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CHAPTER I

INTRODUCTION

I.1 Emerging Trends

Cyber Physical Systems (CPS) are found in many domains such as electric grids,

autonomous vehicles, transportation networks and often manifest as a composition of

multi-domain subsystems comprising electric, networking, thermodynamics, physical

and control systems. These CPS involve different types of distributed applications

that support building automation and control, smart power grid, health-care, and in-

dustrial processes and which demand stringent quality of service (QoS) requirements

from their hosting platforms. Assuring that these QoS requirements are met and

that the systems are safe and trustworthy is a complex problem and often involves

large-scale simulations that integrate tools from multiple domains in different config-

urations. Thus, co-simulation is an attractive option for interlinking such multiple

simulators to simulate higher-level, complex system behaviors.

Cloud computing offers an attractive platform for running such QoS-sensitive

applications as is evident from the continual migration of applications, such as map-

reduce, distributed co-simulations, and distributed machine learning to the cloud.

Despite this promise, many challenges involving operationalization issues, such as

performance variability, system monitoring and resource orchestration and deploy-

ment continue to persist for running distributed applications in cloud computing en-

vironments. Furthermore, as the variety and number of such applications increases,

developers are faced with a lack of accessibility, management and validation solutions

that ease application development and provisioning, and ensure the correctness of

the deployed applications. Finally, the cost budget for executing these applications

in the cloud dictates the broader usage of these systems. This doctoral dissertation is
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concerned with addressing these challenges. In the following, we outline the key chal-

lenges associated with validating and running distributed applications in the cloud,

and meeting their QoS needs.

I.2 Research Challenges and Solution Requirements

We now describe the different dimensions of challenges we address in this doctoral

research and solution requirements.

I.2.1 Application-driven Challenges

• Straggler Mitigation: Distributed applications that are made up of independent

communicating tasks and are deployed on distributed resources can often face

the straggler problem. For example, co-simulations are a type of distributed ap-

plications comprising a group of simulators which coordinate and perform com-

putations for a larger overall simulation activity. In time-stepped distributed co-

simulations, all the participating entities wait on each other before progressing

to the next computation step. This is characterized as the bulk-synchronous-

parallel (BSP) execution paradigm [148]. In the BSP computation model, if

some of the participants have a slower execution speed compared to the rest of

the participants due to more utilized resources on which the tasks are deployed

or more complex computations or both, the progress of the simulation as a

whole is dictated by the slowest progressing participant. In these scenarios, we

need to capture this execution behavior either apriori or during runtime so as

to mitigate the slow down caused due to such straggler participants. However,

doing so is difficult as the participating entities are not necessarily executing on

a single host server, but rather are distributed across a set of machines. Sec-

ondly, there is a need for monitoring and capturing the performance traces for

such large-scale distributed applications, which is a non-trivial task.
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I.2.2 Cloud-imposed Challenges

• Multi-tenant Cloud Environment : In a cloud computing environment, resources

are shared among various applications hosted by different providers. Thus, is-

sues such as application interference [57] can affect the application performance.

Host system overbooking and overloads can also affect the execution makespan

of the applications thereby degrading the overall application performance. This

unpredictability and variability in performance of distributed applications can

result in violation of the application’s QoS requirements.

• Deployment Concerns : Resource assignment plays an important role in the

performance of the application. For example, in BSP style applications, ad

hoc resource assignments can have an adverse effect on the wait-time between

the fastest and slowest performing tasks in a given computation step of the

co-simulation. This can potentially lead to longer completion times for the

tasks and inadvertently impact the performance of the application. However,

choosing the right set of resources for distributed applications is a non-trivial

activity. Moreover, the user’s cost budget also needs to be taken into account

when scheduling resources for these applications.

I.2.3 Accessibility Challenges

• Benchmarking and performance modeling : Understanding the performance of

applications deployed in the cloud environments requires an understanding of

how applications perform when subjected to different system stress conditions.

Monitoring the application performance and creating performance profiles al-

lows one to estimate the behavior of application when running on such runtime

platforms. However, there is a general lack of tools and techniques to con-

duct a systematic performance interference study. Further, creating a resource

stress is also challenging for end users, who may not be an domain expert in
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developing stressors on the underlying platform, however, need such stressors

for the performance studies. Finally, with increasing heterogeneity of hardware

platforms, the information related to commonality of monitoring probes and

variability in the available monitoring metrics for these platforms can become

unwieldy thereby increasing the complexity in configuration and deployment

of this monitoring infrastructure for the end user. This in turn can lead to

end users not capturing all the required monitoring metrics which are needed

to build performance models of the distributed applications. The constructed

performance model may not give high confidence outputs due to these missing

metric information.

• Domain-specific orchestration: With the growing heterogeneity at the hardware

architecture layer and increasing number of deployment platforms, accessibility

of tools becomes a major challenge. Accidental complexities can manifest during

the configuration, deployment and monitoring of the distributed applications

on such platforms. These challenges if not addressed can potentially lead to

unintended performance bottlenecks and bugs which could lead to cascades of

failures in the distributed applications.

• Rapid validation capabilities : With the growing complexity of the distributed

systems and applications, there is a need for studying and understanding the

principles and algorithms which are at play in such systems, and validate the

different system properties. Implementing and running these distributed sys-

tems algorithms can help in this activity. However, existing tools have a very

high entry to barrier. Thus, users may find it difficult to test and validate these

algorithms rapidly.
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I.3 Research Scope and System Assumptions

Scope: In this dissertation we focus on distributed applications architected as a set

of computational units executing computations in parallel to solve a given problem.

These applications can be located on a single machine or a set of distributed machines

in a cloud or potentially fog/edge computing environments which also support multi-

tenancy. To assist humans in conducting performance benchmarking and validations,

we leverage machine-assisted technologies that alleviate pain points in the deployment

and orchestration of software artifacts. Furthermore, to allow for resource selection

that enables performance- and cost-aware deployment of distributed co-simulations,

which is a specific class of distributed systems that we consider, we leverage recom-

mender systems that help select appropriate resources for the co-simulations.

Assumptions : In our study we have assumed that the network conditions in which

the distributed applications are executing are stable. The tasks in the co-simulation

experiments are assumed to follow the bulk synchronous parallel computations model

and have nearly fixed wall-clock execution time for every iteration of the task. We

assume that the co-simulations are deployed in shared computing resource nodes.

We assume that the QoS metrics can be measured for both the applications and the

runtime system. We also assume that there exists tools which allows for creating

domain-specific modeling languages and simulation runtimes on which the study can

be performed.

I.4 Summary of Contributions

To resolve the list of challenges described in I.2, in this doctoral research we make

following concrete contributions.

Contribution 1: Performance interference-aware application modeling

and benchmarking: To address the challenges discussed in I.2.2, in this work we
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propose FECBench (Fog/Edge/Cloud Benchmarking), which is an open source frame-

work comprising a set of 106 applications covering a wide range of application classes

that guides users in building performance interference prediction models for their ap-

plications without incurring undue costs and efforts via the following contributions.

First, we define a technique to build resource stressors that can stress multiple sys-

tem resources all at once in a controlled manner, which help to gain insights into

the impact of interference on the applications performance. Second, to overcome the

need for exhaustive application profiling, FECBench intelligently uses the design of

experiments (DoE) approach to enable users to build surrogate performance models of

their services. Third, FECBench maintains an extensible knowledge base of applica-

tion combinations that create resource stress across the multi-dimensional resources

design space. Empirical results using real-world scenarios to validate the efficacy

of FECBench shows that the predicted application performance using the surrogate

models incurs a median error of only 7.6 percent across all tests, with 5.4 percent in

the best case and 13.5 percent in the worst case. We describe FECBench details in

chapter II.

Contribution 2: A Model-driven Approach for Performance Analysis

of Cloud-hosted Applications: Similarly, to address challenges in I.2.2 and

I.2.3, in this work we propose UPSARA - Understanding Performance of Software

Applications and Runtime System Analysis, which is a model-driven generative

framework that provides an extensible, lightweight and scalable performance moni-

toring, analysis and testing framework for cloud-hosted applications. UPSARA helps

alleviate the accidental complexities in configuring the right resource monitoring and

performance testing strategies for the underlying instrumentation frameworks used.

We evaluate the effectiveness of UPSARA in the context of representative use cases

highlighting its features and benefits. Chapter III presents more details on this con-

tribution.
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Contribution 3: Rapid design and validation platform for testing dis-

tributed systems algorithms: To address challenges I.2.3, in this work we propose

PADS - Playground of Algorithms for Distributed Systems. We use the principles

of software product lines (SPLs) and model-driven engineering and adopt the cloud

platform to design an environment for rapid validation and testing of simulations

in the cloud computing platform. The research contributions in PADS include the

underlying feature model, the design of a domain specific modeling language that

supports the feature model, and the generative capabilities that maximally automate

the synthesis of experiments on cloud platforms. A prototype implementation of

PADS is described to showcase a distributed systems algorithm illustrating a peer to

peer file transfer algorithm based on BitTorrent, which shows the benefits of rapid

deployment of the distributed systems algorithm. PADS contribution description is

covered in chapter IV.

Contribution 4: Research outreach and broader impact: In this work,

rather than create a point solution to address our challenges discussed in I.2.3 for

distributed applications use-case, we found that we could also leverage our ongoing

work to address challenges in teaching distributed systems concepts. To highlight

the research outreach of our work, we present a user study as to how the PADS

framework can be successfully leveraged to address complexities in teaching computer

science concepts related to distributed systems. We also present the effectiveness of

the PADS technology and additional enhancements done to the PADS technology

to support larger user community. More details of this contribution is presented in

chapter VII

Contribution 5: Addressing performance issues in co-simulations: Co-

simulations, which is type of distributed applications, also suffer from the challenges

as described in I.2.1,I.2.2 and , I.2.3. To address these challenges we make following

specific contribution listed below.
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Contribution 5.a: Co-simulation design studio: To address the challenges

described in I.2.3 for rapid modeling and simulation of cyber-physical systems, in

this work we propose a runtime platform for design and deployment of distributed

simulations in the cloud computing platforms. We present the underlying workflow

of design and deployment of the scientific experiments in the cloud computing en-

vironment with a mixed electrical energy systems as a motivational target scientific

domain. We also present the underlying runtime architecture and deployment of dis-

tributed simulations leveraging the Docker container technology. Chapter V describes

this contribution in more details.

Contribution 5.b: Straggler mitigation in distributed co-simulations:

To address the challenge described in I.2.1, we present EXPPO - EXecution Performance

Profiling and Optimization for Co-simulation-as-a-Service (CaaS) Platform, which

addresses these challenges for BSP based computation discussed in I.2.1, by using

execution performance profiling at each simulation execution step and for every sim-

ulator in a simulation. EXPPO uses the learned performance models from profiling

in its simulation resource recommendation tool which solves an optimization problem

to improve the execution performance of the co-simulation and also minimize the

cost. Using an experimental testbed, the efficacy of EXPPO is validated to show the

benefits of performance profiling and resource assignment in improving the execution

runtimes of co-simulations and also minimizing the execution cost. Details of EXPPO

are presented in chapter VI.

I.5 Dissertation Organization

The rest of the dissertation is organized as follows:

• Chapter II describes the performance modeling and benchmarking contributions

supported by FECBench. This work appeared in ”Barve, Yogesh, Shashank

Shekhar,Ajay Chhokra, Shweta Khare, Anirban Bhattacharjee, Zhuangwei Kang,
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Hongyang Sun and Aniruddha Gokhale. ”FECBench: A Holistic Interference-

aware Approach for Application Performance Modeling.” In 2019 IEEE 11th

International Conference on on Cloud Engineering (IC2E),IEEE, 2019.”

• Chapter III describes the accessibility contributions made by the UPSARA

framework. This work appeared in ”Barve, Yogesh, Shashank Shekhar, Shweta

Khare, Anirban Bhattacharjee, and Aniruddha Gokhale. ”UPSARA: A Model-

Driven Approach for Performance Analysis of Cloud-Hosted Applications.” In

2018 IEEE/ACM 11th International Conference on Utility and Cloud Comput-

ing (UCC), pp. 1-10. IEEE, 2018.”

• Chapter IV describes the PADS contributions that enable the rapid validation of

cloud-based distributed applications. This work appeared in ”Barve, Yogesh D.,

Prithviraj Patil, and Aniruddha Gokhale. ”A cloud-based immersive learning

environment for distributed systems algorithms.” In Computer Software and

Applications Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1, pp.

754-763. IEEE, 2016.”

• Chapter V describes the infrastructure support used to host cloud-based dis-

tributed simulations and address their QoS needs. This work appeared in

”Barve, Yogesh, Himanshu Neema, Stephen Rees, and Janos Sztipanovits. ”To-

wards a Design Studio for Collaborative Modeling and Co-Simulations of Mixed

Electrical Energy Systems.” In 2018 IEEE International Science of Smart City

Operations and Platforms Engineering in Partnership with Global City Teams

Challenge (SCOPE-GCTC), pp. 24-29. IEEE, 2018.”

• Chapter VII highlights the broader impact of the research contributions. This

work appeared at ”Barve, Yogesh D., Prithviraj Patil, Anirban Bhattacharjee,

and Aniruddha Gokhale. ”Pads: Design and implementation of a cloud-based,
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immersive learning environment for distributed systems algorithms.” IEEE Trans-

actions on Emerging Topics in Computing 6, no. 1 (2018): 20-31.”

• Chapter VI describes our approach for providing performance and cost aware

deployment of co-simulations in cloud computing environment. This work is

under-review for a conference submission.

• Chapter VIII summarizes the research contributions.
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CHAPTER II

INTERFERENCE AWARE PERFORMANCE MODELING AND
BENCHMARKING

II.1 Introduction

Context Multi-tenancy has become the hallmark of public cloud computing sys-

tems, where physical resources such as CPU, storage and networks are virtualized

and shared among multiple different and co-located applications (i.e., tenants) to

better utilize the physical resources. Although virtualization technologies such as

virtual machines and containers allow cloud providers to increase the degree of multi-

tenancy while still providing isolation of resources among the tenants, there exist

non-partitionable physical resources such as the caches, TLBs, disk, and network

I/O, which are susceptible to resource contention thereby causing adverse perfor-

mance interference effects on the co-located tenants [90, 155]. Consequently, effective

resource management solutions are required that can limit the impact of performance

interference to acceptable levels such that the service level objectives (SLOs) of the

applications can be maintained [38, 68, 69, 129].

Challenges Developing effective resource management solutions (e.g., schedulers)

requires an accurate understanding of the target application’s performance under dif-

ferent application co-location scenarios so that the impact of performance interference

can be calibrated and accounted for in the solutions. Recent studies [119, 156] have

built performance interference profiles for applications using a variety of resource

utilization metrics. Since performance interference is caused due to the sharing of

one or more non-partitionable resources, performance models for the application-

under-study (i.e., the target application) that account for interference are developed
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by co-locating them with a variety of resource stressor applications (i.e., those ap-

plications that put varying levels of pressure on the non-partionable resources) and

recording the delivered performance to the target application.

Creating such performance models, however, requires the developer to expend sig-

nificant efforts into application benchmarking and analyze application performance

under varying levels of resource stress. Since the overall system utilization is a func-

tion of the stresses imposed on multiple types of resources in the system and the

presence of multiple resources represents a multi-dimensional space, creating varying

levels of resource stresses spanning this large design space is a difficult task. Effec-

tive resource management solutions, however, require application performance models

that incorporate the impact of stresses on multiple resources all at once. Although

existing resource stressors, such as dummyload or stress-ng [1], provide users with

the control knobs to exert the desired level of stress on a resource, such as CPU or

memory, these tools operate on only one resource at a time. Unfortunately, it is hard

for users to define the right kinds of application workloads that will create the right

levels of resource stress across the multi-dimensional space. All these problems are

further exacerbated with the addition of fog and edge computing resources, which

illustrate both increased heterogeneity and constraints on resources, and where the

performance interference effects may be even more pronounced [50, 94].

Although, some frameworks/benchmarks exist that can assist in the building of

the performance models, these tools remain mostly disparate and it takes a monu-

mental effort on the part of the user to bring these disparate tools together into a

single framework [89]. Even then, such a combined framework may not be easy to

use. Moreover, a general lack of any systematic approach to conduct the performance

modeling process will force the user to rely on ad hoc approaches, which hurts repro-

ducibility and leads to reinvention of efforts [121], not to mention the possibility of

the resulting models missing out on critical insights.
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Beyond these challenges, one question still persists: When is a performance model

considered good enough such that it will enable effective resource management so-

lutions? In other words, how much application profiling is required to build these

performance models? One strawman strategy to profile the application is to subject

it to all possible resource stresses. However, such an approach will be time-consuming

and even infeasible given the large number of combinations that can be executed on

the different resource dimensions, the variety in the co-located application types, and

their different possible workloads. Hence, there is a need for an intelligent applica-

tion profiling strategy that minimizes the profiling effort and thereby the time and

cost, while still providing sufficient coverage across all the resources that contribute

to application performance interference. Unfortunately, there is a general lack of

benchmarks and frameworks that can aid the user in developing these models.

Solution Approach To address these challenges, we present FECBench (Fog/Edge/-

Cloud Benchmarking), an open source framework comprising a set of 106 applications

that cover a wide range of application classes to guide providers in building per-

formance models for their services without incurring undue costs and efforts. The

framework can then be used to predict interference levels and make effective resource

management decisions. Specifically, through the design of FECBench, we make the

following contributions:

1. FECBench builds resource stressors that can stress multiple system resources all

at once in a controlled manner. These resource stressors help in understanding

the impact of interference effects on an application’s performance.

2. To overcome the need for exhaustive application profiling, FECBench intelli-

gently uses the design of experiments (DoE) approach to enable developers in

building surrogate performance models of their services.
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3. FECBench maintains an extensible knowledge base of application combinations

that create resource stresses across the multi-dimensional resources design space.

Empirical results using real-world scenarios for validating the efficacy of FECBench

show that the predicted application performance has a median error of only 7.6%

across all test cases, with 5.4% in the best case and 13.5% in the worst case. A short

poster version of this chapter describing initial work can be found in [30].

Chapter Organization The rest of the chapter is organized as follows: Section II.2

delves into the details of performance interference, and surveys the literature in this

realm; Section II.3 elicits the key requirements for a solution such as FECBench;

Section II.4 presents the design and implementation of FECBench, explaining how

it meets the requirements outlined earlier; Section III.6 presents an extensive set of

results validating the different features of FECBench; and finally Section II.7 presents

concluding remarks discussing the implications of using FECBench and alluding to

future work.

II.2 Background and Literature Survey

In this section we provide details on performance interference and its impact on

application performance. We then present a survey of the literature in this area and

the limitations of existing approaches, which motivate the key requirements of our

FECBench solution.

II.2.1 Sources of Interference and Impact on Performance

Co-located applications on the same physical resources of a cloud platform will

impose varying degrees of pressure (stress) on the underlying resources. When these

resources are hard to partition or isolate, the contention for these resources will cause

interference effects on the executing applications and degrade their performance. For

compute-intensive applications, resources such as CPU core and Last Level Cache
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(LLC) can cause interference. Similarly, for communication-intensive applications,

resources such as memory bandwidth, disk I/O, and network can cause interference.

For example, Figure 1 shows the performance degradation of an application that

uses the Inception RESNETv2 deep learning model [13]. The figure illustrates a

cumulative distribution function (CDF) for the 95th percentile response times of the

application as its SLO with and without interference. Due to the significant difference

in the observed response times, it is important for resource management solutions to

incorporate the impact of interference to maintain application SLOs.
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Figure 1: CDF representation of prediction inference response times for the
Inception RESNETv2 Keras model. We can see that the application’s perfor-
mance degrades when co-located with background applications as compared to
its performance when running in isolation.

II.2.2 Related Work

We now present prior efforts that focus on quantifying and modeling performance

interference and classify these along three dimensions.

Interference Quantification Two fundamentally different approaches to quantify-

ing performance interference have been reported in the literature. The Bubble-Up

approach [107] measures sensitivity (i.e., impact of co-located applications on the

target application) and pressure (i.e., impact of the target application on co-located

applications) using a synthetic stressor application called bubble. The bubble gener-

ates a tunable amount of pressure on a given resource, such as memory or LLC. With
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the pressure applied on a resource, the target application is executed simultaneously

with co-located applications, and its performance metrics such as the completion time

are measured. This experiment is repeated for different pressure levels in both the

memory and the cache subsystems. Although this approach is effective, the bubble is

limited to memory sub-system only and the approach is limited to two co-located ap-

plications. Yang et. al. [158] extended Bubble-Up to allow performance interference

beyond two co-located applications and other shared resources such as network, I/O,

cores, etc. The observed application performance degradation is used to construct

sensitivity and pressure profiles which are used to determine if a given co-location

will cause degradation in the performance of an application.

A different approach is presented in DeepDive [119], in which the performance

interference is predicted based on the aggregate resource system utilization on the

running system. Unlike Bubble-Up, where performance of an application is measured

for stress levels independently on each resource, in DeepDive, application interference

is measured by monitoring resource usage statistics of all co-located applications. In

DeepDive, an application running inside a virtual machine is placed on an isolated

physical machine and the resource utilization statistics are measured. The application

is then migrated/placed on a physical machine by estimating the quality of interfer-

ence level on the application and the co-located running applications. Inspired by

the approach employed in DeepDive, FECBench leverages system resource metrics to

build performance models for applications.

Interference-aware Predictive Modeling Building performance interference mod-

els and using them to predict the expected levels of interference for a given co-location

configuration and workloads is important. Paragon [68] presents an interference-aware

job scheduler in which an application’s performance is predicted using collaborative

filtering. The performance prediction model is built using performance data that is

measured by subjecting the test application against individual resource stressors that
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stress only one resource at a time. In comparison, FECBench takes into account the

cumulative effect of all the resources to build an interference prediction model.

Zhao et. al. [162] studied the impact of co-located application performance for

a single multi-core machine. They developed a piecewise regression model based on

cache contention and bandwidth consumption of co-located applications. Similarly,

their work captures the aggregate resource utilization of two subsystems, namely,

cache contention and memory bandwidth, in determining the performance degrada-

tion. Our approach also considers disk and CPU resources in building prediction

models and is not restricted to any hardware.

In DIAL [91], interference detection is accomplished using decision tree-based clas-

sifier to find the dominant source of resource contention. To quantify the resource

interference impact on a webserver application’s tail response, a queuing model is uti-

lized to determine the application’s response time under contention. To minimize the

effects of interference, it proposed using a runtime controller responsible for dynamic

load-balancing of queries from the webserver. Subramanian et. al. [143] presented

an application slowdown model which estimates the application performance with

high accuracy using cache access rate and memory bandwidth. However, the system

was validated using a simulator and not on real hardware. In contrast, FECBench is

geared towards real hardware.

The ESP project [112] uses a two-stage process for interference prediction. It first

performs feature extraction, and then builds a regression model to predict perfor-

mance interference. It creates separate models for each co-location groups. Also, its

training data workload consists of all the possible applications that can run in the

cluster. It then collects performance data for some combinations out of all the possi-

ble combinations to build the interference model. Similarly, Pythia [156] describes an

approach for predicting resource contention given a set of co-located workloads. Both

ESP and Pythia assume that they have a priori information of all possible running
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workloads based on which an interference model is created for a new application. In

comparison, FECBench relies on the performance metrics obtained when co-located

with a fixed number of resource stressors and does not need to have prior information

of all the running applications in the cluster.

Interference-related Synthetic Benchmarks One of the major roadblocks when

investigating and building the performance interference modeling is the lack of repre-

sentative benchmarking applications. Cuanta [81] built a synthetic cache loader that

emulates pressure for varying tunable intensities on the LLC resource. It supports a

Linux kernel module that invokes hypervisor system call to create the desired level of

memory utilization. This kernel module resides inside a virtual machine. In contrast,

our approach is non-intrusive and does not require any changes to the Linux kernel.

iBench [67] developed an extensive set of synthetic workloads that induce pressure

on different resource subsystems. These workloads are built in a way to exert tunable

utilization pressure on system resources such as L1, L2, iTLB, memory, LLC, disk,

network, etc. in isolation. In [125], synthetic workloads were used to create pres-

sure on network and CPU systems. Bubble-up [107], which was described earlier, is

another effort in this category.

While these efforts made a step in the right direction, most existing approaches

rely on manual tuning of the resource stressors to create the desired level of stress. As

a result, prior approaches cannot adapt to changes in the underlying architecture. In

contrast to earlier works, our approach finds application pairs and creates a resource

stressor knowledge-base in an automated fashion. As a result, our approach can adapt

to changes in the underlying architecture and can be reused. Moreover, with the help

of design of experiments, FECBench reduces the profiling effort for the applications.
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II.3 Solution Requirements and Proposed Approach

Based on the literature survey and unresolved challenges, we derive the following

requirements for FECBench.

1. Benchmarking with Ease: Benchmarking and profiling applications can

be a very tedious task because it involves configuration of probes on resources such

as CPU, network or disk, and collection of many hardware- and application-specific

performance metrics [89, 93, 139]. In this regard, tools such as CollectD [5] and

Systat allow monitoring and collecting system metrics. Often, more than one tool

may be required to collect the metrics of interest, which makes it hard for the user

to integrate the tools. Moreover, dissemination of the monitored metrics in a timely

manner to a centralized or distributed set of analysis engines must be supported to

build performance interference models of the applications.

To address these challenges and to make the task of benchmarking easier and

intuitive for the user, FECBench uses higher-level, intuitive abstractions in the form

of domain-specific modeling [34, 41] and generative techniques to synthesize the gen-

eration of configurations, metrics collection and dissemination. Our recent work [32]

describes these capabilities and hence it is not a focus of this chapter but we discuss

this requirement for completeness sake.

2. Automated Construction of Resource Stressors: Tools like lookbusy

and stress-ng can be utilized to create resource stress on CPU in a controlled tunable

manner. Similarly, tools like iPerf can be utilized to create resource stress on the

network resource. Despite this, there is a lack of open-source tools that can stress

multiple resources simultaneously, also in a tunable manner. Moreover, some of the

resource stressors are platform-specific, which hinders their applicability to hetero-

geneous platforms. Prior studies have presented design of stressors, which requires

a deep understanding of the underlying hardware architecture and low-level resource
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characteristics. Acquiring the skills to utilize these tools thus incurs a steep learning

curve.

To address these concerns, Section II.4 A-G presents a process pipeline with offline

and online stages that construct the multi-resource stressors in an automated fashion

by leveraging machine learning techniques.

3. Minimizing the Prohibitive Profiling Cost: When building a performance

interference model the user must profile the application’s performance metrics against

different configurations of resource utilization on the running system. However, since

we have multiple resources, the resource utilization can be seen as a multi-dimensional

design space. One approach to profiling is to exhaustively cover the entire design

space and obtain the performance metrics for the application. However, the cost and

time for executing these experiments will be very high. Thus, there is a need to

significantly reduce the profiling effort while deriving good performance interference

models.

To that end, we use the design of experiments (DoE) approach in Section II.4.6 to

explore the multi-dimensional resource metrics using substantially lower experimental

runs, for building the performance interference models.

II.4 FECBench Methodology

We now present FECBench and demonstrate its design methodology by building

a performance interference model and explaining each step of its design.

II.4.1 FECBench Methodology and its Rationale

Figure 2 presents the FECBench process. The rationale for this process is de-

scribed below and details of each step follow.

Recall that the goal of FECBench is to minimize the efforts for developers in

building interference-aware performance models for their applications by providing
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Figure 2: FECBench methodology.

them a reusable and extensible knowledge base. To that end, FECBench comprises an

offline stage with a set of steps to create a knowledge base followed by an online stage.

Developers can use the same offline stage process to further refine this knowledge base.
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Figure 3: Utilizations of different resources for each of the 106 applications
from the benchmarking warehouse. Each application is represented by a unique
number and is depicted along the horizontal axis.

Accordingly, the first step ( in §II.4.2) of the offline stage defines Benchmark

Warehouse (BMW), which is a collection of resource utilization metrics obtained by

executing a large number and variety of applications on a specific hardware and mea-

suring the impact on each resource type independently. The second step ( in §II.4.3)

clusters these applications according to their similarity in how they stress individual

resources. Clustering minimizes the unwieldiness stemming from the presence of a

21



large number of application types in the performance model building process. Next

since we are interested in performance interference, the knowledge base must capture

the stress on resources stemming from executing a combination of co-location pat-

terns of applications belonging to the different clusters found in the earlier step (Step

3 in §II.4.4).

Using all this data, we define a resource stressor prediction model (Step 4 in

§II.4.5), which can be used to predict the expected stress along the multi-dimensional

resource space given a new co-location pattern. Since such a model building process

itself may need exhaustive searching through every possible combination of resource

stresses along the multi-dimensional resource space, we create surrogate models us-

ing design of experiments (DoE), specifically, the Latin Hypercube Sampling (LHS)

approach (Step 5 in §II.4.6).

The reduced search strategies of Step 5 give rise to a knowledge base (Step 6 in

§II.4.7), which is then used in the online stage (Step 7 in §II.4.8) that stresses a target

application across different resource utilization regions from the design space to train a

model for that target application and utilize it to predict its performance at runtime.

The developer of a new application need only conduct Step 7 while leveraging all

the previous steps. If a completely new hardware configuration is presented, the

knowledge base must be updated by repeating all the steps of the offline stage. The

steps are detailed next.

II.4.2 Benchmarking Isolated Characteristics of Applications

To build stressors that can stress different resources of a system, we first study

the characteristics of different applications in isolation. We have profiled 106 ap-

plications from existing but disparate benchmarking suites, such as PARSEC [46],
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DaCaPo [47], PHORONIX [17], STRESS-NG [1], as well as networked file-server ap-

plications, which collectively form our benchmarking warehouse (BMW). These ap-

plications represent a diverse range spanning from cloud computing to approximate

computing workloads [159].

In this step, we profile the applications by running them in isolation on a system

so as to document the resource utilization imposed by that application. Let A denote

the set of all applications in BMW. For each application a ∈ A, we collect its runtime

utilization metrics on the host system when run in isolation, including CPU, L2/L3

cache bandwidth, memory bandwidth, disk, network, etc. For a total number R of

resources considered, the vector U(a) = [u(1)(a), u(2)(a), . . . , u(R)(a)] is then logged

in a database, where u(r)(a) denotes the utilization on a particular resource r ∈

{1, 2, . . . , R} when running the application. Figure 3 presents the resource utilization

characteristics of 106 applications. The experiment host used is Intel(R) Xeon(R)

CPU E5-2620 v4 machine with 16 physical cores. As we can see from the figure, the

applications exhibit a high degree of coverage across the resource utilization spectrum

for the different system resources.

II.4.3 Application Clustering

Given the large number of applications available in the BMW, it is likely that some

of them exhibit similar characteristics with respect to the resource utilizations. For

example, applications with numbers 80 and 81 in Figure 3 have similar utilizations

with respect to CPU, L2 bandwidth and L3 bandwidth. This step performs clustering

to identify those applications that share similar resource utilization characteristics.

Moreover, application clustering allows us to select only a subset of applications from

the BMW for the subsequent co-location resource utilization study. This helps to

significantly reduce the number of application combinations that need to be profiled

and tested.
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Machine learning approaches, such as K-means clustering or Support Vector

Method-based clustering, have been commonly used to find similarities in datasets [111].

In this study, we leverage the K-means algorithm to cluster all applications from the

BWM in the R-dimensional space, where each dimension represents the utilization

from a particular resource r ∈ {1, 2, . . . , R}. Thus, each application a ∈ A is rep-

resented by a point U(a) = [u(1)(a), u(2)(a), . . . , u(R)(a)] in the R-dimensional space.

We use the Silhouette algorithm [133] to determine the ideal number of clusters. For

the considered 106 applications, running the algorithm leads to K = 13 clusters. Fig-

ure 4 shows the resource utilization characteristics for some of these clusters. As can

be seen, Cluster 5 is L3, L2 and L3-system bandwidth-intensive. Similarly, Cluster

2 is memory bandwidth intensive. Cluster 9 shows high utilization pressures across

network, disk and CPU.
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Figure 4: Radar charts illustrating the resource profiles for clusters 2, 4, 5, 7, 8
and 9. Resource pressure is higher when the vertices are closer to the edge of
the radar chart on the resource axis.
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II.4.4 Resource Utilization Profiling for Co-located Workloads

Since running a single application may not create the desired stress levels for the

system resources, we are interested in finding those application mixes that together

can create a more diverse set of resource stress levels. We first observe from our em-

pirical experiments that the utilization of a resource on a system by running a set of

co-located applications cannot be obtained by simply summing the resource utiliza-

tions of these applications when executed in isolation. This is validated by Figure 5,

which shows that a direct summation of the isolated applications’ L3 bandwidth uti-

lizations incurs significant difference margins, with a mean absolute percent error of

47%. Similar behavior is also seen for other system resources.

This calls for profiling the resource utilization characteristics of different appli-

cation co-location patterns. However, empirically running all application combina-

tions is extremely time consuming. This step and the next together build a resource

prediction model that determines the resource utilizations for any given application

co-location pattern.

Before building a resource prediction model, we collect resource utilization data in

this step by profiling a selection of application mixes, similar to the way we profiled

a single application in Section II.4.2. Specifically, we pick an arbitrary application

(e.g., the centroid) from each of K clusters and co-locate applications from different

clusters to create different resource stressors. Let dmax denote the maximum number

of co-located applications that are allowed in a run. This gives a total of
∑dmax

d=1

(
K
d

)
application combinations.

Depending on the execution time needed to perform the profiling, one can choose

a random subset of these combinations for building the prediction model. In our ex-

periment, we have K = 13 and dmax = 8 (since we are using a 16-core server and each

application executes on 2 cores), which gives a total of 7,098 combinations. Among

them, we profiled around 2,000 combinations for building the prediction model.
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Figure 5: Chart (a) shows the summation of the isolated L3 bandwidth resource
pressures and the observed resource pressure on the system. Chart (b) shows
the distribution of error from direct summation of isolated resource pressures of
the applications. The mean absolute percentage error is 47%.

II.4.5 Building Resource Stressor Prediction Model

Based on the resource utilization data collected from the last step, this step builds

a resource stressor prediction model. We leverage random forest regression to deter-

mine the individual resource utilization given a set of co-located applications. Ran-

dom forest regression is a widely used non-parametric regression technique for cap-

turing non-linearity in the dataset. Unlike other methods, it performs well even with

a large number of features and a relatively small training dataset, while providing an

assessment of variable importance. Random forest is an ensemble-learning-based ap-

proach, where the results of multiple models, in this case, decision trees, are averaged

to provide the final prediction. A decision tree recursively partitions a sample into

increasingly more homogeneous groups up to a pre-defined depth. Terminal nodes

in the tree then contain the final result. Random forest randomizes the creation of

decision trees in two ways: 1) each decision tree is created from a random subset of

input data; 2) each tree-partition is based on a random subset of input features.

For any application combination A, the following input features are used in the

random forest prediction model:
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• A K-dimensional vector C = [c1, c2, . . . , cK ], where each element ci takes the

value 1 if an application from the i-th cluster is selected in the combination A

and 0 otherwise.

• A R-dimensional vector U+(A) = [u
(1)
+ (A), u

(2)
+ (A), . . . , u

(R)
+ (A)], where each el-

ement u
(r)
+ (A) represents the sum of individual utilizations for the r-th resource

from all applications in A, i.e, u
(r)
+ (A) =

∑
a∈A u

(r)(a).

The output is another R-dimensional vector that predicts the utilization for all re-

sources when executing the application combinationA, i.e., Ũ(A) = [ũ(1)(A), ũ(2)(A), . . . , ũ(R)(A)].

Thus, the resource stressor prediction model maps the input to the output via a pre-

diction function f as follows:

Ũ(A)← f
(
C,U+(A)

)

II.4.6 Design of Experiments (DoE) Specification

To build a performance interference model for a target application when it is co-

located with other applications, we need to measure its performance on a system

that experiences different resource stress levels. Due to the large number of possible

stress levels along multiple resource dimensions, it is not practical to test all of them.

Therefore, we adopt the design of experiments (DoE) [58] approach by generating a

small number of sample points in the multi-dimensional space that maximizes the

coverage of the different resource utilizations.

To this end, we leverage the Latin Hypercube Sampling (LHS) method [58] that

generates sampled regions across the R-dimensional resource utilization space. Specif-

ically, LHS divides each resource dimension into M equally-spaced intervals, and then

selects M sample intervals in the entire R-dimensional space that satisfies the Latin

Hypercube property: each selected sample is the only one in each axis-aligned hy-

perplane that contains it. The LHS method has a clear advantage over random
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sampling, which could potentially lead to selections of samples that are all clumped

into a specific region. Moreover, the number M of samples in LHS does not grow

with the number of dimensions. For a given choice of M , it generates a collection

H = {h1, h2, . . . , hM} of M hypercubes. Since each dimension represents the re-

source utilization of a corresponding resource in our case, its overall range is [0, 1].

Therefore, each generated hypercube hi ∈ H in a resource dimension r has the range[
x
(r)
i

M
,
x
(r)
i +1

M

]
for some x

(r)
i ∈ {0, 1, . . . ,M − 1}. We refer interested readers to [104]

for an in-depth explanation of the LHS method. In our experiment, we set M = 300.

II.4.7 Creating the Stressor Knowledge Base

We now create a knowledge-base of applications and their workload mixes that

map to the different resource utilization levels as determined from the DoE explo-

ration. Let SA denote the set of all application combinations generated in Section

II.4.4. We consider every application combination A ∈ SA and use the resource

stressor prediction model of Section II.4.5 to predict its utilization ũ(r)(A) for each

individual resource r ∈ {1, 2, . . . , R}. We then fill up each of the M hypercubes

sampled in Section II.4.6 with the application combinations that belong to it. Specif-

ically, for each application combination A, it is assigned to hypercube hi ∈ H, if

ũ(r)(A) ∈
[
x
(r)
i −δ
M

,
x
(r)
i +1+δ

M

]
for all 1 ≤ r ≤ R, where δ > 0 is a tolerance parameter to

extend the boundaries of the hypercubes to account for the inaccuracy of the stressor

prediction model. In our experiment, we set δ = 0.1.

II.4.8 Building Performance Interference Prediction Model

In the last step (which is an online step), a developer must construct a performance

interference prediction model for a new target application b that is introduced for the

first time onto the platform. The goal is to predict a specified QoS metric q for the

target application when it is co-located with any set B of applications. To that end,
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we leverage a regression-based Decision Tree model [126]. The input of the prediction

model is a R-dimensional vector U = [u(1), u(2), . . . , u(R)] showing the utilization of

different system resources before the target application b is deployed. The output

is the predicted QoS metric for the target application b, which we denote as q̃(b, U),

under the current system utilization U . Thus, the interference prediction model maps

the input to the output via a prediction function g as follows:

q̃(b, U)← g
(
U
)

To build the regression model, the target application is executed under different

resource stress levels identified by the design of experiments in Section II.4.6. For each

of the M resource stress levels, the target application is executed along with a selected

application combination from the knowledge base that corresponds to the desired

resource stress level. To select the application combination, the closest application to

the center of each hypercube is chosen. This selected application combination is first

run on the platform. After a warm-up period, the target application is then deployed

on the same platform, and its performance QoS metric is logged. This process is

repeated for all the M resource stress levels. The results are used as training data

to train the regression model above. In FECBench, we consider the response time,

which is the computation time of the application, as the QoS metric used for latency-

sensitive applications with soft real-time requirements.

II.5 System Architecture and Implementation

Figure 6 shows the different components of FECBench. There are two classes

of nodes: manager host and physical hosts. Manager host is responsible for the

management and orchestration of FECBench. We describe the numbered components

in the figure below.
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Figure 6: FECBench in action. The figure shows different components of the
FECBench along with the manager host and the target physical hosts on which
application profiling takes place.

In 1©, the Webportal component at the manager host allows the user to interact

with FECBench. The Webportal is built using a visual domain specific modeling

language [35]. It allows the user to submit the target application whose performance

interference model needs to be constructed. The Webportal initiates the profiling

of the target application, and relays this information to the Profiling orchestrator,

which then fetches the required information – resource stressors and system availabil-

ity – from the FECBench system information block represented by 2©. Components

in 2© comprise the FEC Cluster datastore, Resource Stressor Knowledgebase, and

Benchmarking Warehouse. The FEC Cluster datastore consists of the current in-

formation about the cluster. Equipped with the required information, the Profiling

orchestrator deploys the target application on the desired physical host, where the

interference-aware profiling of the application takes place. In 3©, the target applica-

tion is subjected to various resource stressors as obtained from the stressor knowledge
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base. The monitoring probes on the physical hosts monitor the system as well as the

application QoS metrics and this information is relayed to the manager host. In

4©, the desired metrics are parsed and data is stored in a time series datastore. In

5©, FECBench constructs the interference-aware performance model of the target

application.

The monitoring of the system performance metrics is done using the CollectD

monitoring program. For the system metrics not supported by CollectD, custom

Python based plugins are written that feed the metric data to the CollectD daemon.

CollectD plugins for the Linux perf utility and Likwid monitoring tool [15] are written

to monitor and log additional system metrics such as the cache-level and memory-

level bandwidth information. Docker-based resource stressor containers have also

been built. The monitored metrics are relayed in real time using AMQP message

queues. Metric parsers for the gathered data are written using both Golang and

Python languages. We use Influxdb to provide a time series database for storing the

monitoring metrics [10]. For building performance models, we leverage the machine

learning libraries provided by the Scikit library in Python [19].

II.6 Experimental Validation

This section validates the claims we made about FECBench. To that end, we

demonstrate how FECBench enables savings in efforts in building the performance

models of applications and their accuracy in making resource management decisions.

We validate the individual steps of the FECBench process. We also present a concrete

use case that leverages FECBench for interference-aware load balancing of topics on

a publish-process-subscribe system.
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II.6.1 Experimental Setup

We validated the FECBench claims for a specific hardware comprising an Intel(R)

Xeon(R) CPU E5-2620 v4 compute node with 2.10 GHz CPU speed, 16 physical cores,

and 32 GB memory. The software details are as follows: Ubuntu 16.04.3 64-bit,

Collectd (v5.8.0.357.gd77088d), Linux Perf (v4.10.17) and Likwid Perf (v4.3.0). For

the experiments, we configured the scaling governor parameter of CPU frequency

to performance mode to achieve the maximum performance.

II.6.2 Validating the Resource Stressor Prediction Model

To build and validate the resource stressor prediction model (Step 4 of FECBench),

we first need to obtain a dataset that includes the resource utilizations under different

application co-location scenarios (Step 3). In our experiment, we pin each application

to 2 cores of the test node for a maximum of 8 co-located applications (since the node

has 16 cores). Our offline profiling for Step 3 produced a dataset of about 2,000 data

points, of which we used 80% for training, 10% for testing and the remaining 10%

for validation. Table 1 illustrates the performance of the resource stressor prediction

model. We see that the learned models have high accuracy for both the test and the

trained dataset. We used the same accuracy measure, coeffecient of determination

(R2), as in prior studies [112]. We observe an accuracy of 99.1% and 99.3% for the

training and testing data, respectively, for memory bandwidth. The learned model

also has low bias and variance since both testing and validation errors converge for

most cases.

Figure 7 shows the accuracy of FECBench in predicting the actual resource uti-

lizations for the co-located workloads. We see that the resource utilization predicted

by FECBench are quite accurate as the bulk of the points fall close to the diagonal

region of the chart with very few outliers.
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Table 1: Performance of Learned Models for Resource Stressors

Feature Test Accuracy Train
Accuracy

Validation
Accuracy

MEM BW 99.305 99.073 98.930
CPUPERCENT 89.896 88.776 88.889
MEMORY 98.310 98.346 86.143
L3 BW 99.085 98.839 98.037
NETWORK 99.663 99.665 99.673
L3 SYSTEM BW 99.367 98.888 98.452
L2 BW 99.454 99.130 97.916
DISK IO TIME 88.002 88.464 88.519
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Figure 7: Predicted resource utilizations across different resource types. Points
concentrated along the diagonal indicate that the predicted values match the
actual observed values.

II.6.3 Validating the Design Space Exploration Strategy

For this experiment, the goal is to find the right application combinations that

exert pressure in a tunable fashion along multiple resource dimensions (in our case,

CPU, memory bandwidth and disk resources). We set the number of samples for

the LHS strategy to 300 in the design of experiments, and got coverage for around

264 bins, i.e., 88%. To allow for easier visualization of the coverage, we project

the three dimensional datapoints on a two dimensional scale as shown in Figure 8,

demonstrating good coverage of the design space.
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Figure 8: Coverage of the predicted resource stressor design space exerted by
the co-located application combinations available in the knowledge base.

II.6.4 Validating the Accuracy of the Performance Models

We used specific applications drawn from the DaCaPo benchmark, the Parsec

benchmark and the Keras machine learning application model as target applications

whose performance models we were interested in. Specifically, from the DaCaPo

benchmark, we chose PMD which is an application that analyzes large-scale Java

source code classes for source code problems. From the Parsec benchmark, we chose

the Canneal application, which uses a cache-aware simulated annealing approach for

routing cost minimization in chip design. The Canneal program has a very high

bandwidth requirement and also large working sets [46]. From the Keras machine

learning application model, we used InceptionResnetV2, which represents an emerging

workload class for prediction inference serving systems [13].

We first build performance models for these three applications using our approach

as discussed in Section II.4. To test the effectiveness of the learned application per-

formance models, we co-locate the target applications with the web search workload

from the CloudSuite benchmark [76], which uses the Apache Solr search engine frame-

work and emulates varying number of clients that query this web search engine. We

ran four different scenarios with varying number of clients: 600, 800, 900, and 1000.

We placed our target application with a co-located web-search server on the host

compute node. We assigned two cores to the target application and the rest of the

cores to the web-search server.
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Figure 9: Prediction accuracy in mean absolute percent error for PMD, Canneal,
InceptionResnetV2 applications when co-located with web search server from
CloudSuite.

Figure 9 shows the mean absolute percent errors (MAPEs) for the three applica-

tions under varying degrees of loads generated by the clients of the co-located web

search application. For example, when the number of clients is 800, the MAPEs are

6.6%, 11.8% and 14.5% for PMD, Canneal and InceptionResnetV2, respectively. Also,

the median percentage errors for all the cases are below 5.4%, 7.6% and 13.5% for

PMD, Canneal and InceptionResnetV2, respectively. To showcase the total number

of correct predictions made by the system, we leverage a CDF curve that has been

used in the literature to showcase the effectiveness of the machine learning models

[113]. Figure 10 illustrates that, for the PMD application, 80% of the predictions

have error rates less than 9%. For the Canneal application, 80% of the predictions

have error rates below 15%. For the InceptionResNetV2 application, about 70% of

the predictions have error rates below 25%.

II.6.5 FECBench in Action: A Concrete Use Case

Besides validating the efficacy of FECBench on applications drawn from the bench-

marking suites, we have applied FECBench to interference-aware load balancing of

topics for a publish-process-subscribe system [26]. The Publish/Subscribe (pub/sub)

communication pattern allows asynchronous and anonymous exchange of informa-

tion (topic of interest) between publishers (data producers) and subscribers (data
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Figure 10: Cumulative distributions of prediction errors for the PMD, Canneal,
InceptionResnetV2 applications.

receivers). Therefore, pub/sub is widely used to meet the scalable data distribu-

tion needs of IoT applications, where large amounts of data produced by sensors are

distributed and processed by receivers for closed-loop actuation. The need for pro-

cessing sensor data is accomplished on broker nodes that route information between

publishers and subscribers.

In a publish-process-subscribe system, a topic’s latency can suffer significantly due

to the processing demands of other co-located topics at the same broker. Figure 11

demonstrates this effect. Here, a topic is characterized by its processing interval p,

i.e., average time for processing each incoming message on the topic, and cumulative

publishing rate r, at which messages arrive at the topic. Figure 11(a) shows that

topics A, B and C show wide variations in their 90th percentile latencies (∼ 100ms

to ∼ 800ms) under varying background loads.

For latency-critical IoT applications, it is necessary to ensure that a topic’s latency

is within a desirable QoS value. Therefore, it is important to co-locate topics at the

brokers in an interference-aware manner such that none of the topics in the system

violate their latency QoS. To this end, one approach is to learn a latency prediction
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Figure 11: Use of FECBench in publish-process-subscribe showing: (a) impact
of co-location on a topic’s latency; (b) interference-aware placement of topics.

model for the brokers in the pub/sub system by leveraging the FECBench approach.

Subsequently, the latency prediction model can be used to determine which topics

can be safely co-located at a broker without incurring QoS violations. Figure 11(b)

shows how such an interference-aware method can reduce the percentage of topics in

the system that suffer from QoS violations. Here, the interference-aware approach,

which uses the latency prediction model obtained by the FECBench approach, is able

to meet the QoS for ∼ 95% of the topics in the system. This is significantly better

than a naive approach based on round robin scheduling, which is only able to meet

the QoS for ∼ 80% of the topics in the system.

II.7 Conclusion

Making effective dynamic resource management decisions to maintain application

service level objectives (SLOs) in multi-tenant cloud platforms including the emerging

fog/edge environments requires an accurate understanding of the application perfor-

mance in the presence of different levels of performance interference that an applica-

tion is likely to encounter when co-located with other workloads. Data-driven perfor-

mance models can capture these properties, which in turn can be used in a feedback

loop to make effective resource management decisions [43, 48]. The vast number of

applications, their co-location patterns, differences in their workload types, platform
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heterogeneity and an overall lack of a systematic performance model building frame-

work make it an extremely daunting task for developers to build such performance

models. FECBench (Fog/Edge/Cloud Benchmarking) is a framework that addresses

these challenges, thereby relieving the developers from expending significant time

and effort, and incurring prohibitive costs in this process. It provides an extensible

resource monitoring and metrics collection capability, a collection of disparate bench-

marks integrated within a single framework, and a systematic and scalable model

building process with an extensible knowledge base application combinations that

create resource stress across the multi-dimensional resources design space. Empir-

ical evaluations on different application use cases demonstrate that the predicted

application performance using the FECBench approach incurs a median error of only

7.6% across all test cases, with 5.4% in the best case and 13.5% in the worst case.

FECBench is available in open source at https://github.com/doc-vu/fecbench.

So far, FECBench has been evaluated on a single hardware platform. Its efficacy

needs to be validated on a variety of hardware platforms. To that end, we will explore

the use of transfer learning to minimize the efforts. Our use of 106 applications did

not provide coverage across every possible resource dimension and hence improving

the coverage is another area of future work. As a part of research outreach of the

FECBench, the students from the ”Visual Analytics & Machine Learning CS8395.03”

course at Vanderbilt University during Spring 2019, explored various visualization

techniques for better visual exploration of the performance effects seen in the appli-

cations running on the multi-tenant servers.
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CHAPTER III

ADDRESSING ACCESIBILITY CONCERNS IN PERFORMANCE
MODELING

III.1 Introduction

Multi-tenancy in cloud deployment and changing workload patterns for cloud-

based applications make it hard to analyze and diagnose any incurred performance

issues and find appropriate solutions to resolve them. In particular, identifying the

sources of performance interference due to multi-tenancy remains a hard problem

[31, 67, 136].

To support our hypothesis, consider Figure 12, which shows the performance

variabilities incurred by a multi-tenant cloud deployment of an image recognition ap-

plication based on Inception-Resnet v2 Keras machine learning model [14]. As seen,

the performance deteriorates significantly when running in a multi-tenant environ-

ment compared to a baseline performance with no resource contention. Understand-

ing these performance issues, which themself can change dynamically, is important

to make effective dynamic deployment and resource management decisions so as to

meet applications’ service level objectives (SLOs).
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Figure 12: CDF of Response Time for Inception-ResNet v2 model using Keras
with 4 Cores
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A number of resource- and application performance-monitoring frameworks have

been developed in recent years, e.g., Nagios [27], Zabbix [122], Intel SNAP, linux-perf,

collectd [78] and systat to name a few. These performance monitoring tools provide

the users with different system-level and in some cases application-level metrics, which

in turn provide insights into the runtime performance of these applications.

As is the case with any technology, using such tools often involves a steep learning

curve in understanding their usage (e.g., their APIs), their features and capabilities,

and often requires users to manually write custom configuration scripts and programs

to effectively utilize the tools. With advances in hardware that enable more finer-

grained performance metrics to be collected, these problems are further excarbated.

For example, Intel has recently introduced the Cache Monitoring Technology tools

which are compatible with the new generation of Intel architectures [4]. To use these

capabilities, new monitoring tools and programs need to be added to capture the

desired performance statistics. Further, a user must possess expert knowledge about

the hardware architecture and monitoring tools.

Recent efforts [25, 84, 110, 149] have attempted to address these concerns. How-

ever, there still remain many unresolved issues that must be addressed. For instance,

such solutions are usually tightly coupled to an execution platform and as such do not

support compatibility with newer platforms. Secondly, many tools are non-intuitive

to use and less user friendly thereby requiring users to manually configure and install

the monitoring probes on the runtime platforms, which is an error-prone process.

Beyond addressing these limitations, newer capabilities are needed to enable run-

time performance monitoring of these applications. For instance, older frameworks

often cannot be extended to exploit finer-grained or newer hardware metrics, such as

last-level cache utilization or non uniform memory access (NUMA) patterns.

To overcome the above challenges, we propose to utilize the principles of software

product lines (SPLs) [62] in creating a model-driven generative framework called
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UPSARA- Understanding Performance of Software Applications and Runtime Sys-

tem Analysis. A product line is essentially a family of product variants which have

a set of features common to all variants, but differ from each other along some other

features of an overall feature set that defines a product line. Our approach is based on

the observation that different monitoring frameworks share many common features,

while at the same time differ on some other key features. Thus, the different monitor-

ing frameworks can be seen as variants of a product line. Using generative capabilities

provided by model driven engineering (MDE) [134], we synthesize the configurations

for the different frameworks and automate the desired performance monitoring tasks

for the use case under consideration.

The rest of the chapter is organized as follows: Section III.2 presents the moti-

vation, requirements and the architecture of UPSARA. Section III.3 delves into the

details of the model driven engineering techniques, and the UPSARA domain specific

modeling language. Section III.4 describes the generative capabilities of UPSARA.

We present validation of UPSARA using representative usecases in Section III.6. Re-

lated work is described in Section III.7. Finally, we present concluding remarks and

future directions for UPSARA in Section III.8.

III.2 Design and Implementation of UPSARA

In this section we highlight the key challenges and solution requirements, followed

by an overview of the UPSARA solution.

III.2.1 Eliciting Challenges and Solution Needs

The stakeholders of UPSARA are cloud performance engineers who would like to

analyze an application’s performance on the target platform. An application can be a

monolithic application such as a database, a micro-service based component assembly,

or can be a distributed application such as Map-Reduce, distributed co-simulations,
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or parallel processing jobs. To analyze the performance delivered to an application,

an engineer needs to collect system metrics such as the CPU, network, disk, memory

utilization as well as micro-architectural metrics, such as context switches, cache

utilization, memory interconnect utilization, among others. These metrics are needed

to pinpoint performance interference issues incurred due to multi tenancy. Moreover,

the engineer will also need application-level performance metrics, such as observed

response times and throughput.

The system metrics collection is typically performed using external programs such

as collectd, statsD, likwid, linux-perf, Intel PMU tools, Intel RDT tools, among oth-

ers [75]. Such tools can measure some or all of the metrics of interest. As such,

one may need a single or a collection of such tools to cover the spectrum of metrics

of interest. The runtime platform and the application then needs to be configured

accordingly with the right collection of tools based on the metrics selected by the

performance engineers. Each tool may impose different approaches for its configu-

ration such as through .conf files, or by passing input parameters during program

invocation. The target platform also might have limitations as to which metrics it can

offer to be monitored, and what tools need to be executed to capture the supported

metrics.

Based on these concerns, below we describe the key requirements for a solution

like UPSARA that we present in this chapter.

1. Ease of Use : The metric instrumentation framework should have a lower

entry barrier so that it is easy to use in the continuous integration and per-

formance studies of a cloud-hosted application. The steep learning curve for

individual tools hinders the users from making use of the features provided by

such platforms. Thus, UPSARA should provide intuitive and higher-level ab-

stractions, which hide the lower-level complexity thereby making it more easy

for the end users to utilize the platform.
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2. Ensuring the correctness of the configuration: It is important that the

metrics selection on a platform are supported by that platform. For instance,

monitoring non-uniform memory access (NUMA)-level statistics or measuring

cache statistics requires that the underlying platform hardware support these

capabilities. Without such support, forcing the monitoring tool to capture

these parameters will either result in capturing garbage data or throw a run-

time exception complaining about the non-existence of such features. Hence,

UPSARA should natively support built-in correctness or a violation checker,

which will enforce correct by construction design.

3. Well-formedness of generated artifacts: To avoid writing low-level code

artifacts, generative programming has helped developers by synthesizing various

code artifacts based on user-defined templates. Although, generative program-

ming can synthesize these artifacts, it is essential that a generative solution

adopted by UPSARA be correct and adhere to the domain-specific rules. This

is necessary to ensure functional correctness of the system.

4. Support for heterogenous runtime architectures: UPSARA should be

able to support heterogeneous runtime architectures, which are common in cloud

environments. Since each such runtime architectures might have their own set

of metric monitoring tools, UPSARA should support seamless and automated

composition of such tools in its architecture.

5. Extensibility and tool reuse: UPSARA must be able to reuse the existing

capabilities of underlying measurement tools that provide monitoring of system

metrics rather than reinventing the wheel by developing new monitoring tools.

The framework should support semantics for easy plug and play architecture

for adding support for new tools. Also, as new hardware architectures get
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developed, UPSARA should be able to add support for new architecture metric

measurements.

III.2.2 Architecture and Workflow

Figure 13 illustrates the high-level operational workflow of UPSARA that per-

formance engineers can use for analyzing their cloud-hosted applications. To begin

with, the designer of the experiment provides a high-level specification of the per-

formance analysis to be conducted. The specification includes the various metrics to

be measured, the type of application to be studied, and information about the run-

time platform on which the application needs to be executed. The designer encodes

this specification using the visual elements of UPSARA’s domain-specific modeling

language (DSML) (See Section III.3). Once the specification is captured, UPSARA

transforms the specification into valid configuration scripts and deploys the artifacts

onto the runtime platform. Application execution then begins on the target runtime

platform. The system metrics and the application metrics are captured during the

execution of the application and are made available to the user by means of auto-

analysis and visualization charts.

We now describe the main building blocks of UPSARA.

• WebGME Visual Environment: This block provides an intuitive interface via

the DSML for designing and orchestrating application performance analysis ex-

periments. The DSML-based interface enables (1) configuring various system

metrics to be collected on the target runtime platform, (2) controlling the ex-

ecution of the experiments, and (3) providing analysis and real-time system

dynamics.

• Model Interpreter: The model interpreter validates the well-formedness of the
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Figure 13: High Level Overview of UPSARA

user-supplied model by traversing the model elements and validating their syn-

tactic and semantic correctness while also generating the desired artifacts. The

generative aspects of the interpreter handled by the Code Generator block (de-

scribed below) implements a graph traversal logic using a visitor design pat-

tern [55] and synthesizes artifacts that capture the relationships and model

attributes as described by the user in lower-level representation.

• Constraint Checker: This module is responsible for detecting any violation in

the design of the experiment. It consists of rules which specify the correct prop-

erties of the application execution. Examples of constraints are an application

can be deployed only on one runtime platform at a time or supported list of

metrics of the runtime platform. Thus, if the designer of the experiment con-

structs a scenario where the application is deployed on two different platforms

at once, a constraint violation action will be triggered notifying the user of the

violations. These constraints are captured and are made available in the rules

database of UPSARA.
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• Code Generator: This component is responsible for generating the desired ar-

tifacts as specified by the user-supplied model. The code generator has access

to a repository of application and configuration template schemas as required

by the underlying monitoring and deployment tools. As an example, the gen-

erator can synthesize the schemas for the metric monitoring software. Also,

based on the application deployment on the target runtime system, the code

generator can generate scripts called playbooks that will then be input to an

application orchestration framework called Ansible [3]. The code generator is

also responsible for generating visualization artifacts for viewing the results.

• Orchestrator: This component interfaces with the runtime platform. The or-

chestrator is responsible for deploying the generated artifacts on the target

platform by instantiating appropriate application deployment and metrics col-

lection.

• Result and Analysis: This component is responsible for presenting the user

with the analysis and statistics of the application performance as designed by

the user. It features Python notebooks hosted on a Jupyter server [97]. The

graphical visualization allows users to analyze various application performance

characteristics. These include the resource consumption for different system

metrics such as CPU, load, memory, energy, etc. Specialized analyses modules

can be integrated into the generated notebooks which provide relevant analysis

for the selected frameworks.

III.3 UPSARA’s Domain-Specific Modeling Language (DSML) Design

We now delve into the details of UPSARA’s domain-specific modeling language

(DSML).
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III.3.1 Encoding UPSARA’s Product-line Feature Model

We leverage model-driven engineering (MDE) techniques to encode the different

elements involved in UPSARA’s product line for aiding in performance analysis of

cloud applications. Specifically, the feature model is encoded as a meta-model(s) of

an underlying DSML. To design the DSML, we have used the WebGME modeling en-

vironment [106] to create the meta-models, writing model interpreters, and encoding

generative logic for synthesizing artifacts. WebGME itself is a cloud-based service that

provides a browser-based design environment and supports creating visual DSMLs.1

The WebGME environment includes tools to write the model interpreters using

the default NodeJs language. It also has support for writing model interpreters in

other programming languages such as Python and Java. WebGME supports captur-

ing DSML syntax and its semantics via meta-modeling. Model interpreters can be

programmed for each specific meta-model instance. Model-interpreters also provide

an additional avenue for capturing information, which otherwise cannot be explicitly

captured in the meta-model. For example, capturing constraint violation logic can

be encoded in the model-interpreters.

UPSARA’s visual DSML provides several benefits when compared to manually

written scripts. The visual component blocks provide an easy way to instrument and

construct an experiment which can then be deployed as specified [34, 35, 42]. This

reduces barrier to entry for developers that can rapidly and concisely describe and

start running experimental scenarios without learning a new programming language

terminology and syntax [61]. The visual blocks are intuitive and hence the learning

curve for using UPSARA is negligible. Next, we describe the main aspects of the

UPSARA DSML and their responsibilities.

1A textual DSML is an alternative approach but we did not explore it.
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III.3.1.1 UPSARA Main Meta-model

Figure 14 shows the main building block of the DSML. It includes the following

meta-model components:

Figure 14: UPSARA Main Meta-model

Project: represents the top-level meta-model block of UPSARA. Project com-

prises an application set, and includes information about the instrumentation met-

rics to be collected on the runtime platform. The Project component also contains a

scenarios model. Scenarios describe different deployment schemes for running appli-

cations on the runtime platform.

Platform: The platform represents the cloud platform on which the application

performance study will be conducted. This usually represents target host machines

which includes: virtual machine, lightweight containers (e.g., Docker), bare-metal, as

well as a cluster of host machines.

FrameworkMgr: This component represents the monitoring framework which
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the user can configure with the desired set of metrics to monitor. Individual frame-

works can be custom-built with a predefined set of metrics that are supported for

the specific performance monitoring activity. Specialized frameworks can be built by

extending the FrameworkMgr to suit different application performance monitoring

scenarios.

Instrumentation: This component defines how the metrics collection will be

configured on the underlying cloud platform using one or more concrete frameworks,

e.g., collectd. The metrics are associated with frameworkmgr. Moreover, the runtime

platform is represented by platform. The relationship between frameworkmgr and

the platform is represented by the connection semantics in WebGME.

deployedON : This represents connection semantics in WebGME which capture

the relation between two nodes. Here deployedON represents a connection between

FrameworkMgr and Platform, database element and platform.

Scenarios : As mentioned earlier, this component includes the different deploy-

ment options for running the applications on cloud platforms. A user may want

to study application performance on multiple runtime platforms at once. For such

usecases, the user will define a scenario that captures the application to the runtime

platform mapping. Scenario component facilitates describing such mapping for the

performance study.

Visualization: Visualization of data and results is provided as an important

aid in conducting performance analysis of applications. The visualization component

generates plots that are specific to the FrameworkMgr being developed. Every Frame-

workMgr instance can have a custom set of visualization artifacts that meaningfully

represent the performance analysis data for the framework. Visualization can be pro-

duced using a set of Jupyter notebooks [97] that capture specifics of the application

performance.
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Database : This component is used for storing the collected performance metrics

data.

III.3.1.2 UPSARA Metric Meta-model

Figure 15 showcases a snippet of the metric monitoring meta-model. The system

metric to be monitored can be macro-level metrics such as CPU, memory, network,

disk, load, as well as micro-architectural metrics such as the context switches, L1

cache, L2 cache, L3 or LLC cache utilization, cache hit and miss counts, scheduler

specific metrics, Docker container-specific metrics, etc. Figure 15 shows a snippet of

the micro-architectural meta-model. As shown in Figure 15, using attribute selection

we allow fine-grained access to specific aspects of the system metrics that a user would

want to collect. As an example, the figure shows that cache-miss property can be set

to TRUE or FALSE.

III.3.2 UPSARA Platform Meta-model

Figure 16 illustrates the cloud platform meta-model. Platform represents the

target runtime platform on which the application performance needs to be studied.

Platform could be any of baremetal host machine (Host), a virtual machine (VM ),

or a lightweight Docker container (Docker). All these are derived from an abstract

machine concept in the DSML. Cluster comprises a group of machine elements. A

cluster could be either in the form of a Datacenter, FogPlatform, or an EdgePlatform

that represents the clouds, fog and edge computing resources, respectively [49].

III.3.2.1 UPSARA Application Deployment Scenario Meta-model

To test the performance of an application on various platforms we provide an

application deployment scenario meta-model. The scenario meta-model shown in

Figure 17 illustrates how an application maps to runtime platforms.
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Figure 15: Snippet of UPSARA Micro-metric Meta-model

A scenario for an experimentation can involve an application or a group of ap-

plications being deployed on a single or a set of runtime platforms. ApplicationRef

references the Applications meta-model. Similarly, MachineRef references the ma-

chine meta-model. As an example, a user might be interested in knowing how an

application runs on platform A, and would also like to see the application’s per-

formance on platform B. Using the UPSARA language one can easily create these

application deployment scenarios by reusing existing artifacts and simply referencing

them.
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Figure 16: Snippet of UPSARA Runtime Platform Meta-model

III.3.2.2 UPSARA Specialized Framework Meta-model

To cater to the commonalities and variabilities of the concrete metrics collec-

tion frameworks, we provide extensible meta-models with constraints for each such

framework that can be specialized from the abstract meta-model. An example of

a specialized framework that can be built using the UPSARA DSML is shown in

Figure 18. This specialized framework, which we have named as FECBench, has

been configured to support a subset of monitoring metrics. These include cpu util,

Docker macro, Docker micro, memory bandwidth local, memory bandwidth remote,

and LLC bandwidth system resource metrics. Also, the fec viz object of the type

visualization meta element is included as a part of this FECBench. fec viz includes

information about the custom type of visualization that is needed to support analysis

for the FECBench framework.

This example shows how users create a concrete product line variant from the
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Figure 17: Snippet of UPSARA Scenario Meta-model

UPSARA DSML and bring more specialized visualization and analysis aspects as

required for each of the custom frameworks. Also, using this meta-model design, the

framework can enforce design constraints. For example, it only allows the subset

of the metrics as defined by the specialized framework to be available to the end

user thereby enforcing constraints and following the correct-by-construction principle

[134].
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Figure 18: UPSARA Specialized Framework Meta-model

III.4 UPSARA’s Generative Capabilities

UPSARA’s generative capabilities are built using the WebGME tool. In WebGME

terminology, the model interpreters and the generation can both be handled by writing

custom programs called plugins. Thus, UPSARA implements the model interpreters

and the generators using the plugins infrastructure. The plugins can be instantiated

by users or they can run as service processes. In UPSARA, instantiation of plugins

happen when users invoke the plugin by clicking the plugin button in the WebGME
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environment. Figure 19 shows the process of generation, synthesis and deployment

in the UPSARA’s generative toolchain.

Figure 19: UPSARA Generative Process

We leverage the Embedded Javascript(EJS) [8] templates for creating templates of

the code artifacts that needs to be synthesized. EJS templates also supports encoding

custom logic which can be utilized for implementing constraints checking logic.
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III.4.1 Metric Monitoring Configuration Generation and Provisioning

As described in Section III.3.1.2, a range of metrics collection can be modeled

in UPSARA. However, based on the actual underlying metrics collection framework

used, only a subset of the metrics are realistically available to the end user at run-

time. An example of such a specialized framework is illustrated in Figure 18. Also as

shown in Figure 14, there is a mapping between the specialized framework and the

platform on which it needs to be deployed. Each metric that needs to be measured

can be configured to be monitored from a set of available system monitoring tools.

The generative capabilities of UPSARA capture the above relationships between dif-

ferent entities. Moreover, based on the target monitoring tools, UPSARA synthesizes

appropriate configuration scripts.

Algorithm 1 depicts the steps involved in the metric configuration generation and

deployment. As shown, the generator first needs to traverse the model and get a list of

metrics and the hosts on which the metrics are to be configured (Line 2, 3). UPSARA

then checks if the selected metric is actually supported by the target runtime platform.

This platform capability information is pre-populated and is available to the generator

for lookup. If the metric is not supported by the underlying platform, a constraint

violation is registered as shown in Line 8. If the metric is supported, we first get the

monitoring tool information associated with the metric (Line 9).

Once the appropriate monitoring tool is determined, the associated tool’s config-

uration template is fetched. UPSARA generates an Ansible playbook for configuring

that metric on the selected cloud platform. UPSARA also generates the configuration

script for the monitoring tool to configure the metric selection.

Moreover, as a part of monitoring and analysis, a Jupyter notebook template

associated with the framework is loaded and deployed as shown in Line 20. The

jupyter notebook files have .ipynb extension and comprise a list of json objects.

56



Algorithm 1: Metric and Visualization Configuration Generation and
Deployment

Input : Model

1 ListofMetrics← getMetrics(Model)
2 ListofHosts← getP latformNodes(Model)
3 iframeworkV iz ← getFrameworkV iz(Model)
4 mapMetricToHost← getMappingofMetricsToHost(Model)
5 if mapMetricToHost! = ∅ then
6 for Vm,h ∈ mapMetricToHost do
7 if isMetricSupportedbyHost(m,h) = False then
8 Skip ; // Constraint Violation

9 metricTool← getMetricTool(Model,m)
10 metricConfTemplate← getTemplate(m,metricTool) ; // Generate

Artifact

11 hostF iles[h].insert(metricConfTemplate)

12 end
13 for host ∈ hostF iles do
14 for files ∈ hostF iles[host] do
15 InstantiateDeployment(host, files) ; // Deploy Artifact

16 end

17 end

18 if iframeworkV iz! = ∅ then
19 vizTemplate← getV izTemplate(iframeworkV iz)
20 deployTemplate(vizTemplate) ; // Deploy Visualization

21 end
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The jupyter notebook can be dynamically populated with the metrics parameters

that need to be monitored whose information is available in the model.

III.4.2 Application Configuration Generation and Orchestration

The process for obtaining application-specific details is similar to the scheme de-

scribed in Algorithm 1. The generator program first loads the model and gets the

information about the applications to be studied. Next it finds the association be-

tween the application and the deployment platform on which it needs to be studied.

Once the target applications and the runtime platform are determined, UPSARA

generates a configuration script. This configuration script is further used by the main

framework program which performs the application deployment and execution on the

target platform.

III.5 Meeting The Requirements

Based on the description of UPSARA’s DSML design and generative capabilities,

we now show how UPSARA addresses the challenges and meets the requirements

described in Section III.2.1.

1. Ease of Use : UPSARA provides a visual DSML for easy construction

of very large scale experimentation. The performance engineer can also easily and

rapidly select metrics of interest which need to be analyzed for the application under

test. The generative capabilities in UPSARA create monitoring metric configuration

scripts without the need for manual writing of scripts for configuring the monitoring

tool.

2. Ensuring the correctness of the configuration: The UPSARA DSML

embeds the relationship and constraints between the meta elements of the language.

As such these rules ensure that when the user starts designing experiments using

WebGME, only the constructs that are supported by the language are available and
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visible to the user for instantiating. Also, the model interpreter enforces constraint

checking which ensures that the experiment that is designed by the user also is checked

for constraint violations. This is addressed in Section III.4.1.

3. Well-formedness of the generated artifacts: UPSARA provides au-

tomated synthesis of application configurations, experimental configurations, metric

configurations and the result visualization artifacts. UPSARA’s generative process

as described in Section III.4 includes constraint checking rules that detect any viola-

tions encountered in the model design. Capturing the violation allows it to ensure that

the artifacts generated actually ensure correct functional aspects of the performance

measurement study.

4. Extensibilty and tool reuse: Section III.3.2.2 explains how a user can

create a specialized framework using existing elements from the UPSARA DSML.

It also demonstrated how a user can use existing language elements and build new

models using the UPSARA DSML.

5. Support for heterogenous runtime platforms : Section III.3.2 discusses

how the UPSARA platform meta-model is able to support heterogeneous runtime

platforms. The correct-by-construction generative and deployment capabilities eases

the generation and deployment of large-scale configuration artifacts on the hetero-

geneous runtime platform. This also avoids the accidental complexities involved in

configuring such large-scale systems.

III.6 Evaluating UPSARA via Use Cases

In this section we use three different use cases and their analyzed performance

data to highlight the significant benefits derived from using UPSARA. For our use

cases, we have used an experimental setup comprising an Intel Xeon processor whose

configuration is listed in Table 2. The software details utilized are as follows: the

underlying metrics collection frameworks are Collectd (v5.8.0.357.gd77088d), Linux
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Perf (v4.10.17) and Likwid Perf (v4.3.0). Configuring different monitoring metrics

is achieved by utilizing UPSARA. We used applications from the PARSEC [46],

SPLASH-2 [46], and DaCaPo [47] benchmarks for the performance analysis.

Table 2: Hardware & Software Specification of Compute Server

Model Name Intel(R) Xeon(R)
CPU E5-2620 v4 @
2.10GHz

Number of CPU cores 16
Memory 32 GB

Operating System Ubuntu 16.04.3 64-bit

III.6.1 Case Study 1- Co-located Workload Performance Analysis

Recent literature indicates that datacenter resources often go underutilized [67].

To increase the utilization, cloud providers tend to consolidate applications by means

of overbooking. However, co-location of applications without proper knowledge of

the applications’ performance profile can result in performance interference, which

degrades performance. This occurs due to contention for shared resources. In this

use case, we use UPSARA to measure the application’s degradation with co-located

background workloads.

Our use case application is a computer vision application performing image feature

recognition. The image processing application uses Scale Invariant Feature Transform

(SIFT) to find the scale and rotation independent features of an image [140]. The

application is a server-side application with the clients continuously sending an image

of fixed size to be processed. We measure the server-side execution time for processing

a single client request. The image processing application is also co-located with other

background workloads that share resources on the same host machine.
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Figure 20 depicts that the performance of the image processing application deteri-

orates significantly when co-located with background loads due to varying interference

impact. To analyze this variation in the performance of the application, the user uti-

lizes UPSARA to configure the metrics to be monitored, and also to execute the

image processing client and server application. Using UPSARA, the user leverages

UPSARA’s runtime machine learning approaches to determine the dominant metrics

that are highly correlated with the application’s QoS metric: execution time. The fig-

ure reveals that L1-iCache-Loads, IPC, IPS, L1-dCache-Loads, LLC-loads, cache-miss

are highly correlated with the performance of the application. Using this knowledge,

intelligent resource schedulers can be designed, which avoid placing this application

with other co-located workloads that are not compute and cache intensive.

III.6.2 Case Study 2: Application Resource Utilization Modeling

When deploying applications in the cloud environment, resource management so-

lutions need to allocate sufficient resources to meet application SLOs. The rapid

growth of new type workloads such as deep learning and distributed machine learn-

ing, are moving to the cloud. As such, studying how different resources are utilized by

such workloads becomes critical for cloud/cluster schedulers. As an exemplar, we use

the same benchmarks as before for analysis. Our aim was to study the resource uti-

lization of different applications from these benchmarks. Figures 21 and 22 depict the

normalized number of system context switches and shared memory bandwidth uti-

lization obtained by orchestrating monitoring components using the UPSARA frame-

work. Due to space constraints we are not displaying rest of the resource utilization

metrics. This collected information on resource utilization can be leveraged in build-

ing predictive resource utilization models for co-located workloads. Such predictive

models can be useful for cloud providers in improving resource allocation algorithms.
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III.6.3 Case Study 3: Studying the Impact of Application’s Resource

Configuration

As more and more jobs are migrated to the public cloud, users are faced with a

challenge of which configurations to select from a range of virtual machine options pro-

vided. The cloud users usually would like to find a cost effective configuration which

meets their application’s QoS metric. We use UPSARA to measure the application’s

QoS metric - execution time, for different application container configurations. We

measure the execution time for five different CPU core resource configuration options:

[1,2,4,8,16] cores. Figure 23 shows the impact of resource configuration on the execu-

tion completion times for applications. Using these insights appropriate configuration

can be selected such that it satisfies the user requirements.
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Figure 21: Normalized amount of context switches imposed by applications from
the PARSEC, DaCaPo and Splash-2 benchmarks.
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PARSEC, DaCaPo and Splash-2 benchmarks.
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III.7 Related Work

We now compare UPSARA with prior related works. Wienke et. al. [151] have

developed a domain-specific language (DSL) for performance profiling, however it

is restricted to application profiling only and is coupled to the robotics domain. It

utilizes code generation facility to create artifacts required for testing application

performance using the Java testing framework.

In [144], a DSL is introduced for web application performance profiling under var-

ious load configurations. The DSL automates the cloud resource allocation problem

based on the desired QoS goals for the web application. The DSL also generates test

cases for load testing the application and monitoring both the system and the appli-

cation metrics. Similarly, in [54], a DSL called DSLBench is presented. DSLBench

generates load testing codes for web application testing. It leverages the Microsoft

Visual studio and generates codes in C-Sharp language. AutoPerf [25] presents an

automated load testing and resource usage profiling for web service applications. It

provides a facility for monitoring resource usage for per request calls in a web session.

It also provides a load generation facility.

In [24], an OMG Data Distribution Service-centric performance testing suite is

designed leveraging a DSML. It uses model-driven generative capabilities to generate

test plans for testing the application’s end-to-end QoS under various configurations.

It also automates the deployment of the test plans on the cloud environment. Ex-

pertus [92] provides an automated performance testing of applications on the cloud

environment. It also leverages generative aspects to generate test specification and

deployment of the applications using the aspect oriented weaving techniques.

Similar in spirit to our work, [77] presents a declarative DSL and accompanying

model-driven framework for automated end-to-end performance testing of container

based micro-services. Similar to application profiling which is the focus of our work,

performance testing also involves complex set-up of performance tests, configuration
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and management of loading infrastructure, deployment under different testing sce-

narios and post analysis of collected performance data.

While the above DSL tools and methodologies address some of the problems in

application performance and system analysis, they still have some drawbacks. In

some cases the techniques are tied to a specific programming language, application

and/or the runtime platform. As such they cannot be used for heterogeneous runtime

platforms and use case scenarios, which UPSARA supports. For example, the solution

presented in [24] is tailored towards DDS messaging platform. In [151], performance

profiling is geared towards robotic applications running on Java platform. Similarly,

web application specific tooling is presented in [25, 54, 144].

Another important differentiation when compared to existing tools is that they

do not allow configuring system metrics as captured in the UPSARA DSML. Users

still have to write manual configuration scripts for various metric collection probes

on the desired runtime platform for performance monitoring. UPSARA’s generative,

constraint checking and deployment facilities allow for automated synthesis of these

monitoring metrics configurations and deployment on the runtime platform.

Moreover, existing tools and approaches lack visual modeling elements which UP-

SARA’s modeling environment provides. This makes configuring of performance mon-

itoring applications much more intuitive thereby presenting a user friendly environ-

ment for performance monitoring. UPSARA also creates auto-analysis and visualiza-

tion notebooks using the Jupyter environment for performance analysis.

III.8 Conclusions

The utility of cloud computing and its services can be significantly improved if

performance engineers can rapidly and with ease analyze performance anomalies in

cloud-based applications and define appropriate solutions to overcome these prob-

lems. Unfortunately, users today face daunting challenges in using existing resource
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monitoring and application performance modeling frameworks due to the significant

variability incurred across these frameworks in terms of APIs, granularity of mon-

itoring, and making sense of the collected data. To that end this chapter presents

UPSARA, which is an extensible platform based on model-driven engineering technol-

ogy that has the potential to significantly reduce the entry to barrier for performance

monitoring and modeling of applications deployed across the cloud, fog and edge

resource systems. UPSARA provides high-level, intuitive abstractions which enable

users to quickly set up performance experimentation using visual drag and drop com-

ponents. Generative and constraint checking components within UPSARA ensure

that the generated low-level scripts, such as metric configurations, required for the

performance experimentation are correct by construction. The configuration deploy-

ment component of the framework, e.g., using Ansible [3], satisfies the deployment

of the generated configuration artifacts on the runtime platform. The framework

also provides the user with an ability to automate the visualization of results and

analysis, which enables users to gain deeper insights into the application performance

behaviors.

As future work we plan to extend the DSML to support additional kinds of perfor-

mance testing usecases, such as the effect of hardware configuration, NUMA bounded

placement schemes, cache contention scenarios on application performance. We also

plan to support experiment workflows that define dynamic operational patterns as

seen in real world situations and analyze application and system performance. These

patterns include application workload variability, system failure injections, and collo-

cation application execution scenarios.

UPSARA is available in open source at https://github.com/doc-vu/UPSARA.
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CHAPTER IV

TECHNIQUES FOR GENERIC DISTRIBUTED SYSTEMS
VALIDATION FRAMEWORK

IV.1 Introduction

Complexities in Distributed Systems and Algorithms

As the world gets more connected owing to many advances in hardware, software

and networking technologies, many new services of significant societal relevance (e.g.

healthcare, transportation, avionics, weather prediction, search and rescue, education

etc.) are likely to emerge. With the advent of low-cost embedded devices, sensors

and other ubiquitous computing devices, such services will be inherently networked

and distributed. Although these services will be designed to be easy to use, their

underlying design and implementations will be substantially complex. In large-scale

networked and distributed systems, many complex issues need to be addressed, such

as time synchronization, fault management, replication and replica synchronization,

consensus among peers, leader-election among nodes, deadlock avoidance etc. There

is also a large degree of heterogeneity in the distributed systems in terms of net-

work topology (ring, star, mesh etc.), node types (fixed vs mobile nodes, static vs

dynamic nodes, physical vs virtual nodes), communication types (client-server, peer-

to-peer, publish-subscribe etc.), network types (Ethernet, WiFi, Satellite). These

design considerations and heterogeneity make the algorithms for distributed systems

very complex.

Difficulties in Understanding and Deploying Distributed Algorithms

Existing teaching modalities, tools and techniques for understanding the algo-

rithms for distributed systems often rely on traditional approaches such as didactic
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lecturing, simple proof sketches on the whiteboard, and basic simulations or toy

assignments. It is general practice in universities to teach distributed systems algo-

rithms theoretically and then having students implement them in a programming lan-

guage like (Java, Python or C++) or simulate them using basic simulation tools [116].

This approach incurs several difficulties for students including (1) programming them

in languages they are not experts in, (2) analyzing these algorithms in simulators/em-

ulators they are unfamiliar with, and (3) needing to deal with accidental infrastructure

complexities in order to deploy them on real hardware to realistically validate them

or propose improvements and extensions to them. Due to a piecemeal approach in

learning and implementing these algorithms (i.e. programming/learning algorithms

individually), students (1) cannot analyze multiple algorithms at the same time to

compare and contrast them, (2) cannot seamlessly switch between simulation, emu-

lation and real deployment on hardware, and (3) hence do not obtain a holistic view

of distributed systems and how different algorithms work together in a real world

distributed system.

Solution Approach and Organization of Chapter

To address these challenges, we use Software Product Lines (SPLs) [62] in the

context of cloud platforms to improve teaching and learning of distributed systems

algorithms. The key intuition behind applying SPL principles stems from the obser-

vation that these algorithms tend to share several common traits while differing only

in some aspects. Consequently, a collection of distributed systems algorithms can be

viewed as variants of a product line. The challenge then lies in understanding and

capturing the commonality and variability across these algorithms, and developing

techniques needed to automate the synthesis of these variants so that the different

dimensions of accidental complexities faced by the student can be substantially alle-

viated.
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Our solution is a framework for distributed systems called the Playground of Al-

gorithms for Distributed Systems (PADS), that reifies SPL principles by building on

the strengths of model driven engineering (MDE) [134] with generative capabilities,

feature modeling and teaching/learning tools & technologies. In this context, this

work makes two contributions:

1. We present the underlying feature model that captures the commonality and

variability across a collection of distributed systems algorithms, and show how

this feature model is realized in a domain-specific modeling language (DSML), as

well as generative capabilities that maximally automate the synthesis of product

variants (i.e., experiments involving one or more distributed algorithms) that

can be deployed and tested at large-scale using cloud platforms.

2. We present a prototype implementation of PADS to showcase a distributed

systems algorithm illustrating a peer to peer file transfer algorithm based on

BitTorrent, which shows the benefits of rapid deployment of the distributed

systems algorithm. Using this example, we provide some qualitative evaluation

of PADS showcasing the effort saved on the part of a student.

IV.2 Related Work

In this section we compare PADS to related works along three dimensions: tools for

network experimentation, current work in the learning and teaching specific software

for distributed systems algorithms, and use of model driven engineering in the design

of large scale software systems in the context of learning systems.

1. Tools for network experimentation: The authors in [53] have provided an

extensive list of experiment management tools for carrying out research in distributed

systems. The strengths and weaknesses of various tools are provided. It highlights

the need for good experimentation tools to ensure replicability and reproducibility
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of an experiment. It also points out the need for further development of these tools

due to numerous challenges in fully exploiting the capacity of certain experimental

testbeds. Efforts have been made to address the problem in repeatable research

environments. For example, the Apt (the Adaptable Profile-driven Testbed) approach

has been presented in [132]. It builds an experiment profile which describes the

dependencies needed to conduct networking experiments. Dependencies include both

hardware and software requirements of the experiment. Researchers can build their

own testbeds and share these profiles with others, who can then repeat and reproduce

the experimental environment.

The cOntrol and Management Framework (OMF) [128] provides a modular ar-

chitecture for managing heterogeneous resources in networking testbeds. It manages

resources such as remote bootstrapping, and saving and loading disk snapshots for

conducting experiments. It also features an experiment description language which

can be used to specify resource requirements and configuration and experiment or-

chestration. OMF-F [127] is based on OMF [128]. It addresses the shortcomings of

OMF which was targeted for a single testbed deployment only. OMF-F allows man-

agement of resources for network experiments across federated networking testbeds.

It provides a DSML supporting special event-based experimental scenario. It also

supports management of resources using a resource model which features publish-

subscribe messaging pattern for communication and control of resources. Further, it

supports scalable deployment of experiments across federated testbeds.

The above frameworks are oriented more towards the research community to con-

duct experimental research. Unlike these tools, PADS is designed as a learning aid

in teaching distributed systems algorithms. Our approach also facilitates use of both

the simulator and real world testbed in a single development environment for testing

different distributed systems algorithms. We also use the SPL approach in the design

and development of PADS.
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2. Learning systems for distributed algorithms teaching: Authors in [66]

present a comprehensive survey providing an overview of different tools, simulators

and learning platforms available for teaching distributed systems. It outlines tools

available for managing deployment, execution, discovery, monitoring and configura-

tion of distributed systems. It also presents a list of algorithms that can be used for

teaching and demonstrating intricate details of distributed algorithms.

ViSiDiA [21] is a framework for designing, simulating and visualizing distributed

algorithms. It is developed using JAVA frameworks. It provides implementations of

different distributed systems like sensor networks and mobile agents. A user can spec-

ify their custom distributed algorithms by making use of framework specific JAVA

API. Distal [45] is another framework that is specifically aimed at a certain class

within the distributed systems algorithm, namely fault-tolerant systems. It is devel-

oped on top of the Scala programming framework. One can write pseudo code for

the algorithm using its DSML to translate into an executable code. The executable

can then be deployed on clusters for testing. It lacks integration with simulators that

would facilitate quick testing and debugging of algorithms.

LYDIAN [98] is an animation environment for visualizing the behavior of dis-

tributed algorithms. It supports writing custom protocols which can be executed on

the LYDIAN’s simulator and the output animation can be viewed on the TCL/TK

based graphical user interface. It also supports playback of algorithm execution events

using a trace file for quick demonstration of algorithm behavior on the animation

windows. VADE [114] is another framework that provides visualization of distributed

algorithms. The VADE framework is designed such that computation and imple-

mentation of algorithm is done on the server side while users can see the algorithm

visualization via JAVA applets using the web browser on their client machines. The

algorithm is implemented using JAVA programming language.

Another teaching and learning framework called FADA (Framework Animations of
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Distributed Algorithms) is presented in [120]. In FADA, the simulations are written

using JAVA programming language using the visualization APIs provided by the

framework. It also provides a set of preassembled simulations for different algorithms

which can be used as examples for demonstrating distributed algorithms to students.

The frameworks presented above have the following shortcomings compared to our

approach. First, the distributed algorithms need to be written in a language which

the framework supports. Secondly, the tools presented above do not support seamless

translation of programming artifacts from simulation to real world deployment.

3. MDE in learning systems: Previous work has shown MDE and DSML

being effective tools [115] in developing teaching software systems. Students have

also seen the benefits of rapid code generation based on MDE techniques. In [80],

students were able to rapidly synthesize code artifacts using MDE to rapidly generate

code, when changes where required to be made in platform configuration of robotics

control code and mobile device.

An educational game design software framework is presented in [95]. It uti-

lizes a model driven approach to describe educational game concepts. It presents

an educational game metamodel that defines platform-independent educational game

concepts. The framework aims to design educational games to motivate the students

to get involved in the learning process thereby effectively conveying educational ma-

terial.

SPL techniques were applied for design, development and support of a family of

elearning systems [59] called TALES. It also highlighted some of the challenges in-

volved in the development of large-scale educational system and how SPL helped it to

gain 10-fold productivity boost in the developmental efforts. The educational systems

were built as a part of Adult Literacy Programme (ALP) for teaching illiterates in

India in 22 Indian languages. Unlike the work presented above our area of study is

focused on a special topic within computer science which is the distributed systems
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algorithms. Our work leverages the MDE and the SPL techniques in the design of a

learning framework for distributed algorithms.

IV.3 Dimensions of Variability in the Development and Deployment of

Distributed Systems

Decentralization is a fundamental aspect of distributed algorithms. Distributed

systems algorithms deal with a large number of issues that arise in distributed systems,

e.g., challenges pertaining to successful coordination of various entities to address sys-

tem fault-tolerance, communication heterogeneity, and distributed time synchroniza-

tion. Given these challenges, distributed algorithms are difficult to comprehend and

its implementations are often non-trivial. Moreover, these algorithms target differ-

ent classes of problems such as consensus, synchronization, discovery, fault-tolerance,

performance and correctness. To observe the behavior of a distributed algorithm in

action one could use a simulation environment or real time observation on a set of

actual distributed systems. Network simulators can be used to implement and test

existing or new algorithms in a controlled environment at a lower expense both in

terms of time and money.

This section elicits the key challenges in the learning process of distributed sys-

tems. It presents a motivating scenario based upon which a set of challenges are

documented that subsequently drive our research on PADS.

IV.3.1 Motivating Scenario

Figure 24 shows a motivating scenario illustrating a workflow that captures a

typical approach to hands-on learning of distributed systems algorithms. A number of

challenges manifested in this workflow and described below prompted us to investigate

solutions to address these challenges.

As shown in Figure 24, teaching and understanding of an algorithm is typically
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Figure 24: Commonality and Variability in Algorithm Design and Deployment
Workflow

accomplished by simulating the algorithm in simulators that can be parametrized in

a variety of ways or by running the algorithm in testbed environments that can be

configured in multiple different ways. This apparently simple teaching and learning

workflow manifests a significant amount of variability both within and across the

stages of the workflow. For example, many different network simulators exist such

as OMNET + + and ns-3. Similarly many different network testbeds exist such as

Emulab, PlanetLab and GENI. Furthermore, the algorithm demonstration involves

setting up of different deployment configurations and network topology setups. The

algorithm under study may involve a variety of network actors like mobile hosts,

clients, servers, peers, elected leader actor, and network coordinator. The underly-

ing network communication may involve different types of network interfaces either

76



standalone or a combination of Bluetooth, WiFi, ZigBee, Ethernet, USB, and serial

interfaces. Moreover, the target algorithm involves defining the network topology for

demonstrating the experiment and understanding the algorithm details.

As an example, the process of understanding a peer to peer file transfer algorithm

such as BitTorrent will involve a set of peers which communicate with each other.

In this scenario, there would be different network actors like Peers and Trackers.

These actors, which are specified by the algorithm, may communicate via an Ethernet

interface in a LAN environment or over a wireless link. The network interface could

support variable transmission speeds. For demonstrating the target algorithm, one

also needs to represent the desired network topology accounting for all the associated

network actors in the system thereby ensuring a faithful operation of the algorithm.

Based on all the configurations chosen in the different stages of the workflow, a student

must then proceed to deploy the experiment in the deployment environment, which

can be either a simulator or a testbed.

IV.3.2 Challenges and Requirements

As evident from the above scenario, any tool used in learning and deployment of

distributed systems algorithms must manage a large amount of variability across the

different stages as well as support the key commonalities. The commonalities include

the communication model, model of computation, and the problem being solved, e.g.,

consensus, fault tolerance, consistency, lookup, etc. We surmise that by capturing the

variability in the demonstration of the distributed algorithm as a software product

line would enable instructors to rapidly provision a desired target algorithm, which

in turn will make it easier for users to learn it thereby saving time in the experiment

configuration and setup. Based on the challenges discussed, we summarize following

requirements for PADS.

Requirement 1→ Extensibility and Tool Reuse: The tool should enable

77



new algorithms to be added to the existing collection. At the same time, any associ-

ated tool such as a simulator or a testbed must be reusable in the context of newly

introduced algorithms. At the same time as new simulators, experimental testbeds,

and real-world scenarios emerge, the framework should be extensible to include these

new back ends also.

Requirement 2→ Programming and Deployment heterogeneity: The

framework may be tied to one programming language but the student may not al-

ways be familiar with that programming language. One should be able to program

the distributed systems algorithms in the language one is familiar with and the SPL

framework should support learning of distributed algorithms by being implementa-

tion language-agnostic. The deployment of algorithms can be made on simulators,

emulated testbeds or in a real world network deployment. The SPL framework must

allow users to define a network topology of the target distributed algorithm and run

it on the desired deployment environment thus enabling the possibility to seamlessly

transition the code artifacts written for a simulator to a real-world deployment or

vice versa. There should be clear separation of concerns between the definition and

deployment of network topology.

Requirement 3→ Integrated tool to rapidly create topology and deploy

experiment: It is a challenging task to use existing tools to rapidly create a new

network topology to showcase the desired distributed systems algorithm and deploy

on single or multiple deployment environments all using a single toolchain. It is hard

to find such tools that can be used to run experiments targeting multiple deployment

frameworks in an integrated tool suite. Such a requirement must be met.

IV.4 Design and Implementation of PADS

We now discuss the design and implementation of the Playground of Algorithms

for Distributed Systems (PADS), which is an extensible framework that manages a
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Figure 25: Feature Model Diagram of Playground of Algorithms for Distributed
Systems (PADS) Framework

software product line of distributed algorithms used as an instructional and learning

aid for distributed systems. It uses MDE and SPL techniques to integrate various

distributed systems algorithms for teaching, and cloud platforms for deployment of

experiments. We also show how PADS addresses the challenges and requirements

introduced in Section IV.3.

IV.4.1 Feature Model Representation

For a successful SPL for PADS we need to manage the commonalities and variabil-

ities that are exhibited for realizing the development, implementation and demonstra-

tion of distributed algorithms. One of the well known approaches for representing and

managing these commonalities and variabilities is by the means of feature models [40].

Feature models provide proven techniques for improving reusability by specifying the

reuse rules.

The feature model for PADS must capture the commonalities and different di-

mensions of variabilities that we highlighted in Section IV.3. To that end we have

defined a conceptual feature model for PADS shown in Figure 25. The PADS frame-

work is represented as the root feature in the figure. The Deployment and the

Distributed-Algorithms are the required features. Both these features are required
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because we must have an algorithm that we want to test, and it must have one of the

many potential choices available for deployment so that it can be tested.

These features are used to capture from the user the types of target dis-

tributed systems algorithm to be evaluated and where to perform the de-

ployment of such algorithm. The Deployment can be made on Simulator,

RealDeployment or an Emulator. OMNET++ and NS-2 are types of Simulator fea-

ture. Emulator can be Mininet or Qemu which are type of emulator tools avail-

able for experimentation. RealDeployment can be done on cloud based virtual

machines(Cloud-VM) or on actual physical host machine(PhysicalHost) to conduct

experiments. The Distributed-Algorithms consists of an extensible set of dis-

tributed algorithms, which in turn can be categorized under different classes, such

as Coordination and Communication. Coordination category of algorithms include

Checkpointing, Synchronization, State Machine Replication, Consensus and

Leader-Election. Peer to peer (P2P), publish-subscribe (PUB/SUB) and client-server

(Client-Server) communication models are a part of Communication models cate-

gory. The Distributed-Algorithms comprises one or more kinds of Actors. Actors

may be an abstract representation of peer systems: like Server, Client, Leader,

Tracker.

Other actors could represent an abstract notion of the host system, which could

either be Mobile or Static host. Some of these actors could represent network

devices based on the functionality it performs like Router, Hub, Switch. Each of these

Actor feature exhibits a set of network and communications features. These features

are represented by the NetworkTypes feature. NetworkTypes could be Wireless

or Wired communication interface. WIFI, GSM, Bluetooth are a type of Wireless

communication interface. Ethernet and Optical are type of Wired communication

interfaces.
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IV.4.2 Realizing The PADS Feature Model Using Model-driven Engi-

neering

The SPLs can be built using modular software. Changes in the feature config-

urations can be mapped to the changes in the software modules [150]. Design and

development of modular software framework is a challenging task. We use model-

driven engineering(MDE) techniques to codify the feature model by mapping it to

metamodel(s) of a domain-specific modeling language and use generative technolo-

gies, which are key artifacts of MDE, to automate the synthesis of product variants

of our PADS product line.

Our PADS framework is hosted on virtual machines deployed on Openstack cloud,

which is an open source cloud computing infrastructure [146]. Cloud computing

provides on-demand access to large pool of shared resources for compute intensive

simulations and network experimentation.Users can access these virtual machines

using remote access client which could be either a web browser client or a desktop

client.

Figure 26 shows the overall process of creating a network topology, selection of

the distributed algorithm, intermediate topology-specific code generation, and de-

ployment of the algorithm using our PADS framework. A user develops a model of

the experiment using our DSML. The user first selects the algorithm. The algorithm

selection can be done from one of the pre-assembled algorithm modules provided as

part of the framework. The user then creates the network topology for the desired

test algorithm. The framework has built-in constraint checker module which verifies

if the test topology is supported, if any violations are present it will notify the user

about the constraint invalidation. Next, to conduct the experiment the user selects

the deployment environment. Once the experimental setup for a given algorithm

and deployment environment are modeled, a set of reusable model interpreters are
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executed to automatically generate the deployment engine specific glue-code and the

execution artifacts.

Figure 26: Model-based Process for Distributed Algorithm Demonstration and
Deployment

The Generic Modeling Environment (GME) [101] is used to develop the DSML

and generative capabilities for provisioning and deployment management of the ex-

periment. GME provides an environment to define the syntax and semantics of a

DSML through metamodeling. Model interpreters can be defined associated with

the metamodels that can provide additional semantics to the language which are not

captured in a visual form as well as provide the generative capabilities needed for

automation. The same GME environment can be used to build model instances of a

DSML. Thus, in our PADS framework, an users can extend existing metamodels for

the collection of algorithms by providing a metamodel for a new algorithm. Next,

the user can then use the PADS framework to develop model instances and configure

them for their experimental scenarios.
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Figures 27, 28 and 29 illustrate the metamodels used in the framework. In these

metamodels we have mapped the features that we described in the feature model

into concrete metamodeling artifacts. The metamodel primarily comprises first class

entities, such as DistributedAlgorithm, Deployment, and Main.

Figure 27: Meta-Model of Playground of Algorithms for Distributed Systems
(PADS) Framework

Next, we describe the different metamodel components in the DSML and their

responsibilities:

83



Figure 28: Meta-Model of Network Actors

• Main: represents the main meta-model block of PADS framework. This compo-

nent aims to provide information for all the framework components like: Deploy-

ment and DistributedAlgorithm, which can be configured by users depending on

their experimental setup needs.

• DistributedAlgorithm: defines the distributed algorithms supported by the

framework. Users can then select distributed algorithms contained within this

model. As can be seen in the Figure 27, the BitTorrentNetwork and ClientServer

algorithms are currently available with DistributedAlgorithm.
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Figure 29: Meta-Model of DataRateChannel representing the communication
characteristics

• Deployment: specifies the type of deployment environments available for test-

ing the algorithms from DistributedAlgorithm. A user can create the network

topology and deploy the algorithm on the target environments supported by De-

ployment. OMNET, which is a simulation environment, and RealTestNetwork,

which is a real world testbed, are two such deployment environments.

• ActorNodes: these represent the type of network participants/nodes that will

be used in the algorithm. As seen in Figure 28, these have an attribute field

of PortNumber which represents the network port of the node. Server, Router,

85



Peer, MobileHost, Tracker, Router are such ActorNodes that can be utilized in

distributed systems algorithm as network actors.

• DataRateChannel: is used to define the network communication characteristics.

Communication properties like communication rate (Speed) and communication

delay (delay) can be specified for the network. Ethernetline and Fiberline are

two such communication media represented in the Figure 29.

• DeploySimConnection: acts as a bridge between the test algorithm and the

deployment environment. Therefore the DistributedAlgorithm defined by the

user are connected to the Deployment component via DeploySimConnection.

Our framework also leverages the GME’s OCL constraint checker facility to detect

design time configuration errors. If there is any violation, then the constraint checker

reports this violation to the user.

In Figure 30, an example model of execution of a distributed systems algorithm

using the DSML is illustrated. In the figure, DSML components such as TestModel

(DistributedAlgorithm) and Deployment (Deployment) are defined. In this example

model, we have selected OMNET++ as a target deployment environment. Selection

of desired distributed algorithms is done as shown in the model in Figure 31. Here

we have selected a BitTorrent algorithm as an example.

IV.4.3 Meeting the Requirements

1. Extensibility and Tool Reuse: The framework supports working with new

distributed systems algorithms and topologies. Using the MDE concept of meta-

models, we can specify the metamodels for a new distributed systems scheme.

This also applies to new deployment environments which the framework may

need to support in future. As shown in Figure 27, we can add new distributed

systems algorithms and deployment schemes by attaching the new meta-models
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Figure 30: Model example

to DistributedAlgorithm and Deployment metamodels, respectively. We also

need to specify the model interpreter and how to generate the new configura-

tion code for the new metamodels. Thus this framework can be easily extended

to support new type of distributed systems and deployment environments on

top of the existing software tools.

2. Overcoming Programming and Deployment heterogeneity: We leverage

MDE technique where in we created a DSML which allows one to describe the

type of distributed systems one would like to experiment with. Using the DSML

the user can create a network topology of the distributed systems and deploy

it on the target environment to which he/she is familiar with. For example, if

the user is familiar with the programming construct of OMNET++ simulator,

the framework will autogenerate configuration files which are compatible with
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Figure 31: Model of target algorithm selection

OMNET++ environment. If an experiment needs to be conducted on the cloud,

the tool will generate the files required to configure and deploy the experiments

on virtual machines in the cloud.

3. Integrated tool to rapidly create topology and deploy experiment:

This framework is designed to facilitate users to use a single toolchain that can

create and deploy large distributed systems on different deployment environ-

ments. It also lets a user reuse the same network system topology and allows

to target simultaneously to multiple deployment environments. Also the auto-

generation code facility helps one to quickly configure new network topology

without manually writing the network configuration code which can be both

tedious and error prone.
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IV.5 Framework Validation

In this section we evaluate PADS along three dimensions. First, we show how

PADS can be extended to include a new algorithm. Second, we show PADS’ effec-

tiveness in terms of effort saved on the part of the user in using the framework. Third,

based on the case study used in the first two evaluations, we elicit how the three key

requirements from Section IV.3 are met by PADS.

IV.5.1 Extensibility of PADS

To showcase the extensibility of our framework we have created an application

based on a peer to peer (P2P) distributed system that uses the BitTorrent algo-

rithm [124]. The BitTorrent system is a P2P distributed system that facilitates

downloading of files. This is achieved by splitting a file into large number of chunks,

which may be spread across a number of peers. A peer interested in downloading

a specific file can download the file by downloading different chunks simultaneously

from peers who have those chunks. The BitTorrent algorithm has an elaborate scheme

involving a Tracker node which keeps track of peers in the system and what chunks

they hold.

Thus, in the BitTorrent system, there are two kinds of network actors: a tracker

and peer. As mentioned above, the Tracker is a centralized entity responsible for

keeping track of the location of file copies in the P2P network. It also keeps track of

available file chunks with the participatory peers in the network. Typically peers that

are interested in downloading a certain file query the tracker for the availability of

the file. Once the peer has the information required to download the file chunks from

the tracker, it downloads the file chunks directly from the respective peers without

the tracker acting as a broker. Moreover, peers that are interested in sharing the

file register themselves with the tracker so that other peers interested in downloading

that file can find them.
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To enable the BitTorrent systems logic in our framework the user can first spec-

ify a meta-model as shown in Figure 32. It consists of a peer, router and tracker

network actors in this BitTorrentNetwork model. The proxy elements in the figure

basically refer to the references to their target models. We also see different kinds

of DataRateChannel connections depending on the type of link shared among the

network actors.

Figure 32: Meta-Model of BitTorrent Algorithm

Figure 33 provides more details about how the specific connections such as BT-

PeerRouterConnection, BTRouterConnection and BTTrackerConnection are derived

from the base DataRateChannel model. OCL constraints for the metamodel which

ensures that there is at least one peer and only one tracker in the deployment ex-

periment as shown in the Listing IV.1 can be specified by the user. Next, the model

instances can be created to create complex topologies and can then be deployed.
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Figure 33: Metamodel of BitTorrent Network Connection

Listing IV.1: Using OCL to Detect Conflicts in BitTorrent System Modelling

−− onError : ”Network Topology needs at l e a s t one Peer and

Tracker ”

s e l f . atoms (” Peer ”) −> s i z e >1

s e l f . atoms (” Tracker ”) −> s i z e =1

• Using the graphical modeling feature the user can choose to first draw the

connection between DistributedAlgorithm and Deployment as shown earlier in

Figure 30.

• From the DistributedAlgorithm the user can select the BitTorrentNetwork model

as shown in Figure 31.

• Next the user can configure the experimental topology using the Tracker, Peer
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and Router from the selection window. One such possible topology is shown in

Figure 34.

Figure 34: Model of BitTorrent Algorithm

• The user must also specify where he/she would like to deploy the experiment.

Using the Deployment model the user selects the target deployment.

• The user can run the OCL constraint checker to validate if there are any con-

straint violation in their model selection.

• Once the experimental model is specified, the GME interpreter is invoked which

generates the intermediate code for the network topology which is specific to

the deployment environment. Figure35 shows the screenshot of the source code

section auto generated.

• Further, the GME interpreter calls the deployment runtime engine and passes
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Figure 35: Screenshot of the section of code generated by GME interpreter

the generated code and executes the experimental topology in the target en-

vironment. The user can then analyze the results and performance of the dis-

tributed systems using the tools provided by the deployment environment.

IV.5.2 Effectiveness of PADS

In this section we describe our evaluation of Distributed Systems Playground. We

focus on how the framework alleviates the error prone and tedious effort of manually

writing the network topology and deployment configuration code. We then summarize

how our approach addresses the challenges discussed in the section IV.3

To evaluate how the modeling approach helps in simplifying manual configuration
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glue code of the network actors used in our Distributed Systems Playground, a topol-

ogy of a distributed systems similar to Figure 34 is constructed. It consists of varying

number of routers and peers. For each such configuration we record the number of

lines autogenerated by the GME interpreter. As can be seen from the Table 3, the

number of generated lines increases with an increase in the number of network actors.

One can observe the effectiveness of such autogeneration feature specifically in the

context of large distributed systems topology, without which one would need to con-

figure all the connection links and endpoints manually. Manual configuration of such

large system can be very tedious and error prone. The Distributed Systems Play-

ground automatically generates all the configuration glue code which is deployment

environment specific, thereby simplifying modeling significantly

Table 3: Increase in the number of generated code lines with increase in number
of components

Router Peers Total Lines
5 4 85
10 103 190
20 203 299

IV.5.3 Meeting the Requirements

Based on our BitTorrent case study from above, we now qualitatively describe

how PADS meets the challenges and requirements discussed in Section IV.3.

1. Extensibility and Tool Reuse: Section IV.5.1 demonstrated how user can

use the existing PADS framework and introduce a new algorithm. It also ex-

plains how a user can then model the system and use all existing back ends

provided by PADS.

2. Overcoming Programming and Deployment heterogeneity: Sections IV.5.1
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and IV.5.2 show how a user can model an algorithm and with a click of a button,

most artifacts needed to experiment with the algorithm are generated thereby

relieving the user from having to deal with any programming and deployment

heterogeneity.

3. Integrated tool to rapidly create topology and deploy experiment:

Sections IV.5.1 and IV.5.2 also illustrate how easy it is to extend the framework

and rapidly create the experimental scenarios and test them in a variety of

deployment scenarios.

IV.6 Concluding Remarks

This chapter motivated the need for an integrated framework used for demon-

strating distributed systems algorithms. The genesis of this work stemmed from our

experience as an instructor and student of a Distributed Systems course where a num-

ber of different algorithms were studied. We were interested in developing a learning

aid to overcome the challenges we faced in the course. Our software engineering

background helped us develop an intuition behind our solution approach. We real-

ized that the problem space can be viewed as a software product line because of the

commonalities and variabilities demonstrated by the problem space and how individ-

ual algorithms and their testing environment can be viewed as individual variants or

members of a product line.

To realize these ideas, we decided to utilize a model-driven engineering approach

comprising metamodeling and generative techniques. Modeling based on visual arti-

facts provides intuitive means to model a system using artifacts that are closer to the

domain in which the system is being modeled while generative mechanisms automate

many of the mundane and repetitive manual tasks. To that end, the initial prototyp-

ing of the ideas were accomplished as a class project for an MDE course. Our cloud
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hosted solution called the Playground of Algorithms for Distributed Systems (PADS)

is a continuation of these original efforts.

PADS provides intuitive, domain-specific modeling abstractions to capture vari-

ous distributed systems algorithms’ components and requirements. The playground

resolves the potential conflicts faced by learners/researchers, such as programming

these algorithms in simulators they may not be familiar with, or implementing them

in specific programming languages and deploying them on real testbeds. The play-

ground provides fundamental distributed systems building blocks that a student can

use to model their system, and automate the tasks of generating simulation or real-

world code, deploy these on the platforms, visualize the resulting behavior and provide

feedback to the user so they can continue to iterate through this learning cycle. The

playground has an extensible interface and as such has lot of capabilities for adding

and supporting both various distributed algorithms and deployment plans.

We evaluated the capabilities of PADS using a representative case study of Bit-

Torrent, which is a peer to peer file sharing distributed system. Our evaluation

indicates that it prevents designers from making errors in the distributed systems al-

gorithms test-bed setup and significantly simplifies system deployment by automating

the generation of platform-specific metadata that faithfully implements the necessary

execution dependency.

Our future work will involve the following dimensions of work:

• Extensibility: In its current form, the suite of algorithms we currently have in

our PADS framework is rather limited (e.g., BitTorrent, Chord, Paxos). We aim

to improve the collection by adding several new algorithms. Moreover, currently

our communication model is restricted to TCP/IP level communication. Many

higher level protocols and systems hide these low-level details and instead offer

other means to represent the end points. We plan to identify this variability in

the problem space.
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• Reuse: We do not aim to reinvent the wheel. Many other frameworks exist

that tend to provide specialized capabilities. For example, frameworks such as

Ptolemy provide effective mechanisms to model different models of computation.

We will seek solutions to integrate such frameworks within PADS.

• User studies: Utilizing the framework in an actual course and evaluating its

effectiveness in impacting the learning outcomes is a significantly important

activity. We plan to undertake this activity in future offerings of the course.

By opening up the framework for downloads, we also hope that others would

utilize its capabilities and report on its effectiveness.
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CHAPTER V

DESIGN STUDIO FOR CO-SIMULATIONS

V.1 Introduction

With a rapid growth in mixed energy generation technologies such as wind and

solar energy, the generation and distribution of energy is moving from a centralized

grid to a more distributed paradigm. Traditionally, in the energy grid, the flow of en-

ergy distribution was from the main power grid operator to the consumers. However,

due to increasing affordability of renewable energy harvesting equipment such as solar

panels, there is an influx of energy produced by traditional utility consumers, who are

feeding the excess energy back to the power grid. The presence of these new actors,

also known as prosumers, will only accelerate as the cost of generating energy from

these distributed energy resources (DER), such as solar, wind, and biomass, further

decreases with advancement in efficient solar panels, energy storage technologies, and

related power systems techniques.

With the rise in these mixed sources of energy, the future smart grid systems

need to manage distribution of the power flow around the system. The distribution

system operators (DSO), thus will play a crucial role and will need to intelligently

manage the power demand and supply balance. To provide the best service, a DSO

needs to aggregate real-time information about the local power demand and as such

needs resilient communication infrastructure to read from all the smart energy meters

and to have control on the network flows. DSOs can also set billing rates depending

on the power demands. Market analysis thereby becomes more significant to the

DSO who will want to set dynamic pricing for the power, in order to accommodate

fluctuation in energy demands on a daily and seasonal basis. Since DSOs also have

the authority to set prices to buy and sell power from the local prosumers, the role of
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market regulator also becomes crucial, so as to not have any DSO monopoly over the

power market. Market regulators are thus responsible for maintaining transparency

and competitiveness in the local energy market.

Thus, in the mixed energy smart grid system there are many stakeholders, who

are directly responsible in successful operation of the smart grid system. Figure 36

illustrates some of these stakeholders in the system. As can be seen, for a successful

smart grid system, domain experts representing various stakeholders need to holisti-

cally analyze and study the system.

Figure 36: Stakeholders in a Mixed Energy Smart Grid System

An approach to studying such large-scale complex systems is by means of sim-

ulation. However, smart grid systems are composed of multi-domain subsystems

comprising security, DER, cyber-communications, control systems and electric grid.
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Thus, one needs a simulation and analysis tooling infrastructure that spans these

multiple domains for designing and simulating such large-scale systems. Despite ad-

vances in the simulation tools, a single simulation tool is not able to capture and

simulate these various physical and other system aspects of these multi-domain sys-

tems. Thus co-simulation or coupled simulation have gained popularity in bringing

together simulation tools of different domains to simulate scenarios as in the case of

mixed energy smart grid system.

As there are multiple domain experts who would need to design and analyze such

complex system, there is a need for efficient tools and facilities that enable real-

time collaboration between these participating actors. In addition, as these domain

experts work on business and sensitive processes who may want to keep their work

secure and private, these collaboration tools must have a secure private storage for

all collaborators.

Large-scale smart grid simulation execution is a highly compute- and data-intensive

activity. Thus, a large pool of computing resources are required to support high per-

formance computing of these simulations.

To address the above requirements – co-simulation, real-time collaboration, secu-

rity, privacy, and high performance computing, we present, in this chapter, a design

studio for collaborative modeling and co-simulation of mixed energy electrical sys-

tems.

V.2 Background

In this section, we will briefly cover the four fundamental technologies that enable

our design studio. These include: (i) the co-simulation platform, (ii) the collaboration

platform, (iii) the collaborative modeling web-bench, and (iv) simulation executions

in the cloud.
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V.2.1 Co-Simulation Platform

Owing to the lack of simulation tools’ ability to cover multi-domain simulation

characteristics, co-simulations offer an excellent alternative to analyze and simulate

such multi-domain simulations. Co-simulation approach integrates different domain-

specific simulators to provide a cohesive platform for carrying out studies for scenarios

such as the mixed energy systems simulation for smart grids. High-level architec-

ture (HLA) [2] provides a standardized method to integrate different simulators and

execute them as a co-simulation. HLA provides information, synchronization, and

coordination services among participating simulators. In HLA terminology, each of

the participating simulator is called a federate. Different federates communicate with

each-other by exchanging data according to their described publish and subscribe

relationships. These different federates are time-synchronized – a crucial service for

a distributed simulation. C2WT [85], developed at Vanderbilt University, is a het-

erogeneous simulation integration framework. It provides a model-based integration

technology for rapid synthesis of distributed co-simulations such as those required

for multi-domain simulations of cyber-physical systems (CPS). C2WT relies on the

HLA standard and utilizes its open-source implementation (or Run-Time Infrastruc-

ture (RTI)) called Portico [18]. In this work, we are building on top of the C2WT

framework to support cloud-scale simulations of mixed energy electrical systems in

the context of smart grids.

V.2.2 Collaboration Platform

The Cyber-Physical Systems Virtual Organization (CPS-VO) [6] is a collaborative,

web-based portal developed to promote interaction between academia, government,

and industry across multiple disciplines in the burgeoning field of CPS. CPS-VO pro-

vides facilities for enabling repeatable, verifiable, shareable experiments and results

to the users. CPS-VO supports multi-user collaboration communities with additional
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experimentation cloud, tools configuration, and a testing framework, which enables

rapid development of collaborative design solutions.

To support this, the CPS-VO has a three key elements: tool libraries, integrated

tools, and design studios. Tool libraries are searchable repositories of available soft-

ware categorized by multiple taxonomies. Integrated tools are software solutions that

are embedded within the CPS-VO and ready to be utilized without having to setup

a server, download, install, or configure anything. Embedded tools run in the CPS-

VO cloud in order to retain the elasticity to accommodate changing demand while

maintaining the security and stability of the CPS-VO. These capabilities of the CPS-

VO are actively being utilized for CPS education. As more tools are being added

to the CPS-VO, these elements are being increasingly utilized by a diverse set of

communities.

For our purposes, we will be employing each of these features – listing the com-

pleted tool in the library, providing a design studio interface for designing multi-

domain co-simulation experiments, as well as integrating a tool for executing these

experiments. Results from the experiments will be retrieved from the cloud by the

CPS-VO and securely made available to the user, with an ability to download or

delete as needed.

V.2.3 Collaborative Modeling Web-Bench

Modeling is an important phase in the design of an experiment. For co-simulation

experiments, modeling enables domain experts to design parameterized simulation

models for studying how they perform when they interact with other simulation

models participating in the co-simulation.

For collaborative modeling of co-simulation experiments, a modeling environment

should support the following: (1) To enable multiple experts to collaborate and par-

ticipate in building the simulation models, the platform should support collaborative
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modeling. (2) The modeling environment should be able to support real-time edit-

ing and synchronization of simulation models across different participating domain

experts. (3) Modeling environment should provide intuitive visual interface so that

it lowers the entry of barrier to utilizing the new environment. This enable users to

focus more on developing models rather spending time in learning a new toolsuite.

(4) Provide tools for checking correctness of models and flagging constraint violations

during designing of large-scale multi-model simulation experiments.

Taking these considerations into account, we selected the WebGME [106] modeling

environment developed at Vanderbilt University. WebGME provides a web-based

design and modeling environment. WebGME enable users to leverage model driven

engineering techniques (MDE) [134] to develop large-scale software systems [35]. It

provides facilities such as ability to create a visual domain specific modeling languages

(DSML) using metamodeling. It allows creating model interpreters that are linked

with the metamodels. Model interpreters enable automated software synthesis in the

form of code artifacts and configurations, which are used by the domain experts to

write simulation models and business logic to be embedded in the simulation models.

WebGME supports checking model correctness and ensuring its conformity to set of

constraints – a crucial while designing large-scale simulations. Visual notifications

are shown for design time violations.

V.2.4 Cloud-Hosted Experimentation Platform

Large-scale smart grid simulation models are highly computation- and data-

intensive. Thus, simulation models execution can benefit from the large resource
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pool provided by the cloud computing model. Cloud computing provides an on-

demand access to these compute resources for running simulation execution experi-

ments. Cloud computing has been leveraged for running large-scale simulation execu-

tion [29, 99, 118] in understanding and studying architectures for building smart-city

scale distributed systems.

Despite the advancement in the cloud computing systems, the research commu-

nity is faced with numerous challenges in moving their simulation models to the cloud

computing environment. Executing in the cloud computing environment needs under-

standing of the cloud-oriented configuration and deployment tools [44]. Insufficient

expertise in these tools can lead to performance degradation of the executing processes

[137]. Another challenge in using cloud computing is the difficulty in migrating sim-

ulation execution models from the desktop or laptop based execution platform to the

distributed and scalable cloud platform environment. Another important considera-

tion when running execution in the cloud environments is to avoid getting tied to a

single cloud provider or what is called as ’vendor lock-in’.

To address these challenges related to the deployment of simulation executions in

the cloud environment, we leverage open-source technologies such as Openstack cloud

hosting [16] and linux container based Docker technology [7] to host simulations.

We will cover more details in the next section.

V.3 Design and Implementation of Design Studio

In this section we will cover the design and implementation of the collaborative

platform for modeling and simulation of the mixed energy smart grid simulations.
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Figure 37: Overview of the Cloud based Modeling and Co-simulation of Mixed
Electrical Energy Systems

V.3.1 Design And Architecture

Many building blocks are required to support collaborative modeling, simulation,

and execution of the co-simulation experiments. Figure 37 showcases the main com-

ponents of the design studio platform. These components are described in detail

below.

V.3.1.1 CPS-VO

As discussed in V.2.2, the CPS-VO provides an entry portal to the users of the

design studio. It provides users and user groups management functionality. This

provides features such as user authentication and permission management to enable

secure and private collaboration among users within a group or community. User

access to the community portal is managed through a highly customized Drupal

PHP based web portal. Access to the WebGME based modeling environment and
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the experimentation portal is channeled via the CPS-VO portal. When transition-

ing from simulation modeling to running an experiment, it facilitates access to the

run-time cloud infrastructure. Currently, the CPS-VO provides a naive experiment

scheduling policy by restricting the number of concurrent experiments to the total

available execution computing nodes. Experiment results are automatically retrieved

by the CPS-VO after the experiment has finished, and are stored and made available

according to the privacy settings the user has selected, combined with group settings.

V.3.1.2 Simulator Federate Templates

This component provides access to various types of federates which are simulator

specific. These includes C++, Java, Gridlab-D, and OMNET++ simulation engines.

Users can build scenarios utilizing these simulation engines to construct large-scale

simulations. Using these templates, one can construct an integration model of the

simulated scenario. This integration model represents different federate type entities

participating in the simulation. The integration model also covers any interactions,

shared objects that may be exchanged between participating federates.

V.3.1.3 Courses Of Action Models

To conduct scenario-based experimentation and conducting what-if analysis [117],

we support a modeling construct called as Courses-of-Action (COA). COAs are uti-

lized to create various what-if analysis models and to execute the corresponding al-

ternative scenarios. COAs act as an orchestrator of the time-coordinated execution

of the running simulations. These COAs are scenario models that are created using

several atomic elements such as: ACTION – that injects an interaction into the run-

ning simulation, OUTCOME – that waits for an interaction of the specified type to

be generated in the running simulation, FORK – that start multiple branches in a

scenario to start in parallel, and DUR – that, when encountered in a COA execution,
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makes a running simulation wait for the specified duration. A COA model is created

as a workflow like Directed Acyclic Graph (DAG) by connecting the above-mentioned

atomic elements with directed edges. Detailed description of many other supported

COA elements can be found in [99].

V.3.1.4 Experiment Scenarios Models

Once the simulation integration model is designed with the constituent simulation

federates, the data model for the data exchange among federates, and the objects

that capture various actors in the co-simulation, the next step involves creating the

experimental scenario models. Experimental model enables creating scenarios that

comprise either some or all the federates from the integration model created in the

previous step. As such, for a given co-simulation scenario we could have more than

one experiment model.

V.3.1.5 Software Synthesis

To facilitate rapid development of the co-simulation application, design studio

features a code generation and synthesis module. This module enables synthesis

of the integration code – software modules that bridge target simulators with the

underlying HLA RTI. This module provides two key benefits. Firstly, it ensures the

’correct by construction’ principle when generating the large boilerplate code required

for such complex co-simulation RTI, thereby avoiding errors that occur with manually

written code. Secondly, it lowers barrier to entry to the development of co-simulation

application, whereby the domain expert can focus on writing simulation models and

not worry about the complexity to work with the underlying RTI.

Apart from above software synthesis components, code generators also produce

various experiment specific configurations, which are specific to the experiment model
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discussed earlier. These includes COA models, various federate configuration specific

to the experiment model using JSON [11] files, and several initialization scripts.

V.3.1.6 Artifact Repository

All the artifacts that are part of the co-simulations are stored in a secured cen-

tralized repository with user access control. These artifacts includes auto-generated

software codes, user supplied application programs, simulator specific models, We-

bGME models, and various configuration files associated with the co-simulation ex-

periment. Artifact repository provides storage facility to store these co-simulation

artifacts. The repository also features version control mechanism, such that the arti-

facts can be associated for a given version number and can optionally include labels

such as development, beta, and production ready tags.

V.3.1.7 Continuous Integration

Continuous integration is widely used technique in the software development

process for creating automated software builds that run various tests that validate

whether the software compiles and builds successfully. It can also include unit tests

to ensure that the newly developed simulation module meets certain functional re-

quirements as specified in the unit tests. Continuous integration enables automatic

compilation and building of the source code generated by the software synthesis mod-

ule and storage of the compiled artifacts to the artifact repository discussed earlier.

Currently, we are leveraging the Jenkins [12] build systems to trigger automatic builds

of the simulation software.
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Figure 38: Sequence diagram showcasing modeling and experimentation activity
in design studio

V.3.1.8 Experimentation Runtime

To support large-scale distributed simulation, which may exhibit different com-

pute, input/output, and/or network intensive workload characteristics, a cloud en-

vironment provides a better execution infrastructure to support these requirements.

One of the requirements to support cross-platform executions is to enable running sim-

ulations across heterogeneous run-time platforms. Docker container technology [7] is

utilized to meet this requirement. To enable running simulators inside docker con-

tainers, we first have to port the simulators to the docker run-time image. Once this

image is created, it is available to run simulator-specific models. Currently, our design

studio makes the C++, Java, OMNeT++, and CPNTools docker images available for

the domain modelers.
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V.3.1.9 Monitoring and Visualization

Live monitoring of co-simulation experiments provides insights into how the simu-

lation experiment is running in the cloud environment. We are leveraging Grafana [9])

based visualization dashboards to depict important events that arise in the running

simulation. Grafana dashboards also show the runtime system resource utilization

of the individual federates comprising a co-simulation experiment run. Monitoring

facility can thus be utilized for profiling simulation runs, and could be used in the fu-

ture for making dynamic resource management decisions for running the distributed

co-simulation experiments.

V.3.2 Modeling and Experimentation Workflow

In this section we will cover the modeling and experimentation workflow in the

design studio framework. Figure 38 shows the two activities which the domain mod-

eler performs in the design studio framework: co-simulation modeling and running

co-simulations. Next, we will refer to the circle numbers as they are shown in the

sequence diagram. In 1©, the domain modeler first enters the design studio by au-

thenticating with the CPS-VO portal. Once authenticated, the domain modeler has

access to the WebGME modeling application. Next in step 2©, the domain expert can

first build the co-simulation design model and configure various experiment scenarios.

Once the modeling activity is completed, software synthesis module generates simula-

tion specific code artifacts. These artifacts are available to the modeler to download

and update them with application-specific code and/or models. In addition, the soft-

ware artifacts generated are passed to the continuous build and integration system

for running versioned builds. The modeler can also upload custom simulation ar-

tifacts and updated software artifacts to the artifact repository, which can then be

utilized accordingly for the co-simulation. Further, in step 3©, the user than se-

lects one of the configured experiment model from the previous step for executing
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on the experimentation platform. Once the run experimentation option is selected,

the experiment controller then selects an appropriate runtime platform server from

the available cloud infrastructure, and starts the experimental run sequence. During

the startup of the experiment, appropriate Docker federate images, as required by

the experiment, are downloaded from the docker registry hosted within the CPS-

VO environment. Furthermore, the experiment specific federate code artifacts are

downloaded on the execution server from the artifact repository. Once the required

dependencies are downloaded, the co-simulation execution can begin. The simulation

proceeds and simulates the experiment scenarios. Once the simulation criteria is met,

which is set by the user based on either the amount of simulation time to execute or

a specific simulation objective is met, the simulation execution stops. The simulation

gets the execution trace and the generated results and logs are then uploaded back

to the CPS-VO for the offline analysis.

V.4 Conclusions And Future Work

This chapter presents a cloud based secure, collaborative modeling and co-simulation

platform to support mixed electrical energy systems simulation for smart grid opera-

tions. We have described various building blocks of the integrated design studio. We

leverage the WebGME tool to provide a the web-based modeling environment and the

CPS-VO to provide the central collaboration platform. Using continuous integration

technology the simulation artifacts are automatically built and ready to be deployed

to the cloud execution platform. Docker technology provides a cross-platform sand-

boxed execution environment for the co-simulations which can be executed on the

elastic cloud computing resource.

There is a general lack of integrated toolsuites that can provide collaborative

modeling and co-simulations facilities for complex applications such as mixed energy

electrical systems. The presented design studio can enable various stakeholders in the
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smart grid environment to effectively collaborate with multi-user modeling of experi-

ments, and to design and build resilient and high-performance smart grid systems. In

future, we plan on adding support for efficient deployment and configuration manage-

ment for the distributed simulations in the cloud environment [33], save and restore

of the running simulations, and tool support for wider range of simulators such as

EnergyPlus [64], and DIgSILENT [83].
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CHAPTER VI

ADDRESSING PERFORMANCE ISSUES IN DISTRIBUTED
CO-SIMULATIONS

VI.1 Introduction

Cyber-physical systems (CPS) such as smart city, smart manufacturing, and trans-

active energy systems must make time-sensitive control decisions to ensure safe oper-

ations of such complex systems. However, such CPS are an amalgamation of multiple

dynamic systems such as transportation systems, vehicle dynamics, control systems,

and power systems with different interconnected networks of different scales and prop-

erties. The assurance that such complex systems are safe and trustworthy requires

simulation capabilities that can rapidly integrate tools from multiple domains in differ-

ent configurations. Co-simulation is an attractive option for interlinking such multiple

simulators to simulate higher-level, complex system behaviors.

The IEEE 1516-2010 High Level Architecture (HLA) defines the standardized set

of services offered to a process in a distributed co-simulation [20]. A co-simulation in

HLA comprises a group of individual simulators called federates that are grouped into

a logical entity called a federation. Each federate could have diverse computation and

networking resource requirements, which need to be taken into account when deciding

how to allocate resources to the simulators when the federation is deployed to cloud-

fog-edge computation environments. Based on this resource allocation, the wall-clock

execution time required for the computation step of each federate can vary. The

variation in execution times can result in some federates waiting on others before they

can proceed to the stage of computation. These federates that take more wall-clock

time for completing their computing steps (resulting in low performing federates),

can increase the overall completion time (or makespan) of the entire simulation. This
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can potentially violate the simulation completion deadline. Thus, resource allocation

and resource configuration selections are very important for the overall performance

of distributed simulations.

Although co-simulations have traditionally been hosted in high performance com-

pute (HPC) clusters, there is an increasing trend towards adopting Cloud Computing

for simulation jobs because of the many benefits it has to offer. It is in this context

that the Docker container run-time platform [109] provides a solution for running fed-

erates across different computation platforms by providing a unified packaging of the

simulation code-base with its software dependencies. But as shown in recent research

[145], there are a number of operationalization challenges that need to be considered

for running simulations in cloud environments such as performance aware resource

assignments. Furthermore, there are a several infrastructure-related accidental com-

plexities that need to be considered for running these distributed simulations on such

execution platforms.

To address these challenges, this work introduces a performance profiling and

simulation run-time optimization and resource configuration platform called EXPPO

- (EXecution Performance Profiling and Optimization for CPS Co-simulation-as-

a-Service )). EXPPO uses distributed tracing to assess federate level performance

for each computational step [105]. These performance characteristics are used at

runtime to determine whether changes to the resource allocation of the federation

could enable shorter makespan for the simulation run. To enable distributed tracing,

EXPPO utilizes the opentracing [123] specification for measuring and monitoring

the wall-clock time spent in each computational step of the simulation. To shield the

developers from accidental complexities while embedding the tracing source-code in

the simulation application logic, EXPPO leverages generative aspect of Model Driven

Engineering (MDE) to auto-generate source-code snippets and configuration files for

the simulation run. To configure the resource allocation for the individual federates,
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EXPPO uses the tracing information to build a resource-performance model to solve

an optimization problem resulting in resource allocation having lower makespan and

cost for the co-simulation.

The main contributions of EXPPO are:

1. Evidence that the default resource configuration for a federation has scenar-

ios with longer wall clock execution per computational step, causing a longer

makespan for the co-simulation execution;

2. Demonstration of a methodology to automatically generate tracing probes inside

the source-code of the simulation logic, which is required for simulation profiling

at distributed scale;

3. Development of a new resource recommendation engine which uses an opti-

mization algorithm for finding the resource configuration for a federation that

minimizes its overall makespan and cost;

4. Experimental validation of the proposed scheme showing the benefits of EXPPO

on the performance of distributed simulation execution.

The rest of the chapter is organized as follows. Section VI.2 provides a motivating

use-case for EXPPO and enumerates its key requirements. Section VI.3 provides an

overview of the EXPPO tool. Section VI.4 presents the key EXPPO components and

its resource configuration and optimization algorithms. EXPPO’s cloud architecture

and co-simulation framework are described in Section VI.5. The experiment evalu-

ation results are described in Section VI.6, related works described in Section VI.7

and Section VI.8 concludes the chapter.

VI.2 Motivation and Solution Requirements

The computation pattern of many time-stepped co-simulations follows the Bulk

Synchronous Parallel (BSP) model [152]. In this model, every participating simulation
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completes its computation for a given time step, waits for the other participating

simulations to complete their computations, exchanges new state information with

its peers, and only then proceeds to the next time step. Thus, if one simulation takes

more time to execute, the other simulations are forced to wait for it and remain idle.

This is illustrated in Figure 39 which shows an HLA federation with three federates:

Federate 1, Federate 2, and Federate 3. Each federate has same computation task

repeated for every following time step. Federate 1 performs certain computation

which takes the longest execution time for a given simulation time step, compared

to the other two federates. Thus, the other two federates are waiting for Federate

1 to complete before moving to the next computation step. This causes increase in

the makespan of the entire simulation, thereby decreasing the performance of the

simulation execution.

Figure 39: Performance visualization of an example federation with three fed-
erates.

Recently, co-simulations have been deployed using container management solu-

tions [130] [28], such as Docker Swarm [71], Kubernetes [100], Mesos [87]. However,

these solutions use queue-based scheduling, wherein the containers are allocated to

machines one at a time. Hence, there could be instances where there may not be

enough resources available in the cluster to schedule all the federates of the feder-

ation. However, due to the scheduler’s lack of federation aware container affinity

knowledge, a few federates may still get deployed until the resources are available
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and some of the federates will remain in the scheduler queue. This will cause the

entire simulation to stall, since all the federates are required to participate in the

simulation to progress. For instance, from Figure 39, if there are resources to deploy

Federate 1 and Federate 3, and not sufficient resources to deploy Federate 2, the job

scheduler should not deploy any federates and should wait until more resources are

available. Hence, there is a need for Bag-of-task scheduling mechanism for deploying

these federates on the cloud computing environments.

Figure 40: (a) Performance of the federate running the PARSEC Freqmine ap-
plication using 8 threads for different resource configuration selections. The
performance improves when assigned more cores. (b) Performance of five PAR-
SEC benchmark applications for different resource configuration selections. The
performance improves when assigned more cores.

The resource configuration also plays an important role in the execution time of

the federates. Figure 40(a) depicts the performance of a federate when assigned dif-

ferent numbers of cores for executing a computation step. This federate is running a

Freqmine application from the PARSEC benchmark [46] as its computation task. It

can be seen that the execution time follows a non-increasing trend with the increasing

amount of resources assigned to the federate. Thus, there is a potential for minimiz-

ing the wait time by appropriately configuring the resources assigned to the federates.

117



Minimizing the wait time can be done either by providing the highest resource con-

figuration for all the federates, or finding a resource configuration that considers the

cost of assigning the resources to the federates. However, deciding what resource

configuration to select for a given computation is a non-trivial task for a simulation

developer who may not have the domain expertise of configuring and running appli-

cations in cloud computing environments. Performance profiling of the federates can

help in understanding the relation between the resource assignment and the execution

performance. However, these simulations might be deployed across different physi-

cal and/or virtual host environments when running in cloud computing platforms;

performance profiling for such distributed simulations can be very challenging.

Building on the above use-case, below are the four key requirements that must be

satisfied by EXPPO:

• Requirement R1. Conduct distributed performance tracing of the federates:

To understand the bottlenecks in federation performance, there is a need for log-

ging and gathering execution performance traces of the federates. The tracing

infrastructure needs to handle federates which are distributed across multiple

physical hosts. Hence, the tracing infrastructure should be able to correlate

traces from different federates of a federation.

• Requirement R2. Reduce accidental complexity in provisioning software probes:

Requiring the developer to manually write source code for performance tracing

for the federation can result in accidental complexities and errors which need

to be minimized. The developer needs to understand the tracing software and

write code which adheres to the tracing software requirements. This is tedious

for the developer, who now apart from writing the simulation logic must also

setup and configure the tracing infrastructure. EXPPO should reduce the man-

ual configuration of the tracing information, thereby reducing repeated effort

by the developer.
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• Requirement R3. Recommend resource configuration to minimize the co-

simulation makespan and cost: It can be challenging for an end user to deter-

mine the resource requirements for a federation because each federate can be

configured differently. A bad resource configuration can have inadvertent effect

on the completion time of the simulation. Also, choosing configuration incurs

cost. Hence, the resource configuration must be chosen such it satisfies users

QoS and cost factors.

• Requirement R4. Provide a gang-scheduling algorithm for executing simula-

tions: The runtime platform should support deployment of multiple federate

using bag-of-tasks scheduling (also referred as gang scheduling) algorithm.

VI.3 Overview of EXPPO

Figure 41 introduces the workflow and the main components of EXPPO.

Figure 41: (a) Workflow of EXPPO illustrating the connections between dif-
ferent components of the system. (b) Profiling code snippet in Java language
generated leveraging the MDE techniques.

The design phase requires the developer to model the federation using the feder-

ation development toolkit. This toolkit is based on the Web-based Generic Modeling

Environment (WebGME) [106]. To measure the execution time of a federate in a time
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step, the simulator needs to embed a tracing code initializer and logger to record the

execution time completion of the computation step. The tracing initialization code

and the tracer configuration files are auto-generated by the custom WebGME model

interpreters. Once the required code is generated and the user has implemented the

necessary simulation logic, the federate is compiled into an executable image, which

is then packaged inside a Docker container.

During the profiling phase, each federate is executed and profiled under different

resource configurations. The execution time for each federate is logged using the trac-

ing information, and this tracing information is stored in a centralized database. The

resource configuration tuner uses the recorded logs together with user provided objec-

tives to optimize the resource configuration for each federate. Finally, the optimized

resource configuration is used to configure the co-simulation deployment accordingly.

During the runtime phase, the simulation job information for the federates in the

co-simulation is submitted to the deployment manager. The job information includes

the name of the federate Docker image, resource configuration requirements, etc. The

deployment manager submits the scheduling information to the job scheduler, which

handles the execution of the jobs on the co-simulation runtime execution platform.

VI.4 Design Elements of EXPPO

EXPPO allows users to design and deploy co-simulations on distributed compute

infrastructures supported by Docker-based virtualization. Its generative capabilities

simplify the auto-generation of performance monitoring instrumentation, configura-

tion and probing for the different federates. Its resource configuration tuner optimizes

resource allocations to federates to lower the makespan and execution cost for the

federation execution. Its runtime platform supports parallel execution of different

federations on its shared compute infrastructure. This section details each of the

EXPPO components.
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VI.4.1 Performance Profiling of Federates

Understanding the performance characteristics of the co-simulation execution is

of paramount importance when deciding how to run them in runtime execution en-

vironments. Individual federates have different resource needs, and their execution

performance will vary depending on how the resources are assigned. Thus, under-

standing the performance profiles of each federate is critical to the problem of opti-

mizing the resource allocation and thereby lowering the makespan and execution cost

of the federation execution. EXPPO leverages distributed tracing to assist in the log-

ging of time stamps of distributed events generated in the federation (Requirement

R1). It leverages Opentracing instrumentation [123] to track execution time spent

during each computation time step of the federate. This information in then logged

into a timeseries database for conducting performance analysis. It leverages model

driven engineering technologies such as Domain Specific Modeling Language (DSML),

code generators and model interpreters to synthesize performance profiling software

artifacts which can be used for performance profiling of federates (Requirement R2).

An example code snippet is shown in Figure 41 (b).

VI.4.2 Federation Resource Configuration Optimization

When running a federate in a Docker container, cloud providers usually have

multiple resource configurations from which the user can select for their application.

However, without analyzing the resource dependency of the application, it may be

challenging for the user to select the resource configuration that meets the applica-

tion’s quality of service (QoS) requirement while at the same time minimizing the

execution cost in terms of the cost of resources utilized. Figure 40(b) shows how

the different resource configuration impacts the execution time of the federate which

is running applications from PARSEC benchmark. Furthermore, in a co-simulation,
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the resource selection becomes critical as every federate’s execution time will con-

tribute to the co-simulation’s performance. To address this issue (Requirement R3),

EXPPO provides a resource configuration recommendation system that selects the

resource assignment which optimizes the application’s QoS performance and user’s

budget requirements.

Consider the following optimization problem: Suppose the system has a set of

homogeneous machines, each with k processing cores. Let F = {f1, f2, . . . , fn} denote

a federation (co-simulation) that consists of a set of n federates. Given a resource

assignment R = [r1, r2, . . . , rn] to each federate, the execution time of federate fj ∈ F

can be expressed as tj(rj) when assigned rj cores. For performance reasons, assume

a federate cannot be split among two or more machines, so we have 1 ≤ rj ≤ k. The

makespan M for every computation step for the entire federation F is dictated by

the slowest running federate (i.e., the straggler), and is defined as M = maxj tj(rj).

The execution cost C is given by the total resource used by all the federates over the

makespan duration. Since the servers will be turned ON until the slowest federate

is done executing, the cost is defined as C = M ·
∑

j rj. The resource configuration

recommender needs to find a resource assignment R∗ that minimizes G = αM+βC =

M(α + β
∑

j rj), where α and β denote the user-defined weights to the application’s

QoS and the execution cost, respectively.

Two additional assumptions are made to solve this optimization problem: (1)

federate execution time does not increase with the amount of resources (number of

cores) assigned, i.e., rj ≤ r′j implies tj(rj) ≥ tj(r
′
j); (2) federate execution cost does

not decrease with the amount of resources assigned, i.e., rj ≤ r′j implies cj(rj) ≤

cj(r
′
j). These are realistic assumptions as many practical applications are known

to have monotonically increasing and concave speedup functions [39, 86], such as

those that follow the Amdahl’s Law [22]. As such, the optimization problem can

be solved by examining all possible makespan values while guaranteeing the smallest
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cost. Algorithm 2 presents the pseudocode of this solution with a time complexity

of O(n log n) by maintaining a priority queue for all jobs. Similar approaches can be

applied to finding the minimum makespan subject to a cost budget or minimizing the

cost for a target makespan.

Algorithm 2: Resource Configuration Tuner

Input : Execution time tj(r) for each federate fj in federation F when
allocated different amounts of resources r, where 1 ≤ r ≤ k.

Output: A resource assignment R∗ = [r1, r2, . . . , rn] for each federate in the
federation that minimizes a linear combination of makespan and cost.

Initialize rj ← 1 for all 1 ≤ j ≤ n;
Compute G← (maxj tj(rj)) · (α+ β

∑
j rj);

R∗ ← [r1, r2, . . . , rn] and G∗ ← G;
while

∑
j rj < nk do

j ← Index of a federate with longest execution time;
if rj = k then

break;
else

Increment rj to the next higher profiled resource amount;
Update G← (maxj tj(rj)) · (α+ β

∑
j rj);

if G < G∗ then
R∗ ← [r1, r2, . . . , rn] and G∗ ← G;

VI.4.3 Federation Machine Scheduling Heuristics

A custom scheduler is required to deploy all the federates in the federation to

their respective distributed computing environments. Since the federates cannot run

independent of the federation, the scheduling scheme must simultaneously run all

of the federates of the federation (Requirement R4). This is referred to as Gang

scheduling or Bag-of-tasks scheduling in the literature. To achieve this, EXPPO

supports two heuristics to simultaneously schedule the federates on a fixed number m

of available machines while utilizing the resource configuration results obtained from
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Section VI.4.2. These approaches handle the case where some of the machines are

loaded with other compute tasks unrelated to the federation.

The first heuristic is inspired by the First-Fit Decreasing (FFD) algorithm for bin

packing and is described in Algorithm 3. The heuristic first sorts all the federates

in decreasing order of resource assignment and then tentatively allocates each one

of them in order onto the first available machine. If all federates in the federation

can be successfully allocated, then the schedule is finalized; otherwise, the entire

federation will be temporarily put in a waiting queue to be scheduled later. The time

complexity of the heuristic is O(n(log n + m)). The other heuristic is based on the

Best-Fit Decreasing (BFD) algorithm that works similarly to FFD, except that it

finds, for each federate, a best-fitting machine (i.e., with the least remaining resource

after hosting the federate). Note that since finding the optimal schedule (or bin

packing) is an NP-complete problem, these heuristics may not always find a feasible

allocation for a federation even if one exists. However, once an allocation has been

found, it is guaranteed to produce the optimal makespan and cost for the federation

by using the resource configuration from Section VI.4.2.
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Algorithm 3: First Fit Decreasing (FFD)

Input : Resource assignment R = [r1, r2, ..., rn] for all federates in a
federation. Current available resource A = [a1, a2, ..., am] of all m
machines in the system.

Output: Machine allocation L = [`1, `2, . . . , `n] of all federates in the
system.

Sort all resource assignments in decreasing order, i.e., r1 ≥ r2 ≥ · · · ≥ rn;
Initialize `j ← 0, ∀1 ≤ j ≤ n;
for j = 1, 2, . . . , n do

fit← false;
for i = 1, 2, . . . ,m do

if rj ≤ ai then
Update ai ← ai − rj;
Set `j ← i;
fit← true;
break;

if fit = false then
// revert allocations done so far

for k = 1, 2, . . . , j − 1 do
i← `k;
ai ← ai + rk;
`k ← 0;

break;
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VI.5 Co-simulation as a Service Middleware Architecture

Figure 42 shows the different components and workflow of our co-simulation frame-

work. It is called the Co-simulation-as-a-Service (CAAS) middleware because it en-

ables users to automatically deploy groups of service-based applications to a cloud

environment without any concern of resource allocation, application lifecycle moni-

toring, and cluster management. The functionality of each component is described

below.

Figure 42: Co-simulation-as-a-Service

In 1©, the FrontEnd component allows a user to submit a simulation job descrip-

tor in JavaScript Object Notation (JSON) using a Representational State Transfer

(REST) Application Programming Interface (API). Each simulation job contains a

list of federates, and each federate is run on an individual Docker container. The

simulation job descriptor also includes meta-information for each federate, for exam-

ple, resources required, running status, container image details, etc. The FrontEnd

creates a record in a database 4© for each incoming job, then relays the job iden-

tifier to JobManager 2© which handles resource management. Instead of deploying

jobs immediately, the JobManager stores received jobs in a local queue and con-

sults the database about the latest status of cluster resources. It then periodically
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transfers the information of pending jobs and available resources to JobScheduler

3©, which is a pluggable component that implements multiple scheduling algorithms.

The JobScheduler either replies with a scheduling decision if the submitted jobs are

deployable, or returns a KeepWaiting signal to notify the JobManager that resources

are insufficient. The JobManager then forwards deployable jobs to GlobalManager

5©, synchronizes job status with the database, and deletes the deployed jobs from its

queue. The GlobalManager is responsible for managing participants of the Docker

Swarm Runtime Platform 6©. It launches the master node of the Docker Swarm clus-

ter and accepts registration requests sent from worker nodes. Every joined Worker

Node runs a CAAS-Worker daemon that is used to receive and perform commands

sent from the GlobalManager. The GlobalManager parses received deployment re-

quests and spawns containers in specific Worker Nodes. Additionally, the Worker

Nodes employs a CAAS-Discovery daemon to track the status of containers, and re-

ports a StatusChanged signal to the Discovery component 7© when it detects that a

task is completed.

VI.6 Experimental Evaluation

VI.6.1 Experimental Setup

EXPPO is validated using seven homogeneous compute servers with configuration

of 12 core 2.1 GHz AMD Opteron central processing units, 32 GB memory, 500 GB

disk space, and the Ubuntu 16.04 operating system. The runtime platform is based on

Docker engine version 19.0.5 with swarm mode enabled. There is one client machine

that submits simulation job requests. The front end, job manager, job scheduler and

the global manager components are runing on a single shared compute server, and

five compute worker servers are deployed for running the simulation jobs.

The simulation job consists of three federates each running a unique application

from the PARSEC benchmark: freqmine, blackscholes and ferret. These applications
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were chosen as they are realistic representations of real-world simulation tasks [46].

During the federation execution, each federate executes its application at every logical

time step, for a total number of 100 logical time steps. The implementation of the

co-simulation federation is done using Portico HLA [18]. The BFD scheduler was

used in the experiments (as it was found to have better performance than FFD). The

weights for the QoS and the cost are set to α = 1 and β = 0.5.

VI.6.2 Experimental Results

EXPPO selected resource configuration of 4 cores for freqmine federate, 4 cores

for ferret federate and 1 core for blackscholes federate. Two baseline approaches

were used to compare the performance of resource configuration selection of EXPPO.

In the first approach (least configuration), all the federates are assigned the lowest

possible configuration of 1 core each. In the second approach (max configuration),

all the federates are assigned the highest possible configuration of 10 cores each. The

performance data is collected over 10 simulation jobs.

Figure 43(a) shows the cumulative distribution function (CDF) of the execution

time of EXPPO compared to the other two approaches. The resource configurations

selected by EXPPO for the federation had a 90th percentile execution time of around

230 seconds, which is signficantly better than the 320 seconds for the least configu-

ration. Its performance was close to that of the max configuration (90th percentile

execution time of around 200 seconds), with the difference due to its lower resource

allocation to conserve the cost.

Figure 43(b) shows the cost analysis of the three strategies. As can be seen,

resource configuration selected by EXPPO incurs a larger cost than the min config-

uration due to the higher resource allocation to reduce execution time, but it has a

substantially lower cost compared to the max configuration.

Overall, the results show that EXPPO is able to select resource configurations and
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schedule the federates in such a way that minimizes the combination of execution time

and cost of the simulation successfully.

Figure 43: (a) Execution time for the EXPPO resource configuration compared
to other strategies. (b) Cost for the EXPPO resource configuration compared
to other strategies.

VI.7 Related Work

In [130], the authors presented Kubernetes based co-simulation execution platform

for cloud computing environments. Similarly, [28] presented Docker swarm based co-

simulation platform for running mixed electrical energy systems simulations. How-

ever, these platforms lack gang-scheduling based simulation deployment strategy.

Similarly, for resource recommendation, [157] presented data-driven approach for

selecting best resource configuration VM from a set of VM configuration pool. In

[135], cost-sensitive allocation of independent tasks is presented for cloud comput-

ing environment. However, these approaches are different than our approach as our

objective is to select best configuration for a pool of BSP tasks and not just single

task.

In [103], the authors proposed scientific workflows scheduling algorithm to mini-

mize the execution time under budget constraints for deploying in cloud computing
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environments. [79] proposed advancereservation scheduling strategy for MPI appli-

cations. Similarly, [154] presented approach for gang-scheduling of jobs by resource

sharing among jobs of different resource needs, such as one being compute intensive

and other of network or I/O intensive type. In [88], the authors present scheduling

of multiple container workloads on shared cluster as a minimum cost flow problem

(MCFP) constraint satisfaction problem. In [160], the authors proposed a locality

based process placements for parallel and distributed simulation. The evaluation of

the proposed framework was carried out using OMNET++ simulator.

Compared to the above prior works, EXPPO presents a resource recommenda-

tion engine which allows for selecting appropriate resources for the federates of the

federation to meet the goals of make-span and cost minimization for the entire feder-

ation (BSP tasks) and not just a single task. Similarly, EXPPO also presents a gang

scheduling scheme using heuristic bin packing techniques which allows for deployment

of the co-simulation federation on Docker container platform thereby addressing lim-

itation of one container at a time scheduling discussed earlier. Furthermore, EXPPO

provides automatic code generation of distributed tracing probes for performance pro-

filing of the federates which maybe deployed on a distributed infrastructure, relieving

the developers from incurring accidental complexities in writing code for the profiling

of federates.

VI.8 Conclusion

Resource allocation plays a critical role in co-simulation performance. However,

the end user is not necessarily well-equipped to determine what resource allocations

work best for their distributed, co-simulation jobs given the various resource config-

uration options (and associated costs) available from the cloud provider. To address

these challenges, this paper presents EXPPO, which is a framework that provides

CPS Co-simulation-as-a-Service (CaaS) for executing distributed co-simulations in
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cloud computing environments. EXPPO provides performance profiling capabilities

for federates which help in the understanding of the relationship between resource allo-

cations and the simulation performance. Similarly, it addresses performance profiling

challenges for a simulation job comprising heterogeneous computation tasks or feder-

ates deployed across distributed systems. Furthermore, EXPPO selects the resource

configurations for these federates in a way that not only minimizes the makespan of

the co-simulation, but also satisfies the cost budget of the user.

VI.8.1 Lessons Learned & Future Work

• Our current work assumes that the computations at each simulation step of

a federate do not change and also takes almost the same wall clock execution

time. However, this assumption restricts the generality of our approach to

only a subset of application use cases. For hybrid simulations or simulations

which follow non-linear dynamics, the execution times of the involved simulation

steps may not be the same for each iteration. Hence for our future work, we

would like to explore dynamic resource allocation for federates which may have

different computations for different computation steps. Reinforcement learning

approaches which can monitor the individual federates and dynamically adjust

the allocations based on the computation variability or resource demands of the

federate at different time steps offers a promising approach that remains to be

explored.

• Further, in our current work, we have only considered workloads that are CPU

bound. Hence, we assume constant communication costs during each compu-

tation step for all the federates. In future we would also like to consider the

communication costs for simulations which may need to be constantly updating

states or sending messages for triggering discrete events. This new requirement

will play a factor during the placement of the federates on the worker nodes. It
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may perhaps be a better placement for two communication intensive federates

to be located on the same physical host rather getting deployed across different

host machines.

• When applications are co-located in the cluster environments, the effects of

noisy-neighbors can affect application by incurring performance interference.

Thus, for future work we would like to consider the effect of noisy-neighbors for

resource scheduling and simulation placement in the cluster.

• In our study, we have considered homogeneous servers for running the simula-

tions. In future, We would like to extend our work to include heterogeneous

runtime systems. Also, with the growing relevance of edge computing and digital

twin techniques, efficient resource allocation and scheduling of the simulations

at the edge will be necessary.

• In our study, we have also not taken into account any kind of fault and resilience

techniques into account. Checkpointing mechanisms allow for saving the appli-

cation state, which can be used to recover application state in case of failures.

The EXPPO work can benefit from having such fault-tolerance techniques for

recovering simulation states in case of failure.
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CHAPTER VII

RESEARCH OUTREACH

VII.1 Introduction

VII.1.1 Complexities in Learning and Teaching Distributed Systems Al-

gorithms

The design of large-scale networked and distributed systems must handle many

complex issues, such as time synchronization, fault management, replication and

replica synchronization, consensus among peers, concurrency control and race condi-

tions, leader-election among nodes, deadlock avoidance, etc. Addressing these com-

plex problems is further excarbated by the heterogeneity in distributed systems in

terms of network topology (ring, star, mesh, etc.), node types (fixed vs mobile nodes,

static vs dynamic nodes, physical vs virtual nodes), communication styles (client-

server, peer-to-peer, publish-subscribe, etc.), and network types (Ethernet, WiFi,

Satellite). The complexity of these design considerations and various accidental com-

plexities make both the teaching and the learning of algorithms for distributed systems

a daunting task for instructors and students, respectively.

From our experience both as students taking a course on Distributed Systems and

as an instructor teaching such a course, we observed that existing teaching modalities,

tools and techniques for understanding algorithms for distributed systems often rely

on traditional approaches, such as didactic lecturing, simple proof sketches on the

whiteboard, using theorem provers, and basic simulations or toy assignments in some

programming language.

We believe that this approach incurs several difficulties for students including

(1) often having to program the algorithms in programming languages they are not

experts in, (2) analyzing these algorithms in simulators/emulators they are unfamiliar
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with, and (3) needing to deal with accidental complexities in order to deploy them on

real hardware to realistically validate them or propose improvements and extensions

to them. Due to a piecemeal approach in learning and implementing these algorithms

(i.e., programming/learning algorithms individually), students (1) cannot analyze

multiple algorithms at the same time to compare and contrast them, (2) cannot

seamlessly switch between simulation, emulation and real deployment on hardware,

and (3) consequently do not obtain a holistic view of distributed systems and how

different algorithms work together in real world distributed systems.

The instructor faces a different set of challenges. For instance, the inherent asyn-

chrony and scale of distributed systems makes it hard for an instructor to show

students the multiple different execution traces that a distributed system can illus-

trate in its life time. By no means do we imply that existing teaching modalities are

not needed; rather what we propose is that instructors require some way in which

they can keep the students engaged after which proof sketches and theorem provers

can be utilized. We believe that hands-on, immersive learning [82] where students

are allowed to conduct different kinds of “what-if” analyses (e.g., tweaking certain

parameters of the distributed algorithm or tweaking some steps in an algorithm) and

letting the students observe the impact of their slight modifications may provide a

significantly more engaging and rewarding learning experience for the student, who

may then feel obliged to utilize theorem provers and associated tools to prove the

correctness of the original and/or the modified algorithms. Unfortunately, we have

not come across any readily available capabilities that fulfill these critical needs for

distributed systems learning and instruction.

VII.1.2 Solution Approach and Organization of Chapter

To address these challenges we need a learning and technology-based approach

that will alleviate the need for students to learn an unfamiliar programming language
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or a simulation tool to experiment with distributed systems. Secondly, such an ap-

proach should provide the student with intuitive and higher-levels of abstractions that

are closer to the domain and semantics of distributed systems rather than having the

student deal with low-level and mundane syntactic details of programming languages

and simulation tools. Moreover, the approach should be extensible and enable the

student to seamlessly move between simulation, emulation and real-world experimen-

tation. Finally, the approach should promote maximal reuse so that students can

build larger distributed systems by composing smaller but intuitive building blocks.

We surmise that these critical needs can be met using Software Product Lines

(SPLs) [62] and model-driven engineering (MDE) [134] in the context of cloud plat-

forms that will help improve teaching and learning of distributed systems algorithms.

The key intuition behind applying SPL principles stems from the observation that

these algorithms tend to share several common traits (e.g., communication paradigm,

such as client-server versus publish/subscribe, or the model of computation, such

as synchronous data flow or reactive asynchronous) while differing only in some as-

pects (e.g., the actual publish/subscribe technology used or the protocol encoding for

messages).

Consequently, a collection of distributed systems algorithms can be viewed as

variants of a product line. The challenge then lies in understanding and capturing

the commonality and variability across these algorithms, and developing techniques

needed to automate the synthesis of these variants so that the different dimensions of

accidental complexities faced by the student can be substantially alleviated. MDE is

used to realize these capabilities because it provides the user with intuitive, higher-

level abstractions compared to programming languages to model the distributed sys-

tems algorithms and use generative techniques to almost completely automate the

entire experimental setup including deployment and orchestration.
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In the context of using MDE-based approaches, we have focused on visual mod-

eling for imparting learning objectives to the students. Visual approaches for teach-

ing have been found very effective in research projects, such as Betty’s Brain [102],

Code.org [96], NetsBlox [51, 52] and in our prior work on C3STEM [37, 73, 74, 138].

Both NetsBlox and C3STEM particularly make use of model-driven engineering tech-

niques. To that end, our solution is a learning framework for distributed systems

called the Playground of Algorithms for Distributed Systems (PADS), that reifies

SPL principles by building on MDE with generative capabilities, feature modeling

and teaching/learning tools and technologies.

In this work we complement and build upon our previous work [35] and make the

following contributions:

• Concrete details on the design and implementation of the PADS framework

beyond that provided in [35] including description of the underlying web-based

modeling environment that provides new features such as web-based and collab-

orative modeling and the learning outcomes addressed by PADS (Section VII.3).

• Deeper insights into the runtime experimentation and deployment using the

PADS framework (Section VII.4).

• Providing early results from a user study of the PADS framework in a classroom

setting (Section VII.5).

VII.2 Related Work

In this section we compare PADS with related efforts along three key dimensions:

existing work in teaching specific software for distributed systems algorithms, use of

model driven engineering in the design of large-scale software systems in the context

of educational learning systems, and visual learning aids.

Learning systems for distributed algorithms teaching: Authors in [66]
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present a comprehensive survey providing an overview of different tools, simulators

and learning platforms available for teaching distributed systems. It outlines tools

available for managing deployment, execution, discovery, monitoring and configura-

tion of distributed systems. It also presents a list of algorithms that can be used for

teaching and demonstrating intricate details of distributed algorithms.

ViSiDiA [21] is a framework for designing, simulating and visualizing distributed

algorithms. It is developed using Java language frameworks. It provides implementa-

tions of different distributed systems like sensor networks and mobile agents. A user

can specify their custom distributed algorithms by making use of framework specific

Java API. Distal [45] is another framework that is specifically aimed at a certain class

within the distributed systems algorithm, namely fault-tolerant systems. It is devel-

oped on top of the Scala programming framework. One can write pseudo code for the

algorithm using its DSML to translate into an executable code. The executable can

then be deployed on clusters for testing. However, it lacks integration with simulators

that would facilitate quick testing and debugging of algorithms.

Another teaching and learning framework called FADA (Framework Animations

of Distributed Algorithms) is presented in [120]. In FADA, the simulations are writ-

ten using Java programming language using the visualization APIs provided by the

framework. It also provides a set of preassembled simulations for different algorithms

which can be used as examples for demonstrating distributed algorithms to students.

The frameworks presented above have the following shortcomings compared to our

approach. First, the distributed algorithms need to be written in a language which

the framework supports. Secondly, the tools presented above do not support seamless

translation of programming artifacts from simulation to real world deployment.

MDE in learning systems: Previous work has shown MDE, specifically,

domain-specific modeling languages (DSMLs) have being effective tools [115] in de-

veloping teaching software systems. Students have also seen the benefits of rapid
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code generation based on MDE techniques. In [80], students were able to rapidly

synthesize code artifacts using MDE to rapidly generate code, when changes where

required to be made in platform configuration of robotics control code and mobile

device.

An educational game design software framework is presented in [95]. It utilizes a

model driven approach to describe educational game concepts. It presents an educa-

tional game metamodel that defines platform-independent educational game concepts.

The framework aims to design educational games to motivate the students to get in-

volved in the learning process thereby effectively conveying educational material.

SPL techniques were applied for design, development and support of a family of

elearning systems [59] called TALES. It also highlighted some of the challenges in-

volved in the development of large-scale educational system and how SPL helped it to

gain 10-fold productivity boost in the developmental efforts. The educational systems

were built as a part of Adult Literacy Programme (ALP) for teaching illiterates in

India in 22 Indian languages. Unlike the work presented above our area of study is

focused on a special topic within computer science which is the distributed systems

algorithms. Our work leverages the MDE and the SPL techniques in the design of a

learning framework for distributed algorithms.

Visual Programming based learning frameworks: Computational thinking

(CT) in the recent times, has become focus of many researchers including our prior

work in the field of educational computing [36, 74, 131]. CT can be broadly sum-

marized as a problem solving process involving abstraction of problem into smaller

separation of concern entities, designing algorithm to solve the problem, simulating

the solution approach and verification of the effectiveness of the solution to build a

better solution strategy [153]. CT based framework such as the C3STEM [74] engages

K-12 students to solve complex real world problem like the traffic flow modelling using

a visual programming interface to design, simulate and analyze the solution strategy.
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Yet another MDE/visual programming tool for learning is called NetsBlox [51, 52]

which aims to provide a gentle introduction to distributed computing to K-12 stu-

dents. PADS also uses the same MDE development environment as NetsBlox and in

contrast to NetsBlox is focused on more rigorous distributed systems algorithms.

In [161], authors developed a visual programming toolkit called Alice, to teach ob-

ject oriented programming to students. Their observation from the student subject

study revealed that students learned new concepts in computer science effectively and

also developed higher-order thinking skills using the tool. Another useful observation

was that the drag-and-drop ability of designing new programs helped students from

preventing making syntax errors in their program due to the auto-code generation.

Another visual programming platform called code.org [96] has been very popular and

serving millions of users worldwide in introducing basics of computer programming.

The study in [96] also notes that students developed positive behavior towards pro-

gramming and also improved their reflective thinking skills towards problem solving.

Visual programming based teaching methodology has been found useful to expose

students to new teaching concepts.

VII.3 Design and Implementation of PADS

Figure 44: Feature Model Diagram of Playground of Algorithms for Distributed
Systems (PADS) Framework
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This section delves into the details of the design and implementation of the PADS

framework. We first outline the key learning outcomes we intend to address via the

framework. Next, we delve into the details of its model-based design including feature

model representation and web based modeling environment. Lastly, we describe the

roles and responsibilities of PADS’s actors which includes students and instructors.

VII.3.1 Underlying Philosophy Behind PADS

In the educational teaching domain, learning objects have been an extremely use-

ful resource in imparting education to the subjects [60, 72, 108, 141, 147]. In the

literature, learning objects have been defined as “Learning Objects (LOs) are digital

resources that can be used (and reused) to support the learning process” [65]. The

learning objects have the property of re-usability, and sharing of learning material.

As an instructional artifact, the learning objects should be able to easily incorpo-

rate in the design of larger educational teaching context. Generative learning objects

(GLO) are a class of Learning Objects (LO) from which LO-specific functional im-

plementation properties can be generated [65]. Learning objects are appealing in the

space of learning computer science concepts.

Use of learning objects is still not that popular in the area of educational tools for

computer science due to difficulties in designing learning objects as reusable software

artifacts [141]. In a recent study [142], the authors have incorporated GLO in the

teaching of robot programming. Authors have incorporated different robot control

programs which are treated as LOs and the code generated for the robot target

platform is treated as GLO. Model-driven engineering (MDE) has been shown to

be an effective software engineering technique for reusing and sharing of software

artifacts. MDE combined with code generation facility allows us to bring the learning

paradigms of LO and GLOs in the practical use for our distributed algorithms learning

toolkit. In the case of distributed algorithms teaching toolkit, different algorithms
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models will form the LO, and their target execution environment specific program

code will be GLO.

From the viewpoint of learning outcomes, we have focused on a subset of key

learning outcomes outlines by the Accredition Board for Engineering and Technology

(ABET) engineering criteria [63]. Specifically, for an effective instructional method

for educating students, addressing the learning outcomes becomes key in achieving

student learning objectives in an institutional course. PADS tries to address the fol-

lowing General Criteria 3, student learning outcomes from the ABET engineering

program.

• (a) an ability to apply knowledge of mathematics, science, and engineering.

PADS is designed to enable students to apply the concepts they learn in Dis-

tributed Systems and model the algorithm to learn its behavior.

• (b) an ability to design and conduct experiments, as well as to analyze and inter-

pret data. PADS is design to enable a student to setup one or more experiments

to evaluate a distributed systems algorithm scalably without incurring mundane

and error-prone activities stemming from setting up one or more experiments.

• (c) an ability to design a system, component, or process to meet desired needs.

PADS enables a student to tweak different parameters and modify existing

algorithms to understand the impact on the resulting behaviors.

• (k) an ability to use the techniques, skills, and modern engineering tools nec-

essary for engineering practice. PADS enables students to use modern tools

including MDE tools, emulation environments such as Mininet, virtualization

techniques such as virtual machines and containers, and study a variety of net-

working issues among others as they study distributed systems.

We now present the design and implementation of the Playground of Algorithms

for Distributed Systems (PADS), which is an extensible framework that manages a
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software product line of distributed algorithms used as an instructional and learning

aid for distributed systems. It uses MDE and SPL techniques to integrate various

distributed systems algorithms for teaching, and cloud platforms for deployment of

experiments.

VII.3.2 Feature Model Representation

For a successful SPL for PADS, we need to manage the commonalities and vari-

abilities that are exhibited for realizing the development, implementation and demon-

stration of distributed algorithms. One of the well-known approaches for represent-

ing and managing these commonalities and variabilities is by the means of feature

models [40]. Feature models provide proven techniques for improving reusability by

specifying reuse rules. The feature model for PADS must capture the commonalities

and different dimensions of variabilities incurred in the learning process [35]. To that

end we have defined a conceptual feature model for PADS as shown in Figure 44 and

described in [35].

VII.3.3 Realizing the PADS Feature Model using Model-driven Engi-

neering

The SPLs can be built using modular software. Changes in the feature configura-

tions can be mapped to the changes in the software modules [150]. The design and

development of modular software framework is a challenging task. We use model-

driven engineering (MDE) techniques to codify the feature model by mapping it to

metamodel(s) of a domain-specific modeling language (DSML) and use generative

technologies, which are key artifacts of MDE, to automate the synthesis of product

variants of our PADS product line. MDE helps to codify the necessary properties

of problem domain which is decoupled from specific solution domain (e.g., simulator

specific programming language, target hardware specific). MDE helps to integrate
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domain knowledge into the metamodels and model interpreters [70]. The MDE design

approach helps to map different configuration possibilities for a specific instance of

SPL based on where it is deployed. This is useful when one needs to deploy a dis-

tributed algorithm software product family onto different platforms/simulators, MDE

can bring all software components and their configuration mapped to the platform

specific source codes and scripts.

Our PADS framework can be hosted on virtual machines or containers deployed on

the Openstack cloud, which is an open source cloud computing infrastructure [146].

In our current prototype, we use containers. Cloud computing provides on-demand

access to large pool of shared resources for compute intensive simulations and network

experimentation. Students and instructors access these virtual machines/containers

using remote access client which could be either a web browser client or a desktop

client.

VII.3.4 Web Based Modeling Environment

In our previous work [56], we used the Generic Modeling Environment (GME) [101]

as an environment to build and develop meta-models and models, and model inter-

preters. Despite the widespread use of GME in designing the DSML as evident by

the works presented in [23, 24], it falls short in meeting our requirement of online and

collaborative design and development of PADS artifacts. As such we decided to look

into the next generation of GME being developed at Vanderbilt University called the

WebGME [106].

WebGME is an online browser-based modeling environment. It supports features

of GME like creating of meta-models, models, model visualization and model inter-

preters. Apart from this, it supports the collaborative modeling, version controlling of

models, user management, cloud-based infrastructure, and model executors that can
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run either on the client side web-browser or run in the resourceful cloud infrastructure

depending on the user configuration.

WebGME1 provides an environment to define the syntax and semantics of a DSML

through metamodeling. Model interpreters can be defined associated with the meta-

models that can provide additional semantics to the language which are not captured

in a visual form as well as provide the generative capabilities needed for automation.

The WebGME environment can be used to build model instances of a DSML. Thus,

in our PADS framework, an instructor can extend existing metamodels for the col-

lection of algorithms by providing a metamodel for a new algorithm. The students

use the PADS framework to develop model instances and configure them for their

experimental scenarios.

VII.3.5 Roles and Responsibilities of PADS’s Actors

Figure 45 shows the different phases that comprises the use of the PADS framework

for teaching distributed systems algorithms. An instructor who is a domain expert

with a knowledge of model driven engineering concepts, lays down the foundation

aspects as to which different feature model entities are involved in the design and

deployment runtime of the algorithms. Based on the specific distributed algorithm

concepts, using the PADS builtin meta-model library, the instructor creates a specific

meta-model. Now, the software artifacts associated with the meta-model and the

necessary model interpreter logic is also written by the instructor. Though we believe

this would involve some learning curve for the instructor to get familiar with the

PADS meta-modelling and model interpreter programming, the potential benefits of

the PADS to the student learning outweighs this limitation. Moreover, we believe

that a repository of such individual algorithm-specific metamodels can be envisioned

and reused on a large scale.

1https://webgme.org/
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Figure 45: Model-based Process for Distributed Algorithm Demonstration and
Deployment

Based on the type of the deployment (e.g., simulator specific), the associated de-

ployment logic generators are also required to be a part of the model interpreters.

Once, this initial design activity is complete, the tool is now ready to be used by the

students. Students can now start modelling the distributed algorithm, such as dif-

ferent actors in the distributed systems, their attribute properties, characterizing the

communication medium properties used during the simulation, network topology of

the distributed systems, runtime platform for distributed systems deployment. Once

the student has modelled the distributed systems algorithm, code generation facility

can be utilized to generate the boilerplate code for the algorithm. The boilerplate

code consists of the information specified during the modelling of the experiment and

deployment runtime specific gluecode. Based on the learning activity, the instruc-

tor can then ask the students to write the application logic code for a functional
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distributed systems algorithm using the generated boilercode. If the writing of the

distributed algorithms is a too complex activity for the students’ level of learning,

the instructor may decide to provide the application logic code to the students. This

phase helps the students in understanding the different programming constructs and

the internals of the algorithm. Once the application code is ready for testing and de-

ployment, the student can then invoke deployment specific set of model interpreters,

which can then upload this application logic codes to the runtime execution platform

for algorithm execution.

VII.4 Runtime Architecture of PADS

The PADS framework utilizes cloud computing infrastructure to deploy distributed

systems experiments. The cloud computing provides elastic infrastructure facility

which enables on-demand access to the computing resources. Figure 46 gives an

overview of the layered architecture consisting of distributed systems experimenta-

tion, user interactions, cloud deployment and experimentations, and user analysis

visualizations interface components of the PADS framework. Next we describe this

layered architecture and the functionalities it provides to provide a scalable PADS

framework.

VII.4.1 User Interaction Layer

The user interactions layer in the PADS framework provides following features:

user/students/instructor access management and security, web front end to model and

design the distributed algorithms, interaction and runtime visualization of the exper-

iment deployed on the target simulator/emulator running on the cloud infrastructure,

and performance monitoring logs of the completed experiment. User interactions pri-

marily occur through the Internet enabled web browser. Next we will discuss each of

the components of the user interaction layer.
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Figure 46: Cloud based architecture of PADS framework

1. User Management Portal: User management portal facilitates management

of the user access privileges and login credentials to the PADS framework. User

management portal lets an instructor manage login access for the students. Access

rights to who can create, edit, and run experiments can be set as per the requirements

of the distributed algorithm experiment for the students. If the instructor wants to

give a ’read-only’ access to the experiment scenario and prevent students from making

any changes to the experiments, ’read-only’ access can be set to the experiment

project. Depending on the resource management and execution cost, the instructor

may also want to set when and who can have access to the runtime infrastructure

for deploying the distributed algorithms experiments. This gives the instructor a

fine grain control over the PADS framework and various runtime components of the

system.

2. Experiment Design Environment: This component provides a user with a web

interface to design and orchestrate the distributed algorithm construction and specifi-

cation. It provides various prebuilt artifacts to get quickly started with teaching and
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learning of the distributed systems concepts and algorithms. Some of the predefined

algorithms include Client-Server model, BitTorrent, Paxos, Zookeeper, Chord, Pub-

Sub. It also provides distributed systems specific actors like Server, Client, Leader,

Tracker, Router, Wired and wireless interfaces, hub, switch. Users can build their

own distributed systems algorithms representation using the prebuilt artifacts. Apart

from designing the distributed algorithm experiment, the user can also specify the

target simulation or emulation platform the user would like to deploy the experiment

on. The current prebuilt target support is included for Omnet++, Mininet, ns-2.

Due to the MDE approach as discussed earlier, new target platform support can be

easily extended.

3. Runtime Experiment Webviewer: The runtime experiment webviewer provides

a web enabled view of the simulator/emulation runtime software. The distributed

algorithm that is ready to be executed is deployed on the target platform in the

cloud infrastructure. The user may need to see different runtime properties offered

by the simulator. To enable remote access to the runtime view of the simulator in the

web browser, we use Virtual Network Computing (VNC) technology. noVNC is an

HTML5-compliant VNC client that enables remote desktop control and viewer via a

web browser interface. Figure 47 shows the Runtime Experiment Webviewer running

an Omnet++ based distributed algorithm experiment displayed in the web browser.

4. Analysis and Results: Analysis of the experiment can give various insights

into performance and effectiveness of the distributed algorithm that is constructed.

One can tweak different algorithm-specific parameters to meet the user objectives for

the distributed algorithms (such as optimization, best fit). After the experiments

finish executing, there is a need to have a good performance and result aggregation

and presentation component which the user can use to identify potential benefits or

bottlenecks of the target distributed systems algorithm. The Analysis and Results
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Figure 47: Runtime Experiment Webviewer illustrating Omnet++ simulator
accessed through noVNC client

components collects and makes available various experimental metrics, results and

logs generated by the target execution component.

VII.4.2 Backend Infrastructure Layer

This layer manages the deployment and runtime of the distributed algorithm ex-

periments which are ready to be tested and run. The backend infrastructure deal

mainly with providing elastic and extensible infrastructure to run the target simu-

lators/emulators as configured by the user. To support running a large number of

experiments which may consist of different simulation and emulation targets, one
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needs a large number of computing resources to provide satisfiable Quality of User

Experience (QoE). Cloud computing addresses these requirements and provides on-

demand access to the pool of resources to carry out experiments. Moreover, the

simulators/emulators that need to be run should be able to start instantaneously

without considerably long startup times. We are currently using the Linux container

technology to provide fast startup of simulators/emulators. Also, to manage a large

pool or cluster of physical and virtual machines on which the experiments will be run-

ning, we will need resource management capability to deploy and manage this PADS

infrastructure. Next we discuss each of the components of the backend infrastructure

in detail.

1. Simulation/Emulation Target Toolkits: The experiments that the user orches-

trates need to be executed on one of the simulators or emulators that it is designed for.

The simulators are hosted in the cloud infrastructure. As such the users do not need

to have any preinstalled applications (simulators/emulators) on their local develop-

ment machines. Some of these targets need very high resources to execute. Running

these target toolkits on the cloud relieves users from the need of owning resourceful

machines to test and play with the distributed systems experiments. Simulator/emu-

lators can be accessed through the Runtime Experiment Webviewer. Another benefit

of running these tools in the cloud environment is the lower entry to barrier to play

with the distributed systems algorithms as all the tools needed to run the experiment

is already preinstalled and configured, and the user does not have to deal with com-

plexities of the application installation process. OMNET++, Mininet, ns-2, ns-3 are

some of the tools that are configured and ready for the users to experiment with.

2. Linux Containers: Linux containers provide a process-based virtualization

that enables wrapping all the application dependencies in an isolated sandboxed en-

vironment. Linux containers provides many attractive features which are particularly
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suited for the PADS framework simulator/emulation deployment in the cloud environ-

ment. We are using Docker implementation to leverage Linux container technology.

Some of the features provided by the Docker technology includes lightweight deploy-

ment, instant bootup time, and sandboxed environment. The simulation/emulation

targets are wrapped into a Docker container that can be deployed when the experi-

ment is ready to be executed. Docker container also contains a running VNC server

which is used by the runtime experiment webviewer to control and view the simula-

tor/emulator execution. As shown in the figure we have an Omnet++ experiment

running which is accessed via the runtime experiment webviewer powered by noVNC

HTML5 client software.

3. Cloud Deployment Infrastructure: The PADS framework leverages cloud com-

puting infrastructure to execute and run the distributed systems algorithm exper-

iments and evaluation. The simulation/emulation targets which are wrapped into

Docker containers become the deployment artifacts that can be executed on the cloud

computing infrastructure. To enable efficient resource utilization of the available in-

frastructure (physical and virtual machines) we are using a cluster management en-

gine called Apache Mesos. Mesos provides easy abstraction of available computing

environments such as physical machine hosts, virtual machine hosts into a unified

resource pool. It allows fine grained resource procurement and scheduling required

for the execution of simulation/emulation runtime targets. Based on the requirement

of the individual targets such as CPU, RAM, number of cores and storage, the target

is deployed on the computing host that can provide these resources. Mesos provides

REST application protocol interfaces (API) to enable simulation/emulation runtime

to be executed, deployed and managed from the user interaction layer.

151



VII.5 Framework Validation

In this section we show using a preliminary user study the accrued benefits and

effectiveness of PADS in terms of increasing user productivity, ease of use, usefulness

in learning distributed systems algorithms, and users’ interest in continuing to use

modern tools for distributed systems algorithm study. In [35], we have also demon-

strated how PADS can be extended to include a new algorithm and showed PADS’

effectiveness in terms of the effort saved on the part of the instructor and learner in

using the framework.

VII.5.1 Preliminary User Study

To understand the effectiveness of the PADS tool in teaching distributed systems

algorithms, a preliminary user study was conducted as a part of the Distributed

Systems Principles (CS-6381) graduate level course offered at Vanderbilt University,

USA.2 The study was conducted in the Spring 2017 semester. The class comprised

graduate-level students in Computer Science. A total of 17 students participated in

the study. In the study, students were asked to work on tasks which consisted of cre-

ating networking topologies for a publish/subscribe distributed systems scenario. The

Publish/Subscribe paradigm is a key part in information dissemination in distributed

systems.

VII.5.1.1 Task Assignment And Survey Questions

As part of the CS-6381 course, students are required to complete their assignments

inside a Mininet network emulator and demonstrate scalable publish/subscribe using

the ZeroMQ communication middleware. They are expected to showcase topic fil-

tering, ownership strength of the publishers and history of topic samples in their

assignment. Prior to our user study, students had completed this assignment wherein

2An exemption was approved by the Institutional Review Board for this study.
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they were required to create application logic for a pub/sub system in Mininet envi-

ronment. Thus, an assumption is made in this study that students have an under-

standing and hands-on experience in writing programs using the Mininet emulator

and other associated technologies.

For the PADS formulation of this problem, we provide students with actors such

as publisher, subscriber and broker. So the PADS framework contained these network

actors in the distributed systems scenario to construct publish/subscribe distributed

systems study. Prior to using PADS, for the assignment students were required to

manually create Python language code to generate the network topology and the

deployment logic to place the different publishers, subscribers and brokers on the

different nodes of the topology. These steps must be repeated for every new topology

under which they want to evaluate their algorithms, which are separately coded in

Python per actor.

For our preliminary study, we have focused on relieving the student from the

mundane, repetitive and error-prone tasks of writing code for generating the network

topologies and deploying the actors. Instead, they are provided the PADS framework

and asked to visually create the topologies while allowing the tool to generate the

underlying code and deployment logic. Students are given two network topologies as

shown in the Figures 48 and 49. An example of the code snippet generated from

the PADS framework for one of the topologies is shown in Figure 50. Note that with

more complex topologies, the logic for the topology generator becomes more complex

and can be a cause of substantial effort spent in getting the topology right instead

of spending time on learning and understanding the behavior of the algorithm being

evaluated.

To test the usefulness of the PADS tool in improving user productivity, students

were first asked to manually create the network topology generator program required

by Mininet. As a second step, the students were asked to use the PADS tool to
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Figure 48: Network Topology One for user studies

create the same network topology. Students were asked to measure and report the

approximate time required to complete the above tasks. At the end of the study, the

users were asked to complete a survey form to report their experience in using the

PADS framework.

The following questionnaire was created for the survey:

Q1: Compare the time to complete tasks for Topology 1 and Topology 2 by complet-

ing Manually and then using PADS Framework.

Q2: Did PADS help you to avoid syntax errors in the topology generation process

compared to writing of the topology file manually? YES/NO
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Figure 49: Network Topology Two for user studies

Q3: How easy was it to use PADS?: scale (1-10), where 1 is lowest, 10 is highest.

Q4: How likely are you to use PADS in future assignments/experimentation?: scale

(1-10), where 1 is lowest, 10 is highest.

Q5: Is PADS useful in learning distributed systems algorithms? YES/NO

The above questionnaire was carefully crafted to assess approximately how the

PADS framework meets the ABET’s learning outcomes as discussed in Section VII.3.1.

Q1 tries to address the learning outcome 3.k, which assesses whether student is able

to use the PADS system to create network topology experiments efficiently and ef-

fectively. Q2 addresses the learning outcome 3.b, as to how students where able

to use the PADS framework to design the system correctly thereby avoiding manual

mistakes during the design and setting up of the experiments. Q3 and Q4 assesses
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the student’s learning outcome 3.k, as to how likely they are to use the PADS frame-

work in future for solving distributed systems problems. Q5 to tries to assess the

learning outcomes 3.a and 3.b, which demonstrate students’ eagerness to use PADS

framework in creating distributed systems algorithms and finding solutions to the

associated problems.

VII.5.1.2 Survey Results and Discussion

Based on the user study, the survey data was gathered and analyzed. Our findings

are reported below.

Response to Q1→ Time to Complete: As can be seen in the box chart

shown in Figure 51, comparison of time to completion for creating the topology files

for the two test topologies using the manual approach and using the PADS tool is

illustrated. The median value for time to completion using the manual approach

is 7 and 9.5 minutes for the topologies 1 and 2, respectively. The 75th percentile

value of the sample for time to completion using the manual approach resulted in

10.5 and 16.75 minutes for the topologies 1 and 2, respectively. Using the PADS

approach, the median time required for completion for topologies 1 and 2 was 2 and

2 minutes, respectively. While the 75th percentile value of the sample for time to

completion using the PADS approach is seen as 3.75 and 3.75, minutes respectively.

Using these results, we can deduce that there is a substantial productivity gained

using the PADS framework for constructing and creating the topology file for the

distributed algorithms study.

Response to Q2→ Avoiding Manual Syntax Mistakes using PADS: As

seen in Figure 52, 88 percent of the participants felt that the PADS helped them to

avoid manual syntax mistakes in writing the topology description file. 12 percent of

the participants did not answer the survey question. It can be seen that the PADS

framework looks very appealing to the users in avoiding manual mistakes they might
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make while writing the topology file manually. The PADS autogenerates the topology

file and takes care of making sure the right parameters are passed to the connections

creation function calls supported by the underlying target platform based on the

topology specification described by the user.

Response to Q3→ Ease of use: As seen in Figure 53, most of the respondents

gave a very high rating for the ease of use criteria of the PADS framework. 35.71

percent of users rated 7 and 8 on the scale of 10 for ease of use. While 21.43 percent

and 7.14 percent rated it at 9 and 10 respectively on the scale of 10 for ease of use. This

shows that our PADS framework is very easy to use for users to learn and play with

distributed systems algorithms. The intuitive visual drag and drop environment helps

the users to easily model different scenarios of the distributed systems for evaluation

and study. Moreover, the support for the target emulator/simulator environment in

PADS helps users to study distributed systems concepts in an environment which

they are familiar with, which in this user study is Mininet.

Response to Q4→ Likely to continue using PADS tool: As seen in Fig-

ure 54, most of the respondents were excited to continue using the tool for future

assignments and experimentations for learning distributed systems algorithms. 33.33

percent, 6.66 percent, 26.67 percent, 26.67 percent of the respondents rated 10, 9,

8 and 7 scores out of 10 rating respectively for likelihood in using PADS for future

study purpose. While 6.67 percent of the participants rated 2 out of 10 score for using

PADS in future for learning distributed systems algorithms. Overall, the trends show

that students were able to experience the benefits offered by the PADS framework in

the learning of the distributed systems algorithms. Due to this, the students devel-

oped great interest in working with the PADS tool for their future assignments and

experiments.

Response to Q5→ Useful in Learning Distributed Systems Algorithms:

As seen in Figure 55, 12 percent of the participants did not reply and 6 percent of

157



the participants were not certain to the question if the PADS tool will be useful in

the learning of the distributed systems algorithms. While, 82 percent of the partic-

ipants were of the opinion that PADS tool is useful in learning distributed systems

algorithms. This strengthens our belief that the PADS framework designed for learn-

ing distributed systems algorithms will be a very resourceful tool for the learners

of distributed systems algorithms. More studies on more complicated scenarios are

necessary in future to corroborate our claims.

158



Figure 50: Source code generated for user study network topology
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Figure 51: Survey response to Question 1: Compare time to complete tasks
for Topology 1 and Topology 2 by completing Manually and then using PADS
Framework

Figure 52: Survey response to Question 2: Did PADS help you to avoid manual
syntax errors compared to writing of the topology file manually?
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Figure 53: Survey response to Question 3: How easy was it to use PADS?

Figure 54: Survey response to Question 4: How likely are you to use PADS in
future assignments/experimentation?
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Figure 55: Survey response to Question 5: Is PADS useful in learning distributed
systems algorithms?
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VII.6 Concluding Remarks

This chapter motivated the need for an integrated teaching framework used for

experimenting with distributed systems algorithms. To that end, this chapter de-

scribes the design, implementation and preliminary user evaluation of the Playground

of Algorithms for Distributed Systems (PADS) framework, which provides intuitive,

domain-specific modeling abstractions to capture various distributed systems algo-

rithms, their components and requirements. Our preliminary user evaluation focused

on understanding to what extent does PADS address the subset of learning outcomes

we used from the ABET criteria. Our evaluation indicates that PADS prevents de-

signers from making errors in the distributed systems algorithms test-bed setup and

significantly simplifies system deployment by automating the generation of platform-

specific metadata that faithfully implements the necessary execution dependency.

Ongoing and future work on PADS is focusing on framework extensibility so as to

include more algorithms, reuse, building a repository of user models, conducting more

user studies, and applying the framework beyond just distributed systems. PADS is

available for download from:https://github.com/doc-vu/pads
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CHAPTER VIII

CONCLUDING REMARKS

Many distributed applications in the cloud are faced with challenges that often are

a combination of application-imposed, cloud environment-imposed and accessibility-

related. In this doctoral research, we address a range of these challenges in the context

of executing distributed applications in cloud computing platforms while ensuring that

their quality of service requirements are met. In this chapter we summarize the key

research contributions we have made in this doctoral dissertation.

VIII.1 Summary of Contributions

1. FECBench: To address the issues of application performance interference in

multi-tenant cloud systems, we present a systematic methodology for bench-

marking and building performance models for cloud hosted applications (See

Chapter II). In this work we propose FECBench (Fog/Edge/Cloud Bench-

marking), which allows users to build resource stressors that can stress multiple

system resources all at once in a controlled manner. This allows to capture

the effect of interference on application’s performance. FECBench, using de-

sign of experiments (DoE) approach enables to users to build surrogate perfor-

mance models thereby minimizing the profiling cost. Using emperical results

we demonstrate the efficacy of FECbench in building performance model of

applications.

2. UPSARA: To address the accessibility concerns in building performance mod-

els, we present the UPSARA framework (See Chapter III). UPSARA helps in
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resolving accidental complexities involve in configuration, orchestration and de-

ployment of monitoring instrumentation for scalable performance monitoring,

analysis and testing framework for cloud-hosted applications. Using represen-

tative use cases we validated the effectiveness of the framework.

3. PADS: To address the accessibility concerns in rapid validation and testing

for distributed systems, we present PADS platform (See Chapter IV). PADS

leverages the principles of generative model-driven engineering and software

product lines, and automates the synthesis of distributed systems simulations on

cloud platforms. A prototype implementation of PADS is described to showcase

using a use case, which shows the benefits of rapid deployment and automation

in testing distributed systems.

4. EXPPO and Co-simulation Design Studio: To address the application

and cloud imposed challenges in co-simulations, which are a type of distributed

application, we present EXPPO (See Chapter VI). EXPPO allows for captur-

ing performance traces of distributed co-simulations. Furthermore, EXPPO

presents a technique for mitigating straggler scenarios in co-simulations by

making appropriate resource allocation decisions. User’s cost budget require-

ments are also taken into account for finding resource configuration for the

co-simulations. We describe an optimization technique which finds the resource

configuration for the co-simulation. Furthermore, EXPPO also supports a Co-

simulation-as-a-Service middleware architecture. Using empirical studies, the

effectiveness of EXPPO is demonstrated. We also address the accessibility con-

cerns for design and modeling of co-simulation experiments by presenting a

cloud-based design-studio, which allows for creating modeling and simulation

of scenarios in co-simulations (See Chapter V).

5. Research Outreach and Broader Impact: We realized that the solutions
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presented in PADS can be used as a teaching aid in classrooms for imparting

education on distributed system concepts. Using an user study, we showed

how PADS can be successfully leveraged to address complexities in teaching

computer science concepts related to distributed systems (See Chapter VII).
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Lédeczi. Online collaborative environment for designing complex computational

systems. Procedia Computer Science, 29:2432–2441, 2014.

[107] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

184



Bubble-up: Increasing utilization in modern warehouse scale computers via sen-

sible co-locations. In Proceedings of the 44th annual IEEE/ACM International

Symposium on Microarchitecture, pages 248–259. ACM, 2011.

[108] Rory McGreal. Online education using learning objects. Psychology Press, 2004.

[109] Dirk Merkel. Docker: lightweight linux containers for consistent development

and deployment. Linux journal, 2014(239):2, 2014.

[110] Nicolas Michael, Nitin Ramannavar, Yixiao Shen, Sheetal Patil, and Jan-Lung

Sung. Cloudperf: A performance test framework for distributed and dynamic

multi-tenant environments. In Proceedings of the 8th ACM/SPEC on Interna-

tional Conference on Performance Engineering, pages 189–200. ACM, 2017.

[111] Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R Das. Towards

characterizing cloud backend workloads: insights from google compute clusters.

ACM SIGMETRICS Performance Evaluation Review, 37(4):34–41, 2010.

[112] Nikita Mishra, John D Lafferty, and Henry Hoffmann. Esp: A machine learn-

ing approach to predicting application interference. In Autonomic Computing

(ICAC), 2017 IEEE International Conference on, pages 125–134. IEEE, 2017.

[113] Nathaniel Morris, Christopher Stewart, Lydia Chen, Robert Birke, and Jaimie

Kelley. Model-driven computational sprinting. In Proceedings of the Thirteenth

EuroSys Conference, page 38. ACM, 2018.

[114] Y. Moses, Z. Polunsky, A. Tal, and L. Ulitsky. Algorithm visualization for dis-

tributed environments. In Information Visualization, 1998. Proceedings. IEEE

Symposium on, pages 71–78, 154, Oct 1998.
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[142] Vytautas Štuikys, Renata Burbaitė, Kristina Bespalova, and Giedrius Ziberkas.

Model-driven processes and tools to design robot-based generative learning ob-

jects for computer science education. Science of Computer Programming, 2016.

[143] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur

Mutlu. The application slowdown model: Quantifying and controlling the im-

pact of inter-application interference at shared caches and main memory. In

Proceedings of the 48th International Symposium on Microarchitecture, pages

189



62–75. ACM, 2015.

[144] Yu Sun, Jules White, Sean Eade, and Douglas C Schmidt. Roar: A qos-oriented

modeling framework for automated cloud resource allocation and optimization.

Journal of Systems and Software, 116:146–161, 2016.

[145] Simon JE Taylor, Azam Khan, Katherine L Morse, Andreas Tolk, Levent Yil-

maz, Justyna Zander, and Pieter J Mosterman. Grand challenges for modeling

and simulation: simulation everywherefrom cyberinfrastructure to clouds to

citizens. Simulation, 91(7):648–665, 2015.

[146] The OpenStack Project. Openstack: The open source cloud operating system.

[147] Rubén Peredo Valderrama, Leandro Balladares Ocaña, and Leonid B Shereme-

tov. Development of intelligent reusable learning objects for web-based educa-

tion systems. Expert Systems with Applications, 28(2):273–283, 2005.

[148] Leslie G Valiant. A bridging model for parallel computation. Communications

of the ACM, 33(8):103–111, 1990.

[149] Jürgen Walter, Simon Eismann, Johannes Grohmann, Dušan Okanovic, and
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