the literature. Future efforts that explore the integration of intensity harmonization 

with TL may prove to further improve segmentation accuracy as well as the generalizability of many other 

medical image processing algorithms. It is possible that a different deep learning framework, such as the 

one proposed by Kamnitsas et al [283] may achieve higher agreement between imaging domains given 

further algorithm refinement and hardware resources. Here, we showed that SLANT can be refined for 

heterogenous clinical imaging through a data-driven process instead of new algorithm modifications or 

implementations.  

A major limitation of this work is that we are enforcing similarity between unlabeled paired images, 

since we are not introducing any more information to the algorithm in the form of ground truth. We showed 

that there was a slight but significant decrease in DSC of the manual labels on the OASIS dataset after TL, 

despite substantial gains on rDSC on the clinical datasets. While this is not surprising, it is expected that as 

TL seeks to improve site-specific or scanner-specific performance, the overall generalizability to manual 

labels may decrease. Since the clinical data is unlabeled, the only metric to judge the algorithm accuracy is 

to compare against manually labelled ground truth of a different dataset. Implementation for site-specific 

applications may seek to perform additional transfer learning on manual labels generated on local data. 

Although implementation of this work requires paired data for TL, clinical protocols often acquire a pre-

contrast image along with a post-contrast image, so collecting paired contrast imaging may be feasible 

depending on the imaging bioinformatics tools available at each institution. In this work, we showed that 

we were able to generalize to a withheld test set with 480 imaging pairs of 255 unique subjects. This will 

greatly limit the need to acquire new imaging and generate manual labels in order to share or refine medical 

imaging analysis tools.    

Another limitation of this work is that we have evaluated a sampling of acquisition parameters for 

T1-weighted brain MRI. We showed that our method increased generalizability in the data present and even 

translated to an improvement in the withheld test set. However, there are still many different combinations 

of acquisition parameters that result in a T1-weighted brain MRI, which were not evaluated in this work. 
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Future work will also seek to use transfer learning to improve generalizability of whole-brain segmentation, 

or other deep learning tasks, on T2-weighted brain MRI and perhaps diffusion-weighted imaging. However, 

with this work we have shown that there is a valid framework constructed with stable, available algorithms, 

such as SLANT, to improve performance on clinical imaging. This kind of translation of image processing 

algorithm from MRI acquired in a research setting towards MRI acquired in the course of clinical practice 

will have great implication on the application of this tools at the bedside.  

This work demonstrates the importance of generalizability in the era of deep learning. We used 

FreeSurfer as a standard comparison of image processing tools. It has been previously shown that manual 

correction is necessary as a post-processing step in FreeSurfer with heterogeneous anatomy in imaging data 

[266, 284, 285]. We observed in this work that the presence of intravenous contrast in particular decreases 

the generalizability performance between paired imaging. With the advances in performance achieved with 

deep learning, clinical translation of these tools has begun to emerge [149-151]. To achieve reliable and 

reproducible results on clinical data, the image processing community will have to demonstrate that the 

proposed algorithms can achieve a desired performance not only on well-controlled research data, but on 

heterogeneous clinical imaging. Here, we use hippocampus volumetry as an example of variable 

measurements across image processing platforms. The largest difference was observed in FreeSurfer, but 

we still observed a large RMSE in the original SLANT. As personalized imaging biomarkers continue to 

emerge in research and in clinical practice, it is encouraging that we can drastically improve volumetric 

estimates through transfer learning. 
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 Neuroimaging Signature of Heart Failure with Preserved Ejection Fraction in the 
Setting of Dementia 

 

1. Introduction 

Alzheimer’s Disease and other dementias affect more than 5.3 million Americans and result in over 

$259 billion in medical expenditures annually[105]. Epidemiologic evidence suggests that heart failure with 

preserved ejection fraction (HFpEF) may be an independent risk factor for dementia disorders[107, 108, 

286].  However, HFpEF and dementia also share many common risk factors such as advanced age[112], 

obesity[110], smoking[110], midlife hypertension[110], and diabetes[110]. However, it is unclear whether 

HFpEF confers dementia risk independently, in combination with, or through interactions with other 

comorbidities.  

Several lines of evidence support an independent role for HFpEF in neurocognitive disease.  For 

example, patients with HFpEF have specific changes in neuropsychological testing, particularly in 

executive function, attention, and memory, as well as and brain morphology compared to healthy 

adults[109, 113, 114]. Additionally, the proportion of vascular dementia to Alzheimer’s disease is increased 

among patients with HFpEF [112, 115]. In parallel, advances in quantitative medical image processing and 

machine learning have made possible the discovery of imaging biomarkers, at scale, for disease prediction, 

detection, and surveillance[17, 39]. For example, these efforts have demonstrated associations between 

decline in cerebral blood flow and higher Framingham Cardiovascular Disease Risk Profile (FCRP) 

score[121] as well as left ventricular mass index and changes in white matter microstructure[124]. 

Collectively, these observations suggest that HFpEF has a primary effect on brain morphology, which may 

result in a distinct dementia phenotype. Moreover, an improved understanding of the imaging predictors of 

dementia in the setting of HFpEF may help characterize pathophysiologic mechanisms and lead to 

improved diagnostic and therapeutic strategies. 
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We hypothesized that dementia in the setting of HFpEF would be associated with distinct 

comorbidity and brain morphology imaging signatures compared to dementia in the absence of HFpEF. To 

assess this HFpEF-dementia phenotype, we performed a case-control retrospective analysis of clinical 

diagnoses and brain imaging from 331 ambulatory patients with dementia from Vanderbilt University 

Medical Center (VUMC). We used a bioinformatics framework to identify and validate an HFpEF-

dementia cohort and compare its clinical phenotype to that of dementia alone. We also performed a 

volumetric analysis for changes in brain morphology associated with HFpEF-dementia identified on brain 

MRI. We also performed a PheWAS analysis to find the clinical comorbidities associated with HFpEF-

dementia compared to dementia alone. The work presented in this chapter is currently under review at 

Journal of the American Heart Association with Camilo Bermudez as first author. 

2. Methods 

2.1. Cohort Selection 

The study cohort was derived from all subjects in the VUMC EHR. We first identified all possible 

subjects using a computable dementia algorithm that included both ICD-9 and ICD-10 codes (Figure VII.1). 

We next limited the sample to patients with head MRI scans documented in the VUMC clinical imaging 

database ImageVU. Finally, we restricted the dataset to only patients with evidence of cognitive testing in 

their EHR. Specific strings used to identify cognitive testing in the chart are shown in the red box in Figure 

VII.1. HFpEF status was defined using a validated algorithm [287].  In order to validate the diagnosis of 

clinical dementia, we conducted text searches for cognitive testing to extract segments of the medical chart 

for manual review (Figure VII.1). We used the following cutoffs to validate the diagnosis of dementia: a) 

mini-mental status exam score ≤ 24, b) Montreal Cognitive Assessment ≤ 22, or c) formal 

neuropsychological assessment showing cognitive impairment.  

Last, we limited the sample to those patients with a high-quality brain MRI imaging. Quality 

assessment was performed by visual inspection to ensure that the studies retrieved were in fact brain MRIs 
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without large artifacts that would limit structural analysis. The MRI scans were further sorted into T1-

weighted brain MRI and T2-FLAIR brain MRI for subsequent studies. Only T1-weighted MRI with a 

resolution of 2.2 mm or finer were used. 

We identified 5,913 subjects meeting criteria for an automated diagnosis of dementia, including 

1,092 (18.5 %) with HFpEF (Figure VII.1). The diagnosis of dementia was validated in 1,654 patients, of 

which 393 (24%) had HFpEF. After selecting for patients with high-resolution imaging, the final cohort 

included 331 patients with dementia and high-resolution T1-weighted brain MRI, 30 (9%) of which met 

criteria for HFpEF. 

Participant characteristics are provided in Table VII.1. All subjects with HFpEF and dementia were 

matched 10:1 to patients with dementia alone for age, sex, and image resolution. The mean age in the entire 

sample was 76.2 ± 8.48 years; 59% were women. The mean duration of dementia at time of imaging was 

0.79 ± 1.75 years for cases and 1.15 ± 2.14 years for controls (p = 0.65; Wilcoxon rank-sum test) as indicated 

by the time between first incidence of dementia ICD code and imaging.  After all inclusion criteria and 

matching, there were a total of 30 cases of HFpEF and dementia and 301 controls of dementia alone. 

 

 

 

 Heart-Failure and Dementia 
(N =30 ) 

Dementia without Heart Failure 
(N = 301) 

Age (years) 76.9 ± 8.12 76.2 ± 8.52 
Sex (% female) 60.7% 59.8% 

Dementia Duration at MRI (years) 0.82 ± 1.83 1.20 ± 2.23 
Heart Failure Duration at MRI (years) 3.29 ± 3.67 N/A 

Hypertension (%) 100% 92.7% 
Diabetes (%) 53.6% 19.6% 

Table VII.1 Cohort demographics. Values represented as mean ± SD. 
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2.2. Quantitative Image Analysis 

We performed an automatic segmentation protocol on all T1-weighted brain MRI using the SLANT 

segmentation algorithm, which has been previously described and validated on clinical imaging[147, 243, 

288]. SLANT performs a whole-brain segmentation into 132 cortical, subcortical, cerebellar, and white-

matter regions of interest (ROI) following the BrainCOLOR labelling protocol[147]. The volume of each 

ROI in mm3 was calculated by multiplying the number of labelled voxels by the voxel size. We used the 

automated library SIENAX from Fressurfer v6.0 to account for head size, which has been previously 

described and validated [137, 289].  

 

Figure VII.1 Inclusion and exclusion criteria protocol to identify patients with dementia and neuroimaging with and 
without heart failure. 
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2.3. Statistical Analysis 

Two independent analyses were conducted: a PheWAS study to identify clinical variables 

predictive of HFpEF dementia and a volumetric MRI study to detect changes in regional brain volumes in 

HFpEF dementia. In order to characterize the clinical differences between cases and controls, we conducted 

a phenome-wide association study (PheWAS).  The PheWAS method uses a validated, curated medical 

phenotypes (PheCodes) to rapidly identify phenome-wide association between exposures including clinical 

variation and disease phenotypes[116, 119, 120].  PheWAS codes are validated groupings of related ICD-

9 (before October 2017) and ICD-10 (after October 2017) billing codes that capture the extended range of 

clinical diagnoses within an EHR data set.23,24 We used a logistic regression model to identify the 

relationships between PheCodes and the presence of HFpEF in the setting of dementia versus no HFpEF in 

patients with dementia while matching for sex and age at imaging. Of the total 1,866 codes, we excluded 

phenotypes affecting a single gender or with £5% prevalence, which resulted in 397 clinical phenotypes 

included in the analyses. A Bonferroni correction was applied to account for multiple testing.  

The second analysis used logistic regression to assess relationships between volumetric estimates 

of ROI from T1-weighted MRI and exposure to heart failure in the setting of dementia. To standardize 

volumetric measurements across participants, we included the SIENAX scaling factor for intracranial 

volume as a covariate to adjust for head size. Associations with a false discovery rate q value <0.05 were 

considered statistically significant.  
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3. Results 

3.1. Anatomical Volumetry Differences Associated with Heart Failure 

Brain volumes for six regions of interest were significantly different (q<0.05) between dementia 

patients with and without HFpEF (Table VII.2). Results for all regions are shown in the Appendix Table 

IX.2. All of the significant regions showed atrophy associated with exposure to HFpEF.  The six regions 

with volume loss associated with HFpEF were the left accumbens, right amygdala, left posterior insula, left  

anterior orbital gyrus, right angular gyrus, and right cerebellar white matter.  Five of these six significant 

regions are located in the temporo-parietal region of the brain, which is proximal to the posterior watershed 

territory between the middle cerebral artery and the posterior cerebral artery [290].  

3.2. Clinical Comorbidities Associated with Heart Failure 

PheWAS analysis identified a large number of clinical comorbidities associated with HFpEF in the 

setting of dementia (Figure VII.2). Not surprisingly, HFpEF with dementia was associated with a wide 

range of phenotypes dominated by cardiovascular disease and associated comorbidities, such as respiratory 

and metabolic abnormalities. All significant clinical phenotypes were positively associated (i.e., more 

common) with the presence of HFpEF. Importantly, dementia was not a significant comorbidity, since it is 

represented in both cases and controls. Details for model coefficients for the PheWAS analysis are shown 

in the Appendix Table IX.3. 

Region of Interest Log Odds Ratio p-value 
Left Accumbens Area -4.4 x 10-3 0.020 
Right Amygdala -2.5 x 10-3 0.020 
Left Posterior Insula -1.6 x 10-3 0.012 
Left Anterior Orbital Gyrus -1.4 x 10-3 <0.001 
Right Angular Gyrus -2.0 x 10-4 0.043 
Right Cerebellar White Matter -2.0 x 10-4 0.04 
Table VII.2 Brain regions with significant atrophy associated with the presence of HFpEF. P-values are corrected for 
multiple comparisons using the Bejamini-Hochberg method for false discovery rate.   
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4. Discussion 

We extracted clinical data with neuroimaging to identify the clinical comorbidities and changes in 

brain imaging morphology of HFpEF-associated dementia. Collectively, the findings suggest that HFpEF 

has a unique clinical and anatomic signature from dementia in the absence of HFpEF. Moreover, this study 

demonstrates the feasibility of mining large clinical datasets to identify unique clinical and radiological 

signatures. 

Previous work has shown associations between cortical atrophy and cerebral hypoperfusion in the 

temporo-parietal watershed territories in Alzheimer’s disease[291, 292]. Of these regions, atrophy of the 

accumbens area and the amygdala has been associated with HF before, suggesting that HF may increase 

risk of Alzheimer’s disease through early insult to subcortical brain structures[293]. Similarly, atrophy of 

the insula[294] and the orbital gyrus[295] has been previously reported in vascular dementia while 

 

Table VII.3 PheWAS analysis done on HFpEF dementia cohort. Significant clinical phenotypes associated with heart failure 
with preserved ejection fraction (HFpEF) in patients with dementia. Clinical phenomes are organized by organ system. A full table 
of significant clinical variables is shown in Appendix Table IX.3.  
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reduction of cerebral blood flow was shown in the angular gyrus in patients with Alzheimer’s disease[296]. 

Previous work has also shown atrophy of the cerebellar white matter is associated with heart failure when 

compared to controls[297]. Additionally, we observed a lateralizing effect on these structures. Previous 

work has shown a lateralizing effect on brain atrophy in semantic dementia, particularly on temporal lobe 

structures like the entorhinal cortex, amygdala, and fusiform gyrus[298] as well as the hippocampus in the 

context of HF[299]. These associations may require further study to understand the mechanism of lateral 

differences in brain volume and how they are related to HFpEF’s effect on brain perfusion and anatomy.  

Importantly, the literature of brain structural changes associated with HF has focused on comparing 

patients with HF to healthy controls without taking into account the presence of clinical dementia[293, 299, 

300]. In this work, we make similar observations to previous work, but focus on HF patients with dementia 

compared to controls with dementia. This suggests that the atrophy pattern identified may correspond to a 

HFpEF signature independent of the presence of dementia. Moreover, the neuroimaging signature of 

HFpEF in the setting of dementia seems to correspond to vascular watershed territories, suggesting that 

chronic hypoperfusion to these areas may result in the development of cognitive decline. This observation 

is also supported by the lack of significant atrophy in areas commonly associated with Alzheimer’s disease, 

such as the hippocampus, since the effect of dementia may be accounted for in both groups. 

To explore the possibility of atrophy due to an HFpEF-dementia interaction effect, we considered 

the effect size of non-significant regions (Appendix Figure VII.3). We note that only four regions have a 

larger effect size than the significant regions found in this study, and two of these correspond to the 

contralateral side of a significant structure. It is possible that a larger study would result in these structures 

being significant. Conversely, there are a large number of non-significant regions with atrophy where the 

lower bound of the confidence interval of the effect size is bounded by -1 x 10-3. This suggests that regions 

such as the hippocampus, parahippocampal gyrus, frontal cortex, and the entorhinal area are possible 

candidates for HFpEF-dementia specific atrophy, but this effect is much smaller than that of HFpEF. Future 

studies may seek to study these regions directly to identify interaction effects between HFpEF and 

dementia. Lastly, a limitation of this work is the absence of a HFpEF group without dementia. However, it 
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is difficult to assume that clinical brain imaging acquired from patients with HFpEF would be cognitively 

normal. A prospective imaging study in patients with HFpEF and cognitive testing at the time of imaging 

would be necessary to account for brain changes due to HFpEF alone.  

Some of the most significant clinical comorbities found in our PheWAS study were associated with 

the cardiovascular system. This is not surprising, as HFpEF occurs in context of other cardiovascular 

disease and its risk factors, which may play a role in the development of dementia[106, 113]. We also found 

previously reported HFpEF comorbidities in other organ systems, such as metabolic abnormalities, 

hematologic, and respiratory conditions[301]. A study to validate the presented systematic exploration in 

the context of PheWAS novelty[302] would be of interest. It is interesting that there were no clinical 

comorbidities inversely associated with HFpEF in the setting of dementia, suggesting that, in general, 

patients diagnosed with HFpEF are more medically ill than individuals with dementia without HFpEF, 

confirming a previously reported finding [303]. 

The protocol for phenotype selection shown in Figure VII.1 uses a semi-automated method of data 

extraction and validation to identify a clinical phenotype. These methods can be used to identify other 

clinical phenotypes with scarce datasets and examine associations with related diseases. One limitation of 

this approach is the role of important cardiovascular comorbidities on dementia, such as the presence of 

hypertension, diabetes, or smoking status. Future work may take these variables into account in both clinical 

phenome regressions as well as volumetric regressions to further understand the specific role of HFpEF in 

dementia. Furthermore, we included only patients who had undergone a brain MRI in order to perform 

volumetric segmentations. It is possible there are still a large number of patients with dementia and heart 

failure who have been diagnosed without acquiring neuroimaging. The clinical reasoning behind a lack of 

imaging, whether due to disease severity or other patient circumstances, may be a confounder in the 

description of a clinical phenotype as well as morphological brain changes. 

In this work we demonstrate that a unique clinical and neuroimaging signature can be identified 

from clinical data on a narrow cohort.  This approach can be applied to other large clinical datasets to 

examine clinical and imaging-based population differences in disorders and phenotypes which are difficult 
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to study prospectively.  For our findings in dementia and HFpEF, further work is required to better 

characterize these populations and determine how management of vascular risk factors and HFpEF may 

ameliorate cognitive decline.
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 Conclusions & Future Work 

 

1. Conclusion 

The primary goal of this dissertation is to contribute to the understanding of how aging affects brain 

anatomy through the lens of neuroimaging. The motivation to study aging through neuroimaging stems 

from two main drives: a biological need and a technological opportunity. In the decades to come, the relative 

proportion of the elderly in the general population is estimated to increase. Aging is the result of a 

remarkably complex interplay of internal and external factors, resulting in highly variable outcomes in 

health and lifestyle for the individual and the use of resources for the healthcare system. However, a 

common resulting phenotype of aging is the development of cognitive decline and dementia. Neuroimaging 

offers the opportunity to visualize and measure how brain anatomy changes with age. Meanwhile, 

technology today offers new opportunities to store, share, and analyze large amounts of imaging data. At 

the time of this dissertation, advances in hardware made it possible to scale deep neural networks to tasks 

in computer vision and therefore apply them to medical imaging. Together, neuroimaging and deep learning 

offer the possibility of new types of analyses to better characterize brain morphology. By working on the 

engineering to generate data-driven, reliable, and reproducible metrics of brain anatomy, future work may 

rely on these to link brain morphology to cognitive performance with age as well as other diseases 

associated with aging.  

 The work done in this dissertation explored how deep neural networks can be applied to the field 

of medical image analysis in order to better study the aging brain. We  developed a tool to accurately predict 

brain age in healthy individuals by introducing anatomical context in the form of traditional imaging 

features to both MRI and CT (Chapter II), and showed the importance of these anatomical features to protect 

against adversarial attacks (Chapter III). We then extended this work as an application by demonstrating 

that brain age gap may be a potential biomarker of depression in the elderly (Chapter IV).  We then took 
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another look at segmentation of brain structures using deep learning, first focusing on the dentate nucleus 

of the cerebellum (Chapter  V) then moving towards generalization of whole brain segmentation towards 

heterogenous data such as pediatric or clinically acquired imaging (Chapter VI). This work culminated in 

the application of these tools to study the neuroimaging signature of heart failure with preserved ejection 

fraction in patients with dementia by mining clinical imaging archives (Chapter VII).  

2. Introducing Contextual Anatomical Features to Brain Age Estimation  

2.1. Summary 

Prediction of chronological age had been previously focused on using engineered imaging features 

or raw imaging from T1-weighted brain MRI alone. We proposed the first work to dynamically introduce 

engineered features, in the form of volumetric estimates of brain regions, during training of an imaging-

based deep convolutional neural network (Chapter II). We also showed that these tools can be applied to 

develop age estimators for new imaging domains, such as orbital CT (Chapter II). We were also the first to 

show the susceptibility of brain age neural networks to adversarial noise attacks and the protective effects 

of introducing anatomical context against these attacks (Chapter III). We then provided clinical validation 

of the applicability of brain age on T1-weighted brain MRI by showing an increased brain age gap in elderly 

patients with depression when compared to healthy controls (Chapter IV). Overall, we generated an 

accurate and robust age estimator able to detect differences in disease states in both brain MRI and orbital 

CT.  

2.2. Main Contributions 

• We introduce the idea of enhancing deep learning with traditional engineered features in 

medical imaging to achieve higher accuracy in the task of age prediction from brain MRI and 

orbital CT. 

• We show how some diseases of the orbit resulted in changes in the orbital CT age gap, 

suggesting this as a possible non-invasive biomarker of eye disease. 



114 
 

• We showed the susceptibility of medical imaging to adversarial noise and possible implications 

in the deployment of these tools to patient care. We provide insights into possible mechanisms 

for robustness against adversarial attacks using patient-specific anatomical context.  

• We showed the clinical applicability of our MRI brain age estimator by finding differences in 

the Brain Age Gap between patients with depression and controls in an adult and a geriatric 

population. Furthermore, we showed associations between Brain Age Gap and cognitive 

performance in the geriatric cohort.  

2.3. Discussion 

The idea of introducing contextual features while training deep neural networks has evolved to 

focus on activation maps, which drive spatial attention towards regions with better performance. Although 

the role of engineered features seems to have been largely replaced by learned neural network features, 

there is still extensive domain knowledge that goes into crafting these features, which can be leveraged to 

improve deep learning accuracy, generalizability, or robustness. Here, we showed that by introducing 

volume estimates of brain regions, we could drive improvement in performance and protect against 

adversarial attacks. The goal was to enhance the network performance by presenting it with relevant 

imaging features. It will be interesting to see how non-imaging features, such as clinical features (e.g. labs, 

vitals, PheCodes) are integrated in image-based deep learning tasks to drive accuracy. This may play an 

important part as imaging datasets become larger and more heterogeneous. Non-imaging data may provide 

high-level separations in patient phenotypes, creating subgroups during training and therefore allowing the 

network or networks to refine features specific to each subgroup for higher accuracy and generalizability.  

We also opened the idea of crafting tools to predict age in different locations. We showed that the 

same principles apply for age prediction in Orbital CT and were able to detect differenced in disease states. 

Aging is a multi-system process that affects every part of the human body. With enough data, future work 

may predict age in abdominal CT, chest X-rays, bone radiographs, or ultrasound, especially in modalities 

that already have expert-crafted features such as abdominal organ segmentation. Each location may provide 
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insight into the local effects of aging and even hint at mechanisms behind different diseases. As radiologic 

studies become more prevalent and feasible to analyze, tools like predicted age can provide a non-invasive 

biomarker not only to detect and tract disease but to tract aging as a form of “growth curve” for the elderly.  

 We showed that we can find differences in the gap between predicted age and true age using orbital 

CT in the case of eye diseases and brain MRI in depression. These retrospective, cross-sectional studies 

demonstrate the feasibility of validating non-invasive imaging tools to find differences between disease 

states. Future work may choose to use these tools prospectively to better track the progression of disease 

and better understand the clinical scenarios where disease progression diverges, as in the case mild 

cognitive impairment and Alzheimer’s disease. One major factor limiting the implementation of current 

technology to clinical practice is the barrier of interpretability of neural networks. Although deep neural 

networks can achieve high accuracy, it is often difficult to probe what anatomical regions are informing the 

network. For instance, we were able to detect differences in brain age gap in patients with depression, but 

cannot at this time quantitatively describe the morphological changes in the brain that drive this response. 

In order to better assess the potential uses of these tools in patient care and generate mechanistic hypotheses 

of disease, much work needs to be done to better visualize and interpret what anatomical information is 

being integrated in convolutional networks to drive performance.  

Lastly, we provided a characterization of the susceptibility of brain age prediction to adversarial 

noise at several intensity levels. Although anatomical features were able to reduce this effect, adversarial 

learning was still able to drastically change the prediction results. This susceptibility presents another 

limitation to implement medical image processing algorithms to clinical practice, since small, invisible 

perturbations may drastically alter the result and could have great implications in computer-assisted 

detection and diagnosis. Some of these effects can be attenuated by introducing noise during training, but 

it is still possible to learn new adversarial noise fields to alter prediction results. Future work may follow 

the steps we presented in our work, and use contextual features, image-based or otherwise, to protect against 

adversarial attacks. Even if these features do not drastically improve network performance, it may be less 

susceptible to noise changes in the original image. Together with information security measures, new tools 
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will need to be developed in radiologic systems to detect and protect against noise perturbations in clinical 

image acquisitions. 

3. Segmentation of Brain Structures from Heterogeneous Datasets 

3.1. Summary 

In recent years, advanced in deep convolutional neural networks showed a dramatic improvement 

in automatic segmentation of desired structures from images. We began with the first deep learning 

segmentation of the dentate nucleus (DN) of the cerebellum using multimodal imaging (Chapter V). This 

work showed that deep learning can better reproduce manual labels than atlas-based methods (Chapter V). 

We then implemented domain adaptation to whole brain segmentation, using label augmentation to improve 

segmentation of imaging datasets that are not represented in the research data, such as pediatric or post-

contrast brain MRI (Chapter VI). We showed that we can leverage paired, unlabeled clinical data to better 

generalize whole brain segmentation across many acquisition parameters (Chapter VI). These efforts 

contribute towards making research algorithms more generally available across different sites, scanners, 

and acquisitions while preserving performance across domains.  

3.2. Main Contributions 

• We showed that deep learning segmentation of the DN can better reproduce manual labels than 

atlas-based methods. 

• Introducing co-registered structural MR images during segmentation of the DN did not 

dramatically improve segmentation accuracy over using only the image in which the labels 

were generated.  

• We showed semi-automated label augmentation can be used to perform domain adaptation via 

transfer learning to improve the accuracy of whole brain segmentation in pediatric imaging. 

Additionally, this technique does not largely alter segmentation performance on the original 

dataset. 
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• We showed that automated label augmentation can be used on paired, unlabeled clinical data 

to perform domain adaptation via transfer learning to improve whole brain segmentation in 

brain MRI with intravenous contrast. We showed that this technique can generalize to image 

acquisitions excluded from training. Additionally, this technique does not largely alter 

segmentation performance on the original dataset.  

• We showed the importance of domain adaptation for volumetric estimation of brain regions of 

interest. Specifically, we showed a decrease in bias and variance in volume estimation of the 

hippocampus between imaging pairs of the same subject compared to non-harmonized methods 

in deep learning and common neuroimaging pipelines. 

3.3. Discussion 

Segmentation of substructures in the cerebellum continues to be a challenging task in medical 

image processing. Here, we showed that we could better reproduce manual labels generated on FA maps 

using deep learning than multi-atlas or single-atlas methods. We found that the diffusion-based labels 

differed from templates generated from susceptibility-weighted imaging (SWI). Although we hypothesize 

that this is due to the susceptibility effect of iron in the DN, future work may indeed be required to explore 

the effect of iron content on DN contrast across imaging modalities. If true, these two segmentation methods 

would prove valuable as complimentary measures of DN structural integrity and could be used to study the 

role of iron deposition in deep cerebellar structures in aging and neurodegenerative diseases, particularly 

movement disorders.   

Generating reliable segmentations on pediatric imaging is a challenge not only due to site or scanner 

effects, but also the evolving grey-white matter contrast during the early years of development. For this 

reason, it is desirable to have flexible algorithms that can adapt to local data. We learned that we can 

leverage pre-existing algorithms with some manual editing to gain a meaningful improvement in 

segmentation performance. Here, we applied this work to pediatric subjects ages 2-4 years old, but a more 

challenging task would be infant imaging (<1 year old), where the grey-white matter contrast is much more 
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difficult to discern. However, the approach used for paired, contrast imaging can be leveraged to improve 

pediatric segmentation in longitudinal studies. For instance, infant labels could be learned from pediatric 

labels in the same subject after appropriate coregistration. This would help overlay the segmentation in the 

infant imaging and assist in the detection of the grey-white boundary.  

Similarly, whole brain segmentation on imaging with intravenous contrast is an active area of 

research, particularly when deep convolutional neural networks are susceptible to inhomogeneities in the 

image, such as contrast. The work here shows that even if an algorithm is trained on non-contrast data alone, 

it is possible to alter the parameters slightly to achieve high performance on a contrast dataset. Furthermore, 

we showed a decrease in bias and variance of volume estimations in the hippocampus on clinical data. This 

opens many areas of exploration, including measurement of key structures in longitudinal studies where 

neurodegeneration is suspected. Moreover, these tools also encourage the use of clinical data for research 

and potentially clinical studies. A more robust estimation of hippocampal volume may be able to better 

detect changes in neuroanatomy associated with aging and disease from a patient population. Prospective 

studies using these tools on clinical data now have more imaging data available for large-scale analyses. 

Lastly, new methods may seek to integrate deep learning domain adaptation with techniques in image 

intensity harmonization to achieve better correspondence between acquisition types. Together, this work 

suggests an avenue to share algorithms and improve generalizability in imaging without having to share 

data or create massive imaging datasets in a single site.  

4. Neuroanatomical Signature of Heart Failure with Preserved Ejection Fraction 

4.1. Summary 

As the population ages, neurological and cardiovascular diseases comprise a large part of 

comorbidities affecting patient lifestyle and healthcare resources. Understanding the interplay of these two 

diseases can result in a better understanding of disease and optimization of treatment strategies. Here, we 

used clinical imaging data mined from the electronic health record to describe the neuroimaging signature 
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of heart failure with preserved ejection fraction (HFpEF) (Chapter VII). We demonstrated the feasibility of 

extracting and validating a desired patient phenotype derived from routine clinical visits. We then analyzed 

the imaging data using volume estimates robust to clinical imaging (Chapter VI) to find structural changes 

in the brain associated with a chronic heart condition associated with aging (Chapter VII).  

4.2. Main Contributions 

• We demonstrated the feasibility of crafting a patient cohort via data extraction from the VUMC 

EHR using ICD-9 and ICD-10 codes for dementia and the presence of heart failure. We further 

included only subjects who had at least one head MRI documented in the clinical imaging 

database ImageVU and evidence of some form of cognitive testing on their medical chart 

supporting the diagnosis of dementia. Together, these tools show the availability of large-scale 

imaging datasets to study aging and disease directly from patient records.  

• We analyzed the changes in patient phenotype according to PheCodes with respect to the 

presence of high-resolution brain imaging within the described cohort. Our findings show that 

filtering for high-resolution results in a different patient phenotype, suggesting some degree of 

clinical inference that dictates ordering such studies.  

• Using clinical imaging, we found regional atrophy in the parieto-temporal regions 

characteristic of HFpEF patients with dementia. We found that these effects reflect those found 

in previous literature comparing HFpEF against healthy controls, suggesting that these may be 

independent heart failure effects. The interaction effect of HFpEF and dementia on brain 

anatomy is likely smaller than could be detected. 

4.3. Discussion 

Deep learning tools have shown a dramatic increase in performance over the past few years, with 

perhaps yet more improvements coming as dataset sizes increase through collaborations and data retrieval. 

Instead of acquiring more research scans to drive performance, the field of medical imaging may choose to 
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focus on tools and techniques that leverage pre-existing data, such as that found in electronic health records. 

These data are not without problems, often coming with heterogenous acquisition parameters, noise, and 

poor annotations. Future work will have to focus on extensive quality assessment and harmonization efforts 

to detect the signal present in the data. However, this is a key step towards translating image processing 

tools to assist in patient care. Here, we showed that this process is indeed feasible and it opens the possibility 

of studying clinical phenotypes that are not possible through research subject recruitment, such as critically 

ill patients or rare diseases.  

In our work, we observed a large drop off in eligible patients with high-resolution imaging. Instead, 

most of these patients had low-resolution acquisitions along each axis. Work dedicated at harmonizing the 

information present in each view could reconstruct an approximate rendering of a 3D acquisition. However, 

there are still many applications available for 2D imaging, such as classification, lesion detection, and 

biomarker regression, to name a few. More importantly, further work is required to understand the change 

in clinical phenotype when selecting patients with high-resolution imaging. One approach would be 

prospective, since there are some applications that are known to request high-resolution imaging, such as 

pediatric patients, searching for epileptogenic lesions, or presurgical plan on deep brain stimulation surgery. 

Another possibility may be that imaging protocols change over time and high-resolution imaging is 

acquired depending on the specialty, provider, or year. This may introduce bias in the selection of patients 

that undergo further analyses relative to the whole patient population. Overall, clinical imaging offers a 

new frontier of opportunities for phenotype exploration, but there are still many challenges to solve in order 

to harness the full potential of these datasets.  

An important step forward will be to develop tools that can quantitatively describe the association 

between imaging data with clinical data, such as labs, medications, or PheCodes. Understanding how brain 

anatomy changes in response to clinical variables would provide some explainability to regional differences 

in deep convolutional neural networks. One such method would be to use large imaging datasets to describe 

a manifold between imaging and clinical variables, similar to the work done in natural language processing. 

This would enable exploration of this manifold to measure how changes in one domain affect the other. 



121 
 

However, this would require large amounts of well-curated data, but perhaps well-known associations, such 

as genetic mutations leading to Alzheimer’s disease and hippocampal atrophy may lead the way to the 

development of these tools.  

5. Concluding Remarks 

With the development of deep learning, international learning communities, and powerful methods 

of data extraction and curation, there are yet many discoveries to be made in this field. In this dissertation, 

we addressed some of the challenges of using clinical data to describe aging and its associated diseases. We 

generated data-driven metrics to extract information from imaging that we can the associate with patient 

phenotypes to illuminate underlying biological changes. We showed the feasibility of linking research tools 

to clinical data and considered many of the challenges ahead to make better use of these data.  

Our ultimate goal is to improve the lives of patients through our work. Although aging is a process 

that affects everyone of us, it does not affect us all equally. By bringing this technology to the bedside, we 

can leverage large amounts of clinical data available and provide patients with personalized, quantitative, 

actional measures of health and aging as well as disease. We can help patients and physicians better 

understand what is happening in their bodies and what we can change to help them. The amount of medical 

information is growing rapidly and, now more than ever, we are given the opportunity to help thousands of 

people by measuring it, analyzing it, and explaining it. Now is a remarkable time for medical image 

processing. 
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 Appendix 

1. Chapter VI 

 

 
Figure IX.1 Reproducibility DSC (rDSC) on each ROI. The table with corresponding ROI names is provided below 
(Table 6).  
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Figure VI.10 shows the results of cSLANT compared to baseline SLANT for each ROI individually. Each 

box indicates the rDSC between scan pairs for original slant (OS), and SLANT after transfer learning (TL) 

for each of the 132 ROIs. A lookup table is also included below to indicate the anatomical structure 

corresponding to each ROI.  

 

ROI # Anatomical Structure ROI # Anatomical Structure 

4 3rd Ventricle 138 Right MCgG middle cingulate gyrus 

11 4th Ventricle 139 Left MCgG middle cingulate gyrus 

23 Right Accumbens Area 140 Right MFC medial frontal cortex 

30 Left Accumbens Area 141 Left MFC medial frontal cortex 

31 Right Amygdala 142 Right MFG middle frontal gyrus 

32 Left Amygdala 143 Left MFG middle frontal gyrus 

35 Brain Stem 144 Right MOG middle occipital gyrus 

36 Right Caudate 145 Left MOG middle occipital gyrus 

37 Left Caudate 146 Right MOrG medial orbital gyrus 

38 Right Cerebellum Exterior 147 Left MOrG medial orbital gyrus 

39 Left Cerebellum Exterior 148 Right MPoG postcentral gyrus medial segment 

40 Right Cerebellum White Matter 149 Left MPoG postcentral gyrus medial segment 

41 Left Cerebellum White Matter 150 Right MPrG precentral gyrus medial segment 

44 Right Cerebral White Matter 151 Left MPrG precentral gyrus medial segment 

45 Left Cerebral White Matter 152 Right MSFG superior frontal gyrus medial segment 

47 Right Hippocampus 153 Left MSFG superior frontal gyrus medial segment 

48 Left Hippocampus 154 Right MTG middle temporal gyrus 

49 Right Inf Lat Vent 155 Left MTG middle temporal gyrus 

50 Left Inf Lat Vent 156 Right OCP occipital pole 

51 Right Lateral Ventricle 157 Left OCP occipital pole 

52 Left Lateral Ventricle 160 Right OFuG occipital fusiform gyrus 

55 Right Pallidum 161 Left OFuG occipital fusiform gyrus 

56 Left Pallidum 162 Right OpIFG opercular part of the inferior frontal gyrus 
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57 Right Putamen 163 Left OpIFG opercular part of the inferior frontal gyrus 

58 Left Putamen 164 Right OrIFG orbital part of the inferior frontal gyrus 

59 Right Thalamus Proper 165 Left OrIFG orbital part of the inferior frontal gyrus 

60 Left Thalamus Proper 166 Right PCgG posterior cingulate gyrus 

61 Right Ventral DC 167 Left PCgG posterior cingulate gyrus 

62 Left Ventral DC 168 Right PCu precuneus 

71 Cerebellar Vermal Lobules I-V 169 Left PCu precuneus 

72 Cerebellar Vermal Lobules VI-VII 170 Right PHG parahippocampal gyrus 

73 Cerebellar Vermal Lobules VIII-X 171 Left PHG parahippocampal gyrus 

75 Left Basal Forebrain 172 Right PIns posterior insula 

76 Right Basal Forebrain 173 Left PIns posterior insula 

100 Right ACgG anterior cingulate gyrus 174 Right PO parietal operculum 

101 Left ACgG anterior cingulate gyrus 175 Left PO parietal operculum 

102 Right AIns anterior insula 176 Right PoG postcentral gyrus 

103 Left AIns anterior insula 177 Left PoG postcentral gyrus 

104 Right AOrG anterior orbital gyrus 178 Right POrG posterior orbital gyrus 

105 Left AOrG anterior orbital gyrus 179 Left POrG posterior orbital gyrus 

106 Right AnG angular gyrus 180 Right PP planum polare 

107 Left AnG angular gyrus 181 Left PP planum polare 

108 Right Calc calcarine cortex 182 Right PrG precentral gyrus 

109 Left Calc calcarine cortex 183 Left PrG precentral gyrus 

112 Right CO central operculum 184 Right PT planum temporale 

113 Left CO central operculum 185 Left PT planum temporale 

114 Right Cun cuneus 186 Right SCA subcallosal area 

115 Left Cun cuneus 187 Left SCA subcallosal area 

116 Right Ent entorhinal area 190 Right SFG superior frontal gyrus 

117 Left Ent entorhinal area 191 Left SFG superior frontal gyrus 

118 Right FO frontal operculum 192 Right SMC supplementary motor cortex 

119 Left FO frontal operculum 193 Left SMC supplementary motor cortex 

120 Right FRP frontal pole 194 Right SMG supramarginal gyrus 



125 
 

121 Left FRP frontal pole 195 Left SMG supramarginal gyrus 

122 Right FuG fusiform gyrus 196 Right SOG superior occipital gyrus 

123 Left FuG fusiform gyrus 197 Left SOG superior occipital gyrus 

124 Right GRe gyrus rectus 198 Right SPL superior parietal lobule 

125 Left GRe gyrus rectus 199 Left SPL superior parietal lobule 

128 Right IOG inferior occipital gyrus 200 Right STG superior temporal gyrus 

129 Left IOG inferior occipital gyrus 201 Left STG superior temporal gyrus 

132 Right ITG inferior temporal gyrus 202 Right TMP temporal pole 

133 Left ITG inferior temporal gyrus 203 Left TMP temporal pole 

134 Right LiG lingual gyrus 204 Right TrIFG triangular part of the inferior frontal gyrus 

135 Left LiG lingual gyrus 205 Left TrIFG triangular part of the inferior frontal gyrus 

136 Right LOrG lateral orbital gyrus 206 Right TTG transverse temporal gyrus 

137 Left LOrG lateral orbital gyrus 207 Left TTG transverse temporal gyrus 

Table IX.1 List of ROI names used in the whole-brain segmentation scheme. 
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2. Chapter VII 

In this appendix we include a figure of all non-significant brain regions and the estimated effect size 

associated wit exposure to heart failure and corresponding confidence intervals. We include an associated 

table for the effect size and p-values for all brain regions. Lastly, we include a table with the effect size and 

p-value for all clinical comorbidities included in the PheWAS study.  

 

 

Region of Interest Log Odds Corrected p-value 

Left Accumbens Area -4.42E-03 0.024 

Left Basal Forebrain -3.58E-03 0.204 

Right Basal Forebrain -2.72E-03 0.220 

Right Accumbens Area -2.62E-03 0.273 

Right Amygdala -2.46E-03 0.024 

Left Amygdala -2.25E-03 0.065 

Left posterior insula -1.58E-03 0.012 

Left anterior orbital gyrus -1.37E-03 0.000 

 

Figure IX.2 Volumetric analysis of non-significant regions. All non-significant regions are shown on the y-axis with the 
corresponding log odds and 95% confidence intervals. These regions are ranked according to predicted effect size, where negative 
effect size signifies volume loss associated with heart failure with preserved ejection fraction (HFpEF).  
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Left planum polare -9.60E-04 0.108 

Right entorhinal area -7.06E-04 0.204 

Right gyrus rectus -6.86E-04 0.324 

Left parahippocampal gyrus -6.80E-04 0.154 

Right Hippocampus -6.41E-04 0.067 

Left medial frontal cortex -6.31E-04 0.387 

Right occipital pole -5.43E-04 0.204 

Left Hippocampus -5.42E-04 0.204 

Right posterior insula -5.35E-04 0.365 

Right parahippocampal gyrus -5.32E-04 0.332 

Left gyrus rectus -4.85E-04 0.472 

Left occipital pole -4.84E-04 0.173 

Left Caudate -4.71E-04 0.323 

Left lateral orbital gyrus -4.63E-04 0.258 

Left postcentral gyrus medial segment -4.60E-04 0.556 

Right orbital part of the inferior frontal gyrus -4.54E-04 0.387 

Left entorhinal area -4.42E-04 0.470 

Left subcallosal area -4.22E-04 0.430 

Right medial frontal cortex -4.08E-04 0.479 

Right frontal operculum -4.06E-04 0.465 

Right occipital fusiform gyrus -3.98E-04 0.181 

Right subcallosal area -3.92E-04 0.516 

Left middle occipital gyrus -3.55E-04 0.067 

Right calcarine cortex -3.54E-04 0.204 

Left central operculum -3.39E-04 0.332 

Left anterior insula -3.27E-04 0.387 

Left orbital part of the inferior frontal gyrus -3.25E-04 0.556 

Right anterior insula -3.10E-04 0.387 

Cerebellar Vermal Lobules VIII-X -3.05E-04 0.556 

Right temporal pole -3.02E-04 0.065 

Right central operculum -3.01E-04 0.422 

Right Caudate -3.01E-04 0.422 

Left Thalamus Proper -3.01E-04 0.387 

Left posterior orbital gyrus -3.00E-04 0.448 

Right Thalamus Proper -2.97E-04 0.332 

Left temporal pole -2.93E-04 0.067 

Cerebellar Vermal Lobules I-V -2.82E-04 0.332 

Right anterior orbital gyrus -2.72E-04 0.556 

Left triangular part of the inferior frontal gyrus -2.53E-04 0.360 
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Right superior occipital gyrus -2.38E-04 0.390 

Right transverse temporal gyrus -2.22E-04 0.705 

Right angular gyrus -2.22E-04 0.043 

Right planum polare -2.21E-04 0.705 

Left transverse temporal gyrus -2.15E-04 0.705 

Left medial orbital gyrus -2.10E-04 0.446 

Left cuneus -2.08E-04 0.422 

Right frontal pole -2.07E-04 0.422 

Left superior temporal gyrus -2.05E-04 0.324 

Left frontal pole -2.03E-04 0.448 

Right Cerebellum White Matter -1.94E-04 0.044 

Left lingual gyrus -1.93E-04 0.322 

Right Ventral DC -1.85E-04 0.679 

Right precentral gyrus -1.66E-04 0.186 

Left Cerebellum White Matter -1.59E-04 0.136 

Right lingual gyrus -1.57E-04 0.360 

Right Pallidum -1.56E-04 0.918 

Right superior temporal gyrus -1.53E-04 0.448 

Left anterior cingulate gyrus -1.53E-04 0.472 

Right anterior cingulate gyrus -1.46E-04 0.526 

Left superior occipital gyrus -1.43E-04 0.636 

Right triangular part of the inferior frontal gyrus -1.36E-04 0.678 

Right planum temporale -1.34E-04 0.777 

Right  superior frontal gyrus medial segment -1.24E-04 0.446 

Left angular gyrus -1.24E-04 0.323 

Left calcarine cortex -1.14E-04 0.705 

Brain Stem -1.13E-04 0.322 

Left superior frontal gyrus medial segment -1.10E-04 0.551 

Left postcentral gyrus -1.10E-04 0.390 

Right posterior cingulate gyrus -1.09E-04 0.705 

Left middle temporal gyrus -1.08E-04 0.322 

Left supramarginal gyrus -1.04E-04 0.422 

Right inferior temporal gyrus -1.01E-04 0.391 

Right superior parietal lobule -9.40E-05 0.397 

Left Ventral DC -9.33E-05 0.841 

4th Ventricle -9.16E-05 0.779 

Left precentral gyrus -8.74E-05 0.472 

Right cuneus -8.71E-05 0.705 

Left opercular part of the inferior frontal gyrus -8.04E-05 0.779 
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Right precuneus -7.81E-05 0.556 

Left supplementary motor cortex -7.65E-05 0.705 

Left inferior temporal gyrus -7.63E-05 0.465 

Right middle temporal gyrus -7.15E-05 0.479 

Right inferior occipital gyrus -6.68E-05 0.679 

Right middle frontal gyrus -4.77E-05 0.477 

Right medial orbital gyrus -4.55E-05 0.920 

Left middle frontal gyrus -3.95E-05 0.556 

Right supramarginal gyrus -3.93E-05 0.779 

Right postcentral gyrus -3.83E-05 0.779 

Left  posterior cingulate gyrus -3.82E-05 0.943 

Left occipital fusiform gyrus -2.73E-05 0.946 

Right parietal operculum -2.32E-05 0.964 

Left inferior occipital gyrus -3.78E-06 0.982 

Right Cerebral White Matter -3.29E-06 0.705 

Right fusiform gyrus -1.70E-06 0.994 

Left Cerebral White Matter -7.72E-07 0.950 

Right precentral gyrus medial segment -4.53E-07 0.999 

Left Lateral Ventricle -3.97E-07 0.982 

Right Cerebellum Exterior 3.90E-06 0.946 

Left superior parietal lobule 8.49E-06 0.957 

Right Lateral Ventricle 9.03E-06 0.556 

Left Cerebellum Exterior 1.10E-05 0.781 

Left Inf Lat Vent 1.28E-05 0.978 

Right middle occipital gyrus 1.29E-05 0.964 

Right supplementary motor cortex 1.38E-05 0.964 

Right superior frontal gyrus 1.62E-05 0.884 

Left fusiform gyrus 2.13E-05 0.943 

Left planum temporale 2.21E-05 0.964 

Left superior frontal gyrus 3.16E-05 0.748 

Right lateral orbital gyrus 4.30E-05 0.943 

Left precuneus 5.51E-05 0.701 

Left parietal operculum 8.12E-05 0.852 

3rd Ventricle 8.49E-05 0.740 

Cerebellar Vermal Lobules VI-VII 9.06E-05 0.918 

Right opercular part of the inferior frontal gyrus 1.03E-04 0.705 

Right middle cingulate gyrus 1.04E-04 0.705 

Right posterior orbital gyrus 1.50E-04 0.705 

Left Putamen 2.01E-04 0.647 
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Right Putamen 2.15E-04 0.604 

Right Inf Lat Vent 2.24E-04 0.556 

Left  middle cingulate gyrus 2.42E-04 0.332 

Left Pallidum 2.49E-04 0.838 

Left frontal operculum 2.69E-04 0.628 

Left precentral gyrus medial segment 3.31E-04 0.505 

Right postcentral gyrus medial segment 8.24E-04 0.291 
Table IX.2 Volumetric analysis of regions of interest in the brain. A negative log odds signifies volume atrophy associated 
with heart failure. P-values are corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate. 

 

PheCode  Effect Size 95% Confidence Interval 
Corrected p-

value 

Septicemia 1.87 0.95 2.79 0.028 

Type 1 diabetes 2.10 1.11 3.09 0.013 

Type 2 diabetes with neurological manifestations 2.47 1.47 3.48 0.001 

Polyneuropathy in diabetes 2.49 1.37 3.61 0.005 

Disorders of lipoid metabolism 1.85 0.99 2.72 0.010 

Hyperpotassemia 1.97 1.11 2.83 0.003 

Hypopotassemia 1.76 0.96 2.57 0.007 
Iron deficiency anemias,  unspecified or not due to blood 
loss 1.89 1.02 2.77 0.009 

Other anemias 1.71 0.89 2.53 0.017 

Anemia of chronic disease 2.34 1.17 3.51 0.035 

Alteration of consciousness 1.75 0.94 2.55 0.008 

Mitral valve disease 3.27 2.03 4.52 <0.001 

Nonrheumatic mitral valve disorders 2.79 1.81 3.77 <0.001 

Nonrheumatic aortic valve disorders 2.24 1.27 3.22 0.003 

Hypertensive heart and/or renal disease 2.54 1.31 3.76 0.019 

Hypertensive heart disease 2.54 1.63 3.45 <0.001 

Unstable angina (intermediate coronary syndrome) 2.35 1.37 3.34 0.001 

Myocardial infarction 2.41 1.53 3.29 <0.001 

Angina pectoris 2.57 1.49 3.66 0.001 

Coronary atherosclerosis 2.07 1.21 2.93 0.001 

Other chronic ischemic heart disease, unspecified 3.14 2.21 4.07 <0.001 

Other forms of chronic heart disease 1.89 0.95 2.82 0.029 

Cardiomegaly 2.44 1.58 3.29 <0.001 

Nonspecific chest pain 2.30 1.28 3.33 0.004 

Precordial pain 1.79 0.89 2.70 0.042 

Cardiac conduction disorders 2.03 1.00 3.05 0.044 

Atrial fibrillation 2.32 1.44 3.21 <0.001 

Tachycardia NOS 1.65 0.82 2.49 0.041 
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Atherosclerosis of aorta 1.79 0.88 2.70 0.047 

Hypotension NOS 1.99 1.15 2.84 0.002 

Acute bronchitis and bronchiolitis 1.73 0.88 2.59 0.027 

Obstructive chronic bronchitis 2.34 1.19 3.50 0.028 

Pleurisy; pleural effusion 1.93 1.09 2.78 0.003 

Respiratory failure 2.33 1.30 3.37 0.004 

Shortness of breath 2.08 1.22 2.95 0.001 

Other dyspnea 1.64 0.84 2.44 0.025 

Diarrhea 1.84 1.02 2.66 0.004 

Acute renal failure 1.62 0.81 2.43 0.034 

Disorder of skin and subcutaneous tissue NOS 1.73 0.86 2.61 0.042 

Swelling of limb 2.41 1.53 3.29 <0.001 

Edema 2.05 1.22 2.88 0.001 

Sepsis 2.09 1.17 3.00 0.003 
Table IX.3 PheWAS results for significant clinical associations with HFpEF in the setting of dementia in patients with 
high resolution imaging. P-values are corrected for multiple comparisons using Bonferroni corrections. 
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