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Introduction

Item response theory (IRT) is a test theory that analyzes responses at the item level.

IRT is a popular methodology for developing and evaluating scales used in educational and

psychological research. In IRT, marginal maximum likelihood estimation (MMLE; Bock &

Aitkin, 1981), or full information maximum likelihood (FIML), is largely considered the

“gold standard” for item parameter estimation (Baker & Kim, 2004). Previous research on

MMLE has shown that the accuracy and precision of item parameter estimates is acceptable

in medium and large sample sizes (e.g., Forero & Maydeu-Olivares, 2009; Kieftenbeld &

Natesan, 2012; Reise & Yu, 1990). In small sample sizes MMLE can struggle with obtaining

accurate and precise item parameter estimates, or may not converge at all. Unfortunately,

it is not uncommon for researchers to struggle with obtaining medium or large sample sizes.

Studies of rare populations (e.g., individuals with Rett syndrome, students with listening

fatigue, individuals with substance use disorders) can make it difficult to obtain more partic-

ipants. In addition, small research institutions may not have the necessary funds to afford to

test more participants. With small sample sizes, alternative methods are required to obtain

accurate and precise item parameter estimates with whatever data are available.

Bayesian estimation methods have been used in IRT estimation to increase the accuracy

(by reducing the mean squared error) and precision (by reducing the standard error) of item

parameter estimates (e.g., Albert, 1992; Edwards, 2010; Patz & Junker, 1999). Mislevy

(1988) proposed an empirical Bayes method to increase the stability and precision of item

location (or difficulty) estimates in Rasch models. The method proposed by Mislevy (1988)

is considered “empirical Bayes” because it uses both maximum likelihood estimates and re-

gression estimates (as prior means) to obtain shrinkage estimates in three steps. However,

the implementation of this three-step empirical Bayes method differs from the one-step im-

plementation of empirical Bayes most commonly performed in the literature. We discuss

these differences in the summary and discussion section. Mislevy (1988) used auxiliary item

information (i.e., item domain information such as what mathematical operation(s) was/were
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required to solve items) to compensate for the lack of information available from persons in

a sample size of 150. Auxiliary item information was used by the empirical Bayes method as

item covariates grouping similar items together regarding their content, format, or the skills

required to solve them. In Mislevy’s (1988) study, using auxiliary item information resulted

in a 25% increase in the precision of item location estimates, an increase that otherwise

would have required testing approximately 40 additional persons.

One limitation of the empirical Bayes method used by Mislevy (1988) is that the uncer-

tainty of item parameter estimates is ignored, which can result in underestimated standard

errors. This underestimation of standard errors is especially problematic with small sam-

ple sizes. To incorporate the uncertainty of item parameter estimates, hierarchical Bayes

methods can be used. As opposed to empirical Bayes, which uses point priors for item pa-

rameters, hierarchical Bayes methods specify prior distributions on item parameters (called

“hyper-priors”). Inverse-gamma(ε,ε) distributions are typically selected as hyper-priors on

the variance of item parameters for their conditional conjugacy (having prior and conditional

posterior distributions belonging to the same class) suggesting clean mathematical proper-

ties. However, Gelman (2006) does not recommend inverse-gamma(ε,ε) distributions as

noninformative priors, because the resulting inferences when estimating near-zero standard

deviations are highly dependent upon the choice of ε. Instead, Gelman (2006) recommends

half-t distributions (specifically half-Cauchy when the number of groups is small) on standard

deviations as weakly-informative and conditionally-conjugate priors.

Likert-type rating scales are common in psychological research. The item response model

most widely used for modeling rating scales is the graded response model (GRM; Samejima

1969). The GRM is popular for being highly flexible in modeling tests with items having

unique thresholds (both in number and in location for each item). No previous research has

been conducted on applying the empirical Bayes method (as used by Mislevy, 1988) to the

GRM or on evaluating the performance of using half-t and half-Cauchy distributions in a

hierarchical Bayes method as hyper-priors for the GRM.
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The primary purpose of this study is to apply empirical and hierarchical Bayes methods

using auxiliary item information to a GRM to obtain item parameter estimates with greater

accuracy and precision, particularly in small to medium sample sizes. For the purpose of

comparing empirical Bayes and hierarchical Bayes, we extend Mislevy’s (1988) empirical

Bayes method for a Rasch model to a GRM. Specific research questions this study plans to

answer regarding the GRM are as follows:

(1a) Among the estimation methods of interest (MMLE, empirical Bayes, and hierarchical

Bayes), which method results in the most accurate item parameter estimates in small to

medium sample sizes?

(1b) Is a hierarchical Bayes method an acceptable alternative to MMLE in small to

medium sample sizes when MMLE is unable to achieve convergence?

(2) How much is the accuracy of item parameter estimates in small to medium sample

sizes increased when using a hierarchical Bayes method with the use of item covariates

compared to a hierarchical Bayes method without item covariates?

(3) How much is the underestimation of the standard errors of item parameter estimates

reduced in small to medium sample sizes by including the uncertainty of item parameter

estimates with a hierarchical Bayes method compared to an empirical Bayes method?

These research questions will be answered by comparing the results of MMLE, empirical

Bayes, and hierarchical Bayes (with and without the use of item covariates) via a simulation

study. An additional research goal of this study is to provide R functions for the application

of these empirical and hierarchical Bayes methods.

The rest of this paper is structured as follows. First, a background of the GRM with aux-

iliary item information and of Bayesian analysis and its relevant concepts are provided. Sec-

ond, empirical and hierarchical Bayes methods are described. Third, the methods described

are applied to an empirical data set to illustrate MMLE, empirical Bayes, and hierarchical

Bayes methods. Fourth, a simulation study is conducted to evaluate the relative performance

of the methods described under various simulation conditions. Finally, we conclude with a
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summary and discussion.

Background

GRM with Auxiliary Item Information

Samejima’s (1969) GRM specifies the conditional cumulative probability of response yji

for person j (j = 1, . . . , J) and item i (i = 1, . . . , I) in category k (k = 0, 1, . . . ,mi − 1),

where mi is the number of categories for each item i, as follows:

P (yji ≥ k|θj) = (1)


1 if k = 0

logit−1[αi(θj − βi,k)] if 1 ≤ k ≤ mi − 1,

where logit−1 denotes the inverse logit link, αi is an item discrimination parameter, βi,k is an

item threshold parameter, and θj is a latent variable. The categorical response probability

is specified as the difference between two adjacent cumulative probabilities:

P (yji = k|θj) = P (yji ≥ k|θj)− P (yji ≥ k + 1|θj), (2)

where P (yji ≥ mi|θj) = 0.

Variability in item parameters across items can be explained or predicted using auxiliary

item information such as item format (e.g., Hohensinn & Kubinger, 2011), item contents (or

domains, e.g., Shermis & Chang, 1997), or the skills required to solve items (e.g., Hartig,

Frey, Nold, & Klieme, 2012). There are three lines of research on the use of auxiliary item

information. The first line of research is to use auxiliary item information to obtain stable

and precise item parameter estimates of item response models. Mislevy (1988) presented

an empirical Bayes method to obtain stable and precise Rasch item location parameter

estimates. The second line of research is to incorporate cognitive theories about the skills

required to answer an item correctly in item response models (Embretson, 1998). The third

line of research is to use auxiliary item information for item generation models (Bejar, 2012;

Cho, De Boeck, Embretson, & Rabe-Hesketh, 2014; Embretson, 1999).

4



In this paper, we focus on the use of auxiliary item information to obtain stable and

precise item parameter estimates of the GRM using empirical and hierarchical Bayes meth-

ods. A linear regression model with normal and homoscedastic residuals is assumed for item

parameters, as used in other item regression models (e.g., Cho et al., 2014; Mislevy, 1988).

The regression structure of item discrimination parameters can be imposed as follows:

αi = γα0 +
D∑
d=1

γαdxid + εαi, (3)

where d is the index for auxiliary item information (or item covariate) (d = 1, . . . , D),

γα0 is the intercept parameter, γαd is the effect of item covariate xid on discrimination

parameter αi, and εαi is the random item residual, assumed to follow (εα1, . . . , εαI)
T ∼

MVN(0, σ2
αII), where σ2

α is the variance of the random item residual. Similarly, for item

threshold parameters:

βi,k = γβ0k +
D∑
d=1

γβdkxid + εβik, (4)

where γβ0k is the intercept parameter, γβdk is the effect of item covariate xid on threshold

parameter βi,k, and εβik is the random item residual, assumed to follow (εβ1k, . . . , εβIk)
T ∼

MVN(0, σ2
βkII), where σ2

βk is the variance of the random item residual across items for

category k.

Bayesian Analysis

Bayesian analysis uses prior distributions on a set of parameters S (denoted by P (S))

and the likelihood of available data Y (denoted by P (Y |S)) to create a posterior distribution

(denoted by P (S|Y )) that generally results in more stable estimates with smaller standard

errors than maximum likelihood estimates (e.g., Gelman et al., 2014). The important con-

cepts of Bayesian analysis and their applications to the GRM as used in this paper are

described below.

Prior distribution. In Bayesian analysis, the prior distributions are the probability

distributions on the set of parameters S before using the data. This distribution can come

from past research, or from a researcher’s “best guess” of what the population’s distribution
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looks like. In the GRM, the set of parameters is denoted by S = {θj, αi, βik | (1 ≤ j ≤

J), (1 ≤ i ≤ I), (1 ≤ k ≤ mi − 1)}, which includes the level of the latent trait for each

person (θj), as well as the item discrimination and threshold parameters for each item (αi

and βik, respectively). The prior distributions of these parameters are denoted by P (θj),

P (αi), and P (βik), respectively, with an independent prior assumption.

Exchangeability. When we make the assumption of exchangeability we assume that

parameters of the same type are obtained from the same population at random, and as a

result the ordering of their subscripts is purely arbitrary and has no bearing on their values.

Under this assumption, the joint probability distribution of parameters is invariant to the

permutation of its subscripts.

For the GRM, we make the assumption that parameters are identically and independently

distributed (iid), meaning that parameters of the same type (such as levels of the latent

trait over persons, discrimination parameters over items, and threshold parameters within

a category over items) are obtained from the same population for that parameter’s type

independently of one another, and therefore the value of any parameter has no effect on the

value of any other parameter of the same type.

For the GRM, the iid sequence is exchangeable. Therefore, exchangeability is assumed

for the GRM for levels of the latent trait (θj) over persons. As an example, P (θ1, θ2, θ3) =

P (θ3, θ1, θ2) can be assumed for persons j = 1, 2, 3. Similarly, discrimination parameters are

considered to be exchangeable over items, as are threshold parameters (within a category)

over items. Assuming exchangeability over items can be justified when there is no prior

information to distinguish among the items. However, when auxiliary item information is

available, the exchangeability of items can only be assumed for items with identical auxiliary

item information.

Likelihood. Once the data are obtained, the likelihood function P (Y |S) can be used

to specify the probability that any possible set of parameters S could result in the data

obtained. The higher the likelihood for a set of parameters S, the more likely S is to reflect
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the population from which the sample was obtained. Given the assumptions of iid for the

GRM, P (Y |S) can be obtained by taking the product of all likelihood functions for individual

responses yji as follows:

P (Y |S) =
J∏
j=1

I∏
i=1

mi−1∏
k=0

P (yji ≥ k | S)I[yji=k], (5)

where I[yji = k] is the indicator function, equal to 1 when yji = k and otherwise equal to

0. Posterior distribution using Bayes’ theorem. Once the likelihood function is

obtained, the posterior distribution P (S|Y ) can be specified using Bayes’ theorem:

P (S|Y ) =
P (Y |S) · P (S)∫

S
P (Y |S) · P (S)dS

∝ P (Y |S) · P (S), (6)

where P (Y |S) is the likelihood function, P (S) is the prior distribution of S, and
∫
S
P (Y |S) ·

P (S)dS is equivalent to the numerator of Bayes’ theorem integrated over all possible param-

eter sets S. Because this integral is fixed, the posterior distribution P (S|Y ) is proportional

to the numerator of Equation 6, P (Y |S) · P (S).

Given the assumptions of iid and exchangeability for the GRM, the joint posterior dis-

tribution for S is specified as follows:

P (S|Y ) ∝ P (Y |S) ·
J∏
j=1

I∏
i=1

mi−1∏
k=1

P (θj)P (αi)P (βik), (7)

where the joint probability
∏J

j=1

∏I
i=1

∏mi−1
k=1 P (θj)P (αi)P (βik) is equal to P (S).

Empirical vs. hierarchical Bayes method. If it is assumed that parameters of the

same type (such as latent trait θj) are obtained from the same population (e.g., N(µθ, σ
2
θ)),

then the parameters of that population (called hyperparameters, denoted by H = {µθ, σ2
θ})

need to be estimated as well. There are two different approaches for estimating H.

The first approach, called empirical Bayes, obtains estimates for H by working backwards

from the data to determine what values of H are most likely to result in the data obtained.

Although this method is the simpler of the two, it is not ideal because it uses the data to

7



obtain the prior’s hyperparameters, which goes against the idea of a prior distribution being

obtained before the data are obtained.

The second approach, called hierarchical Bayes, treats H as a set of parameters to be

estimated alongside S. Using this approach, Bayes’ theorem is rewritten to include H as

follows:

P (S,H | Y ) ∝ P (Y | S,H) · P (S |H) · P (H), (8)

where P (S |H) is the prior distribution of S given hyperparameters H, and P (H) is the

hyper-prior distribution. Hierarchical Bayesian analysis is usually preferred over empirical

Bayesian analysis for its higher precision in estimating H. Hierarchical Bayesian analysis

incorporates the uncertainty in estimating H by including its hyper-prior distribution P (H)

in the model. Empirical Bayesian analysis, however, ignores this uncertainty by only obtain-

ing point estimates for H, often resulting in an underestimation of the posterior standard

deviations for item parameter estimates.

Shrinkage estimator. In the prior distribution, all parameters of the same type are

restricted to the prior mean. The less variation there is within the population, the closer

posterior estimates are to the prior mean. Figure 1 (top) (inspired by Figure 1 in Mislevy

[1988]) illustrates this concept for nine different parameter estimates.

In Figure 1 (top), posterior estimates are a compromise between the prior mean and

the maximum likelihood estimates (obtained from the data without the use of priors). The

posterior estimates, or shrinkage estimates, have higher precision than maximum likelihood

estimates. However, these posterior estimates are also subject to larger bias than maximum

likelihood estimates. This bias results from the use of the prior mean in obtaining poste-

rior estimates. How much influence the prior mean has over posterior estimates is called

“shrinkage,” which is calculated as the distance between the maximum likelihood estimate

and the posterior estimate relative to the total distance between the maximum likelihood

estimate and the prior mean. For example, the proportional shrinkage of item discrimination

estimates is calculated as follows:
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Shrinkage(α̃i) =
α̂i − α̃i
α̂i − ᾱi

, (9)

where α̂i−α̃i is the distance between the maximum likelihood estimate (α̂i) and the posterior

estimate (α̃i), and α̂i − ᾱi is the total distance between the maximum likelihood estimate

and the prior mean (ᾱi). These distances are illustrated in Figure 1 (middle). Less variation

within the population (i.e., prior variance) results in posterior estimates shrinking more

towards the prior mean. In the extreme case where the prior variance is equal to 0, posterior

estimates shrink completely to equal the prior mean. Inversely, more variation within the

population results in posterior estimates shrinking less towards the prior mean. In the

extreme case where the prior variance is infinite, posterior estimates won’t shrink at all,

resulting in posterior estimates equaling the maximum likelihood estimates.

Gelman et al. (2014) discusses the advantages of using partially-pooled estimates ob-

tained with a prior mean, as this allows both information regarding the similarities (pooled

estimates) and individualities (separate estimates) of the data to be utilized. The usage

of both pooled and separate information results in estimates with higher accuracy. When

there is no prior information to distinguish item parameters of the same type, we assume

exchangeability among all such parameters. When this is the case, all item parameters of the

same type shrink towards a single prior mean, as illustrated in Figure 1 (top). When item

covariates are available to indicate different item groups, item parameters are considered

exchangeable only with item parameters within the same group (i.e., having the same values

for item covariates [Mislevy, 1988]). When this is the case, each group of item parameters

shrinks towards a different prior mean, as illustrated in Figure 1 (bottom) with three item

covariates. As shown in Gelman et al. (2014), shrinkage estimates with different prior means

tend to be less biased than shrinkage estimates with a single prior mean.

Methods

In this section we describe the empirical Bayes and hierarchical Bayes methods imple-

mented in this study, and how these methods can be used to obtain estimates of GRM item

9



parameters by using auxiliary item information. We extend Mislevy (1988)’s empirical Bayes

method for the Rasch model to the method for the GRM, and then discuss the specification

of the prior and posterior distribution for hierarchical Bayes.

Empirical Bayes Method

The estimation of GRM item parameters with an empirical Bayes method takes place

over three steps, as described below.

Step 1. Maximum likelihood estimates of item parameters. In Step 1, item

parameters (αi and βi,k) and corresponding standard errors (ταi and τβik) were estimated

using MMLE. MMLE was implemented using the mirt package (Chalmers, 2019) in R (R

Core Team, 2018).

Step 2. Maximum likelihood estimates of the regression parameters and the

residual variance. In Step 2, we consider item regression models (Equations 3 and 4)

using the maximum likelihood estimates of item parameters obtained in Step 1 (α̂i and β̂ik).

Because we use the maximum likelihood estimates from Step 1, the uncertainty of these

estimates is ignored in Step 2. Maximum likelihood estimates of the regression parameters

of these item regression models were obtained using the lm function in R.

The regression structure is imposed on item discrimination estimates as follows:

α̂i = γα0 + ΣD
d=1γαdxid + hαi, (10)

where (hα1, . . . , hαI)
T ∼MVN(0, φ2

αI). Similarly, for item threshold estimates:

β̂ik = γβ0k + ΣD
d=1γβdkxid + hβik, (11)

where (hβ1k, . . . , hβIk)
T ∼MVN(0, φ2

βkI).

Unbiased estimates of the residual variances (φ2
α and φ2

βk) were calculated using the

following equations (Rencher, 2000, p. 143):

φ̂2
α =

∑I
i=1 h̃

2
αi

I −D − 1
(12)

10



and
φ̂2
βk =

∑I
i=1 h̃

2
βik

I −D − 1
, (13)

where D is the number of item covariates. The standard errors of the residual variance for

item discrimination estimates were calculated using the following equation (Rencher, 2000,

p. 143):
(I −D − 1)φ̂2

α

φ2
α

∼ χ2(I −D − 1). (14)

The variance of each side in Equation 14 is:

V ar[
(I −D − 1)φ̂2

α

φ2
α

] = 2(I −D − 1). (15)

Accordingly, the standard errors of the residual variance for item discriminations can be

calculated as follows:

SEφ2
α

=

√
V ar(φ̂2

α) =

√
2(I −D − 1)(

φ2
α

I −D − 1
)2 =

√
2φ4

α

I −D − 1
. (16)

Following a similar derivation, the standard errors of the residual variances for item

threshold estimates were calculated as follows:

SEφ2
βk

=

√
2φ4

βk

I −D − 1
. (17)

Step 3. Empirical Bayes estimates of item parameters. In Step 3, the empirical

Bayes estimates of item parameters and the precision of those estimates are calculated,

based on the results obtained from Steps 1 and 2. The empirical Bayes estimate α̃i is

the weighted average of the maximum likelihood estimate α̂i and the regression estimate

ᾱi = γ̂α0 + ΣD
d=1γ̂αdxid with weights proportional to their respective precisions1:

α̃i = E(α|α̂i, τ̂ 2
αi, γ̂α0, γ̂αd, φ̂

2
α) =

α̂iτ̂
−2
αi + ᾱiφ̂

−2
α

τ̂−2
αi + φ̂−2

α

. (18)

Equation 18 implies the following at the extreme cases:

• α̃i = ᾱi if α̂i = ᾱi or φ2
α = 0. Having φ2

α = 0 means that ᾱi is infinitely more precise

1The precision of an estimate is equal to the inverse of its variance.
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than α̂i.

• α̃i = α̂i if α̂i = ᾱi or τ 2
αi = 0. Having τ 2

αi = 0 means that α̂i is infinitely more precise

than ᾱi.

Similarly for item threshold parameters, the empirical Bayes estimate β̃ik is the weighted

average of the maximum likelihood estimate β̂ik and the regression estimate β̄ik = γ̂β0k +

ΣD
d=1γ̂βdkxid with weights proportional to their respective precisions:

β̃ik = E(β|β̂ik, τ̂ 2
βik, γ̂β0k, γ̂αd, φ̂

2
βk) =

β̂ikτ̂
−2
βik + β̄ikφ̂

−2
βk

τ̂−2
βik + φ̂−2

βk

. (19)

Each empirical Bayes estimate (α̃i, β̃ik) gains precision from both the precision of its

maximum likelihood estimates (τ̂−2
αi , τ̂−2

βik) obtained in Step 1 and from the precision of its

regression estimates (φ̂−2
α , φ̂−2

βk ) obtained in Step 2:

σ̃−2
αi = τ̂−2

αi + φ̂−2
α (20)

and
σ̃−2
βik = τ̂−2

βik + φ̂−2
βk . (21)

The residual variance for the empirical Bayes estimates of each item parameter type is

equal to the inverse of its summed precision:

σ̃2
αi =

1

τ̂−2
αi + φ̂−2

α

(22)

and
σ̃2
βik =

1

τ̂−2
βik + φ̂−2

βk

. (23)

As shown earlier, proportional shrinkage is calculated as the distance between the max-

imum likelihood estimate and the posterior estimate relative to the total distance between

the maximum likelihood estimate and the prior mean. For item discrimination parameters:

Shrinkage(α̃i) =
α̂i − α̃i
α̂i − ᾱi

. (24)
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Similarly, for item threshold parameters:

Shrinkage(β̃ik) =
β̂ik − β̃ik
β̂ik − β̄ik

. (25)

Hierarchical Bayes Method

Specifications of prior and posterior distributions. For the GRM with auxiliary

item information, the joint posterior distribution of

S = {θj, αi, βik, γα0, γαd, σ
2
α, γβ0k, γβdk, σ

2
βk} can be written as:

P(S|y) ∝ {
J∏
j=1

I∏
i=1

mi−1∏
k=0

P (yji ≥ k | S)I(yji=k)}·

{
J∏
j=1

P (θj)}{
I∏
i=1

P (αi|γα0,γα, σ
2
α)}{

I∏
i=1

mi−1∏
k=1

P (βik|γβ0k,γβk, σ
2
βk)}·

P (γα0)P (γαd)P (σ2
α)

mi−1∏
k=1

P (γβ0k)P (γβdk)P (σ2
βk), (26)

where the first line is the likelihood function, the second line is the prior distributions, andthe third line is the hyper-prior distributions.

Independent priors for θj, αi, and βik were specified as follows:

θj ∼ N(0, 1),

αi ∼ N(γα0 +
D∑
d=1

γαdxid, σ
2
α),

and

βi,k ∼ N(γβ0k +
D∑
d=1

γβdkxid, σ
2
βk).

We could impose a univariate prior or a multivariate prior on item thresholds in a hier-

archical Bayes method. When we use a weakly-informative prior as in the present study, we

found that the choice of prior between the univariate prior and the multivariate prior does

not affect posterior distributions of item parameters except in the case of highly-correlated

item thresholds (e.g., r = .7). The detailed investigation is provided in Appendix A.
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The hyper-prior distributions on regression coefficients (γα0, γαd, γβ0k, and γβdk) were set

as a normal distribution with weakly informative priors, N(0, 10). Weakly informative priors

should be selected to intentionally convey less prior information than is readily available,

to eliminate or discourage impossible or improbable parameter values without influencing

the posterior in one particular direction over another (Gelman et al., 2014). The weakly

informative prior N(0, 10) on regression coefficients (as illustrated in Figure 2 [top]) was

selected to indicate a minimal preference towards zero, as these values are generally expected

to be relatively small in magnitude.

Gelman (2006) recommended the half-t or half-Cauchy distribution on standard devia-

tion parameters as a weakly-informative and conditionally-conjugative prior, especially when

dealing with small sample sizes. Polson and Scott (2011) noted that “the half-Cauchy occu-

pies a sensible ‘middle ground’ . . . it performs very well near the origin, but does not lead to

drastic compromises in other parts of the parameter space.” The half-Cauchy distribution

with a scale parameter of 10 was used on residual SD (RSD) parameters in this study:

σα ∼ Cauchy(0, 10)I(0, )

and

σβk ∼ Cauchy(0, 10)I(0, ),

where I(0, ) indicates that the distribution is truncated at 0. As shown in Figure 2 (bottom),

the distribution becomes a uniform prior density on standard deviations when the scale

parameter of the half-Cauchy increases from 1 to 25. The scale parameter of 10 that we

chose is considered weakly informative because it has a gentle slope in the tail and allows

the data to dominate when the likelihood is strong in the tail.

For hierarchical Bayes estimates, posterior shrinkage can be calculated for each item

parameter type based on the proportional reduction in variance:
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s =
σ2
prior − σ2

posterior

σ2
prior

(27)

Posterior shrinkage near zero indicates that the data provided little information beyond

that present in the selected prior, whereas posterior shrinkage near one indicates that the

data provided enough information to strongly influence posterior estimates.

Bayesian computation. MCMC sampling was conducted using rStan, the R inter-

face to Stan (Stan Development Team, 2018). rStan is capable of implementing Euclidean

Hamiltonian Monte Carlo (HMC; Duane, Kennedy, Pendleton, and Roweth 1987; Neal 1994,

2011), and by default uses the no-U-turn sampler (NUTS; Hoffman & Gelman 2014; Betan-

court 2016) extension. NUTS chooses the number of leapfrog steps automatically for each

iteration to eliminate user-required input and maximize efficiency. HMC (both basic and

NUTS) allows the implementation of unit, diagonal, and dense mass matrices, and both use

gradient information from the log probability density to generate systematic motion through

the posterior, reducing redundancies in the space explored to decrease autocorrelations be-

tween transitions.

Constraints were imposed on several parameters sampled in rStan to prevent highly

improbable or impossible item parameter values. Item discrimination parameters and resid-

ual SDs were constrained to be strictly non-negative (αi ≥ 0, σα ≥ 0, σβk ≥ 0), and item

thresholds were constrained to be in increasing order (βi,1 < βi,2 < βi,3 < βi,4, see Appendix

B).

Illustration

In this section, we illustrate the empirical and hierarchical Bayes methods described in

the previous section by applying them to an empirical data set. R functions to implement

the methods used below are provided in Appendix B.

Data Description

The data analyzed using the methods described above were collected from the Vanderbilt

Fatigue Scale for Adults (VFS-A), which was designed to measure listening-related fatigue.
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Preliminary research led to the identification of four domains of listening-related fatigue:

cognitive, emotional, physical, and social (Davis, Schlundt, Camarata, Bess, & Hornsby,

2020). Using Mplus Version 8.3 (Muthén & Muthén, 1998-2019), exploratory factor anal-

yses were conducted using polychoric correlations (specifically, limited information robust

weighted least square estimation with Oblimin rotation and Oblique type) to extract 1,

2, 3, and 4 factors2 to explore the number and structure of the factors of the VFS-AHL.

In Table 1 these four models were compared with standardized root mean square residual

(SRMR), root mean square error of approximation (RMSEA), comparative fit index (CFI),

and Tucker-Lewis index (TLI). Based on empirically-supported guidelines a model is consid-

ered to fit well if SRMR < .08, RMSEA < .06, CFI > .95, and TLI > .95 (Hu & Bentler,

1999; Yu, 2002). The unidimensional model was considered a well-fitting model according

to the SRMR, CFI, and TLI. Based on these exploratory factor analyses, we considered

listening-related fatigue to be a unidimensional construct.

The research version of the VFS-A was analyzed, having 10 five-point Likert-scale items

for each of the four domains of listening-related fatigue, for a total of 40 items. A total of

273 participants completed all 40 items. Of these 273 participants, 150 participants were

randomly sampled to illustrate the empirical and hierarchical Bayes methods for a small

sample size.

Analysis

The four domains of listening-related fatigue items were treated as item covariates for

analysis. For dummy variable coding, the social domain was chosen (arbitrarily) as the

reference category. The regression structure for item parameters was structured as follows:

αi = γα0 + γα1xi1 + γα2xi2 + γα3xi3 + εαi (28)

and
βi,k = γβ0k + γβ1kxi1 + γβ2kxi2 + γβ3kxi3 + εβik, (29)

2Quartimin, Geomin, and Target rotation methods resulted in similar patterns of factor loadings across
all methods.
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where xi1 = 1 for cognitive items, xi2 = 1 for emotional items, and xi3 = 1 for physical items.

Estimates for the regression coefficients (γα0, γαd, γβ0k, and γβdk) were obtained from the

lm function in R, using maximum likelihood estimates obtained from mirt. The residual

variances (φα and φβk) were calculated using Equations 12 and 13, and standard errors of

the residual variances were calculated using Equations 16 and 17, with I = 40 items and

D = 3 item covariates.

The regression structures for hierarchical Bayesian priors were structured as follows:

αi ∼ N(γα0 + γα1xi1 + γα2xi2 + γα3xi3, σ
2
α) (30)

and
βi,k ∼ N(γβ0k + γβ1kxi1 + γβ2kxi2 + γβ3kxi3, σ

2
βk). (31)

For regression coefficients (γα0, γαd, γβ0k, and γβdk), a non-informative hyper-prior distri-

bution ofN(0, 10) was chosen. A weakly-informative hyper-prior distribution of Cauchy(0, 10)I(0, )

was imposed on the standard deviations of residuals (σα and σβk).

Analysis was conducted for sample sizes of 150 and 273 to compare shrinkage and in-

creases in precision for small and medium sample sizes. The default arguments for rStan

of 4 chains, 2, 000 iterations, 1,000 warmup (i.e., burn-in) iterations per chain, and thinning

= 1 were used for analysis. Convergence amongst the 4 chains was evaluated using the

Gelman-Rubin statistic (Gelman & Rubin, 1992). Note that these arguments were sufficient

to achieve sufficient convergence in both sample sizes, having Gelman-Rubin statistics in the

range of 0.95 to 1.05 for all parameters. Obtaining results for sample sizes of 150 and 273

in R required approximately 1.2 and 2.0 hours (respectively) on a computer with a 2.30GHz

processor and 8.00gb of RAM.

Results

The results obtained for J = 150 are presented in this section. The results for J = 273 are

provided in Appendix C. Comparisons of regression coefficient estimates for both empirical

Bayes and hierarchical Bayes methods are illustrated in Table 2. Median hierarchical Bayes
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estimates were used for calculating hierarchical shrinkage and standardized differences, as

well as for comparing hierarchical and empirical Bayes methods.

Results were highly comparable between empirical and hierarchical Bayes methods: r(18) =

.995, p-value < .01 for item regression parameters, and r(3) = .975, p-value < .01 for the

standard deviations of residuals (φ̂α and φ̂βk). However, the standard deviation of residuals

were generally larger for the empirical Bayes method than for the hierarchical Bayes method.

Table 3 reports the results for empirical and hierarchical Bayes estimates of αi, and Ta-

ble 4 reports the results for empirical and hierarchical Bayes estimates of βi4 for illustration.

The standard deviations of empirical Bayes estimates were lower than the standard errors

of maximum likelihood estimates, because of the added information from item covariates.

However, even for a small sample size of J=150, maximum likelihood estimates had signifi-

cantly lower standard errors than regression estimates (as seen in Table 3 by comparing τ̂αi

and φ̄α), because the information provided by the data far outweighed the information pro-

vided by the item covariates. This is further seen in the calculated values for shrinkage. The

average shrinkage for items 2-40 in Table 3 (note that shrinkage was not calculated for item

1) was .159, meaning that on average item covariates contributed 15.9% of the information

used in estimating αi, with the data providing the remaining 84.1% of the information. Sim-

ilar results were obtained for item threshold parameters. Item threshold parameters (βi1,

βi2, βi3, and βi4) had average shrinkages across items of 11.2%, 10.2%, 9.1%, and 12.7%

(respectively).

The item parameter estimates obtained using empirical Bayes and hierarchical Bayes

(as well as their respective SDs or SEs) were highly similar for all item parameters at each

sample size.
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Simulation Study

A simulation study was conducted to answer the research questions regarding the empir-

ical and hierarchical Bayes methods described as proposed in this paper’s introduction. In

this section we describe the design and implementation of this simulation study and discuss

the results obtained so as to answer these research questions.

Simulation Factors

In this simulation study, five response categories for each item (mi = 5) was set as a fixed

simulation factor, as it is the most commonly used number of response categories in GRM

applications (e.g., Forero & Maydeu-Olivares, 2009). Three varying simulation factors were

considered that would directly affect item parameter recovery when using the empirical and

hierarchical Bayes methods: (a) the number of persons, (b) the number of items, and (c) the

RSD of item parameters. Each of these factors is discussed below:

Number of persons. The accuracy of item parameter estimates is mainly affected

by the number of persons (Kieftenbeld & Natesan, 2012). Kieftenbeld and Natesan (2012)

showed minimal difference in GRM item parameter recovery between MMLE and Markov

chain Monte Carlo (MCMC) in sample sizes of 300 or more persons (for 5, 10, 15, and 20

items). Reise and Yu (1990) and Ankermann and Stone (1992) recommended a minimum

sample size of 500 to accurately estimate GRM item parameters. Based on this information,

sample sizes of 100, 150, 200, 250, 300, and 500 were selected to compare the effectiveness of

empirical Bayes and hierarchical Bayes methods at both small sample sizes (100, 150, 200,

250, and 300), and at a medium sample size of 500, which would be considered the maximum

sample size at which the empirical Bayes and hierarchical Bayes methods described would

be expected to recover item parameters with a performance comparable to MMLE.

Number of items. The number of items affects the accuracy of item covariate effect

estimates, as well as the residual variance (e.g., Cho, De Boeck, & Lee, 2017). A literature

review we conducted on 28 published papers on the use of item covariates in IRT3 indicated

3Papers published in these six journals were reviewed to report how item covariate structures were used for
item response models in common practice: Acta Psychologica, Applied Psychological Measurement (APM),
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that the number of items ranged from 5 to 334, with a median of 27.5 items (see Table 5).

To allow for an equal number of items per item group (to control for the effect of the number

of items per item covariate), 24 items were selected for simulation conditions, with each item

group having 4 items for 6 item covariates (as explained below). The level of 24 items is

close to the common test length of 25 items in the evaluation of GRM parameter recovery

(Reise & Yu, 1990). To investigate the effect of test length on item parameter recovery,

twice as many items (48) was selected as well, with each item group having 8 items for 6

item covariates (as explained below). Note that this level for the number of items was also

selected to reflect the number of items commonly used in large-scale achievement tests (∼ 50

items), while still allowing an equal number of items per item group.

RSD of item parameters. The amount of shrinkage is positively affected by the

precision of the prior distribution. Note that in Equation 9, shrinkage increases as α̃i → ᾱi,

which occurs as a direct result of the precision of ᾱi increasing. Therefore, in order to

indirectly manipulate shrinkage in simulation conditions, the RSD of item parameter types

(σ2
α and σ2

βk) are directly manipulated. Fischer and Rose (2019) considered three levels for

the standard deviations of item discrimination and item threshold parameters for GRMs in

normal prior distributions: σα = σβk = 0.5 (as a weakly informative prior), σα = σβk = 0.3

(as a moderately informative prior), and σα = σβk = 0.1 (as a strongly informative prior).

As the authors noted, the value of an item discrimination, αi = 2 has a 95% probability of

being between 1.02 ≤ αi ≤ 2.98 with the weakly informative prior (2 ± [1.96 × 0.5]) and

between 1.804 ≤ αi ≤ 2.196 with the strongly informative prior (2 ± [1.96 × 0.1]). These

same levels of RSD for item discrimination and item threshold parameters were selected for

the current study. The weakly informative prior (σα = σβk = 0.5) was close to the standard

deviation of true item discrimination and item threshold (for the last category) parameters

for a GRM that Kieftenbeld and Natesan (2012) and Lautenschlager, Meade, and Kim (2006,

Educational and Psychological Measurement (EPM), Journal of Educational Measurement (JEM), Multi-
variate Behavioral Research (MBR), and Psychometrika (PMET). Papers were searched using the keywords
“item response theory linear logistic test model.”
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p. 7) used to evaluate item parameter recovery.

The item covariate structure was set as fixed for all simulation conditions because it does

not affect accuracy and precision of item parameter estimates directly. The most common

item covariate structure (called the Q-matrix) and the number of item covariates selected

were based on a literature review of 28 published papers on the use of item covariates to

explain item variability in item response models (see Table 5).

Item covariate structure. The item-covariate structure can be specified in a matrix

called a Q-matrix. Q-matrices generally took on one of four common patterns. First, 36%

(10) of the reviewed papers used a mutually-exclusive binary Q-matrix item covariate struc-

ture. Items constructed in this way were assigned a value of 1 for at most one of the item

covariates, and a value of 0 for all other item covariates. Second, 25% (7) of the reviewed

papers used a non-mutually-exclusive binary Q-matrix item covariate structure. Items con-

structed in this way were assigned a value of 1 for any number of item covariates, and a

value of 0 for all other item covariates. Third, 11% (3) of the reviewed papers used a non-

mutually-exclusive non-binary Q-matrix item covariate structure. Items constructed in this

way were assigned a value to each item covariate indicative of how many occurrences of

that item trait were present in the item. Fourth, 29% (8) of the reviewed papers used a

Q-matrix by factor item covariate structure. Items constructed in this way had one of the

three previously defined item covariate structures for each of two or more item factors, al-

though the most common pattern of this structure was a mutually-exclusive binary Q-matrix

for each factor. Because of these observations, a mutually-exclusive binary Q-matrix item

covariate structure (the predominant structure observed in the literature) was selected for

all simulation conditions.

Number of item covariates. The literature review showed that the number of item

groups ranged from 2 to 77, with a median of 6 item groups. Therefore, 6 item covariates were

considered. Five dummy-coded item covariates (for five item groups with a sixth reference

group) were used.
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Effects of item covariates. The effects of item covariates on item discriminations

(γα = [γα0, γα1, γα2, γα3, γα4, γα5]′) were selected as [0.813, 0.075, 0.150, 0.225, 0.300, 0.375]′.

The effects of item covariates on item thresholds (γβk = [γβ0k, γβ1k, γβ2k, γβ3k, γβ4k, γβ5k]
′)

were set as

[−2.458, 0.183, 0.367, 0.550, 0.733, 0.917]′ for the first threshold,

[−1.458, 0.183, 0.367, 0.550, 0.733, 0.917]′ for the second threshold,

[0.542, 0.183, 0.367, 0.550, 0.733, 0.917]′ for the third threshold, and

[1.542, 0.183, 0.367, 0.550, 0.733, 0.917]′ for the fourth threshold. The intercepts of the item

thresholds we selected (γβ0 = [−2.458,−1.458, 0.542, 1.542]′) are close to the means of true

GRM item thresholds ([−2.369,−1.334,−0.208, 1.981]′) that Kieftenbeld and Natesan (2012)

and Lautenschlager, Meade, and Kim (2006, p. 7) used in evaluating parameter recovery

of GRM item thresholds. The same effects of item covariates were selected for all item

thresholds

([0.183, 0.367, 0.550, 0.733, 0.917]′) to control for differential item covariate effects across

thresholds when investigating item parameter recovery and the precision of item param-

eter estimates. Given the residual standard deviations of item parameters that we selected,

the selected item covariate effects resulted in average adjusted R2 = 0.544 across item

parameters when σα = σβk = 0.1, average adjusted R2 = 0.254 across item parameters

when σα = σβk = 0.3, and average adjusted R2 = 0.111 across item parameters when

σα = σβk = 0.5.

Based on the effects of the item covariates and RSDs described above, true item pa-

rameters were calculated during data generation. The latent variable was generated from a

standard normal distribution to match it to a model identification constraint. When gener-

ating item responses, the same generated item parameters were used across replications and

the latent variable was generated for each replication.

The three simulation factors were fully crossed, yielding 36 conditions (= 6×2×3). Five

hundreds replications were simulated for each of the 36 conditions. Each generated data set
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was analyzed using four estimation methods: MMLE, empirical Bayes, hierarchical Bayes

with item covariates, and hierarchical Bayes without item covariates.

Convergence Checking

The Gelman and Rubin statistic, R̂, was used to check for convergence when using 4

chains. Five replications of each condition were used to determine the number of warm-

up (also known as “burn-in”) iterations required for each condition to achieve acceptable

convergence (R̂ < 1.1, as used in Gelman & Shirley, 2001) for all estimated parameters in

these five replications. Across the 36 conditions, the number of warm-up iterations ranged

from 1, 000 (for 31 conditions) to 5, 000 (for 1 condition). The number of post-warm-up

iterations was set equal to the number of warm-up iterations, resulting in the total number

of iterations ranging from 2, 000 to 10, 000.4 Monte Carlo standard error (MCSE) was

examined to evaluate post-burn-in convergence (MCSE < 0.01× SD).

Evaluation Measures

Three evaluation measures were used to compare the accuracy of the estimates obtained

using the four estimation methods (MMLE, empirical Bayes, hierarchical Bayes with item

covariates, and hierarchical Bayes without item covariates): absolute relative percentage bias

(RPB), root mean square error (RMSE), and absolute relative percentage SD bias (SDB).5

To answer research questions 1a and 2, the RPB and RMSE of item parameter estimates

are compared between each pair of methods (comparing MMLE, empirical Bayes, and hi-

erarchical Bayes with item covariates in research question 1a, and comparing hierarchical

Bayes with and without item covariates in research question 2). To answer research question

1b (regarding the use of hierarchical Bayes as a substitute to MMLE when MMLE fails to

4The condition with 300 persons, 48 items, and RSD=0.1 experienced convergence problems for some
parameters in 2 out of 5 replications with 10,000 iterations. Thus, to increase the reliability of convergence
checking, we checked convergence with 5 additional replications for this condition. Convergence was achieved
for 7 of these 10 total replications, and the other three of these replications had relatively acceptable R̂ values,
with maximum R̂ values across parameters of 1.581, 1.737, and 1.115. Based on this investigation, we used
10,000 warm-up iterations for this condition.

5The absolute values of RPB and SDB are used so that RPB and SDB could be directly comparable among
the three methods and five item parameter types, regardless of whether they were positive or negative. The
original values for RPB, RMSE, and SDB (non-absolute and separated by parameter type) are provided in
Appendix D.
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converge), we examine the RPB and the absolute relative percentage differences between

posterior SD estimates and the Monte Carlo standard errors (MCSE) for hierarchical Bayes

(denoted by SDB, where SDB = 100 × | (posterior SD)–MCSE
MCSE

|). To answer research question

3 (regarding the estimation of posterior SD), the SDB will be compared between empirical

Bayes and hierarchical Bayes with item covariates.

Hypotheses

Research question 1a: Accuracy of item parameter estimates. Because the

use of group means results in shrinkage, which increases the accuracy of item parameter

estimates (see p. 13), we expect both empirical Bayes and hierarchical Bayes to have lower

RPB and lower RMSE than MMLE (which does not use group means at all, and therefore

has no shrinkage). Because we expect MMLE to have high RMSE at small and medium

sample sizes, we also expect empirical Bayes (which uses maximum likelihood estimates in

Step 2) to have higher RPB and higher RMSE than hierarchical Bayes with item covariates

(which does not use maximum likelihood estimates). Therefore, we expect the following

relations regarding RPB and RMSE: empirical Bayes < MMLE, hierarchical Bayes with

item covariates < MMLE, and hierarchical Bayes with item covariates < empirical Bayes.

Research question 1b: Acceptability of hierarchical Bayes. As discussed in

the introduction, MMLE is expected to have difficulty with achieving convergence in smaller

sample sizes, making estimation of item parameters impossible. In such conditions we expect

a hierarchical Bayes method with item covariates to estimate item parameters and posterior

SD with an acceptable degree of accuracy, having RPB < 10% and SDB < 10% for all item

parameter types.

Research question 2: Added accuracy of item covariates. To examine the added

value of item covariates in a hierarchical Bayes method for all conditions, we compare the ac-

curacy of a hierarchical Bayes method both with and without item covariates. As discussed

previously (see p. 13), because the use of multiple item covariates results in group shrink-

age rather than total shrinkage, it is expected that hierarchical Bayes with item covariates
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will have lower RPB than hierarchical Bayes without item covariates. Therefore, regarding

RPB we expect hierarchical Bayes with item covariates < hierarchical Bayes without item

covariates.6

Research question 3: Accuracy of posterior SD estimates. Because empirical

Bayes ignores the uncertainty of item parameter estimates in Step 2, it is expected that em-

pirical Bayes will result in large SDB. Alternatively, because hierarchical Bayes implements

this uncertainty by using a one-step approach, it is expected that hierarchical Bayes will

more accurately estimate its posterior SD than empirical Bayes, resulting in a smaller SDB.

Therefore, for SDB we expect hierarchical Bayes with item covariates < empirical Bayes.

In addition to these hypotheses, certain patterns are expected across estimation methods

regarding the three simulation factors:

Number of persons. It is expected that an increase in the number of persons will result

in decreases in RPB and RMSE for these methods. As the number of persons approaches a

medium sample size of 500, differences in the RMSE among these methods are expected to

decrease as the accuracy of MMLE (which most prominently suffers in small sample sizes)

increases. It is also expected than an increase in the number of persons will result in a

decrease in SDB for both empirical Bayes and hierarchical Bayes.

Number of items. It is expected that an increase in the number of items will result

in a decrease in the RPB as prior means are based on a larger number of items, therefore

decreasing the shrinkage for individual items. Alternatively, it is expected that an increase

in the number of items will result in higher RMSE, as there are more item parameters to

estimate. For a fixed number of persons, it is expected that an increase in the number of

items will result in higher SDB.

RSD. It is expected than an increase in RSD will result in a decrease in the RPB and an

6Although we expect lower RMSE when item covariates are used (in empirical Bayes and hierarchical
Bayes methods) compared to when item covariates are not used (in MMLE), we have no such expectations
for RMSE regarding the change in RMSE by using multiple item covariates (in hierarchical Bayes with item
covariates) as opposed to using a single item covariates (in hierarchical Bayes without item covariates). As a
result, we do not have any hypotheses regarding differences in RMSE between hierarchical Bayes with item
covariates and hierarchical Bayes without item covariates.
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increase in the RMSE, because less shrinkage is expected with a larger RSD. A larger RSD

is not expected to affect SDB.

Results for Research Questions

For the majority of simulation conditions (23 out of 36), MMLE failed to converge for all

500 replications. Table D1 in Appendix D shows the percentage of 500 replications in which

MMLE achieved convergence for each simulation condition. The most significant factor

affecting convergence was RSD, with 83%, 25%, and 0% of conditions converging in all 500

replications with RSDs of 0.1, 0.3, and 0.5, respectively. Note that, because empirical Bayes

estimates are calculated using maximum likelihood estimates, empirical Bayes estimates are

unobtainable for those replications in which MMLE failed to converge. For the following

analyses, only the 13 conditions in which MMLE had 100% convergence are considered for

comparisons involving MMLE and/or empirical Bayes (i.e., research questions 1a and 3).

Research question 1a: Accuracy of item parameter estimates. Figure 3 and

Table 6 present the RPB for each method (MMLE, empirical Bayes, and hierarchical Bayes

with item covariates) in the 13 conditions that MMLE had 100% convergence. Each point

in Figure 3 represents the maximum RPB for all item parameter types (αi, βi1, βi2, βi3, and

βi4), with each item parameter type averaged across replications.7 Figure D1 and Tables

D2-D4 in Appendix D present the full results for each item parameter type. Horizontal lines

in Figure 3 indicate the cutoff for acceptable RPB of item parameter estimates (10%).

As shown in Figure 3, of the 13 conditions that MMLE had 100% convergence, MMLE

had the lowest RPB of the three methods in 6 of those conditions (24 items and RSD=0.1

with 150, 200, 250, 300, and 500 persons [Figure 3, top-left], and 48 items and RSD = 0.3

with 500 persons [Figure 3, bottom-right]). Hierarchical Bayes had the lowest RPB in the

other 7 conditions (24 items and RSD = 0.3 with 300 and 500 persons [Figure 3, top-right],

7We take this approach because we are uninterested in how accurately each method estimated individual
item parameter types, but rather how accurately each method estimated all item parameter types. The
maximum RPB for each condition indicates the range within which all item parameter types were estimated
(for example, a value of 6% in Figure 3 indicates that all item parameter types for that condition were
estimated by that method with −6% ≤ RPB ≤ 6%). This approach is used later on when presenting results
for RMSE and SDB.
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and 48 items and RSD = 0.1 with 150, 200, 250, 300, and 500 persons [Figure 3, bottom-

left]). However, MMLE and hierarchical Bayes had highly comparable (within 2.02%) RPB

in all 13 conditions. Empirical Bayes had the highest RPB of the three methods, only having

lower RPB than MMLE in one condition (24 items and RSD = 0.3 with 500 persons), and in

that condition the difference in RPB between the two methods was less than 0.23% (6.476%

for MMLE, and 6.248% for empirical Bayes).

These results agree with our hypotheses regarding RPB that MMLE < empirical Bayes

and hierarchical Bayes < empirical Bayes (as empirical Bayes consistently had the largest

RPB of the three methods). However, results were highly similar between MMLE and

hierarchical Bayes in these 13 conditions.

As shown in Table 6, empirical Bayes had unacceptably high RPB (RPB > 10%) in 11

conditions, only having acceptable RPB in 2 conditions (24 items and 0.3 RSD with 300 and

500 persons). MMLE and hierarchical Bayes had acceptably low RPB in all 13 conditions.

Figure 4 and Table 7 present the RMSE for each method in the 13 conditions that MMLE

had 100% convergence. Each point in Figure 4 represents the maximum RMSE for all item

parameter types, with each item parameter type averaged across replications. Figure D2

and Table D5-D7 in Appendix D present the full results for each item parameter type.

As shown in Figure 4, of the 13 conditions that MMLE had 100% convergence, empirical

Bayes had the lowest RMSE in 3 conditions (24 items and RSD=0.3, with 300 and 500

persons [Figure 4, top-right], and 48 items and RSD=0.3, with 500 persons [Figure 4, bottom-

right]). Hierarchical Bayes had the lowest RMSE in the other 10 conditions (24 items and

RSD=0.1, with 150, 200, 250, 300, and 500 persons [Figure 4, top-left], and 48 items and

RSD=0.1, with 150, 200, 250, 300, and 500 persons [Figure 4, bottom-left]). Empirical Bayes

had the lowest RMSE of the three methods for the 3 conditions with RSD = 0.3 and had

the highest RMSE of the three methods for the 10 conditions with RSD = 0.1. Hierarchical

Bayes had lower RMSE than MMLE in all 13 conditions.

These results agree with our hypotheses regarding RMSE that hierarchical Bayes <
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MMLE, and hierarchical Bayes < empirical Bayes (as hierarchical Bayes consistently had

the smallest RMSE of the three methods). However, these results disagree with our hypoth-

esis that empirical Bayes < MMLE, as MMLE had lower RMSE than empirical Bayes in

10 out of 13 conditions. Figure 4 illustrates that this unexpected result is likely because

MMLE’s accuracy decreased as the RSD increased, having an average RMSE of 0.357 when

RSD=0.1 (Figure 4, left), and an average RMSE of 0.612 when RSD=0.3 (Figure 4, right),

whereas empirical Bayes’ performance improved (and surpassed MMLE) as RSD increases,

having an average RMSE of 0.608 when RSD=0.1 (Figure 4, left), and an average RMSE

of 0.550 when RSD=0.3 (Figure 4, right). It is possible that, had MMLE achieved 100%

convergence in more conditions with RSD>0.1, we would see similar patterns of empirical

Bayes outperforming MMLE in conditions with higher RSD.

To summarize, taking into account RPB and RMSE together, hierarchical Bayes with

item covariates outperformed MMLE and empirical Bayes in the 13 conditions analyzed,

having both RPB comparable to MMLE and generally lower RMSE than both MMLE and

empirical Bayes.

Research question 1b: Acceptability of hierarchical Bayes. In the following we

evaluate the acceptability of hierarchical Bayes with item covariates as an alternative to

MMLE in the 23 conditions that MMLE failed to achieve 100% convergence. We examine

the RPB and SDB of estimates obtained by hierarchical Bayes with item covariates in these

conditions.8

Figure 5 and Table 8 present the RPB for hierarchical Bayes with covariates in the 23

conditions that MMLE failed to achieve convergence. Horizontal lines in Figure 5 indicate

the cutoff for acceptable RPB of item parameter estimates (10%). As shown in Figure 5,

hierarchical Bayes with covariates had acceptable RPB (< 10%) in 17 of the 23 conditions,

having unacceptable RPB in the other 6 conditions (24 items and RSD = 0.3 with 100, 150,

8RMSE is not used as an evaluation measure for research question 1b because there is no single threshold
for acceptable RMSE in these conditions, as RMSE is largely dependent on the level of RSD. However, the
values for RMSE are still provided in Table 8.
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and 200 persons [Figure 5, top-middle], 24 items and RSD = 0.5 with 100 persons [Figure

5, top-right], 48 items and RSD = 0.5 with 100 and 150 persons [Figure 5, bottom-right]).

The primary factor affecting RPB in hierarchical Bayes with covariates was the number of

persons, with hierarchical Bayes having acceptable RPB in all conditions with sample sizes

≥ 250 persons.

Figure 6 and Table 8 present the SDB for hierarchical Bayes with covariates in the 23

conditions that MMLE failed to achieve convergence. As shown in Figure 6 and Table 8,

hierarchical Bayes with covariates had acceptable SDB (< 10%) in 16 of the 23 conditions,

having unacceptable SDB in the other 7 conditions (24 items and RSD = 0.3 with 100 persons

[Figure 6, top-middle], 48 items and RSD = 0.1 with 100 persons [Figure 6, bottom-left], 48

items and RSD = 0.3 with 100, 150, 200, and 250 persons [Figure 6, bottom-middle], 48 items

and RSD = 0.5 with 100 persons [Figure 6, bottom-right]). The primary factor affecting

SDB in hierarchical Bayes with covariates was the number of items, having unacceptable

SDB in one condition with 24 items and in six conditions with 48 items.

Taking both RPB and SDB into consideration, hierarchical Bayes with item covariates

was an acceptable alternative to MMLE (having both RPB < 10% and SDB < 10%) in 12

of the 23 conditions that MMLE failed to achieve convergence. Hierarchical Bayes showed

to be an acceptable alternative to MMLE primarily in conditions with RSD = 0.5, with

hierarchical Bayes being an acceptable alternative to MMLE in 9 of the 12 conditions with

RSD = 0.5 (note that MMLE was unable to achieve 100% in any of the 12 conditions with

RSD = 0.5).

Research question 2: Added accuracy of item covariates. Figure 7 and Table 9

present the RPB for hierarchical Bayes with covariates and hierarchical Bayes without covari-

ates in all 36 conditions. Each point in Figure 7 represents the maximum RPB for all item

parameter types, with each item parameter type averaged across replications. Horizontal

lines in Figure 7 indicate the cutoff for acceptable RPB of item parameters (10%).

As shown in Figure 7, hierarchical Bayes without item covariates had lower RPB than
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hierarchical Bayes with item covariates in only 9 of the 36 conditions (24 items and RSD

= 0.3 with 500 persons, 24 items and RSD = 0.5 with 150, 200, 300, and 500 persons, 48

items and RSD = 0.3 with 100, 150, 200, and 500 persons), whereas hierarchical Bayes with

item covariates had lower RPB in the other 27 conditions. Additionally, results were largely

comparable between the two methods in these 9 conditions, with only one of these conditions

having a difference in RPB larger than 2% (48 items and RSD = 0.3 with 100 persons, which

had a difference in RPB of 2.66%). These results agree with our hypothesis regarding RPB

that hierarchical Bayes with item covariates < hierarchical Bayes without item covariates,

as hierarchical Bayes with item covariates had lower (or comparable) RPB to hierarchical

Bayes without item covariates in all conditions.

Hierarchical Bayes with covariates had unacceptable RPB (≥ 10%) in 7 of the 36 con-

ditions (24 items and RSD = 0.3 with 100, 150, and 200 persons, 24 items and RSD = 0.5

with 100 persons, 48 items and RSD = 0.5 with 100, 500 persons), and hierarchical Bayes

without covariates had unacceptable RPB in 16 of the 36 conditions (24 items and RSD =

0.3 with 100, 150, 200, 250, and 300 persons, 24 items and RSD = 0.5 with 100 persons,

48 items and RSD = 0.1 with 100, 150, 200, 250, 300, and 500 persons, 48 items and RSD

= 0.5 with 100, 150, 200, and 300 persons). There were no conditions where hierarchical

Bayes without covariates had acceptable RPB and hierarchical Bayes with item covariates

had unacceptable RPB.

Figure 8 and Table 10 present the RMSE for hierarchical Bayes with covariates and

hierarchical Bayes without covariates in all 36 conditions. Each point in Figure 8 represents

the maximum RMSE for all item parameter types, with each item parameter type averaged

across replications. As shown in Figure 8, hierarchical Bayes with item covariates had lower

RMSE than hierarchical Bayes without item covariates in 13 of the 36 conditions. However,

results were highly comparable between the two methods in 35 of the 36 conditions, with

differences in RMSE < 0.06 for all but one condition. In one condition (48 items and RSD =

0.5 with 100 persons [Figure 8, bottom-right]) hierarchical Bayes without item covariates had
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a significantly higher RMSE (1.364) than either method in any other condition. The most

significant factor affecting RMSE for both methods was RSD, with both methods having

larger RMSE as RSD increased.

In summary, hierarchical Bayes with covariates typically outperformed hierarchical Bayes

without covariates, having lower (or comparable) RPB and lower (or comparable) RMSE in

all 36 conditions.

Research question 3: Accuracy of posterior SD estimates. Figure 9 and Table

11 present the SDB for empirical Bayes and hierarchical Bayes with item covariates in the

13 conditions that MMLE had 100% convergence. Each point in Figure 9 represents the

maximum SDB for all item parameter types, with each item parameter type averaged across

replications. Figure D3 and Tables D8-D9 in Appendix D present the full results for each

item parameter type.

As shown in Figure 9, of the 13 conditions that MMLE had 100% convergence, hierar-

chical Bayes with item covariates had lower SDB than empirical Bayes in 9 conditions (24

items and RSD = 0.1 with 150, 200, 250, 300, and 500 persons [Figure 9, top-left], 48 items

and RSD = 0.1 with 150, 200, 250, and 300 persons [Figure 9, bottom-left]). Empirical

Bayes had SDB comparable to hierarchical Bayes with item covariates in the remaining 4

conditions (24 items and RSD = 0.3 with 300 and 500 persons [Figure 9, top-right], 48 items

and RSD = 0.1 with 500 persons [Figure 9, bottom-left], 48 items and RSD = 0.3 with 500

persons [Figure 9, bottom-right]).

These results agree with our hypothesis that, in general regarding SDB, hierarchical Bayes

< empirical Bayes. Hierarchical Bayes outperformed empirical Bayes in conditions with RSD

= 0.1, and results were highly comparable between the two methods for conditions with RSD

= 0.3. A noticeable exception to these results is the condition having 48 items and RSD=0.1

with 500 persons (Figure 9, bottom-left), which had a sudden increase in SDB for hierarchical

Bayes (increasing from 0.128 for 250 persons for 0.226 for 500 persons). This sudden increase

resulted from a scaling artifact of SDB occurring when the MCSE in the denominator was
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close to 0, despite posterior SD estimates and MCSE both decreasing with an increasing

number of persons.9

As shown in Table 11, empirical Bayes had unacceptably high SDB (SDB > 10%) in the

10 conditions with RSD = 0.1, and acceptably low SDB in the 3 conditions with RSD = 0.3.

Hierarchical Bayes had unacceptably high SDB in 8 conditions (24 items and RSD = 0.1

with 250, 300, and 500 persons, and 48 items and RSD = 0.1 with 150, 200, 250, 300, and

500 persons), and acceptably low SDB in the remaining 5 conditions (24 items and RSD =

0.1 with 150 and 200 persons, 24 items and RSD = 0.3 with 300 and 500 persons, and 48

items and RSD = 0.3 with 500 persons).

In summary, hierarchical Bayes with item covariates typically had lower SDB than em-

pirical Bayes in the conditions that MMLE had 100% convergence. Hierarchical Bayes with

item covariates had noticeably lower SDB in conditions with RSD = 0.1, and had highly

similar results to empirical Bayes in conditions with RSD = 0.3.

Results Regarding Simulation Factors

Below, simulation results are interpreted in regards to the varying levels of the simulation

factors.

Number of persons. Figures 3 and 7 show that RPB decreased with an increasing

number of persons, especially for empirical Bayes with conditions having RSD = 0.1 (Figure

3, left), and for both hierarchical Bayes with and without item covariates in conditions with

24 items and RSD = 0.3, 24 items and RSD = 0.5, and 48 items and RSD = 0.5 (Figure 7,

top-middle, top-right, and bottom-right).

Figure 4 shows that RMSE decreased with an increasing number of persons for empirical

Bayes, especially for conditions having RSD = 0.1 (Figure 4, left). Figure 8 shows that

the number of persons had little effect on the RMSE for both hierarchical Bayes with and

without item covariates. An exception to this is the conditions with 48 items and RSD = 0.5

(Figure 8, bottom-right) for hierarchical Bayes without item covariates, where RMSE was

9Posterior SD estimates decreased from 0.084 to 0.065, and MCSE decreased from 0.075 to 0.053 as the
number of persons increased from 250 to 500 persons.
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especially high for hierarchical Bayes without item covariates with 100 persons.

Figure 9 shows that there is an interaction between the number of persons and the

number of items regarding the SDB for both empirical Bayes and hierarchical Bayes with

item covariates, with an increase in the number of persons resulting in an increase in SDB

for conditions with 24 items and RSD = 0.1 (Figure 9, top-left), and a decrease in SDB (in

general) for conditions with 48 items and RSD = 0.1 (Figure 9, bottom-left).

In summary, a larger number of persons is advisable when using empirical Bayes when

items have small RSD (e.g., RSD = 0.1), and advisable for hierarchical Bayes (both with

and without item covariates) when items have medium RSD (e.g., RSD = 0.3). However,

a larger number of persons may result in large SDB if used in conjunction with a smaller

number of items (e.g., 24).

Number of items. Figure 3 shows that an increase in the number of items resulted in a

decrease in RPB for empirical Bayes. Figure 7 shows that an increase in the number of items

resulted in an increase in RPB for hierarchical Bayes (both with and without item covariates)

when RSD = 0.1 or RSD = 0.5, and a decrease in RPB when RSD = 0.3, implying that

there was an interaction in regards to RPB between the number of items and the RSD.10

Figures 4 and 8 show that increasing the number of items resulted in a decrease in RMSE

for empirical Bayes and a slight increase in RMSE for hierarchical Bayes with and without

item covariates.

Figure 9 shows that an increase in the number of items resulted in higher SDB for both

empirical Bayes and hierarchical Bayes with item covariates, increasing from an average

SDB of 11.4% (in the 7 simulation conditions with 24 items) to 20.9% (in the 6 simulation

conditions with 48 items) for empirical Bayes, and increasing from an average SDB of 7.8%

(24 items) to 14.7% (48 items) for hierarchical Bayes with item covariates.

In summary, a larger number of items may be advisable for empirical Bayes to increase the

10A linear regression was imposed on the RPB for hierarchical Bayes with the number of persons, number
of items, RSD, and their interactions as predictors. The statistically significant predictors of RPB were the
number of items (p < .005), the RSD (p < .001), and the Items × RSD interaction (p < .005).
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accuracy of item parameter estimates, at the cost of also increasing the SDB. Alternatively,

a smaller number of items may be advisable to reduce RMSE and SDB in hierarchical Bayes.

There were no clear patterns regarding the number of items and RPB for hierarchical Bayes.

RSD.11 Figure 3 shows that an increase in RSD resulted in a decrease in RPB for

empirical Bayes. Figure 7 shows that the relationship between RPB and RSD is highly

dependent on the number of items for hierarchical Bayes with and without item covariates.

For example, the highest RPB for 24 items occured when RSD = 0.3, whereas the lowest

RPB for 48 items occured when RSD = 0.3.

Figure 4 shows that increasing RSD resulted in a decrease in RMSE for empirical Bayes,

whereas Figure 8 shows that an increase in RSD resulted in an increase in RMSE for hi-

erarchical Bayes with and without item covariates. Figure 9 shows that an increase in the

RSD resulted in lower SDB for both empirical Bayes and for hierarchical Bayes with item

covariates.

In summary, empirical Bayes tended to perform better (having lower RPB and SDB)

in conditions with higher RSD. Hierarchical Bayes also had lower SDB in conditions with

higher RSD, but had no clear pattern in RPB related to RSD.

Summary and Discussion

MMLE is the “gold standard” for estimating item parameters within an IRT framework.

However, MMLE’s accuracy, as well as its ability to achieve convergence, is limited in small

sample sizes. Mislevy (1988) showed that auxiliary item information can be used to in-

crease the accuracy of Rasch item location estimates with an empirical Bayes method. We

presented hierarchical Bayes as an alternative to empirical Bayes both because RSD can

be underestimated by empirical Bayes due to ignoring the uncertainty of item parameter

estimates and because empirical Bayes is unable to obtain item parameter estimates when

11The following analyses regarding empirical Bayes are based on ten conditions for RSD = 0.1, three
conditions for RSD = 0.3, and zero conditions for RSD = 0.5, as these are the 13 conditions in which MMLE
achieved 100% convergence. The three conditions for RSD = 0.3 have sample sizes of 300, 500, and 500,
making it difficult to distinguish between the effects of RSD and the number of persons on the evaluation
measures between these conditions and the ten conditions for RSD = 0.1.
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MMLE fails to achieve convergence. In this paper, we showed how item covariates can be

used in empirical Bayes and hierarchical Bayes to obtain item parameter estimates of a GRM

with higher accuracy and precision in small-to-medium sample sizes.

Method Selection Guideline

We provide a general guideline in Figure 10 based on simulation results regarding which

method is recommended for different conditions. Table E1 in Appendix E presents a sim-

plified version of the results previously discussed, regarding which method was considered

the best (having the highest accuracy of item parameter estimates and posterior SD esti-

mates) in each simulation condition examined. Because empirical Bayes failed to outperform

hierarchical Bayes with item covariates in any of our simulation conditions (having either

comparable or inferior accuracy of item parameter and posterior SD estimates in each con-

dition), the only methods recommended in this section are MMLE and hierarchical Bayes

with item covariates.

Step 1. The first step is to determine whether or not there are usable item covariates

available and whether the test is unidimensional or multidimensional. If there are no item

covariates available, then empirical Bayes and hierarchical Bayes with item covariates are not

viable options. Because the empirical Bayes and hierarchical Bayes methods proposed in this

study are based on the assumption that the test is unidimensional, we do not recommend

these methods for a multidimensional test.

Step 2a. If there are no usable item covariates and/or the test is multidimensional,

then if MMLE can achieve convergence we recommend using those estimates obtained using

MMLE. However, if MMLE is unable to achieve convergence, we recommend either obtaining

a larger sample size so that MMLE can achieve convergence or using alternative estimation

methods.

Step 2b. If there are usable item covariates and the test is unidimensional, we make the

following recommendations based on the number of items and the RSD of those items.

Step 3. To determine which method is recommended (given the availability of item
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covariates and the number of items), estimates of the RSD are required. These estimates

do not need to be highly accurate, but rather capable of allowing RSD to be categorizable

as small (e.g., RSD=0.1), medium (e.g., RSD=0.3), or large (e.g., RSD=0.5). To obtain

such estimates of the RSD, classical item discriminations and thresholds can be obtained to

calculate linear regression RSD estimates. This method avoids the possibility of being unable

to achieve convergence that MMLE is subject to, and can obtain results more efficiently than

hierarchical Bayes. We provide an R function to calculate the linear regression RSD estimates

based on classical item discriminations and thresholds and further discuss this function in

Appendix B.

Step 3a. If there are a smaller number of items (e.g., 24), we make the following

recommendations based on the RSD of items. If there is a small RSD (e.g., RSD=0.1,

indicating items within groups are highly similar), we recommend using hierarchical Bayes

with item covariates for sample sizes between 100 and 200, and MMLE for sample sizes

> 200.12 If there is a medium RSD (e.g., RSD=0.3, indicating that items within groups are

similar yet distinctly different), we recommend hierarchical Bayes with item covariates for

sample sizes ≥ 250. If there is a large RSD (e.g., RSD=0.5, indicating that items within

groups are highly dissimilar), we recommend hierarchical Bayes with item covariates for

sample sizes ≥ 150.

Step 3b. If there is a larger number of items (e.g., 48), we make the following recommen-

dations based on the RSD of items. If there is a small RSD (e.g., RSD=0.1), we recommend

MMLE for sample sizes ≥ 150. If there is a medium RSD (e.g., RSD=0.3), we recommend

hierarchical Bayes with item covariates for sample sizes ≥ 300. If there is a large RSD (e.g.,

RSD = 0.5), we recommend hierarchical Bayes with item covariates for sample sizes ≥ 200.

Item Covariate Specification

As shown in this study, hierarchical Bayes with item covariates can be an acceptable alter-

native to MMLE under certain conditions. However, the effectiveness of hierarchical Bayes

12Although the maximum sample size used in this simulation study was 500 persons, we do not expect
hierarchical Bayes or MMLE to have unacceptable results in sample sizes larger than 500.
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is dependent on the correct specification of the item covariates structure. Both exploratory

factor analysis and observation of the salient features of items are useful for assigning items

to their correct groups and to assure a correct item covariate structure. Exploratory factor

analysis can be used to identify how many dimensions (or domains within a single dimen-

sion) there are, and factor loadings can identify which items likely belong to each dimen-

sion/domain. The salient features of items (such as their similarities to other items with

similar covariate structures) can be used to interpret these factors/dimensions in meaningful

ways (e.g., identifying factors 1 and 2 as cognitive emotional fatigue and emotional listening

fatigue) to make the classification of future items easier.

Mislevy (1988) illustrated how imposing a linear model on Rasch item location parameters

based on item groupings can highlight misclassified items. Items with distinctly different

properties from other items in their groups, such as an item with a significantly higher

difficulty than any other item in its group, may indicate an incorrect item covariate structure.

Looking at such items’ salient features may show if (and how) it was misclassified, and

what method of correcting the item covariate structure should be used. In Mislevy’s (1988)

empirical example, he shows three different methods that can be implemented to correct a

misidentified item covariate structure: removing misfit items, creating a new item group, and

changing the group status of certain items. Similar approaches can be applied to identifying

and correcting mistakes in the item covariate structure of a GRM.

Study Limitations

This study had several methodological limitations that can be addressed in future research

on these topics. First, a single item covariate structure (a mutually-exclusive binary Q-

matrix with 6 item covariates and constant covariate effects across simulation conditions)

was used in this simulation study to reflect the predominant covariate structure observed

from an extensive literature review. In this study we also make the assumption that items are

unidimensional, with item groups representing domains within a single underlying dimension.

Future research using different item covariate structures, different effects of item covariates,
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and generalizing these methods to allow multidimensionality may yield interesting results.

Second, in this study we assumed that the item covariate structure was correctly specified.

The purpose of this study was to evaluate the added value of a correctly-identified item

covariate structure through the use of empirical Bayes and hierarchical Bayes methods. The

preliminary process of specifying the item covariate structure correctly is outside the scope

of this study. Mislevy (1986) addressed how mispecifying the item covariate structure can

result in “ensemble biases” affecting entire groups of items. Such biases can cause statistical

properties (such as consistency) to no longer apply to item parameter estimates. Future

research regarding the full repercussions of using an incorrect item covariate structure on

empirical Bayes and hierarchical Bayes methods could be of interest.

Third, we used weakly informative priors for hierarchical Bayes in this study, as recom-

mended by the statistical literature for small sample sizes. Using strongly informative priors

can lead to bias in item parameter estimates, although the extent of this bias in small sample

sizes may be of interest to future research.

Fourth, the levels selected for simulation factors (number of persons, number of items,

and magnitude of RSD) reflect those we considered most relevant based on the literature.

However, using additional levels of these simulation factors (e.g., 36 items, RSD=0.7) could

show more clearly how evaluation criteria (RPB, RMSE, and SDB) change as a function of

these simulation factors, such as comparing SDB for conditions with 24, 36, and 48 items.

Fifth, in this study we extended Mislevy’s (1988) empirical Bayes method for a Rasch

model to a GRM. An advantage of Mislevy’s (1988) three-step approach is that the full item

response data is not needed when MMLE is documented beforehand. However, the use of

a three-step empirical Bayes method made it impossible to obtain results when MMLE was

unable to converge. Because of this limitation, empirical Bayes and hierarchical Bayes could

not be compared in the 23 simulation conditions of which MMLE was unable to achieve

convergence, including all conditions with a sample size of 100 and/or RSD=0.5. Empirical

Bayes, as it is most commonly used in the literature, is a one-step procedure similar in
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implementation to hierarchical Bayes, but with different prior and posterior distribution

specifications. Whereas a hierarchical Bayes method would allow hyperparameters to be

estimated from hyper-prior distributions (e.g., the third line of Equation 26), an empirical

Bayes method would treat these hyperparameters as fixed. Both a one-step empirical Bayes

method and one-step hierarchical Bayes method could be implemented using MCMC (in

software such as rStan), allowing results to be obtainable when MMLE is unable to achieve

convergence. A one-step empirical Bayes method could be used in future research to allow

empirical Bayes to be compared with hierarchical Bayes methods.

Conclusions

In this paper we have demonstrated the viability of empirical Bayes and hierarchical

Bayes methods as alternatives to MMLE in small sample sizes. In addition, we have shown

how to implement these methods using item covariates, and in what conditions these meth-

ods can result in acceptably accurate estimates of item parameters and RSD. Despite the

aforementioned limitations of this study, we have demonstrated these methods and their

implementation in conditions reflecting those most commonly found in the literature, and

we have presented a framework that can be used in future research to expand upon these re-

sults under various other research conditions. In addition, we have provided the R functions

written and utilized in this study to obtain empirical Bayes and hierarchical Bayes estimates

for researchers to implement these proposed methods to their own research.
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Table 1: Fit Indices from Exploratory Factor Analyses

Fix Indices 1-Factor 2-Factor 3-Factor 4-Factor
SRMR 0.038 0.028 0.022 0.018
RMSEA 0.082[0.079,0.085]* 0.072[0.069,0.075]* 0.062[0.059,0.064]* 0.054[0.051,0.057]*
CFI 0.986 0.990 0.993 0.995
TLI 0.985 0.989 0.992 0.994

Note. * 90% confidence interval

49



Table 2: Regression Coefficients for Empirical Bayes vs. Hierarchical Bayes, J=150

Empirical Bayes Hierarchical Bayes
EST SE Mean Median SD 0.025* 0.975*

Discrimination
γα0 2.095 0.251 2.143 2.135 0.281 1.620 2.719
γα1 0.673 0.365 0.509 0.509 0.361 -0.229 1.208
γα2 0.979 0.355 0.999 0.993 0.368 0.285 1.736
γα3 0.458 0.355 0.319 0.313 0.355 -0.380 1.019
φα 0.794 0.147 0.741 0.732 0.112 0.546 0.986
Threshold 1
γβ01 -4.149 0.593 -4.001 -3.989 0.558 -5.095 -2.912
γβ11 -2.116 0.861 -2.168 -2.173 0.782 -3.742 -0.632
γβ21 -1.356 0.838 -1.303 -1.317 0.767 -2.777 0.200
γβ31 0.142 0.838 0.500 0.510 0.767 -1.023 2.046
φβ1 1.874 0.820 1.619 1.602 0.236 1.216 2.135
Threshold 2
γβ02 -2.179 0.423 -1.997 -2.000 0.423 -2.795 -1.175
γβ12 -1.874 0.615 -1.896 -1.889 0.571 -3.050 -0.775
γβ22 -1.041 0.598 -0.973 -0.966 0.552 -2.090 0.137
γβ32 0.548 0.598 0.714 0.727 0.551 -0.395 1.767
φβ2 1.338 0.418 1.202 1.187 0.162 0.928 1.558
Threshold 3
γβ03 -0.249 0.353 -0.071 -0.073 0.403 -0.865 0.717
γβ13 -1.238 0.513 -1.409 -1.410 0.527 -2.426 -0.379
γβ23 -0.522 0.499 -0.461 -0.466 0.527 -1.486 0.573
γβ33 0.722 0.499 0.772 0.763 0.523 -0.253 1.775
φβ3 1.116 0.290 1.110 1.098 0.144 0.867 1.435
Threshold 4
γβ04 1.653 0.314 1.811 1.815 0.382 1.070 2.555
γβ14 -0.381 0.456 -0.627 -0.631 0.492 -1.598 0.345
γβ24 0.081 0.444 0.158 0.162 0.497 -0.825 1.109
γβ34 1.009 0.444 0.970 0.967 0.502 -0.022 1.932
φβ4 0.993 0.230 1.067 1.051 0.142 0.835 1.382

Note. * Percentiles of posterior distribution
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Table 3: Comparison of Empirical and Hierarchical Bayesian Estimates for αi with J=150

Empirical Hierarchical
Step 1 Step 2 Step 3

Item Domain α̂i τ̂αi ᾱi φ̄α α̃i σ̃αi Shrinkage Posterior Median SD
1 C -5.361 0.802 NA NA NA NA NA -7.180 1.263
2 C -8.430 1.250 -6.265 1.874 -7.763 1.040 0.308 -7.628 0.925
3 C -8.382 1.068 -6.265 1.874 -7.863 0.928 0.245 -7.267 0.760
4 C -6.893 1.121 -6.265 1.874 -6.728 0.962 0.263 -6.701 0.936
5 C -7.202 0.921 -6.265 1.874 -7.020 0.826 0.194 -6.705 0.726
6 C -5.978 0.723 -6.265 1.874 -6.015 0.674 0.129 -6.056 0.660
7 C -4.747 0.594 -6.265 1.874 -4.886 0.567 0.091 -4.573 0.532
8 C -5.924 0.758 -6.265 1.874 -5.972 0.702 0.141 -6.094 0.702
9 C -4.927 0.596 -6.265 1.874 -5.050 0.568 0.092 -4.984 0.531

10 C -3.901 0.458 -6.265 1.874 -4.034 0.445 0.056 -4.156 0.478
11 E -4.324 0.556 -5.505 1.874 -4.419 0.533 0.081 -4.600 0.575
12 E -5.863 0.704 -5.505 1.874 -5.819 0.659 0.124 -5.657 0.622
13 E -4.778 0.565 -5.505 1.874 -4.838 0.541 0.083 -4.920 0.554
14 E -5.523 0.674 -5.505 1.874 -5.521 0.635 0.115 -5.271 0.575
15 E -6.735 0.820 -5.505 1.874 -6.537 0.751 0.161 -6.273 0.654
16 E -3.166 0.456 -5.505 1.874 -3.297 0.443 0.056 -3.139 0.424
17 E -6.319 0.757 -5.505 1.874 -6.205 0.702 0.140 -5.966 0.623
18 E -7.211 0.880 -5.505 1.874 -6.903 0.797 0.181 -6.536 0.695
19 E -5.848 0.755 -5.505 1.874 -5.800 0.700 0.140 -5.380 0.599
20 E -5.284 0.632 -5.505 1.874 -5.307 0.599 0.102 -5.156 0.553
21 P -8.197 1.044 -4.007 1.874 -7.205 0.912 0.237 -6.644 0.738
22 P -7.240 0.937 -4.007 1.874 -6.594 0.838 0.200 -6.120 0.688
23 P -2.773 0.392 -4.007 1.874 -2.825 0.383 0.042 -2.695 0.369
24 P -7.667 0.966 -4.007 1.874 -6.898 0.859 0.210 -6.150 0.657
25 P -5.524 0.692 -4.007 1.874 -5.342 0.649 0.120 -4.766 0.539
26 P -2.033 0.319 -4.007 1.874 -2.089 0.314 0.028 -1.962 0.297
27 P -1.330 0.228 -4.007 1.874 -1.369 0.226 0.015 -1.357 0.230
28 P -2.736 0.389 -4.007 1.874 -2.789 0.381 0.041 -2.640 0.358
29 P -1.115 0.237 -4.007 1.874 -1.160 0.235 0.016 -1.124 0.230
30 P -1.453 0.287 -4.007 1.874 -1.511 0.284 0.023 -1.413 0.270
31 S -6.171 0.841 -4.149 1.874 -5.832 0.767 0.168 -5.709 0.704
32 S -3.524 0.413 -4.149 1.874 -3.553 0.404 0.046 -3.535 0.391
33 S -6.904 0.849 -4.149 1.874 -6.435 0.773 0.170 -6.057 0.662
34 S -4.947 0.595 -4.149 1.874 -4.874 0.567 0.091 -4.620 0.527
35 S -3.422 0.406 -4.149 1.874 -3.454 0.396 0.045 -3.430 0.383
36 S -3.266 0.401 -4.149 1.874 -3.304 0.392 0.044 -3.242 0.387
37 S -3.367 0.448 -4.149 1.874 -3.409 0.436 0.054 -3.173 0.401
38 S -3.218 0.389 -4.149 1.874 -3.257 0.381 0.041 -3.239 0.376
39 S -3.026 0.390 -4.149 1.874 -3.073 0.382 0.042 -2.964 0.367
40 S -3.647 0.430 -4.149 1.874 -3.672 0.419 0.050 -3.718 0.411

Note. Maximum likelihood estimation was unable to estimate the fourth threshold of item 1 (β1,4) because no responses were
obtained in the fifth category of item 1. Because of this, item 1 was omitted during Step 2 when obtaining regression estimates,
resulting in the missing values for item 1 (noted as NA). Because regression estimates were required for the values calculated
in Step 3, these values are also missing for item 1. This is one instance where hierarchical Bayes estimation has an advantage
over empirical Bayes estimation. Because the hyper-prior distribution for β1,4 in hierarchical Bayesian estimation provides
information outside of the data, β1,4 is still capable of being estimated.
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Table 4: Comparison of Empirical and Hierarchical Bayesian Estimates for βi,4 with J=150

Empirical Hierarchical
Step 1 Step 2 Step 3

Item Domain β̂i,4 τ̂βi,4 β̄i,4 φ̄β,4 β̃i,4 σ̃βi,4 Shrinkage Posterior Median SD
1 C NA NA NA NA NA NA NA -1.184 0.247
2 C 0.712 0.352 1.272 0.993 0.774 0.332 0.111 0.927 0.312
3 C 2.128 0.499 1.272 0.993 1.956 0.446 0.202 2.150 0.400
4 C -0.306 0.285 1.272 0.993 -0.186 0.274 0.076 -0.067 0.257
5 C 0.611 0.368 1.272 0.993 0.691 0.345 0.121 0.829 0.320
6 C 1.347 0.339 1.272 0.993 1.339 0.320 0.104 1.548 0.323
7 C 3.144 0.483 1.272 0.993 2.785 0.435 0.191 3.154 0.421
8 C 1.366 0.312 1.272 0.993 1.358 0.298 0.090 1.555 0.301
9 C 1.079 0.341 1.272 0.993 1.100 0.323 0.105 1.306 0.326

10 C 1.364 0.280 1.272 0.993 1.357 0.270 0.074 1.522 0.283
11 E 0.417 0.215 1.735 0.993 0.476 0.210 0.045 0.586 0.221
12 E 2.078 0.392 1.735 0.993 2.032 0.365 0.135 2.287 0.361
13 E 1.659 0.315 1.735 0.993 1.666 0.300 0.091 1.913 0.316
14 E 1.396 0.409 1.735 0.993 1.445 0.378 0.145 1.682 0.371
15 E 2.127 0.446 1.735 0.993 2.061 0.407 0.168 2.307 0.397
16 E 2.875 0.429 1.735 0.993 2.696 0.394 0.157 3.058 0.400
17 E 1.822 0.421 1.735 0.993 1.809 0.387 0.152 2.036 0.382
18 E 2.297 0.478 1.735 0.993 2.191 0.431 0.188 2.432 0.410
19 E 1.093 0.461 1.735 0.993 1.207 0.418 0.177 1.405 0.401
20 E 1.581 0.391 1.735 0.993 1.602 0.364 0.134 1.862 0.370
21 P 2.213 0.451 2.662 0.993 2.290 0.411 0.171 2.268 0.378
22 P -0.226 0.358 2.662 0.993 0.107 0.337 0.115 0.210 0.284
23 P 2.399 0.365 2.662 0.993 2.430 0.342 0.119 2.647 0.347
24 P 3.550 0.562 2.662 0.993 3.335 0.489 0.242 3.315 0.434
25 P 3.128 0.519 2.662 0.993 3.028 0.460 0.214 3.138 0.433
26 P 3.986 0.467 2.662 0.993 3.747 0.422 0.181 3.998 0.418
27 P 2.201 0.279 2.662 0.993 2.235 0.269 0.073 2.375 0.283
28 P 2.903 0.395 2.662 0.993 2.870 0.367 0.137 3.105 0.378
29 P 2.873 0.345 2.662 0.993 2.850 0.326 0.108 2.996 0.328
30 P 3.590 0.427 2.662 0.993 3.446 0.392 0.156 3.654 0.381
31 S 0.700 0.281 1.653 0.993 0.771 0.270 0.074 0.909 0.265
32 S 1.423 0.280 1.653 0.993 1.440 0.269 0.074 1.628 0.271
33 S 1.047 0.369 1.653 0.993 1.121 0.346 0.122 1.252 0.313
34 S -0.269 0.282 1.653 0.993 -0.126 0.271 0.075 0.004 0.253
35 S 2.024 0.300 1.653 0.993 1.993 0.287 0.084 2.181 0.295
36 S 2.067 0.319 1.653 0.993 2.028 0.304 0.094 2.251 0.304
37 S 3.449 0.446 1.653 0.993 3.147 0.407 0.168 3.411 0.405
38 S 2.083 0.301 1.653 0.993 2.047 0.288 0.084 2.234 0.298
39 S 2.801 0.373 1.653 0.993 2.659 0.349 0.123 2.859 0.342
40 S 1.206 0.257 1.653 0.993 1.234 0.248 0.063 1.396 0.251

Note. Maximum likelihood estimation was unable to estimate the fourth threshold of item 1 (β1,4) because no responses were
obtained in the fifth category of item 1. Because of this, item 1 was omitted during Step 2 when obtaining regression estimates,
resulting in the missing values for item 1 (noted as NA).
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Table 5: LLTM Literature Review

Reference Number of Items Number of Item Covariates (per factor) Item Covariate Structure
Baker (1993) 21 8 Non-mutually exclusive binary Q-matrix
Bechger, Verstralen, & Verhelst (2002) 5 2 Non-mutually exclusive non-binary Q-matrix
Beretvas & Williams (2004) 17 2 Mutually exclusive binary Q-matrix
Bolt, Cohen, & Wollack (2002) 26 2 Mutually exclusive binary Q-matrix
Chalmers (2015) 15 3 Mutually exclusive binary Q-matrix
Choi & Wilson (2015) 24 2x2x3=12** Q-matrix by factor
De Boeck (2008) 24 2x2x3=12** Q-matrix by factor
Embretson (2015) 70 4 Non-mutually exclusive binary Q-matrix
Fischer (1973) 29 8 Non-mutually exclusive binary Q-matrix
Freund, Hofer, & Holling (2008) 25 5 Non-mutually exclusive binary Q-matrix
Gorin (2005) 29 5 Mutually exclusive binary Q-matrix
Hartig, Frey, Nold, & Klieme (2012) 46 2x2=4** Q-matrix by factor
Hoffman, Yang, Bovaird, & Embretson (2006) 64 3 Non-mutually exclusive non-binary Q-matrix
Hohensinn & Kubinger (2011) 18 3 Mutually exclusive binary Q-matrix
Hornke & Habon (1986) 24 8x3=24** Q-matrix by factor
Ip, Magee, Youssef, & Chen (2019) 31 6 Non-mutually exclusive binary Q-matrix
Ip, Smits, & De Boeck (2009) 8 2x2=4** Q-matrix by factor
Kim (2018) 13 3x3x3=27** Q-matrix by factor
Kubinger (2008) 29 8 Non-mutually exclusive binary Q-matrix
Medina-Diaz (1993) 29 8 Non-mutually exclusive binary Q-matrix
Mislevy (1988) 20 6 Mutually exclusive binary Q-matrix
Mitchell (1983) 334 10 Mutually exclusive binary Q-matrix
Poinstingl (2009) 25 8*** Q-matrix by factor
Rakkapao, Prasitpong, & Arayathanitkul (2016) 20 10 Mutually exclusive binary Q-matrix
Rost & Cartensen (2002) 77 11x7=77** Q-matrix by factor
Sheehan & Mislevy (1990) 93 3 Mutually exclusive binary Q-matrix
Shermis & Chang (1997) 45/90/90* 4 Mutually exclusive binary Q-matrix
Whitely & Schneider (1981) 30 8 Non-mutually exclusive non-binary Q-matrix

Note. * Three forms of the same test were used in this study. Form A had 45 items, and Forms B/C each had 90 items.
** The number of item groups is equal to the product of the number of levels per factor. For example, three factors with two
levels for each factor results in 2× 2× 2 = 8 item groups.
*** The number of factors in this study was 8. Three factors had mutually exclusive binary Q-matrices with 4, 3, and 5 levels.
The remaining five factors counted the occurrences of different item attributes.
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Table 6: Research Question 1a: RPB Comparison for MMLE, Empirical Bayes, and Hier-
archical Bayes

# Items RSD # Persons MMLE EB HB
24 0.1 150 2.739 63.628 4.119
24 0.1 200 1.872 59.218 3.393
24 0.1 250 1.417 58.262 2.392
24 0.1 300 1.222 54.943 2.007
24 0.1 500 0.947 46.576 1.281
24 0.3 300 7.129 9.344 6.570
24 0.3 500 6.476 6.248 4.456
48 0.1 150 6.117 50.321 5.929
48 0.1 200 5.751 47.551 5.551
48 0.1 250 5.443 44.373 4.987
48 0.1 300 5.045 41.550 4.850
48 0.1 500 4.753 33.500 4.679
48 0.3 500 2.609 10.690 3.058
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Table 7: Research Question 1a: RMSE Comparison for MMLE, Empirical Bayes, and Hi-
erarchical Bayes

# Items RSD # Persons MMLE EB HB
24 0.1 150 0.392 0.814 0.278
24 0.1 200 0.357 0.732 0.263
24 0.1 250 0.334 0.701 0.253
24 0.1 300 0.320 0.662 0.247
24 0.1 500 0.290 0.518 0.238
24 0.3 300 0.616 0.534 0.547
24 0.3 500 0.596 0.543 0.553
48 0.1 150 0.428 0.677 0.295
48 0.1 200 0.393 0.624 0.285
48 0.1 250 0.370 0.578 0.276
48 0.1 300 0.356 0.536 0.271
48 0.1 500 0.326 0.420 0.268
48 0.3 500 0.623 0.573 0.576
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Table 8: Research Question 1b: Acceptability of Hierarchical Bayes with Covariates as an
Alternative to MMLE

# Items RSD # Persons RPB RMSE SDB Acceptable Substitute?
24 0.1 100 6.139 0.303 5.876 Yes
24 0.3 100 25.967 0.550 11.054 No
24 0.3 150 18.424 0.551 8.654 No
24 0.3 200 15.172 0.548 8.545 No
24 0.3 250 9.757 0.547 9.774 Yes
24 0.5 100 15.113 0.948 4.649 No
24 0.5 150 9.757 0.937 5.461 Yes
24 0.5 200 7.090 0.934 5.699 Yes
24 0.5 250 4.982 0.936 4.318 Yes
24 0.5 300 4.547 0.936 3.357 Yes
24 0.5 500 2.824 0.933 1.302 Yes
48 0.1 100 5.876 0.304 14.173 No
48 0.3 100 9.077 0.559 21.465 No
48 0.3 150 6.193 0.563 12.525 No
48 0.3 200 5.153 0.562 16.209 No
48 0.3 250 3.835 0.566 12.966 No
48 0.3 300 3.231 0.568 7.207 Yes
48 0.5 100 15.632 0.884 12.105 No
48 0.5 150 12.980 0.916 4.829 No
48 0.5 200 9.595 0.925 6.034 Yes
48 0.5 250 8.925 0.933 4.363 Yes
48 0.5 300 9.575 0.938 4.229 Yes
48 0.5 500 7.524 0.952 2.658 Yes
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Table 9: Research Question 2: RPB Comparison for Hierarchical Bayes with Covariates
(HB with) and Hierarchical Bayes without Covariates (HB without)

# Items RSD # Persons HB with HB without
24 0.1 100 6.139 9.689
24 0.1 150 4.119 8.041
24 0.1 200 3.393 8.046
24 0.1 250 2.392 6.359
24 0.1 300 2.007 5.878
24 0.1 500 1.281 4.344
24 0.3 100 25.967 45.848
24 0.3 150 18.424 30.405
24 0.3 200 15.172 23.153
24 0.3 250 9.757 15.714
24 0.3 300 6.570 11.078
24 0.3 500 4.456 4.420
24 0.5 100 15.113 16.341
24 0.5 150 9.757 8.156
24 0.5 200 7.090 5.659
24 0.5 250 4.982 6.084
24 0.5 300 4.547 3.681
24 0.5 500 2.824 2.373
48 0.1 100 5.876 17.162
48 0.1 150 5.929 16.140
48 0.1 200 5.551 15.163
48 0.1 250 4.987 14.903
48 0.1 300 4.850 13.673
48 0.1 500 4.679 11.078
48 0.3 100 9.077 6.418
48 0.3 150 6.193 5.383
48 0.3 200 5.153 4.309
48 0.3 250 3.835 4.139
48 0.3 300 3.231 3.838
48 0.3 500 3.058 3.051
48 0.5 100 15.632 30.358
48 0.5 150 12.980 23.525
48 0.5 200 9.595 11.942
48 0.5 250 8.925 9.736
48 0.5 300 9.575 10.117
48 0.5 500 7.539 7.870
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Table 10: Research Question 2: RMSE Comparison for Hierarchical Bayes with Covariates
(HB with) and Hierarchical Bayes without Covariates (HB without)

# Items RSD # Persons HB with HB without
24 0.1 100 0.303 0.329
24 0.1 150 0.278 0.312
24 0.1 200 0.263 0.303
24 0.1 250 0.253 0.291
24 0.1 300 0.247 0.284
24 0.1 500 0.238 0.266
24 0.3 100 0.550 0.511
24 0.3 150 0.551 0.530
24 0.3 200 0.548 0.537
24 0.3 250 0.547 0.539
24 0.3 300 0.547 0.541
24 0.3 500 0.553 0.549
24 0.5 100 0.948 0.892
24 0.5 150 0.937 0.904
24 0.5 200 0.934 0.914
24 0.5 250 0.936 0.917
24 0.5 300 0.936 0.920
24 0.5 500 0.933 0.924
48 0.1 100 0.304 0.329
48 0.1 150 0.295 0.313
48 0.1 200 0.285 0.305
48 0.1 250 0.276 0.301
48 0.1 300 0.271 0.295
48 0.1 500 0.268 0.282
48 0.3 100 0.559 0.521
48 0.3 150 0.563 0.536
48 0.3 200 0.562 0.544
48 0.3 250 0.566 0.553
48 0.3 300 0.568 0.557
48 0.3 500 0.576 0.571
48 0.5 100 0.884 1.364
48 0.5 150 0.916 0.909
48 0.5 200 0.925 0.922
48 0.5 250 0.933 0.928
48 0.5 300 0.938 0.934
48 0.5 500 0.953 0.950
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Table 11: Research Question 3: SDB Comparison for Empirical Bayes and Hierarchical
Bayes

# Items RSD # Persons EB HB
24 0.1 150 10.202 4.316
24 0.1 200 12.988 6.980
24 0.1 250 17.640 10.101
24 0.1 300 14.543 11.119
24 0.1 500 14.387 10.508
24 0.3 300 6.029 7.071
24 0.3 500 4.257 4.735
48 0.1 150 29.738 15.962
48 0.1 200 26.812 13.817
48 0.1 250 23.463 13.295
48 0.1 300 21.265 14.982
48 0.1 500 15.967 22.554
48 0.3 500 8.336 7.656

59



Figure 1: Illustration of shrinkage
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Figure 2: Probability density functions of different normal (top) and half-Cauchy (bottom)
distribution scales 61



Figure 3: RPB comparison for MMLE, empirical Bayes, and hierarchical Bayes with item
covariates

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Figure 4: RMSE comparison for MMLE, empirical Bayes, and hierarchical Bayes with item
covariates
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Figure 5: RPB for hierarchical Bayes with item covariates

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Figure 6: SDB for hierarchical Bayes with item covariates

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Figure 7: RPB comparison for hierarchical Bayes with covariates and hierarchical Bayes
without covariates

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Figure 8: RMSE comparison for hierarchical Bayes with covariates and hierarchical Bayes
without covariates
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Figure 9: SDB comparison for empirical Bayes and hierarchical Bayes with covariates

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Figure 10: Method selection guideline
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Appendix A

Investigation of Univariate vs. Multivariate Priors

To test whether using different priors on the item thresholds affects the posterior distributions

of item parameters, sets of item parameters were generated under simulation conditions

that would be the most sensitive to the effect of threshold covariances: 24 items, RSD =

0.5, and sample sizes of 100 and 250. For each of these two simulation conditions, three

item parameter sets were generated: item parameters with uncorrelated item thresholds

(r = 0), weakly correlated item thresholds (r = 0.3), and strongly correlated item thresholds

(r = 0.7). This resulted in six item parameter sets (one for each combination of sample

size and correlation strength). For each item parameter set, two hierarchical Bayes methods

were used to estimate item parameters: one using a multivariate prior on item thresholds,

and one using a univariate prior on item thresholds.

The only set of item parameters that resulted in varied results between the multivariate

and univariate hierarchical Bayes methods was the item parameter set with a sample size of

100 and strongly correlated item thresholds (r = 0.7). With this set of item parameters, the

RPBs of item parameters (averaged across items) were generally larger with the multivariate

prior than with the univariate prior (except in the case of βi1, where the reverse was true).

Results were not highly comparable between the two methods in this condition, with cor-

relations of item parameter estimates between the two methods ranging from r = 0.046 for

αi to r = 0.660 for βi3. However, results were highly comparable between the multivariate

and univariate methods in the remaining five conditions, with similar RPB (averaged across

items) of item parameters and highly correlated item parameter estimates (having r > 0.990

for each item parameter between the two methods in the other five conditions).

Based on these results, we chose to use a univariate prior for all simulation conditions, for

both generating and estimating item parameters, as used in the empirical Bayes method of

the present study and in other Bayesian IRT estimation studies for polytomous item response

models (e.g., Curtis, 2010; Fox, 2010; Kang et al., 2009). However, it is notable to mention
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that in a situation where a researcher attempts to apply these methods when dealing with

a small sample size (e.g., 100) and items with highly correlated thresholds (e.g., r = 0.7),

results may vary depending on whether a univariate or multivariate prior is used.
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Appendix B

R Code for Empirical Study and RSD Estimation with Classical Item Discrimination and Thresholds

The following code was designed to obtain MMLE, empirical Bayes, and hierarchical Bayes

results.

#################################################

###### Empirical Bayes estimation function: #####

#################################################

EB_estimation_function <- function(EB_results_function_input){

Y <- HB_results_function_input[[1]]

variables <- HB_results_function_input[[2]]

I <- variables[[1]]

K <- variables[[2]]

D <- variables[[3]]

J <- variables[[4]]

ipg <- items_per_group <- I/(D+1)

item_group_index <- c()

for (group in 1:(D+1)){

item_group_index <- c(item_group_index, rep(group,ipg))

}

covariates <- matrix(nrow=I,ncol=D)

for (d in 1:D){

covariates[,d] <- c(rep(0,ipg*d),rep(1,ipg),rep(0,ipg*(D-d)))

}

library(mirt)

colnames_Y <- c()

for (item in 1:I){

colnames_Y <- c(colnames_Y, paste("Item",item,sep=" "))

}

colnames(Y) <- colnames_Y

mirt_Y <- mirt(Y, 1, itemtype=’graded’, method="EM", SE=TRUE)

summary_mirt <- coef(mirt_Y, printSE=TRUE, as.data.frame=TRUE)

if (dim(summary_mirt)[1]==(I*K + 2)){

mirt_estimates <- matrix(nrow=I,ncol=K)

mirt_SE <- matrix(nrow=I,ncol=K)

for (item in 1:I){
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for (parameter in 1:K){

mirt_estimates[item,parameter] <- summary_mirt[((item-1)*K)+parameter,1]

mirt_SE[item,parameter] <- summary_mirt[((item-1)*K)+parameter,2]

}}

mirt_estimates[,2:K] <- -mirt_estimates[,2:K]

EB_regression_estimates <- matrix(nrow=(D+1),ncol=K)

EB_regression_SE <- c()

for (parameter in 1:K){

regression_structure <- cbind(mirt_estimates[,parameter],covariates)

colnames(regression_structure) <- c("Parameter",paste("Covariate",seq(1,D),sep=’_’))

regression <- lm(as.formula(paste(colnames(regression_structure)[1],

paste(c(1, colnames(regression_structure)[2:(D+1)]), collapse=" + "), sep=" ˜ ")),

data = data.frame(regression_structure))

summary_regression <- summary(regression)

EB_regression_estimates[,parameter] <- unname(summary_regression$"coefficients"[,1])

regression_residue <- unname(c(resid(regression)))

EB_regression_SE[parameter] <- sqrt(sum((regression_residue)ˆ2) / (I - (D+1)))

}

EB_estimates <- matrix(nrow=I,ncol=K)

EB_SE <- matrix(nrow=I,ncol=K)

for (item in 1:I){

for (parameter in 1:K){

EB_estimates[item,parameter] <- (mirt_estimates[item,parameter]*(mirt_SE[item,parameter]ˆ-2) +

EB_regression_estimates[item_group_index[item],parameter]*

(EB_regression_SE[parameter]ˆ-2)) / (mirt_SE[item,parameter]ˆ-2 + EB_regression_SE[parameter]ˆ-2)

EB_SE[item,parameter] <- sqrt(1/(mirt_SE[item,parameter]ˆ-2 + EB_regression_SE[parameter]ˆ-2))

}}

return(list(mirt_estimates, mirt_SE, EB_regression_estimates, EB_regression_SE, EB_estimates, EB_SE))

}

else {

return(list("Error, MIRT unable to estimate parameters.","Error, MIRT unable to estimate parameters.",

"Error, MIRT unable to estimate parameters.","Error, MIRT unable to estimate parameters.",

"Error, MIRT unable to estimate parameters.","Error, MIRT unable to estimate parameters."))

}}

####################################################

###### Hierarchical Bayes estimation function: #####

####################################################
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HB_estimation_function <- function(HB_results_function_input){

Y <- HB_results_function_input[[1]]

variables <- HB_results_function_input[[2]]

I <- variables[[1]]

K <- variables[[2]]

D <- variables[[3]]

J <- variables[[4]]

ipg <- items_per_group <- I/(D+1)

item_group_index <- c()

for (group in 1:(D+1)){

item_group_index <- c(item_group_index, rep(group,ipg))

}

covariates <- matrix(nrow=I,ncol=D)

for (d in 1:D){

covariates[,d] <- c(rep(0,ipg*d),rep(1,ipg),rep(0,ipg*(D-d)))

}

library(rstan)

Y_long <- c()

person_long <- c()

item_long <- c()

a <- 0

for (person in 1:J){

for (item in 1:I){

a <- a + 1

Y_long[a] <- Y[person,item] + 1 # Puts responses on a scale of 1-5 instead of 0-4 for Stan.

person_long[a] <- person

item_long[a] <- item

}}

data_stan <- list(number_categories=K, number_persons=J, number_items=I,

Y=Y_long, person=person_long, item=item_long, number_responses=length(Y_long), X=covariates, number_covariates=D)

GRM_stan <- "

data{

int<lower=0> number_categories;

int<lower=0> number_persons;

int<lower=0> number_items;

int<lower=0> number_responses;

int<lower=1, upper=number_categories> Y[number_responses];
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int<lower=1, upper=number_persons> person[number_responses];

int<lower=1, upper=number_items> item[number_responses];

int<lower=0> number_covariates;

int<lower=0, upper=1> X[number_items, number_covariates];

}

parameters{

vector[number_persons] theta; //latent variable

real<lower=0> alpha[number_items]; //item discrimination

ordered[number_categories - 1] beta[number_items]; //category difficulty

vector[1 + number_covariates] gamma_alpha;

real<lower=0> phi_alpha;

vector[1 + number_covariates] gamma_beta[number_categories - 1];

real<lower=0> phi_beta[number_categories - 1];

}

model{

for (j in 1:number_persons){

theta[j] ˜ normal(0,1);

}

phi_alpha ˜ cauchy(0,10);

for (k in 1:number_categories-1){

phi_beta[k] ˜ cauchy(0,10);

}

for (i in 1:number_items){

alpha[i] ˜ normal((gamma_alpha[1] + gamma_alpha[2]*X[i,1] +

gamma_alpha[3]*X[i,2] + gamma_alpha[4]*X[i,3] + gamma_alpha[5]*X[i,4] + gamma_alpha[6]*X[i,5]), phi_alpha);

}

for (i in 1:number_items){

for (k in 1:(number_categories-1)){

beta[i,k] ˜ normal((gamma_beta[k,1] + gamma_beta[k,2]*X[i,1] + gamma_beta[k,3]*X[i,2] +

gamma_beta[k,4]*X[i,3] + gamma_beta[k,5]*X[i,4] + gamma_beta[k,6]*X[i,5]), phi_beta[k]);

}}

for (c in 1:(number_covariates+1)){
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gamma_alpha[c] ˜ normal(0,10);

for (k in 1:(number_categories-1)){

gamma_beta[k,c] ˜ normal(0,10);

}}

for (a in 1:number_responses){ // For each data point

Y[a] ˜ ordered_logistic(theta[person[a]]*alpha[item[a]], beta[item[a]]);

}

}

"

fit_stan <- stan(model_code = GRM_stan, data = data_stan, seed=12212017)

summary_stan <- summary(fit_stan)

summary_stan <- summary_stan$summary

HB_estimates <- matrix(nrow=I,ncol=K)

HB_SD <- matrix(nrow=I,ncol=K)

HB_regression_estimates <- matrix(nrow=(D+1),ncol=K)

HB_regression_SD <- c()

start_index <- J + (I*K) + 1

end_index <- start_index + D

HB_regression_estimates[,1] <- summary_stan[start_index:end_index, 6]

HB_regression_SD[1] <- summary_stan[(end_index+1),6]

start_index <- J + (I*K) + D + 3

end_index <- start_index + (D+1)*(K-1) - 1

HB_regression_estimates[,2:K] <- matrix(summary_stan[start_index:end_index, 6],ncol=(K-1),byrow=FALSE)

HB_regression_SD[2:K] <- summary_stan[((end_index + 1):(end_index + K - 1)),6]

for (item in 1:I){

HB_estimates[item,1] <- summary_stan[J+item,6]

HB_SD[item,1] <- summary_stan[J+item,3]

for (threshold in 2:K){

HB_estimates[item,threshold] <- summary_stan[(J+I+(K-1)*(item-1)+(threshold-1)),6]

HB_SD[item,threshold] <- summary_stan[(J+I+(K-1)*(item-1)+(threshold-1)),3]

}}

return(list(HB_estimates, HB_SD, HB_regression_estimates, HB_regression_SD, summary_stan))

}

##########################################################################

###### Obtaining empirical Bayes & hierarchical Bayes estimates #########
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##########################################################################

data <- read.table(data.txt, sep="\t")

number_items <- 24

number_categories <- 5

number_covariates <- 5

number_persons <- 150

variables <- c(number_items, number_categories, number_covariates, number_persons)

estimation_input <- list(data, variables)

EB_estimation_output <- EB_estimation_function(estimation_input)

# Step 1: EB_estimation_output[[1]]: Maximum likelihood estimates

# EB_estimation_output[[2]]: Maximum likelihood SEs

# Step 2: EB_estimation_output[[3]]: Regression estimates

# EB_estimation_output[[3]]: Regression SEs

# Step 3: EB_estimation_output[[5]]: Empirical Bayes estimates

# EB_estimation_output[[6]]: Empirical Bayes SEs

HB_estimation_output <- HB_estimation_function(estimation_input)

# HB_estimation_output[[1]]: Hierarchical Bayes estimates

# HB_estimation_output[[2]]: Hierarchical Bayes SDs

# HB_estimation_output[[3]]: Hierarchical Bayes RSD estimates

# HB_estimation_output[[4]]: Full Stan output

The following code uses classical item discrimination and thresholds to obtain the linear

regression RSD estimates necessary to utilize the method selection guideline provided in

Figure 10.

########################################

###### RSD estimation function #########

########################################

RSD_function <- function(RSD_function_input){

library(lme4)

library(psychometric)

RSD <- c()

Y <- RSD_function_input[[1]]

condition_variables <- RSD_function_input[[2]]

I <- condition_variables[[1]]
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K <- condition_variables[[2]]

D <- condition_variables[[3]]

J <- condition_variables[[5]]

# If you have a unique item covariate structure, substitute D (above)

# with the correct covariate structure, and remove the following code chunk.

covariates <- matrix(0,nrow=I,ncol=D)

items_per_group <- I/(D+1)

covariates <- matrix(nrow=I,ncol=D)

for (covariate in 1:D){

covariates[,covariate] <- c(rep(0,items_per_group*covariate),rep(1,items_per_group),

rep(0,items_per_group*(D-covariate)))

}

# Obtains item discriminations.

discrimination <- unname(unlist(item.exam(Y, discrim=TRUE)$Discrimination))

parameter_types <- matrix(0,nrow=I*K,ncol=K-1)

# Creates a covariate matrix for all item parameter types,

# to be used with the linear regression later on in this function.

for (parameter in 2:K){

parameter_types[((parameter-1)*I+1):(parameter*I),parameter-1] <- 1

}

for (threshold in 1:(K-1)){

Y_threshold <- Y

Y_threshold[Y_threshold < threshold] <- 0

Y_threshold[Y_threshold >= threshold] <- 1

item_means <- colMeans(Y_threshold)

difficulty <- c()

parameter_estimates <- discrimination

for (item in 1:I){

difficulty[item] <- min(4,max(-4, -qlogis(item_means[item], scale=discrimination[item])))

# Obtains each item threshold, with a minimum of -4 and maximum of +4.

}

parameter_estimates <- c(parameter_estimate, difficulty)

}

regression_data <- data.frame(parameter_estimates, parameter_types, covariates)

# Combines item parameter esimates, parameter covariates, and item covariates for running regression.

regression_data_names <- c("Estimate")
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for (parameter in 1:(K-1)){

regression_data_names <- c(regression_data_names, paste("P",parameter,sep=’’))

}

for (d in 1:D){

regression_data_names <- c(regression_data_names, paste("X",d,sep=’’))

}

names(regression_data) <- regression_data_names

regression_equation <- "Estimate ˜ 1"

for (parameter in 1:(K-1)){

regression_equation <- paste(regression_equation, paste("+ P",parameter,sep=’’),sep=’ ’)

}

for (covariate in 1:D){

regression_equation <- paste(regression_equation, paste("+ X",covariate,sep=’’), sep=’ ’)

}

regression <- lm(formula = as.formula(regression_equation), data = regression_data)

# Runs linear regression on CTT item parameter estimates.

regression_summary <- summary(regression)

RSD <- regression_summary$sigma

return(RSD)

}

########################################

####### Obtaining RSD estimate #########

########################################

setwd("C:\\Users\\myname\\DataLocation") # Replace this with the directory where the data is located

data <- read.table("data.txt",sep="\t") # Replace "data.txt" with the name of the data file

number_items <- 24

number_categories <- 5

number_covariates <- 5

number_persons <- 100

condition_variables <- list(number_items, number_categories, number_covariates, number_persons)

coefficients <- c(-0.2703644864, 0.8808019178, -0.0001940328, 0.0001785366)

# Based on our simulation study data.

CTT_RSD <- RSD_function(list(data, condition_variables))

RSD_estimate <- coefficients[1] + coefficients[2]*CTT_RSD +

coefficients[3]*number_items + coefficients[4]*number_persons # Final result.
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Appendix C

Supplemental Empirical Study Results
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Table C1: Regression Coefficients for Empirical Bayes vs. Hierarchical Bayes, J=273

Empirical Bayes Hierarchical Bayes
EST SE Mean Median SD 0.025* 0.975*

Discrimination
γα0 2.192 0.254 2.191 2.188 0.278 1.663 2.754
γα1 0.637 0.370 0.492 0.493 0.370 -0.239 1.205
γα2 1.018 0.360 1.042 1.049 0.375 0.302 1.803
γα3 0.493 0.360 0.399 0.397 0.374 -0.357 1.132
φα 0.805 0.151 0.781 0.768 0.112 0.601 1.037
Threshold 1
γβ01 -4.269 0.558 -4.171 -4.168 0.539 -5.216 -3.107
γβ11 -1.944 0.811 -2.079 -2.059 0.788 -3.641 -0.568
γβ21 -1.405 0.789 -1.402 -1.396 0.761 -2.876 0.080
γβ31 0.265 0.789 0.479 0.466 0.742 -1.029 1.923
φβ1 1.764 0.726 1.650 1.625 0.229 1.263 2.174
Threshold 2
γβ02 -2.385 0.435 -2.265 -2.257 0.434 -3.138 -1.421
γβ12 -1.799 0.632 -1.855 -1.849 0.605 -3.063 -0.679
γβ22 -1.067 0.615 -1.039 -1.041 0.598 -2.229 0.157
γβ32 0.538 0.615 0.659 0.653 0.593 -0.503 1.826
φβ2 1.375 0.441 1.302 1.288 0.168 1.015 1.663
Threshold 3
γβ03 -0.458 0.352 -0.352 -0.359 0.387 -1.115 0.431
γβ13 -1.208 0.511 -1.375 -1.375 0.528 -2.401 -0.323
γβ23 -0.491 0.497 -0.444 -0.441 0.511 -1.413 0.590
γβ33 0.738 0.497 0.787 0.784 0.512 -0.203 1.776
φβ3 1.112 0.288 1.133 1.120 0.148 0.881 1.470
Threshold 4
γβ04 1.480 0.297 1.578 1.584 0.356 0.894 2.269
γβ14 -0.449 0.432 -0.688 -0.695 0.478 -1.638 0.234
γβ24 0.002 0.420 0.054 0.045 0.471 -0.856 1.000
γβ34 0.948 0.420 0.923 0.924 0.479 -0.040 1.840
φβ4 0.940 0.206 1.043 1.031 0.136 0.816 1.352

Note. * Percentiles of posterior distribution
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Table C2: Comparison of Empirical and Hierarchical Bayesian Estimates for αi with J=273

Empirical Hierarchical
Step 1 Step 2 Step 3

Item Domain α̂i τ̂αi ᾱi φ̄α α̃i σ̃αi Shrinkage Posterior Median SD
1 C 1.395 0.211 NA NA NA NA NA 1.372 0.203
2 C 2.766 0.277 2.829 0.805 2.773 0.262 0.106 2.723 0.258
3 C 4.115 0.392 2.829 0.805 3.868 0.352 0.192 3.868 0.337
4 C 2.124 0.240 2.829 0.805 2.181 0.230 0.082 2.092 0.222
5 C 3.148 0.311 2.829 0.805 3.107 0.290 0.130 3.055 0.278
6 C 3.122 0.295 2.829 0.805 3.087 0.277 0.119 3.128 0.273
7 C 3.012 0.276 2.829 0.805 2.993 0.261 0.105 3.047 0.266
8 C 2.256 0.226 2.829 0.805 2.298 0.218 0.073 2.326 0.223
9 C 2.726 0.268 2.829 0.805 2.736 0.254 0.100 2.780 0.256

10 C 2.187 0.212 2.829 0.805 2.228 0.205 0.065 2.293 0.220
11 E 1.405 0.169 3.210 0.805 1.481 0.166 0.042 1.519 0.176
12 E 3.264 0.306 3.210 0.805 3.257 0.286 0.127 3.254 0.290
13 E 2.399 0.232 3.210 0.805 2.461 0.223 0.077 2.494 0.234
14 E 3.647 0.345 3.210 0.805 3.580 0.317 0.155 3.629 0.318
15 E 3.858 0.358 3.210 0.805 3.751 0.327 0.165 3.757 0.325
16 E 2.941 0.271 3.210 0.805 2.968 0.257 0.102 3.029 0.279
17 E 3.511 0.329 3.210 0.805 3.468 0.305 0.144 3.502 0.303
18 E 3.948 0.369 3.210 0.805 3.820 0.335 0.174 3.853 0.337
19 E 3.767 0.358 3.210 0.805 3.675 0.327 0.165 3.767 0.333
20 E 3.362 0.316 3.210 0.805 3.341 0.294 0.134 3.393 0.303
21 P 4.125 0.392 2.685 0.805 3.849 0.352 0.192 3.651 0.319
22 P 2.607 0.265 2.685 0.805 2.615 0.252 0.098 2.498 0.240
23 P 2.558 0.242 2.685 0.805 2.568 0.232 0.083 2.613 0.238
24 P 4.201 0.397 2.685 0.805 3.903 0.356 0.196 3.750 0.325
25 P 4.209 0.390 2.685 0.805 3.919 0.351 0.190 3.910 0.334
26 P 2.050 0.200 2.685 0.805 2.087 0.194 0.058 2.091 0.197
27 P 1.213 0.147 2.685 0.805 1.260 0.144 0.032 1.289 0.149
28 P 2.696 0.249 2.685 0.805 2.695 0.238 0.088 2.722 0.244
29 P 1.284 0.151 2.685 0.805 1.332 0.148 0.034 1.349 0.154
30 P 1.904 0.190 2.685 0.805 1.945 0.185 0.053 1.929 0.187
31 S 2.147 0.218 2.192 0.805 2.150 0.210 0.068 2.129 0.203
32 S 1.958 0.197 2.192 0.805 1.971 0.191 0.056 2.012 0.198
33 S 3.049 0.290 2.192 0.805 2.951 0.273 0.115 2.904 0.266
34 S 2.264 0.239 2.192 0.805 2.259 0.229 0.081 2.193 0.222
35 S 1.714 0.177 2.192 0.805 1.736 0.173 0.046 1.761 0.178
36 S 2.228 0.215 2.192 0.805 2.226 0.208 0.067 2.283 0.214
37 S 2.958 0.269 2.192 0.805 2.881 0.255 0.101 2.885 0.258
38 S 1.897 0.190 2.192 0.805 1.912 0.185 0.053 1.953 0.188
39 S 2.144 0.205 2.192 0.805 2.147 0.199 0.061 2.164 0.199
40 S 1.560 0.173 2.192 0.805 1.588 0.169 0.044 1.629 0.176

Note. Maximum likelihood estimation was unable to estimate the fourth threshold of item 1 (β1,4) because no responses were
obtained in the fifth category of item 1. Because of this, item 1 was omitted during Step 2 when obtaining regression estimates,
resulting in the missing values for item 1 (noted as NA).
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Table C3: Comparison of Empirical and Hierarchical Bayesian Estimates for βi,4 with J=273

Empirical Hierarchical
Step 1 Step 2 Step 3

Item Domain β̂i,4 τ̂βi,4 β̄i,4 φ̄β,4 β̃i,4 σ̃βi,4 Shrinkage Posterior Median SD
1 C NA NA NA NA NA NA NA -1.463 0.194
2 C 0.466 0.217 1.031 0.940 0.494 0.211 0.051 0.606 0.228
3 C 1.550 0.297 1.031 0.940 1.503 0.283 0.091 1.635 0.296
4 C -0.538 0.193 1.031 0.940 -0.474 0.189 0.040 -0.391 0.196
5 C 0.351 0.234 1.031 0.940 0.391 0.227 0.059 0.500 0.244
6 C 1.486 0.249 1.031 0.940 1.456 0.241 0.066 1.597 0.260
7 C 2.679 0.285 1.031 0.940 2.540 0.273 0.084 2.758 0.293
8 C 1.117 0.203 1.031 0.940 1.113 0.199 0.045 1.231 0.215
9 C 0.930 0.220 1.031 0.940 0.935 0.214 0.052 1.069 0.230

10 C 1.240 0.200 1.031 0.940 1.231 0.195 0.043 1.346 0.217
11 E 0.065 0.155 1.482 0.940 0.102 0.153 0.027 0.163 0.168
12 E 2.055 0.272 1.482 0.940 2.011 0.261 0.077 2.186 0.275
13 E 1.640 0.223 1.482 0.940 1.632 0.217 0.053 1.786 0.240
14 E 1.076 0.263 1.482 0.940 1.106 0.254 0.073 1.255 0.275
15 E 1.856 0.295 1.482 0.940 1.822 0.281 0.090 1.978 0.304
16 E 2.571 0.276 1.482 0.940 2.485 0.264 0.079 2.699 0.281
17 E 1.539 0.269 1.482 0.940 1.535 0.258 0.076 1.690 0.285
18 E 1.830 0.298 1.482 0.940 1.799 0.284 0.091 1.963 0.306
19 E 0.929 0.269 1.482 0.940 0.971 0.258 0.076 1.131 0.284
20 E 1.262 0.254 1.482 0.940 1.277 0.245 0.068 1.438 0.272
21 P 2.159 0.318 2.428 0.940 2.187 0.302 0.103 2.160 0.304
22 P -0.116 0.208 2.428 0.940 0.002 0.203 0.047 0.093 0.209
23 P 1.978 0.235 2.428 0.940 2.005 0.228 0.059 2.140 0.246
24 P 2.775 0.344 2.428 0.940 2.734 0.323 0.118 2.716 0.323
25 P 2.896 0.348 2.428 0.940 2.839 0.327 0.121 2.913 0.336
26 P 3.390 0.293 2.428 0.940 3.304 0.279 0.088 3.454 0.283
27 P 2.112 0.200 2.428 0.940 2.126 0.195 0.043 2.214 0.205
28 P 2.969 0.286 2.428 0.940 2.923 0.274 0.085 3.082 0.288
29 P 2.559 0.228 2.428 0.940 2.552 0.221 0.055 2.636 0.227
30 P 3.553 0.307 2.428 0.940 3.445 0.292 0.097 3.580 0.304
31 S 0.793 0.191 1.480 0.940 0.820 0.187 0.040 0.915 0.198
32 S 1.042 0.186 1.480 0.940 1.058 0.183 0.038 1.160 0.195
33 S 1.053 0.235 1.480 0.940 1.078 0.228 0.059 1.174 0.241
34 S -0.505 0.199 1.480 0.940 -0.420 0.194 0.043 -0.314 0.198
35 S 1.941 0.205 1.480 0.940 1.920 0.201 0.046 2.031 0.214
36 S 1.736 0.215 1.480 0.940 1.723 0.209 0.050 1.855 0.224
37 S 3.214 0.308 1.480 0.940 3.046 0.293 0.097 3.208 0.295
38 S 1.998 0.211 1.480 0.940 1.973 0.206 0.048 2.087 0.216
39 S 2.736 0.256 1.480 0.940 2.649 0.247 0.069 2.789 0.248
40 S 0.791 0.166 1.480 0.940 0.812 0.163 0.030 0.904 0.173

Note. Maximum likelihood estimation was unable to estimate the fourth threshold of item 1 (β1,4) because no responses were
obtained in the fifth category of item 1. Because of this, item 1 was omitted during Step 2 when obtaining regression estimates,
resulting in the missing values for item 1 (noted as NA).
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Appendix D

Supplemental Simulation Study Results

Table D1: MMLE Convergence Rate for 500 Replications

Number of Persons
Number of Items Residual SD 100 150 200 250 300 500

24 0.1 99.8% 100% 100% 100% 100% 100%
24 0.3 91.8% 97.8% 99.4% 99.8% 100% 100%
24 0.5 16.0% 42.4% 54.2% 72.0% 83.6% 95.8%
48 0.1 99.8% 100% 100% 100% 100% 100%
48 0.3 51.0% 78.2% 90.2% 96.8% 98.8% 100%
48 0.5 0.40% 6.60% 12.20% 26.0% 35.4% 69.6%

Table D2: RPB for MMLE by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 1.709 1.517 1.107 2.739 2.557
24 0.1 200 1.340 1.872 1.764 1.034 1.417
24 0.1 250 0.795 1.154 0.823 1.417 1.385
24 0.1 300 0.583 1.222 1.059 0.805 1.063
24 0.1 500 0.375 0.944 0.947 0.709 0.829
24 0.3 300 0.547 5.030 3.866 7.129 5.872
24 0.3 500 0.352 5.033 4.538 6.476 5.333
48 0.1 150 1.271 5.817 5.464 5.927 6.117
48 0.1 200 1.081 5.246 4.916 5.646 5.751
48 0.1 250 0.572 5.338 5.443 4.480 5.060
48 0.1 300 0.679 5.044 4.805 4.890 5.045
48 0.1 500 0.358 4.588 4.542 4.721 4.753
48 0.3 500 0.358 -2.312 -2.609 -1.744 -1.855
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Table D3: RPB for Empirical Bayes by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 -34.020 -39.749 -63.628 -13.104 -19.702
24 0.1 200 -33.123 -35.476 -59.218 -13.033 -18.852
24 0.1 250 -32.417 -34.127 -58.262 -11.881 -17.625
24 0.1 300 -31.597 -32.036 -54.943 -11.426 -16.432
24 0.1 500 -27.868 -24.751 -46.576 -8.977 -12.675
24 0.3 300 -9.344 -0.777 -7.945 -9.042 1.369
24 0.3 500 -6.248 1.371 -3.008 -4.473 2.441
48 0.1 150 -31.468 -32.854 -50.321 -10.012 -16.339
48 0.1 200 -30.479 -30.136 -47.551 -9.209 -15.130
48 0.1 250 -29.961 -27.633 -44.373 -9.043 -13.884
48 0.1 300 -28.804 -25.362 -41.550 -8.149 -12.764
48 0.1 500 -25.295 -19.178 -33.500 -5.830 -9.166
48 0.3 500 -7.131 -7.672 -10.690 -4.203 -5.382

Table D4: RPB for Hierarchical Bayes with Item Covariates by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 4.119 0.894 0.597 2.031 1.741
24 0.1 200 3.393 1.311 1.463 0.569 0.822
24 0.1 250 2.392 0.692 0.633 0.933 0.812
24 0.1 300 2.007 0.900 1.139 0.246 0.500
24 0.1 500 1.281 0.641 0.881 0.334 0.430
24 0.3 300 2.918 3.824 -0.761 -6.570 4.575
24 0.3 500 1.727 4.310 1.762 -1.976 4.456
48 0.1 150 3.321 4.343 4.498 5.929 4.830
48 0.1 200 2.775 4.137 4.342 5.551 4.691
48 0.1 250 2.086 4.409 4.987 4.439 4.158
48 0.1 300 1.998 4.236 4.421 4.850 4.290
48 0.1 500 1.303 3.992 4.196 4.679 4.281
48 0.3 500 2.172 -3.058 -2.482 -2.538 -2.810
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Table D5: RMSE for MMLE by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 0.205 0.366 0.253 0.267 0.392
24 0.1 200 0.177 0.344 0.228 0.240 0.357
24 0.1 250 0.156 0.322 0.209 0.221 0.334
24 0.1 300 0.142 0.308 0.195 0.209 0.320
24 0.1 500 0.110 0.282 0.172 0.180 0.290
24 0.3 300 0.146 0.616 0.345 0.295 0.601
24 0.3 500 0.112 0.596 0.323 0.270 0.571
48 0.1 150 0.197 0.396 0.260 0.281 0.428
48 0.1 200 0.169 0.367 0.235 0.256 0.393
48 0.1 250 0.150 0.350 0.218 0.235 0.370
48 0.1 300 0.138 0.337 0.206 0.223 0.356
48 0.1 500 0.105 0.307 0.178 0.196 0.326
48 0.3 500 0.106 0.609 0.326 0.341 0.623

Table D6: RMSE for Empirical Bayes by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 0.396 0.814 0.597 0.220 0.448
24 0.1 200 0.380 0.732 0.556 0.203 0.417
24 0.1 250 0.367 0.701 0.546 0.188 0.391
24 0.1 300 0.355 0.662 0.513 0.180 0.364
24 0.1 500 0.311 0.518 0.439 0.154 0.291
24 0.3 300 0.178 0.534 0.303 0.255 0.518
24 0.3 500 0.133 0.543 0.294 0.244 0.519
48 0.1 150 0.375 0.677 0.475 0.193 0.379
48 0.1 200 0.360 0.624 0.448 0.179 0.348
48 0.1 250 0.350 0.578 0.420 0.169 0.322
48 0.1 300 0.338 0.536 0.396 0.161 0.302
48 0.1 500 0.294 0.420 0.326 0.143 0.249
48 0.3 500 0.127 0.571 0.309 0.318 0.573
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Table D7: RMSE for Hierarchical Bayes by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 0.156 0.275 0.186 0.189 0.278
24 0.1 200 0.132 0.263 0.172 0.173 0.262
24 0.1 250 0.118 0.253 0.161 0.163 0.251
24 0.1 300 0.110 0.247 0.153 0.157 0.246
24 0.1 500 0.094 0.238 0.140 0.144 0.236
24 0.3 300 0.155 0.547 0.305 0.255 0.525
24 0.3 500 0.118 0.553 0.299 0.245 0.524
48 0.1 150 0.130 0.260 0.165 0.195 0.295
48 0.1 200 0.119 0.253 0.159 0.187 0.285
48 0.1 250 0.111 0.252 0.151 0.175 0.276
48 0.1 300 0.106 0.247 0.145 0.170 0.271
48 0.1 500 0.090 0.240 0.135 0.159 0.268
48 0.3 500 0.107 0.571 0.304 0.313 0.576

Table D8: SDB for Empirical Bayes by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 -1.322 -6.472 -10.202 4.114 5.339
24 0.1 200 -2.223 -10.249 -12.988 3.996 6.155
24 0.1 250 -2.017 -10.192 -17.640 4.182 3.795
24 0.1 300 -3.682 -14.543 -13.297 3.543 3.830
24 0.1 500 -8.441 -6.633 -14.387 4.407 4.638
24 0.3 300 6.029 5.551 2.453 2.766 5.052
24 0.3 500 4.136 3.876 2.058 3.254 4.257
48 0.1 150 23.822 29.738 14.627 18.610 27.652
48 0.1 200 22.579 23.756 11.953 15.127 26.812
48 0.1 250 20.382 17.192 7.859 14.423 23.463
48 0.1 300 16.372 14.616 7.097 13.780 21.265
48 0.1 500 11.080 13.998 6.541 13.018 15.967
48 0.3 500 8.336 6.878 4.586 3.216 6.432
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Table D9: SDB for Hierarchical Bayes by Item Parameter Type

# Items RSD # Persons αi βi1 βi2 βi3 βi4
24 0.1 150 -0.611 2.257 4.316 3.669 2.787
24 0.1 200 6.980 6.350 6.246 5.000 6.534
24 0.1 250 10.101 8.387 8.140 8.189 8.275
24 0.1 300 10.981 7.295 11.119 7.898 9.159
24 0.1 500 9.573 8.847 10.508 8.139 9.268
24 0.3 300 7.071 3.425 3.132 5.212 4.344
24 0.3 500 3.965 2.368 2.370 4.735 3.814
48 0.1 150 14.322 15.962 14.958 12.387 13.125
48 0.1 200 13.817 12.836 9.182 8.156 12.434
48 0.1 250 12.814 11.161 10.638 10.611 13.295
48 0.1 300 14.756 13.645 13.261 13.939 14.982
48 0.1 500 22.554 12.750 12.980 13.695 12.050
48 0.3 500 7.656 3.944 4.661 4.555 4.950
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Figure D1: RPB comparison for MMLE, empirical Bayes, and hierarchical Bayes with item
covariates, separated by item parameter type

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Figure D2: RMSE comparison for MMLE, empirical Bayes, and hierarchical Bayes with item
covariates, separated by item parameter type
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Figure D3: SDB comparison for MMLE, empirical Bayes, and hierarchical Bayes with item
covariates, separated by item parameter type

Note. Horizontal lines indicate cutoff for acceptable RPB (10%).
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Appendix E

Method Selection Guideline Supplement

Table E1: Method Selection Guideline

Hierarchical Bayes MMLE
Items RSD Persons RPB < 10% SDB < 10% Acceptable? 100% Convergence?

24 0.1 100 Yes Yes Yes No
24 0.1 150 Yes Yes Yes Yes
24 0.1 200 Yes Yes Yes Yes
24 0.1 250 Yes No No Yes
24 0.1 300 Yes No No Yes
24 0.1 500 Yes No No Yes
24 0.3 100 No No No No
24 0.3 150 No Yes No No
24 0.3 200 No Yes No No
24 0.3 250 Yes Yes Yes No
24 0.3 300 Yes Yes Yes Yes
24 0.3 500 Yes Yes Yes Yes
24 0.5 100 No Yes No No
24 0.5 150 Yes Yes Yes No
24 0.5 200 Yes Yes Yes No
24 0.5 250 Yes Yes Yes No
24 0.5 300 Yes Yes Yes No
24 0.5 500 Yes Yes Yes No
48 0.1 100 Yes No No No
48 0.1 150 Yes No No Yes
48 0.1 200 Yes No No Yes
48 0.1 250 Yes No No Yes
48 0.1 300 Yes No No No
48 0.1 500 Yes No No Yes
48 0.3 100 Yes No No No
48 0.3 150 Yes No No No
48 0.3 200 Yes No No No
48 0.3 250 Yes No No No
48 0.3 300 Yes Yes Yes No
48 0.3 500 Yes Yes Yes Yes
48 0.5 100 No No No No
48 0.5 150 No Yes No No
48 0.5 200 Yes Yes Yes No
48 0.5 250 Yes Yes Yes No
48 0.5 300 Yes Yes Yes No
48 0.5 500 Yes Yes Yes No

Note. *Hierarchical Bayes was considered an acceptable method if both RPB < 10% and SDB < 10% for all item parameter
types.
**MMLE was considered an acceptable method if (i) HB was not considered an acceptable method, and (ii) MMLE had 100%
convergence for all 500 replications.
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