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Chapter 1

Charting the Fragmented Landscape of Drug Synergy

1.1 Introduction

Even as the clinical impact of drug combinations continues to accelerate, no consensus on

how to quantify drug synergy has emerged. Rather, surveying the landscape of drug synergy re-

veals the persistence of historical fissures regarding the appropriate domains of conflicting synergy

models—fissures impacting all aspects of the discovery and deployment of combination therapy.

Herein I chronicle the impact of these divisions on: 1) the design, interpretation, and reproducibil-

ity of high-throughput combination screens; 2) the performance of algorithms to predict synergistic

mixtures; and 3) the search for higher-order synergistic interactions. Further progress in each of

these subfields hinges on reaching a consensus regarding these long-standing rifts in the field.

1.2 The fragmented foundations of drug synergy

Experiments with medicinal combinations stretch back to antiquity. The concept of synergy

can be found in Aristotle’s musings in his metaphysics book 8, “the totality is not, as it were, a

mere heap, but the whole is something besides the parts” a sentiment which has subsequently been

distilled into the more familiar colloquial expression “the whole is more than the sum of its parts.”

However, the quantitative model considered to be the foundation of modern efforts to quantify

synergy was advanced recently, by comparison, in 1926 by Loewe (Loewe, 1926, 1927). Loewe

proposed what is now called the Dose Equivalence Principle (DEP) which asserts if the effect of

reducing one drug’s concentration can be compensated for by adding a second drug at a constant

ratio, there is no synergy (also called additivity). This definition leads to the classic linear isobols

of Loewe Additivity. Observed deviations from this expected ratio signify synergy or antagonism.

The second principle, the Multiplicative Survival Principle (MSP), was first proposed by Bliss

in 1939 (Bliss, 1939) then later independently by Webb (Webb, 1963). In contrast to the DEP,
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the MSP takes a probabilistic approach to synergy asserting the probability of being unaffected

by each drug individually (U1,U2) is independent. Therefore, the probability of being unaffected

by the combination (U12) is equal to the product of the single drug probabilities (U12 = U1 ∗U2).

This equation has been termed Bliss Independence. If the percent of the population unaffected for

the combination is less or more than this product, the combination is synergistic or antagonistic,

respectively. A third major synergy principle was proposed by Gaddum in 1940, which defined

synergy as the difference between a combination’s effect and the most efficacious single agent

(Gaddum, 1940). This model is commonly called Highest Single Agent (HSA). Together, these

three principles, (DEP, MSP, and HSA) comprise the foundations of almost all subsequent synergy

frameworks (Figure 1.1A, Foundational Principles). Several excellent reviews on the mathematical

basis of these foundational principles are (Tallarida, 2001, 2011; Foucquier and Guedj, 2015).

In the 1980s, two equations—one satisfying the MSP and the other the DEP—were derived

from a mass action model of drug effect by Chou and Talalay (Figure 1.1A, Mass Action Interpre-

tation) (Chou et al., 1983; Chou and Talalay, 1984). Because the mass-action based equations for

MSP and DEP are not equivalent, Chou recommended using the DEP equation which assumes the

inhibitors are mutually exclusive. This equation is called the Combination Index (CI). However,

the existence of multiple paradigms for calculating drug synergy became increasingly problematic

in the late 1980s and early 1990s as systematic comparisons between methods emerged. These

comparisons highlighted the frequent contradictory results between the MSP and DEP frameworks

(Berenbaum, 1989; Greco et al., 1995)—inconsistencies that have been subsequently documented

as recently as 2019 (Vlot et al., 2019). Amidst these comparisons, a conference was convened in

Saariselkä, Finland in 1993 seeking consensus for the field. The resolutions of the attendees were

documented in what was termed the Saariselkä Agreement (Greco et al., 1992; Tang et al., 2015)

(Figure 1.1A, Seeking Consensus). The agreement concluded,

“It is clear that the adherents of Loewe additivity and Bliss independence have
heard all the most compelling arguments for and against each model, and can-
not be persuaded to switch allegiances. Thus. . . I propose that both models be
tentatively accepted. . . This recommendation is made even though predictions of
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A B

157,910 Publications since 
1993 containing the search term

drug synerg* 

Foundational
Principles

1920s-1940s 1926
Loewe describes the DEP

1939
Bliss describes the MSP

1940
Gaddum describes HSA

Mass Action 
Interpretation

1980s

Seeking 
Consensus

1990s 1992
Unable to reconcile the DEP and MSP, the 
Saariselka Agreement proposes studies 
should specify the synergy method used.
1995
Greco et al.* publish an extensive comparison 
of different frameworks. Reaffirm the 
incongruities between the different methods.

The Modern
Expansion

2000s-Present

1983,1984
Chou and Talalay rederive both the MSP and 
DEP from the Law of Mass Action as separate 
equations. Introduce the Sham Experiment.

Expansion of synergy metrics (Table 1.1)
Evolution of sampling methods (Figure 1.7)
Software development for calculating various 
metrics (Figure 1.4)
Development of computational approaches to 
predict synergy (Figure 1.8)
Seeking drug interactions beyond pair-wise 
(Figure 1.10)

126,000

No explicit mention of
DEP or MSP

*Seminal review on the discrepancy 
between MSP and DEP frameworks

126,000

No explicit mention of
DEP or MSP

20,100
9,750

2,060

MSP DEP

Figure 1.1: Timeline of developments in drug synergy highlights the persistence of historical rifts
in the field. A) Developments in drug synergy span four distinct epochs. During the Foun-
dational Principles period, the major drug synergy principles were first described. Subsequent
work in the 1980s rederived the DEP and MSP based on a mass-action model of drug effect
resulting in two equations. The DEP-based equation became known as the Combination Index
(CI). A series of studies during a critical period in the 1990s highlighted the incongruence of
the DEP and MSP culminating in the recommendation studies should explicitly state how syn-
ergy was calculated. The modern era is characterized by an expansion of synergy models that
seek to extend the DEP and MSP (Table 1.1). Substantial developments have also occurred in
related subfields (Software-Figure 1.4, Sampling Methods Figure 1.8, Computational Prediction-
Figure 1.9, Higher-Order Interactions-Figure 1.11). B) Publications (in Web of Science) which
include the term “drug synerg*” where * is a wild card to encompass terms such as “synerg-y” and
“synerg-istic.” Publications are grouped by those mentioning MSP (blue), DEP (red), both (pur-
ple), or neither (gray). The subset containing TOPIC: (”dose equivalence principle” OR isobol*
OR Loewe OR ”combination index”) were considered to reference DEP frameworks while papers
matching TOPIC: (”multiplicative survival principle” OR bliss OR ”fractional product method”)
were considered to reference MSP frameworks.The time span included was: 1993-2019. The
databases included: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH,
ESCI, CCR-EXPANDED, IC. Over 80% of publications continue to use the term synergy without
referencing a particular model. Of those that do, < 7% acknowledge the existence of multiple
frameworks.
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combined-effects based on each of the rival reference models may be quite dif-
ferent”

Symptomatic of this internal division in the field, the preponderance of papers using variations

of the term “drug synergy” since 1993 (approximately 80%) do not reference either the DEP or

MSP (Figure 1.1B). Further, the adherents of the MSP- or DEP-based frameworks remain firmly

entrenched in their respective camps—DEP-based studies being roughly twice as common as MSP-

based—with < 7% of studies explicitly mentioning both (Figure 1.1B).

Nevertheless, this lack of consensus has not slowed the development of combination screening

technology which has outpaced the analytical tools necessary to translate its potential for thera-

peutic discovery. Seeking to address this gap, an assortment of synergy frameworks have been

postulated in recent years (Yadav et al., 2015; Twarog et al., 2016; Zimmer et al., 2016; der Borght

et al., 2017; Schindler, 2017; Wicha et al., 2017; Sinzger et al., 2019) (Figure 1.1A, Modern Ex-

pansion). In the next section, I review these recent advances and highlight how the persistence

of divisions between the MSP and DEP identified at Saariselkä continue to impact all aspects of

synergy studies in the modern era.

1.3 Recent advances building on fractured foundations

Over the last decade, there has been an explosion of synergy frameworks, almost all of which

continue to derive from either the MSP or DEP (Figure 1.1A, Modern Expansion). However, the

implicit assumptions and limitations of each new framework often go unnoted and there are no

standardized criteria for comparison. Table 1.1 catalogs the most critical features of all frame-

works. These features can broadly be grouped into implicit assumptions of the equation (Table

1.1, Equation Assumptions) and restrictions on the types of data that can be analyzed (Table 1.1,

Data Assumptions).

Commensurate with the expansion of computational resources, most modern frameworks have

transitioned to fitting parametric equations to calculate synergy (Table 1.1 Parametric). ZIP and

Effective Dose Model (EDM) (Yadav et al., 2015; Zimmer et al., 2016) are parameterized models
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for the MSP while BRAID, Hill PDE, and BIGL (Twarog et al., 2016; der Borght et al., 2017;

Schindler, 2017) are the same for the DEP. The GPDI model (Wicha et al., 2017) fits two different

equations, one for the DEP and one for the MSP, in an approach similar to the CI. All of these

methods assume a Hill-like dose-response curve for each single-drug, an assumption first used by

Chou (Chou et al., 1983), which is not an original assumption of Bliss, Loewe, or HSA (Table 1.1

Hill Approx). Finally, the recently rediscovered Hand model (Sinzger et al., 2019) is also a param-

eterized version of the DEP which only requires the dose-response function to be differentiable

and invertible and therefore could be applied with non-Hill dose-response curves, though it was

not considered in these instances.

Which form of the Hill equation (Figure 1.2A) these methods are derived from constrains the

range and type of drug effects for which they are applicable (Figure 1.2B). The EDM, Hill PDE,

CI, and BIGL are derived with a 2-parameter Hill equation with parameters only for cooperativity

(also known as the Hill slope) and the potency, measured as the concentration of drug required to

achieve the half-maximal effect (EC50). This 2-parameter form assumes a minimum and maximum

effect of 100% and 0% (Figure 1.2B). For dose-response data for which the maximal effect does

not reach 0%, these methods can result in poor fits (Figure 1.3A,C). In contrast, ZIP, and BRAID

all use the 4-parameter Hill equation as their base making them generally applicable to non-percent

data with arbitrary effect ranges (Table 1.1 Non-% Data). Because the 2-parameter Hill equation

is a special case of the 4-parameter equation (Figure 1.2B), these methods are also applicable to

percent data. The distinction between the 2- and 4-parameter equations stems from the distinction

between the percent affect and the percent effect of a drug. While MSP frameworks assume the

measurement is the percent affect (e.g. percent of affected cells), most phenotypic screens measure

the percent effect (e.g. percent change in cell count relative to control). As a result, it is common to

observe maximal effects which saturate above 0% (Figure 1.3). In a Chapter 2, Section 2.4 (page

51), I shown this distinction between effect and affect can result in a systematic bias toward antago-

nism when applying Bliss to drugs with intermediate effects (e.g. saturate between 35% and 65%).

Comparing an anti-cancer dataset (O’Neil et al., 2016) and an anti-malarial dataset (Mott et al.,
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Table 1.1: Comparison of drug synergy frameworks.
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Original Citation
MSP
Bliss 1 X X (Bliss, 1939)
EOB 1 X X X (Niepel et al., 2019)
ZIP X(10) 1 X X X X (Yadav et al., 2015)
EDM X X(6) 2 X X X (Zimmer et al., 2016)
DEP
Loewe 1 X X (Loewe, 1926)
CI∗ X(4) 1 X (Chou et al., 1983)
Hill PDE X(6) 1 X (Schindler, 2017)
Hand 1 X X X X (Sinzger et al., 2019)
BIGL 1 X X X X (der Borght et al., 2017)
BRAID X X(10) 2 X X X (Twarog et al., 2016)
Other
HSA 1 X X X X (Gaddum, 1940)
GDPI LA X X(12) 4 X X X (Wicha et al., 2017)
GDPI BI X X(12) 4 X X X (Wicha et al., 2017)
∗ CI is the DEP-based eq. in (Chou and Talalay, 1984).
Xindicates property is satisfied
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2015) shows the prevalence of such drugs is assay/model dependent (Figure 1.3B,D). Therefore,

careful investigation of the single-drug dose-response curves should precede any use of methods

derived with a 2-parameter Hill equation (Table 1.1 Unbounded Drug Effect). Both Excess Over

Bliss (EOB) (Niepel et al., 2017) and BIGL (der Borght et al., 2017) propose rescaling arbitrary

drug effects to range between 0% and 100% in order to apply Bliss and Loewe respectively; how-

ever, it is unclear how this rescaling impacts synergy calculations when comparing combinations

with different maximal efficacy.

In summary, the modern expansion of drug synergy frameworks has increased confusion, rather

than clarified, the appropriate domain of each synergy model. This has stemmed in part from

the unstated limitations and assumptions of each model (Table 1.1). Careful consideration of the

assay read-out, the single-drug dose-response curves, and the assumptions of a particular synergy

framework is therefore critical to avoiding systematic biases and improving reproducibility.

1.4 A field divided

Due to the lack of a consensus regarding the best synergy framework, several software pack-

ages, including SynergyFinder (Ianevski et al., 2017) and Combenefit (Di Veroli et al., 2016), have

been developed which calculate multiple synergy metrics, commonly including Bliss, Loewe, and

HSA. Other software has been developed to directly couple synergy calculations with image anal-

ysis in high throughput studies which also calculates multiple metrics (Chantzi et al., 2019, 2018).

However, I find that even on the same dataset, SynergyFinder and Combenefit can give opposite

results for the same synergy metric (Figure 1.4A,B). This likely stems from different data transfor-

mations, normalizations, and manipulations which are not standardized in the field. I find divergent

predictions to be the case for up to 36% of combinations comparing between SynergyFinder and

Combenefit for Bliss in an anti-malaria dataset (Mott et al., 2015) (Figure 1.4C, green bars).

The difficulty in comparing software calculations is augmented by the lack of consensus on

what summary statistics should be used for these dose-dependent models of synergy. In the anti-

malarial dataset, I find the top 5% of antagonistic combinations by the mean are all in the top 32%
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Figure 1.2: Different Forms of the Hill Equation. A) The general 4-parameter Hill equation de-
scribes a sigmoidal dose-dependence of an arbitrary effect with parameters for a drug’s efficacy
(Em−E0), potency (C), and cooperativity (h) also called the Hill slope. The potency is the con-
centration of drug required to achieve a half-maximal effect (E0−Em

2 ) (dotted line). Dose-response
data are commonly plotted on a log scale to assess the sigmoidicity of the curve. Because the
zero concentration goes to negative infinity when logged, E0 (effect at zero concentration of drug)
is commonly plotted at 10-fold lower than the smallest non-zero concentration tested. B) The
4-parameter equation can be simplified to many different forms. The 2-parameter Hill equations
are commonly thought to quantify percent affect/unaffected. This form is commonly assumed in
drug synergy frameworks that do not account for differential maximal efficacy between different
therapeutics.
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-

Figure 1.3: Prevalence of drug effects that saturate above 0% is assay/model dependent. A) Three
examples of anti-cancer drugs that have maximal effects >20% according to the 4-parameter Hill
fit. The data is in blue, the fit using the 4-parameter equation is in red, and the fit using the 2-
parameter equation (asserting E0=100 and Em=0) is in black. The cell line targeted is noted on top
of each panel. B) Distribution of the fitted maximal efficacy in the (O’Neil et al., 2016) anti-cancer
dataset. C) Three examples of anti-malaria drugs targeting different malarial strains (annotated top
of each panel) which have fitted maximal effects >20%. D) There is a lower frequency of drugs
with effects that saturate before 0% in the (Mott et al., 2015) anti-malarial dataset compared to the
anti-cancer dataset.
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Synergistic

A
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<<Ant    Syn>> <<Ant    Syn>>

P. Falciparum

Anti-Malaria Dataset

B

Figure 1.4: Conflicting results between synergy software suites impair reproducibility. A) Percent
effect (color-bar bottom, numbers in boxes) of nvpbgl226 (PI3K/mTor inhibitor) and emetine (anti-
protozoal) against HB3 strain of malaria. Data from Mott et al. (Mott et al., 2015). The percent
effect can be greater than 100% because static endpoint measures of drug effect rely on normaliza-
tion to untreated controls. If the treated condition has more cells than the control, the normalized
percent effect is >100%. This highlights the difference between percent affect (which can never ex-
ceed 100%) and percent effect. (See Section 2.4) B) Combenefit and SynergyFinder calculate Bliss
(color scale bottom)—which assumes percent affect—for this combination differently resulting in
conflicting synergy classification based on the mean across the surface. Gray boxes are undefined
as synergy is only calculated for combination conditions. Syn=synergy, Ant=Antagonism. The
color scale is the same for both heatmaps. This disparity may arise from different approaches to
deal with effects >100%. C) The frequency of agreement between SynergyFinder and Combenefit
in the anti-malarial dataset depends on which synergy metric is calculated.
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Figure 1.5: Dose-dependent synergy frameworks perform inconsistently when using summary
statistics. A) Different summary statistics for dose-dependent synergy metrics (Table 1, Dose-
Independent) prioritize different combinations for follow-up. Anti-malarial combinations are
ranked from left to right in order of increasing maximum observed Loewe (calculation by Comben-
efit). Combinations with high maximum synergy are often antagonistic by mean (red lines bottom
panel). The top 5% of antagonistic combinations by the mean fall in the top 32% of synergis-
tic combinations by the max. -log(Loewe) values <0 are antagonistic and >0 are synergistic. B)
Scatterplot of the Loewe summary statistics shows Spearman correlation of 0.13 between the mean
over the surface and maximum observed Loewe for the anti-malaria dataset.

of synergistic combinations by the maximum observed synergy (Figure 1.5A,B Spearman rank

correlation=0.13). This is because dose-dependent synergy frameworks, such as Bliss and Loewe,

were not designed to compare different drug combinations, but rather different doses of the same

combination. For example, I find anti-malarial combinations where 3 samples at different doses

are all antagonistic by Bliss (Figure 1.6) and Loewe (Figure 1.7), while the combination is syner-

gistic by the mean over the whole dose-response surface. The discrepancy points to a philosophic

quagmire regarding whether synergy is a property of drug pairs or drug dose pairs—one of many

outstanding questions in the field (Outstanding Questions, pg 14). If synergy is a property of drug

pairs, then the optimal drug concentrations should be determined based on maximizing efficacy

with as little drug as necessary. However, if synergy is a property of particular drug concentra-

tions, then there is no basis for choosing one summary statistic over another when comparing drug

combinations. The implications of these divergent worldviews have not been previously discussed,

yet they represent a critical fault-line in the field with far-reaching ramifications for the discovery

and deployment of combination therapy.
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Overall Mean: 7.78

Figure 1.6: Dose-dependent Bliss calculations conflict with summary statistics. A) Percent ef-
fect (color scale bottom, numbers in boxes) of amodiaquine (polymerase inhibitor) and artemether
(proposed to function by inhibiting anti-oxidant enzymes) on the HB3 strain of malaria. B) The
combination is antagonistic (Ant) by Bliss (color scale bottom) according to SynergyFinder at
three different combination doses (purple, orange, green lines); however, the combination is syn-
ergistic (Syn) by mean over the surface. Gray boxes are undefined as synergy is only calculated at
combination conditions.

12



A                                                           B
SynergyFinder (loewe)

Overall Mean: 0.74

Figure 1.7: Dose-dependent Loewe calculations conflict with summary statistics. A) Percent effect
(color scale bottom) of genz669178 (plasmodium dihydroorotate dehydrogenase inhibitor) and
clobetasone butyrate (synthetic glucocorticoid corticosteroid) on the HB3 strain of malaria. The
drug scale is linear on both axes. B) The combination is antagonistic by Loewe (color scale bottom)
according to SynergyFinder at three different doses (at the midpoint of purple, orange, and green
lines); however, the combination is synergistic by mean over the surface.
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1.5 Outstanding Questions

Surveying the field resolves the following outstanding questions.

• DEP vs MSP: The appropriate domains for each principle is still in need of consensus.

• Dose-Dependent Synergy: Whether synergy is dose-dependent or a property of each unique

combination has not been extensively discussed. Subsequent work should avoid methods that

assume synergy is dose-dependent when comparing combinations as the summary statistic

or dose selection strongly impacts the results of such comparisons (Figure 1.5).

• Data Pre-processing: An increase in the transparency of the data pre-processing (e.g. nor-

malization, removing data, interpolating missing values) should be required for subsequent

studies to improve reproducibility. The lack of standards results in disparate calculations

between different software packages (Figure 1.4).

• Data Format: Drug combination data is commonly reported in matrix form or in list form.

While the matrix form is more common, I recommend moving to a list format as it is more

flexible for alternative sampling schemes (e.g. CSS or DiaMOND Figure 1.8) as well as for

reporting combinations of >= 3 drugs.

• Parameter Names: Theoretical comparisons of different parameterized synergy models is

challenging due to the various naming conventions. However, given most frameworks share a

core set of variables (e.g. Hill slope), I recommend parameters, as noted in Symbols section

of Abbreviations, should be used in subsequent derivations. These names are sufficiently

parsimonious to be used in large equations and flexible enough for frameworks that expand

readily to quantifying synergy in mixtures of three or more drugs.

• Sampling Methods: The sampling scheme impacts the applicable synergy frameworks (Fig-

ure 1.8). I recommend subsequent screens should test several sampling strategies to estimate

the trade-off in precision and cost for an assay’s noise profile before depending on a partic-

ular strategy.
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• Comparison Data: Most recent frameworks compare their method with others using one

dataset. However, this precludes understanding the broader applicability of each new

method. The notable development of drug combination databases (Zagidullin et al., 2019)

should facilitate more comprehensive comparisons in the future.

• Higher-Order Interactions: The nature and existence of higher-order interactions remain

debated (Figure 1.11). Careful consideration of the metrics of drug effect, assay noise, syn-

ergy metrics, and the selected drugs will be critical for advances in our understanding of high

order mixtures.

• Sham Experiment: The criticality of satisfying the sham experiment for new frameworks

remains contentious. However, given evidence that satisfying the sham experiment intro-

duces a Hill-slope dependent bias (Section 2.5, page 57), I recommend discarding sham

compliance as a sanity test for subsequent frameworks.

In summary, not only do the oft-cited contradictions between synergy models persist, but even

the same metric can be contradictory between different software packages. Reliance on summary

statistics to compare drug combinations for dose-dependent synergy frameworks (Table 1.1) fur-

ther compounds this problem. Such conflicts undermine the reproducibility and translatability of

synergy studies and therefore should motivate concerted efforts toward establishing data handling

standards in the field.

1.6 Tackling the combinatorial complexity of synergy studies

One challenge, common to all synergy studies, is the looming curse of dimensionality (Cokol

et al., 2017; Zimmer et al., 2017; Tekin et al., 2018). Each additional drug exponentially increases

the requisite number of conditions to measure making an exhaustive search of combinatorial space

intractable. Three subfields have evolved to deal with the inflationary cost of combination screens.

First minimal sampling designs have been proposed for both MSP and DEP frameworks. Second,

computational algorithms are increasingly being developed to predict synergy. And finally, the
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existence and nature of synergistic interactions beyond pair-wise remains an active area of study.

The lack of such interactions would mean the effects of >2-drug mixtures could be predicted from

pair-wise measurements substantially reducing the number of conditions required for higher-order

combinations.

1.6.1 Minimalistic sampling heuristics

The most direct way to decrease costs of combination screens is to reduce the number of data

points required to calculate synergy. Several minimalistic sampling schemes have been proposed

(Figure 1.8) (Zimmer et al., 2017; Fang et al., 2017; Cokol et al., 2017; Huang et al., 2018; Amza-

llag et al., 2019; Cokol-Cakmak et al., 2018; Malyutina et al., 2019); however, not all sampling

methods are equally appropriate for different frameworks. Specifically, the particularly stringent

sampling patterns annotated Minimal MSP and DEP in Figure 1.8, require only 3 data points

per combination, but can only be analyzed by Bliss/HSA or Loewe, respectively. Synergy stud-

ies should therefore carefully consider a framework’s limitations before depending on a sampling

scheme (Table 1.1). Additionally, as discussed above, the selection of dose becomes critical for

these minimalistic sampling schemes (Figures 1.6,1.7).
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Figure 1.8: Minimal sampling designs. A) Data sampling recommendations for different frame-
works.

An alternative approach to reduced sampling schemes is the use of scaling laws to infer ef-

fects for under-sampled combinations (Wood et al., 2014). These scaling laws have been used to

calculate drug response in resistant mutants based on responses of sensitive cells. However, this
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approach is sensitive to the level of experimental noise for a given assay. Further, it implicitly

assumes that drug interactions are unidirectional (i.e. drug A changes the potency of drug B, but

drug B does not change drug A’s potency). Bidirectional synergistic potency has subsequently been

assumed by several groups (Yadav et al., 2015; Twarog et al., 2016; Zimmer et al., 2016; Wicha

et al., 2017).

In summary, because the robustness of synergy calculations to different sampling strategies has

not been rigorously addressed and depends on intrinsic experimental noise, I recommend subse-

quent screens should sample the full matrix of combinations when possible for greater versatility

and robustness.

1.6.2 Predicting synergy

In silico algorithms to predict synergy are a potential method to expand the pool of ”tested”

combinations and have seen significant recent activity including two DREAM challenges (Bansal

et al., 2014; Menden et al., 2019). Broadly, the algorithms can be grouped into either machine

learning (statistical) methods or mechanistic models.

Two excellent reviews on common types of machine learning algorithms employed in predict-

ing drug synergy as well as available databases for training models are (Bulusu et al., 2015; Tang,

2017). Machine learning algorithms can be categorized as network-based, gene expression-based,

drug-centric, or some combination thereof. However, because each algorithm has different in-

put data, it is challenging to compare performance between methods. The most recent DREAM

challenge found combining information about gene expression with information on drug-target

interaction improved predictivity (Menden et al., 2019) suggesting combining data modalities as

potentially profitable.

However, an understudied aspect of these approaches is how each algorithm’s performance de-

pends on which synergy metric is used to measure synergy. The first DREAM challenge (Bansal

et al., 2014) used Bliss while the most recent challenge (Menden et al., 2019) was based on Loewe

(calculated by Combenefit). When I predicted Bliss, Loewe, or HSA synergy for anti-cancer com-
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binations using DeepSynergy (Preuer et al., 2018)—a neural network algorithm which uses drug

and gene expression information as input—I found a 12% overlap in the top 1,000 predicted com-

binations with no overlap in the top 5 (Figure 1.9A). The first overlap between all three occurred

at the 263rd combination by Loewe ranking (Figure 1.9A). Further, the physicochemical drug fea-

tures (Figure 1.10A) and expressed genes (Figure 1.10B) with the largest influence on synergy/an-

tagonism (as assessed by mean SHAP value (Lundberg and Lee, 2017) over 1,000 combinations)

had a rank correlation between the different synergy metrics of <0.04 for all comparisons (Figure

1.10). This potentially stems from the different sensitivity of Bliss, Loewe, and HSA to different

mechanisms of joint action as described by Gilvary and colleagues (Gilvary et al., 2019). Given

the historical discrepancy between these metrics, a more customized approach is warranted.

Bliss Rank 
1. mk-8669+lapatinib in A2780
2. mrk-003+mk-8776 in A2780
3. mrk-003+dasatinib in A2780
4. dasatinib+sunitinib in A2780
5. sn-38+mrk-003 in A2780
...
8. mk-2206+sunitinib+A2780

Loewe Rank
1. topotecan+azd1775 in HT144
2. mitomycine+azd1775 in HT144
3. azd1775+topotecan in HT144
4. azd1775+sn-38 in HT144
5. carboplatin+azd1775 in HT144
...
263. mk-2206+sunitinib+A2780

HSA Rank
1. lapatinib+sunitinib in A2780
2. mk-2206+dasatinib in A2780
3. mk-8669+sunitinib in A2780
4. mk-8669+bez-235 in A2780
5. l778123+dasatinib in A2780
6. mk-2206+sunitinib+A2780

A Overlap in 1,000 Most Synergistic Combinations as
predicted by DeepSynergy trained on Bliss, Loewe, or HSA

Figure 1.9: Top machine learning-predicted combinations depend on the synergy metric. A) I
trained DeepSynergy (Preuer et al., 2018), a machine-learning algorithm to predict drug synergy
from gene expression and drug physicochemical properties, on the O’Neil et al. anti-cancer dataset
with Bliss (purple), HSA (green), or Loewe (orange) as the measure of synergy. The top-predicted
synergistic combinations were different depending on which metric was used. mk-2206 (AKT
inhibitor) plus sunitinib (tyrosine kinase inhibitor) in A2780 cells was the first combination present
in the rank-orderings of all three metrics at the 6th, 8th, and 263rd position for HSA, Bliss, and
Loewe respectively (red highlight). The top 5 predicted synergistic interactions in Loewe are all in
HT144 cells (malignant melanoma) while in Bliss and HSA all are in A2780 (ovarian carcinoma).
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A B

Synergy--
>

Antagonism--
>

Figure 1.10: Physicochemical and cell features which increase the synergy of a combination in a
cell line depends on the synergy metric. A) The mean SHAP value across the top 100 predicted
synergistic combinations for 2,431 drug physicochemical features for Loewe (top), Bliss (middle),
and HSA (bottom). Features are ranked-ordered from left to right by increasing SHAP values
based on the Loewe model. SHAP values ¿0 indicate a feature tends to increase the synergy while
SHAP values ¡0 indicate features that tend to increase antagonism. Drug features predicted to have
the greatest contribution to synergy or antagonism vary depending on which synergy metric is used
(spearman rank correlation ¡0.04 for all pairs). B) Cell features (gene expression of 6,415 genes)
contribution to synergy or antagonism of a combination as measured by the mean SHAP value.

In contrast to statistical models, mechanistic approaches to predict synergy are based on mod-

els of biological processes. An early example of this, coPIA, used an ordinary differential equation

(ODE) based model to predict combination effects in breast cancer cells (Nelander et al., 2008).

A more recent ODE model of the HGF/Met signaling pathway was used to identify personal-

ized combinations in hepatocellular carcinoma (Jafarnejad et al., 2019). Another example used
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dynamic logic models of phosphorylation cascades to predict colorectal cancer response (Eduati

et al., 2017). Even in the absence of kinetic parameters necessary for an ODE model, purely

topological models have been used to predict with 80% accuracy perturbation impacts on gene

expression (Santolini and Barabási, 2018) in a chemotaxis model of bacteria. Such topological

models have also been applied in cancer to identify the synergistic interaction of Aurora B and

ZAK in triple-negative breast cancer (Tang et al., 2019). The predictivity of such approaches tends

to leverage the sparsity of biological networks.

Finally, a hybrid approach constraining the architecture of an artificial neural network to match

biological networks has been shown to be predictive of growth dynamics in budding yeast (Ma

et al., 2018) and could be used to predict collateral dependencies in biological networks. While

it remains enticing to understand the mechanistic basis of synergy, no unifying theme from these

studies has emerged and which synergy model should be coupled to the mechanistic models or

statistical models remains an open question.

1.6.3 Higher-order interactions

There has been substantial interest in predicting the effects for mixtures of three or more drugs

based on pair-wise effects (Wood et al., 2012; Zimmer et al., 2016; Russ and Kishony, 2018; Tekin

et al., 2018; Tendler et al., 2019). See (Tekin et al., 2017) for a more in-depth review of recent work.

In a seminal paper on this topic, Wood et al. did not find evidence for higher-order interactions in

3-drug combinations in Escherichia coli (Wood et al., 2012). Specifically, they could predict the

effects of 3-drug combinations using an MSP-based, Isserlis-like formula that depended only on

pair-wise and single drug effects. A series of follow-up comparisons were done between EDM,

the Isserlis-like formula, and Bliss to predict multi-drug effects for combinations up to 10 drugs

(Zimmer et al., 2016, 2017; Katzir et al., 2019). This is unsurprising, as neither the Isserlis nor

Bliss formula have parameters to fit to data, unlike the EDM. Regardless, these studies reinforced

the absence of higher-order interactions as first postulated by Wood et al.

However, these findings were challenged by two papers that found emergent synergy for multi-
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drug combinations in E. coli based on Bliss (Beppler et al., 2016; Tekin et al., 2018). This trend

toward synergy was also observed by Russ and Kishony (Russ and Kishony, 2018), though less

pronounced, in a study that directly compared the scaling of Loewe and Bliss. They found the

null models for Loewe and Bliss diverge for increasingly higher-order combinations with Bliss

becoming more synergistic (in agreement with (Beppler et al., 2016; Tekin et al., 2018) and Loewe

becoming more antagonistic. Cokol and colleagues also found evidence for higher-order interac-

tions according to Loewe for combinations of anti-tuberculosis compounds, though no trend as a

function of the number of drugs was observed (Cokol et al., 2017). In my comparison of the trends

in the three datasets ((Russ and Kishony, 2018; Tekin et al., 2018; Katzir et al., 2019)), I find a

trend toward antagonism as the number of drugs increases for Loewe in all datasets (Figure 1.11A).

The trend for Bliss, however, is contradictory between the three datasets (Figure 1.11B). Given my

work demonstrating bias in Bliss toward antagonism for drugs with maximal effects >0% (see

Section 2.4 page 51), I corrected the Katzir et al. data to account for this bias and found the emer-

gent antagonism substantially decreases (Figure 1.12A). I find a higher proportion of drugs with

maximal effects >0% in the Katzir et al. data than the Russ et al. data (Figure 1.12B) explaining

why this bias was more prevalent in the former data.

In the end, the presence or absence of higher-order synergy does not preclude the deployment

of mixtures of 3 or more drugs, as gains in efficacy can still be achieved, as shown in a recent study

in colorectal cancer (Horn et al., 2016). Indeed, the possible existence of a synergy-efficacy trade-

off (Gupta and Dixit, 2018; Sen et al., 2019) emphasizes the search for synergistic combinations

should not be solely focused on optimizing synergy, but rather high efficacy at tolerable doses.

In summary, the existence and nature of higher-order interactions remain controversial. Clearly

delineated studies on the role of assay, metric, drug selection, model system, etc. are needed to

better address this question. Nevertheless, what is clear is the discrepancies between the MSP and

DEP are further exacerbated by the scaling to higher numbers of drugs amplifying the need for a

consensus approach synergy before tackling this problem.
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A

Tekin et al.  E. Coli

Katzir et al.  E. Coli, M. tuberculosis

Russ et al.  E. Coli, S. aureus, 
E. faecalis, S. cerevisiae

Tekin et al.  E. Coli

Russ et al.  E. Coli, S. aureus, 
E. faecalis, S. cerevisiae

Katzir et al.  E. Coli, M. tuberculosis

B

Figure 1.11: Seeking consensus on the existence and nature of higher-order interactions. A) Av-
erage Loewe synergy decreases for an increasing number of drugs in three datasets ((Russ and
Kishony, 2018; Tekin et al., 2018; Katzir et al., 2019)). The black dot is the mean value of the dis-
tribution. Red-line demarcates synergy (Syn) from antagonism (Ant). The species tested in each
paper are indicated in the panel title. B) Distribution of Bliss synergy as a function of increasing
numbers of drugs. Accounting for the difference between percent effect and percent affect reduced
the bias toward antagonism for ultra-high order combinations in the Katzir et al. data (Figure 1.12).
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B

A

Figure 1.12: Correcting for the antagonistic bias in Bliss calculations for drugs with maximal
effects > 0% decreases the bias toward antagonism for combinations of ultra-high order combi-
nations. A) Distributions of Loewe and Bliss synergy as a function of the number of drugs in the
Katzir et al. dataset based on percent affect. To calculate the percent affect from percent effect
data, the data were fit using a 4-parameter Hill equation (Figure 1.2). The fitted Hill slope and
EC50 from the 4-parameter equation were used in the 2-parameter Hill equation to calculate the
percent affect at a given concentration. This is equivalent to renormalizing each combination to
fall within E0=1 to Em=0. Syn=Synergy, Ant=Antagonism. B) The distribution of fitted Em in the
Katzir et al. and Russ et al. datasets. Bin sizes are equivalent in the two plots.
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1.7 Synergy in new contexts

Despite the persistent historical fissures in the field, there are exciting developments that con-

tinue to add new dimensions to the quantification of combination pharmacology. One interesting

development is the study of synergy in temporally staggered treatments (Koplev et al., 2017),

which are known to impact in vivo efficacy (Bulman et al., 2016). These dosing programs bet-

ter mimic patient combinations which are not commonly given simultaneously—an often-ignored

assumption of all Hill-equation based frameworks (Table 1.1, Hill Approx.). Koplev et al. take

a geometric additivity approach similar to the MSP (Russ and Kishony, 2018) and find several

anti-cancer combinations with temporally dependent synergy in pancreatic cancer. Related to this,

a recent study by Dean et al. has investigated how synergy is related to the short-term development

of resistance (Dean et al., 2019). They found the rate of adaptation in E. faecalis is not related to

the synergy of the combination, but rather was a function of the overlap in mechanism between

the drugs. In related work, (Maltas and Wood, 2018) found the collateral effects of a single drug

are pervasive but drug-specific. Therefore, the optimal combinations to reduce the development of

resistance are likely drug-dependent, though the connection between collateral effects of a single

drug and synergy is not well understood.

Another rapidly evolving concept is the translation of synergy between different scales (Dry

et al., 2016; Palmer and Sorger, 2017). Palmer et al. used a Bliss model to show most clinical com-

binations can be explained by variable sensitivity in a population rather than true pharmacologic

interaction. While they did not prove the existence of the two patient populations with a different

drug, they demonstrated such population variance was sufficient to explain the additive benefit of

most clinical combinations. A conceptually similar idea was the basis of DRUG-NEM (Anchang

et al., 2018), an MSP-based framework for identifying combinations that maximize coverage of

a heterogeneous cell population measured by CyTOF. Overall, these studies highlight the role of

heterogeneity at every scale on our understanding of drug synergy.

Another developing area of research is the use of multi-parametric read-outs from combination

experiments to prioritize drug combinations. For example, SynToxProfiler (Kononov et al.) and
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CSS (Malyutina et al., 2019) both calculate synergy as well as total efficacy. Toxmatrix instead

quantifies toxicity, or protection against toxicity, due to a combination (Tong et al., 2018). These

multi-parametric approaches to drug synergy better captures the clinical trade-offs between ther-

apeutic efficacy and tolerable dose. However, it is unclear how much the in vitro measures of

efficacy, toxicity, and synergy correlate to clinical axes of interest (e.g. side effects and clinical ef-

ficacy). Furthermore, the optimal trade-off between these different parameters is unknown though

Pareto optimization would appear appropriate.

Finally, the rapid evolution of chemical-genomics screens is only beginning to impact the

search for drug combinations. Examples include recent studies in M. tuberculosis (Johnson et al.,

2019) and E. coli (Nichols et al., 2011) which identified mutant-specific classes of inhibitors and

suggest mutation mimicking drug combinations as a promising path forward. Another study used a

CRISPR-based double knockout screen to identify synergistic combinations against leukemia cells

(Han et al., 2017). However, as gene knock-outs and mutations are fundamentally different than

molecular inhibition, the relationship between synthetic lethal and drug synergy is likely to be case

dependent. Notably, Cokol et al. did not find an increase in Loewe synergy in targeting synthetic

lethal genes compared to random (Cokol et al., 2011). While the historical overlap between func-

tional genomics and drug synergy has been small, these recent efforts are beginning to bridge these

disciplines.

1.8 The need for consensus

Throughout the preceding century, two dominant principles have been used to quantify synergy

of drug combinations: the Dose Equivalence Principle (DEP), introduced by Loewe (Loewe, 1926,

1927) and expanded by Chou (Chou et al., 1983), and the Multiplicative Survival Principle (MSP),

introduced by Bliss (Bliss, 1939). Discrepancies between these two principles, however, have

resulted in divergent conclusions between synergy studies (Greco et al., 1995). This led to the

Saariselkä Agreement, which recommended drug combination studies explicitly state how synergy

was calculated (Greco et al., 1992; Tang et al., 2015) (Figure 1.1A).
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More recently, a proliferation of synergy models, derived as extensions of either the DEP or

MSP, has further splintered the field (Zimmer et al., 2016; Yadav et al., 2015; Schindler, 2017;

Foucquier and Guedj, 2015; Geary, 2013; Twarog et al., 2016) (Figure 1.1A). In the absence of

a consensus framework for drug synergy, discovery efforts for combinations often calculate all

available synergy metrics (Ianevski et al., 2017; Flobak et al., 2017; He et al., 2018) (Figure 1.4).

However, even these software packages conflict and there remains no basis for choosing one metric

over another, which becomes particularly problematic when synergy metrics are in conflict. This

“calculate everything” paradigm thus hampers reproducibility between studies, delays progress in

the discovery of truly synergistic drug combinations, and negatively impacts the translatability of

combination discovery efforts.

Despite the lack of consensus on how to quantify synergy, drug combination screens remain

essential to both pharmaceutical and academic discovery efforts, as shown in recent challenges

by AstraZeneca and the NCI-DREAM consortia (Bansal et al., 2014; Menden et al., 2019), as

well as combinatorial CRISPR screens (Han et al., 2017). Yet, the paucity of successful clinical

combinations explicable by true pharmacological interaction, rather than patient-to-patient vari-

ability (Palmer and Sorger, 2017), is symptomatic of the challenges facing the field. Therefore,

the need identified at Saariselkä still exists: a consensus framework to interpret drug combination

pharmacology.

In the next chapter, I present a mass action based theory of drug synergy, termed MuSyC, which

generalizes the DEP and MSP, thereby unifying the field of drug synergy, as sought at Saariselkä

(Section 2.2). I further map the landscape of current synergy metrics, including: Bliss Indepen-

dence (Bliss, 1939), Loewe Additivity (Loewe, 1926), Combination Index (CI) (Chou et al., 1983),

Highest Single Agent (HSA) (Gaddum, 1940), Effective Dose model by Zimmer et al. (Zim-

mer et al., 2016), ZIP (Yadav et al., 2015), a partial differential equation (PDE) Hill model by

Schindler (Schindler, 2017), and BRAID (Twarog et al., 2016). In mapping relationships between

these various metrics, I identified systematic differences impacting the interpretation of synergy

in drug combination experiments. Specifically, I found: (1) the conflation of different types of
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drug interactions (Section 2.3); (2) MSP frameworks are biased toward antagonism for drugs with

intermediate efficacy (Section 2.4); and (3) DEP frameworks contain a Hill-slope dependent bias

(Section 2.5). The Hill-slope bias results from satisfying the famous “sham” combination thought

experiment, arguing against the merit of sham-compliance as a measure of validity for synergy

frameworks. Using two large combination datasets (O’Neil et al., 2016; Mott et al., 2015), MuSyC

identifies real-world examples where the conflicting assumptions of previous drug synergy frame-

works misleads or impedes drug discovery efforts through these pervasive and predictable biases.

I therefore propose MuSyC as a consensus framework to interpret combination pharmacology and

signify its broad applicability to the study of drug mixtures.
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Chapter 2

A Consensus Framework Unifies Multi-Drug Synergy Metrics

2.1 MuSyC: A mass action framework to measure synergistic effects

The 4-parameter Hill equation is commonly used to fit dose-response data from in vitro and in

vivo assays (see Section 2.2 eq. (2.3) for derivation and Table 2.5 for parameter annotation). This

equation can be derived from the equilibrium of a 2-state model of drug effect based on the Law of

Mass Action (Figure 2.1A left). Traditionally, the parameters of the Hill equation are interpreted

as a drug’s efficacy (E0−E1), potency (C), and cooperativity (h), also known as the Hill slope.

These parameters correspond to three possible geometric transformations of a dose-response curve

(Figure 2.1A right). To generalize this one-drug formalism to two concurrent drugs, I propose

a 4-state mass-action model of combination pharmacology (Figure 2.1B left). From this model, I

derived a two-dimensional (2D) Hill equation for two drugs (equation 2.8) defining a dose-response

surface (Figure 2.1B middle). The derivation is as follows.

Consider a reversible transition between an unaffected population (U) and an affected popula-

tion (A) governed by

U
r1·dh

−−−⇀↽−−−
r−1

A (2.1)

where d is the concentration of the drug, h is the Hill slope, often called cooperativity, and r1

and r−1 are constants corresponding to the reaction rate (Figure 2.1A). Applying the Law of Mass

Action, steady state ratios of U and A are determined to be

dU
dt

= A · r−1−U · r1dh ≡ 0

A
U

=
r1dh

r−1

When d = r−1
r1

1
h , then (A = U). This dose is commonly called the EC50 (herein denoted as C).
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Figure 2.1: MuSyC mass action model of drug combination synergy. A) Single-drug model: The
traditional equation for fitting dose-response relationships (middle) is the 4-parameter Hill equa-
tion. This equation can be derived using the Law of Mass Action from a two state model of drug
effect (left). Edge notation is equal to the ratio of states at equilibrium (A1

U ). The Hill equation con-
tains parameters measuring a drug’s efficacy (E0−E1), potency (C), and cooperativity (h). Each
parameter corresponds to distinct geometric transformations of the dose-response curve (right). B)
Two-drug model: MuSyC is derived from a four-state mass-action model of combination pharma-
cology (left) and results in a 2D Hill-like equation describing a dose-response surface (middle).
Edge notation denotes the ratio of the connected corners for the boundary condition. For exam-
ple, edge #3 annotation means A12

A1
→ C1

α21d1

γ21h1 when d2 → inf. Beyond the parameters of the
single Hill equation, the 2D Hill equation has additional parameters (β ,α,γ) corresponding to dis-
tinct transformations of the dose-response surface (right). These transformations directly measure
the changes in a single drugs’ efficacy, potency, and cooperativity due to the combination, and,
therefore, are interpreted as synergistic efficacy (β ), synergistic potency (α), and synergistic coop-
erativity (γ). There are two values for α and γ because each drug can independently modulate the
potency and cooperativity of the other (Zimmer et al., 2016; Yadav et al., 2015) (edge 3 vs. edge
4 of the state transition model). In contrast, the single β parameter describes the percent increase
in maximal effect due to both drugs (effect at A12). See Figure 2.2 for MuSyC extension to three
drugs.
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Because 100% of the population is either unaffected or affected, I also have the condition U +A =

1. This leads to the 2-parameter 1D Hill equation

U =
Ch

Ch +dh =
1

1+
( d

C

)h (2.2)

If the U and A differ by an observed effect (such as proliferation rate (Harris et al., 2016)), the

measured effect E at dose d will be a weighted average

E =U ·E0 +A ·E1,

where E0 and E1 are the the effects characteristic of the U and A, respectively. From this I find the

final form of a 4-parameter Hill equation:

E = E1 +
E0−E1

1+
( d

C

)h (2.3)

To extend the Hill equation to considering a system of two drugs, consider a phenomenological

model with 4 possible states, U , A1, A2, and A1,2 corresponding to populations that are unaffected,

affected by drug 1 alone, affected by drug 2 alone, or affected by both drugs, respectively. The

corresponding reactions between these states are:

U
r1·d

h1
1−−−⇀↽−−−

r−1
A1 (2.4)

U
r2·d

h2
2−−−⇀↽−−−

r−2
A2

A1
rγ12
2 ·(α12d2)

γ12h2
−−−−−−−−−⇀↽−−−−−−−−−

rγ12
−2

A1,2

A2
rγ21
1 ·(α21d1)

γ21h1
−−−−−−−−−⇀↽−−−−−−−−−

rγ21
−1

A1,2

Here, the α parameters quantify the modulation of one drug’s EC50 (potency) due to the other
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drug. Similarly, the γ parameters measure the change of a drug’s Hill slope (cooperativity) due to

the other drug.

As in the 1D case, finding the steady state of the system leads to the following system of

equations

dU
dt

=−U ·
(

r1dh1
1 + r2dh2

2

)
+A1 · r−1 +A2 · r−2 (2.5)

dA1

dt
=−A1 ·

(
r−1 + rγ12

2 (α12d2)
γ12h2

)
+U · r1dh1

1 +A1,2 · (r−2)
γ12

dA2

dt
=−A2 ·

(
rγ21

1 (α21d1)
γ21h1 + r−2

)
+U · r2dh2

2 +A1,2 · (r−1)
γ21

dA1,2

dt
=−A1,2 ·

(
rγ21
−1 + rγ12

−2
)
+A1 · rγ12

2 (α12d2)
γ12h2 +A2 · rγ21

1 (α21d1)
γ21h1

At equilibrium, the equations 2.5 must all be equal to zero; however, the system only defines a

rank 3 matrix. Taking the first three equations from 2.5 with the constraint U +A1+A2+A1,2 = 1,

I define

M :=



−
(

r1dh1
1 + r2dh2

2

)
r−1 r−2 0

r1dh1
1 −

(
r−1 + rγ12

2 (α12d2)
γ12h2

)
0 (r−2)

γ12

r2dh2
2 0 −

(
rγ21

1 (α21d1)
γ21h1 + r−2

)
(r−1)

γ21

1 1 1 1


(2.6)

such that

M ·
[
U A1 A2 A1,2

]T

=

[
0 0 0 1

]T

or, solving for the proportions of each state,

[
U A1 A2 A1,2

]T

= M−1 ·
[

0 0 0 1

]T

(2.7)

If I again consider distinct effects E0, E1, E2, and E3 distinguishing populations U , A1, A2, and

A1,2, I find the equation for the dose response surface to be

E =

[
E0 E1 E2 E3

]
·M−1 ·

[
0 0 0 1

]T

(2.8)
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As d1→ ∞ the equation reduces to

E = E3 +
E1−E3

1+
(

α12d2
C2

)γ12h2 (2.9)

by which I can see the 2D equation reduces to a 1D Hill equation at the boundaries. The proof is

as follows.

When d1→ ∞, then the 4 state reduces to 2 states transition model between A1 and A12.

A1
rγ12

2 ·(α12d2)
γ12h2

−−−−−−−−−⇀↽−−−−−−−−−
rγ12
−2

A1,2 (2.10)

At equilibrium
A1,2

A1
=

rγ12
2 (α12d2)

γ12h2

rγ12
−2

(2.11)

When A1 = A1,2 this is the EC50 for drug 2 given saturating concentrations of drug 1 (C′2). This

dose can be found by solving the above.

C′2 =
1

α12

(
r2

r−2

)1/h2

=
C2

α12
(2.12)

The boundary then reduces to a Hill equation of the form

E = E3 +
E1−E3

1+ α12d2
C2

γ12h2
(2.13)

The 2D Hill equation (eq. 2.8) contains five additional parameters, not present in the single-

drug Hill equation, which measure different types of drug interactions. These additional parameters

measure changes in a drug’s efficacy (β ), potency (α12 and α21), and cooperativity (γ12 and γ21)

in a combination —representing three distinct types of synergy (Figure 2.1B right, Table 2.5). I

therefore term these parameters as synergistic efficacy, synergistic potency, and synergistic coop-

erativity. As I show in Section 2.2, these parameters are conflated in traditional synergy metrics
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obscuring the true origin and magnitude of drug synergy or antagonism.

Following the cubic geometry of the mass action model in (Figure 2.1B) it is trivial to continue

to expand to increasing numbers of drugs. Figure 2.2 shows the extension to three drug system

resulting in a cube. For combinations of 4 drugs, the geometry is a tesseract. In general, MuSyC

can describe combinations N-drug combinations by considering 2N possible states with transi-

tions defining the edges of an N-dimensional hypercube. Dose-response surfaces generalize to

N-dimensional scalar functions. In the most general case, for N drugs there are 2N−N−1 distinct

β parameters (one for each state characterized by the action of at least 2 drugs), and n ·
(
2n−1−1

)
distinct α and γ parameters (one for each edge, excluding edges connected to the undrugged state,

which correspond only to single-drug potency and cooperativity). Thus, MuSyC can account for

higher-order synergies (e.g., synergy that emerges from a combination of three drugs, but is not

evident in any pairwise combination of those drugs); however, the rapid growth of the number of

synergy parameters with N suggests that significant quantities of data, or confident knowledge of

pairwise synergies, would be needed to measure such higher-order synergies.
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2.2 A bridge between DEP and MSP maps existing synergy approaches onto a common

landscape

In recent years, several alternative synergy models have been proposed. Broadly, these models

are derived from one of two guiding principles: the Multiplicative Survival Principle (MSP) and

the Drug Equivalence Principle (DEP) (Table 2.6). Prior work has shown contradictory results

when comparing between MSP and DEP frameworks (Greco et al., 1995), and there remains a

lack of consensus on the commonality between the two principles (Greco et al., 1992; Yadav et al.,

2015; Twarog et al., 2016; Foucquier and Guedj, 2015). Here I show MuSyC satisfies both the DEP

and MSP under certain conditions (Figure 2.3A,B), thereby unifying the foundational principles of

drug synergy.

2.2.1 MuSyC subsumes the Multiplicative Survival Principle

The MSP was first described by Bliss (Bliss, 1939) and is the foundation of the Bliss Indepen-

dence framework. MSP assumes the probability of a cell surviving treatment by drug 1 (U1) is

independent of the probability of the same cell surviving treatment by drug 2 (U2). Therefore, the

probability of surviving both Drug 1 and Drug 2 is U =U1 ·U2 (Bliss, 1939). Synergy or antago-

nism occur when U 6= U1 ·U2. MuSyC satisfies the MSP under the following conditions: (1) the

effect metric is expressed as a percent (E0 = 1, and E3 = E1E2), (2) there is no potency synergy

(α12 = α21 = 1), and (3) there is and no cooperativity synergy (γ12 = γ21 = 1) (Figure 2.3A).

To show this, let each drug in isolation have a 1D hill response

Ui =
1

1+
(

di
Ci

)hi
(2.14)

where Ui reflects the portion of cells unaffected by drug i alone. For the 2D case, when α12 =

α21 = 1 and γ12 = γ21 = 1, each edge in Figure 2.1B satisfies detailed balance and therefore the
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Figure 2.3: Unifying MSP and DEP with MuSyC, and mapping the landscape of drug synergy.
A) The Bliss null model, the base model for all MSP frameworks, emerges from MuSyC when
E0 = 1, α12 = α21 = γ12 = γ21 = 1, and E3 = E1E2. B) The Loewe null model, the base model for
all DEP frameworks, emerges from MuSyC when h1 = h2 = 1 and α12 = α21 = 0. The constraint
on α indicates the drugs’ activities are mutually exclusive (i.e., the double-drugged state A1,2 does
not exist). C) Network of relationships between synergy frameworks (nodes) grouped by their
underlying principle (colors). The notation next to solid edges signifies conditions under which
source model reduces to end model’s null model. The dotted edge indicates MuSyC synergistic
efficacy (β ) is proportional to HSA as d1 → ∞,d2 → ∞. Where possible, parameters from each
framework were translated in terms of the dose-response parameters defined for MuSyC (Table
2.5) to facilitate comparison.
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state occupancy is given by

A1 =

(
d1

C1

)h1

U

A2 =

(
d2

C2

)h2

U

A1,2 =

(
d2

C2

)h2

A1

Because U +A1 +A2 +A1,2 = 1, the MuSyC mass action model gives

U =
1

1+
(

d1
C1

)h1
+
(

d2
C2

)h2
+
(

d1
C1

)h1
(

d2
C2

)h2
(2.15)

A1 =

(
d1
C1

)h1

1+
(

d1
C1

)h1
+
(

d2
C2

)h2
+
(

d1
C1

)h1
(

d2
C2

)h2

A2 =

(
d2
C2

)h2

1+
(

d1
C1

)h1
+
(

d2
C2

)h2
+
(

d1
C1

)h1
(

d2
C2

)h2

A1,2 =

(
d1
C1

)h1
(

d2
C2

)h2

1+
(

d1
C1

)h1
+
(

d2
C2

)h2
+
(

d1
C1

)h1
(

d2
C2

)h2

From this, it is easy to verify that U =U1 ·U2 where U1 = 1− (A1+A1,2) and U2 = 1− (A2+A1,2)

which is equivalent to the Bliss Independence null model.

Furthermore, given E0 = 1

E =U +A1E1 +A2E2 +A1,2E3 (2.16)

I define Ui, Ai, and Ei =Ui +AiEi to be the fraction of unaffected cells, fraction of affected cells,

and observed effect for treatment due to the single drug i, as described by equation 2.14. The

overline distinguishes affects attributable to each drug, such that A1 includes cells affected either

by drug 1 alone, or by both drug 1 and drug 2, while A1 only includes cells affected by drug 1, but
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not drug 2 (i.e., A1 = A1 +A1,2). Then

E1 ·E2 =
[
U1 +(1−U1E1)

][
U2 +(1−U2E2)

]
=U1U2 +E1(U2−U1U2)+E2(U1−U1U2)+E1E2(1−U1)(1−U2)

From 2.15, I know U =U1 ·U2, and A1,2 = A1 ·A2, leading to

=U +E1(U2−U)+E2(U1−U)+E1E2A1,2

Similarly, it is simple to show A1 =U2−U , and similarly for A2

=U +E1A1 +E2A2 +E1E2A1,2

If E3 = E1 ·E2, then this is equivalent to equation (2.16). Therefore, given α12 = α21 = 1, γ12 =

γ21 = 1, E0 = 1, and E3 =E1 ·E2, MuSyC predicts E1 ·E2 =E. Thus, while Bliss was derived purely

within the scope of “percent affected”, MuSyC shows that the Bliss model may be appropriately

extended to any measure of effect for which E0 = 1 and effects are expected to be multiplicative.

Nevertheless, for effects which do not satisfy these criteria, the Bliss model cannot be reliably

used, while MuSyC may still be used for arbitrary effects.

2.2.2 MuSyC subsumes The Dose Equivalence Principle

The DEP was first established by Loewe (Loewe, 1926, 1927) and subsequently expanded

by Chou and Talalay (Chou and Talalay, 1984). This approach assumes that for a given effect

E—achievable either by dose d1 of Drug 1 alone, or dose d2 of Drug 2 alone—there is a constant

ratio R = d1
d2

such that using ∆d2 less of Drug 2 can always be compensated for with ∆d1 = R∆d2

more of Drug 1 to achieve the same effect (Foucquier and Guedj, 2015). This definition leads to

the linear isoboles (contours of equal effect) characteristic of the Loewe null model (Figure 2.4 left

panel). Synergy occurs when less one drug is required to compensate for a decrease in the other
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than expected by DEP.

Chou and Talalay first showed that linear isoboles emerge when the two drugs are mutually

exclusive (Chou and Talalay, 1981), meaning that the double-drugged state (A1,2 in Figure 2.1B) is

unreachable. In MuSyC, this requires setting α12 = α21 = 0, which reduces the 2D Hill equation

(eq. (2.8)) to

(E−E0)+(E−E1)

(
d1

C1

)h1

+(E−E2)

(
d2

C2

)h2

= 0 (2.17)

From this equation it is easy to see when h1 = h2 = 1, the conic section reduces to a line, resulting

in the canonical linear isoboles of Loewe Additivity and the CI null models. Further from equation

(2.17), I find the slope of isoble is equal to −C2
C1

as shown by:

∂

∂E

(
(E−E0)+(E−E1)

(
d1

C1

)
+(E−E2)

(
d2

C2

))
= 0

d2 =−d1
C2

C1
−C2

Therefore the constant R in the statement of the Dose Equivalence Principle is revealed by MuSyC

to be equal to the ratio of the two drugs’ EC50. There is no dependence on β or γ because those

parameters relate to the A1,2 state, which is blocked here. For fixed values of E, equation (2.17)

results in linear isoboles only when h1 = h2 = 1. Thus, given these conditions on α and h, MuSyC

reproduces the DEP. However, when h 6= 1 nonlinear isoboles result (Figure 2.4 middle and right

panel), suggesting that DEP is an inappropriate expectation for such drugs (see Section 2.5 on page

57 for further investigation into this issue).

Therefore, MuSyC satisfies the DEP under the following conditions: (1) the drugs are mutually

exclusive (α12 = α21=0) and (2) h1 = h2 = 1 (Figure 2.3B).

2.2.3 Mapping the global landscape of drug synergy frameworks

From the literature, I identified several prominent synergy models beyond Bliss and Loewe

including: CI (Chou et al., 1983), HSA (Gaddum, 1940), Effective Dose model (Zimmer et al.,

2016), ZIP (Yadav et al., 2015), and Hill PDE (Schindler, 2017). Table 2.6 compares key features
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Figure 2.4: Loewe bias results from non-linear isobles when the Hill slope does not equal one. A)
When h = 1 and α = 0, MuSyC results in linear isoboles (contours of equivalent effect) character-
istic of DEP models. When h < 1 (middle panel), the isoboles bend inward such that DEP models
will misclassify the red region as synergistic, biasing DEP calculations toward synergy for h < 1.
Conversely when h > 1, isoboles bend outward (right panel) and DEP models will misclassify the
red region as antagonistic, biasing Loewe toward antagonism for h > 1.

and assumption of the different synergy models. Each of these methods, as well as MuSyC, defines

synergy based on the experimental deviation from a null (additive) dose-response surface. Because

almost all synergy frameworks are founded on either the DEP or MSP, I standardized relationships

between the various models, mapping the global landscape of drug synergy (Figure 2.3C). The

details for each method is as follows:

Effective dose model (Zimmer et. al.)

Zimmer et. al. (Zimmer et al., 2016) introduced the EDM as a parameterized extension of Bliss,

and were the first to account the asymmetric potency synergy, which is also present in MuSyC.

The effective dose model is constructed by fitting the dose response of each single drug to a two-

parameter 1D Hill equation in which E0 and Emax are fixed at 1 and 0, respectively

g(d1,e f f ) =
1

1+(
d1,e f f

C1
)h1

(2.18)

g(d2,e f f ) =
1

1+(
d2,e f f

C2
)h2

To model combination synergy, the authors propose transforming the doses di to “effective

doses” via a system of equations coupling effective doses to one another via a Michaelis-Menten

term in the denominator scaled by a synergy parameter a.
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d1,e f f =
d1

1+a12

 1

1+
(

d2,e f f
C2

)−1


(2.19)

d2,e f f =
d2

1+a21

 1

1+
(

d1,e f f
C1

)−1



Table 2.1: Translating the EDM. Where possible, the original variable names from Zimmer et.
al. have been translated to the equivalent variable names used in this manuscript, for ease of
readability.

Original variable name MuSyC variable name
n1 h1

D01 C1
n2 h2

D02 C2

The parameter a12 represents how drug 2 modifies the effective dose synergistically (a12 < 0)

or antagonistically (a12 > 0) drug 1. Note that as a12 → −
(

1+d2,e f f /C2
d2,e f f /C2

)
, d1,e f f → +∞, and as

a12→ +∞, d1,e f f → 0, which defines the bounds over which a12 is defined. The authors then fit

the a parameters using a surface model based on MSP

Ed = g(d1,e f f ) ·g(d2,e f f ) (2.20)

Thus the EDM reduces to the Bliss null model when a12 = a21 = 0. There are obvious sim-

ilarities between EDM’s a parameters and MuSyC’s α values, as both reflect a potency transfor-

mation; however, the exact details are slightly different. For example, EDM assumes each drug

has a Michaelis-Menten like effect on the potency of the other drugs (eq. (2.19)), whereas MuSyC
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can account for non-Michaelis-Menten effects (when h 6= 1). Furthermore, by using equation 2.18,

EDM explicitly assumes the measured drug effect ranges from 100% to 0%, and fit the data with

this constraint. Their model is unable to accurately describe combinations where the two drugs

either have unequal maximum effects, or the combination has a greater effect than the drugs can

achieve alone, features which are commonly observed (Fallahi-Sichani et al., 2013) (Figure 2.12).

In contrast, MuSyC is able to fit dose response surfaces with arbitrary effect ranges.

ZIP

Table 2.2: Translating ZIP. Where possible, the original variable names from Yadav et. al. (Yadav
et al., 2015) have been translated to the equivalent variable names used in this manuscript, for ease
of readability. Note I found an erratum flipping x2 and m2 in the step from equation 13 to equation
14 in Yadav et. al. which is propagated through to equation 19. Our analysis uses the intended
form.

Original variable name Translated variable name
m1 C1
m2 C2

m1→2 µ1 ·C2
m2→1 µ2 ·C1

λ1 h1
λ2 h2

λ1→2 η1 ·h2
λ2→1 η2 ·h1

x1 d1
x2 d2
δ δ

In contrast to the Effective Dose Model, ZIP, accounts for changes in both the Hill slope and

the potency across the dose-response surface. In ZIP, these changes are integrated into a single

number (δ ), given by
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δ =
1
2


1

1+ d2
C2

h2
+ d1

µ2C1

η2h1

1+ d1
µ2C1

η2h1
+

1

1+ d1
C1

h1
+ d2

µ1C2

η1h2

1+ d2
µ1C2

η1h2


−

 1

1+ d1
C1

−h1
+

1

1+ d2
C2

−h2
− 1

1+ d1
C1

−h1

1

1+ d2
C2

−h2


(2.21)

ZIP is formulated for arbitrary E0 and Emax; however, it assumes Emax is the same for both

drugs, as well as the combination (E1 = E2 = E3). To calculate δ , the ZIP method fixes the

concentration of one drug, then fits a Hill-equation dose response for the other drug. However,

for combinations with efficacy synergy or antagonism, slices of the dose-response surface can

have non-Hill, and even non-monotonic shapes. In these cases, ZIP parameter fits may not be

meaningful. Because MuSyC accounts explicitly for efficacy synergy, its surfaces are able to

describe such complex drug combination surfaces where ZIP cannot.

Nevertheless, ZIP parameters µ and η are closely related to MuSyC parameters α and γ . In

the absence of synergistic efficacy, slices of MuSyC dose-response surfaces are sigmoidal, though

in general do not perfectly follow a Hill equation, and so the ZIP model is still not identical to

MuSyC. However, at saturating concentrations of one or the other drug, MuSyC does reduce to the

Hill equation. In these saturating cases, ZIP’s δ can be related analytically to MuSyC’s α and γ by

lim
d2→∞

δ (d1,d2) =
1
2

 1

1+
(

d1
α21C1

)γ21h1


lim

d1→∞
δ (d1,d2) =

1
2

 1

1+
(

d2
α12C2

)γ12h2



BRAID
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BRAID (Twarog et al., 2016) is an extension of the DEP to effects exceeding the weaker drug and

consequently reduces to Loewe under particular conditions (Figure 2.3). The authors propose three

BRAID models with increasing complexity, with eBRAID capable of describing the most general

dose-interaction surfaces. I focus my analysis on eBRAID, which assumes that each drug alone

has a Hill-like response, and constructs an Hill-like equation for the combination

E = E0 +
E3−E0

1+D−δ ·
√

h1h2
(2.22)

where

D = D1
1

δ ·
√

h1h2 +D2
1

δ ·
√

h1h2 +κ

√
D1

1
δ ·
√

h1h2 D2
1

δ ·
√

h1h2

D1 =

E1−E0
E3−E0

( d1
C1
)h1

1+(1− E1−E0
E3−E0

)( d1
C1
)h1

D2 =

E2−E0
E3−E0

( d2
C2
)h2

1+(1− E2−E0
E3−E0

)( d2
C2
)h2

The BRAID equation (eq. (2.22)) uses a dose parameter, which combines the doses of both

individual drugs, using a parameter κ and a parameter for the Hill slopes δ which acts as a mul-

tiplicative of the geometric mean hill slope h =
√

(h1h2). This formalism, like Loewe, is sham

compliant under certain conditions, namely when κ = 2
−1
δh −2−h. By adjusting κ , BRAID is able

to fit complex drug combination surfaces, including non-monotonic responses, unlike ZIP. Addi-

tionally, because BRAID fits the whole combination surface using a single parameter, it can be

used to make unambiguous statements about whether the combination is synergistic or antagonis-

tic. Nevertheless, BRAID does not account for differences in synergy due to efficacy, potency,

and cooperativity, whereas I find many combinations that are synergistic with respect to one, but

antagonistic with respect to the other (Figure 2.6C). Though κ and δ are related to the potency and

cooperativity respectively, their biochemical interpretation is not straightforward.

Highest Single Agent

Highest single agent (HSA) (Gaddum, 1940) is a parsimonious model that defines synergy as the
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Table 2.3: Translating the BRAID model. Based on eBRAID model set of equations in the supple-
ment. Note I corrected a typo in equation for D̃A where IDM,B is suppose to be IDM,A

Original variable name Translated variable name
DA d1
DB d2
D̃AB D
D̃A D1
D̃B D2
E0 E0
E f E3

E f ,A E1
E f ,B E2
EAB Ed
na h1
nb h2

IDM,A C1
IDM,B C2

δ δ

κ κ

net difference between the combination response and the stronger single-drug response

HSA = min(Ed(d1,0),Ed(0,d2))−Ed(d1,d2) (2.23)

This form assumes that drug decreases E, though it can also be defined for drugs that increase

E. At high concentrations of d1 and d2, equation (2.23) becomes proportional to our definition

of efficacy synergy (β ) as shown in equation 2.24 and Figure 2.3. Nevertheless, at intermediate

doses, HSA will conflate synergy of potency, efficacy, and cooperativity (Figure 2.9) highlighting

the importance of considering the whole dose-response surface when calculating synergy.

lim
d1,d2→∞

HSA(d1,d2) = β · (E0−min(E1,E2)) (2.24)

2D Hill PDE
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Ed =

(
E1(

d1
C1
)+E2(

d2
C2
)

( d1
C1
)+( d2

C2
)

)
1

1+(( d1
C1
)+( d2

C2
))

−

 h1(
d1
C1

)+h2(
d2
C2

)

(
d1
C1

)+(
d2
C2

)



 (2.25)

Table 2.4: Translating the Schindler et al. model.

Parameter Translated
ma d1/C1
mb d2/C2

amax E1
bmax E2

α h1
β h2

The most recent framework is one by Schindler (Schindler, 2017) which interpolates a null

dose-response surface from the single dose-response curves alone without any fit parameters. This

was done by using PDE Hill equations and then imposing boundary conditions as well as sham

compliance. It is therefore an extension of Loewe to effects greater than the least efficacious drug

(Figure 2.3, Table 2.6). The boundary conditions enforce the null model’s maximal effect of the

combination (E3) is equal to the mean of E1 and E2. This results in the non-intuitive scenarios such

as if the maximal effect of one compound is 0.25 and the other is 0.75, then the null hypothesis

for the maximal effect of the combination is 0.5 which is much less than achievable with a single

drug.

In deriving this map, I uncovered potential sources of error when using MSP or DEP methods

which impact interpretation of synergy studies. Specifically, I identified three recurrent considera-

tions meriting attention from the field. 1) Previous synergy metrics conflate different synergy types

(i.e. potency, efficacy, cooperativity) in ways that can mask synergistic and antagonistic interac-

tions (Section 2.3). 2) The connection between MuSyC and the MSP-derived frameworks depend
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on the single drugs’ efficacy (E1,E2), and as a result, MSP frameworks are biased against the com-

bination of moderately efficacious single agents (Section 2.4). 3) The connection between the DEP

and MuSyC is constrained by single drugs Hill slopes (h) and therefore DEP frameworks impose a

Hill-slope dependent bias, artificially inflating the synergy for drugs with low Hill slopes (Section

2.5). To assess impact of these considerations on synergy calculations in different fields, I analyzed

two large publicly available datasets (Table 2.7) using MuSyC and other synergy frameworks (See

Appendix 4.4 for methods). Note, while synergistic cooperativity (γ) is theoretically plausible (as

initially postulated by (Yadav et al., 2015)), including it did not increase the fit quality (Figure 2.5)

as measured by AIC and therefore I ignore synergistic cooperativity in subsequent analysis.
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Figure 2.5: Fitting γ does not significantly improvement fits. A) Difference in the Akaike Informa-
tion Criterion (AIC) values for MuSyC models including fitting synergistic cooperativity (γ12 and
γ21) or fixing γ to 1 thereby reducing the parameter count by two. Models which minimize AIC
are preferred. The mean AICγ −AICnoγ for anti-cancer and anti-malarial datasets was 8 and 3312,
respectively. The percent of combinations for which the model including γ had a lower AIC value
was 18% and 5%, respectively.
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Table 2.5: Annotation of MuSyC parameters.
U Percent of unaffected population.
A1,A2 Percent of affected by drug 1 and drug 2, respectively.
A1,2 Percent of affected by both drug 1 and drug 2.
d1, d2 Drug concentrations for drug pair.
Ed Measured effect at (d1,d2).
C1,C2 The concentration of drug required to achieve 50% of the

maximal effect (i.e., EC50).
h1,h2 Hill coefficients for dose response curves of drug 1 and 2 in

isolation.
E0 The basal effect Ed(d1 = d2 = 0).
E1,E2 Maximal efficacy of drugs 1 and 2 in isolation.
E3 Maximal efficacy of the combination of drugs 1 and 2.
β Percent increase (or decrease) in max effect with both drugs

over the most efficacious single drug (β := min(E1,E2)−E3
E0−min(E1,E2)

).
α12 Fold change in the potency (C2) of [d2] induced by drug 1.
α21 Fold change in the potency (C1) of [d1] induced by drug 2.
γ12 Fold change in the cooperativity (h2) of [d2] induced by drug

1.
γ21 Fold change in the cooperativity (h1) of [d1] induced by drug

2.

Table 2.6: Comparing MySyC to traditional and modern frameworks for calculating synergy.
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Defined for arbitrary metrics of
drug effect (not just percent
data)

X X X X X

Does not require all drugs to be
equally efficacious

X X X X X

Synergy is concentration inde-
pendent

X X X

Synergy is related to traditional
dose-response parameters

X X X

Satifies the sham experiment X X X X
*CI has 2 equations for synergy in the original derivation (Chou et al., 1983)
for the mutually exclusive and mutually non-exclusive case.
The mutually exclusive case, which is equivalent to Loewe, has been widely adopted
and is the model compared here.
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Table 2.7: Summary of the datasets used for validating theoretical predictions by MuSyC.

Model # of Combinations Metric of
Drug Effect

Citation

P. falciparum
Strains:3D7,HB3,Dd2

773 % Response (Mott et al., 2015)

37 Cancer Cell Lines 22,738 % Viable (O’Neil et al., 2016)
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2.3 Conflating synergistic potency and efficacy masks synergistic interactions

To determine how conflation of distinct synergy types impacts the interpretation of drug-

response data, I generated synthetic dose-response surfaces using MuSyC (eq. 2.8) across a range

of α and β values and calculated the synergy according to Loewe, Bliss, and Highest Single Agent

(HSA) at the EC50 of both drugs (Figures 2.6A,2.8A,2.9A). In each case, many distinct sets of

(α12,α21,β ) are indistinguishable (e.g. the black contour line on the spheres).

Figure 2.6A shows that near the boundary between synergism and antagonism, Loewe is insen-

sitive to changes in synergistic potency, tracking instead with synergistic efficacy. Consequently, in

the anti-cancer dataset from O’Neil et. al. (O’Neil et al., 2016), Loewe misses potency antagonism

in combinations with synergistic efficacy (Figure 2.6B middle distribution, see Figure 2.7 for an

example surface). This reflects Loewe’s assertion of infinite potency antagonism (α12 = α21 = 0,

Figure 2.3A) in its null model. Therefore, combinations that are antagonistically potent (α < 1) are

all synergistic by Loewe in the absence of sufficient antagonistic efficacy (values above black con-

tour in Figure 2.6A). Indeed, Loewe is frequently synergistic even in cases of antagonistic potency

and efficacy (Figure 2.6B bottom distribution). As an example, the combination of methotrexate

(targets folate synthesis) and erlotinib (EGFR inhibitor) in UWB1289 (BRCA1-mutant ovarian

carcinoma) cells is antagonistically efficacious and potent by MuSyC, but synergistic by Loewe

(Figure 2.6C).

Bliss synergy is classically thought to calculate synergistic potency. This is because assays

where Bliss is appropriate (E0 = 1 and E1 = E2 = E3 = 0) by definition have no synergistic

efficacy. However, even in these cases, Bliss still conflates α12 and α21 such that asymmetric

potency synergy is obfuscated (Figure 2.8A, black contour line through β = 0 plane). In the

anti-malarial dataset from Mott et. al. (Mott et al., 2015), Bliss is consistently synergistic when

log(α12,α21)> 0, and antagonistic if log(α12,α21)< 0; however, when log(α12)< 0 < log(α21),

Bliss will strictly classify a combination as either synergistic or antagonistic (Figure 2.8B bottom

distribution) despite the asymmetric interactions. As an example, Bliss conceals that halofantrine

(inhibits polymerization of heme molecules) reduces the potency of mefloquine (targets phospho-
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Figure 2.6: Loewe conflates potency and efficacy synergy masking synergistic interactions in large
drug combination datasets. A) The colors on the sphere (radius on β axis bottom left) represent the
value of Loewe (colorbar to right) for a drug combination with a MuSyC synergy profile (α12, α21,
and β ) (axes bottom left). For all combinations: E0 = 1, E1 = E2 = 0, h1 = h2 = 1, d1 = d2 =C1 =
C2, γ12 = γ21 = 1. The solid line marks the boundary between Loewe synergy and antagonism.
Along this contour, which includes many different sets of (α12, α21, and β ), Loewe is equivalent
(-log(Loewe)= 0). Gray planes correspond to β = 0, log(α12) = 0, and log(α21) = 0. The hole in
the upper-right quadrant represents sets for which Loewe is undefined. B) Distribution of Loewe
for anti-cancer drug combinations grouped by their synergy profiles according to MuSyC. Loewe
was calculated as detailed in Methods, including the Hill slope correction. C) The anti-cancer
combination methotrexate and L-778123 is antagonistically potent and efficacious against HT29
cells, by MuSyC; however, it is designated by Loewe to be synergistic. Left panel shows the
MuSyC-fitted dose-response surface, right panel shows the edges of the MuSyC surface. The
open circle marks the EC50 for each drug in isolation, closed circle is the shifted EC50 due to
antagonistic potency. Brackets are 95% confidence intervals for each parameter based on Monte
Carlo sampling.
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Figure 2.7: Loewe masks antagonistic potency. A) The combination of L778123 (a dual far-
nesyl and geranylgeranyl transferase inhibitor) and temozolomide (DNA alkylating agent) in
COLO320DM cell lines is synergistically efficacious but antagonistically potent, and is an ex-
ample where Loewe misses antagonistically potent interactions.

lipids) against the multi-drug resistant malaria strain HB3 (Figure 2.8C).

In contrast to Bliss, HSA is commonly thought to quantify synergistic efficacy. However,

for antagonistically potent combinations, it cannot distinguish synergistic and antagonistic ef-

ficacy because it does not account for the topology of the dose-response surface (compare

(log(α12), log(α21),β ) = (−,−,+) and (−,−,−) quadrants of Figure 2.9A). In the anti-cancer

combination dataset (O’Neil et al., 2016), I observe this trend (Figure 2.9B middle vs bottom

distributions). As an example, the synergistically efficacious combination of dexamethasone (ag-

onist of the glucocorticoid receptor) and mk-8669 (PI3K/mTOR dual inhibitor) in a colorectal

adenocarcinoma cell-line is masked by HSA due to antagonistic potency (Figure 2.6C). Repress-

ing glucocorticoid signalling has previously been shown to repress mTOR signalling (Wang et al.,

2006) providing a potential molecular mechanism explaining the synergy.

2.4 MSP is biased against combinations of drugs with intermediate efficacy

MSP frameworks explicitly expect drug effects to measure the “percentage of cells affected,”

which is by definition bounded within the closed interval E ∈ [0,1]. Nevertheless, dose-response

data is usually not a measure of percent affect, but rather of relative percent effect. Indeed, percent

transformations are commonly applied to data in order to apply Bliss. In Bliss’ original study,
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Figure 2.8: Bliss conflates potency and efficacy synergy masking synergistic interactions in large
drug combination datasets. A) Sphere for Bliss as in Figure 2.6A. B) Distribution of Bliss for anti-
malarial drug combinations. Combinations for which each drug alone achieves Emax < 0.1 were
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Bliss are due only to asymmetric potency synergy (all combinations fall near the β = 0 plane in
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the potency of mefloquine (blue curves) in the HB3 strain of P. falciparum.
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HSA can miss synergistic efficacy. C) Combination of dexamethasone and mk-8669 in DLD1 cells
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drug effect was quantified as the percentage of eggs killed (the probability that each egg would die

at a given toxin dose), but in all cases the measurement was a discrete event (death of an insect

egg). Therefore, the metric of drug effect was the a percentage of affected eggs. However, to apply

Bliss to more general measures of drug effect for which discrete counts cannot be obtained, it has

been ubiquitous practice to normalize the drug effect as a percent relative to control (e.g., percent

viability in cancer research). Nevertheless, such normalization does not, in general, transform

measures of efficacy into measures of percent affect.

As a thought experiment, suppose analyzing a drug treatment which actually caused the cells

to grow slightly faster than control. By normalizing the drug effect to control, the percent viability

is greater than 100% which cannot mean that >100% of the cells were affected.

Alternatively, consider the case when a cytostatic drug causes all treated cells to halt both

proliferation and death. If the control population doubled twice over 72 hours, the percent viability

would be 1
23 = 16.25%. If the measure of percent viability was taken instead at 96 hours, the

percent viability would be 1
24 = 6.25%. At both time points the percent of affected cells was the

same (100%); however, the percent of drug effect changes due to normalization.

The distinction between percent effect (Ex) and percent affect (Ux), maintained by MuSyC

(see Section 2.1), is critical because percent effect data commonly saturates (i.e., percent affect is

near 100%) at intermediate effect (i.e., relative percent effect is near 50%). For combinations of

these moderately efficacious drugs, Bliss expects a large increase in effect over the single agents,

even when each drug is administered at saturating concentrations (Figure 2.10A middle panel).

In contrast, if combining drugs with high or low efficacy, Bliss expects a more modest increase

(Figure 2.10A left and right panels).

Based on this expectation that E3 = E1 ·E2 (Figure 2.3A), MuSyC predicts Bliss would be

biased toward antagonism in combinations of moderately efficacious drugs (Figure 2.10B yellow

shading around E1 = E2 ≈ 0.5). As expected, the median Bliss score in the anti-cancer dataset is

biased toward antagonism for moderately efficacious combinations 0.35< (E1,E2)< 0.65 (Figure

2.10C, cyan square). This bias persists even when looking at pan-cancer trends in the combination
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Figure 2.10: Bliss is biased against combinations of moderately efficacious drugs. A) The null
Bliss surface for different maximal efficacy of single agents. ∆ is defined as the expected increase
in percent effect of the combination over the stronger single agent at saturating doses. The left and
right panels have the same expected increase according to Bliss, ∆ = 0.09, while the combination
of moderately efficacious drugs (middle panel) has a expected increase of ∆ = 0.25. B) Calculation
of ∆ (colorbar bottom) for surfaces with different pairings of (E1,E2). C) Median Bliss for anti-
cancer combinations grouped by the maximal efficacy of their single agents. Ranges for each
square: cyan square: [0.35,0.65], blue square: [0.1,0.9] and magenta square: [0.0,1.0]. Bliss is
calculated at the maximum tested concentrations of both drugs.

55



A

A1={x ∈ 0.35<Emax<0.65}
A2={x ∈ 0.10<Emax<0.90 | x ∉ A1}
A3={x ∉ A1 | x ∉ A2}p-val=3e-8

p-val=1e-50

p-val=6e-48

%
 V

ia
bi

lit
y

KPL1 breast ductal carcinoma 
Bliss @ max(d1,d2) = -0.06
β = 0.30 [0.44,0.25]
log(α12) = 0.17 [0.50,-0.29]
log(α21) = 0.28 [0.53,0.02]

min(mk)
max(mk)

min(pac)
max(pac)

B

Figure 2.11: The Bliss efficacy bias results in pan-cancer drug combination trends A) Heatmap
of the median Bliss score (colorbar left) for each combination across the cancer cell-line panel.
Rows and columns are ordered by the average efficacy of each drug alone over all cell-lines (Emax)
(bar graphs top and right). Colored boxes correspond to groupings denoted in the legend (bot-
tom). Boxplots show Bliss trends toward antagonism for combinations of moderately efficacious
drugs (green→ blue→ yellow) (2-sample, 1-sided t-test). B) Dose-response surface of paclitaxel
and mk-2206 in KPL1 cells. Gray plane is the expected effect of the combination by Bliss at
max(d1,d2).
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of drugs which have, on average, intermediate effect over the entire cell line panel (Figure 2.11A).

As a particular example, the synergistic efficacy of paclitaxel (targets microtubule stability) and

mk-2206 (AKT inhibitor) in KPL1 cells is masked by Bliss’s high expectation for moderately

efficacious drugs (Figure 2.11B grey plane).

Additionally, some MSP methods, such as CI (nonexclusive) and the EDM, assume data mea-

sures percent affect and fit a simplified 2-parameter Hill equation enforcing E0 = 1 and E1 = 0

(Figure 1.2A page 8, Table 1.1 page 6). This assumption can lead to poor fits of percent effect data

for moderately efficacious drugs, and thus invalid synergy scores (see Figure 2.12).

2.5 Re-examining the sham experiment.

A new synergy model’s consistency is traditionally tested with the “sham” combination thought

experiment. In a sham experiment, a single drug is considered as though it were a combination,

with the expectation that the drug should be neither synergistic nor antagonistic with itself. How-

ever, MuSyC only satisfies the sham experiment when h = 1. When h 6= 1, the biochemistry of

sham combinations (Figure 2.13A) is distinct from real combinations (Figure 2.13B), as states rep-

resenting mixed-inhibition (black circles) are equivalent to single drug, complete-inhibition states

(cyan circles) in sham combinations, but not in real combinations.

2.5.1 The sham biochemistry of the sham experiment

To simulate a sham experiment using MuSyC, there is no state A1,2 (Figure 2.1B), which re-

quires α12 = α21 = 0. Further, because drugs 1 and 2 are the same, h1 = h2 = h, C1 =C2 =C, and

E1 = E2. Thus, the 2D Hill equation (eq. (2.8)) reduces to

Ed(d1,d2) =
E0 +E1

dh
1+dh

2
Ch

1+ dh
1+dh

2
Ch

MuSyC Sham (2.26)
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Figure 2.12: MSP based frameworks assume 2-parameter Hill equation leading to poor fits. A)
Dose-response surface for combination erlotinib and abt-888 in SW837 cells. B) Dose response
surface according to Effective Dose model, which enforces E0 = 1 and E1 = E2 = 0. C) Dose-
response surface for dasatinib and oxaliplatin in NCI-H520 cells. Both dasatinib and oxaliplatin
have intermediate effects on this cell line (i.e. E1 ≈ E2 ≈ 0.5). D) CI single drug dose-response
fits for dasatinib and oxaliplatin. Minimizing residuals while enforcing E0 = 1 and E1 = E2 = 0
causes artificially low Hill slopes for both drugs (h1 < h2 < 0.35). For additional examples of poor
CI fits see Figure 1.3, page 9.
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In comparison, the true dose-response surface of a sham experiment can be analytically determined

from the 1D Hill dose-response equation (eq. 2.3) as

Ed(d1,d2) = Esingle(d1 +d2) (2.27)

=
E0 +E1

(
d1+d2

C

)h

1+
(

d1+d2
C

)h True Sham

Equations 2.26 and 2.27 are only equivalent when h = 1. This makes sense, as the constraints

on α and h are the conditions required for MuSyC to satisfy the DEP (Figure 2.3B). To see what

happens when h 6= 1, consider, for instance, a molecule with three binding sites targeted by a small

molecule inhibitor (h = 3). For clarity, I assert E0 = 1 and E1 = 0, though the findings are valid

more generally. The MuSyC sham surface follows

Ed(d1,d2) =

(
1+

d3
1

C3 +
d3

2
C3

)−1

MuSyC Sham

In contrast, the true sham surface is

Ed(d1,d2) =

(
1+
(

d1 +d2

C

)3
)−1

=

(
1+

d3
1

C3 +3
d2

1d2

C3 +3
d1d2

2
C3 +

d3
2

C3

)−1

True Sham (2.28)

The two additional cross-terms in the true sham equation (3d2
1d2
C3 and 3d1d2

2
C3 ) describe the six

possible mixtures of drugs 1 and 2 that, together, fill all binding sites (Figure 2.13A, blue, green,

and magenta paths show three possible mixtures). In a sham experiment, because drugs 1 and 2

are the same, the diagonal states (black and cyan circles) in Figure 2.13A are all equivalent, and

fully inhibited.

Conversely, in non-sham combinations, drugs rarely target the same binding sites, or even the

same molecule. Even when two drugs are mutually exclusive inhibitors of the same molecule and
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have the same number of binding sites, the cross-terms describe non-equivalent, not fully inhibited

states (Figure 2.13B). A commonly applied and physiologically supported approximation is that

only fully bound molecules become (in)active (see reaction schemes 5-7 in (Weiss’)). Partially

bound cross-terms are therefore reasonably modeled as unaffected, and the absence of these cross-

terms from equation (2.26) is justified for real (non-sham) combinations (see Discussion). Further,

when the two drugs do not target the same molecule or are mutually exclusive or have the same

number of binding sites, by far the preponderance of real combinations, the diagonal states are ill

defined yet remain embedded in the sham equation.

Biochemistry of
Sham Combination

A

+ Drug 1

+
 D

ru
g
 2

+ Drug 1

+
D

ru
g

2

B Biochemistry of Mutually Exclusive Drugs
Targeting the Same Molecule

Biochemistry of
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+
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+
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Figure 2.13: Unique biochemistry of the sham experiment discredits its general applicability A)
An illustration of the unique biochemistry of the sham experiment. The red circle represents an
undrugged molecule with 3 binding sites. In a sham experiment, a drug is treated as though it were
two separate drugs (green and blue polygons). Mixed states in which the binding sites are bound
by both green and blue drugs (black circles) are equivalent to fully drugged states (cyan circles). I
highlight three paths (green, blue, magenta arrows) that can be followed to reach a mixed-drugged

state. These three paths correspond to the coefficient of 3d1d2
2

C3 in equation (2.28). B) In a combina-
tion of mutually exclusive drugs (triangle and polygon), targeting the same molecule, and with the
same number of binding sites, the mixed states (black circles) are not equivalent to fully drugged
(cyan circles) accounting for the discrepancy between MuSyC and the sham experiment.
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2.5.2 Hill slope requirement of the sham experiment leads to systematic bias in DEP frameworks

The constraint on h leads to non-linear isoboles in MuSyC (Figure 2.4) when h 6= 1. Specifi-

cally, in the absence of synergistic potency (α12 = α21 = 1), MuSyC isoboles bend inward when

h < 1, and outward when h > 1. Sham-compliant frameworks (Table 2.6) assume linear isoboles

regardless of the Hill slope, and therefore classify combinations in the region between the linear

and non-linear isoboles (red shading in Figure 2.4) as synergistic (middle panel) and antagonistic

(right panel), respectively. MuSyC therefore predicts sham-compliant frameworks will overesti-

mate synergy when h < 1, and underestimate when h > 1.

In combinations from the anti-cancer dataset, the average trend of Loewe synergy closely fol-

lows the Hill slope bias predicted by MuSyC (Figure 2.14A). Further, subtracting the MuSyC-

predicted bias from Loewe values for each combination results in a distribution independent of

Hill slope (bottom panel). The bias toward synergy is particularly large for drugs with low Hill

slopes. As an example, both doxorubicin (DNA damaging agent) and mk-4827 (PARP inhibitor)

have small Hill slopes when applied to MBA-MB-436 cells, and their combination is synergistic

by Loewe. However, using MuSyC, I see this combination is both antagonistically efficacious and

antagonistically potent (Figure 2.14B).

Therefore, satisfying sham compliance biases models toward synergy for drugs with low Hill

slopes, regardless of with what these drugs are combined. This bias—which stems from enforc-

ing a biochemical reaction scheme only appropriate for sham combinations—should be sufficient

grounds for dismissing the sham experiment as a measure of a new synergy framework’s validity.

2.5.3 Re-investigating sham compliance claims of previous frameworks

In reviewing the literature, two errors were identified beyond the Hill slope bias (Figure 2.14)

pertaining to the sham experiment that merit addressing.

1) Chou, one of the creators of the Combination Index (CI), has strongly argued that satisfaction

of the sham experiment is critical. However, there is an error in the derivation of the CI from

its underlying model, so that while the CI equation is sham-compliant, the biochemical model
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Figure 2.14: Enforcing sham compliance results in Hill-slope dependent bias in DEP frameworks.
A) Loewe synergy is biased by Hill slope in the anti-cancer drug screen. The orange shaded regions
show moving window percentiles (window width is 0.1) of Loewe (10th through 90th percentiles,
in steps of 10). The top panel shows how many data points are present in the window. The
blue curve in the middle plot shows the median MuSyC-predicted bias as a function of geometric
mean of the Hill slopes (see Methods). Subtracting the MuSyC-estimated bias (calculated for each
data point) from Loewe yields the bottom plot. B) The antagonistically efficacious and potent
combination of mk-4827 and doxorubicin is misidentified as synergistic by Loewe, because both
drugs in isolation have Hill slopes h < 1.
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proposed by Chou and Talalay is not.

2) ZIP was proposed as a framework that unifies Loewe Additivity (DEP) and Bliss Independence

(MSP), much like MuSyC. In support of this, they prove ZIP is sham-compliant; however, again

there is an error in their proof. Further, I generate in silico sham response data and show that ZIP

fails the sham experiment. For this reason, I place ZIP as an MSP method in Figure 2.3C, and not

DEP. However, I have contended that satisfying the sham experiment should not be a sought-after

standard in drug combinations, so I do not consider it a shortcoming of ZIP that it does not.

Sham Compliance of Combination Index

Chou and Talalay report that the combination index for mutually exclusive drugs satisfies the sham

experiment, whereas for MuSyC, I find this is only true when h = 1 (eq (2.26)). Because MuSyC’s

underlying model (Figure 2.3B) is identical to what Chou and Talalay describe (Chou and Talalay,

1981) when α12 = α21 = 0, I sought to discover the source of this discrepancy.

Chou and Talalay’s finding comes from “Generalized Equations for the Analysis of Inhibitions

of Michaelis-Menten and Higher-Order Kinetic Systems with Two or More Mutually Exclusive

and Nonexclusive Inhibitors” (Chou and Talalay, 1981). I found an error in the section Inhibition

of the Higher-Order Kinetic Systems by Mutually Exclusive Inhibitors. Specifically, the authors

correctly solve the n-drug case with h = 1

An drugs

U
=

n

∑
j=1

d j

C j
Equation 11 from (Chou and Talalay, 1981)

as well as the the 1-drug case with arbitrary h

Asingle drug

U
=

(
d
C

)h

Equation 12 from (Chou and Talalay, 1981).

However, they incorrectly extrapolate these two equations to an n-drug, arbitrary h case (though

they assume all drugs have the same value of h, e.g. all drugs have h binding sites and follow
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Hill-type kinetics) by erroneously stating

An drugs

U
=

(
n

∑
j=1

d j

C j

)h

Unlabeled equation from (Chou and Talalay, 1981).

In general it is not clear how this would be calculated if each drug has a different value h, as there

exists only a single h in their formula. However, in the case of n mutually exclusive drugs following

Hill kinetics (a model graphically represented for n = 2 in Figure 2.3B), I can say at equilibrium

dA j

dt
=Ur jd

h j
j −A jr− j = 0

From this I can solve for A j
U for each drug, arriving at the same equation 12 from Chou (Chou and

Talalay, 1981). But applying the constraint that U +A = 1, where A = ∑
n
j=1 A j, I instead find the

correct form for the multi-drug case with arbitrary h is

A
U

=
n

∑
j=1

(
d j

C j

)h j

When h j = h = 1 the discrepancy between these equations vanishes because it does not matter that

they place the exponent outside the sum. However Chou and Talalay use the incorrect version to

define their Combination Index (Chou and Talalay, 1984), regardless of h.

Sham Compliance of ZIP

ZIP was reported to satisfy the sham experiment (Yadav et al., 2015) based on an argument that

if both drugs are the same, then m1 = m2 = m1←2 = m2←1. However, this statement is false for

sham experiments, because once some of the drug is added, m1←2 is shifted. To demonstrate this,

consider their model (equation 13 from (Yadav et al., 2015), without asserting m1←2 = m1)

y1←2 =
y2 +

(
x1

m1←2

)h1

1+
(

x1
m1←2

)h1

m1←2 is the amount x1 of drug 1 that is needed to achieve an effect halfway between y2 and 1
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(the asymptotic value at infinite drug), where y2 is the effect achieved by adding an amount x2 of

drug 2. Specifically, when x1 = m1←2, y1←2 =
1+y2

2 .

Sham experiments satisfy Equation (2.27), which combined with the above gives

y1←2 =

(
m1←2+x2

m1

)h1

1+
(

m1←2+x2
m1

)h1
=

1+ y2

2

Further I know

y2 =

(
x2
m1

)h1

1+
(

x2
m1

)h1

This system can be solved to find

m1←2 = m1

[
1+2

(
x2

m1

)h1
] 1

h1

− x2

demonstrating that m1←2 6= m1 for the sham experiment in the ZIP model, contradicting their proof

that ZIP is sham-compliant.

To verify ZIP identifies synergy or antagonism for sham combinations, I generated a synthetic

sham dose response surface. Sham experiments can be generated exactly for any drug with a

pre-defined dose-response by asserting the condition in Equation (2.27). I constructed a synthetic

dataset describing a sham dose response surface for a drug with h = 2, sampled at 2.5 orders of

magnitude above and below the EC50. One drug was sampled at 7 concentrations, the other at 12,

defining a 7 x 12 sham dose response matrix. I used the synergyfinder (He et al., 2018) R package

to calculate synergy by both Loewe and ZIP (Figure 2.15), and found Loewe reported close to 0

synergy, as expected for a sham combination, but confirms ZIP detects synergy and antagonism at

several concentrations.
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Figure 2.15: The sham compliance of ZIP. A) Loewe synergy calculated by synergyfinder (He
et al., 2018) for a synthetic sham dose-response surface with h = 2. Loewe correctly identifies the
combination as additive. B) ZIP quantifies synergy or antagonism at several concentrations for the
sham dataset.
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2.6 Concluding remarks: Consensus achieved

Herein, I have demonstrated three key advances of MuSyC particularly germane to the study

of combination pharmacology: 1) the unification of the DEP and MSP; 2) the decoupling of three

distinct types of synergy; and 3) the revelation of biases emerging from constraints on the single

drug pharmacological profile inherent in the DEP and MSP.

In Chapter 3, I expand on the value of distinguishing synergistic potency from synergistic ef-

ficacy by applying MuSyC to high throughput drug combination screens which reveal drug class

trends otherwise obfuscated using traditional methods. Specifically, I find novel strategies to im-

prove standard of care in EGFR-mutant Non Small Cell Lung Cancer (NSCLC) as well as in

BRAF-mutant melanoma. In each system, the decoupling of different types of synergy is critical

for guiding the deployment of combination therapy.
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Chapter 3

Quantifying Drug Combination Synergy Along Potency and Efficacy Axes

3.1 Synergy of potency and efficacy align with the clinical axes of interest.

As detailed in the previous chapter, MuSyC decouples different types of synergy correspond-

ing to geometric transformations of the dose-response surface. Importantly, these transformations

are analogous extensions of classic pharmacologic parameters which govern the shape of the one

drug Hill equation (Figure 2.1A). In this chapter, I demonstrate the utility of distinguishing synergy

of potency and efficacy to the discovery of novel therapeutic combinations and argue the distinc-

tion between synergy of potency and synergy of efficacy is critical for the rational deployment of

combination therapy.

Recent decades have witnessed an exponential expansion of available drugs for the treatment of

disease (Gong et al., 2017). This expansion has been concomitant with an evolving understanding

of disease complexity; complexity commonly necessitating combination therapy (He et al., 2016).

However, clinical applications of combination therapy are often limited by tolerable dose ranges,

and, therefore, it is desirable to identify combinations that enable dose reduction (Tallarida, 2011),

i.e., synergistic potency. Additionally, combining drugs does not guarantee a priori an increase

in efficacy over the single agents, and, therefore, it is desirable to identify combinations with

effects greater than achievable with either drug alone (Foucquier and Guedj, 2015), i.e., synergistic

efficacy. To assess a combination’s performance toward these goals, several drug synergy metrics

have been proposed (Table 1.1 page 6). However, none of these methods distinguish between

synergistic potency and synergistic efficacy. Instead, they either make no distinction or tacitly

assume the only form of synergism is through potency.

Nevertheless, this distinction is essential to arrive at an unambiguous definition of synergy

and properly rationalize the deployment of drug combinations, e.g. in personalized medicine.

Indeed, conflating them may mislead drug combination discovery efforts. For instance, a search
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for improved efficacy based on traditional synergy frameworks may be confounded by an inability

to sort out synergistically potent combinations. Herein, I show how MuSyC addresses this critical

shortcoming.

To demonstrate the value of decoupling synergy of potency and efficacy, I investigate a panel

of anti-cancer compounds in combination with a third-generation mutant-EGFR inhibitor, osimer-

tinib, in EGFR-mutant non-small cell lung cancer (NSCLC). I find that drugs targeting epigenetic

regulators or microtubule polymerization are synergistically efficacious with osimertinib. In con-

trast, drugs co-targeting kinases in the MAPK pathway affected potency, not efficacy of osimer-

tinib. These conclusions have implications for drug combination deployment in NSCLC where

increasing the efficacy of EGFR-inhibitors has historically relied on trial and error with no overar-

ching principles to guide development (Schiffmann et al., 2016).

I also apply MuSyC to study the well-established, clinically-relevant combination targeting

RAF and MEK in BRAF-mutant melanoma (Long et al., 2014). I find this combination to be

synergistically efficacious, though in several cases at the cost of potency. I then identify NOX5

as a previously unsuspected molecular determinant of sensitivity to BRAF inhibition (BRAFi) in

BRAF-mutant melanoma. Applying MuSyC, I find that NOX5 expression levels affect BRAF

inhibition efficacy, but not potency.

In direct comparisons, I found that traditional synergy frameworks are ambiguous even for

the most synergistically efficacious of the NSCLC and melanoma combination studies, leading to

misclassifications of combination synergy.

3.2 MuSyC quantifies synergy of potency and efficacy in a drug combination screen.

I applied MuSyC to evaluate the synergistic potency and efficacy of a 64 drug panel (see Table

3.1 for drugs, drug classes, nominal targets, and tested concentration ranges) in combination with

osimertinib, a mutant EGFR-tyrosine kinase inhibitor recently approved for first-line treatment of

EGFR-mutant NSCLC (Soria et al., 2018). The selected drugs span a diverse array of cellular tar-

gets that can be broadly grouped into four categories: kinases, receptors and channels, epigenetic
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regulators, and mitotic check-points (Figure 3.1), each with several sub-categories. The combi-

nations were tested in PC9 cells, a canonical model of EGFR-mutant NSCLC (Jia et al., 2013)

using a high-throughput, in vitro, drug-screening assay (Figure 3.2). I quantified drug effect using

the DIP rate metric (Harris et al., 2016), a metric which avoids temporal biases characteristic of

traditional endpoint assays (see Appendix B.5).
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Figure 3.1: High throughput screen of 64 drugs combined with osimertinib (mutant EGFR-TKI)
reveals drug class dependence of synergistic potency and efficacy in NSCLC. A) Drug panel used
in combination with osimertinib grouped in 4 categories (see Table 3.1 for details).
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Figure 3.2: High throughput screening pipeline. A) High-throughput pipeline for generating dose-
response surfaces. Initial drug matrix is prepared on a 384-well plate and transferred to cells
seeded at sub confluent densities. Cells are engineered to express a fluorescently tagged histone
(H2B-RFP) allowing for cell counts using automated segmentation software (See Appendix B.5
page 143 for methods). Each condition is imaged every 6-8 hours resulting in growth curves. The
growth curves are fit for the DIP rate (slope of dotted line) (Harris et al., 2016) to quantify drug
effect. This matrix of DIP Rates is fit to the 2D Hill equation to extract synergy parameters.
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Table 3.1: Annotation of anti-cancer drugs used in NSCLC and BRAF-mutant melanoma screens
with nominal target and target class.

Class Subclass Drug Tested Range Nominal Tar-
get

NSCLC
Epigenetic
Regulators

BET jq1 4.0uM-0.1nM BET bromo-
domain

HDACi abexinostat 0.3uM-0.8nM HDAC
entinostat 1.0uM-2.6nM HDAC
givinostat 10.0uM-41.1nM HDAC
m344 1.0uM-2.6nM HDAC
mocetinostat 0.3uM-0.8nM HDAC
panobinostat 0.4uM-0.0nM HDAC
pracinostat 10.0uM-41.1nM HDAC
quisinostat 1.0uM-2.6nM HDAC

TF bazedoxifene 10.0uM-41.1nM ER
verteporfin 10.0uM-41.1nM YAP

Kinases ALK ceritinib 4.0uM-0.1nM ALK/IGF1R
ensartinib 4.0uM-0.1nM ALK

AURK/
CDKs

bml259 1.0uM-2.6nM CDK

zm447439 4.0uM-0.1nM AURK
MAPK/
PI3K

dactolisib 4.0uM-0.1nM PI3K/mTOR

ly294002 10.0uM-41.1nM PI3K
rapamycin 0.3uM-0.8nM mTOR
sb253226 10.0uM-41.1nM p38
tak632 4.0uM-0.1nM RAF
trametinib 0.3uM-0.8nM MEK
u0126 10.0uM-41.1nM MEK
ulixertinib 4.0uM-0.1nM ERK

SFK bosutinib 10.0uM-41.1nM Bcr-
ABL/SFK

dasatinib 1.0uM-3.9nM SFK
pp2 10.0uM-41.1nM SFK
quercetin 10.0uM-41.1nM SFK

Mitotic
Checkpoint

DNA
Syn/
Dam

carmustine 10.0uM-41.1nM DNA

methotrexate 4.0uM-0.1nM DHFR
olaparib 20.0uM-0.3nM PARP

Protein
Syn/Stab

carfilzomib 4.0uM-0.1nM Proteasome

harringtonine 10.0uM-41.1nM Ribosomes
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mg132 4.0uM-0.1nM Proteasome
tanespimycin 4.0uM-0.1nM HSP90

Tubulin cephalomannine 10.0uM-41.1nM Microtubules
docetaxel 0.3uM-0.8nM Microtubules
vindesine 0.3uM-0.8nM Microtubules
vinorelbine 10.0uM-41.1nM Microtubules

Receptors &
Channels

Channels amiodarone 10.0uM-41.1nM NA Channels

bendroflume-
thiazide

1.0uM-2.6nM Cl channel

cabozantinib 4.0uM-0.1nM C-Met/ Axl/
Ret

dronedarone 10.0uM-41.1nM NA Channels
ivacaftor 10.0uM-41.1nM CFTR
nateglinide 1.0uM-2.6nM ATP-

dependent K
channels

GPCRs acetylcysteine 10.0uM-41.1nM Glutamate
receptor

aprepitant 10.0uM-41.1nM Neuromedin
receptor

beclomethas-
onedipropionate

1.0uM-2.6nM Glucocorticoid
receptor

loratadine 10.0uM-41.1nM Histamine
H1-receptors

naftopidil 10.0uM-41.1nM B1-
adrenergic
receptor

nebivolol 10.0uM-41.1nM B1 receptor
sp600125 10.0uM-41.1nM JNK
thioridazine 10.0uM-41.1nM Adrenergic

receptor
MAPK-
RTKIs

afatinib 4.0uM-0.1nM EGFR/HER2

ag 879 1.0uM-2.6nM HER2/ RAF-
1

gefitinib 4.0uM-0.1nM EGFR
gsk1751853a 10.0uM-41.1nM IGF1R/

INSR
gsk994854a 10.0uM-41.1nM IGF1R/

INSR
gw458787a 10.0uM-41.1nM EGFR/

ERBB4
gw644007x 10.0uM-41.1nM Ret
gw694590a 10.0uM-41.1nM TIE2
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gw770249x 10.0uM-41.1nM FLT3
linsitinib 5.0uM-19.5nM IGF1R
ponatinib 4.0uM-0.1nM FGFR
tyrphostinag 370 10.0uM-41.1nM PDGFRbeta

BRAF-Mutant
Melanoma
Kinases MAPK/

PI3K
dabrafenib 0.4nM-0.39nM BRAFV600

plx4720 8.0uM-7.8nM BRAFV600E
& CRAF1

raf265 1.0uM-3.9nM CRAF,&
BRAF

vemurafenib 8.0uM-7.8nM BRAFV600
selumetinib 4.0uM-61pM MEK1
trametinib 0.4uM-6.1pM MEK1/2
pd98059 0.4uM-6.1pM MEK1
cobimetinib 0.8uM-12pM MEK1

To fit the resulting dose-response surfaces, I developed a Bayesian fitting algorithm, using a

Particle Swarm Optimizer (PSO) to seed priors for a Markov Chain Monte Carlo (MCMC) opti-

mization (See Appendix B.4). Applying this algorithm, I extracted synergy parameters (α12, α21,

and βobs) from fitted surfaces for all osimertinib combinations (βobs is the observed synergistic

efficacy at the maximum tested dose range).

As single agents, the drug panel displays wide ranges of efficacy (E2) and potency (C) (Figure

3.3A). The efficacy and potency of the single agents have no relationship with the synergistic

efficacy and synergistic potency when combined with osimertinib (p-value>0.2) (Figure 3.3B)

confirming MuSyC’s synergy parameters are independent of single-agents’ dose-response curve

and therefore, as expected, cannot be predicted from the single-agent, pharmacologic profiles.

Inspection of dose-response surfaces from this combination screen, highlight the significance

of resolving synergistic potency and efficacy. For instance, the dose-response surface for the os-

imertinib combination with M344 (a histone deacetylase (HDAC) inhibitor) exhibits synergistic

efficacy (βobs = 1.25±0.03, reflecting a 125% increase in efficacy over osimertinib alone) (Figure

3.5B,3.6A). However, this improved efficacy comes at the cost of potency (log(α21)=-0.90±0.01)
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as observed in the shift in the EC50 of osimertinib in the presence of 1uM M344 (Figure 3.5B red

to purple dotted line). In contrast, ceritinib, an ALK inhibitor with off-target effects on IGF1R

(Shaw et al., 2014), increases osimertinib’s potency (log(α21)=6.25±0.50) (Figure 3.5B green to

orange dotted line) at 4uM (maximal tested concentration), but with inconsequential improvement

of efficacy (βobs=0.28±0.003)
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Figure 3.3: Synergistic potency (α12, α21) and efficacy (β ) do not depend on the potency and
efficacy of the single drugs (C and Emax) and are independent of one another. A) Jitter plot of
the 64 surveyed single drug’s Emax(obs), C [µM], and hill slope h. B) Synergy parameters do not
correlate (Pearson-r) with a single drug’s potency and efficacy in isolation. (α21=X potentiates
osimertinib).

To visualize synergy globally, I plotted drug combinations with observed synergistic efficacy

(βobs) and potency on the vertical and horizontal axes, respectively (Figure 3.6). These plots

reveal distinguishing trends between the four drug categories tested.
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Ceritinib is not potentiated by osimertinib (last panel) while osimertinib is potentiated by ceritinib
(Figure 3.5B).

Within the mitotic checkpoint drugs, tubulin destabilizers (including vindesine and vinorel-

bine) showed an upward shift along the axis of synergistic efficacy (Figure 3.6A). The marginal

distribution confirmed this trend in comparison to all the drugs (Figure 3.6B, blue versus black

vertical distributions). Similar results were obtained for the HDACi subgroup within the epige-

netic regulators (Figure 3.6A,B). As expected, I observed limited synergistic/antagonistic efficacy

for drugs targeting G-protein coupled receptors (GPCRs) (Figure 3.6A,B red versus black distri-

butions). I also observed limited synergistic efficacy in directly co-targeting kinases in the MAPK

pathway suggesting this may be an unproductive avenue in EGFR-mutant NSCLC (Figure 3.6A,B

purple to black comparison along vertical axis).

To infer its synergy parameters, MuSyC first quantifies the magnitude of the maximal effects

of each drug in isolation and as well as the combination (E1, E2, and E3). In our system, these

values relate directly to the rate of regression or expansion of the tumor population for saturating

drug conditions. Therefore, I looked for trends between drug classes for these parameters as well

(Figure 3.7). Overall, I observed the combination targeting tubulin stability and EGFR achieved the

greatest average reduction in DIP rates both in isolation and in combination (Figure 3.7). HDACi

76



log(ceritinib)[M]
10 8 6

0.00

0.02

0.04
log(osimertinib)[M]

D
IP

 R
at

e(
h

1 )

10 8

0.00

0.02

0.04

0uM cer

4uM cer

0uM osi

0.2uM osi

log(osi)[M]

0.03 -0.030.0

log
(c

er
)[M

]

DIP Rate( h 1)

9 8 7
log(osimertinib)[M]

0.025

0.000

8 6
log(m344)[M]

0.025

0.000

0.025

0.025

0uM osi
0.2uM osi

0uM m344
1uM m344

log(m344)[M]

0.03 -0.030.0

log
(o

si)
[M

]

DIP Rate( h 1)

BLANK

D
IP

 R
at

e(
h

1 )

A

B

Figure 3.5: Examples dose-response surfaces with different synergy profiles. A) Combination
surface of M344, an HDACi, and osimertinib (osi). Grey plane indicates a cytostatic growth rate
(i.e., DIP rate=0 h-1). Left are the dose-response curves for each drug alone (orange and red
curves) and each drug with the maximum tested concentration of the other (green and purple).
Colors correspond to the colored lines on the combination surface. The dotted lines demarcate the
EC50 for each curve. B) Combination surface for ceritinib (cer), an ALK, in combination with
osimertinib. Ceritinib increases the potency of osimertinib at maximum tested concentration, as
observed in the shift of the EC50 between orange and green curves in the top left panel. The shift
is proportional to the concentration used and would, therefore, increase at higher concentrations;
however, such concentrations are not physiologically realizable due to the low potency of ceritinib
in this system (EC50=2.02 uM) highlighting the importance of interpreting synergistic potency in
the context of the absolute potency.
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Figure 3.6: High throughput screen of 64 drugs combined with osimertinib (mutant EGFR-TKI)
reveals drug class dependence of synergistic potency and efficacy in NSCLC. A) DSDs for drug
combinations. The vertical axis quantifies the observed synergistic efficacy, (βobs). The horizontal
axis (log(α21)) quantifies how osimertinib’s potency is modulated by each drug (see Figure 3.4 for
α12−α21 plot). Error bars represent the parameter uncertainty based on the MCMC optimization
(See Appendix B.4). B) 2D density plots and associated marginal distributions for βobs (vertical
axis) and α2 (horizontal axis) for all drugs (black) and selected category subclasses. Colored tick
marks indicate the 50% and 95% probability density intervals for each distribution.
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also significantly decreased the DIP rate below zero despite having an average effect less than

osimertinib (red line in Figure 3.7) in isolation. Notably, the combination of osimertinib and

HDACi quisinostat achieved the lowest E3 (Figure 3.7). The β value for quisinostat is positive;

however, as it was significantly efficacious as a single agent it was not the largest observed β . This

highlights the importance of interpreting synergistic efficacy in the context of the maximal efficacy

(E3) and exemplifies the necessity of both the drug combination surfaces and the synergy plots

(Figure 3.5) because looking exclusively for the most synergistic combination without considering

the magnitude of effects can be misleading.

MAPK/PI3KChannels

m344
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vindesine

Tubulin

E3(obs)E2(obs)

quisinostat

Max Osi
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Max X
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D
IP

 h
-1

All

Max Osi

A

Figure 3.7: Maximal efficacy of drug combinations in NSCLC. A) Distribution of maximal ob-
served effect for drug subclasses in E. The red line signifies maximal effect ofosimertinib alone
(E1(obs)) plotted in the first panel. Lines connect the maximal observed effect of the drug alone
(E2(obs))and the maximal effect observed in combination with osimertinib (E3(obs)).
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In summary, by quantifying synergy of potency separate from synergy of efficacy, MuSyC

reveals drug-class trends which can be used to guide subsequent screens and drug combination

deployment in NSCLC.

3.3 MuSyC validates co-targeting RAF and MEK in BRAF-mutant melanoma.

The NSCLC drug screen (Section 3.2) suggests combinations targeting molecules within the

same signaling pathway may not be productive avenues for increasing efficacy. However, a com-

bination used clinically in BRAF-mutant melanoma co-targets kinases BRAF and MEK in the

MAPK pathway (Long et al., 2014; Eroglu and Ribas, 2016). To investigate this combination in

more detail, I screened a panel of 8 BRAFV600-mutant melanoma cell lines (Paudel et al., 2018)

for cell-line information) against 16 BRAFi/MEKi combinations (see Table 3.1 for drug informa-

tion and tested dose ranges).

Based on the mean βobs across cell-lines, all 16 combinations were synergistically efficacious

(Figure 3.8, 3.9C) indicating MuSyC would have identified this treatment strategy prospectively.

In contrast, conventional methods produce ambiguous results (Figure 3.14, top 3 panels in each

cell line group), such that this combination strategy could have not been identified. Furthermore,

MuSyC detected variations in synergistic efficacy between cell lines (Figure 3.8, 3.9C), underscor-

ing its sensitivity and pointing to heterogeneous, cell-intrinsic mechanisms modulating the efficacy

of BRAF/MEK inhibition. In particular, A2058 displayed low average synergistic efficacy, sug-

gesting that its canonical insensitivity to BRAFi does not depend on MEK reactivation, but rather

on altered metabolic phenotype (Parmenter et al., 2014; Hardeman et al., 2017). In addition to low

synergy, the combination of RAFi+MEKi showed low efficacy in A2058 compared to other cell-

lines (Figure 3.10). In several cell lines (A375, SKMEL28, SKMEL5, WM1799, WM983B), the

combination was the only way to achieve negative DIP rates (i.e. regressing populations) (Figure

3.10) independent of the synergistic efficacy of the combination.

MuSyC also provides information on synergistic potency for these combinations. A clinically

deployed combination (dabrafenib and trametinib) is synergistically efficacious, but antagonisti-
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cally potent in all cell lines except one (Figure 3.9A), a trade-off that may be relevant in the clinic.
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Figure 3.8: Synergistic efficacy and/or potency of drug combinations in BRAF-mutant melanoma.
A) 8 BRAF-mutant melanoma cell lines were treated with all possible pairwise combinations of 4
RAF and 4 MEK inhibitors (Table 3.1) for a total of 128 unique combinations. Waterfall plots of
βobs for each cell line with all combinations which converged in fitting. Drug combinations noted
by letter in the legend to right. (Also see Figure 3.9).

Together, MuSyC analyses of NSCLC and of melanoma combination screens indicate the mag-

nitude of a drug combination’s synergistic efficacy depends upon the oncogenetic context, i.e., co-

targeting within the MAPK pathway may work for mutant-BRAF melanoma, not for mutant-EGFR

NSCLC.
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Figure 3.9: Synergistic potency and synergistic efficacy of combined RAFi and MEKi in BRAF-
mutant melanoma A) Jitter plots of log(α12) for each RAFi for the 4 MEKi tested. α12 corresponds
to the alteration in MEKi’s effective dose due to the presence of a RAFi. Dashed line denotes zero
separating synergistic and antagonistic potency. The color of plotted points is corresponds to the
cell line as annotated at the bottom of the figure. B) Jitter plots of log(α21) for each MEKi for the 4
RAFi tested. α21 corresponds to the alteration in RAF inhibitor’s effective dose due to the presence
of a MEK inhibitor. C) Rank ordered jitter plots of the median βobs for each drug combination
across all cell lines.
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Figure 3.10: Maximal efficacy of combined RAFi and MEKi in BRAF-mutant melanoma. A)
Distribution of maximal effects for RAFi alone (E1, 4 drugs), MEKi alone (E2, 4 drugs), and the
combination (E3, 16 combinations) for each cell line. Orange bar denotes mean.
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3.4 NOX5, a molecular correlate of insensitivity to BRAF inhibition, alters synergistic efficacy,

not potency, in BRAF-mutant melanoma.

While drug combinations are commonly identified from top-down approaches, e.g., high

throughput drug screens, others, including BRAFi/MEKi, were discovered from a bottom-up ap-

proach via investigating molecular correlates of insensitivity. However, these molecular correlates

may alter either the potency or the efficacy of the primary drug (or both). MuSyC can distin-

guish among these possibilities, enabling an informed choice between improving either efficacy or

potency. As an example, I looked for molecular correlates of BRAFi insensitivity between sub-

clones of a BRAF-mutant melanoma cell line (SKMEL5) with differential sensitivity to BRAFi

(Figure 3.11A). Specifically, I quantified gene expression using RNAseq and identified the top 200

differentially expressed genes (DEGs) (FDR<0.001, see Appendix B.1). This gene set was signifi-

cantly enriched in processes, cellular components, and molecular functions relating to metabolism

(Figure 3.11B), aligning with previous reports on the relationship between altered metabolism and

resistance to BRAFi (Parmenter et al., 2014; Hardeman et al., 2017). I computed the correlation of

the 200 DEGs’ expression to BRAFi sensitivity across a 10 cell line panel using expression data

from (Subramanian et al., 2017). NADPH oxidase 5 (NOX5) stood out as one of five genes with

a significant, positive correlation with BRAFi insensitivity (Pearson r=0.65, p-val=0.042) (Figure

3.11C-D, Table 3.2 for quantification of BRAFi insensitivity and Table 3.3 for genes correlated

with BRAFi insensitivity) and was significantly up-regulated in the BRAFi insensitive subclone

(SC10) compared with the sensitive subclone (SC01) (Figure 3.11E). Previously unconsidered,

NOX5 is an interesting target due to its convergent regulation on metabolic and redox signaling at

mitochondria (Lu et al., 2012), processes significantly enriched in the DEGs (Figure 3.11B).

To study NOX5’s contribution to the potency or efficacy of BRAF inhibition, I tested PLX4720

in combination with a NOX5 inhibitor, DPI (Jaquet et al., 2011), in a panel of 7 melanoma cell

lines selected based on differential NOX5 expression. I found synergistic efficacy correlated with

NOX5 expression (Pearson r=0.77, p-value=0.043) (Figure 3.12B,C); however, synergistic potency

did not (Pearson r=0.01, p-value=0.96) (Figure 3.12B,D). Of note, A2058, well-known for its
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Figure 3.11: NOX5 is a molecular correlate of insensitivity to BRAFi. A) Growth curves of dif-
ferentially sensitive, single-cell-derived subclones from SKMEL5 treated with 8µM PLX4720.
Grey curves represent colony growth according to the clonal fractional proliferation assay (Tyson
et al., 2012). The average population response indicated in black curve. SC01, SC07, and SC10
were subsequently used to identify 200 DEGs. B) Top gene set enrichment terms for 200 DEGs.
C) Distribution of the correlation between 200 DEGs expression and BRAFi insensitivity. Drug
sensitivity was quantified as DIP rate measured in 8µM PLX4720 (Table 3.2). Significance thresh-
old of p-value¡0.05 annotated in pink. D) NOX5 expression correlates with BRAFi sensitivity in
10 BRAF-mutant melanoma cells. E) Pairwise comparison between SC01 and SC10 of DEGs
(FDR<0.001) identified using DESeq2 (Love et al., 2014). The 200 identified DEGs (ANOVA
between three subclones) are in black. Dotted red lines denote plus/minus 4-fold change.
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Table 3.2: BRAFi sensitivity across CCLE BRAF-mutant melanoma cell line panel.

CCLE Cell Line DIP Rate (h−1) at [8uM] PLX4270
A2058 SKIN 0.030
A375 SKIN 0.005
SKMEL28 SKIN 0.010
SKMEL5 SKIN 0.014
WM115 SKIN 0.013
WM1799 SKIN -0.002
WM2664 SKIN 0.003
WM793 SKIN 0.015
WM88 SKIN -0.020
WM983B SKIN 0.021

Table 3.3: Differentially Expressed Genes (DEGs) between SKMEL5 subclones SC01, SC07,
SC10 whose expression significantly correlated to BRAFi insensitivity (Pearson r) across panel
of 10 cell-lines (expression data from Subramanian et al.). See Table 3.2 for quantification of
sensitivity to BRAFi.

+ Correlation with BRAFi insensitivity - Correlation with BRAFi insensitivity
Gene symbol r p-value
SLC7A11 0.816 0.004
SLC16A7 0.807 0.005
TGFB1 0.666 0.036
NOX5 0.649 0.042
LXN 0.646 0.044

Gene symbol r p-value
GRIK3 -0.743 0.014
PRELP -0.720 0.019
CPVL -0.684 0.029
ITGA10 -0.659 0.038
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resistance to BRAFi exhibited the highest NOX5 expression among the cell lines and the highest

synergistic efficacy (βobs = 1.42±0.05) (Figure 3.12A) which was more synergistically efficacious

than all tested MEKi/BRAFi combinations (Figure 3.8).
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Figure 3.12: NOX5 expression is correlated with synergistic efficacy. A) Dose-response surface
for PLX4270+DPI (NOX5 inhibitor) in A2058. A) Scatterplot of βobs vs. log(α12) for NOX5i
(DPI) plus BRAFi (PLX4720) in 7 BRAF-mutant melanoma cell lines. H) Correlation (Pearson r)
of NOX5 expression with observed synergistic efficacy (βobs). I) Correlation (Pearson r) of NOX5
expression with synergistic potency (α21=DPI’s effect on PLX4720 potency).

Taken together, these results suggest co-targeting NOX5 in BRAF-mutant melanoma could

lead to improved outcomes for BRAF-mutant melanoma patients with a unique metabolic program

for which NOX5 is a biomarker. Furthermore, this study demonstrates the utility of MuSyC for

distinguishing a molecular constituent’s role in modulating the potency or efficacy of a drug.

87



3.5 Conflating synergy of potency and efficacy leads to inconclusive classification.

To investigate how results from MuSyC compare with the most frequently used synergy met-

rics, I calculated synergy using Loewe additivity, Combination Index (CI), and Bliss on data from

the NSCLC (Section 3.2) and the melanoma (Section 3.3) screens. Loewe synergy was calculated

directly from the DIP rate data, while CI and Bliss, which require percent metrics, were calculated

from 72-hour percent viability (Barretina et al., 2012) imputed from the growth curves (see method

description Appendix B.6) . Unlike MuSyC, these metrics are evaluated at every concentration

resulting in dose-dependent distributions of synergy (Figures 3.13, 3.14) commonly resulting in

ambiguous classification of a combination. By the median of each distribution, none of the metrics

can statistically discriminate between the quadrants in Figures 3.13, 3.14 (Kruskal-Wallis p-value

> 0.05).

Examining the models underlying these metrics revealed several limitations and biases ac-

counting for their ambiguity. For Loewe additivity, synergy is undefinable for many tested con-

centrations as Loewe cannot be calculated at combination conditions with effects exceeding the

maximum effect of the weaker drug (Table 1.1). This is particularly limiting for synergistically

efficacious combinations, which, by definition, achieve greater effect than either drug alone. In

the NSCLC screen, because osimertinib alone was not sufficient to achieve a negative DIP rate

(i.e., regressing population), Loewe is undefinable for all conditions where DIP rate was less than

zero (Figure 3.15A). For conditions where Loewe is defined, Loewe contains a Hill slope depen-

dent bias (Section 2.5, page 57) such that when the geometric mean of the hill slopes is less than

one (
√

h1∗h2), the linear model of Loewe will overestimate synergy and when, Loewe will un-

derestimate synergy (Figure 2.4). Correspondingly, I found the median value of Loewe synergy

was negatively correlated with the geometric mean of the hill coefficients in both the NSCLC and

melanoma screens (Figure 3.15B, spearman r= -0.51 and -0.41, p-value=1e-3 and 8e-4 respec-

tively). That is, the synergy of a combination according to Loewe additivity could be estimated

based on the hill slope of a single drug alone in contrast to MuSyC where synergistic potency and

efficacy are decoupled from the single drug’s pharmacologic profile (Figure 3.3B).

88



ob
s

A

ca
rm

us
ti
ne

ce
ph

al
o

do
ce

ta
xe

l
m

g1
32

vi
nd

es
in

e
vi

no
re

lb
in

e
jq

1
ac

et
yl

cy
st

ei
ne

am
io

da
ro

ne
be

nd
ro

ge
fit

in
ib

gs
k9

94
85

4a
gw

64
40

07
x

gw
77

02
49

x
lin

si
ti
ni

b
ce

ri
ti
ni

b
da

sa
ti
ni

b
en

sa
rt

in
ib

ly
29

40
02

qu
er

ce
ti
n

ra
pa

m
yc

in
u0

12
6

Lo
ew
e

C
I

B
lis
s

m
et

ho
tr

ex
at

e

ab
ex

in
os

ta
t

ba
ze

do
xi

fe
ne

en
ti
no

st
at

m
34

4
m

oc
et

in
os

ta
t

pr
ac

in
os

ta
t

qu
is

in
os

ta
t

ve
rt

ep
or

fin
ag

 8
79

ca
bo

za
nt

in
ib

gw
69

45
90

a
iv

ac
af

to
r

lo
ra

ta
di

ne
na

te
gl

in
id

e
ne

bi
vo

lo
l

ty
rp

ho
st

in
sb

25
32

26
ta

ne
sp

im
yc

in

af
at

in
ib

gs
k1

75
18

53
a

gw
45

87
87

a
po

na
ti
ni

b
th

io
ri
da

zi
ne

bo
su

ti
ni

b
pp

2
ta

k6
32

zm
44

74
39

ca
rf

ilz
om

ib
ha

rr
in

gt
on

in
e

ol
ap

ar
ib

gi
vi

no
st

at
pa

no
bi

no
st

at

ap
re

pi
ta

nt
be

cl
o

dr
on

ed
ar

on
e

na
ft

op
id

il
sp

60
01

25
bm

l2
59

da
ct

ol
is

ib
tr

am
et

in
ib

ul
ix

er
ti
ni

b

Ant

Syn

Ant

Syn

ca
rm

us
ti
ne

ce
ph

al
o

do
ce

ta
xe

l
m

g1
32

vi
nd

es
in

e
vi

no
re

lb
in

e
jq

1
ac

et
yl

cy
st

ei
ne

am
io

da
ro

ne
be

nd
ro

ge
fit

in
ib

gs
k9

94
85

4a
gw

64
40

07
x

gw
77

02
49

x
lin

si
ti
ni

b
ce

ri
ti
ni

b
da

sa
ti
ni

b
en

sa
rt

in
ib

ly
29

40
02

qu
er

ce
ti
n

ra
pa

m
yc

in
u0

12
6

Lo
ew
e

C
I

B
lis
s

m
et

ho
tr

ex
at

e

ab
ex

in
os

ta
t

ba
ze

do
xi

fe
ne

en
ti
no

st
at

m
34

4
m

oc
et

in
os

ta
t

pr
ac

in
os

ta
t

qu
is

in
os

ta
t

ve
rt

ep
or

fin
ag

 8
79

ca
bo

za
nt

in
ib

gw
69

45
90

a
iv

ac
af

to
r

lo
ra

ta
di

ne
na

te
gl

in
id

e
ne

bi
vo

lo
l

ty
rp

ho
st

in
sb

25
32

26
ta

ne
sp

im
yc

in

af
at

in
ib

gs
k1

75
18

53
a

gw
45

87
87

a
po

na
ti
ni

b
th

io
ri
da

zi
ne

bo
su

ti
ni

b
pp

2
ta

k6
32

zm
44

74
39

ca
rf

ilz
om

ib
ha

rr
in

gt
on

in
e

ol
ap

ar
ib

gi
vi

no
st

at
pa

no
bi

no
st

at

ap
re

pi
ta

nt
be

cl
o

dr
on

ed
ar

on
e

na
ft

op
id

il
sp

60
01

25
bm

l2
59

da
ct

ol
is

ib
tr

am
et

in
ib

ul
ix

er
ti
ni

b

Ant

Syn

Ant

Syn

Ant

Syn

Ant

Syn

β
21

lo
g(
α

)

Ant

Syn

Ant

Syn

Figure 3.13: Drug combinations against EGFR-mutant NSCLC are ambiguous by Bliss, Loewe,
CI, and HSA. A) Drugs are separated based on their quadrant from Figure 3.6, and distributions of
synergy calculated by Loewe, CI, and Bliss are shown. Loewe was calculated directly from DIP
rates, while CI and Bliss were calculated from 72-hour viability (Appendix B.6). Overall, most
combinations span synergism and antagonism when quantified by Loewe, CI, or Bliss. Conditions
for which synergy could not be defined were removed. Traditionally, Loewe and CI are synergistic
between 0 and 1, and antagonistic for values >1; however, for visualization, I transformed them
to -log(Loewe) and -log(CI), so synergism (Syn) corresponds to positive numbers (grey region),
antagonism (Ant) to negative (white region). α21 is the change in osimertinib’s potency due to the
other drug. Error bars for βobs and log(α21) calculated from MCMC optimization (Appendix B.4).
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Figure 3.14: Combination of BRAFi+MEKi combinations against BRAF-mutant melanoma are
ambiguous by Bliss, Loewe, CI, and HSA. A) Distribution of synergy calculated by Loewe, CI,
and Bliss for melanoma dataset. As in the NSCLC data, Loewe was calculated directly from DIP
rates, while CI and Bliss were calculated from 72-hour viability. Conditions for which synergy
is undefined were not included. By these traditional methods, combinations of BRAF/MEK in-
hibitors in melanoma are ambiguous, spanning synergy (Syn-gray) and antagonism (Ant-white).
log(α12) is the RAFi’s effect on the potency of the MEKi and log(α21) is the reverse. Abbreviations
of the RAF inhibitors are: dab=dabrafenib, plx=plx4720, raf=raf265, and vem=vemurafenib.
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Figure 3.15: Bias and limitations of classic methods applied to the NSCLC drug screen. A) Loewe
is undefined (Und) for all concentrations which achieved a net negative DIP rate. B) The median
values of synergy calculated by Loewe are anti-correlated with the geometric mean of the hill
slope in both the NSCLC and BRAF-mutant melanoma datasets. C) CI poorly fits drugs whose
max effect is not equal to 0. The top panel shows linear dose-response fit by the CI algorithm,
bottom shows the quality of fit in a standard dose-response view. The CI fit works well for drugs
for which Emax = 0, like panobinostat (left, Emax=0.016, C=7.13 nM, h2=0.99 for orange fit,
Emax=0, C=4.42 nM, h2=0.63 by CI). However, drugs with Emax ¿¿ 0, like methotrexate (right)
lead to poor fits (Emax=0.52, C=0.119 uM, h2=1.88 by orange fit, Emax=0, C=34.7 uM, h2=0.23
by CI).
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CI is a special case of Loewe additivity which adds the additional condition that E0=1,

E1=E2=E3=0, such that the drug effect is equated with percent inhibition (Chou et al., 1983).

As previously discussed, this commonly results in poor fits for data where the maximal effect sat-

urates above 0% (Figure 2.12. I observe poor fits of CI also in the osimertinib screen in these same

conditions. For example, methotrexate, which reaches a maximum effect of 52% viability)(Figure

3.15C). CI is thus inappropriate for cell-based assays of drug effect where the correspondence

between percent inhibition and cell viability is not one-to-one.

In summary, traditional methods cannot distinguish synergy of potency from synergy of effi-

cacy (Figures 3.13,3.14) leading to ambiguous classifications of the synergistic profile of a com-

bination. This ambiguity is to be expected if synergy is a dose-dependent phenomenon; however,

such an assumption precludes a logical method for comparing between drug combinations—a

common aim of high throughput drug combination screens.

3.6 Scaling synergy to the genome: combining MuSyC with functional genomics

A persistent challenge in drug combination studies is the combinatorial expansion of conditions

required to measure (Section 1.6, page 15). For single dose-response curves, the gold standard is

a 13-point dilution series per drug, though in practice as few as 5 to 6 dilutions can still be used

to estimate the potency or efficacy of a drug. By comparision, when sampling drug combinations

across a matrix, (Figure 3.2) 77 conditions are measured—exceeding a 2N scaling in number of

conditions for N drugs.

A potential work around is suggested by the geometry of the phenomenological model underly-

ing the 2D Hill equation 2.8 (Figure 2.1). As shown in Section 2.1 (page 28), the 2D Hill equation

reduces to a 1D Hill equation at the boundaries and, therefore, it is possible to find all parameters

of the 2D Hill equation (eq. 2.8, page 31) sampling only on the boundaries. In general, this is

not advisable as if there is no difference in the maximal efficacy of the single drug and the com-

bination (for example the combination of osimertinib and ceritinib Figure 3.5B), then estimating

α depends on the intermediate doses. However, in special cases such as the binary knockout of a
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gene, this sampling strategy which only uses the boundaries could be appropriate. Such a strategy

significantly reduce the number of datapoints required to calculate synergy. Here I apply this idea

to interpreting the readout of a functional genomics screen in a BRAF-mutant melanoma cell line.

3.6.1 Simplification of the 2D Hill equation and experimental design.

While in general, more doses along the response curve of the RNAi knockdown + drug combi-

nation are preferable, it is infeasible to obtain many drug concentrations in high throughput RNAi

screens due to cost. However, it remains possible to uniquely compute α and β for only three con-

ditions of drug+RNAi given a well defined dose-response curve for the drug alone (Figure 3.16A).

Synergistic potency is then the geometric translations between the dose-response curve with and

without the knockdown (Figure 3.16B horizontal axis). Synergistic efficacy is the percent increase

in maximal effect of the drug+RNAi combination over the most efficacious of either alone (Figure

3.16B vertical axis).
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Figure 3.16: Calculating synergistic potency and synergistic efficacy from functional drug plus
siRNA combinations. A) Given a well defined dose response curve of a drug by itself (solid
black line) with a potency C2, efficacy E2, and Hill slope h2, then β and α can be calculated
uniquely from 3 conditions. Effect of siRNA only (E1), effect of the siRNA and drug at maximum
concentration of drug (E3), and effect of drug and siRNA at intermediate dose (d2′) resulting in
effect Ed′. B) As with drug combinations, the knockdown of a gene can change a drug’s potency
(horizontal axis) and efficacy (vertical axis) independently. Quadrant I is a cartoon of a gene
knockdown which increases the potency and the efficacy of the drug (black→ blue line). Quadrant
IV is a gene which antagonizes the efficacy of the drug at low doses.
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There are several limitations of this design. First this method precludes fitting asymmetric syn-

ergistic potency terms (i.e. the effect of the drug on the potency of the RNAi cannot be estimated).

Second is strong antagonistic potency may confound the accuracy of β (Figure 3.17A); however,

the converse it not true. Finally, the selected dose dictates the interval where α can be calcu-

lated accurately (Figure 3.17B) as the change in Ed′ diminishes with increasing absolute value of

log(α).
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Figure 3.17: EC50 is the optimal dose in siRNA screen. A) Antagonisitic potency increases un-
certainty of β . Red line is the maximum drug tested in experiment which is sufficent for the
drug alone (black line) to observe the effect saturation; however, when the siRNA shifts the dose
response curve, the plateau moves beyond the tested concentration range. As a result, it is not
possible to distinguish synergistic from antagonistically efficacious (purple and blue curves re-
spectively), alterations. B) Increasing absolute values of log(α) result in diminishing changes to
Ed′ such that there is a range of values for which α can be reasonably calculated.

3.6.2 Functional genomics screen reveals key modulators of BRAFi pharmacologic profile.

To test the validity of using siRNA as a “drug” in the MuSyC framework, I tested combi-

nations of a BRAFi (plx4720) with different siRNA over a matrix of concentrations (Figures

3.18,3.19,3.20) in SKMEL5 cells. When combined with a non-targeting control, there is no in-

crease in effect of the BRAF inhibitor and no change in viability for increasing concentrations

94



of siRNA (Figure 3.18) BRAFi cannot increase the effect (no synergy of efficacy) of the tran-

fection control (siTOX) which targets essential cell survival genes (Figure 3.19). Interestingly,

the combination of an siRNA to BRAF (siBRAF) with a BRAF inhibitor is synergically effica-

cious (β = 0.44) (Figure 3.20). This highlights the non-equivalence between molecular inhibition

and gene knockout. While the BRAF kinase domain is inhibited, it can still act as a scaffolding

molecule to propogate signal through the MAPK cascade; therefore, even a kinase dead BRAF

can still drive signal through MAPK (Heidorn et al., 2010). The increase in effect over the gene

knockdown due to the drug is either incomplete knockout or polypharmacology.
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Figure 3.18: Non-targeting siRNA control does not increase the rate of cell killing induced by
BRAFi. A) Dose-response surface for the combination of plx4720 combined with non-targeting
siRNA control (siCON). B) Boundaries of the dose response surface. Flat lines of red solid and
dotted lines signify there is no change in siRNA effect for increasing concentrations of siCON.

Next I ran a functional genomics screen against 1,600 druggable species in SKMEL5 cells in

combination with BRAF inhibition (Appendix B.10). The targeted genes spanned multiple molec-

ular families (Figure 3.21) commonly implicated in drug sensitivity. The tested genes spanned a

wide range of synergistic efficacy and potency profiles (Figure 3.22A) ranging from strong efficacy

synergy (Figure 3.22B PPP1CC) to strong potency synergy (Figure 3.22B RPS6KA4) highlighting
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Figure 3.19: BRAFi does not increase the rate of cell killing induced by siTOX. A) Dose-response
surface for the combination of plx4720 combined with toxicity control (siTOX, Dharmacon). B)
Boundaries of the dose response surface. Flat lines of blue dotted line signifies there is no change
in siTOX effect by titrating in BRAFi.
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Figure 3.20: Molecular inhibition is synergistically efficacious with gene knockdown. A) Dose-
response surface for the combination of plx4720 combined with BRAF-siRNA (siBRAF). B)
Boundaries of the dose response surface. Individually, either siBRAF or plx4720 result in near
cytostatic growth (gray plane). However, combining them results in a negative DIP rate.
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the criticality of distinguishing between different types of synergies when studying the impact of a

gene on the pharmacologic properties of a drug. A cluster of genes were strongly antagonistically

potent (e.g. Figure 3.22B GPR147). Most of these genes had large impacts on the proliferation

rate by themselves making estimating β infeasible for reasons detailed in Figure 3.17A.

Of the screen hits, RPS6KA4 is a particularily interesting gene as it is involved in regulating

CREB1 and ATF1, which are commonly abnormal in BRAF-mutant melanoma. It also is regulated

by MITF which is considered the master transcription factor of melanocyte development (Levy

et al., 2006).

Protein Kinase - 39.81 %

GPCR - 22.99 %

Ion Channel - 12.34 %

Phosphatase - 10.90 %

Unmatched - 5.48 %

Ubiquitin Enzyme - 4.80 %

Multi-label - 3.68 %

A

Figure 3.21: Functional genomics screen of 1,600 genes spans multiple molecular families com-
monly implicated in drug sensitivity. A) Pie chart siRNA targets in each molecular family. Protein
kinases are the most abundant followed by GPCRs.

Patients in the TCGA (The Cancer Genome Atlas) who had BRAFV600 mutations and high

expression of RPS6KA4 (Figure 3.23A), had lower survival rates (log-rank p-value 3.8e-6) than

those with lower expression (Figure 3.23B). While it is unknown whether these patients received

targeted BRAF inhibition, it is likely most cases after 2012 where given a targeted agent. Together

these results suggest RPS6KA4 as a biomarker of sensitivity to BRAFi.

In summary, combining MuSyC with functional genomics is a potential way of scaling synergy

screens to the genomic scale. Such comprehensive maps could be used to guide network motif

discovery of targetable gene circuits modulating the potency/efficacy of a drug. However, the non-
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Figure 3.22: Functional genomics screen reveals key gene species which modulate the potency
and/or efficacy of BRAF inhibition in BRAF-mutant melanoma. A) 1,600 siRNAs were screened
to measure changes in potency (α horizontal axis) and maximal observed efficacy (βobs vertical
axis). Color corresponds to density of points. The average βobs and log(α) was 0.31 and 0.2,
respectively. Gene species with log(α) < −1 had high uncertainty in calculations of β for rea-
sons demonstrated in Figure 3.17A. B) Four examples highlighted from (A). GPR147 (NPFFR1)
is Neuropeptide FF receptor 1 and involved in pain recognition. It had substantial effect singly
and only increased further for high concentrations of plx4720 (antagonistic potency, synergistic
efficacy). PPP1CC is Protein phosphotase (ser/thr) which is involved in cellular division as well as
glycogen metabolism. RPS6KA4 is a ser/thr Kinase regulating CREB1 and ATF1. It is required
for mapk activation of CREB1 and ATF1, the latter of which is commonly mutated in melanoma. It
has additional interactions with MITF. Finally EDG2 (LPAR1) is a GPCR mediating proliferation,
contraction, differentiation, as well as invasion (Muinonen-Martin et al., 2014)
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BRAF-mutant Melanoma Samples TCGA. RPS6KA4 Expression

Figure 3.23: RPS6KA4 is a biomarker survival in BRAF-mutant melanoma. A) Expression of
RPS6KA4 (log(cpm)) of BRAF-mutant melanoma samples from the TCGA database. While it is
unknonw what patients were treated with, since most of the samples come from after the advent of
BRAF targeted therapies, it is likely many received BRAF inhibitors. B) Survival curves for pop-
ulations of high (blue) vs low (red) expression of RPS6KA4. Groups selected based on threshold
minimizing the p-value of the log-rank test of significance. (p-value: 3.8e-6) Vertical ticks indicate
an event. Confidence interval is plotted as an envelope on the curve.
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equivalence between gene knockdown and gene inhibition merits consideration before designing

drugs to target screen hits. With the rapid development of targeted degradation strategies (Winter

et al., 2015) as well as in vivo RNAi (Adams et al., 2018), the identification of RNAi silencing

targets could have increasing clinical applicability.
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Chapter 4

Conclusion

“For as I draw closer and closer to the end, I travel in the circle, nearer and nearer to the beginning.”

-Dickens, A Tale of Two Cities

4.1 A mass action model of combination pharmacology unifies the field of drug synergy

Quantitative models of drug-drug interactions are critical for rationally guiding drug combina-

tion discovery and translation in the treatment of complex, multi-factorial diseases. However, the

historical fissures in the field have discouraged the wider adoption of formal synergy calculations

(Figure 1.1B, page 3). Indeed, recent efforts have only furthered divisions in the field (Section

1.3, page 4). These rifts in the field continue to impact all aspects of modern drug combination

discovery, ranging from experimental design (Figure 1.8, page 16) to computational algorithms to

predict synergy (Figure 1.9, page 18) to the search for higher order interactions (Figure 1.11, page

22). Therefore the need first identified at the Saariselkä conference (Figure 1.1, page 3)(Greco

et al., 1992) still exists, a consensus framework for the quantification of drug synergy.

Herein, I have proposed a mass action model of combination pharmacology (Section 2.1, page

28), termed MuSyC, which subsumes the foundational synergy models in the field (DEP and MSP)

into a more general framework (Section 2.2, page 34). The DEP and MSP have formed the foun-

dational principles of most synergy frameworks over the last century; however, the connection

between these principles has remained unknown (Greco et al., 1992; Tang et al., 2015). Here,

approaching combination pharmacology using the Law of Mass Action unifies both principles in

a single framework. By mapping all frameworks on a common landscape (Figure 2.3, page 35),

MuSyC facilitates rigorous investigation of oft-cited, contradictory conclusions between existing

frameworks (Greco et al., 1995)—contradictions that preclude reproducibility between synergy

studies. Specifically, as is seen in Figure 2.3C, there is no combination which can simultaneously
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satisfy the conditions required by both DEP and MSP synergy frameworks.

This unification of the MSP and DEP brings to light several key insights germane to the field

of drug synergy. In particular, the connections between MuSyC and the classic frameworks predict

biases emerging from constraints on the single drug pharmacological profile inherent in the DEP

and MSP (Sections 2.4 and 2.5, pages 51 and 57, respectively). As shown in Figure 2.3, the

relationship between MuSyC and the MSP and DEP frameworks is constrained by the single-drug

parameters (E1,E2 for MSP, h for DEP). These constraints suggested systematic biases in MSP

and DEP frameworks contingent on a single drug’s efficacy (MSP) and Hill slope (DEP)—biases

subsequently demonstrated in large drug combination databases. These systematic biases merit

consideration when using these frameworks for drug discovery in large screens. Additionally, the

constraint on h highlighted a discrepancy between the biochemistry of true sham experiments and

real combinations. The centrality of the sham experiment in the drug synergy literature cannot be

overstated; however, I argue enforcing sham compliance comes at the cost of improperly modeling

real combinations, leading to a predictable Hill-dependent bias.

4.2 Decoupling synergy of potency and efficacy to guide drug combination discovery and

deployment

The goal of using synergistic drugs is to achieve more with less. It is therefore intuitive that at

least two types of synergy exist: one corresponding to how much more is achievable (synergistic

efficacy), the other to how much less is required (synergistic potency). Finding such combinations

is vital for optimizing therapeutic windows, as there exists a fundamental trade-off between clinical

efficacy and tolerable doses (Figure 4.1). However, I envision distinguishing synergies of potency,

efficacy, and cooperativity will be of differential consequence in different contexts. Diseases for

which single-drug efficacy is sufficient would benefit from synergistically potent combinations to

drive down toxicity and/or side effects. Diseases with treatments of insufficient efficacy are in

pressing need of synergistically efficacious combinations in order to improve depth and durability

of response. By stratifying synergy along distinct axes of potency and efficacy using MuSyC,
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informed choices can be made about this trade-off.
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Figure 4.1: The goal of combination therapy is two-fold: more effect for less drug. MuSyC
distinguishes different types of synergistic interactions which correspond to these clinical goals.

There has been much critical analysis over the past twenty-five years on the term ‘synergy’

(Greco et al., 1992), arguably rooted in the practice of defining synergy with respect to arbitrary

expectations of drug additivity implicitly codified in previous methods’ foundational principles.
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In contrast, ambiguity about the meaning of ‘synergy’ disappears in MuSyC, because its synergy

parameters relate directly to the textbook pharmacology concepts of efficacy and potency. By

calculating synergy in this way, its interpretation does not depend on arbitrary expectations or

thresholds. Rather, an α of 10 corresponds to a 10-fold increase in a compound’s potency, as a

result of the other drug, regardless of whether I define α = 1 or α = 10 as the “threshold” for

synergy. Indeed, a major advance of MuSyC is the decisive shift toward synergy calculations

directly related to an observable change in efficacy and/or potency. Thus, ambiguous questions,

such as “is there synergy?” can be recast into more precise questions, such as “How much does

efficacy/potency of drug X change when drug Y is added?” Such precise language should promote

a move away from arbitrary cut-offs for “significant synergy” which are context dependent.

I have shown how distinguishing between synergy of potency and efficacy facilitates identi-

fying drug-class trends that can be iteratively expanded in future screens to optimize synergistic

efficacy or synergistic potency, whichever is desirable for a particular disease. Specifically in this

work, MuSyC revealed a subclass of epigenetic regulators as potentially interesting targets for com-

bination therapy in an EGFR-oncogene addicted background (Section 3.2, page 69). Epigenetic

regulators have previously been suggested to prime NSCLC for sensitivity to EGFRi (Schiffmann

et al., 2016)and the HDACi entinostat in combination with erlotinib (first generation EGFR-TKI)

has been shown to increase overall survival in EGFR-mutant, NSCLC cases with high expression

of E-cadherin (Witta et al., 2012, 2006). Consistent with this, I also observe entinostat was syn-

ergistically efficacious with osimertinib (βobs = 0.84± 0.027) in PC9 cells, an E-cadherin high

expressing cell line (Shimoyama et al., 1992). As is typical of high-throughput screens, there were

results of undetermined significance, including dronedarone (an anti-arrhythmic sodium channel

inhibitor) and GW694590a (an anti-angiogenesis compound targeting the TIE2 receptor) which

were the most antagonistic and synergistically efficacious compounds out of the Receptors and

Channels drug class respectively. Further studies are needed to verify these results. Nonetheless,

MuSyC provides a quantitative foundation to further investigate unsuspected combinations.

The global views provided by the MuSyC also reveal synergistic trends that vary according
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to disease context. For example, co-targeting the MAPK pathway in NSCLC or BRAF-mutant

melanoma yields different outcomes: in the former, only synergistic potency is observed, while

in the latter synergistic efficacy, and sometimes potency, is registered (Section 3.3, page 80). The

disparity emphasizes that synergistic trends require data-driven metrics that distinguish between

synergy of efficacy and potency.

MuSyC dose-response surfaces facilitate evaluating the significance that combination synergy

should be assigned. That is, MuSyC’s synergy parameters quantify the relative increase in effi-

cacy or potency of the combination, with respect to single agents, and therefore the improvements

should be interpreted in the context of the absolute potency and efficacy. This information is

directly conveyed in the topology of the dose-response surface. As an example, in the NSCLC

screen, the combination of osimertinib with quisinostat exhibited the greatest total efficacy. How-

ever, since quisinostat is already significantly efficacious on its own, that combination ranks lower

than the M344-osimertinib combination along the axis of synergistic efficacy (Figure 3.7, page

3.7). Thus, consideration of both the synergy and the absolute efficacy is critical in assessing new

combinations.

MuSyC is also useful for investigating a molecular species’ contribution to the potency and

efficacy of a compound. Here I demonstrated NOX5 activity modulates the efficacy, but not the

potency, of BRAFi (Section 3.4, page 84). However, the NOX5i used, DPI, is known to have off-

target effects (Altenhöfer et al., 2015); therefore, further evidence for the role of NOX5 in BRAFi

efficacy will require extending MuSyC to studies combining drugs and gene silencing technology

(e.g., RNAi or CRISPR).

Finally, I have shown how drug synergy screens can bypass some of the burdensome data

requirements for calculating synergy by leveraging the geometry of the MuSyC model (Section

3.6, page 92) when a binary effect is expected such as in the case of a gene knockout. This

approximation was used to measure the impact of 1,600 genes on the potency and efficacy of a

BRAFi in BRAF-mutant melanoma. This screen demonstrated the criticality of distinguishing

between synergy of potency and efficacy when studying a gene’s role in drug sensitivity. Follow-
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up studies will be necessary to assess the potential of the identified genes for biomarkers of drug

sensitivity (e.g. RPS6KA4 Figure 3.23, page 99) and targetability for combination therapy. Note

such efforts should carefully distinguish between impact of molecular knockdown and molecular

inhibition (Figure 3.20, page 96).

4.3 Future directions and limitations

The prospects of higher order synergies (i.e., interactions beyond pairwise) and scaling laws

for drug mixtures, while provocative, have remained contentious (Wood et al., 2014; Zimmer et al.,

2016; Tekin et al., 2018) (Section 1.6.3, page 20). MuSyC’s cubic geometry allows it to be eas-

ily extended to three or more drugs (Figure 2.2, page 2.2), and I expect MuSyC will enable a

more refined search for higher order interactions. For instance, combinations that mix different

synergy profiles (e.g., drugs 1 and 2 are synergistically potent, and drugs 2 and 3 are synergisti-

cally efficacious) may exhibit different higher order interactions than combinations all sharing a

single synergy type. However, the number of synergy parameters in MuSyC scales poorly, and

the commensurate data necessary to fully constrain MuSyC hyper-surfaces invokes a parameter

identifiability problem. MuSyC’s geometry could be leveraged to guide sampling schemes to con-

strain the boundaries, allowing the solution to be built up step-wise as was done for the functional

genomics work (Section 3.6, page 92).

MuSyC expects single-drug dose-response curves to be sigmoids well fit by the 1D Hill equa-

tion (eq (2.3)), and dose-response surfaces to be well fit by the 2D Hill equation (eq (2.8)). In

my experience, these expectations are met by real data, as most single drugs have monotonic, sig-

moidal responses, and even complex drug interactions can be modeled using various mixtures of

α , β , and γ (96% and 88% of combinations in anti-cancer (O’Neil et al., 2016) and anti-malarial

(Mott et al., 2015) datasets had R2 > 0.7, respectively). However, it is possible for drugs to have

multiphasic responses due to poly-pharmacology which is not well fit by a Hill curve. It may

be possible to extend MuSyC to encompass such drugs —for instance by including a multipha-

sic Hill model (Di Veroli et al., 2015) or modeling effects of “partially affected” states (Figure
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2.13 page 60). In extreme cases, it may only be possible to apply non-parametric frameworks

such as Bliss, Loewe, or HSA. Additionally, MuSyC assumes all drugs are administered concur-

rently, whereas patient treatments are often staggered. New theory and experimental methods are

needed to address the synergy of combinations which are staggered temporally, bridging the syn-

ergy of pharmacodynamics with the synergy of pharmacokinetics (Koplev et al., 2017). Finally,

in the datasets I analyzed here, I did not find a role for γ . Future studies in other systems, such as

neuronal modulators, are needed to better understand situations when synergistic cooperativity is

expected.

Substantial effort was made to reliably calculate the confidence interval for fitted parameters

(Appendix A.1). This was an unexpected difficulty arising from the multi-collinearity between

parameters in the Hill equation which caused standard regression estimates of uncertainty to be

unstable. The recommended algorithm for fitting dose-response surfaces at present is described in

Appendix A.1.

While I focused on the DIP rate as the metric of effect, MuSyC may be applied to any quan-

tifiable phenotype whose dose-response is suitable to be fit by a Hill equation. In contrast, all

other synergy models I surveyed impose strict constraints on the type and/or magnitude of the drug

effect metric. Thus, MuSyC opens up the potential to study synergy of drug effects previously im-

possible to address by existing methods. Examples of metrics include immune activation, growth

in three dimensional culture, or second messenger efflux. The flexibility is particularly critical

in translating drug combinations to the clinic by using models of increasing complexity, such as

organoids, which better represent drug sensitivity of a patient (Jabs et al., 2017). Indeed, that most

clinical combinations can be explain by patient-to-patient variability (Palmer and Sorger, 2017) is

strong rationale for translating combination screens to more complex, pre-clinical models. Subse-

quent work will be devoted to scaling the combination drug screening pipeline developed here to

pre-clinical experimental models of increasing complexity, such as organoids.
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4.4 Concluding Remarks

By viewing the landscape of drug synergy through the lens of mass-action, I have demonstrated

the underlying assumptions, limitations, and biases of commonly applied synergy methods. I have

shown how MuSyC unifies the DEP and MSP thus providing a consensus framework for the study

of combination pharmacology. These findings provide much needed clarity to the field and should

promote the reproducibility of drug synergy studies across drug combination discovery efforts.

I showed this framework allows for a richer understanding of drug interactions, with practical,

translational consequences. I foresee this approach will streamline drug combination discovery

and facilitate the deployment of precision approaches to therapeutic combinations. In doing so,

MuSyC will open the door to the discovery of new and previously discarded avenues for therapeutic

mixtures.
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A. Arance, I. Bondarenko, J. B. Haanen, J. Hansson, J. Utikal, V. Ferraresi, N. Kovalenko,

P. Mohr, V. Probachai, D. Schadendorf, P. Nathan, C. Robert, A. Ribas, D. J. DeMarini, J. G.

Irani, M. Casey, D. Ouellet, A.-M. Martin, N. Le, K. Patel, and K. Flaherty. Combined BRAF

and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. New England Journal of

Medicine, 371(20):1877–1888, nov 2014. doi: 10.1056/NEJMoa1406037.

117



M. I. Love, W. Huber, and S. Anders. Moderated estimation of fold change and disper-

sion for RNA-seq data with DESeq2. Genome biology, 15(12):550, 2014. doi: 10.1186/

s13059-014-0550-8.

W. Lu, Y. Hu, G. Chen, Z. Chen, H. Zhang, F. Wang, L. Feng, H. Pelicano, H. Wang, M. J. Keating,

J. Liu, W. McKeehan, H. Wang, Y. Luo, and P. Huang. Novel Role of NOX in Supporting

Aerobic Glycolysis in Cancer Cells with Mitochondrial Dysfunction and as a Potential Target

for Cancer Therapy. PLoS Biology, 10(5):e1001326, may 2012. doi: 10.1371/journal.pbio.

1001326.

S. M. Lundberg and S.-I. Lee. A Unified Approach to Interpreting Model Predictions, 2017.

J. Ma, M. K. Yu, S. Fong, K. Ono, E. Sage, B. Demchak, R. Sharan, and T. Ideker. Using deep

learning to model the hierarchical structure and function of a cell. Nature Methods, 15(4):290–

298, apr 2018. doi: 10.1038/nmeth.4627.

J. Maltas and K. B. Wood. Pervasive and diverse collateral sensitivity profiles inform optimal

strategies to limit antibiotic resistance. bioRxiv, page 241075, jan 2018. doi: 10.1101/241075.

A. Malyutina, M. M. Majumder, W. Wang, A. Pessia, C. A. Heckman, and J. Tang. Drug

combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug

combinations in cancer. PLOS Computational Biology, 15(5):e1006752, may 2019. doi:

10.1371/journal.pcbi.1006752.

W. McKinney. Data Structures for Statistical Computing in Python, 2010.

M. P. Menden, D. Wang, M. J. Mason, B. Szalai, K. C. Bulusu, Y. Guan, T. Yu, J. Kang, M. Jeon,

R. Wolfinger, T. Nguyen, M. Zaslavskiy, I. S. Jang, Z. Ghazoui, M. E. Ahsen, R. Vogel, E. C.

Neto, T. Norman, E. K. Y. Tang, M. J. Garnett, G. Y. D. Veroli, S. Fawell, G. Stolovitzky,

J. Guinney, J. R. Dry, and J. Saez-Rodriguez. Community assessment to advance computational

prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications,

10(1):2674, dec 2019. doi: 10.1038/s41467-019-09799-2.

118



B. T. Mott, R. T. Eastman, R. Guha, K. S. Sherlach, A. Siriwardana, P. Shinn, C. McKnight,

S. Michael, N. Lacerda-Queiroz, P. R. Patel, P. Khine, H. Sun, M. Kasbekar, N. Aghdam, S. D.

Fontaine, D. Liu, T. Mierzwa, L. A. Mathews-Griner, M. Ferrer, A. R. Renslo, J. Inglese, J. Yuan,

P. D. Roepe, X.-z. Su, and C. J. Thomas. High-throughput matrix screening identifies synergistic

and antagonistic antimalarial drug combinations. Scientific Reports, 5(1):13891, nov 2015. doi:

10.1038/srep13891.

H. Motulsky and A. Christopoulos. Fitting Models to Biological Data using Linear and Nonlinear

Regression A practical guide to curve fitting Contents at a Glance. GraphPad Software Inc., San

Diego, 2003.

A. J. Muinonen-Martin, O. Susanto, Q. Zhang, E. Smethurst, W. J. Faller, D. M. Veltman, G. Kalna,

C. Lindsay, D. C. Bennett, O. J. Sansom, R. Herd, R. Jones, L. M. Machesky, M. J. O. Wakelam,

D. A. Knecht, and R. H. Insall. Melanoma Cells Break Down LPA to Establish Local Gradients

That Drive Chemotactic Dispersal. PLoS Biology, 12(10):e1001966, oct 2014. doi: 10.1371/

journal.pbio.1001966.

S. Nelander, W. Wang, B. Nilsson, Q.-B. She, C. Pratilas, N. Rosen, P. Gennemark, and C. Sander.

Models from experiments: combinatorial drug perturbations of cancer cells. Molecular systems

biology, 4:216, 2008. doi: 10.1038/msb.2008.53.

R. J. Nichols, S. Sen, Y. J. Choo, P. Beltrao, M. Zietek, R. Chaba, S. Lee, K. M. Kazmierczak,

K. J. Lee, A. Wong, M. Shales, S. Lovett, M. E. Winkler, N. J. Krogan, A. Typas, and C. A.

Gross. Phenotypic Landscape of a Bacterial Cell. CELL, 144(1):143–156, jan 2011. doi:

10.1016/j.cell.2010.11.052.

M. Niepel, M. Hafner, Q. Duan, Z. Wang, E. O. Paull, M. Chung, X. Lu, J. M. Stuart, T. R. Golub,

A. Subramanian, A. Ma’ayan, and P. K. Sorger. Common and cell-type specific responses to

anti-cancer drugs revealed by high throughput transcript profiling. Nature Communications, 8

(1):1186, dec 2017. doi: 10.1038/s41467-017-01383-w.

119



M. Niepel, M. Hafner, C. E. Mills, K. Subramanian, E. H. Williams, M. Chung, B. Gaudio,

A. M. Barrette, A. D. Stern, B. Hu, J. E. Korkola, C. E. Shamu, G. Jayaraman, E. U. Azel-

oglu, R. Iyengar, E. A. Sobie, G. B. Mills, T. Liby, J. D. Jaffe, M. Alimova, D. Davison, X. Lu,

T. R. Golub, A. Subramanian, B. Shelley, C. N. Svendsen, A. Ma’ayan, M. Medvedovic, J. W.

Gray, M. R. Birtwistle, L. M. Heiser, and P. K. Sorger. A Multi-center Study on the Repro-

ducibility of Drug-Response Assays in Mammalian Cell Lines. Cell Systems, jul 2019. doi:

10.1016/J.CELS.2019.06.005.

T. E. Oliphant. Guide to NumPy. 2006.

J. O’Neil, Y. Benita, I. Feldman, M. Chenard, B. Roberts, Y. Liu, J. Li, A. Kral, S. Lejnine,

A. Loboda, W. Arthur, R. Cristescu, B. B. Haines, C. Winter, T. Zhang, A. Bloecher, and S. D.

Shumway. An Unbiased Oncology Compound Screen to Identify Novel Combination Strate-

gies. Molecular Cancer Therapeutics, 15(6):1155–1162, jun 2016. doi: 10.1158/1535-7163.

MCT-15-0843.

A. C. Palmer and P. K. Sorger. Combination Cancer Therapy Can Confer Benefit via Patient-to-

Patient Variability without Drug Additivity or Synergy Theory Combination Cancer Therapy

Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell,

171, 2017. doi: 10.1016/j.cell.2017.11.009.

T. J. Parmenter, M. Kleinschmidt, K. M. Kinross, S. T. Bond, J. Li, M. R. Kaadige, A. Rao, K. E.

Sheppard, W. Hugo, G. M. Pupo, R. B. Pearson, S. L. McGee, G. V. Long, R. A. Scolyer,

H. Rizos, R. S. Lo, C. Cullinane, D. E. Ayer, A. Ribas, R. W. Johnstone, R. J. Hicks, and

G. A. McArthur. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a

network of transcriptional regulators of glycolysis. Cancer discovery, 4(4):423–33, apr 2014.

doi: 10.1158/2159-8290.CD-13-0440.

B. P. B. Paudel, L. A. Harris, K. N. Hardeman, A. A. Abugable, C. E. Hayford, D. R. Tyson,

120



and V. Quaranta. A Nonquiescent ”Idling” Population State in Drug-Treated, BRAF-Mutated

Melanoma. Biophysical Journal, 114(6):1499–1511, mar 2018.

K. Preuer, R. P. I. Lewis, S. Hochreiter, A. Bender, K. C. Bulusu, and G. Klambauer. DeepSynergy:

predicting anti-cancer drug synergy with Deep Learning. Bioinformatics, 34(9):1538–1546, may

2018. doi: 10.1093/bioinformatics/btx806.

D. Russ and R. Kishony. Additivity of inhibitory effects in multidrug combinations. NATURE

MICROBIOLOGY, 3(12):1339–1345, dec 2018. doi: 10.1038/s41564-018-0252-1.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in Python using PyMC3.

PeerJ Computer Science, 2:e55, apr 2016. doi: 10.7717/peerj-cs.55.

M. Santolini and A.-L. Barabási. Predicting perturbation patterns from the topology of biological

networks. Proceedings of the National Academy of Sciences of the United States of America,

115(27):E6375–E6383, jul 2018. doi: 10.1073/pnas.1720589115.
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GLOSSARY

• Cooperativity: Also known as the Hill slope, this is a measure of the steepness of the dose-

response curve (Figure 1.2).

• Curse of dimensionality: The name given to a large class of problems arising from the

combinatorial expansion of considering higher dimensions.

• CyTOF: Mass Cytometry uses heavy-metal tagged antibodies to quantify single-cell expres-

sion of up to 50 target proteins.

• Dose-response curve: To assay drug effect, drugs are commonly titrated across several

concentrations and the resulting effect measured. Commonly the dose-response is sigmoidal

well fit by a Hill equation.

• Dose-response surface: The measured effect of a combination of two drugs over a range

of different concentrations. Commonly plotted as either a heatmap (e.g. Figure 1.6) or 3D

surface plot (Figure 2.1) where the X-Y axes are drug concentration and the color or Z-axis

is the measured effect, respectively.

• Efficacy The degree to which a drug can produce a beneficial effect. Classically quantified

as the maximal effect (Emax) (Figure 1.2).

• Higher-order combinations: Combinations of three or more drugs.

• Isobols: Contours of equal effect. For all pairs of drug 1 and drug 2 concentrations along an

isobol, the resulting effect (e.g. percent of viable cells) is the same.

• Mutually Exclusive: Two inhibitors are mutually exclusive if binding to one precludes the

binding of the other.

• Parametric equations: Equations with parameters which are fit to the data. An example is

the Hill equation (Figure 1.2) which varies E0, Em, h, and C to fit dose-response data. An
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example of a non-parametric equation is the Bliss equation (U12=U1*U2) as there are no

values to fit.

• Percent Affect vs. Percent Effect: For historical reasons, these are often used interchange-

ably, but they are fundamentally different. Affect measures whether there is a discrete change

in phenotype (live vs. dead). The percent of affected cells, eggs, etc. can never exceed 100%.

Percent effect is the relative change compared to control and is commonly measured in phe-

notypic assays. In contrast to percent affect, it can exceed 100% (Figure 1.2).

• Potency: The concentration of drug required to achieve a particular effect. Commonly

quantified by the EC50. the drug concentration is required to achieve a half-maximal effect

(Figure 1.2).

• Sham Experiment: A thought experiment in which a combination of drugs is tested for

synergy; however, the combination is actually two of the same drug. The sham principle

states no combination should be synergistic with itself. Classically, DEP frameworks are

sham compliant while MSP frameworks are not.

• Synergistic Coopertivity: The magnitude of change in a drug’s Hill slope, due to the pres-

ence of another drug (Figure 2.1).

• Synergistic Efficacy: The percent change in the maximal efficacy of the combination com-

pared to the most efficacious single agent (Figure 2.1).

• Synergistic Potency: The magnitude of the change in the drug potency, due to the presence

of another drug (Figure 2.1).
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APPENDIX A: Methods for studies in Chapter 2.

Note the analyses conducted were not necessarily the same as those used in the original paper.

Indeed the limitations of the current frameworks forced customized analysis for each publication

highlighting the need for a consensus framework. Here I describe fitting protocol for drug met-

rics where the metric of drug effect decreases as dose increases (E0 > E3) (e.g., anti-proliferative

drugs); however, the framework is equally valid if increasing the drug corresponds to increases the

effect (E0 < E3) (e.g., percent effect)

A.1 Fitting 2D Hill equation

The following packages were used for fitting, data analysis, or visualization: GNU parallel

(Tange, 2011), SciPy (Jones et al., 2001), Numpy (Oliphant, 2006), Pandas (McKinney, 2010),

Matplotlib (Hunter, 2007), uncertainties (Lebigot, 2011). Fitting was done using a custom library

written in Python2.

For the fitting the 2D Hill equation in this study, I adopted a Monte Carlo sampling approach

to calculate the fit parameter uncertainty. This is significantly faster than my previous method

(PSO+MCMC) (Appendix B). while maintaining reasonable calculations of the parameter uncer-

tainties accounting for the multi-collinearities described above. The Monte Carlo algorithm for

fitting the 2D Hill equation is as follows. First, the 4-parameter 1D Hill equation (eq. 2.3) is fit

to the dose-response of each drug in isolation. The fit uses the Trust Region Reflective (TRF) al-

gorithm implemented in the curve f it() module of the scipy.optimization package. h and C were

unconstrained while Emax and E0 are constrained for each dataset as annotated in the methods

section Data acquisition, preparation, and analysis. The initial 1D Hill fits provide estimates for

(E0,E1,E2,C1,C2,h1,h2). Next the 2D Hill equation (eq. 2.8) is fit using the TRF algorithm with

initial values based on the 1D Hill equation fits and with bounds based on the parameter uncertainty

calculated for the 1D Hill fits. The initial values for parameters unique to the 2D Hill equation,

E3,α21,α12,γ12,γ21 are (min(E1,E2),1,1,1,1). For all combinations r1 = r2 = 100. The bounds
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for log(α21), log(α12) are set to [-4,4]. From this initial fit, 100 Monte Carlo samples are used to

calculate the parameter uncertainty as described by Motulsky and Christopoulos (Motulsky and

Christopoulos, 2003), (Chapter 17: Generating confidence intervals by Monte Carlo, pg. 104).

Specifically, noise, with a distribution N(0,σ ), where σ is equal to the root mean square (RMS)

of the best fit, is added to best-fit values of the 2D Hill equation for all drug doses. The data plus

noise is then fit again initializing the optimization from the best fit parameters of the original data.

This is done 100 times. From this ensemble of fits, the 95% confidence interval of each parameter

can be calculated. This Monte Carlo approach results in asymmetric confidence intervals which

better captures the non-Gaussian distribution of uncertainty for many fits (e.g. the distribution of

h is log-normal) as well as being robust to the co-linear parameters in the 2D Hill equation. The

asymmetric confidence interval is particularly salient when the dose-range is insufficient to ob-

serve the lower plateau of the dose-response. Only combinations for which R2 > 0.7 and the fitted

EC50s of both drugs was less than maximum tested dose for each (C1 < max(d1),C2 < max(d2))

were included for subsequent analysis.

A.2 Data acquisition, preparation, and analysis

A.2.1 ONeil et al. anti-cancer screen

The anti-cancer drug combination data was downloaded from the supplemental materials of

(O’Neil et al., 2016). Single agent and combination datasets were merged. Drug effect was

the mean normalized percent viability (X/X0 column) calculated as detailed in (O’Neil et al.,

2016). The minimum and maximum bounds for [E0,E1,E2,E3] during 2D Hill equation fits were

[.99,0.,0.,0.,0.] and [1.01,2.5,2.5,2.5] respectively.

A.2.2 Mott et al. anti-malarial screen

The anti-malarial drug combination data was downloaded from https://tripod.nih.gov/

matrix-client/ from the Malaria Matrix project. Blocks downloaded for analysis were:

[1601,1602,1603,1701,1702,1703,1761,1764]. Only blocks with a mqcConfidence of greater than
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0.9 were included. The drug effect was calculated as described in (Mott et al., 2015). Effects

less than -20% and greater than 120% were removed. The minimum and maximum bounds for

[E0,E1,E2,E3] during 2D Hill equation fits were [90.,0.,0.,0.] and [110,200,200,200] respectively.

A.3 Calculation of other synergy metrics

A.3.1 Bliss, Loewe, and HSA

Bliss, Loewe, and HSA depend on the concentration of drugs so a combination can be syn-

ergistic at one dose, but antagonistic at another dose. Several methods have been proposed for

extracting a single synergy metric per combination from these frameworks to enable comparisons

between combinations (Ianevski et al., 2017; O’Neil et al., 2016; Flobak et al., 2017; He et al.,

2018). For our analysis, I calculate the synergy score at the combination of each drug’s EC50 (as

done in Figures 2.6,2.8,2.9, and 2.14) or at the maximum tested concentration of each drug (Figure

2.11 and 2.10). The EC50 of each drug was calculated from the fits to the 2D Hill equation ((2.8))

which I have observed to be more robust to noise when estimating the single drug pharmacologic

profile. Assuming the notation for the 1D Hill equation and inverse Hill equation—which calculate

effect (E given a dose (d) and a dose given an effect, respectively—are given by

Hx(d) = Ex +
(E0−Ex)

1+
(

dx
Cx

)h

x

(A.1)

Hxinv(E) =Cx ∗
(
(E0−Ex)

(E−Ex)
−1
) 1

hx
(A.2)

where Ex < E0, then equations for Bliss, Loewe,and HSA at the EC50 are:

Bliss = H1(C1)∗H2(C2) (A.3)

Loewe =
C1

H1inv(Ed(C1,C2))
+

C2
H2inv(Ed(C1,C2))

(A.4)

HSA = E(C1,C2)−min(H1(C1),H2(C2)) (A.5)
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where Ed(C1,C2) is the measured effect of combining C1 of d1 and C2 of d2. And equations for

Bliss at the max of each drug is:

Bliss = H1(max(d1))∗H2(max(d2) (A.6)

These equations assume the metric of drug effect decreases as the dose increases. Because many

single agents did not reach 0% maximum efficacy, the EC50s (C1,C2) were not necessarily 50%

(Figure 2.12). If E(C1,C2) < E1,E2 then Loewe was undefined. I apply a − log10 transformation

the scale Loewe to match the ranges Bliss and HSA are synergistic; therefore, f− log10(Loewe)> 0

the combination is synergistic and if − log10(Loewe) < 0 the combination is antagonistic. Addi-

tionally, for Figure 2.6 and Figure 2.14 I had to calculate the Hill-dependent bias in Loewe. For

Figure 2.6, I subtracted the Hill slope bias to only study the impact of conflating synergistic po-

tency and efficacy. To calculate the bias, Loewe was calculated as in equation (A.4) where Hxinv

was was evaluated at the MuSyC-predicted Ed(d1,d2) for the combination retaining all the sin-

gle drug parameters (E0,E1,E2,C1,C2,h1,h2) and assuming (α12 = α21 = 0). This resulted in an

estimate of the bias purely due to the Hill slope in the Loewe calculation.

A.3.2 ZIP and BRAID

Both ZIP and BRAID were calculated for each combination using the R packages avail-

able for each method: (ZIP’s R code is in the supplemental file 1 of the manuscript (Ya-

dav et al., 2015) and BRAID’s package is available from:https://cran.r-project.org/web/packages/

braidReports/braidReports.pdf).

A.3.3 Effective Dose Model (EDM)

To fit Zimmer et al.’s Effective Dose Model I used the scipy.optimization.curve fit module in

Python 2.7. Specifically, the Effective Dose Model, equation 2 in (Zimmer et al., 2016) (eq. (2.20)

in Supplement), contains parameters (C1, C2, a12, a21, h1, h2) where the a parameters are the

synergy values. In the model, there are no parameters for efficacy because it is assumed the drug
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effect ranges between zero and one. When this is not true, the Effective Dose Model results in poor

fits to the data (Figure 2.12).

A.3.4 Schindler’s Hill PDE model

The Hill PDE model has no parameters to fit as the dose-response surface is derived the single

dose-response curves. In fact, Schindler does not propose a method to estimate synergy from

experimental data, but postulates some implementation of perturbation theory could be used to fit

experimental data (Schindler, 2017). Therefore, to calculate the synergy of this model, I defined

the sum of residuals between the null surface and the experimental data to the metric of synergy.

A.3.5 Combination Index (CI)

Following the CI fitting algorithm in the CompuSyn software, I fit the median-effect equation,

a 2-parameter, log-linearized form of the Hill equation obtained by assuming E0 = 1 and E1 = 0

(Chou et al., 1983). C and h were then obtained from the slope and y-intercept of the log-linearized

data using the scipy.stats.linregress module in Python 2.7. While CI assumes the drug effect is

scaled between (0,1), when this is not the case, a poor fit results (Figure 2.12A). All data points with

percent viability greater than 1 were excluded from the CI fit because the median-effect equation

becomes complex in those cases. For some drugs, this left too few points to fit a line, such that

CI was undefined. In other cases, the fitted value for h was less than zero, a physically unrealistic

result; therefore, those combinations were also considered undefined. After that, CI was calculated

as

CI(d1,d2) =
d1

f1(E(d1,d2))
+

d2

f2(E(d1,d2))
(A.7)

where fi(E) is obtained by solving the Hill equation for d, and is given by

fi(E) =
(

E
(1−E)

) 1
hi

Ci (A.8)
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As with Loewe, I apply a − log10 transformation to scale CI synergy such that − log10(CI)> 0 the

combination is synergistic and if − log10(CI)< 0 the combination is antagonistic.
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APPENDIX B: Methods for studies in Chapter 3.

B.1 Combination experiments protocol

Experiments were conducted in the Vanderbilt High Throughput Screening Facility. Cells were

seeded at approximately 300 cells per well in 384-well plates and allowed to adhere overnight. A

preliminary image of each plate was taken approximately 8 hours after seeding to verify sufficient

numbers of cells for each experiment. Images were taken on either the ImageXpress Micro XL

(Molecular Devices) or CellaVista. The matrix of drug concentrations was prepared using a row-

wise and column-wise serial 2X or 4X dilution in 384 well plates using a Bravo Liquid Handling

System (Agilent) or manually in 96-well plates. See Table S2 for dose ranges tested. After allowing

to adhere overnight, medium containing drugs and 5 nM Sytox Green (to detect dead cells) was

added (time = 0) and replaced after 72 hours. Images were obtained at intervals ranging from every

4 to 8 h, depending on the experiment, for >120 hours. Cell counts were determined using custom-

image segmentation software developed in Python using scikit-image package (van der Walt et al.,

2014) and run in parallel using RabbitMQ/Celery (http://www.celeryproject.org/).

B.2 RNA-seq of melanoma cell lines

Total RNA was isolated from untreated SKMEL5 single-cell derived sublines, each in tripli-

cate, using Trizol isolation method (Invitrogen) according to the manufacturer’s instructions. RNA

samples were submitted to Vanderbilt VANTAGE Core services for quality check, where mRNA

enrichment and cDNA library preparation were done with Illumina Tru-Seq stranded mRNA sam-

ple prep kit. Sequencing was done at Paired-End 75 bp on the Illumina HiSeq 3000. Reads were

aligned to the GRCh38 human reference genome using HISAT2 (Kim et al., 2015) and gene counts

were obtained using featureCounts (Liao et al., 2014). All downstream analyses were performed in

R (https://www.r-project.org) using the Bioconductor framework (https://www.bioconductor.org)
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B.3 RT-qPCR quantification of NOX5 expression

Total RNA was extracted using Trizol isolation method (Invitrogen) according to the manu-

facturer’s instructions. cDNA synthesis was performed with QuantiTect Reverse Transcription Kit

(Cat# 205311) from Qiagen. RT-qPCR was performed using the IQTM SYBR Green Supermix

from BioRad (Cat# 1708880). Amplifications were performed in BioRad CFX96 TouchTM Real-

Time PCR Detection System. All experiments were done at least in 3+ technical replicates. Log2

of the transcript expressions were normalized to SKMEL5 subline SC01. HPRT or 36B4 were

used as housekeeping gene in all the experiments. Primers used in RT-qPCR are in Table A.1.

NOX5 Forward Primer GGCTCAAGTCCTACCACTGGA
NOX5 Reverse Primer GAACCGTGTACCCAGCCAAT
HPRT Forward Primer TGCTCGAGATGTGATGAAGGAG
HPRT Reverse Primer TGATGTAATCCAGCAGGTCAGC
36B4 Forward Primer CATGTTGCTGGCCAATAAGG
36B4 Reverse Primer TGGTGATACCTAAAGCCTGGAA

PGC1a Forward Primer TGCCCTGGATTGTTGACATGA
PGC1a Reverse Primer TTTGTCAGGCTGGGGGTAGG

Table A.1: Primers for qRT-PCR

B.4 Fitting Dose-response Surfaces

NOTE:

The algorithm used for fitting the dose response surfaces in Chapter 3, has been replaced with the

algorithm described in Appendix A which is faster than the algorithm described below and more

consistent in quantifying uncertainty.

I developed a fitting algorithm, implemented in Python, to fit the combinations experiments

to the 2D Hill equation. The fitting is done in three steps, first estimates of the single dose-

response parameters (C1,C2,h1,h2,E0,E1,E2) are extracted from fits to the single dose-response
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curves using the Pythonic implementation of a Levenburg-Marquart (LM) least squares optimiza-

tion (scipy.optimize.curve f it). The fit uncertainty (σ ) is then the square root of the covariance

matrix which is approximated as the inverse of the Hessian matrix (equal to JTJ in LM where J is

the Jacobian) at the solution. In the second step, a Particle Swarm Optimizer (10,000 particles, 100

iterations) fits the full 2D Hill equation using the single parameter fits and uncertainties as initial

values and bounds (±2σ ). In the last step, the PSO optimized values are used to construct priors

for a Metropolis-Hastings Monte-Carlo Markov Chain (MCMC) Optimization (Metropolis Hast-

ings 10,000 iterations). Convergence is tested by checking all parameters’ Geweke Z-score. If the

Z-score range is (-2,2) over the sampling time frame, the optimization is considered to converge

(Figure A.2). I found it necessary to use both the PSO and MCMC in order to fit a wide range of

dose-response surfaces (Figure A.1).

I found it necessary to use a Metropolis Hastings Monte Carlo (MCMC) seeded with a particle

swarm optimization (PSO) to fit the 2D Hill equation. This was prompted by the inconsistent

performance of standard non-linear least squares (NLLS) regression. In particular, I observed

instances of calculated uncertainties in NLLS which were several orders of magnitude greater than

the parameter value. This, I have discovered, is because the multi-collinearity between the Hill

slope and the EC50 (C) inherent in the structure of the Hill equation—collinearities which are

amplified when extending the Hill equation to 2D. The correlation between variable h and C is

easiest to observe in a linearized 1D Hill equation (eq. B.9).

log(
E0−Em

E−Em
−1) = h∗ log(d)−h∗ log(C) (B.9)

In eq. B.9, the intercept of the line (h∗ log(C)) depends on the slope of the line (h). This corre-

lation is problematic when trying to estimate the parameter uncertainty (σ ) from NLLS regression

because σ is estimated as the square root of the inverse Hessian, approximated to be JT J (where J
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is the Jacobian at the solution). J of the 4 parameter Hill equation is

J =

[
∂

∂E0

∂

∂Em

∂

∂h
∂

∂C

]
(B.10)

=

[
1− 1

d
C

h
+1

1
d
C

h
+1
− (E0−Em)( d

C)
h
log( d

C)(
( d

C)
h
+1
)2 −h(Em−E0)( d

C)
h

C
(
( d

C)
h
+1
)2

]
(B.11)

When the Hill slope is large (e.g., h>5), the second two terms of the J cause the inverse of the

Hessian matrix to be undefined. This problem is compounded in the 2D Hill equation where,

in addition to h and C, the parameters α and γ are co-linear. However, this does not affect the

accuracy of the fitted parameter values from the NLLS regression—only the parameter uncertainty

(Motulsky and Christopoulos, 2003).

To test the sensitivity of our fitting algorithm, I generated in silico data for 125 different dose-

response surfaces at different data densities. The density of data tested were square matrices of

rank 5, 7, 10, 15, and 25. At each density 25 different dose-response surfaces were sampled across

a 5X5 grid of log(α) and β values ranging from [-2,2] and from [-0.5,0.5], respectively. The

parameters for E0, the single drug hill slope, EC50, and maximal effects were held constant at

(0.3, 1, 10e-5, and 0.0), respectively. Random noise equal to the average uncertainty in the DIP

Rate fits from the NSCLC screen was added to the data (0.001). In all conditions I observed a

PSO particle count of 10,000 converged to a minimum in <60 iterations (Figure A.1A). However,

this minimum was not the optimal solution. The addition of an MCMC walk further improved fits

(Figure A.1B) (Pymc3 package). The MCMC walk calculates the posterior distribution for each

parameter from which each parameter’s value (mean of trace) and uncertainty (standard deviation

of trace) is calculated. Uncertainty in (E0, E1, E2, and E3) was propagated when calculating β

using the equation:

σβ =

√√√√(( E0−E3

(E0−Ex)2 σEx

)2

+

(
−σE3

E0−Ex

)2( E3−Ex

(E0−Ex)2 σE0

)2
)2

(B.12)

Where Ex and Ex are min(E1,E2) and respectively. All other uncertainty propagations were
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handled with python package uncertainties (Lebigot, 2011). By calculating the uncertainty in the

synergy parameters from the posterior distributions, the significance of synergy can be assessed

in an unbiased way. Multiple factors contribute to increasing uncertainty in the fitted parameters.

Dose-selection, an important consideration in all drug response profiling, changes the certainty of

the fits (Figure A.2). While I are unable to observe saturating effects implicit in the model for some

of our drug combinations – due to limited solubility or potency of the drug – by keeping careful

account of the uncertainty in our synergy calculations I can still interpret the synergy of non-

optimal dose-regimes. To demonstrate this, I generated the same 25 dose-response surfaces with

varying log(α) and β values ranging from [-2,2] and from [-0.5,0.5] respectively but at different

coverage of the dose-response curve. The uncertainty in the synergy parameters increases for

decreased dose range (Figure A.2A). It is important to note that in general the uncertainty is a

function of many different aspects other than data density including the hill slope of the single

curves (high hill slopes can result in higher uncertainty in log(α)), noise of experimental data,

and quality of priors resulting from the single-drug fits. I posit the rigorous approach taken here

accounts for all these sources resulting in a true estimate of confidence in a particular synergy

value.

To prevent over fitting the data, I have defined six different model tiers which have increasing

degrees of freedom (Table A.2). To select the correct model tier, I penalize models with higher

degrees of freedom by selecting the model based on minimizing the deviance information criterion

(DIC) (Berg et al., 2004). Fits for each nest are used to inform priors for subsequent nests. Only

drug combinations which converged to the full model (tier 5 with fits for all 12 parameters)

were used for subsequent analysis. The MCMC optimization additionally allows for quantifi-

cation of parameter confidence given the data. The following packages were used for fitting,

data analysis, or visualization: GNU parallel (Tange, 2011), SciPy (Jones et al., 2001), Numpy

(Oliphant, 2006), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007). Pymc3 (Salvatier et al.,

2016).
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Figure A.1: Bayesian synergy parameter estimation to fit dose-surfaces accounts for density of
data-sampling. A) A particle swarm optimizer (PSO) was tested for convergence across several
different data densities ranging from 5X5 to 25X25 grids. Within each density range, 25 different
dose-response surfaces were fit. At all tested densities for all conditions, a minimum in the log-
likelihood was observed after approximately 60 iterations. B) Comparison of the error in final fits
of the parameters between three methods PSO alone followed by a non-linear least squares (NLLS)
optimizer (Levenberg-Marquardt), Markov Chain Monte Carlo (MCMC) posterior estimation, and
PSO seeded MCMC optimization. Y-axis is the L2-norm of the fitted parameters to the true param-
eters. Across all data densities, PSO seeded MCMC had the highest fit accuracy across different
dose-response surface topologies.
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Figure A.2: Bayesian synergy parameter estimation to fit dose-surfaces accounts for dose-response
surface coverage. A) Synergy parameter uncertainty as a function of dose coverage. σ is the stan-
dard deviation of the MCMC trace. As the dose coverage decreases, there is a commensurate
increase in the uncertainty of in the fit across different dose-response surfaces. B) Trace-plots and
posterior distributions of log(α12), log(α21), and E3 for a surface where max dose is equal to the
EC50 (bottom). Red line demarcates the true value. Middle plot is the z-score of 20 segments from
the overall sample ordered by trace number. Parameters which have absolute z-scores >2 at any
point in the trace are considered not to have converged. C) Trace-plots and posterior distributions
of log(α12), log(α21), and E3 for a surface where max dose is 10,000 times the EC50 fully cap-
turing the drug effect saturation. Posterior distributions are narrower than for the surface with less
coverage corresponding to an increase in uncertainty. However, other factors than dose-selection
can contribute to fit uncertainty including experimental noise, density of data, steepness of single
drug curves (i.e., the hill coefficient), and quality of priors in the MCMC fit
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Table A.2: Description of nested model tiers used in MCMC fit.

Model
Tier

Fit Parameters Approximations

#5 α12, α21, E3, E1, E2, C1,
C2, h1, h2, E0, r1, r2 1. Rate of transition (r1,r2) >> 1.

#4 α21, E3, E1, E2, C1, C2,
h1, h2, E0 1. System obeys detail balance.

#3 α21, E3, E1, E2, C1, C2,
h1, h2 1. All conditions tier 4

2. E0 is the minimally observed effect.

#2 α21, E3, E1, E2, C1, C2

1. All conditions tiers 3,4

2. h1,h2 are from single drug fits or 1 if sin-
gle fits failed to converge.

#1 α21, E3, E1, E2

1. All conditions tiers 2-4

2. C1,C2 are from single drug fits or the me-
dian concentration if single fits failed to
converge.

#0 α21, E3

1. All conditions tiers 1-4

2. E1, E2 are assumed to be the maximally
observed effect at maximum concentra-
tion of d1 and d2 respectively.
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B.5 Calculating the DIP Rate

Traditionally, the efficacy of an anti-proliferative compound is measured as the percent of vi-

able cells (relative to control) after a treatment interval (Fallahi-Sichani et al., 2013); however,

it has been recently shown this metric is subject to temporal biases (Hafner et al., 2016; Harris

et al., 2016). To address these biases, I previously developed an unbiased metric of drug effect

termed the drug-induced proliferation (DIP) rate (Harris et al., 2016). The DIP rate is defined

as the steady state proliferation rate after drug equilibration. A positive DIP rate indicates an

exponentially growing population, while a negative DIP rate indicates a regressing one. A rate

of zero indicates a cytostatic effect, which may result from cells entering a non-dividing state or

from balanced death and division (Paudel et al., 2018) I used the available findDIP R package

for calculating DIP rates from growth curves which automatically selects the interval after drug

equilibration (htt ps : //github.com/QuLab−VU/DIPrateNatMeth2016.git).

B.6 Calculating Loewe, CI, Bliss, and HSA

To compare our method to the prevailing methods for computing synergy, I calculated Loewe,

CI, Bliss for the data from the osimertinib screen in Figure 2 and melanoma BRAF/MEK data

of Figure 3. Loewe is agnostic to effect metric, and so I applied it directly to the DIP rate. To

calculate CI and Bliss, I imputed the percent viability at 72 hours from the DIP rate for each

condition. Percent viability is defined as in equation:

%− viable =
Cell Count(t = 72hr)Treated

Cell Count(t = 72hr)Control
(B.13)

Estimates of percent viability are sensitive to even small differences between initial cell counts

in the control and treated wells due to exponential amplification (Harris et al., 2016). To correct for

this the bias, a ’matching’ control cell count at 72-hours for each treated condition was calculated

using equation
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Cell Count(t = 72hr)Control =Cell Count(t = 0hr)Treated ∗2Control Growth Rate∗72hr (B.14)

where Control Growth Rate is the median of the fitted growth rates for all control wells. Be-

cause the automated microscope did not image all the conditions at exactly zero or seventy two

hours, I extrapolate and interpolate respectively the cell count at these times from the measured

time series.

The Bliss metric only requires marginal data. For each experiment, individually, I calculated a

Bliss score as

Bliss = PV1(d1)∗PV2(d2)−PV1,2(d1,d2) (B.15)

where PVi(di) is the %-viability measured for treatment with drug i alone at dose di, and

Pv1,2(d1,d2) is the %-viability measured for the combination treatment. The first term corresponds

to the expected viability, assuming independence, while the second term is the measured viability.

By this definition, Bliss>0 is synergistic, and Bliss<0 is antagonistic.

Loewe and CI require parameterization of a 1D Hill equation for each drug alone.

E = Em +
E0−Em( d
C)
)h

+1
(B.16)

CI, as per standard calculations (Chou and Talalay, 1984), further requires that E0 = 1 and

Em = 0 and is fit to a linearized, log-transformed version of the hill equation (Chou, 2010) which

has been previously critiqued for artificial compression of uncertainty in experimental data leading

to poor model fits compared with nonlinear regression (Ashton, 2015). CI dose-response curves

were fit using the scipy.stats.linregress module. All data points with percent viability greater than 1

were excluded from the CI fit, as log(1−pervia
pervia ) becomes complex. For some drugs, this left too few

points to fit a line, such that CI was undefined for combinations with those drugs. In other drugs,
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the fit hill coefficient was negative, and likewise all CI values were undefined for those drugs. For

Loewe, I used the single-drug parameters fit by MuSyC.

From these parameterized hill equations, Loewe and CI were calculated using

S =−log10

(
d1

D1
+

d2

D2

)
(B.17)

where Di is the amount of drug i which, alone, achieves an effect equal to the combination

effect, and is calculated from the Hill equation fit for that drug. I take the negative log to transform

the synergy values to match Bliss, such that S > 0 is synergistic, while S < 0 is antagonistic.

Because Loewe allows the two drugs to have different Emax, Loewe synergy cannot be calculated

for measurements which exceed the weaker drug’s Emax because no amount of the weaker drug

alone would be sufficient to achieve that effect; therefore, those conditions are undefined.

For calculating HSA, I calculate the difference between the observed effect at each combina-

tion concentration and the most efficacious single agent effect at those doses. This difference is

integrated across the surface to yield a single value for a particular combination.

B.7 Fitting ZIP, BRAID, Schindler’s Hill PDE, and Effective Dose Models

Both ZIP and BRAID were calculated using the R packages available for each method

(ZIP’s R code is in the supplemental file 1 of the manuscript (Yadav et al., 2015) and BRAID’s

package is available from:https://cran.r-project.org/web/packages/braidReports/braidReports.pdf).

Schindler’s Hill PDE model contains no fitting parameters as the dose-response surface is derived

purely from the marginal data. In fact, Schindler does not propose a method to estimate synergy

from experimental data, but postulates some implementation of perturbation theory could be used

to fit experimental data (Schindler, 2017). Therefore, to calculate the synergy of this model, I

defined the sum of residuals between the null surface and the experimental data to the metric of

synergy. Finally, to fit Zimmer et al.’s Effective Dose Model I used the curve fit() module of the

scipy.optimization package in python. Specifically, the Effective Dose Model, equation 2 in (Zim-
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mer et al., 2016) contains parameters for C1,C2, a12, a21, h1, and h2 where the C parameters are

the EC50 of the single agents, the parameters are the synergy values corresponding to a change in

potency, and the h parameters are the hill slopes of the single agents. In the model, there are no

parameters for efficacy because it is assumed the drug effect ranges between zero and one. When

this is not true, the Effective Dose Model results in poor fits to the data (Figure 2.12) similar to CI

(Figures 2.12,3.15C).

B.8 Identifying DEGs for GO Enrichment Analysis

Differentially Expressed Genes (DEGs) were selected by ANOVA on baseline gene expression

data on three clones based on a statistical cutoff of Likelihood Ratio Test (LRT) (p-values < 0.001).

Functional enrichment analyses, including GO Term Enrichment and Pathway Enrichment Anal-

ysis were done using CRAN Package “Enrichr” (https://cran.r-project.org/web/packages/enrichR/

index.html), based on a web-based tool for analyzing gene sets and enrichment of common anno-

tated biological functions (Kuleshov et al., 2016). The enriched GO terms and enriched KEGG

pathways were restricted to those with p-values corrected for multiple testing less than 0.001. The

top GO Biological Processes included generation of precursor metabolites and energy, electron

transport chain, inorganic cation transmembrane transport, and metabolic process. The top GO

Molecular Function terms included inorganic cation transmembrane transporter activity, cofactor

binding, NAD binding, and ATPase activity. The top GO Cellular Component term was the mi-

tochondria membrane. Top KEGG pathways enriched in the DEGs included metabolic pathways,

oxidative phosphorylation, carbon metabolism and TCA cycle (Figure 3.11). Overall, these en-

riched GO terms and pathways point toward differences in the regulators of metabolic function in

the three subclones. This is consistent with previous reports that suggest altered metabolism is im-

plicated in drug sensitivity and melanoma resistance to BRAFi (Parmenter et al., 2014; Hardeman

et al., 2017).

Correlation of BRAFi insensitivity was computed for each identified DEG according to DIP

Rate at 8µM PLX-4720 for a 10 cell line panel (Table 3.2) Pair-wise comparisons of DEGs was
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performed on genes (after low count genes were removed) using DESeq2 pipeline (Love et al.,

2014).

B.9 Data Availability

All raw cell counts, calculated DIP rates, DEGs between subclones, and expression data are

available in the github repo: https://github.com/QuLab-VU/MuSyC Cell.git in the folder Data.

Additionally, the repo contains all the code required to reproduce all the figures and supplemental

figures from the data and is found in the Code Paper Figures folder. The subfolders Fig2 and Fig3

contain html folders with interactive plots of all the screened combinations. Open the .html files us-

ing a browser. The raw RNAseq is available from GEO at the accession number GSE122041. The

software for interactive manipulation of the different parameters to study their contribution to the

contours of the dose-response surface is also available in the github repo in the folder MuSyC App.

This folder contains both the matlab source code and a compiled application for the different oper-

ating systems. A copy of the github repo at the time of publication is also available from Mendeley

Data via the following http://dx.doi.org/10.17632/n8bp8db5ff.

B.10 Functional Genomics Screen

Five siRNA plates from Dharmacon Whole Genome siRNA library (pooled) were used. Plates

are 16,17,18,19,22 which comprise the GPCR (16), Protein Kinase (17,18), Phosphatase (19) and

Ion Channels (22) drug classes (Figure 3.21). Each siRNA was tested in replicate at 4 unique

doses of PLX4720. Each siRNA is pre-stamped into 384-well plate at 500nM concentration. The

final concentration of siRNA on cells was 25nM. Concentration of siRNA and RNAiMax during

incubation was 0.0125uL lipid/uL and 175nM siRNA. Catalog numbers for siCON (#D-001810-

10-05) and siTOX (#D-001500-01-05).

siRNA was added when plating the cells. First 5uL siRNA+lipid in optimem was added to

the bottom of plate then 30uL cell mixture was added after 20 minutes of siRNA+lipid incubation

time. 600 SKMEL5 cells were plated per well. 24 hours later the drug was added (5uL of 8X
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concentration) for a total volume of 40uL. Plates were imaged every 8 hours continously for 96

hours from intitial seeding. DIP rates were calculated according to B.5.
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