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INTRODUCTION 

 

1.1 Purpose 

The purpose of this work is to present developments in and applications of 

quantitative magnetic resonance imaging (qMRI) of the liver. Nonalcoholic fatty liver 

disease (NAFLD) is a highly prevalent pathology whose pathogenesis and longitudinal 

behavior is not entirely understood. There is currently no non-invasive diagnostic test 

sensitive to all the stages of NAFLD progression, but several qMRI metrics such as fat signal 

fraction, T1, and T2 correlate with different liver histopathological states related to NAFLD. 

The abdomen is a challenging site for qMRI because of its large size, anatomical 

heterogeneity, and respiratory motion. These challenges affect the practicality of using 

qMRI in the abdomen to determine their relationship with NALFD histopathology. A recent 

development in qMRI called magnetic resonance fingerprinting (MRF) permits 

simultaneous estimation of multiple MRI parameters in scan times ≲ 20 s. However, the 

original form of this technique was not sensitive to partial volumes of fat and was generally 

not tailored for use in the abdomen. The following present developments and applications 

towards unbiased and repeatable MRF parameter estimation in the liver for NAFLD study. 

 

1.2 Organization and Scope 

Chapter 2 provides background on conventional MRI and the recent development 

of MRF.  Historical developments important to MRI relaxometry, conventional methods for 

estimation of T1 and T2, and image reconstruction are briefly discussed. Similarly, the 

development of MRI fat imaging is presented, including relatively recent work in non-linear 

fitting of confounding factors like static field deviations (ΔB0). The initial development of 

MRF and its commonly used methods are introduced. This includes a primer on extended 

phase graph (EPG) signal modeling. Applications of MRF beyond relaxometry are also 

mentioned. 
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 An introduction and background material for NAFLD is given in Chapter 3. This 

includes a brief review of prevalence, nonalcoholic steatohepatitis, and what is known 

about the etiology, hepatic histological findings in the disease, and prognosis. The current 

clinical diagnostic tests available for NAFLD are explored with an emphasis on imaging in 

general and MRI, including: ultrasound elastography, computed tomography, MRI 

elastography, MRI of fat fraction, and MRI relaxometry. The advantages and disadvantages 

of these different modalities are put forth. The discussion of qMRI includes pre-clinical and 

clinical research on the sensitivity and specificity of different qMRI metrics to different 

histopathological features of NAFLD/NASH. 

 Chapter 4 further discusses the motivation for this work and its specific aims. The 

research and clinical questions from Chapter 3 are tied to the recent MRF advances in 

Chapter 2 and challenges yet to be addressed in the MRF literature. This union motivates 

the specific aims of this work. In summary, these aims are: (1) use MRF to separate fat from 

water with simultaneous water relaxometry; (2) compensate for non-idealities such as 

static and applied magnetic field perturbations, respiratory motion, and slice-profile 

effects; and (3) incorporate MRF developments into a small study of intra-subject 

repeatability of MRF relaxometry metrics and show proof-of-concept that MRF can be 

employed in NAFLD subjects. This chapter also further elucidates the interweaving of the 

technical developments in this work with the specific aims. 

 The MRF technical developments towards accomplishing the specific aims begins in 

Chapter 5 by addressing blurring in MRF. MRF pulse sequences often employ spiral 

trajectories in the spatial-frequency (k-space) domain for data readout. Spiral k-space 

acquisitions are vulnerable to blurring in the spatial domain in the presence of static field 

off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and 

demonstrates its effectiveness in phantom and in vivo experiments. Results show that 

image quality of T1 and T2 parametric maps is improved by application of this correction. 

This MRF correction has negligible effect on the concordance correlation coefficient and 

improves coefficient of variation in regions of off-resonance relative to uncorrected 

measurements. 
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An MRF fat-water separation technique is proposed in Chapter 6. This method 

separates fat and water signals, estimates water T1 and T2, and accounts for B0 effects with 

spiral blurring correction, in a single sequence. A k-space-based fat-water separation 

method is further extended to a specific form of MRF with swept echo time. Repeated 

application of this k-space fat-water separation to demodulated forms of the measured 

data allows a static field (B0) map and correction to be approximated. The method is 

compared with MRF without fat separation across a broad range of fat signal fractions 

(FSFs), water T1s and T2s, and under heterogeneous static fields in simulations, phantoms, 

and in vivo. The proposed method’s FSF estimates are shown to be highly concordant with 

conventional measurements and reduces biases in the T1 and T2 estimates due to fat signal 

relative to other MRF sequences by several hundred milliseconds. The blurring correction 

improves the FSF, T1, and T2 estimation compared to those estimates without correction. 

Chapter 7 closely examines the role of slice-profile on the specific MRF sequence 

used in Chapters 5 and 6. Slice-selective, gradient-crushed, transient-state sequences used 

for MRF relaxometry in this study are sensitive to slice profile effects. Extensions of the 

extended phase graph (EPG) formalism are proposed, called slice-selective EPG (ssEPG), 

that model slice profile effects.  The hard-pulse approximation to slice-selective excitation 

in the spatial domain is reformulated in k-space. Excitation is modeled by standard EPG 

operators. This ssEPG modeling is validated against spatial domain simulations and 

phantom slice profile measurements. ssEPG relaxometry accuracy and variability are 

compared with other EPG methods in an MRI phantom and human leg in vivo. The role of 

off-resonance interactions with slice profile and gradient crushers are investigated. 

Simulations and slice profile measurements show that ssEPG can model highly dynamic 

slice profile effects of gradient-crushed sequences. The ssEPG T2 estimates are shown to be 

less biased relative to other modeling approaches. Small deviations in B0 can produce 

substantial bias in T2 estimations from a range of MRF sequence types, and these effects 

are modeled and explained by ssEPG.  

Chapter 8 studies MRF fat-water separation application and repeatability in the 

liver. The previous chapters’ technical developments were not immediately available for 

deployment of MRF abdominal imaging and parameter estimation. To determine the effect 
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of the methodologies developed in Chapters 5-7 and repeatability of the relaxometry 

parameters in the liver, we image a small cohort of subjects without reported liver 

pathology using MRF with fat-water separation. The improvements to MRF fat-water 

separation parameter estimation in the liver are explored.  We also show proof-of-concept 

that we may employ this technique in a NAFLD population by imaging a single biopsy-

proven NASH subject. The results of this chapter indicate that an MRF sequence of 20 s 

duration employed in a single breath hold can be done in non-pathological and NAFLD 

subjects. The intra-subject repeatability of fat-separated water T1 and T2 are calculated, and 

the NASH subject is successfully imaged. It is proposed that further technical developments 

or sequence modifications will be required to reduce bias in fat signal fraction and T2. 

 General conclusions from the preceding chapters and avenues for future work are 

explored in Chapter 9. The successes and limitations of the MRF blurring correction, fat-

water separation, and slice-profile modeling are discussed. The future directions proposed 

include: different reconstruction methods to reduce bias intrinsic to the original form of 

MRF fat-water separation, characterization of fat, application MRF fat-water separation 

outside the liver, flow compensation, and volumetric MRF imaging. 
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BACKGROUND ON MAGNETIC RESONANCE IMAGING RELAXOMETRY AND FAT 
QUANTITATION 

 

2.1. Background on Relaxometry 

 In the following section, the basic characteristics of longitudinal (T1) and transverse 

(T2) relaxation time constants are discussed. This section includes a theoretical description 

of magnetization behavior over time, the factors affecting T1 and T2, and conventional ways 

to measure these time constants. 

 

2.1.1 The Bloch equations and the phenomenological role of T1 and T2 

 This section will describe how the change of the nuclear magnetic resonance (NMR) 

signal over time depends on the relaxation properties of the measured tissue and how 

these changes can be measured. This will help provide a direct connection between 

relaxation and the observed signal. 

 The Bloch equations1 describe the evolution of the net ensemble magnetization 

induced by the main static magnetic field (B0) and other magnetic fields, 

 

𝑑𝐌

𝑑𝑡
=

[
 
 
 
 
 
 −

1

𝑇2
γ𝐵𝑧 −γ𝐵𝑦

−γ𝐵𝑧 −
1

𝑇2
γ𝐵𝑥

γ𝐵𝑦 −γ𝐵𝑥 −
1

𝑇1 ]
 
 
 
 
 
 

𝐌(𝑡) + [

0
0
𝑀0

𝑇1

] .   [2.1] 

 

Here, 𝐌 is the vector of magnetization; 𝐵𝑥, 𝐵𝑦, and 𝐵𝑧 are the Cartesian components of the 

magnetic field; γ is the gyromagnetic constant; 𝑇1 and 𝑇2 are, respectively, the longitudinal 

and transverse relaxation time constants; and 𝑀0 is the thermal equilibrium magnetization 

(along z). The magnetic field can be segregated as 
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𝐵𝑖 = {
𝐵𝑖 = 𝐵1+,𝑖 for   𝑖 = 𝑥, 𝑦

𝐵𝑖 = 𝐵0 + 𝐵1+,𝑧 for   𝑖 = 𝑧
,   [2.2] 

 

where 𝐵1+,𝑖 = 𝐵1+,𝑖(𝑡) is the applied radiofrequency field. 

In the absence of an applied radiofrequency field Eq. 2.1 shows that the transverse 

component of the magnetization will be attenuated, and the longitudinal component will 

recover towards 𝑀0 with time. The transverse magnetization undergoes exponential decay 

with time: 

 

𝑀x,y(t)  =  𝑀x,y(𝑡 = 0)𝑒−𝑡/𝑇2−𝑖𝑡𝜔0 .   [2.3] 

 

Here the compact complex notation for transverse notation has been used 𝑀x,y = 𝑀𝑥 +

𝑖𝑀𝑦, where 𝑖 = √−1; 𝜔0 is the Larmor frequency of the magnetization precession. The 

longitudinal magnetization exhibits exponential recovery: 

 

𝑀𝑧(𝑡) = 𝑀0(1 − 𝑒−𝑡/𝑇1) + 𝑀𝑧(𝑡 = 0)𝑒−𝑡/𝑇1 .   [2.4] 

 

 The transverse magnetization, 𝑀𝑥,𝑦, is sinusoidally oscillating at the Larmor 

frequency given by 𝜔0 = γ𝐵𝑧. If 𝑀𝑥,𝑦 is sufficient in magnitude, the oscillating 

magnetization can, by Faraday induction, create an oscillating current in an adjacent coil. 

In this way, the signal S(𝑡) ∝ 𝑀𝑥,𝑦 can be measured. Thus, relaxation effects in the 

transverse plane can be interrogated since the signal is directly proportional to the 

component of magnetization experiencing attenuation due to T2. But, it is also possible to 

indirectly measure 𝑀𝑧 .  

By application of short pulses of applied radiofrequency 𝐵1+ of length τ (≪ 𝑇1, 𝑇2), 

Eq. 2.1 shows that it is possible to rotate 𝑀𝑧 into the transverse plane. If we consider the 

magnetization in a frame rotating at angular frequency 𝜔 relative to the laboratory frame, 

under an applied RF field of magnitude 𝐵1(𝑡) at frequency ω𝑅𝐹 it can be shown2 that the 

evolution of the transverse magnetization in the rotating frame, 𝑀𝑥,𝑦
′ , can be expressed as  
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𝑑𝑀x,y
′

𝑑𝑡
= −𝑖𝛾𝑀x,y

′ (𝐵0 −
𝜔

𝛾
) + 𝑖𝛾𝑀𝑧𝐵1(𝑡)𝑒

−𝑖(ωRF−ω)𝑡.   [2.5] 

 

If 𝜔 = 𝜔RF = 𝛾𝐵0, then in the rotating frame 𝑑𝑀x,y/𝑑𝑡 = iγ𝑀𝑧𝐵1(𝑡). The longitudinal 

magnetization is rotated into the transverse plane. In this way it is possible to generate 

signal from 𝑀𝑧 and so measure its behavior under T1 relaxation. This is further discussed in 

§2.1.3. 

 The above mathematics gives a framework for describing (and modeling) relaxation 

parameters but says little about the source of the relaxation. The following section will 

further discuss the physical basis of relaxation. 

 

2.1.2 In vivo mechanisms of T1 and T2 decay 

While there is no complete model of relaxation in tissue3, early work in NMR4 and 

MRI has provided a quantitative understanding for idealized spin ensembles that can serve 

as a basis for qualitative understanding of the primary contributors to relaxation in a 

biological milieu. Longitudinal relaxation rate (𝑇1
−1) is sensitive to the Larmor frequency 

(and twice this frequency) relative to the local spin rotation, whereas transverse relaxation 

(𝑇2
−1) is sensitive to this and slowly moving components of the spin ensemble. In tissue, 

both forms of relaxation depend critically on interaction with macromolecules as well as 

paramagnetic particles. 

A two pool model for water proton longitudinal relaxation describes the 𝑇1 of pure 

water as a function of the spectral density of water proton oscillation at their resonance, 

whereas tissue water relaxation is largely determined by water interactions with 

macromolecules5. The water proton longitudinal relaxation in water can be expressed as5,6 

 

1

𝑇1
∝ (𝐽1(ω) + 𝐽2(2ω)),   [2.6] 
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where 𝐽1(ω) and 𝐽2(2ω) describe the proportion of water protons undergoing motions at 

the resonance and two times the resonance, respectively. Under a fast exchange two state 

(FETS) model, “free” water, away from proteins and other macromolecules, and “bound” 

water in the hydration layer around macromolecules, quickly exchange magnetization 

between these two pools. The resulting observable water proton 𝑇1 is given as 

 

1

𝑇1
=

𝑏

𝑇1b
+

1 − 𝑏

𝑇1f + 𝜏ϵ
  [2.7], 

 

where 𝑏 is the fraction of water in the macromolecular hydration layer, 𝑇1b and  𝑇1f are the 

longitudinal relaxation times of the water in the hydration layer and in the free water pool, 

respectively; and 𝜏ϵ is mean residence time for water in the hydration layer. The spectral 

density for free water is of the form 

 

𝐽1(𝜔) ∝
1

𝑟6

𝜏c

1 + 𝜔2𝜏c
2
.   [2.8] 

 

Here, 𝜏c is the correlation time of the water proton, which is a measure of the time 

constancy of rotational or translational motion, and 𝑟 is the average separation of the 

hydrogen protons in water. 𝐽2(2ω) has a similar form. In pure water, it is known that 𝜏𝑐 ∼

1 ps, which gives 𝜔2𝜏c
2 ≪ 1 for clinical MRI field strengths (∼ T), so making 𝑇1f independent 

of the resonant frequency. Distilled water, as stand-in for free water, is well known to have 

𝑇1 ∼ seconds, whereas tissue water varies widely over different tissue types and B0
7. For 

τϵ ≪ 𝑇1𝑓  the fraction of hydration water, 𝑏, and 𝑇1𝑏 strongly influences, and possibly 

dominates, the observable longitudinal relaxation rate.  

The characteristic transverse relaxation time (T2) is derived from longitudinal 

relaxation processes as well as static magnetic field variations. The combined effect of 
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these processes effectively dephase otherwise coherent ensembles of magnetization. Like 

Eq. 2.6, 𝑇2 for the proton can be modeled5,6 as a function of spectral density functions 

 

1

𝑇2
∝ (

𝐽0(0)

4
+

5𝐽1(ω)

2
+

𝐽2(2ω)

4
)   [2.9]. 

 

The 𝐽0(0) represents spectral density at zero frequency. Eq. (2.9) shows that transverse 

relaxation is composed of longitudinal relaxation processes as well processes for slowly 

moving particles. This is consistent with the intuitive idea that static magnetic fields will 

contribute to dephasing of the transverse magnetization, shortening T2. In vivo, this 

manifests as so much shortening of the T2 of protons in large macromolecules and those 

bonded to cellular membranes that these large structures become MRI-invisible to most 

human MRI systems/sequences. The static magnetic field variations contributions to T2, 

depending on the motion of water, other tissue components, and sequence timing, act over 

larger distance than inter-particle dipole interactions and may be reversible. 

 Static components of magnetization dephasing due to meso- (> μ𝑚) and macro-

scale changes in magnetic field generate an alternative form of transverse decay, with a 

characteristic time called T2
*. These larger scale interactions may be due to susceptibility 

differences in tissue due to iron or inhomogeneity of the main magnetic field strength. In 

this model, transverse magnetization effects are felt over length scales much larger than 

the stochastic motion due to diffusion over the time of the MRI experiment.8 Depending 

on the sequence timing and non-diffusive movements of the water and magnetic 

perturbations of the tissue, this dephasing may roughly be considered monoexponential 

and reversible. The reversibility of this static component of magnetic perturbation is the 

basis of the spin- (or Hahn-) echo9, further discussed in §2.1.3. 

Relaxation times may not be monospectral, but characteristic of multiple tissue 

compartments.10 Exchange rates between these compartments can have a significant 

effect on the observed relaxation rates, which may complicate T2 estimation in the case of 

intermediate or slow exchange rates (relative to their transverse relaxation rates).11 
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Fast exchange rates (relative to the longitudinal relaxation rates) may dominate T1 

relaxation times, which has an averaging effect on the observed T1 values, but slowly 

exchanging tissue compartments may still may exist that give rise to multicomponent T1 

spectra12,13. Additionally, magnetization transfer contrast14–16 may make water protons 

sensitive to macromolecular protons. In this model, short-T2 macromolecular protons 

exchange magnetization with hydration layer water protons such that indirect estimates of 

the (macromolecular) bound proton fraction and exchange rates between the water and 

bound proton pool may be made.17 

 As discussed above, there is a static field dependence on T1, and to a lesser degree 

T2. Eq. (2.8) shows that the Larmor frequency of the water in relation to its spectral density 

determines longitudinal relaxation. On the other hand, the static component field 

inhomogeneity, in Eq. (2.9), that contributes to transverse relaxation, reduces the field 

dependence. These general arguments are supported by measurements of relaxation 

across a large array of field strengths.5,18 At modern clinical MRI strengths of 1.5 an 3.0 T, 

these behaviors can also be observed.7 Even prior to the inception of MRI, it was realized 

that the differences between relaxometry parameters between organs and pathological 

features could be used to generate image contrast.19 

  

2.1.3 Conventional techniques for measuring T1 and T2 

 As discussed in §2.1.1, conventional techniques for measuring relaxometry 

parameters rely on measuring changes in the 𝑀𝑧(𝑡) and 𝑀𝑥𝑦(𝑡). This is often accomplished 

by minimizing the contrast dynamics of the magnetization not under investigation, while 

maximizing that under study. However, faster estimation techniques are possible by 

relaxing the simplicity of the model, or by allowing both T1 and T2 contrasts to present 

simultaneously within a single sequence. While the total number of sequences for 

relaxometry are beyond the scope of this section, the techniques presented here provide a 

basis for further discussion in later sections and chapters. 

 The mathematically simplest form of T1 estimation is inversion recovery, which is 

closely related to another method called saturation recovery. From Eq. (2.4), we can see 
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that if 𝑀𝑧 is perfectly inverted from an equilibrium state and then rotated into the 

transverse plane after a delay from inversion time, 𝑇I, the resulting signal will be 

 

S(𝑇I) = C(1 − 𝐴𝑒(−𝑇I/𝑇1))  [2.10], 

 

where 𝐴 = 2, 𝐶 is constant to account for scaling of the signal due to magnetization 

density, incomplete rotation into the transverse plane (assumed to be constant through 

time), and the receive characteristics of the systems. If the magnetization is allowed to fully 

recover to equilibrium and the experiment is repeated at different 𝑇Is, then we may solve 

for C and 𝑇1 using a non-linear fit, thereby estimating 𝑇1. Similarly, if the magnetization is 

saturated so that there is no longitudinal (or transverse) magnetization at 𝑇I = 0, then we 

may use this model with 𝐴 = 1. The inversion recovery method is practically complicated 

by incomplete inversion of the magnetization as well as the time requirement for full 

recovery to the equilibrium state. Saturation recovery is less sensitive than inversion 

recovery because the starting magnetization at 𝑇I = 0 is closer to equilibrium, producing 

less contrast over the range of observed 𝑇Is. 

 One method that speeds acquisition time and accounts for imperfect inversion of 

the magnetic field is the model for selective inversion recovery.20,21 This sequence repeats 

the inversion after a time delay 𝑇D, with the signal model  

 

𝑆(𝑇I) = 𝐶(𝑆f(1 − 𝑒(−𝑇D/𝑇1))𝑒(−𝑇I/T1) + 1 − 𝑒(−𝑇I/𝑇1)).   [2.11] 

 

Imperfect inversion is captured by 𝑆𝑓. This model assumes a complete saturation of the 

longitudinal magnetization prior to commencement of the delay time. Since 𝑇I + 𝑇D may 

be much shorter than the TR needed in a classical inversion recovery experiment to 

guarantee equal starting magnetization following inversion, selective inversion can 

improve sequence timing with more contrast than saturation recovery techniques. This 

mode of acceleration dovetails with imaging methods further discussed in §2.2. 
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 A method for rapid T1 estimation that is often employed in cardiac applications is 

the Look-Locker22,23 sequence. In this sequence, inversion is followed by a series of low 

nutation (or flip) angle excitations, permitting greater sampling of the inversion curve near 

a given 𝑇I. This has advantages in the imaging context, discussed further in §2.2. Combined 

with cardiac-gating and application of multiple acquisitions, the Look-Locker technique has 

been used to estimate T1 of the myocardium24. 

 Another technique that offers fast T1 estimation is driven equilibrium single pulse 

observation of T1 (DESPOT1)25. By applying a repeated nutation angle at short TR and nulling 

(“spoiling”) the remaining transverse signal before the next excitation pulse, it’s possible to 

drive the system to equilibrium that is dependent on the signal’s T1. The short TR in this case 

is conducive to rapid imaging. DESPOT1’s counterpart, DESPOT2 (discussed below), permits 

rapid estimation of T2 when the two methods are combined. 

 Estimation of T2 is often achieved through spin- (or Hahn-9) echo techniques. In a 

typical MRI estimation of T2, imperfect shimming of the static magnetic field or tissue 

susceptibility heterogeneity may induce changes in the observed transverse relaxation to 

cause T2
* to be different than the inherent tissue T2. However, the action of an excitation 

pulse induces a refocusing effect on the complex magnetization (see also §2.2.1). The 

refocusing has the effect of negating the phase of the transverse magnetization. If the 

magnetic susceptibility/static field deviations are constant over time and translational 

diffusion and exchange effects are neglected, then the dephasing due to these processes 

will be undone following the RF action. The result of this process is that for two RF pulses 

separation by a time 𝑇E/2, there will be a maximum in the refocused magnetization 𝑇E/2 

after the second pulse: this is the spin-echo. This effect is maximal at a nutation angle of 

180°. Since pure T2 processes described by Eq. (2.9) act on the time scale of the water 

proton movement variations (𝜏𝐶 ≈ 1 ps)  and are stochastic in nature, these processes are 

not refocused, and the signal decays by a factor of 𝑒(−TE/𝑇2). If the TR is sufficiently long, or 

a series of “dummy” pulses are played at a given TR without recording the signal, then the 

starting 𝑀𝑧 at the time of excitation will be equal for 90° pulses, making T1 effects 

contribute to scaling without confounding the estimation of T2. 
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 The burdensome timing requirements for classical spin-echo techniques can be 

improved by use of multiple refocusing angles in the Carr-Purcell-Meiboom-Gill (CPMG) 

sequence 26,27. In this approach an initial 90° nutation with phase directed on a given axis is 

then followed at a time τ/2 by a series of 180° pulses, separated by time τ, with a phase 

offset of π/2 from the initial pulse. This accomplishes three things: (1) repeated spin-

echoes with (𝑇E  ≪ 𝑇R) are acquired over many points in the decay curve, permitting more 

rapid estimation of T2; (2) by repeatedly refocusing the magnetization at short time 

intervals, moving protons are repeatedly refocused so that the phase dispersion from 

inhomogeneous magnetic fields is decreased, relative to spin-echo at the same TE, making 

T2 estimates less diffusion sensitive; and (3) the π/2-phase rotation between the initial 

pulse and subsequent refocusing pulses reduces sensitivity to variations in B1+. 

Contributions from non-ideal B1+ can still confound T2 estimation using CPMG, but these 

can be reduced by modeling them, limiting the RF refocusing pulse sensitivity to B1+
28, or 

using a gradient crusher scheme which limits the contribution to unwanted signals29. 

 Further acceleration in T2 estimation can be obtained by an MRI sequence called 

balanced steady-state free precession (bSSFP; §2.2.1)30. In particular, combined with the T1 

estimation from DESPOT1, DESPOT225 permits the estimation of T2 through bSSFP’s 

sensitivity to both T1 and T2. Like DESPOT1, DESPOT2 relies on a short TR sequence, which 

permits rapid acquisition of the necessary nutation angles for parameter estimation. 

 

2.2 Background on Conventional MR Imaging 

 The following section discusses conventional MRI pulse sequences for relaxometry 

and fat quantitation relevant to this work as well the basics of image reconstruction.  

 

2.2.1. Conventional pulse sequences 

 We can broadly categorize pulse sequences into gradient echo (GRE) and spin echo 

sequences (SE). The primary difference between these sequences is that the GRE signal, 

which contains at least some component of longitudinal magnetization rotated into the 
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transverse plan (free induction decay)i, relies on the immediate action of an RF pulse 

combined with a gradient (for imaging); whereas, the SE signal relies on the Hahn echo 

mechanism discussed in §2.1.3. Each of these expansive categories contain many 

subcategories including approaches to acquiring the necessary data to create an image, and 

differences in preparation before imaging to impart different contrast mechanisms. Here, 

we focus on subcategories that are most relevant to methods and modifications to those 

methods later employed in this work. 

 When considering GRE sequences, it is pertinent to consider the refocusing effects 

of transverse magnetization. For a given flip angle 𝛼 at a given phase 𝜙 from an RF pulse 

(considered instantaneous in this context), the complex magnetization 𝐌 = [𝑀+, 𝑀−, 𝑀z]
T, 

with 𝑀± = 𝑀𝑥 ± 𝑖𝑀𝑦, can be given as31 

 

𝐌+ =

(
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𝐌− = T(𝛼)𝐌−.   [2.12] 

 

Here, the <⋅>± indicates after and before the RF pulse. We can see that for 𝛼 = 180∘ (𝜙 =

 0), T(𝛼) becomes 

 

T(180∘) = (
0 1 0
1 0 0
0 0 −1

) .   [2.13] 

 

For non-zero transverse magnetization, the act of a refocusing pulse is to swap 

magnetization between the 𝑀± states by phase conjugation. Similarly, we can see that 𝛼 <

180∘ also swaps information between these states. That is, for sequences with repeated 

                                                           
i Strictly speaking, this notion can be challenged in special cases, such as variable flip angle approaches 
where one of the flip angles is zero. 
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flip angles and 𝑇R ≲ 𝑇2, refocused magnetization may contribute significantly to the signal 

for 𝛼 < 180∘. 

 The spoiled gradient echo technique (SPGR) is a GRE sequence that severely 

attenuates or removes (spoils) the remaining transverse magnetization. A common way to 

achieve spoiling is by rotation of the RF phase between pulses in a quadratic fashion 

combined with a gradient spoiler that dephases the magnetization. Here the RF phase for 

the 𝑗th pulse, 𝜙𝑗, can be given as2 

 

𝜙𝑗 =
1

2
𝜙0(𝑗

2 + 𝑗 + 2),   [2.14] 

 

where 𝜙0 is an angle that is empirically derived to reduce contributions of refocused 

transverse magnetization. With RF spoiling, SPGR sequences can use 𝑇R ≪ 𝑇2 with limiting 

effects from refocused magnetization. As an SPGR signal goes to the steady-state, its signal, 

𝑠SPGR, can be derived analytically as  

 

𝑠SPGR = C
1 − 𝑒−𝑇R/𝑇1

1 − 𝑒−𝑇R/𝑇1cos(𝛼)
𝑒−𝑇E/𝑇2

∗
sin(𝛼).   [2.15] 

 

If the echo time, TE, is fixed the T2
* weighting can be folded into the scalar 𝐶. It is apparent 

that the SPGR signal is a function of T1. 

 Steady-state free precession (SSFP) sequences are classes of GRE pulse sequences 

that do not spoil remaining transverse magnetization.30 SSFP sequences are often divided 

into balanced (bSSFP) and unbalanced/non-balanced/gradient-spoiled (uSSFP) forms. In 

bSSFP, repeated flip angles with alternating sign are applied with zero net gradient across 

TR. This has the effect of combining available FID signal from non-zero longitudinal 

magnetization as well as refocused components of the transverse magnetization. As such, 

the conventional steady-state bSSFP signal scales as √𝑇2/𝑇1.32 If magnetization is 

sufficiently off-resonance so that the precession phase per TR is π, the bSSFP signal is 

entirely nulled in the steady-state. This can produce banding artifacts on bSSFP images with 
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imperfect shimming or other sources of B0 variation. Unbalanced SSFP relies on a gradient 

spoiling/crushing that introduces (generally) an integer number of phase cycles across a 

given imaging voxel. This crusher has the effect of nulling the signal for the next excitation, 

but this dephased magnetization me be later refocused. As discussed above, the RF action 

permits refocusing of the magnetization with conjugate phase. When a subsequent 

gradient crusher is applied to the dephased and conjugated magnetization, the 

magnetization is refocused and can contribute to signal. The uSSFP signal-to-noise ratio is 

generally reduced relative to that from bSSFP, but uSSFP does not suffer from banding 

artifacts. Depending on the magnitude of the crusher gradient, uSSFP sequences may 

experience diffusion weighting as the protons experience stochastic movements between 

excitations and have been subjected to dephasing gradients. 

 The SE sequence important for this work besides a basic Hahn echo technique, is a 

modified CPMG sequence. Under normal CPMG conditions, gradient crushers are used to 

suppress spurious signals from FID transverse components that contribute to the observed 

signal when α ≠ 180∘. However, this does not prevent imperfect refocusing pulses from 

swapping magnetization from the transverse to the longitudinal direction and vice versa, 

like the GRE process of refocusing. These so-called stimulated echoes9 decay by T1 when 

they are in the longitudinal state, confounding T2 estimation. Modulated gradient schemes 

for this have been formulated, which attempt to ensure stimulated echo contribution the 

signal is minimized. Key among these methods is the modified Poon-Henkelman approach, 

which utilizes a descending and alternating gradient strength so that stimulated echo 

coherent pathways cannot be easily refocused by subsequent crusher actions.29 This 

violates the CPMG conditions, reducing the available signal for measurement, but 

drastically reduces the contributions from stimulated echoes so that T2 estimated can be 

estimated from (demodulated) SE equation [Eq. (2.3)].  To reduce the imperfect refocusing 

sensitivity on B1+, numerically optimized composite pulses can be used such as the Version 

S pulse,28 which provides robust refocusing even with large deviations in B1+. 
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2.2.2. Conventional image reconstruction in MRI 

 Beyond the simple Fourier relation between the signal domain and image domain, 

there are several modifications beyond basic clinical image reconstruction techniques 

pertinent to this work. These include non-uniform sampling, gridding, sample density 

compensation, and multi-coil image combination. 

 If the spatial-frequency domain (k-space) representation of a signal can be 

measured, using the (inverse) Fourier transform we can write the spatial domain signal, 

𝑠(𝐫) as 

 

𝑠(𝐫) = ∫𝑠(𝐤)𝑒𝑖2π𝐤⋅𝐫d𝐤
𝐾

,   [2.16] 

 

where 𝐫 denotes the spatial position, 𝐾 is the region of support for the signal in the spatial 

frequency domain, and 𝐤 is the spatial-frequency coordinate. The basis of MRI is to apply a 

magnetic field gradient in the magnetization with respect to the image encoding 

dimensions, 𝐆 = [𝐺𝑥, 𝐺𝑦, 𝐺𝑧]
T

 (𝐺𝑟 =
∂𝐵𝑧

∂𝑟
), for some finite interval 𝜏 to measure the signal 

at 𝐤 given as 

 

𝐤 =
γ

2π
∫ 𝐆(𝑡)𝑑𝑡

τ

0

.   [2.17] 

  

If 𝐤 is uniformly discretized so that 𝐤(𝑡) = 𝑛Δ𝐤, 𝑛 =  0, 1, 2, … ,𝑁 − 1, we can write the 

spatial domain signal as the (inverse) discrete Fourier transform of its discretized spatial 

frequency counterpart 

 

s(𝐫) = ∑𝑠[𝑛]𝑒𝑖2πk[𝑛]⋅𝐫

𝑛

,   [2.18] 

 

where s[𝑛] = s(𝐤[𝑛]) = s(𝑛Δ𝐤). Due to this sampling, the field-of-view (FOV) of the image 

is replicated at a spatial period of 1/Δ𝐤 and the resolution of the image Δ𝐫 = 1/(𝑁Δ𝐤). 
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The discrete image reconstruction can be sped by using fast Fourier transform algorithms.33 

These relations are relatively straightforward to implement if the image is sampled on a 

Cartesian grid, but that is not the case in radial or spiral k-space acquisitions. 

 To accommodate non-uniform sampling in k-space non-uniform FFT (NUFFT) 

algorithms have been developed.34,35 Type I NUFFTs transform non-uniform data to a 

uniform sampling domain, whereas Type II NUFFTs do the reverse. In Type I NUFFTs, the k-

space data are interpolated onto an oversampled grid with correction factors and 

reconstructed using standard FFT, thus is often referred to as “gridding.” The Type II NUFFT 

is relevant for iterative methods of image reconstruction, where a current estimate of the 

image data can be (forward) projected onto the non-uniform k-space. This permits a least-

squares solution to the non-uniform sampling image reconstruction problems. While this 

method has some guaranteed optimality, it is generally slower than gridding.35 

 Gridding depends on sampled density compensation (SDC) and interpolation. SDC 

is the re-weighting of the non-uniformly sampled data because k-space is more densely 

sampled in some areas than others. Without SDC, the resulting gridded image will be 

weighted more heavily in lower or higher resolution components of the image, concordant 

with higher sampling density in, respectively, the center or periphery of k-space. While SDC 

can be calculated analytically for certain idealized trajectories,2 it can also be calculated 

numerically36 for arbitrary k-space sampling trajectories. The interpolation is generally 

performed by convolution of the sampled k-space data with a Kaiser-Bessel function.37 

In both Cartesian and non-uniform k-space sampling, multiple sets of data are often 

simultaneously acquired with several coils. To combine multi-coil data in the image domain 

for fully sampled data, a matched filter approach is optimal38 for combining coils and 

methods for estimating coil sensitivities have been found39. Recent advances in coil 

combination permit calculation of the sensitivity maps from a calibration region in the 

acquired data.40  

 Spiral k-space trajectories are non-uniform trajectories that alter several aspects of 

reconstruction relative to conventional Cartesian sampling. The simplest of the spirals is 

the Archimedean spiral, which has uniform separation of its arms in k-space.41 However, 

the design of spiral trajectories can be limited by maximum gradient amplitudes and slew 
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rates, supporting the development42 of numerically calculated trajectories. This permits the 

calculation of variable density spirals, which can alter the spacing between adjacent arms. 

The efficiency of spirals as measured by SNR per unit time are improved relative to 

Cartesian sampling by avoiding acquisition of the corners of k-space and by center-out 

sampling. 

  

2.3 Background on MRI Fat Quantitation 

This section outlines models and methods for imaging triglycerides (i.e. fat) with 

conventional MRI. Early as well more recent methods for fitting for fat, water, and ΔB0 are 

discussed. 

 

2.3.1 An MR signal model for triglycerides 

 Electronic shielding of the proton studied in an MR experiment can introduce a 

chemical shift σs such that the magnetic field experienced by the nucleus 𝐵0̃ is given as 

 

𝐵0̃ = 𝐵0(1 − σs).   [2.19] 

 

This is particularly relevant to MR imageable triglycerides, which contain several moieties 

that have different chemical shifts, detailed in Table 2.1 adapted from Refs 43 and 44. This 

table details the chemical shift of different protons from MR imageable triglycerides with 

the measured signal fraction, corrected for T2, from murine gonadal white adipose tissue. 

Rows of different moieties have been combined when the peak intensity estimates were 

not separated in analysis. 
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Table 2.1 Chemical shifts and relative weightings in white adipose tissue.  

δ (ppm)1 Name of moiety 

Relative abundance 

in rodent white 

adipose tissue 

0.9 Methyl 0.09 

1.3 Bulk methylene 
0.62 

1.59 Methylene β to carbonyl 

2.03 Allylic methylene 
0.15 

2.25 Methylene α to carbonyl 

2.77 Diallylic methylene 0.02 

4.1 Glycerol methylene 
0.04 

4.3 Glycerol methylene 

5.21 Glycerol methine - 

5.31 Olefinic methine 0.08 

1 Parts per million relative to tetramethylsilane. 

 

 While there are variations in the relative weights of the different moieties in 

triglycerides throughout the human body, these variations are relatively small between 

subcutaneous and visceral adipose tissue45. The deviation between fatty acid composition 

in white adipose tissue and brown adipose tissue is also thought to be small.46 Unlike water, 

the T1 relaxation of bulk methylene from white adipose tissue is generally thought to be 

constant throughout the body, which is important for certain forms of conventional fat 

suppression in MRI47. While there is some in vitro evidence that this may not be the case,48 

ex vivo evidence suggests that T1 and T2 of the different triglyceride moieties are relatively 

constant through different adipose tissue types44. As such, in the MR context, triglycerides 

that compose MR imageable fat are often treated as uniform composition throughout the 

body (see also Chapter 9). 



21 

  

 

 The signal from water, 𝑠w(𝑡), and fat, 𝑠f(𝑡), as a function of time can be given as  

 

s(𝑡) = 𝑠w(𝑡) + 𝑠f(𝑡) = 𝐶 ((1 − 𝜂) + 𝜂 ∑ 𝑎𝑝𝑒𝑖2π𝑓𝑝t

𝑝=𝑃

𝑝=1

) ,   [2.20] 

 

where 𝐶 is scaling constant that depends on the magnetization density as well as properties 

of the MRI hardware and acquisition setup, 𝜂 is the fat signal fraction (FSF),  {𝑎𝑝} is the set 

of relative weights of the fat moiety (i.e. the third column of Table 2.1) at the given chemical 

shift frequency 𝑓𝑝 = (𝛿 − 𝛿ref) ⋅ 10−6 ⋅ 𝑓0 with 𝑓0 the Larmor frequency, and relaxation is 

neglected. Commonly, the MRI signal is demodulated around the resonance frequency of 

free water δref ≈ 4.65 ppm. Any phase offset in Eq. (2.20) is neglected for simplicity. The 

number of peaks, 𝑃,  used to model the fat signal varies widely between different fat fitting 

algorithms, with one peak commonly being used to characterize the bulk methylene alone, 

up to six or more peaks, as seen in Table 2.1. It is known that monospectral fat models can 

bias estimation of fat fraction.49 While often not directly considered in fat-water MRI, there 

is a close agreement between FSF and the fat mass fraction50. 

 

2.3.2 Confounding factors in the triglyceride signal model 

 The model given by Eq. (2.20) assumes a uniform B0 field that is shimmed to 𝛿ref 

and does not consider susceptibility effects that may further distort the static field.  Other 

complications to this model include T1 effects and, potentially, J-coupling. 

If a conventional MRI fat measurement relies on a sequence that spoils the 

remaining transverse magnetization at the end of TR (see also §2.2), then a signal model for 

water and fat that consider shifts in the B0-field as well dephasing effects due to 
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susceptibility variations at length scales smaller than the macroscale B0 shifts can be given 

as 

 

s(𝑡) = 𝐶 ((1 − 𝜂) + 𝜂 ∑ 𝑎𝑝𝑒𝑖2π𝑓𝑝𝑡

𝑝=𝑃

𝑝=1

)𝑒(𝑖2πΔ𝐵0𝑡−𝑡/𝑇2
∗).   [2.21] 

 

The first term within the last exponent accounts for phase offset as a function of time from 

Δ𝐵0, and the second term accounts for intra-voxel phase dispersion through the inclusion 

of 𝑇2
∗. Such complications to the model can substantially affect the estimate of FSF. For 

instance, if Δ𝐵0  ≈ −430 Hz at field strength of 3 T, one may find that water and the bulk 

methylene peak are swapped, depending on acquisition parameters and fitting 

approaches. However, estimating ΔB0 may be equivalently confounded by the presence of 

fat. As discussed in §2.3.3, some effort in fat-water imaging is spent attempting to unravel 

this problem. 

 Relaxometry effects and J-coupling can also confound the signal model. As 

discussed in §2.1.2 water T1 may vary substantially over the body, whereas the 𝑇1 of fat is 

thought to be relatively fixed. During a short TR sequence with repeated nutation angles 

and RF spoiling, the equilibrium signal will be T1 dependent (Eq. 2.15). If the water and fat 

T1 are not equal, the FSF will be biased depending nutation angle.51,52 Imaging at a low 

nutation angle (≤ 5°) will often substantially mitigate this effect. J-coupling is the 

modulation of the proton resonance frequency mediated by electrons in through-bond 

interactions within the fat molecule. A number of different fat peaks experience J-coupling 

effects,53 which can reduce signal54 as the coupled protons in fat move in and out of phase 

with one another. While modeling for simple coupled systems55 exist, empirical 

approaches56 for J-coupling have also been employed. 

 

2.3.3 Conventional and recent methods for MRI fat-water separation 

 Early MRI methods which used two images at different echo times to capture signal 

interference between the water signal and that of the bulk methylene for fat (two-point 
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method) have given way to techniques that acquire many images at different echo times 

and fit for B0 and T2
*. As such, fat-water post processing techniques have developed from 

simple image arithmetic to advanced discrete optimization techniques. 

 The foundation for much fat-water MRI is the Dixon technique57. In this approach,58  

Eq. (2.20) is used with a single peak of bulk methylene representing fat, and observations 

made at TEs where water is entirely in-phase with fat (𝑇E,IP =  n/fp, n = 0,  or 1, or 2,   …) 

and opposite phase with fat (𝑇E,OP = n/fp/2,  n = 1,  or 3,   …). If we represent these two 

images as 𝐼IP and 𝐼OP, respectively, the estimate for the water image, 𝑊, and fat image, 𝐹, 

can be given as 

 

𝑊 =
𝐼IP + 𝐼OP

2
  [2.22] 

 

and 

 

𝐹 =
𝐼IP − 𝐼OP

2
.   [2.23] 

 

However, this neglects the other fat peaks and 𝐵0 effects as we can see in Eqs. (2.20-21), 

which will bias these 𝑊 and 𝐹 estimates. More sophisticated three-point Dixon methods59 

have seen widespread use which image at different TEs outside of in-phase and opposed-

phase that permit estimation of B0 effects. These methods have given way to a more 

general non-linear signal model for fat-water imaging. 

 If we observe at a set of 𝑁 different TEs, the image signal 𝐬 at location 𝐫 can be given 

as 

 

𝐬(𝐫; 𝑇E) = J

[
 
 
 
 
sw(TE,1) sf(TE,1}

sw(TE,2) sf(TE,2}

⋮ ⋮
sw(TE,N) sf(TE,N}]

 
 
 
 

[
W(𝐫)
F(𝐫)

]   [2.24], 

 



24 

  

 

where J is a diagonal matrix with entries J𝑛,𝑛 = 𝑒𝑖𝑇E,𝑛(2πΔ𝐵0−1/𝑇2
∗), and sw and sf are the 

water and fat signal models.  If ΔB0 and T2
* can be neglected, then the fat and water 

components can be estimated by linear regression using the Moore-Penrose pseudoinverse 

 

[𝑊̂
𝐹̂

] = (AHA)−1AH𝐬 = A†𝐬,   [2.25] 

 

where A is the matrix composed of the water and fat signal model vectors, 𝐬w and 𝐬f, and 

AH is the conjugate transpose of A. However, with J not equal to the identity matrix, Eq. 

(2.24) is non-linear and requires iterative methods, such as Reeder et al.’s IDEAL 

technique,60 or can be approached using variable projection. 

 Variable projection61,62 operates on separable equations such as Eq. (2.24) where 

the linear aspects of the function (A𝐬) is separated form the non-linear portion (J =

f(Δ𝐵0, 𝑇2
∗)). Without loss of generality, we neglect T2

*. If the values of the nonlinear 

parameter, ΔB0, is known,  

 

𝐬 − ÃÃ†𝐬 = 𝟎,  [2.26] 

 

where Ã = J(Δ𝐵0)A. This invites a least squares solution that depends only on the non-

linear parameters: 

 

Δ𝐵0̂ = argΔ𝐵0
 min ||𝐑||

2

2
  [2.27] 

 

with  

 

𝐑 = [I − ÃÃ†]𝐬.   [2.28] 

 

This formulation is dependent on a single variable, ΔB0, and can be solved more readily 

than the problem with a higher number of variables. It has been adopted in a number of 
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different formulations of fat-water separation problem43,62,63, including discrete 

optimization methods for solving for ΔB0
64,65. 

 

2.4 Background on MR Fingerprinting 

This section presents an introduction to MRF and recent developments in this 

recently published technique. Balanced and unbalanced SSFP MRF sequences and their 

advantages and disadvantages are discussed. Modeling and compression techniques are 

presented, as well as optimization techniques and different MRF applications. 

 

2.4.1 Relaxometry with high undersampling 

 The original MRF technique, developed at Case-Western by Dan Ma in the lab of 

Mark Griswold,66 was based up on an inversion prepared bSSFP technique with a spiral k-

space trajectory. Instead of fixed sequence parameters, flip angle and repetition times were 

varied in a pseudo-random pattern. And rather than try to capture all the necessary spiral 

interleaves at a constant signal to reconstruct an image, the contrast was permitted to vary 

each excitation. Only a single spiral interleaf is acquired each excitation before a different 

flip angle with a different TR were then acquired. That is, the MRF signal exists in a transient 

state and is sampled in a highly undersampled way. Separate from the image acquisition, 

MRF used a series of discrete signal models (atoms)—parameterized by T1, T2, and ΔB0—

using a single isochromat Bloch simulation and normalized to unity.  Aliased images were 

reconstructed for each excitation and then fit for T1, T2, and ΔB0 by performing an inner 

product between each voxel’s signal and all atoms of the dictionary. The best match was 

defined as the entry with maximum magnitude of the inner product. This dictionary of 

signals (or “fingerprints”) highly constrains the possible fits for the signals, so that, despite 

the large amount of aliasing in the image, the correct parameter combination can be 

estimated at the given voxel. This assumes that the aliasing is essentially incoherent with 

the signal. 

 This bSSFP MRF technique permitted accurate relaxometry compared with 

conventional methods in a fraction of the time. Ma et al. compared their MRF estimates of 

T1 and T2 in a gadolinium-doped agarose phantom against conventional estimates from 
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saturation recovery and spin-echo measurements, as well as with DESPOT1/2. They found 

concordance correlation coefficients of MRF exceeded 0.970 for T1 and T2, and these 

concordances exceeded those from DESPOT1/2. The acquisition efficiency of T1 and T2 

estimation, measured as the respective parameter estimate relative to the estimated noise 

in the parameter divided by the square root of the sequence time, was superior in MRF 

relative to DESPOT1/2. The scan duration of the MRF sequence was 12 s. In vivo brain T1 

and T2 estimates were consistent with those from the literature. 

 Perhaps the most striking aspect of MRF is its ability to estimate parameters despite 

the large degree of aliasing noise. The bSSFP MRF technique reportedly used an 

undersampling factor of 48. However, the reconstructed magnetization density (and other 

parameter) maps showed little evidence of aliasing. 

 Despite the promise of fast relaxometry bSSFP MRF, there are some drawbacks to 

the sequence. Like its conventional version, bSSFP MRF is not immune to banding artifacts 

and integer multiples of off-resonance frequency 1/𝑇R from 1/𝑇R/2. Also, the bSSFP MRF 

sequence is generally sensitive to ΔB0, which may be advantageous if this is a parameter of 

interest, but in many cases, it is merely a nuisance parameter. The MRF signal dependence 

on the off-resonance likely limits bSSFP MRF’s compressibility (see also §2.4.3). 

 

2.4.2 Unbalanced SSFP MRF 

 To evade banding artifacts an unbalanced SSFP (uSSFP) MRF technique was 

developed67 (also known as the non-vendor neutral fast-imaging with steady state 

precession {FISP} MRF). This sequence relies on an integer 2π gradient spoiling per nominal 

slice thickness in the slice select direction on top of the pseudo-random variation in 𝛼 and 

TR. As discussed in §2.1, the inclusion of the unbalanced gradient crusher generates 

coherent states that can be later refocused. Since these states are well characterized by 

many isochromats of different phase, the single isochromat Bloch simulation used for 

bSSFP MRF would not work as a model. Instead these states can be modeled using an 

extended phase graph (EPG) approach (§2.4.3). Like bSSFP MRF, uSSFP MRF permits T1 and 

T2 estimation concordant with conventional relaxometry techniques with large 
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undersampling factors. The lower SNR of the uSSFP sequence reduces the acquisition 

efficiency relative to the bSSFP approach, the cost of eliminating the banding artifacts.  

 Unbalanced SSFP was able to achieve high undersampling with seeming immunity 

to ΔB0. The initial work on uSSFP MRF showed that T1 and T2 were roughly consistent 

despite substantial deviations in ΔB0. The gradient crushing of the FID at the end of each TR 

and variable TR apparently reduced the sensitivity of the sequence on off-resonance effects 

relative to bSSFP MRF. However, the images and parameter maps generated from these 

poorly shimmed cases were not presented. 

 Variations of uSSFP have been employed in cardiac and volumetric imaging. For 

myocardial imaging, Hamilton et al.68 customized the dictionary according to the subject-

specific ECG trigger delays used during the MRF acquisition in order to estimate T1 and T2. 

Brain volumetric imaging69 has been achieved by cycling through Cartesian slice encoding 

gradients in an undersampled and periodic fashion, as opposed to the spiral sampling for 

in-plane imaging. Intriguingly, the brain T2 values in this study are over 10 ms lower than 

those typically reported from FSE measurements, but the MRF 𝑇2 values have excellent 

agreement with those from conventional methods in an MRI system phantom with 

calibrated relaxometry contrast spheres. 

 

2.4.3 MRF signal modeling, the extended phase graph formalism, and compressibility 

 The original bSSFP MRF manuscript66 used the Bloch equations to model the signal 

response in their slice-selective sequence. Since any kind of phase dispersion of the 

magnetization within an imaging voxel was not considered, it was possible to model each 

dictionary element using a single isochromat. As such, this work used an idealized RF pulse 

response with the nominal flip angle that assumed a perfectly rectangular slice profile 

whose response is given by Eq. (2.12). Signal decay can be modeled using Eqs. (2.3-4). 

Including ΔB0, over 500,000 dictionary atoms were created for the 1000 excitation 

sequence. In the case of uSSFP MRF, the unbalanced gradient causes a phase dispersion 

that may significantly slow a conventional Bloch simulation for MRF dictionary generation. 

 Unbalanced SSFP is more readily modeled with extended phase graphs (EPG)31. The 

EPG formalism describes how to operate excitation, relaxation, and gradient action in the 
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through-slice spatial frequency (𝑘𝑧) domain, as opposed to the spatial domain approach of 

a conventional Bloch simulation. If a fixed crusher strength is used in the through-slice 

direction and causes integer 2π dephasing over the slice thickness, then, by the Fourier 

shift theorem, the phase dispersion can be modeled by a simple shift of the transverse 

magnetization k-space position (denoted by a shift operator S). Instead of using many 

isochromats to represent this phase dispersion, only a single k-space state must be non-

zero valued to represent this operation. This makes it advantageous to use EPG in the uSSFP 

context over a Bloch simulation. 

 The EPG operators that describe the action of an idealized RF pulse and relaxation 

can be analytically determined. The RF transition operator is the same as Eq. (2.12), so that 

the EPG operation of RF in k-space, following the nomenclature of Weigel31, is 

 

𝐅+ =

(

  
 

cos2 (
𝛼

2
) 𝑒2𝑖𝜙sin2 (

𝛼

2
) −𝑖𝑒𝑖𝜙sin(𝛼)

𝑒−2𝑖𝜙sin2 (
𝛼

2
) cos2 (

𝛼

2
) 𝑖𝑒−𝑖𝜙sin(𝛼)

−
𝑖

2
𝑒−𝑖𝜙sin(𝛼)

𝑖

2
𝑒𝑖𝜙sin(α) cos(𝛼) )

  
 

𝐅− = T(𝛼)𝐅−  [2.29] 

 

where 𝐅± = ℱ{[𝑀+
± 𝑀−

±𝑀𝑧
±]

𝑇
} = [𝐹+

± 𝐹−
± 𝐹𝑧

±]
𝑇
. The state matrix is the discrete Fourier 

transform of the through-slice direction, evaluated at 𝑘  =  𝑛Δ𝑘, for 𝑛 =  0,  1,  2, …, 

rearranged into a matrix Ω(𝑘) ∈ ℂ3𝑥𝑄. The spacing in k-space, Δ𝑘, is generally given as 

𝑁crush/Δsl, with 𝑁crush the number of cycles per nominal slice thickness Δsl. The relationship 

between 𝐹+(𝑛Δ𝑘) = 𝐹+[𝑛] and Ω is 

 

𝐹+[n]  = {
Ω∗[2, −𝑛], for 1 ≤ −𝑛 ≤ 𝑄 − 1

Ω[1, 𝑛], for 0 ≤ 𝑛 ≤ 𝑄 − 2
}   [2.30]. 

 

The consequence of this discretization is that the shift operator, S, shifts the first row of Ω 

by a single index and shifts the second row in the opposite direction. 

Transverse relaxation occurs only on the first two rows, longitudinal relaxation acts 

on the third row. The 3 x 3 matrix is 
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E = diag{𝑒
−

𝜏
𝑇2 , 𝑒

−
𝜏
𝑇2 , 𝑒

−
𝜏
𝑇1},   [2.31] 

 

for some time interval 𝜏, and the relaxation operation can be given as 

 

Ω+ = EΩ− + [0 0 𝐹𝑧,0 (1 − 𝑒
−

τ
𝑇1)]

T

𝐈̃.   [2.32] 

 

The vector 𝐈̃ denotes unity followed by 𝑄 − 1 zeroes. Putting the above together, EPG 

models excitation by Eq. (2.29), relaxation by Eqs. (2.31-32) and gradient crushing by the 

shift operator S. 

The compressibility of MRF dictionaries can be evaluated and exploited using 

singular value decomposition (SVD). McGivney et al.70 studied bSSFP and uSSFP MRF 

dictionary compression in the time domain with SVD. Paraphrasing this group’s results, a 

dictionary 𝐷 ∈ ℂ𝑁×𝑀 with 𝑁 excitations and 𝑀 atoms (𝑀 >  𝑁), using SVD, can be written 

as 

 

D = USVH  [2.33] 

 

Where U, S, and V are the left singular vectors, diagonal matrix of singular values, and right 

singular vectors, respectively. The truncated SVD, composed of the first 𝑅 

columns/diagonal elements of the matrix of singular vectors/values is approximately equal 

to D, 

 

D ≈ U𝑅S𝑅V𝑅
H.   [2.34] 
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The accuracy of this low rank, R, approximation to D can be characterized by the energy of 

the elements of S = diag(σ𝑖) such that the fractional energy 

 

ϵ(𝑅) =
∑ σ𝑟

2𝑟=𝑅
𝑟=1

∑ σ𝑟
2𝑟=𝑁

𝑟=1

.   [2.35] 

 

The solution to the dictionary match problem for a signal vector 𝐬 and parameters specified 

in the vector 𝛉 is given as  

 

𝛉̂ = arg𝑗max|𝐬H𝐝𝑗|  [2.36] 

 

where 𝐝𝑗 is the 𝑗𝑡ℎ column (atom) of D. Since the truncated set of left singular vectors 

contain an orthonormal basis that nearly spans the space of dictionary and signal, s and D 

can be projected onto the left-singular vectors and then represented in Eq. (2.36) as 

follows, 

 

|𝒔H𝐝𝑗| ≈ |(U𝑅U𝑅
H𝐬)H(U𝑅U𝑅

H𝐝𝑗)| ≈ |𝐬HU𝑅U𝑅
H𝐝𝑗|  [2.37]. 

 

As R increases, ϵ → 1, and Eq. (2.37) is increasingly accurate. McGivney et al. showed that 

for uSSFP MRF, that R can be as few as 10 and still capture a basis that nearly spans the 

space of the signals in D. It is important to note that this compressibility is sequence 

dependent, as well as the parameter space considered. A smaller sub-space of parameters 

may require still a lower rank for the same relative accuracy. Conversely, parameter specific 

modulations will tend to increase the rank. The bSSFP MRF dictionary required 𝑅 > 200 

elements to reach a nearly full representation of its dictionary, presumably due to the 

addition and interplay of ΔB0 with T1 and T2. This compressibility can be exploited to speed 

dictionary matching, by reducing the inner product search from scalar ~𝑁 × 𝑀 

multiplications to ~𝑅 × 𝑀 multiplications (once the dictionary and signal have been 
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compressed). This compressibility combined with dictionary modeling helps to clarify MRF 

as subset of low-rank model-based reconstruction techniques. 

  

2.4.4 Optimization of MRF sequences 

 Several approaches have been taken to optimize MRF sequences. These techniques 

generally take a conventional approach by considering the aliasing to be normally 

distributed, or they use a heuristic to model the effects from undersampling. While these 

techniques may succeed in special cases, none of them provide a complete description of 

the noise propagation. 

 If the aliasing noise were normally distributed, then improving parameter 

estimation quality could be accomplished by increasing the orthogonality between 

dictionary entries through variation of the 𝛼 and TR schedule. To this end, Cohen et al.71 

tested a series of optimization algorithms on an objective function that penalizes non-zero 

inner products of two different dictionary atoms. On the other hand, Zhao et al.72 used a 

Cramer-Rao lower bound estimation73 calculation to optimize an MRF sequence. Both 

studies indicated T2 accuracy could be substantially improved by optimization, compared 

to arbitrary sequence properties. However, outside of special situations, the aliasing in a 

given location will correlate with the unaliased signal, so is not normally distributed and 

may not be accurately modeled by conventional optimization approaches. 

 To address the non-normal distribution of the aliasing about the signal Sommer et 

al.74 modeled the aliasing contribution as a non-stationary phenomenon that scales with 

MRF signal. This heuristic approach combined with optimization of the parameter 

estimation bias, demonstrated improved T1 and T2 estimation using MRF sequences with 

improved optimization scores relative to sequences with worse bias. Very recently, a more 

complete theoretical description of the bias propagation from aliasing in MRF has been 

made, permitting the authors to model relaxometry bias from aliasing that is comparable 

to measured results.75 
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2.4.6 MRF extensions beyond relaxometry 

 While the initial implementations of the MRF largely focused on T1 and T2 

estimation, the general framework of MRF has shown to be applicable to several contrast 

mechanisms. These include perfusion, chemical exchange and magnetization transfer, 

diffusion, as well as fat signal fraction. A thorough review of these is beyond the scope of 

this introduction  and has also been recently been reviewed elsewhere76. Instead, select 

MRF studies pertinent to this work as well as particular aspects are noted. 

 Quickly following the debut of MRF, it was proposed to estimate cerebral blood 

volume, mean vessel radius, and blood oxygen saturation using an MRF approach with a 

gradient-spin echo sequence77. In this vascular MRF (vMRF) technique, images were not 

undersampled and a conventional sequence was used. In a similar vein, another group 

estimated the same parameters in mice,78 but using a more realistic model of the 

vasculature. Arterial spin labeling MRF has also been demonstrated79 using pseudorandom 

labelling delays. In common to all these studies is the lack of undersampling and, to some 

degree, the use of conventional sequences. This points out the vagueness in what 

constitutes MR fingerprinting. While the vMRF approaches may model and fit signals like 

MRF, as well as estimate multiple parameters from the data, the similarities between the 

two techniques seem to end there. The legal protections granted MRF intellectual property 

notably require some variability in the sequence parameters in a non-conventional way. 

However, the precise boundaries of the definition of MRF are not necessary for this work 

moving forward. 

 Chemical exchange and magnetization transfer have been modeled with MRF 

sequences. While the Bloch-McConnell equations permit modeling of magnetization 

transfer effects, most effort in MRF has been given to modeling chemical exchange 

effects80,81. However, Malik et al. added to the EPG formalism to permit modeling of MT 

effects82 in SSFP sequences, including MRF sequences. 

 The diffusion sensitivity of uSSFP MRF due to its crusher gradients has been 

studied.83 This work indicated that long T2 tissues with high gradient moments could 

experience substantial bias, but for many tissues at gradient moments < 40 mT ⋅ ms/m, 
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the bias from diffusion is relatively small. These biases will presumably be somewhat 

sequence dependent. 

 Fat quantitation in MRF prior to that presented in this work and those 

contemporaneously published (further detailed in Chapter 6) generally considered adipose 

tissue without partial volume effects, i.e. without considering voxels with both fat and 

water. In the earliest MRF works,66,67 fat was modeled by its bulk methylene off-resonance 

and characteristic relaxometry values. Adipose tissue relaxometry values were measured 

in an early abdominal uSSFP work at 3 T, finding a T1 and T2 of 253 and 77 ms, respectively.84  

 

2.5 Conclusions 

The preceding chapters have provided a basis for the MRI and MRF developments 

and conventional measurements later discussed in this work. The original MRF 

developments noted above will be synthesized with the forthcoming (Chapter 3) 

introduction to nonalcoholic fatty liver in Chapter 4, which will discuss the potential role 

and challenges of MRF in liver imaging. 



Chapter 3 
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BACKGROUND ON FATTY LIVER DISEASE AND ITS NON-INVASIVE IMAGING ASSESSMENT 

 

3.1 Nonalcoholic Fatty Liver Disease 

This section briefly reviews clinical features of nonalcoholic fatty liver disease 

(NAFLD). This includes its definition and sub-types, prevalence, and summaries of what is 

known about its etiology, prognosis, and treatment. 

 

3.1.1 Characteristics of NAFLD 

 Nonalcoholic fatty liver disease, like the name suggests, is the ectopic deposition of 

fat in the liver in the absence of alcohol abuse. NAFLD encompasses a spectrum of 

pathological traits including steatosis and inflammation that may lead to hepatic fibrosis.85 

Historically, it has been overlooked, but has become an increasing health concern due to 

its high prevalence and relationship with fibrosis. 

 The NAFLD spectrum ranges from the excess storage of fat in the liver, nonalcoholic 

fatty liver (NAFL), to an inflammatory state that eventually progresses to fibrosis, 

nonalcoholic steatohepatitis (NASH). Both conditions are excluded by the presence of 

another hepatic disease/etiological source such alcohol abuse or Wilson’s disease.86 An 

hepatic fat fraction of >5% is considered abnormal, and is part of the basis of diagnosis of 

NAFL. NASH currently can only be confirmed by liver biopsy87 and is characterized by 

hepatocellular ballooning degeneration and inflammatory activity, typically near the lobule 

central venule (acinar zone 3)88. Persistent inflammation can ultimately lead to 

development of fibrosis, impaired liver function, and eventually frank cirrhosis. There is no 

precise histological staging system for NAFLD/NASH, but several have been proposed.89 The 

histological grading spans three or four stages from steatosis with mild inflammation to 

pervasive inflammation and ballooning degeneration90–92. While the National Institute of 

Diabetes and Digestive and Kidney Diseases has established the NASH Clinical Research 

Network NAFLD activity score (NAS)93 to improve quantitation of NASH histology, this is 
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currently not the standard of care and is weighted more heavily in steatosis than 

inflammation89. 

While the presence of fibrosis is not required for the diagnosis of NASH, it is the 

most clinically relevant endpoint because of the relationship between fibrosis and liver 

function. Staging of NAFLD fibrosis is generally broken into five ordinal intervals from 0, 1, 

..., 4.91,94 These range from no fibrosis (0), zone 3/peri-sinusoidal fibrosis (1), zone 3 and 

portal fibrosis (2), bridging fibrosis between central venule and portal triad (3), to frank 

cirrhosis (4). As fibrosis advances, cirrhotic nodules form, and normal liver function is 

compromised, increasing risk of liver failure. Increased resistance to blood flow from 

hepatic stiffness can lead to portal hypertension and development of compensatory 

esophageal venous dilation called varices, which can be life-threatening, as well as extra-

hepatic collection of proteinaceous fluids called ascites. The necrosing fibrotic milieu 

becomes conducive to development of hepatocellular carcinoma.95 

 NASH has only recently been delineated and its prevalence is increasing over time. 

It wasn’t identified as its own disease until 1980.96 Previously, its advanced stage 

presumably fell into the category of cryptogenic cirrhosis. The recent delineation of NASH 

as its own pathology may in part due to the rise in its prevalence. From a study period of 

1988-1994 to 2005-2008, the prevalence of NAFLD increased by about twofold.97 However, 

this depended on evaluation of serum blood markers for liver disease and may have 

undercounted NAFLD prevalence in either period. In a 2004 study of over >3,000 subjects 

from the Dallas area using magnetic resonance spectroscopy to define fat fraction, 

abnormal steatosis of the liver was found to be those subjects with >5.5% fat signal relative 

to water signal with an estimated prevalence of 34%.98 Currently, it is estimated that 

approximately 30% of people in the United States may have NAFL, which is a similar 

prevalence to many other countries.99 The prevalence may vary over ethnic group100 and is 

generally high in obese populations101. The presence of NAFL and NASH are often 

correlated with diabetes mellitus101 and metabolic syndrome102. The prevalence of NASH is 

only a fraction of those with NAFL, but is generally estimated to be ~3% of the general 

population in the United States103 and may be much higher among some sub-

populations100. 
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3.1.2 Pathogenesis of NAFLD 

 The pathogenesis of NAFLD is not entirely understood, neither is the precise 

relationship between NAFL and NASH.104,105 However, several general biological processes 

related to insulin resistance, lipotoxicity, and genetic factors have been shown to be 

important for development of fatty liver and steatohepatitis. 

 The accumulation of excess fat within hepatocytes is a result of an imbalance in the 

production of triglycerides and storage of free fatty acids (FFAs). In NAFLD subjects,  

approximately 60%, 25%, and 15% of accumulated triglycerides in NAFLD hepatocytes 

come from circulating FFAs, de novo lipogenesis, and diet, respectively.106 It is not clear 

whether the elevation of serum FFAs is a product of (or even associated with) insulin 

resistance, or whether high serum FFA concentration is from adipose tissue dysfunction 

separate from insulin resistance.107 Storage of FFAs in hepatocytes occurs after their 

esterification into neutral tri(acyl)glycerides (TGs) in macrovesicular lipid droplets 

surrounded by phospholipid monolayers that may exceed several μ𝑚 in size.108 These fatty 

acid chains can be broken into constitutive parts for energy production by the process of 

β-oxidization. TGs can also be exported to peripheral adipose tissue via very low-density 

lipoproteins (VLDLs). The presence of serum insulin upregulates transcription factors that 

promote liver lipogenesis108,109 and attenuates breakdown of stored TGs104. In insulin 

resistant subjects, it follows that the chronic elevated levels of insulin may encourage 

overproduction of TGs through lipogenesis. Export of FFAs may be impaired or otherwise 

cannot keep pace with FFA production, causing hepatocytes to store the excess fat in lipid 

droplets.109 As such, the accumulation of TG in hepatocytes may be considered a marker of 

underlying metabolic dysregulation rather than an etiological source of pathology.110 The 

FFAs are known to have lipotoxic effects via the promotion of cytokines associated with 

inflammatory response in hepatic stellate cells.105,110,111 Qualitative signaling models exist 

that explain a link between elevated serum FFA from adipocytes and hepatocellular 

injury.110 Excess FFAs may also contribute to development of reactive oxygen species that 

stress the endoplasmic reticulum and hepatocyte mitochondria.105,110 These pro-

inflammatory events may be a foundation for the development of NASH.  
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 Chronically inflamed liver cells may trigger a cascading reaction that results in the 

development of fibrosis. Repeated insults to hepatocytes result in cellular structural defects 

that appear as Mallory-Denk bodies and in apoptotic cell death via hepatocellular 

ballooning,112 both of which appear as histological markers of NASH. Hepatic stellate cells 

(HSCs), which reside in the space of Disse, are thought to be activated by this prolonged 

cellular injury.113,114 This activation causes HSCs to deposit extracellular matrix115, in the 

form of fibrosis along the sinusoidal region112. The postprandial portal hypertension 

observed in subjects with late stage fibrosis116 is presumably caused by the decreased 

capacity for vessel expansion during digestion. Progressive fibrosis leads to thick cirrhotic 

septa that surround regenerative nodules.117 

 The mechanisms by which hepatic steatosis forms and progresses to inflammatory 

response becomes pathological are thought to have sources beyond metabolism. Single 

nuclide polymorphisms associated with PNLP3 and other genes have been identified as 

being related to dysfunction of lipid metabolism in steatohepatitis and fibrosis.108 While 

some of these associations have been repeatedly found to be associated with patients with 

NAFLD, these mutations in themselves are not sufficient to explain the presence or absence 

of NAFLD but likely interact with a host of other environmental and unknown genetic 

factors.118 

 

3.1.3 Prognosis of NAFLD 

Those with NAFLD are at higher risk of death by a factor of about 30%119,120 than 

those without the disease. The stage of fibrosis is the largest determinant of this increased 

risk, whereas the relationship of NAFL or NASH without fibrosis remains uncertain. 

It has been thought that the condition of NAFL alone generally is not a malignant 

condition, but other evidence makes this assumption controversial. As noted in §3.1.2 the 

role of TG accumulation in hepatocytes may be protective against FFA accumulation.   As 

reviewed by Bertot and Adams,121 studies of mortality risk in NAFL cohorts have shown a 

low excess mortality risk, but other studies have shown that about 25% of NAFL patients 

can transition to NASH with bridging fibrosis in less than 10 years. Their review121 also 

outlines how the potential risk to patients with NAFL alone may also be revealed in the 
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fluidity of NAFL and NASH fibrosis changes with time using paired biopsies, with progression 

and regression rates of fibrosis stage of roughly 30% and 20%, respectively. It has been 

shown that there may be no difference in the proportion of NAFL and NASH subjects with 

fibrosis progression.122 

 The excess risk of mortality of those with NAFLD is largely determined by fibrosis. 

Ekstedt et al.120 in a study of over 200 Swedish patients with biopsy-proven NAFLD followed 

for a mean of 26 years, found that those with fibrosis stage 3-4 had significantly higher 

overall mortality (hazard ratio > 3) than a reference population without NAFLD as well as 

higher disease specific mortality. Also of note in this study is that high NAS histology scores 

did not correlate with statistically significant higher mortality if fibrosis staging was low. 

 The complications of cirrhosis are multi-fold. Increased resistance to portal blood 

flow may result in increased pressure on the esophageal and gastric venous system. As 

noted above, the enlarged vessels, known as varices, may rupture and bleed, which is a life-

threatening condition. Portal hypertension can encourage the formation of 

protein/albumin filled volumes outside of the liver known as ascites, which increases the 

risk of bacterial peritonitis. Those with advanced fibrosis and cirrhosis are at increased risk 

for the development of hepatocellular carcinoma,120 which at the time of this writing has a 

five-year survival rate of 18.4% in the United States123. 

 

3.1.4 Treatment of NAFLD 

 The current treatments available for NAFL and NASH involve lifestyle changes as 

well as medications, but there are currently no FDA approved medications for NAFLD. The 

current guidance from the American Association for the Study of Liver Diseases86 is that 

diet and possible medication with pioglitazone or vitamin E may benefit patients with 

NASH. Reduction of weight by ≥ 7% is thought to have a significant positive impact on NASH 

histological markers. The use of pioglitazone may be used with patients with or without 

type 2 diabetes whereas vitamin E may be used for nondiabetic patients. The use of 

pioglitazone is associated with weight gain and there may be an increased risked of prostate 

cancer for men taking an excess amount of vitamin E. 
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The concerns about safety of existing medications used for NAFLD have prompted 

the recent development of multiple other drugs, currently under Phase II and III trials.124 As 

reviewed by Konerman et al.,124 these new drugs, which broadly fall into the categories of 

modulators of hepatic metabolic and inflammatory pathways, are difficult to evaluate 

clinically because of the lack of non-invasive means to assess their effectiveness. 

 

3.2 Diagnosis of NAFLD and Modality-Specific Strengths and Weaknesses 

In this section, different methods for the diagnosis of NAFLD are discussed. The role 

of biopsy and blood tests are summarized. The role of non-invasive imaging methods of 

ultrasound, computed tomography, and MRI in NAFLD diagnosis and investigation are 

explored. The different modalities of MRI in chronic liver disease are given emphasis. 

 

3.2.1 Histology and blood serum analysis 

 Histology is currently the only means to diagnose the hepatic necroinflammation 

that defines NASH.87,112 The histological specimen is typically acquired percutaneously. The 

use of ultrasound image guidance reduces the risk of major complications, relative to blind 

biopsy.125 Specimens are scored in a semi-quantitative grading on the presence and degree 

of steatosis, inflammatory infiltrates, Mallory-Denk bodies, and hepatocyte ballooning (as 

noted in §3.1.1). Using the Brunt system,112 there are four fibrosis stages and three grades 

of NASH histology. The four stages closely match the consensus stages given in §3.1.1: (1) 

zone 3 perisinusoidal fibrosis, (2) stage (1) with portal fibrosis, (3) bridging fibrosis from the 

portal region to zone 3, and (4) cirrhosis. The three grades range from low to high steatosis 

and inflammation. While there is considerable variability in agreement amongst 

pathologists for scoring lobular inflammation and hepatocyte injury, the steatosis and 

fibrosis scoring are more consistent.93 Despite these variabilities, this has historically been 

the only way to definitively diagnose NASH.   

 While histology is the gold standard for diagnosing NAFLD, it is not without its 

shortcomings. The biopsy procedure comes with a small risk of complications and 

substantial risk of pain,125,126 making its use for longitudinal monitoring questionable. The 

biopsy core samples only a small fraction of the liver, so may be subject to sampling bias. 
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The repeatability of some biopsy metrics is variable,127 making it difficult to accurately 

assess the sensitivity and specificity of any comparative diagnostic tests. 

 Blood serum analysis is routinely employed in the clinic to identify potential liver 

pathology. Composite scores of proteins related to liver pathology combined with other 

clinical metrics such as body mass index can be used to identify NAFLD patients with 

advanced fibrosis with area under the receiving operator curve (AUROC) of 0.85.86 Recent 

advances in blood serum analysis tests show promise for identifying hepatocyte apoptosis, 

but markers of oxidative stress and inflammation specific to NASH have not advanced as 

far87. A particular challenge for any blood test for NASH is the potential non-specificity of 

the potential biomarker. 

 

3.2.2 Medical imaging used in the diagnosis and investigation of NAFLD 

 

3.2.2.1 Ultrasound and Computed Tomography of the liver 

 Ultrasound (US) is used clinically to diagnose steatosis as well as fibrosis. Brightness-

mode US of the liver appear echogenic in fatty liver. In a large meta-analysis of US in the 

liver, AUROC for the diagnosis of steatosis has been reported to be 0.93 with an inter- and 

intra-rater reliability that varies from 0.44 to 1.0.128 This is for a qualitative measure of 

steatosis. Recently, quantitative measures of hepatic steatosis with attenuation of 

amplitude mode US signal have been attempted, but there is substantial overlap in the 

attenuation metric between patients with and without steatosis.129 

 Fibrosis can be measured with US elastography using shear waves. Shear wave 

elastography measures mechanical properties of the liver based on a velocity 

measurement, which is then related to a stiffness metric. The generation of the shear waves 

can be done using longitudinal waves generated by mechanical external oscillation at low 

frequencies (~50 Hz), or by focused acoustic radiation, called acoustic radiation force 

impulse (ARFI). These technologies have success rates >90% and AUROCs > 0.82 for fibrosis 

stage ≥ 3.130 

Challenges to US techniques include obesity and inflammation, which can confound 

measurements, as well the presence of ascites. Large body habitus can attenuate signal so 
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that is difficult to get a measure of steatosis or confound shear wave measurements. 

Inflamed tissue appears stiffer than normal tissue, which may bias estimates of stiffness 

due to fibrosis.131 It is important that US have an acceptable acoustic window to probe the 

liver, which makes shadows from the ribs or pathology like ascites challenging in some 

cases. 

 Computed tomography (CT) can be used to detect hepatic steatosis. CT is sensitive 

to changes in the linear attenuation coefficient, which for soft tissue, scales closely with 

density. Since fat has a lower density than normal liver parenchyma, a fatty liver has lower 

Hounsfield units (the CT measure of linear attenuation) than surrounding organs. A liver 

that is less than 40 HU or more than 10 HU below the spleen is considered fatty.132,133 

Notably, CT is not sensitive to mild or low amounts of hepatic steatosis.134 

 

3.2.2.2 Magnetic resonance imaging of NAFLD and chronic liver disease 

 

3.2.2.2.i MR hepatic fat fraction imaging 

 Early work in MRI animal models of liver pathology had limited qualitative success 

in gauging steatosis from relaxometry, giving way to Dixon techniques. Stark et al.135 

estimated T1 and T2 in models of hepatitis and triglyceride accumulation. They found that 

the relaxometry parameters were more sensitive to changes in the tissue water 

environment than triglyceride accumulation, and estimations of fat fraction could not be 

made. Partly motivated by Stark et al., Dixon57 and an associated group136 used the 2-point 

in-phase and opposed-phased MR images to estimate fat fraction in the liver in a 0.35 T 

magnet. These were the first works to quantify fat fraction in vivo in the human liver with 

an MRI technique. This set the foundation for a long history of studies using MRI in liver fat 

fraction estimation. 

 Improvements in fat fraction imaging in the liver have been made possible through 

accounting for confounding effects at higher field strengths. Building on Dixon’s work, 3-

point Dixon imaging137 was used to correct for T2
* effects. In this study, the inclusion of a 

another in-phase image, after the 2-point Dixon acquisition, to account for T2
*, had only a 

maximum of 3% effect on the fat fraction estimate. Glover’s development of 3-point Dixon 
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solution138 and the subsequent development of IDEAL60 permitted more accurate study of 

liver fat139,140 by simultaneously estimating static field heterogeneities.  

 MRI fat fraction imaging for hepatic steatosis quantification is becoming the gold 

standard for non-invasive assessment of steatosis.134 The hepatic proton density fat 

fraction has been shown to correlate with MR spectroscopy and quantitative histology 

estimates of fat fraction.141 Current commercial MRI fat quantitation has also been shown 

to be reproducible across radiologists and different vendors.142 

 MRI-based fat fraction technology continues to advance and find greater clinical 

research utility. Increased echo time acquisitions have permitted characterization of 

triglycerides with MRI.43 A study of 32 NAFLD subjects (12 with NAFL and 20 with NASH) 

incorporated fat fraction imaging, triglyceride characterization, as well as T2
* and 

susceptibility estimates, found that saturated fat fraction was higher in NASH than in NAFL 

subjects.143 Discrete optimization methods have improved simultaneous ΔB0 fitting with 

fat-water separation.64,65 The steady-state signal differences between fat and water, driven 

by their differing T1s, can cause bias if not corrected in fat fraction estimates.52 It has long 

been known that T2
* can be a confounding factor in fat-water separation,59 and recent 

methods65 have been developed to robustly fit T2
* with ΔB0. 

 

3.2.2.2.ii MR exogenous contrast imaging in the liver 

 Historically, gadolinium-, manganese-, and super-paramagnetic-iron-oxide- (SPIO) 

based contrast agents have found use in the liver for the detection and differentiation of 

solid tumors.144 Chelates of gadolinium that remain in the extracellular space may provide 

information about vasculature and associated lesions. SPIOs are preferentially taken up by 

Kupffer cells, providing higher specificity of those agents to differentiate cancerous lesions, 

which more often devoid of these cells, from other lesions. A discontinued manganese-

based contrast agent and a commercially available gadoxetic acid have shown specificity of 

uptake by hepatocytes, which can be useful for oncological radiology.145 

 Gadoxetic acid specificity for hepatocytes may have use in the study of NAFLD. Pre-

clinical models of NAFLD have shown that contrast enhancement differs between steatosis 

alone and steatosis with fibrosis or inflammation.146,147 Retrospective analysis of humans 
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with NAFL and NASH have also shown statistically significant differences in gadoxetic acid 

uptake between these groups.148,149 Prospective studies on this have yet to be performed. 

Protocols involving gadoxetic acid in these studies required a 20 min delay between the 

injection of contrast and imaging during the hepatobiliary phase, which may prove 

burdensome to MRI facilities and patients if used on a large scale.   

 

3.2.2.2.iii MRI elastography (MRE) in fibrotic liver 

 Like ultrasound, stiffness due to hepatic fibrosis can be monitored by transient 

shear-wave elastography of the liver using MRI. By placing an external oscillator on the 

subject, it is possible to induce mechanical oscillations that can be characterized by motion 

sensitive gradient moments using SE or GRE imaging.150 From the phase information, shear 

wave velocity, shear modulus, and Young’s modulus can be inferred. These tissue 

characterizations quantify the tissue stiffness. 

 MRE has seen extensive use in the fibrotic liver. In the context of NAFLD, histological 

fibrosis stages 3 and 4 are typically assessed with AUROCs > 0.90 using MRE.151 The failure 

rate is reported to be 0-10%.151 

 MRE may be confounded by inflammation and is less sensitive to early fibrosis 

stages. Liver stiffness increases during hepatic inflammation131 and MRE is likely sensitive 

to inflammation within NASH152. While this sensitivity may open MRE to have a greater role 

in NASH diagnosis153, inflammation may confound MRE fibrosis measurements. 

 

3.2.2.2.iv MRI relaxometry and magnetization transfer of chronic liver disease 

 The association of T1 with hepatic fibrosis is longstanding, but the relationship 

between T2 and fibrosis is less clear. By employing fat suppression techniques, it has been 

possible to estimate the T1 of the MR visible water compartments of pathologic liver, but 

these estimates may be confounded by inflammation and other factors. Macromolecular 

pool fraction, as estimated by magnetization transfer, has also been used in the study of 

liver fibrosis. 

 In the early history of MRI, liver T1 was known to be elevated in cirrhotic liver. The 

earliest report of in vivo human liver T1 imaging was made in tandem with the first whole-
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body human MRI system using imaging gradients154 in Aberdeen, Scotland. The same group 

followed their technical development with a liver study of T1 in 50 patients, 30 of which had 

established liver pathology.155 A similar study followed in London.156 Results from these 

early works at low fields (40-150 mT) found that cirrhotic liver had elevated T1. Thomsen et 

al. later correlated elevated T1 with biopsy proven cirrhosis.157 However, it had already been 

noted at this point that T1 alone (estimated at 80 mT) was not diagnostic for cirrhosis, even 

though it was generally elevated.158 These earlier studies varied over field strength and did 

not have the means to compensate for respiratory motion or suppress fat, which has 

different T1 than liver tissue at many field strengths.  

 More recent studies of in the pathological liver have found T1 to be elevated in the 

presence of fibrosis. Using a respiratory-gated fat-suppressed echo-planar inversion-

recovery spin-echo imaging sequence in a study of >100 subjects with chronic liver disease 

(mostly NAFLD), it was found that T1 at 1.5 T was significantly higher in late stage (3-4) 

fibrosis, as evaluated by biopsy, than early stage (1-2).159 Confounding factors in this study 

were inflammation and elevated iron that, respectively, raised and lowered T1. This 

paralleled other studies at 1.5 T160,161 that have also found T1 elevated in cirrhotic livers 

relative to normal or early stage cirrhosis. 

 The behavior of T2 in chronic liver disease remains unclear. Studies of cirrhosis in 

humans160–162 and animal models163 are conflicting: some studies show an increase in T2 

with fibrosis while others do not. However, of the human studies, two of these studies did 

not apparently control for fat content,160,161 one did not monitor T1,162 and all of them had 

mixed etiologies in their study cohorts that included NAFLD. In a murine model of 

cholestatic cirrhosis induced by bile duct ligation, T2 was more elevated than in a model of 

toxic cirrhosis induced by CCl4 injection.164 This pre-clinical study, which controlled for 

hepatic fat, suggests that T2 provides some specificity for pathological mode. 

 Magnetization transfer effects of the fibrotic liver have been studied. Yarnykh et 

al.165 estimated the macromolecular pool fraction (MPF) in 16 patients with viral hepatitis 

using an optimized SPGR-based two-point method. This group found that livers with 

significant biopsy-proven fibrosis had higher MPF than those with small amounts or no 

fibrosis, with the respective mean (and standard deviation {SD}) MPFs of the two cohorts 
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were 6.5% (SD 0.4%) and 5.9% (SD 0.3%). While these populations of differing liver fibrosis 

were separable with respect to MPF, the MPFs were very similar between the different 

fibrosis stages. 

 

3.3 Conclusions 

 The label of NAFLD constitutes a spectrum of disease from NAFL to advanced NASH. 

Patients with NAFLD are at increased risk of mortality, especially at later stages of this 

disease spectrum. There is currently no reliable non-invasive method for monitoring 

disease progression at the early end of this disease spectrum, but MRI offers several 

possible metrics that may be sensitive to several stages of NAFLD progression. The next 

chapter will explore the motivation for advancing MRI techniques to study pathological 

liver. 



Chapter 4 
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POTENTIAL FOR APPLICATION OF MAGNETIC RESONANCE FINGERPRINTING IN THE LIVER 

 

4.1 Clinical and Scientific Needs That Could Be Addressed by MRF in the Liver 

 Fast estimation of hepatic fat fraction in the liver is important for clinical diagnosis 

as well as clinical and scientific inquiry, the utility of which may be enhanced by multi-

parametric MRI. As discussed in §3.2.2, MRI-based fat fraction estimation is accurate and 

largely definitive in diagnosing NAFL, excluding other etiologies that promote hepatic 

steatosis. However, the relationship between NASH stage/grade and steatosis is less clear 

(§3.1.2). One means to investigate this is the longitudinal monitoring of fat fraction in 

NAFLD subjects. Rapid GRE MRI methods already exist for quantifying fat fraction, but these 

can be confounded by T1 and T2 effects (§2.3.3). Furthermore, since NASH histopathology 

extends outside of steatosis alone, other metrics may be useful to determine the 

relationship between NASH progression and steatosis. Sensitivity to MRI metrics that relate 

to NASH may better place fat fraction estimation in context of disease progression and 

improve specificity of clinically relevant parameters. Multi-parametric MRI of liver 

pathology may also be one means to address the clinical need for non-invasive and rapid 

assessment of novel therapeutic agents (§3.1.4) for NAFLD. MRF is one means to 

simultaneously estimate multiple MRI parameters. 

 The diagnostic test currently missing from the clinical repertoire is that which can 

diagnose NASH before the onset of fibrosis. Patients with type 2 diabetes with normal levels 

of plasma aminotransferases are at much higher risk for NASH than the general 

population.166 Yet, it is currently only possible to use imaging to monitor the hepatic 

histopathology of these subjects with modalities that are most sensitive to later stages of 

fibrosis and cirrhosis, such as elastography (§3.2.2). By this point in disease progression it 

may be difficult for patients to make lifestyle changes necessary to combat NAFLD, as well 

as harder to tolerate other medical intervention. To address this, non-invasive diagnostic 

tests are needed that are sensitive to the hepatic metabolic dysregulation and 

inflammation association with early stages of NASH. 
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 Longitudinal and transverse relaxation times may be sensitive to NASH early stage 

histology, but T1 and T2 require further study in the liver to determine their clinical utility. 

Elevated T1, which correlates with fibrosis stage (§3.2.2), may be a sensitive indicator of 

NASH progression into the later stages, but it is confounded by other biological processes 

such as inflammation and iron content. The sensitivity of T2 to iron167,168 should reduce 

relaxation time in those subjects with excess hepatic iron, such as those with 

hemochromatosis. Conversely, inflammation should raise T2 relative to the normal 

parenchyma.163,164  

 Fat fraction, T1, and T2 estimation separately correlate with NAFLD histology; but 

combined, their specificity may be improved. Elevation of T1 should correlate with fibrosis 

and inflammation, whereas T2 may help determine if changes in T1 are more likely due to 

an inflammatory process or the onset of fibrosis. Steatosis may be present throughout 

NAFLD progression, but also may be reduced in later stages of fibrosis due to cross-talk 

between liver pathology and adipocytes169. MRF potentially permits simultaneous 

estimation of all these parameters. 

An MRF technique that is sensitive to relaxation and fat signal fraction would permit 

exploration of the assumptions related to NAFLD disease progression, as well explore other 

questions. The goal of simultaneously estimating T1 and T2 from a single acquisition has 

already been demonstrated in MRF (§2.4), but further development is needed to 

incorporate fat-water separation.  Because MRF generally estimates multiple parameters 

from a single acquisition, maps of parameter estimates will be inherently spatially 

registered. While spatial heterogeneity of fat in NAFL is thought to be minimal,170 it is 

unclear if this true throughout disease progression and at high resolution. It is also unclear 

if spatial heterogeneity of T1 and T2 is greater than that of fat and how might these metrics 

change on average and spatially in early vs. late stages of NASH. These imaging metrics 

could be combined with other minimally invasive diagnostic tools such as blood serum 

analysis. Non-specific markers of inflammatory markers or metabolic function can be 

analyzed for correlations with imaging metrics to potentially improve specificity of 

diagnosis. 
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To address scientific and clinical questions about NAFLD using MRF, the sequence 

will have to overcome anatomical challenges and disease prevalence. One challenge is 

respiratory motion. Without gating, respiratory triggering, or an acquisition fast enough to 

be done in single breath-hold, degradation of parameter quality will likely occur due to 

hepatic motion under respiration. Another challenge is the high prevalence of NAFLD in the 

general population. If the sequence itself requires substantial amount of scanning time, it 

becomes impractical to execute any later established imaging biomarkers on a clinical scale, 

even as a secondary screening/monitoring method. The MRF sequence therefore should 

be fast enough or flexible enough to circumvent respiratory motion artifacts, as well as 

rapid enough to be a minimum time burden on patients and MRI facilities. 

MRF developments made for the study of NAFLD will be broadly applicable to other 

pathologies and anatomies. Technical advances in MRF for liver imaging can be applied to 

anatomical sites without such stringent timing acquirements that still have some modicum 

of fat, such as the peri-orbital region of the brain. MRF with relaxometry and fat fraction 

estimation could also be applied to other more technically challenging organs that contain 

or are near adipose tissue, such as the kidneys, prostate, pancreas, and supraclavicular 

brown adipose tissue depots. 

 

4.2 Technical Challenges Presented by MRF Fat-Water Separation in the Liver 

 To separate fat from water signal in MRF, several technical problems must be 

addressed before the method may be used to interrogate the aforementioned scientific 

questions concerning NAFLD. These include image blurring due to heterogenous B0 and fat 

chemical shifts, undersampling effects, fat signal fraction estimation bias due to transient 

signal evolution and B0 effects, applied radiofrequency sensitivity, and slice-profile effects. 

The spiral acquisition methods used in MRF may cause blurring in MRF images and 

subsequent parameter maps. The original MRF developments used spiral acquisition (§2.4), 

which encouraged incoherent sampling from excitation-to-excitation as well as improved 

efficiency of gradient utility relative to other k-space trajectories.41 However, it is well 

known that spiral acquisitions of finite duration in heterogeneous B0 fields confound 

gradient encoding and cause blurring.171 An example of this shown in Fig. 4.1, which depicts 
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a simulation of image blurring with 100 Hz off-resonance acquired with an idealized center-

out k-space trajectory that has duration of 7 ms. This effect will also be present in regions 

of adipose tissue due to the chemical shift (Fig. 4.1c). The blurring in regions of fat may be 

further confounded by extra or reduced blurring due to deviations in B0 due to susceptibility 

effects or imperfect shims (Fig. 4.1d). 

 

 

  

Besides blurring effects, ΔB0 can bias fat-water fitting in MRF in a similar manner as 

conventional fat-water fitting methods. Off-resonance effects introduce a phase evolution 

that makes the different fat peaks more or less like water and vice versa. This B0 effect may 

also compound with spiral blurring artifacts, making the problem even more difficult to 

unravel. 

Fig. 4.1. Simulation of off-resonance blurring for a finite k-space trajectory. The unblurred 

image (a) is subject to blurring (b) using an idealized center-out k-space trajectory acquired 

in 7 ms and 100 Hz off-resonance. A chemical shift (-430 Hz), approximating the main 

methylene peak of fat, also produces blurring (c), and the off-resonance and chemical shift 

effects are additive (d). The blurring (d) appears slightly less severe than in (c), since the 

off-resonance is in the opposite direction as the chemical shift. 
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 Undersampling is an inherent part of MRF and may bias fat estimation. In Dixon 

approaches to fat-water separation, fat and water components are estimated using a linear 

system (§2.3). If k-space is not fully sampled, aliasing will result in the image domain. It is 

unclear if inversion of the linear system will yield accurate estimates of fat and water 

components given the aliasing.  

 Another complication to fat-water separation with MRF is the transient state of the 

MRF signals. The linear fit of fat and water signals in GRE sequences (§2.3) generally assume 

that the fat and water signals are constant through multiple excitations. Because of varying 

nutation angle and other sequence variations in MRF, the steady state assumption is not 

valid. The resulting signal oscillations over the different MRF excitations will also be 

different for water and fat since they have different T1 and T2 values. Fits for fat and water 

components in such dynamic signals will be biased by these oscillations and relaxometry 

effects. A simplified model of one of these effects can be seen in Fig. 4.2. The fat and water 

signal magnitudes are modulated by a sine wave similar to how a smoothly oscillating MRF 

flip angle pattern might modulate the signal. The fat model experiences a phase oscillation 

at 430 Hz (corresponding the bulk methylene peak) that is modeled in the fit, but the 

transient magnitude behavior from the sequence flip angle modulation is not considered 

during fitting. The simulated signal is acquired for 32 echoes evenly spaced from 2 to 12 

ms. The resulting fat signal fraction (FSF) calculation is substantially biased without 

incorporating transient contrast effects. 

 Slice profile effects and radiofrequency transmit sensitivity (B1+) is known to affect 

MRF sequences. The original MRF formulations used single slice-selective excitation. It has 

been shown that bSSFP is sensitive to slice profile effects that produce bias in parameter 

estimates,172,173 but this has been largely unstudied in uSSFP MRF. The dynamic signal 

shapes in MRF sequences depend on the sequence of nutation angles in a non-linear way. 

Sensitivity to B1+ scaling has been shown in bSSFP MRF.172,173 In uSSFP sequences, there is 

degeneracy in the T2 and B1+ parameter space such that one cannot simultaneously fit for 

the two parameters without sequence modifications.174 Models of B1+ sensitivity in the liver 

at 3 T show substantial non-uniformity (>20%).175 If B1+ cannot be fit directly with the MRF 
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sequence, an independent B1+ map will otherwise need to be acquired with similar 

speed/gating as the MRF sequence to minimize respiratory motion effects. 

 

 

4.3 Specific Aims of This Work 

 Take together the scientific/clinical questions concerning quantitative MRI in NAFLD 

with the technical advancements necessary to address these questions, and we arrive at 

several areas that constitute the unique body of work presented in this dissertation. The 

focused methodological advances and inquiries related to them can be expressed in the 

following three specific aims. 

 Aim 1 will use MR fingerprinting (MRF) to separate fat from water signal and 

quantify the fat signal fraction (FSF) with simultaneous estimation of water T1 and T2. This 

aim will permit improved quantification of these relaxometry metrics in fat-water 

Fig. 4.2. Simulation of fat signal fraction (FSF; η) estimation with transient magnitude 

variations in fat and water. The transient state is a simplified representation of an MR 

fingerprinting-like signal. Without considering transient effects due to variations in 

sequence properties and relaxometry effects, the estimated FSF is biased.  
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phantoms and healthy subjects relative to MRF estimates made without fat-water 

separation, as well as provide a method for quantifying steatosis. 

 Aim 2 will further optimize MRF for use in the abdomen by compensating for 

respiratory motion, and variation in B1+ and B0 fields, and non-ideal slice profile effects. This 

aim will improve MRF T1, T2, and FSF measurement accuracy and uncertainty relative to 

measurements made without corrections. 

 Aim 3 will incorporate developed improvements in parameter estimation to 

quantify FSF with simultaneous estimation of water T1 and T2 in the liver of at least four 

healthy subjects to determine the intra-subject repeatability of these metrics, as well as 

show proof-of-concept that this MRF technique may be applied in NAFLD subjects. This will 

provide a baseline for measurement uncertainty and inform directions of future technical 

developments necessary to address specific scientific/clinical inquiries. 

 Since many of the technical advances addressed by these aims are interconnected, 

any given forthcoming chapter will, at times, pull from multiple aspects of these aims. In 

summary: Aim 1 borrows from developments in spiral blurring corrections discussed in 

Chapter 5 and MRF fat-water separation in Chapter 6; Aim 2 is addressed by the spiral 

blurring correction in Chapter 5, the ΔB0 fitting incorporated in the fat-water separation 

discussed in Chapters 6 and 8, the incorporation of breath holding and B1+ correction in 

Chapters 6-8, and the slice profile corrections provided in Chapters 7 and 8; Aim 3 is 

addressed by improvements in slice profile corrections from Chapters 7-8, further 

refinements of the ΔB0 correction from Chapter 6 in Chapter 8, and the liver in vivo results 

presented in Chapter 8. 
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MULTI-FREQUENCY INTERPOLATION IN SPIRAL MAGNETIC RESONANCE FINGERPRINTING 
FOR CORRECTION OF OFF-RESONANCE BLURRINGii 

 

5.1 Introduction 

As discussed in §2.4, magnetic resonance fingerprinting (MRF) using undersampled 

spiral k-space readouts is an efficient method to estimate T1 and T2 using balanced steady-

state free precession (bSSFP)176 and unbalanced steady-state free precession (uSSFP)67. 

While the bSSFP sequence allows concomitant fitting of static magnetic field off-resonance 

frequencies (ΔB0), it is subject to banding artifacts caused by off-resonance effects177. The 

uSSFP sequence circumvents banding, but has lower signal than bSSFP and was designed 

to be insensitive to ΔB0
67. The application of uSSFP MRF sequence has expanded to 

anatomical regions outside the brain that may have more prevalent B0 heterogeneity84,178. 

It is well known that as spiral imaging acquisition time increases, B0 inhomogeneity 

increases image blurring in proportion to the magnitude of the off-resonant frequency (see 

also §4.2). This blurring is present in both bSSFP and uSSFP implementations of MRF. 

Previous MRF work has shown accuracy despite B0 non-uniformity in phantom and in vivo.67 

However, neither the effect of spatial blurring due to B0 variations on parameter maps has 

been explored in detail, nor have explicit corrections been applied to compensate for the 

effect. Parametric maps generated by spiral-based MRF pulse sequences without blurring 

correction may have inaccurate values due to the off-resonance induced point spread 

function. This may have clinical relevance for regions close to air-tissue interfaces, tissue-

tissue boundaries, or other regions of significant magnetic susceptibility gradients. 

Many works have addressed correction of spatial blurring from off-resonance in 

spiral trajectories179–182, and the work of Man et al. provides such a solution using multi-

frequency interpolation (MFI)183. The MFI technique relies on a series of basis frequencies 

to express phase deviations in k-space caused by off-resonance. For each frequency in the 

                                                           
ii adapted from Ostenson J, Robison RK, Zwart NR, Welch EB. Multi-frequency interpolation in spiral 
magnetic resonance fingerprinting for correction of off-resonance blurring. Magn Reson Imaging 
2017;41:63–72. doi:10.1016/j.mri.2017.07.004 
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basis, each point in k-space is phase corrected according to the sample time after 

radiofrequency excitation. This basis set of phase-corrected k-spaces is transformed to the 

spatial domain, and a linear combination of the basis images are formed for each voxel 

according to ΔB0 of that voxel obtained from a B0 map. This linear combination of basis 

images closely approximates the image of that voxel without blurring. Recent work has 

begun to assess whether established blurring correction schemes can be used in MRF184,185. 

This chapter shows that uSSFP MRF phantom and in vivo data acquired using a spiral 

k-space trajectory may contain T1 and T2 parameter map distortions in the presence of ΔB0. 

Results demonstrate that MFI corrections applied to the MRF images diminish those 

artifacts in the relaxation parameter maps and improve uncertainty in region-of-interest 

measurements. 

 

5.2 Theory and Approach 

As briefly stated in §5.1, the goal of MFI is to approximate the deblurred (conjugate 

phase) image as a linear combination of basis images that are formed from the measured 

image. Similar to the original MFI work,183 we write the deblurred solution of the image 𝐼cp 

∈ ℂ at position 𝐫 with an associated off-resonance frequency 𝑓 as  

 

𝐼cp(𝐫; 𝑓) ≈  𝐼MFI(𝐫; 𝑓) = ∑ 𝑐𝑚(𝑓)𝐼𝑓𝑚(𝐫)

𝑀

𝑚=1

[5.1] 

 

where 𝑐𝑚(𝑓) ∈ ℂ is the weighting coefficient for 𝐼𝑓𝑚 ∈ ℂ, which is the basis image formed 

from frequency 𝑓𝑚. The basis image 𝐼𝑓𝑚  is given as 

 

𝐼𝑓𝑚(𝐫) = ℱ−1{𝑆(𝐤)𝑒−𝑖2𝜋𝑓𝑚𝑡(𝐤)} [5.2] 

 

where ℱ−1 is the inverse Fourier transform, 𝑆(𝐤) is the gridded and sample-density 

compensated k-space signal at discretized spatial frequency position 𝐤, and 𝑡(𝐤) is the time 

following radiofrequency excitation for the given point in k-space. The accuracy of Eq. (5.1) 
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is dependent on the spacing in the frequency basis and the number of frequencies used in 

the basis.  

 Coefficient calculation of {𝑐𝑚(𝑓)} for Eq. (5.1) can be performed on an ideal 

(noiseless) synthetic signal and solved with a linear system. The column vector 𝐣(𝑓) ∈ ℂ𝑁 is 

the complex exponential with row elements at discretized time 𝑡𝑛 given as 

 

𝑗𝑛 =
1

√𝑁
𝑒𝑖2𝜋𝑡𝑛𝑓 [5.3] 

 

and is related to the MFI coefficients 𝐜(𝑓) as a column vector and system matrix A 

∈ ℂ𝑁×𝑀 via the following linear relation 

 

𝐣(𝑓) = A𝐜(𝑓). [5.4] 

 

The nth row and mth column entry of A is given as 

 

𝐴𝑛𝑚 =
1

√𝑁
𝑒𝑖2𝜋𝑡𝑛𝑓𝑚  [5.5] 

 

The coefficients may be solved generally as 

 

𝐜(𝑓) = A†𝐣(𝑓), [5.6] 

 

or, when A is in an orthonormal basis, as  

 

𝐜(𝑓) = AH𝐣(𝑓). [5.7] 

 

Here, A† and AH are the Moore-Penrose pseudoinverse and the complex conjugate 

transpose of A, respectively. The off-resonance frequency range and its map can be 

determined from an independently derived B0 map. The coefficients for a finely spaced 
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array of off-resonance frequencies may be calculated and stored in a lookup table, and then 

applied with the discretized form of Eq. (5.2) to Eq. (5.1) to solve for the unblurred image. 

The timing information used in Eq. (5.2) can be solved analytically or mapped and is further 

discussed in other work.179,183 

 In the case of MFI applied to MRF, the images may be highly undersampled, creating 

spatial aliasing of the image. Despite this aliasing, spiral MRF has shown accuracy in 

parameter estimation, even up to undersampling factors of 48.67 Like the standard MRF 

sequence, the MRF MFI aliasing at a given position is assumed to be incoherent with the 

sought-after signal.    

 

5.3. Materials and Methods 

 

5.3.1 Phantoms and human subjects 

 Three phantoms were used in this study. The first was composed of ten 50 mL 

conical centrifuge tubes filled with deionized water and variably doped with manganese 

chloride or gadopentate dimeglumine to provide a range of T2 and T1 contrast (10-tube 

phantom). The second phantom was a commercially available quantitative MRI system 

phantom (High Precision Devices, Inc., Colorado) with temperature calibrated T1 and T2 

contrast spheres. As relaxation can be temperature dependent, the MRI system (Msys) 

phantom relaxation values were temperature corrected186 before comparing to 

measurements. A Periodic Image Quality Test (PIQT) phantom (Philips Healthcare, The 

Netherlands) was used to determine geometric blurring improvement over the field-of-

view. 

 One healthy subject underwent scanning after informed consent and with approval 

of the local institutional review board. The subject was scanned in the transverse plane 

superior to the orbits and nasal sinuses. Regions outside of the brain were masked because 

correction near the skull were difficult to identify as having sufficient signal to produce 

reliable parameter estimation and were also found to produce less robust blurring 

corrections. 
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5.3.2 Data acquisition and experimental design 

 Data were acquired on a Philips Achieva 3 Tesla scanner (Philips Healthcare, The 

Netherlands) with an eight-channel receive head coil for phantom and cranial in vivo 

acquisitions. MRF scans used an RF excitation of a Gaussian windowed sinc function with a 

time-bandwidth product of 10 and a minimum TR of 17 ms (27.5 ms in vivo) (with TR 

extensions detailed below) and TE of 3.25 (3.5 in vivo) ms. A numerically designed variable 

density spiral187–189 with zero net gradient over a single TR and minimum/maximum 

undersampling factor of 24/48 (12 in vivo) was used for k-space encoding with a data 

acquisition time of ~3 to 7 ms per TR (15 ms in vivo). The spiral was designed to not exceed 

an instantaneous gradient frequency greater than 1 kHz. The transition radius from least 

undersampled to most undersampled k-space sampling was 0.7 of the maximum k-space 

radius. The calculated spiral was rotated by an angle of 111.254 between successive 

excitations. For all phantom and in vivo scans, a field of view of 240 mm x 240 mm was used 

with an in-plane resolution and slice thickness of 1 mm x 1 mm and 5 mm, respectively. A 

single MRF planar acquisition consisted of 1000 excitations. B0 maps were generated using 

a Cartesian sampled gradient-echo scan with two echo times spaced 1 ms apart and then 

reconstructed from the raw data and masked using , a multi-threshold 

implementation of Otsu’s method190 in MATLAB (v 8.5.0 Mathworks, Inc., Nattick, MA). In 

phantom cases where the off-resonance exceeded the available B0 map bandwidth, an 

additive correction was applied above or below threshold to avoid frequency wraparound 

and confirmed by visual inspection. For the in vivo study, an inversion prepared T1-weighted 

3D spoiled gradient echo sequence with TE/TR of 4.6/8.3 ms, nutation angle of 9, 1 mm x 1 

mm x 1 mm voxels, with 884 Hz per voxel was acquired. For anatomical comparison with 

the thicker MRF slice, the T1-weighted slice nearest the center of the MRF and nearest four 

slices were summed before display. 

 Phantom experiments consisted of evaluating geometric improvement in a 

standard image quality phantom and in relaxation contrast phantoms without and with B0 

heterogeneity, as well as evaluating the effect of MFI on MRF T1 and T2 maps. T1 and T2 

maps used rainbow colormaps to visually enhance non-uniformities in the image. The PIQT 
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phantom was imaged in the coronal plane over a rectangular grid of water-filled pins. Linear 

shim settings were adjusted to provide a wide range of off-resonance frequencies over the 

field of view. The total acquisition time of the spiral was 3.76 ms (R = 48, uniform spiral). 

To evaluate spatial dependence and off-resonance magnitude on MFI correction, the 10-

tube phantom was acquired with manually set shim values in longitudinal, transverse, and 

in-plane oblique directions to provide heterogeneous B0 over a wide range of frequencies. 

The Msys phantom was imaged with a coronal orientation to cover the T1 and T2 contrast 

planes under both well shimmed and poorly shimmed conditions. Fourteen regions of 

interest (ROIs) were drawn on the magnitude image of each contrast slice of the well 

shimmed case and applied to all B0/correction variations of the Msys experiment. These 

were numbered from 1 to 10 beginning at the 12 o’clock position moving clockwise, and 

from 11 to 14 beginning from the top left of the inner four contrast insets moving clockwise. 

Measurements were compared using boxplots to determine the effect of MFI on 

relaxometry values without and with B0 heterogeneity. Concordance correlation 

coefficients (CCC) with confidence intervals191 were calculated for all ΔB0/correction 

variations using all ROIs and the Msys specifications as a reference. 

 

5.3.3 MRF sequence, dictionary creation, and matching 

 The original MRF SSFP sequence with an inversion time of 7 ms and the same 

variable TR extensions and relative flip angle evolution as described by Jiang et al.67 was 

used in this study, with a maximum nutation angle of 70°. Two dictionaries were generated 

using an extended phase graph algorithm with the following T1 and T2 range and spacing 

(minimum:step:maximum), depending on the experiment. The first dictionary with T1 

values from 20:10:3000, 3200:200:5000 ms; and T2 10:5:300, 350:50:2000 ms was used for 

all experiments except the Msys phantom. The Msys dictionary192 spanned T1 from 

10:10:100, 120:20:1000, 1040:40:2000, 2100:100:3000 ms; and T2 from 2:2:10, 15:5:100, 

110:10:300, 350:50:800. Prior to matching, the dictionary and acquired MRF signal were 

normalized and compressed using a singular value decomposition method70, preserving 

99.99% of the singular value energy. The inner product was formed between the 

compressed signal with all compressed dictionary entries, and the highest magnitude of the 
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inner product determined the dictionary entry that defined T1 and T2 for each image voxel. 

The MRF compression and matching are further described in §2.4. The preceding and 

following reconstruction and analysis was performed in MATLAB unless otherwise noted.  

 

5.3.4 MRF and MFI image reconstruction 

 Raw spiral k-space was first reconstructed without B0 correction using gridding with 

iterative sample density compensation36,188,193,194 and independently measured195,196 k-

space coordinates. Individual channel images for each excitation were combined using 

adaptive reconstruction described by Walsh et al.39. Adaptive coil combination coefficients 

were derived from the complex sum of the 1,000 MRF undersampled images for each 

channel. For each MRF excitation the derived coefficients were used to adaptively combine 

the different coil images. Each voxel in the coil-combined MRF image was then fit for T1 and 

T2 as discussed above. 

 The MFI correction coefficients were generated as previously described in Man et 

al. 183 and in §5.2. To generate the lookup table of coefficients, time tn was discretized from 

0 to 𝑏(TE + Tacq) in N steps, with N set to the number of read points in the spiral, Tacq is the 

spiral acquisition time, and 𝑏 a scale factor set to 1.2 in this work. The scale factor increases 

the time range in the columns of A. It was used because it was observed that regions near 

the endpoints in time of the modeled phase were least accurate, and this extension is like 

the time expansion used in the original work. As discussed by Man et al., this system can 

be approximated by extracting M – 1 columns closest to f0 = 0 from the DFT matrix and 

normalizing according to Eq. (5.5). So, A is composed of orthonormal columns of complex 

exponentials whose number is equal to the total number of basis frequencies chosen to 

represent all possible discretized off-resonant frequencies in the image over a time domain 

that is slightly larger than the k-space acquisition time. M was chosen to be 21 (31 in vivo) 

for reconstructions in this study, as it was found to keep the average root-mean-square 

error below approximately 1.5% for frequency deviations within +/- 700 Hz for the echo 

and acquisition times used here. 

A linearly interpolated B0 map was generated using the masked B0 map using 

Delaunay triangulation197 via MATLAB’s  method. This helped 
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to overcome the missing off-resonance values in low signal regions of the image. For 

instance, signal from a voxel near a phantom or tissue surface may blur into adjacent voxel 

of air. If the air voxel’s off-resonance is considered zero, this blurred information will not 

be returned to the correct voxel. 

The linear system was then solved for all frequencies in the range of the median 

adjusted interpolated B0 map discretized to 0.1 Hz over the expanded discretized time. 

Times before TE and after TE + Tacq were apodized as described in the original work to 

improve accuracy over the true acquisition window. The resulting interpolated coefficients 

were stored in a lookup table, and a coefficient map was created according to the linearly 

interpolated B0 map. 

 MFI correction was applied before coil combination. To avoid gridding M basis k-

space representations for 1000 MRF excitations for each coil, the previously saved coil 

images for all excitations were transformed back to gridded k-space. An acquisition time 

map179 for gridded k-space was constructed, and each gridded k-space point was 

modulated in phase according to this time map for a given basis frequency following Eq. 

(5.2). This was repeated for all basis frequencies and transformed to the image domain to 

form M basis images. The coefficient map was then applied to the basis images to produce 

a single corrected frame using Eq. 5.1. The MFI-corrected undersampled images were then 

adaptively coil-combined as described previously.  

 

5.4 Results 

 

5.4.1 Reconstruction of PIQT phantom 

 The PIQT results show significant blurring correction using MFI over the field-of-

view as seen in Fig. 5.1. The B0 heterogeneity over the image spanned approximately 700 

Hz asymmetrically about 0 Hz. This produced substantial blurring in regions of off-

resonance that exceed approximately 200 Hz. The degree of blurring increases in 

proportion with off-resonance. The MFI corrected image shows very little if any residual 

blurring for any of the signal point sources across the field of view. Reduced signal of one 
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edge of the phantom is observable in both the uncorrected and corrected images due to 

low coil sensitivity at the edge of the phantom. 

 

 

Fig. 5.1. The MFI correction for the Periodic Image Quality Test (PIQT) phantom. The 

magnitude image derived from the complex sum of all magnetic resonance fingerprinting 

excitations (a) exhibits blurring that increases with the magnitude of off-resonance mapped 

in (c). This geometrical blurring has been corrected by multi-frequency interpolation (b). 

Low signal regions can be seen at the bottom of the image, in regions of lower coil 

sensitivity in the uncorrected and corrected images. 

 

5.4.2 MRF with B0 inhomogeneity 

Fig. 5.2 demonstrates MFI correction of T1 and T2 parameter maps under a variety 

of off-resonance patterns across the coronal section. Four examples of different off-

resonance maps are given: less than +/-100 Hz variations in B0, trans-axially spanning ~700 

Hz, longitudinally spanning ~600 Hz, and ~700 Hz across an oblique axis. The uncorrected 

T1 and T2 maps show distortion of the phantom tube boundaries in all cases. The geometric 

integrity of these boundaries appears restored in three out of four cases. The fourth set of 

corrected off-resonance parameter maps (Fig. 5.2d) demonstrates partial restoration: 

some corrected cylinders still appear slightly distorted, though less than in the uncorrected 

maps. The T1 values in the uncorrected maps relative to the corrected maps appear largely 

consistent. However, the T2 maps show nonuniformity across phantom tubes in both 

uncorrected and corrected cases. The pattern of T2 heterogeneity within a given phantom 
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tube changes between different B0 heterogeneity patterns and between the uncorrected 

and MFI corrected reconstructions. 
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Fig. 5.2 The results before and after multi-frequency interpolation (MFI) correction of 

magnetic resonance fingerprinting T1 and T2 parameter maps of the 10-tube phantom for 

four instances of B0 heterogeneities.  Each row from left to right shows the B0 map, 

uncorrected T1, corrected T1, uncorrected T2, and corrected T2 maps. The total off-

resonance was minimized using pencil-beam volume shimming (a) and ramped 

transversely (b), longitudinally (c), and obliquely (d). The scaling for the parameter maps is 

the same between uncorrected and corrected cases for a given parameter type. MFI 

corrected reconstructions show geometrical improvement in all cases. The last row (d) 

exhibits some phantom boundary distortion after MFI correction. 
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5.4.3 MRI system phantom results 

The Msys phantom imaged with poorly shimmed B0 exhibits decreased blurring in 

magnitude images after MFI correction (Fig. 5.3). The B0 maps from both the T1 and T2 

contrast slices show that the contrast spheres span a range of ~300 Hz off-resonance 

asymmetrically about zero. Ring artifacts around the contrast insets are not apparent in the 

corrected image, and three fiducials outside the circumference of the spheres are more 

clearly resolved after MFI reconstruction. Additionally, susceptibility artifacts around the 

central T1 spheres, which contain the highest concentrations of contrast agent, are 

improved in the MFI corrected image. The effects of the blurring and correction are also 

visible in the parameter maps (Fig. 5.4). In the uncorrected contrast maps, signal from the 

phantom background spreads into contrast spheres that are in regions of high off-

resonance at the bottom and top portion of the phantom image. After correction, this 

background signal contamination is reduced. 

 The boxplots from ROI measurements of the T1 and T2 contrast spheres are shown 

in Fig. 5.5. Here, the well shimmed (ws) and poorly shimmed (ps) results are shown without 

(ws/ps) and with (ws+/ps+) MFI correction for each of the 14 contrast spheres of each 

relaxation type. The temperature-corrected specification value for each ROI is also shown 

for reference. The ws and ws+ show general agreement across all ROIs for T1 and T2. The ps 

and ps+ measurements have larger T2 medians than ws and ws+ cases for the smaller T2 

ROIs (8 through 14). The T1 and T2 concordance correlation coefficients (CCCs) with 95% 

confidence intervals are shown in Table 5.1. 
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Fig. 5.3 The magnitude images for the T1 (top row) and T2 (bottom row) contrast slices of 

the MRI system phantom as well as B0 maps. The uncorrected (a,d) and corrected (b,e) 

magnetic resonance fingerprinting magnitude images  were derived from the complex sum 

of all MRF excitations. The B0 maps (c,f) demonstrate a slope in off-resonance from the 

bottom to top of the image. Without multi-frequency interpolation (MFI) correction, the 

images show blurring in regions of off-resonance. The central spheres in (a) additionally 

show susceptibility artifacts that manifest as signal voids. The MFI corrected results (b,e) 

demonstrate a decrease in blurring in all regions. 
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Table 5.1. The concordance correlation coefficients of T1 and T2 without and with MFI 

correction for different shim settings. 

Reconstruction T1 CCC1 [CI]2 T2 CCC1 [CI]2 

ws3 0.993 [0.982, 0.997] 0.995 [0.986, 0.999] 

ws+3 0.993 [0.983, 0.997] 0.995 [0.986,0.999] 

ps3 0.994 [0.988, 0.997] 0.974 [0.922, 0.992] 

ps+3 0.995 [0.987, 0.998] 0.992 [0.977, 0.997] 

1CCC, concordance correlation coefficient 

2CI, confidence interval; numbers in brackets are the 95% CI 

3ws, well shimmed; ws+, well shimmed with multi-frequency interpolation (MFI) correction; 

ps, poorly shimmed; ps+, poorly shimmed with MFI correction 

 

Among the assessed ΔB0/correction combinations, there is disagreement in the 

distribution of the T1 and T2 values for ROIs 5 through 7 (Fig. 5.5), which show more 

aberrant voxels for the ps case than the ws case. This effect is further quantified by the 

coefficient of variation (COV) plots (Fig. 5.6), which indicate an increase in COV for ps by a 

factor of approximately five in these ROIs relative to the COV values for ws. These ROIs (at 

the bottom of Figs. 5.3-4) are in the largest off-resonance region of the phantom. After MFI 

correction, the COVs of the poorly shimmed ROIs are comparable to the ws cases. Fig. 5.6 

also shows 12 of 14 T2 inserts of the ws+ have lower or equal COV than the ws cases, 
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indicating the MFI correction slightly lowered or did not affect the relative T2 variation in 

absence of large off-resonance effects. 

 

 

 

 

Fig. 5.4. The uncorrected and corrected T1 (a,b) and T2 (c,d) parameter maps from their 

respective slices in the MRI system phantom as shown in Fig. 5.3. Improvements in 

boundaries of the contrast spheres are visible, as well as reduction of bias from the high T1 

and T2 background blurring. 
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Fig. 5.5. Boxplots for all T1 and T2 contrast spheres in the MRI system (Msys) phantom. The 

results are divided into the longer half of T1 (a) and T2 (c) on the left and the shorter T1 (b) 

and T2 (d) on the right. Each numbered group consists of boxplots for regions of interest in 

the well shimmed (ws) and poorly shimmed (ps; Fig. 5.4) cases, as well as for the multi-

frequency interpolation correction for the well shimmed (ws+) and poorly shimmed (ps+) 

cases. The horizontal dotted lines indicate the value of the Msys specifications. 
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Fig. 5.6. The coefficient of variation (COV) for all regions of interest (ROIs) with and without 

multi-frequency interpolation (MFI). Each ROI COV is plotted for the well shimmed without 

MFI (ws), well shimmed with MFI (ws+), poorly shimmed (ps), and poorly shimmed with 

MFI (ps+). ROIs 5 through 7 for the ps cases demonstrate large COVs relative to the ws and 

ps+ cases. These ROIs correspond to the contrast spheres at the bottom of the 

images/maps of Figs. 5.3-4. 

 

5.4.4 In vivo MRF MFI 

 The B0 map, T1-weighted anatomical reference, and T1 and T2 parameter maps for 

the transverse brain slice are shown in Fig. 5.7. The regions of highest off-resonance within 

the brain are in the frontal regions. Blurring is evident particularly at the midline, that 

appears less sharp on the uncorrected T1 and T2 maps relative to the corrected maps and 

the Cartesian sampled T1-weighted anatomical reference. Fig. 5.8 plots the normalized 

signal magnitude across all excitations for a voxel in cerebrospinal fluid (CSF) (Fig. 5.8a) and 

in white matter (WM) (Fig. 5.8b). The CSF voxel rests in a region of higher off-resonance 

compared to that of the WM. The signal plot and parameter estimates from the CSF voxel 

are substantially different between the corrected and uncorrected cases, while those in the 

WM are relatively close. 
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5.5 Discussion 

 The results show that the effects of B0 heterogeneity on unbalanced SSFP MRF 

parameter map details can be substantial due to spatial blurring, but the central regions of 

the phantom inserts are largely unchanged. The MFI correction applied to spiral-based MRF 

demonstrates good reconstruction in many cases of substantial B0 heterogeneity and 

seems to fail where there is uncertainty in the B0 map. The corrected PIQT phantom results 

show little to no blurring of the image. Similarly, the Msys phantom and 10-tube phantom 

showed dramatic improvement after MFI correction in the image as well as parameter 

maps. In the 10-tube phantom case of longitudinal or transverse B0 gradient, the MFI 

Fig. 5.7. A transverse slice of the brain superior to the orbits. The B0 map shows 

increasing off-resonance near the frontal regions, referenced anatomically in the T1-

weighted image (d). Without multi-frequency interpolation (MFI), the uncorrected T1 

(b) and T2 (c) maps exhibit an increased blurring near the midline (white arrowhead), 

which appears sharper in the T1 (e) and T2 (f) MFI-corrected maps. The ‘x’ and ‘+’ in (d) 

are the voxels shown in Fig. 5.8(a) and (b), respectively. 
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correction was able to restore images without noticeable geometric defect. An exception 

to this is the oblique B0 pattern of heterogeneity in the 10-tube phantom, which showed 

significant but incomplete restoration of the circular phantom shapes. The more 

complicated off-resonance patterns seen in Fig. 5.2a do not confound MFI, but the off-

resonance magnitudes do not much exceed 100 Hz in this case. MFI correction in the Msys 

phantom was able to substantially reduce blurring, even in areas of steep susceptibility 

gradients compounded with underlying low frequency B0 variation (Fig. 3a-c). Thus, the 

regions where MFI fails are not necessarily at the extremes of off-resonance, but in cases 

where the linear interpolation of the B0 map may fail and the magnitude of off-resonance 

is relatively large. 

The proposed correction method helps to reduce uncertainty in T1 and T2 

measurements and does not by itself alter relaxation estimates. The 10-tube and Msys 

phantom results demonstrate that MRF relaxation values in uniform contrast regions are 

degraded by B0 heterogeneity. MRF quantitation near and inside contrast insert/tube 

boundaries are improved after MFI correction. This improvement can be seen in lower 

coefficient of variation and greater accuracy near the contrast edges in the poorly shimmed 

cases (ps vs ps+). Additionally, MFI correction applied to the Msys phantom in the well 

shimmed cases (ws vs ws+) did not show changes in the CCCs or worsening of COVs of 

relaxation values. Thus, MFI apparently does not alter ROI-based estimation of relaxation 

values by itself. While intra-tube T2 heterogeneity in the 10-tube phantom experiments are 

evident in both uncorrected and corrected images, these variations without and with MFI 

suggests this may be flow or diffusion artifacts in the water-filled phantoms, or from other 

unknown effects. This is also supported by the greater homogeneity of T2 across the Msys 

T2 contrast inserts seen in Fig. 5.4 relative to the 10-tube phantom. However, it is unclear 

why there is an observable upward shift in the T2 MRI system phantom results at the shorter 

end of T2 for both the uncorrected and corrected poorly shimmed measurements. This 

contributes to the relatively higher COV of the well shimmed cases relative to the poorly 

shimmed cases at short T2. The role of off-resonance effects in MRF T2 estimation is 

explored more fully in Chapter 7.   
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The results in this work are largely consistent with the original MRF unbalanced SSFP 

report by Jiang et al67. They found that phantom measurements were largely unaffected by 

B0 heterogeneity. This work found that CCC values appear greater than 0.97 in the presence 

of off-resonance, despite lying slightly outside of the 95% confidence interval for the T2 well 

shimmed case. However, deviations in B0 do produce blurring, and this blurring can largely 

be corrected by application of MFI. 

Fig. 5.8. The MRF signal evolution for cerebrospinal fluid (CSF) (a) marked as ‘x’ in Fig. 

5.7(d), and white matter (WM) (b) marked as ‘+’ in Fig. 5.7(d) without and with multi-

frequency interpolation (MFI).  The CSF is in a region of greater off-resonance and exhibits 

larger departures between corrected and uncorrected signals that are reflected in their 

different T1 and T2 values. The MFI correction in the low off-resonance region of (b) appears 

to match closely with the uncorrected signal. The T1 and T2 estimates in the WM are nearly 

identical. 
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 The in vivo MFI results show expected improvements in the high signal brain areas, 

but they were masked in the skull region where signal was lower and correction less robust. 

The steep signal gradient and B0 information of the skull spatially correlates with these 

effects. We also note that chemical shift of fat is not accounted for by MFI because the 

correction assumes a single off-resonance frequency at a given position (see also Chapters 

2 and 4). Even pure fat has a multi-component spectral composition. Accounting for the 

presence of fat is further explored in Chapter 6. Despite areas for potential improvement, 

the current MRF MFI embodiment successfully demonstrates the positive impact of MFI on 

parameter map estimation in regions of off-resonance, as well as leaving unaffected white 

matter that do not need signal modulation (Figs. 5.7-8). 

 Other potential future improvements in off-resonance correction include accuracy 

of the interpolated map and possibly eliminating the need for a separately acquired ΔB0 

estimate. When there are only regions of high signal, a B0 map can readily be calculated 

over the entire image. However, when there are regions of low signal, this information must 

be derived from surrounding high signal regions. While linear interpolation has shown 

much success in this study, under some circumstances this method may not produce the 

most optimal map for MFI correction. The separate acquisition of the B0 map from the MRF 

scan reduces its efficiency and may reduce accuracy in situations where physiological 

motion may create differences in off-resonance between the MRF scan and B0 map 

acquisition. Some of these problems may be improved by considering a form of MRF that 

integrates B0 mapping such as bSSFP176, or a reconstruction that uses a cost metric to 

implicitly define a B0 map that minimizes the objective function. Simultaneous fitting of B0 

in uSSFP sequences is discussed in Chapter 6. 

 In support of reproducible research, the source code along with figure reproduction 

scripts and data are freely available for download at 

https://github.com/jostenson/MRI_Ostenson_MRF_MFI. 

 

5.6 Conclusion 

 MFI correction in conjunction with spiral MRF reduces the effects of off-resonant 

blurring in images and parameter maps. This method has been demonstrated in phantoms 
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and in vivo under a variety of off-resonance magnitudes and patterns. This method can be 

further improved by incorporating ΔB0 estimation into the MRF scan and better accounting 

for off-resonance values in regions of low signal or fat, all of which is addressed in Chapter 

6. 
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MR FINGERPRINTING WITH SIMULTANEOUS T1, T2, AND FAT SIGNAL FRACTION 
ESTIMATION WITH INTEGRATED B0 CORRECTIONiii 

 

6.1. Introduction 

Water T1 and T2 and fat content are important for tissue characterization in MRI. 

For example, T1 and T2 values are altered in several diseased states, such as cardiac198,199, 

muscular200, and others201,202, in which the affected organs may contain or be near adipose 

tissue. The MRI-estimated fat signal fraction (FSF) is important in studies of healthy and 

pathological function, including brown adipose tissue203 and abdominal organs141,204,205. 

Most relevant for this work, these metrics may be important indicators of pathological state 

in NAFLD (Chapters 3 and 4). 

One approach to time-efficient, multi-parametric quantitative MRI is unbalanced 

steady state (uSSFP) MR fingerprinting (MRF) (§2.4). The uSSFP-MRF sequence permits the 

rapid, simultaneous estimation of T1 and T2 by acquiring signals over a train of pseudo-

random nutation angles and TR values.67 This sequence has been applied to study regions 

with potential ectopic and visceral fat such as the abdomen84, prostate206 and heart68.  

 In both conventional MRI and MRF, fat signals confound T1 and T2 estimates. The 

methylene peak of fat often has a shorter T1 and longer T2 than water.44,207 Partial volume 

effects of fat may bias MRI T1 estimates in the breast208 and liver209 and T2 estimates in 

muscle200. Conventional MRI relaxometry approaches that exclude fat often rely on 

separate inversion recovery preparation, composite pulses, or chemically selective pulses 

to suppress the fat signal. Such techniques may increase the scan duration through their 

preparation or timing requirements, partially saturate water signal, inaccurately assume a 

single peak model for fat, or have sensitivity to non-ideal B0 or B1+.47 Conversely, 

conventional Dixon MRI fat-water estimation is not generally employed to estimate 

longitudinal and spin-spin relaxation. 

                                                           
iii adapted from Ostenson J, Damon BM, Welch EB. MR fingerprinting with simultaneous T1, T2, and fat signal 
fraction estimation with integrated B0 correction reduces bias in water T1 and T2 estimates. Magnetic 
Resonance Imaging 2019;60:7–19. doi:10.1016/j.mri.2019.03.017 
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Fat-water separation is confounded by heterogeneous B0, making fat-water 

separation a non-linear optimization problem62. This has been solved by a number of 

different approaches,62–64,210 but these techniques generally assume a steady-state water 

signal, apart from B0 effects. MRF uses non-steady-state water/fat signals to estimate T1 

and T2 from the signal dynamics over many excitations. Because typical fat-water 

separation does not account for variable flip angles, the use of non-steady state signals may 

confound fat-water separation if a single, variable TE is acquired after each excitation. 

While the biases in T1 and T2 estimation due to fat have not been explicitly 

considered using MRF, MRF-based fat-water separation has been explored. The original 

MRF approach, based on balanced SSFP, permitted fat signal estimation through its 

sensitivity to off-resonance/relaxation effects.66 However, partial volume effects were not 

considered. Cloos et al. explored fat imaging in the thighs using a two-point Dixon approach 

with a radial acquisition.175 Several preliminary works have explored fat-water separation 

in uSSFP-MRF.211–215 Recently, simultaneous fat-separated T1, B1+, and ΔB0 estimation has 

been demonstrated at 1.5 T using MRF.216 Yet, we are unaware of a full paper that has 

described an MRF approach for separating fat and water signals while simultaneously 

estimating the water-only T1 and T2 with B0 correction. 

 Spiral acquisitions are commonly used in MRF, further complicating parameter 

estimation by introducing blurring from chemical shift and B0 effects212 (see also Chapters 

4 and 5). While spiral blurring with fat-water separation remains an active topic of 

research217, fat blurring in MRF spiral acquisition is relatively unexplored. Spiral blurring 

effects can be limited by using lower field strength, reduced spiral acquisition time, or radial 

acquisitions. However, these techniques lower the signal-to-noise ratio or restrict the 

timing of the image encoding. 

 The first goal of this chapter is to illustrate the potential for bias in MRF-derived T1 

and T2 estimates of tissues containing composite fat-water signals. The second goal is to 

introduce an MRF method that separates fat and water signals, allowing B0-corrected water 

T1 and T2 estimates with reduced levels of bias, as well an estimate of FSF. To do so, we 

propose modifications to the original uSSFP-sequence and reconstruction. By using a swept 

echo time and integrating a the reported B0 correction method from Chapter 4183,218 into 
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the reconstruction pipeline, we reformulate the parameter estimation problem into an 

optimization for ΔB0. This optimization, along with an assumed multi-spectral fat model, 

results in corrected water and fat signal estimates. The outputs of the proposed approach 

are B0-corrected, fat-separated water T1 and T2 maps and an FSF map with spiral deblurring. 

 

6.2 Theory 

 We will first show that we can extend a k-space-based fat-water separation 

technique to MRF. We will then show that we can simultaneously estimate ΔB0 with fat-

water separation with variable TE- and fixed TR-MRF sequences using a form of conjugate- 

phase reconstruction. 

 

6.2.1 MRF k-space fat-water separation 

Brodsky et al.219 showed that k-space-based fat-water separation is possible using a 

linear system of equations. We can extend this technique to MRF. An MRF signal vector 

through all 𝑁 excitations not subject to B0 deviations, 𝐬o(𝐤) ∈ ℂ𝑁, at a given k-space 

position 𝐤 can be closely approximated as 

 

𝐬o(𝐤) ≈ Ak𝐛(𝐤), [6.1] 

 

where Ak is the k-space position dependent system matrix and 𝐛(𝐤) ∈ ℂ𝑀+1 are the 

coefficients that describe the water and fat components, with 𝑀 defined below. A subscript 

on 𝐬 is used to specify that B0 effects outside of chemical shift are not considered in this 

model. 

The system matrix in Eq. (6.1) can be given as 

 

Ak = [𝐮1 ⋯𝐮𝑀| 𝐠(𝑡(𝐤))], [6.2] 

 

where Ak ∈  ℂ𝑁 ×(𝑀+1), {𝐮𝑚} ∈ ℂ𝑁×1 are k-space independent singular vectors which 

describe the water dictionary in the time domain, and 𝐠(𝑡(𝐤)) is the fat model with k-space 

dependence through the finite trajectory timing (further defined below). McGivney et al. 70 
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showed that the water dictionary is highly compressed in the time dimension. Since the 

compressibility of the water dictionary, as measured by the singular values, is invariant 

under transpose, we can similarly reason that the parameter dimension of the water 

dictionary is compressible. The vectors {𝐮𝑚} can be calculated by singular value 

decomposition (SVD) of the water dictionary, using the left singular vectors to form {𝐮𝑚} 

(for a dictionary 𝐷 ∈ ℂ𝑁×𝑄, with 𝑄 dictionary atoms). The value of 𝑀, the number of 

members in the set {𝐮𝑚}, is determined by the fraction of singular value energy one wishes 

to retain. Increasing the value of 𝑀, increases the model accuracy of Eqs. (6.1-2). The last 

column of Ak describes the MRF fat model in k-space, 𝐠(𝑡(𝐤)) ∈ ℂ𝑁×1, with the nth element 

of 𝐠 given as 

 

g𝑛(𝑡(𝐤)) =
1

𝑏𝑜(𝐤)
∑ 𝑏𝑝,𝑛

𝑝=𝑃

𝑝=1

𝑒𝑖2𝜋𝑓𝑝(𝑇E,𝑛+𝑡(𝐤)). [6.3] 

 

Here, 𝑏𝑜(𝐤) is a k-space dependent normalization factor that gives 𝐠(𝑡(𝐤)) unit norm, 𝑏𝑝,𝑛 

a triglyceride peak weighting that accounts for MRF sequence T1/T2 contrast effects for 

excitation 𝑛 and the moiety’s weighting relative to the whole triglyceride, 𝑓𝑝 is the pth peak’s 

chemical shift frequency, 𝑇𝐸,𝑛 is the echo time following excitation 𝑛, and 𝑡(𝐤) is the time 

to reach 𝐤 through the k-space trajectory. In this work, we assume that the echo time starts 

at the beginning of the spiral readout at the k-space origin. The coefficient estimates at 

each k-space position, 𝐛̂(𝐤) ∈ ℂ𝑀+1, may be solved by pseudo-inverse of Ak using Eq. (6.1). 

The water dictionary does not contain phase evolution through time, and {𝐮𝑚} are 

orthonormal by definition. The fat signal, 𝐠, does exhibit complex periodic phase through 

time that lends a certain amount of orthogonality to the water dictionary basis. As a result, 

we find that the conditioning of Ak is reasonable throughout k-space for the trajectory 

timing and TEs used in this work.  

The Fourier transform of 𝐛̂(𝐤) gives coefficient images represented by 𝐛̂(𝐫), for a 

given spatial position 𝐫. These images are representations of the coefficients in the spatial 

domain. The coefficients in the spatial domain can then be multiplied by the water ({𝐮𝑚}) 
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and fat (𝐠) model vectors at each 𝐫 to reconstruct the estimated MRF water and fat signals. 

The fat coefficient estimate, the last entry of 𝐛̂(𝐫), is multiplied by 𝐠 with 𝑡 = 0 in Eq. (6.3). 

Under this condition,  Ak = A is independent of k-space and can be applied in the image 

domain to on-resonance signals. This reconstructed representation of the MRF fat signal 

does not exhibit blurring due to chemical shift, since the phase accrual in k-space has been 

fit using Eq. (6.3). While this fat-water separation does resolve blurring due to chemical 

shift, it does not consider B0 effects that may confound the fat-water fitting due to blurring 

or frequency shift. 

 

6.2.2 ΔB0 fitting with MRF fat-water separation 

We can extend the concept of a conjugate phase reconstruction technique called 

multi-frequency interpolation (MFI)183,218 to correct for ΔB0 blurring and fat-water 

separation bias. If the MRF TRs are fixed, and the slice profiles and crushers are ideal (see 

also Chapter 7), the uSSFP MRF sequence will refocus off-resonance magnetization 

contributing to signal at the beginning of every excitation.2,220 Using MFI, the demodulated 

MRF signal in the image domain 𝐬o(𝐫) at position 𝐫 is 

 

𝐬o(𝐫) ≈ ∑𝑎𝑙(𝐫; Δ𝐵o(𝐫))

𝑙=𝐿

𝑙=1

𝐬𝑙(𝐫), [6.4] 

 

where {𝑎𝑙(𝐫)} depend only on Δ𝐵o(𝐫) and {𝐬𝑙(𝐫)} are image domain MRF signals from the 

Fourier transforms (𝔉) of the corresponding k-space representations of the demodulated 

MRF signals {𝐬𝑙(𝐤)}. That is, 

 

s𝑛,𝑙(𝐫) = 𝔉−1{s𝑛,𝑙(𝐤)}  = 𝔉−1{𝑒−𝑖2𝜋𝑓𝑙(𝑇E,𝑛+𝑡(𝐤))s𝑛(𝐤)}, [6.5] 

 

where 𝑓𝑙  is the lth MFI basis frequency. The accuracy of Eq. (6.4) is limited by the number of 

basis frequencies used, as well as179,182 by non-zero B0 gradients. Eq. (6.4) can be used to 

help determine an estimate of Δ𝐵o(𝐫) in the presence of fat as follows. 
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If we enforce consistency between the spatial representation of Eq. (6.1) and Eq. 

(6.4), and apply variable projection61 (see also §2.3), we can form an objective function that 

depends on Δ𝐵𝑜(𝐫) and the given measurement. The signal is demodulated using Eq. (6.5), 

then fit for water and fat by Eq. (6.1) for each MFI basis frequency to give 𝐬𝑙(𝐤) that is 

adjusted for fat blurring, then Fourier transformed to the image domain (see also §6.3.1.3). 

The problem statement is  

 

Δ𝐵̂0(𝐫) = arg min
Δ𝐵0

‖[I − AA†]∑𝑎𝑙(Δ𝐵0(𝐫))𝐬𝑙(𝐫)

𝐿

𝑙=1

‖

2

2

. [6.6] 

 

The matrix A† denotes the pseudo-inverse of A {Eq. (6.2)}. Here, we have used the standard 

signal model assumption that the image is instantaneously acquired at the echo time. As 

mentioned above, the matrix A can be applied in the image domain by letting 𝑡 = 0 in Eq. 

(6.3). The definition and dimensions of A are otherwise the same as in Eq. (6.2). 

 The memory requirements implied by Eq. (6.6) may be reduced by SVD 

compression. Depending on the number of MFI basis frequencies, L, solution 

implementation requires enough memory to store at least L MRF data sets. To reduce this, 

a basis set of orthonormal vectors, stored in a matrix U ∈ ℂ𝑁×𝑀′ that describe any 𝐬𝑙, can 

be formed by SVD of an MRF dictionary that includes off-resonance/chemical shift effects. 

The number of columns 𝑀’ in U is defined similarly to 𝑀, as the number of singular values 

necessary to capture a specified singular value energy. A set of coefficients {𝐜𝑙(𝐤)} that 

describe 𝐬𝑙(𝐤) is given as 

 

𝐜𝑙(𝐤) = UH𝐬𝑙(𝐤). [6.7] 

 

The spatial representations of these coefficients 𝐜𝑙(𝐫) can be calculated as the 

(inverse) Fourier transform of their k-space representations. Combining Eq. (6.6) and (6.7) 

gives 
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Δ𝐵̂0(𝐫) = arg min
Δ𝐵0

‖[I − AA†]∑𝑎𝑙(Δ𝐵0(𝐫))U𝐜𝑙(𝐫)

𝐿

𝑙=1

‖

2

2

. [6.8] 

 

Eq. (6.8) can be solved by exhaustive search as discussed in Methods. MRF is known to 

estimate T1 and T2 accurately despite undersampling factors as large as 48.67 Similarly, we 

test if the above expressions yield accurate fat-water separation with B0 compensation in 

highly aliased/undersampled MRF data using the following phantom and in vivo 

experiments.  

 

6.3. Materials and Methods 

 

6.3.1 MRF image acquisition and processing 

 

6.3.1.1 MRF sequences 

 To implement the proposed solution and compare it to standard MRF approaches, 

we designed three different MRF sequences. The proposed sequence permits chemical 

shift encoding through variable TE. The next two sequences, based on standard MRF 

approaches, have fixed TE and do not encode chemical shift informationiv. All sequences 

used adiabatic inversion with an inversion time (TI) of 40 ms, excitation with a sinc-gauss 

pulse and a time-bandwidth product of 10 to minimize B1+ heterogeneity in the slice 

profile173 and slice thicknesses of 5 to 30 mm (see below). Images were encoded using a 

numerically optimized spiral42 with a fixed undersampling factor of 32, an acquisition time 

of approximately 5 ms and rotated 11.25 between excitations. In-plane image resolution 

ranged from 1.0 to 1.5 mm (see below). 

                                                           
iv An uSSFP MRF sequence with variable TR and fixed TE will experience non-zero phase evolution under Δ𝐵0 ≠
0. In theory, such a sequence can store chemical shift information like a variable TE sequence. However, in 
the original uSSFP publication, the pseudo-random variation in TR was not intended to produce a coherent 
phase representation that can be used to estimate ΔB0 or fat content. Rather, this reference reported 
insensitivity to off-resonance effects. As such, we do not directly consider direct fitting of fat or ΔB0 using 
variable TR MRF sequences in this work, though it may be an interesting subject of independent study. 



82 

 

 

 

 

The three MRF sequences differed as follows. The proposed variable TE uSSFP MRF 

sequence (MRF-varTE) used 1500 excitations, fixed TR of 16 ms, a linearly swept TE from 3.5 

to 7.5 ms over the 1500 excitations, fixed radiofrequency phase and a variable flip angle 

pattern (Fig. 6.1). The flip angle pattern was designed from half-sinusoids with randomly 

varying maximum amplitudes67 no greater than 60. The scan duration was 24 s. The first 

fixed TE uSSFP MRF sequence (MRF-fixTE) used 1500 excitations, fixed TR of 16 ms, a TE of 

4.65 ms, and the same flip angle pattern as MRF-varTE, for a scan duration of 24 s. The 

second fixed TE MRF sequence used a variable TR (MRF-varTR) with variable flip angle and 

TR patterns (Fig. 6.2) with fixed TE = 3.5 ms, adapted from the first MRF uSSFP (FISP) 

sequence67. The scan duration was 17.5 s. 

 All images were acquired on a 3T Philips Ingenia (Philips Healthcare, The 

Netherlands) with a 32-channel head coil for phantom experiments and brain acquisitions, 

a 16-channel transmit-receive knee coil for knee acquisitions, and a multi-channel anterior 

coil with integrated tabletop posterior coil for abdominal acquisitions. 

 

Fig. 6.1. Flip angle pattern for the variable TE MR fingerprinting (MRF-varTE) and fixed TE 

MRF sequence (MRF-fixTE). 
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6.3.1.2 Image reconstruction and MRF T1/T2 estimation 

Following k-space data acquisition, we reconstructed the undersampled MRF data 

using iterative sample density compensation36 derived from fully-sampled k-space 

coordinates combined with SVD virtual coil compression by a factor of two, sensitivity map 

estimation using eSPIRIT40, and gridding and coil combination using the Berkeley Advanced 

Reconstruction Toolbox (BART)221. The k-space trajectory was measured using an 

implementation196 of the Duyn method195. The input for eSPIRIT used low resolution 

reconstructions generated from the inner 30 x 30 grid of k-space positions of each virtual 

Fig. 6.2 Flip angle pattern (a) and repetition time length (b) for the variable TR MR 

fingerprinting sequence (MRF-varTR). The flip angle sequence shape (with different scaling) 

and extension from minimum TR were adapted from Ref 67. 
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coil’s MRF image stack. All processing was performed in MATLAB (The MathWorks, Natick, 

MA, USA). 

 Estimates for T1/T2 were made in the following way. We used an extended phase 

graph algorithm31 to construct an on-resonance water dictionary using the following range 

of T1, T2, and B1+ values: (min:step:max): T1 (ms) 10:10:90, 100:20:1000, 1040:40:2000, 

2050:100:3000; T2 (ms) 2:2:8, 10:5:100, 110:10:300, 350:50:800, 900:100:1500 (adapted 

from Ref222); B1+ 0.5, 0.6, 0.7 0.75, 0.8:0.025:1.2, 1.25 1.3, 1.4, 1.5. MRF-fixTE and MRF-

varTR T1s and T2s were fitted using the inner product of the compressed signal and time-

compressed dictionary70 constrained from independently measured 3D B1+ maps using the 

Yarnykh223 method (except as noted) with high in-plane (2 mm x 2 mm) resolution and a 

1.5-2 min acquisition time to ensure sufficient SNR. MRF-varTE water T1s and T2s were 

estimated in the same way but using the water signal following fat-water separation. 

 

6.3.1.3 Implementation of MRF fat-water separation 

 Figure 6.3 provides a flowchart describing the fundamental steps of the proposed 

solution. The basic workflow is to reconstruct and combine coil images, perform a 

demodulation in k-space using the MFI basis frequencies, do a k-space fat-water 

separation, and then transform to the image domain and fit a B0 map that yields the B0-

corrected coefficients used to reconstruct the fat and water signals. 
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The gridded and coil-combined k-space data were demodulated for each basis 

frequency and then separated into their fat-water-residual components. We defined basis 

frequencies as the 31 central Fourier basis frequencies over the time interval from TE = 0 to 

20% larger than the sum of the latest TE and spiral acquisition time, discretized into the 

Fig. 6.3. A flowchart of the implementation for the proposed MR fingerprinting (MRF) fat-

water separation technique. A fixed-TR, linear swept TE is used for the MRF acquisition. 

Following gridding and coil-combination, the MRF stack is transformed back into k-space 

and demodulated as described in §6.2. Fat-water-residual separation is performed in k-

space for each demodulation frequency and each discretized B1+. The water, residual, and 

deblurred fat components are projected onto an approximate basis of a dictionary that 

includes T1, T2, and off-resonance effects. The coefficients of this projection are transformed 

to the image domain and smoothed (not shown), and 𝛥B0 at each voxel is fitted. The 𝛥B0 

estimate is then used to appropriately combine the water and fat coefficients to yield fat 

signal fraction (FSF), and water T1 and T2 maps. 
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number of spiral read points from a single interleaf with apodization as originally described 

for MFI183. This produced coefficients for B0 values with normalized RMSE <1.5% over a 

frequency range of ±700 Hz within the shortest TE to the longest TE plus the spiral 

acquisition time. This bandwidth is sufficient to capture chemical shift combined with 

significant B0 effects. The number of basis vectors in U (in Eqs. 6.7-8) and in {𝐮𝑚} {in Eq. 

(6.2)} were defined as the rank of the SVD of the respective dictionaries that captured 

99.99% of the singular value energy. The multi-peak fat model was defined as in Eq. (6.3) 

and used previously reported chemical shifts and estimated T1/T2 values of white adipose 

tissue44 (Table 6.1). The fat-water fit was repeated for all discretized B1+ values. The fitted 

fat coefficients were projected onto the fat model 𝐠 with 𝑡 = 0 in Eq. (6.3). The resulting 

estimated fat and water signals and residuals were projected on the off-resonance 

dictionary basis for each voxel in gridded k-space for each discretized B1+ value and 

frequency demodulation. The k-spaces of the fit coefficients were then converted to the 

image domain. 

Following fat-water separation for all of k-space and conversion to the image 

domain, we smoothed the coefficient maps using a Gaussian kernel of 1.5 voxels. It was 

found empirically that this smoothing removed single voxel outliers in the ΔB0 fits. We then 

fit for the B0 map. 

The ΔB0 fitting was performed using Eq (6.8). The possible ΔB0 values were 

discretized by 10 Hz increments and restricted to a range of ±250 Hz. For each voxel, linear 

combinations of the reconstructed signal were made with the precalculated coefficients 

{𝑎𝑙(Δ𝐵𝑜)} for all discretized ΔB0 values to determine the ΔB0 that minimized the objective 

function as stated in Eq. (6.8). The B0-corrected water signal T1 and T2 values were 

estimated as described above. The water (𝑊) and fat (𝐹) magnitudes for each voxel were 

defined as the magnitudes of their respective M0 estimates. M0 for fat and water were 

calculated as the complex inner product of the B0-corrected fat and water signal estimates 

with their respective signal models. The FSF, 𝜂, at each voxel was given as 

 

𝜂 =  
𝐹

𝑊+𝐹
. [6.9]  
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Table 6.1. Fat model parameters† 

Model ppm Descriptor T1 (ms) T2 (ms) 
Peak 

weight* 

5.3 Olefinic methine 421 44.1 0.122 

4.65 Water not fixed not fixed not fixed 

4.2 Glycerol methylene 154 50** 0.064 

2.75 Diallylic methylene 284 46.2 0.033 

2.1 
Methylene alpha to 

carbonyl 
202 51.9 0.241/2*** 

2.1 Allylic methylene 249 51.9 0.241/2*** 

1.3 Methylene beta to carbonyl 240 54.7 0.500*** 

1.3 Bulk methylene 280 54.7 0.500*** 

0.9 Terminal methylene 543 80.1 0.144 

†Adapted from observations from Hamilton et al. 44 

*Peak weights are relative to peaks at 1.3 ppm 

**Not reported/estimated 

***T1/T2 estimates of methylene alpha to carbonyl and allylic methylene from the 

observations by Ref. 44 were fitted at the same chemical shift and cannot be separated, so 

the peak weights for each peak were divided by two. The same rule was applied to the 

methylene beta to carbonyl and bulk methylene peaks. 

 

6.3.1.4 Dictionary MRF fat-water separation 

 To compare with the proposed solution, we implemented an MRF fat-water 

separation in the image domain using an MRF dictionary with fat signal, without adjusting 

for spiral blurring. The fat-water dictionary was composed of discretized FSF (𝜂  = 

0.0:0.05:1.0) using linear combinations212 of the water dictionary and the multi-peak fat 

model with the MRF-varTE sequence. Reconstructed MRF images were then matched to 

the fat-water dictionary on a voxelwise basis to estimate water T1, water T2, and 𝜂. 
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6.3.2 Simulation studies 

 

6.3.2.1 Simulation of T1 and T2 Bias Due to Fat 

To understand better the potential for fat bias in MRF T1 and T2 estimates under 

ideal conditions, we numerically simulated fully-sampled MRF-varTE, MRF-fixTE and MRF-

varTR signals. We then estimated the T1 and T2 for all sequences with fat-water separation 

for MRF-varTE and without fat-water separation for MRF-fixTE and MRF-varTR. The multi-

peak fat model was defined as above. Linear combinations of the normalized fat and water 

signals with varying FSFs were simulated and matched against the water dictionary. The 

following T1/T2 combinations and FSF values were simulated: 500/30, 800/30, 1200/50, 

1600/100, 2250/100 ms and 𝜂 = 0.0:0.05:1.0. The simulation assumed zero noise. T1 and T2 

were estimated as described above. 

 

6.3.2.2 MRF Image Simulations 

To assess the performance of the proposed method relative to MRF T1 and T2 

estimation methods that do not account for fat, simulated measurements with 

undersampling and varying levels of noise were generated from a digital phantom. Since 

we were unaware of any consensus digital fat phantoms with varying water T1 and T2, we 

used a digital 240 x 240 Shepp-Logan phantom and arbitrarily assigned different segments 

of the phantom an FSF and one of the T1/T2 combinations used in §6.3.2.1. The FSF values 

were 0.0, 0.25, 0.5, 0.6, and 0.8. The total magnetization density was kept uniform 

throughout the image. The parameter assignments to each phantom segment are detailed 

in Figure 6.4 and Table 6.2. All simulated MRF stacks were subjected to ΔB0 = 150 Hz.  
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Table 6.2. Image simulation segment properties 

Segment T1 (ms) T2 (ms) 𝜂 

1 2250 100 0.60 

2 1200 50 0.00 

3 1600 100 0.50 

4 500 30 0.25 

5 800 30 0.80 

 

 

 

The undersampled spiral MRF acquisitions were simulated as described by Zhao et 

al224. Undersampled spiral images were generated by non-uniform fast Fourier transform35 

from a measured k-space trajectory used in this study. Blurring effects from chemical shifts 

and off-resonance were simulated using a spiral acquisition time of 5.0 ms and the 

measured trajectory. Complex white Gaussian noise was added in k-space to yield SNR 

values of 28, 32, and 38 dB as well as no added noise, as described in Ref224. All parameters 

were estimated for the proposed fat-water separation method using the MRF-varTE 

Fig. 6.4. The image simulation segmentation. Each numbered segment has the parameter 

values given in Table 6.2. 
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simulations. T1 and T2 were estimated without fat separation for the MRF-fixTE and MRF-

varTR simulations. Parameter bias for each voxel was calculated as the difference from 

ground truth. Uncertainty was quantified as the standard deviation (SD) of voxel bias to 

permit comparison of segments with differing T1/T2. Mean bias and SD of the bias were 

calculated for the entire non-zero image defined by ground truth. 

 

6.3.3 Phantom experiments 

 

6.3.3.1 FSF estimation with MRF direct match vs. k-space fitting 

 The proposed method, as well as a dictionary-based fat estimation, were used to 

measure FSF in a fat-water phantom. The phantom was composed of 50 mL conical 

centrifuge tubes filled with differing concentrations of peanut oil and aqueous agar doped 

with a gadolinium-based contrast agent. 

The phantom was imaged with the MRF-varTE and spoiled gradient echo (SGPR) 

sequences. The images were reconstructed as described above, with an FOV of 240 mm x 

240 mm, in-plane resolution of 1 mm x 1 mm and slice thickness of 8 mm. A 3D spoiled 

gradient echo (SPGR) sequence with 6 TEs (TE,min = 1.5 ms, TE = 1.1 ms) with a flip angle of 

3 was acquired and processed with a graph-cut-based fat-water separation algorithm with 

simultaneous B0 and R2* correction64, serving as FSF reference. The FSF was also estimated 

from MRF-varTE using the proposed solution and the dictionary-based fat-water 

separation. 

The concordances of the two MRF FSF estimation methods with the SPGR reference 

were calculated. ROIs were manually drawn within each imaged phantom tube on a SPGR 

reference image. The means of the ROIs’ FSFs were used to calculate the concordance 

correlation coefficients (CCC)225 for the two MRF methods. 

 

6.3.3.2 Variability of water T1 and T2 estimation with partial volume of oil 
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We constructed a phantom of distinct water and oil compartments with varying 

water T1 and T2 to test the proposed method across a broad range of water contrasts. Nine 

50 mL conical centrifuge tubes were filled with 25 mL of deionized water with different 

concentrations of MnCl2, over which 25 mL of peanut oil were added. This produced 

separated water and oil layers in each tube (Fig. 6.5). The tubes were then placed in a 

rectangular plastic container filled with a 2% aqueous agar gel to serve as a background 

signal. This fat-water layer phantom was imaged in cross-section with 3 cm slice thickness. 

Seven slice offsets were used, generating a different FSF for each slice. This permitted 

different T1 and T2 combinations across seven different fat fractions. 

 

 

At each offset, images were acquired with all MRF sequences and a 2D SPGR 

sequence with the same echo time spacing and in-plane resolution described in §6.3.3.1. 

The through-slice position of the SPGR sequence was corrected by 1.2 mm to adjust for the 

different positions of the bulk methylene-water interface relative to the different RF 

Fig. 6.5. Phantom and acquisition design of oil-water layer phantom (not to scale). Nine 50 

mL conical centrifuge tubes were filled with 25 mL of MnCl2-doped water and 25 mL of 

peanut oil. A 3 cm slice was used to acquire a water-only slice as well as several slices with 

different fractions of oil and water. This enabled many fat-fraction observations over nine 

different T1/T2 water combinations. 
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bandwidths of the MRF and reference SPGR sequences. This partially corrected for 

differences in the height of the oil-water interface from the different bandwidth pulses. 

To assess the relative biases in water T1 and T2 estimation due to fat signal 

contamination, the deviations in each sequence’s T1 and T2 estimates from consensus 

values were calculated as functions of oil content. The T1 and T2 values were estimated by 

all three MRF sequences in a slice that contained only water. These were averaged to yield 

water T1 and T2 consensus values for each tube. For each slice and MRF sequence, the T1 

and T2 consensus estimates from each tube were subtracted from estimates with different 

fat fractions to determine the relative bias in estimated T1 and T2 for each FSF and MRF 

sequence. The SPGR data with graph cut processing (as in §6.3.3.1) was calculated for all 

slices/fat fractions and tubes for reference FSF values. 

The accuracies of T1/T2 estimates in water for all MRF sequences were separately 

verified in a NIST-traceable MRI system phantom. All MRF sequences as well as 

conventional selective inversion recovery (SIR) and spin-echo (SE) sequences were used to 

estimate the T1 and T2 maps in an MRI system phantom (HPD, Boulder, Colorado) with NIST-

traceable T1/T2 contrast spheres186. The SIR sequence used 11 TIs: 50, 100, 200, 300, 500, 

750, 1000, 1500, 2000, 3000 and 6000 ms. The SE sequence used 6 TEs: 15, 30, 60, 120, 240 

and 500 ms. Measurements were acquired at the specification temperature in the T2 

contrast spheres filled with MnCl2. T1 and T2 estimates were made as described in §6.3.4 

with the exception that the SE used a two-parameter fit without a noise bias correction 

because of the large range of T2 values relative to the echo times. 

 

6.3.3.3 Effect of B0 on Proposed Method 

 To explore the effect of the in-line ΔB0 fitting, the oil-water layer phantom was 

imaged under heterogeneous B0 conditions and processed with and without the proposed 

B0 correction. Cross-sectional acquisitions with the MRF-varTE and 2D SPGR sequence were 

selected at a single slice to produce FSF values ranging from ~10-30% across the different 

phantom tubes. Pencil-beam shimming was used to produce a reference scan with minimal 

B0 variation, then the shimming was manipulated to produce a heterogeneous off-

resonance pattern. The MRF data were processed with k-space fat separation with and 
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without the ΔB0 fitting portion of the code, and the SPGR images were processed as in 

§6.3.3.1. 

 

6.3.4. In vivo experiments 

 To assess the in vivo differences of the MRF methods, as well as the feasibility of the 

fat-water separation method proposed here, three subjects were imaged in three 

anatomical sites after providing informed consent and with the approval of the local 

institutional review board. 

One subject was imaged in a sagittal plane in the left knee with all MRF sequences 

using in-plane resolution of 1 mm x 1 mm, 5 mm slice thickness, and an FOV 240 mm x 240 

mm. For reference, we acquired the following scans: a six-echo 3D SPGR sequence with 

TE,min = 1.4 ms and TE = 1.1 ms; a fat-suppressed single-shot gradient echo inversion 

recovery (IR-TFE) sequence using a water excitation 1-3-3-1 binomial pulse, inversion times 

of 50, 100, 200, 500, 1000, 2000, and 6000 ms, and delay time (TD) of 2500 ms with 2 

averages; a fat-suppressed 20-echo multiple spin-echo (MSE) sequence using spectral 

adiabatic inversion recovery and extra olefinic saturation prepulse, Version S refocusing28, 

minimum TE = 20 ms, echo spacing 20 ms, TR = 3000 ms; and T1-weighted turbo spin echo 

(TSE) sequence with a TR/TE = 700/11 ms and TSE factor of 3. Besides the in-plane resolution 

for the MSE and IR-TFE acquisitions of 2 mm x 2 mm, all other spatial resolutions and slice 

thickness equaled those of the MRF sequences. All reference scans were reconstructed to 

the same FOV and in-plane resolution as the MRF images. FSF estimates from the SPGR 

were made as described in §6.3.3.1. The proposed fat-water separation was performed for 

the MRF-varTE sequence. T1 and T2 estimates were made using the acquired images (MRF-

fixTE, -varTR) and the water images (MRF-varTE) as described above. For the IR-TFE 

acquisition, T1 was estimated using a non-linear fit to the magnitude images with the 

following three-parameter signal model226 

 

𝑆(𝑇𝐼) =  |𝑆𝑜 [𝑆𝑓 (1 − 𝑒
−𝑇D
𝑇1 ) 𝑒

−𝑇I
𝑇1 + 1 − 𝑒

−𝑇I
𝑇1 ]| . [6.10] 
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Here, 𝑆(𝑇I)is the signal at 𝑇I, 𝑆𝑜 is the equilibrium signal intensity, and 𝑆𝑓 scales for 

imperfect inversion. T2 was estimated from the magnitude MSE images using the following 

three parameter signal model 

 

𝑆(𝑇E) =  𝑆𝑜𝑒
−𝑇E
𝑇2 + 𝜖𝑜 . [6.11] 

 

Here, 𝑆(𝑇E) is the signal at the given 𝑇E, 𝑆𝑜 is a scaling factor, and 𝜖𝑜 accounts for a noise 

floor. To better evaluate parameter estimates, T1 and T2 maps were masked using the SPGR 

water image with a threshold based on Otsu’s method190. 

 The second subject was also imaged with SPGR and MRF sequences in the 

transverse direction in the brain at the level of the orbits. The resolution, FOV and SPGR TEs 

were the same as those for the knee.  

 To provide proof-of-concept of the proposed method in a region sensitive to 

respiratory motion, the third subject was imaged in a transverse plane in the abdomen with 

the MRF-varTE sequence and processed with the proposed method. The resolution and 

FOV were 1.5 mm x 1.5 mm with slice thickness 8 mm, and 480 mm x 480 mm, respectively. 

To permit faster acquisition, a B1+ map was estimated using dual refocused echo acquisition 

mode sequence227 with a scan duration of 8 s. Separate end-exhalation breath-holds were 

used for the MRF and B1+ acquisitions. 

 

6.4. Results 

 

6.4.1. Simulation Studies 

 Figure 6.6 shows the results of simulations of T1 and T2 biases due to fat for the 

different MRF sequences. The fitted T1s are unbiased for the MRF-varTE (with fat 

separation) for η < 1.0 (Fig. 6.6a). They decline approximately linearly for the MRF-fixTE 

sequence (Fig. 6.6b), and sharply increase then decrease for the MRF-varTR simulations 

(Fig. 6.6c). Biases without fat-separation exceed several hundred ms and even saturate for 
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the MRF-varTR results at the 3000 ms limit of T1 in the dictionary. The simulated water T2 

estimates are unbiased for the MRF-varTE with the proposed method (Fig. 6.6d) and vary 

for the MRF sequences without fat separation (Figs. 6.6e, f). 

 

 

Fig. 6.6. Simulated water T1 and T2 bias from fat using MRF sequences. This simulation used 

the variable TE MR fingerprinting (MRF) sequence with the proposed fat-water separation 

(MRF-varTE), as well as the fixed TE (MRF-fixTE) and fixed TE/variable TR MRF sequence 

(MRF-varTR) without fat-water separation. The simulated signals were fully sampled 

without blurring effects, noiseless and matched against a water-only dictionary for fat 

signal fractions (FSF) from 0.0 to 1.0 in increments of 0.05. The T1 bias (a-c) and T2 bias (d-

f) for five listed T1/T2 combinations as a function of fat signal fraction (𝜂) are shown. MRF-

fixTE is in-phase with the main methylene peak of fat whereas MRF-varTR is approximately 

opposed phase. Water T1 and T2 bias in the proposed method (a, d) occur only when water 

is entirely absent (𝜂 = 1.0) and is otherwise zero. The T1 positive bias is so large for the MRF 

varTR sequence (c) that it is saturated due to the maximum T1 used in this study (3000 ms). 
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 The image simulation results show that the proposed method reduces T1 and T2 bias 

and uncertainty, relative to MRF without fat separation. Figure 6.7 presents the ground 

truth and estimated parameters from all MRF sequences for the lowest SNR simulated (28 

dB). Bias and blurring from fat signal and from off-resonance B0 can be seen in the MRF-

fixTE and MRF-varTR T1 and T2 maps. In comparison, the MRF-varTE parameter maps show 

closer agreement to the ground truth T1 and T2 as well as sharper geometric definition. The 

mean T1 bias without fat separation drops from about -150 ms to less than 5 ms with fat 

separation (Fig. 6.7c). Bias reduction using the proposed method can also be observed for 

T2. The standard deviations (SDs) of the bias for the proposed method are reduced by a 

factor of approximately three to five for T2 and T1, respectively (Fig. 6.7c). Decreases in SDs 

can be seen for the proposed method as the noise level decreases. The proposed technique 

has bias in 𝜂 ≤ 0.017 (≤ 0.025 SD) and ΔB0 bias ≤ 1 Hz (≤ 6 Hz SD) for all noise levels. 

  



97 

 

 

 

Fig. 6.7. Example parameter estimates for the MR fingerprinting image simulations and 

associated bias plots. The example maps here use an SNR of 28 dB, an undersampling factor 

of 32, and a spiral acquisition time of 5.0 ms. The T1 and T2 maps (a) from the MRF-varTE 

sequence with fat separation exhibit reduced bias compared to the MRF-fixTE and MRF-

varTR which do not use fat separation or account for spiral blurring due to 𝛥B0/fat chemical 

shift. The fat signal fraction and B0 map for the MRF-varTE method (b) generally agrees with 

the ground truth. T1 and T2 estimation bias and the standard deviation of the bias are 

reduced at all noise levels for the MRF-varTE with fat separation simulations relative to the 

MRF techniques without fat separation (c). 
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If the parameter estimates are made from fully-sampled and zero-noise images, the 

mean T1 and T2 biases and SDs drop to zero for the proposed method (Figs. 6.8-9). In 

contrast, the biases and SDs of all segments for the MRF estimates without fat separation 

approximately equal those from the undersampled, noisy simulations. 

 

 

 

  

Fig. 6.8. Simulated image parameter maps from the fully sampled simulations without 

noise. This figure corresponds to Fig. 7, except fully-sampled Cartesian encoded data was 

used for fitting and no noise was added. Simulated acquisition timing matched that in Fig. 

7, which results in the same blurring for MRF-fixTE and MRF-varTR as in Fig. 6.7. The bias 

and standard deviation of the bias are shown in Fig. 6.9. 
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6.4.2 Phantom Studies 

The concordance of the dictionary and k-space MRF fat-separation methods with 

the SPGR-derived estimate for FSF exceeded 0.980 in both cases (Fig. 6.10). However, the 

dictionary-based method has blurring artifacts on the outer edges of the phantom tubes 

due to the fat chemical shift. There are also asymmetric features that are likely due to B0 

inhomogeneity. The k-space method with B0 correction FSF map does not show these 

artifacts. 

Fig. 6.9. Bias plots for the fully sampled image simulations without noise. All segments 

correspond to those in Fig. 6.4 and Table 6.2. The parameter maps can be seen in Fig. 

6.8. The bias and standard deviations for the proposed technique are effectively zero. 
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The CCCs of all MRF and conventional T1 and T2 estimates in the MRI system 

phantom relative to specifications were ≥ 0.988 and ≥ 0.978, respectively (Fig. 6.11). 

 For the oil-water phantoms, the T1 and T2 deviations from water reference values 

with increasing oil-fraction are smaller for the MRF-varTE than for the MRF methods 

without fat separation. Figure 6.12 shows example T1 and T2 maps in the water-only slice 

Fig. 6.10. Fat signal fraction (𝜂) fitting with conventional and MRF techniques. The fat signal 

fraction maps from a spoiled gradient echo (SPGR) sequence (a), a variable-TE fixed-TR 

(MRF-varTE) sequence estimated via direct dictionary matching (b) and the proposed k-

space based method (c) are shown for a phantom with different fat fraction emulsions. The 

concordance of the two MRF methods with the SPGR method is graphed in (d) with 

calculated concordance correlation coefficients (CCC) and a line representing perfect 

concordance for visual reference. Asymmetries and ring artifacts can be seen in the direct 

matching map (b). 
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and a slice that contains ~30 to 50% fat signal. The water T1s and T2s range from 

approximately 300 to 1500 ms and 30 to 180 ms, respectively. The MRF T1 and T2 estimates 

in the water layer were consistent; the maximum absolute difference between each MRF 

sequence’s estimate and the averaged values for each tube were 17 ms and 3 ms for T1 and 

T2, respectively. The T1 values for the oil-water slice are mostly lower than those from the 

water-only slice, with the MRF-varTR sequence changes being the most variable. The MRF-

fixTE and MRF-varTR exhibit greater deviations than the MRF-varTE with fat separation (Fig. 

6.12a-f). The T2 maps in Fig. 6.12 appear to show slightly reduced, relatively unchanged, 

and widely varying changes in the oil-water slice relative to the water-only slice for the 

MRF-varTE with fat separation, MRF-fixTE and MRF-varTR, respectively. 

 

 

Figure 6.13 plots the differences in T1 and T2 estimates from the water-only slice 

consensus values for all tubes and all oil-water slices as a function of FSF (including water 

Fig. 6.11. Comparison of T1 and T2 estimates from MRF and conventional techniques. MR 

fingerprinting variable TE with proposed fat-water separation (MRF-varTE), fixed-TE (MRF-

fixTE), variable TR (MRF-varTR) and conventional selective inversion recovery (SIR) and spin-

echo (SE) sequences were used to estimate the T1 and T2 maps in an MRI system phantom. 

Concordance correlation coefficients (CCC) for each acquisition is listed relative to the 

specification values. 
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only). At 𝜂 >  0.15, much wider perturbations in estimated T1 are seen with the MRF-fixTE 

and MRF-varTR than with MRF-varTE with fat separation. The T2 deviations of the MRF-

varTR are greater than those of the MRF-varTE and MRF-fixTE, whereas MRF-varTE 

deviations are more negative than those of MRF-fixTE. The general variation in T1 with 

increasing FSF are similar to the simulation (Fig. 6.6) results for each sequence. 

 

 

Fig. 6.12. The MR fingerprinting (MRF) T1 and T2 maps from the oil-water phantom. The 

MRF-varTE sequence uses the proposed k-space fat-water separation whereas the MRF-

fixTE and MRF-varTR sequences do not separate fat from water. The T1 estimates from a 

pure water layer within the phantom tubes (a-c) are shown above the T1 estimates from 

an oil-water layer (d-f). The T2 estimates are arranged as the T1 maps with water-only T2 

estimates in (g-i) above the oil-water T2 estimates (j-l) and the same MRF sequence order 

from left to right. The largest deviations from the water-only T1 and T2 values can be seen 

in (e, f, l). 
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 Figure 6.14 plots FSF estimates from the proposed MRF method against the SPGR-

derived values for all tubes and oil-water slices. Example FSF and B0 maps are also shown. 

The FSF maps indicate general agreement between the FSF and graph cut fat-water 

separation across the phantom tubes. The B0 maps show perturbations within 100 Hz, with 

more discretization and lower B0 estimates in the MRF map relative to the SPGR derived 

Fig. 6.13. The deviations in MR fingerprinting (MRF) estimated T1 and T2 with fat signal 

fraction (𝜂) in the oil-water phantom. The difference from the consensus T1 estimates for 

all T1/T2 tube combinations and all measured slices is shown for the proposed k-space fat-

water separation (MRF-varTE) and fixed-TE/variable-TR MRF methods without fat-water 

separation, plotted against 𝜂 estimated from a spoiled gradient echo sequence (a). The 

changes in estimated T2 versus 𝜂 are plotted in (b). 
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map. The FSF estimates are concordant with CCC = 0.990 across the different tubes with 

differing T1 and T2. 

 

Fig. 6.14. Example fat signal fraction (𝜂), B0 maps and 𝜂 concordance over a large range of 

T1/T2s from the oil-water phantom. The conventional spoiled gradient echo (SPGR) (a) and 

proposed MR fingerprinting (MRF) (b) 𝜂 estimates are shown with the estimated SPGR (c) 

and MRF (d) B0 maps from the oil-water phantom slice shown in Fig. 6.12. The 𝜂 

concordance between the MRF and SPGR method is plotted in (e) for all measured 

water/oil-water layers across all T1/T2 tube combinations with the concordance correlation 

coefficient (CCC) displayed. 

 Figure 6.15 shows the results from the poorly shimmed condition at an FSF layer of 

~10 to 30%. Without B0 correction, the k-space-based MRF fat-water separation FSF bias is 

substantial in regions with high B0. The B0 estimate from the graph cut processing appears 

more negative than that from the MRF method. Fat-water swaps are visible at the extreme 

limbs of the phantom of both methods. 

Figure 6.16 provides example T1 and T2 maps from the well shimmed and poorly 

shimmed slice, without and with B0 correction. Without B0 correction, substantial 

deviations in T1 and T2 are observed in regions of B0 perturbation. These deviations are 

reduced by > 100 ms in some cases with the proposed B0 correction.  
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Fig. 6.15. The fat signal fraction (𝜂) and ΔB0 estimate from conventional and MR 

fingerprinting (MRF) methods. The FSF maps for a single slice in the oil-water phantom with 

heterogeneous B0 are shown for the reference spoiled gradient echo (SPGR) with graph cut 

processing (a), the MRF k-space based fat separation method without B0 correction (b) and 

the MRF k-space based fat separation method with B0 correction (c). The estimated SPGR 

(d) and MRF (e) B0 maps are also displayed. The data are from the same slice as depicted in 

Fig. 6.16. 
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6.4.3 In vivo studies 

Figures 6.17 and 6.18 show the FSF, T1 and T2 maps from the knee and brain. The 

knee FSF maps between the SPGR and MRF data appear largely consistent (Fig. 6.17b). 

Compared to the SPGR measurement, the MRF FSF appears slightly lower in the 

gastrocnemius and biceps femoris and slightly higher in the subcutaneous and 

intermuscular fat regions. The fat-suppressed IR-TFE and MSE measurements appear 

mostly uniform across the main muscle groups visible in the parameter maps (Fig. 6.17c, 

d). The MRF T1s appear lower than the IR-TFE measurements within the main muscle bodies 

and higher in T2 than the MSE measurements. The MRF-fixTE and MRF-varTR T1 and T2 

exhibit bands of lower and higher T1 and T2 estimates near the muscle-fat interfaces 

throughout the FOV. The B0 and FSF maps from the brain from the proposed method are 

similar to the SPGR reference maps (Fig. 6.18). The periorbital fat is clearly defined on the 

Fig. 6.16. The MR fingerprinting (MRF) estimated T1 and T2 maps without and with B0 

correction. Variable TE MRF T1 and T2 maps with pencil-beam (PB) shimming (a, d) are 

shown for comparison with poorly shimmed T1 and T2 maps from MRF k-space fat-water 

separation without B0 correction (b, e) and k-space fat-water separation with B0 correction 

(c, f). The data are from the same slice as depicted in Fig. 6.15. 
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FSF maps, with low FSF in the brain and optic nerve tracts. The conventional and MRF B0 

maps both reveal increases in B0 superior to the temporal bone. Deviations from the FSF 

and B0 maps include fat-water swapping in the anterior orbits and in a small region in the 

optic nerves, as well as a posterior circular flow artifact. T1 and T2 maps in the brain appear 

similar in all MRF methods except for the orbits, optical nerve, and regions near extracranial 

fat. 

The abdominal MRF data was successfully acquired in a single breath hold and can 

be seen in Fig. 6.19. Fine features of visceral, subcutaneous and marrow fat can be 

visualized in the FSF map. The fat-separated T1 and T2 estimates of the liver are 1,093 and 

19 ms, respectively. In comparison, 3 T MR spectroscopy water relaxometry estimates of 

the liver from the literature are 990 (SD 89) ms for T1 and 30 (SD 2) ms for T2.228  
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Fig. 6.17. Multi-parametric knee maps. An anatomical reference from T1-weighted images 

(a) with fat signal fraction (𝜂) maps from spoiled gradient echo (SPGR) and the proposed 

MR fingerprinting fat-water separation methods (b) are shown. The T1 maps (c) from fat-

suppressed inversion recovery (IR-TFE) are shown next to the MRF fixed TE (MRF-fixTE), 

MRF variable TR (MRF-varTR) without fat-water separation and the proposed method with 

fat-water separation using MRF variable TE (MRF-varTE). The fat-suppressed multiple spin-

echo (MSE) T2 maps are shown adjacent to the MR-fixTE, MRF-varTR and proposed method 

acquired with MRF-varTE T2 estimates (d). Parameter maps were masked using the SPGR 

derived water image and threshold. Bands of lower T1 and higher T2 appear near fat-muscle 
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interfaces in the MRF-fixTE and MRF-varTR parameter maps, which do not account for fat. 

An arrowhead marks a point on all T1/T2 knee parameter maps where there are multiple 

fat-muscle interfaces and the banding effect is pronounced.  
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Fig. 6.18. (Previous page) Multi-parametric maps of the brain. The B0 maps from the 

spoiled gradient sequence with graph cut processing (SPGR) and the proposed MR 

fingerprinting (MRF) fat-water and B0 estimation method with variable TE (MRF-varTE) 

are shown (a), with the corresponding fat signal fraction maps (b). The MRF method has 

general agreement with the SPGR. Blue arrows indicate a region superior to the temporal 

bone featuring increased B0 heterogeneity in both methods, which is also present on the 

contralateral side (unmarked). Deviations between the methods include fat-water 

swapping in the anterior orbits and small sections of the optic nerves (magenta arrows), 

and the MRF FSF map indicates an area of a flow artifact (white arrow). The MRF T1 (c) 

and T2 maps are shown for the MRF methods without fat-water separation (MRF-fixTE/-

varTE) and the proposed fat-water separation using MRF-varTE. The slice thickness (5 

mm) is thicker than the optic nerve diameter so may include a partial volume of CSF. 
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6.5 Discussion 

 The results indicate that small fractions of fat signal significantly bias T1 and T2 water 

estimates from MRF techniques that do not consider fat. The proposed MRF method 

ameliorates these biases, circumvents spiral blurring, and incorporates a B0 correction that 

substantially improves parameter map quality. 

The simulation, phantom, and in vivo results all show that fat biases MRF T1 and T2 

estimation. This bias in T1 can exceed 200 ms at 𝜂 >  0.2 (Figs. 6.6-9,6.13). From the image 

simulations, the noiseless, fully sampled MRF parameter estimates without fat separation 

Fig. 6.19. The proposed MR fingerprinting method applied in the abdomen. The water (a) 

and fat (b) images, and fat signal fraction (𝜂) (c), B0 (d), T1 (e) and T2(f) maps estimated by 

the proposed technique are shown for a single slice in the liver. Parameter maps (c-f) were 

masked using the sum of the water (a) and fat (b) magnitude images with a threshold. The 

MRF and B1+ acquisitions were separately acquired using end-expiration breath holds. 
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were equally biased as the noisy, undersampled estimates, suggesting that fat signal 

contamination may in some cases be the dominate form of bias, relative to instrument 

noise or aliasing. The knee results (Fig. 6.17) showed that in regions which do not contain 

fat, bias may be avoided by excluding regions close to fat from analysis. However, fat signal 

contamination of the T1 and T2 estimates may be inescapable if fat is diffusely spread 

throughout, or immediately adjacent to, the tissue of interest. This is common in 

nonalcoholic fatty liver disease112, pancreatic steatosis229, fat-infiltrating myopathies200, 

and pericardial fat230. 

 The proposed MRF fat separation method reduces bias of T1 and T2 due to fat, 

relative to the MRF-fixTE and MRF-varTR techniques; it also provides FSF estimates. Figures 

6.6-9 and 6.13 show that the proposed method substantially reduces the bias in T1, relative 

to MRF without fat-separation. The MRF-fixTE (in-phase TE) and -varTR (~opposed-phase 

TE) results likely indicate that in-phase TE reduces T1 and T2 bias when fat separation is not 

used. The FSF CCC of 0.990 between the MRF and SPGR measurements (Fig. 6.14) includes 

a broad range of T1 and T2 combinations, suggesting that water T1/T2 are not biasing the 

MRF FSF estimate. While high concordance can be achieved with spiral MRF directly 

estimating FSF with a dictionary matching scheme in the image domain, Fig. 6.10 shows 

that blurring due to chemical shift may degrade parameter map quality.  

 The B0 correction from the proposed technique improves FSF, T1, and T2 estimation 

compared to those estimates made without the correction. MFI approximates the true B0 

correction because of the finite number of basis frequencies and the nonzero gradient of 

B0. However, the proposed correction still helps to significantly improve the relaxometry 

estimates in regions of ΔB0 > 100 Hz (Fig. 6.16) and mostly follows the reference B0 map in 

the brain with the noted exceptions (Fig. 6.18). Figures 6.15-16 shows that without the 

proposed B0 correction, the phase modulation may confound the variable echo time MRF 

sequence needed to encode fat chemical shift information, as well as confound the T1 and 

T2 estimation using the dictionary that does not contain off-resonance information. 

 The in vivo data suggest this technique may be applied to improve MRF extra-cranial 

relaxometry and FSF measurements. The knee FSF maps (Fig. 6.17) appear concordant 

between MRF and conventional techniques in the marrow and intermuscular fat. The MRF 
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T1/T2 maps (Fig. 6.17) indicate bias near fat regions without fat separation, in agreement 

with the phantom results. While T2* is not explicitly considered in this work, the spin-spin 

(T2) component of T2* is considered, leaving the refocusable transverse relaxation (T2’) 

unmodeled. The in vivo magnitude of this potential bias from T2’ is not clear but can 

potentially be included in the fitting with modifications to the above theory, which we leave 

for future work. Nevertheless, the addition of FSF and B0 estimates to relaxometry 

increases the amount of information available from a single MRF sequence, supporting its 

continued study for potential applications in clinical research. The MRF data for fat-

separated multi-parametric abdominal study (Fig. 6.19) were acquired in 24 s with a single 

breath hold. Future quantitative MRI studies in the extremities, abdomen, thorax or neck 

may be made more practicable by using the proposed technique. 

 Limitations of this study include the fixed fat model assumption, regularization of 

the B0 fitting, aliasing, independent B1+ mapping, and the in vivo study size. Allowing an 

unconstrained fitting for fat T1 and T2 and signal amplitude would likely dramatically 

increase the memory requirements of the solution as well as make the k-space fat-water 

separation increasingly ill-posed. However, the extent to which any potential variability in 

in vivo fat relaxation properties quantitatively impact the observed signals is not clear. For 

instance, inversion recovery-based fat suppression generally assumes a fixed T1 for fat. A 

recently described MRF approach to multi-compartment relaxometry 231 could potentially 

be applied to this problem, but is outside the scope of this work. The image simulations 

suggest that aliasing contributes to uncertainty: the relaxometry standard deviations are 

zero for the proposed method when fully-sampled (Figs. 6.8-9) but are non-zero when 

aliasing is introduced without any noise (Fig. 6.7). Incorporation of matrix completion232 or 

low-rank233 reconstruction methods may reduce these uncertainties. The fat-water 

swapping in Fig. 6.18 may be reduced by more rigorous incorporation of spatial roughness 

penalties or other regularization to limit sudden changes in estimated ΔB0. Consideration 

of non-idealities such as imperfect slice profile and crushing action may also improve ΔB0 

fitting as well as T2 estimates (see also Chapters 7 and 8). The MRF scan durations reported 

in this proof-of-concept study do not include the time required to acquire independent B1+ 

mapping. However, methods such as dual refocused echo acquisition mode227 (Fig. 6.19) 



115 

 

 

and Bloch-Siegert shift234 can map B1+ on the order of seconds and have been previously 

employed in MRF to this end173. Bloch-Siegert-based B1+ mapping is used in following 

studies in this work (Chapter 7 and 8). Integrating B1+ mapping into the MRF sequence is 

an active area of research.235 The in vivo MRF T1 and T2 estimates outside of fatty regions 

generally agreed with each other in the knee and the brain, but further study with more 

subjects are needed to understand the difference between MRF with/without fat-

separation and conventional techniques in different organs. 

 In support of reproducible research, the source code along with figure reproduction 

scripts and data are freely available for download at 

https://github.com/jostenson/MRI_Ostenson_MRF_FSF. 

 

6.6 Conclusions 

 We have developed a means to simultaneously estimate T1, T2, and FSF with in-line 

B0 correction using a single MRF sequence. The method improves T1 and T2 estimation in 

regions of fat over non-fat separating MRF methods and adds to the parameters available 

for estimation via MRF. This unification of multi-parametric estimation increases the 

amount of information gathered by the MRF sequence and extends MRF’s possible utility. 

In the next chapter some of the model assumptions used in this chapter as well as 

uncertainties relating to ΔB0 and T2 estimation are further explored. 
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SLICE-SELECTIVE EXTENDED PHASE GRAPHS IN GRADIENT-CRUSHED, TRANSIENT-STATE 
FREE PRECESSION SEQUENCESv 

 

7.1 Introduction 

Gradient-crushed transient-state free precession sequences, such as those used in 

unbalanced “steady-state” free precession (uSSFP) MR fingerprinting (MRF; §2.4, Chapters 

5-6),67 have states of partial or fully defocused magnetization that may interact with slice 

selection, biasing parameter estimates. These sequences can be modeled with Bloch 

simulations or extended phase graphs (EPG) using idealized slice profiles. The repeated 

dephasing of the crusher gradients motivates the use of EPG modeling, but current EPG 

methods idealize the slice profile or the crusher gradient in a way that may bias these 

models. 

The EPG formalism is a method for modeling signals from pulsed MRI experiments 

(§2.4.3).31 EPG is particularly useful for calculating the effects of coherence pathways, 

states of dephased magnetization that may later be refocused and manifest as spin-echoes 

or stimulated echoes. These echoes may contribute substantially to the observed signal in 

a given gradient-crushed sequence. The equivalence of EPG to a conventional Bloch 

simulation has been shown.236 EPG was employed for signal modeling in the original uSSFP 

MRF work67 using idealized slice profiles.  

EPG has been used to improve signal modeling accuracy of slice-selective sequences 

with inhomogeneous slice profiles.237,238 The approach taken by Lebel and Wilman237 for 

slice-selective multiple spin-echo (MSE) T2 estimation is to discretely partition the slice 

profile based on precomputed excitation and refocusing profiles. The partitioned 

components are each fed through an EPG algorithm, then summed to determine the 

cumulative effect of the non-uniform excitation/refocusing profile.  A similar approach has 

been adopted in slice-selective uSSFP MRF.174,175 It is known that slice-selective balanced 

                                                           
v Adapted from a submission with the same title currently under review; authors are Jason Ostenson, David 
S. Smith, Mark D. Does, Bruce M. Damon 
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SSFP MRF relaxometry estimates improve with slice profile modeling using Bloch 

simulations,172,173 but uSSFP MRF is often modeled with EPG because of the contributions 

of multiple coherence pathways to the signal. This complex signal evolution suggests the 

partitioned EPG (pEPG) approach used in MSE. However, pEPG idealizes gradient crushing 

action and has not been closely studied in the context of MRF. 

Gradient crushers of insufficient strength and non-uniform slice profiles may lead 

to inaccurate pEPG signal models.  As an example, consider a pulse profile that is a scaled 

delta function and a finite strength crusher. After a single pulse and crusher, the crusher 

will have caused an offset of phase of the transverse magnetization but no dephasing: 

ignoring relaxation effects, the signal magnitude is unchanged. On the other hand, pEPG 

predicts complete annihilation of the signal by the crusher. While this example is extreme, 

it illustrates how the partitioning method may fail to accurately model the signal due to 

slice profile inhomogeneity. Furthermore, pEPG models the crusher gradients as 

completing prior to an instantaneous RF excitation, which also may lead to bias. 

Parameter estimates in uSSFP may also be complicated by static field heterogeneity. 

Recent preliminary work has shown that off-resonance effects may bias T2 estimates made 

with uSSFP MRF.239,240 This effect was attributed to insufficient dephasing prior to 

radiofrequency (RF) excitation. Since the dephasing gradient strength and slice-selective 

gradient are coupled, this off-resonance effect may need to be modeled to obtain accurate 

parameter estimates. 

In this work, we propose slice-selective EPG (ssEPG) to study transient-state, 

gradient-crushed/spoiled sequences with a focus on uSSFP MRF. Unlike previous EPG slice 

profile methods, the ssEPG model operates entirely in k-space. It uses a hard-pulse 

approximation method to closely approximate soft RF signal responses, integrated with the 

conventional EPG method. The ssEPG method accurately accounts for crusher/slice profile 

interactions, works in EPG state-space using familiar transition and shift operators, and 

accurately models intra-slice signal evolution in the transient state. We use ssEPG to 

examine relaxometry bias in uSSFP MRF due to slice profile effects as well as interactions 

with static field heterogeneity. 
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7.2 Theory 

 In this section we introduce the mathematical framework for ssEPG. Using a spatial-

frequency representation of the Bloch equations, as well as an hard-pulse approximation, 

we show that we may write the effect of an RF pulse in terms of shift and transition 

operators familiar to conventional EPG. These operations apply to the normal EPG state 

matrix using conventional notation31.  

 

7.2.1 The Bloch equations in the Fourier domain for an applied radiofrequency pulse 

The magnetization 𝐌 = [𝑀𝑥 ,𝑀𝑦,𝑀𝑧]
𝑇

 in the RF rotating frame under the influence 

of an applied radiofrequency field in a slice-selective pulsed MRI sequence, neglecting 

relaxation, at time 𝑡 is related to its time derivative as 

 

𝑑𝐌

𝑑𝑡
= (

0 ω −ω1sin(ϕ)

−ω 0 ω1cos(ϕ)

ω1sin(ϕ) −ω1cos(ϕ) 0

)𝐌(𝑡).   [7.1] 

 

Here 𝜔 = 𝛾𝐺𝑧, with gyromagnetic ratio 𝛾, gradient amplitude 𝐺, and slice position 𝑧; 𝜔1 =

𝛾𝐵1(𝑡) where 𝐵1(𝑡) is the amplitude of the applied radiofrequency and 𝜙 is its phase. By 

expressing this form of the Bloch equations in complex magnetization (i.e. 𝑀+ = 𝑀𝑥 + 𝑖𝑀𝑦 

and 𝑀− = 𝑀𝑥 − 𝑖𝑀𝑦) and taking the Fourier transform in 𝑧, it can be shown that Eq. (7.1) 

is equivalent to  

 

∂𝐅(𝑘𝑧, 𝑡)

∂t
=

(

 
 
 
 

𝛾

2𝜋
𝐺

∂

∂𝑘𝑧
0 𝑖ω1𝑒

𝑖𝜙

0 −
𝛾

2𝜋
𝐺

∂

∂𝑘𝑧
−𝑖ω1𝑒

−𝑖𝜙

𝑖𝜔1

2
𝑒−𝑖𝜙 −

𝑖𝜔1

2
𝑒𝑖𝜙 0 )

 
 
 
 

𝐅(𝑘𝑧, 𝑡).   [7.2] 

 

Here 𝐅(𝑘𝑧, 𝑡) = ℱ𝓏{[𝑀+,𝑀−,𝑀𝑧]
T} is the Fourier transform of the complex magnetization, 

and 
∂

∂𝑘𝑧
 represents the partial derivative operator with respect to the spatial-frequency in 

the 𝑧 dimension. 
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7.2 Solution of the k-space representation of the Bloch equations by the hard-pulse 

approximation 

Splitting the matrix in Eq. (7.2) we can write 

 

∂𝐅(𝑘𝑧, 𝑡)

∂𝑡
= (A + B)𝐅(𝑘𝑧, 𝑡),   [7.3] 

 

where 

 

A =

(

 
 

0 0 𝑖𝜔1(𝑡)𝑒
𝑖𝜙

0 0 −𝑖𝜔1(𝑡)𝑒
−𝑖𝜙

𝑖𝜔1(𝑡)

2
𝑒−𝑖𝜙

−𝑖𝜔1(𝑡)

2
𝑒𝑖𝜙 0

)

 
 

,   [7.4] 

 

and 

 

B =

(

 
 

𝛾

2𝜋
𝐺

𝜕

𝜕𝑘𝑧
0 0

0 −
𝛾

2𝜋
𝐺

𝜕

𝜕𝑘𝑧
0

0 0 0)

 
 

,   [7.5] 

 

where ω1(𝑡) is the applied RF over the time 𝑡 to 𝑡 +  Δ𝑡, which the RF is considered 

constant in a hard-pulse approximation. The matrix operators A and B do not commute. By 

splitting the matrices as we have done, we may use an approximation accurate to the 

second-order241 for a bounded magnetization over a finite region of support 

 

𝐅(𝑘𝑧, 𝑡 + Δ𝑡) ≈ eA𝑡Δ𝑡/2eBΔ𝑡eA𝒕Δ𝑡/2𝐅(𝑘𝑧, 𝑡).   [7.6] 

 

Eq. (7.6) is a convenient expression if we use the conventions of Ref 31. The matrix 

exponential eA𝑡Δ𝑡/2 is the normal EPG transition matrix for half of the flip-angle 𝜔1(𝑡)Δ𝑡, 
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which we denote as T𝑛 for 𝑛𝑡ℎ time interval in the RF pulse. The matrix exponential of 

diagonal matrix B is given by the exponentiation of the diagonal elements 

 

eBΔ𝑡  = diag {𝑒
γ
2π

ΔtG
∂

∂𝑘𝑧 , 𝑒
−

γ
2π

ΔtG
∂

∂𝑘𝑧 , 1}   [7.7] 

 

and  

𝑒
±

γ
2π

Δ𝑡G
∂

∂kz𝐹±(𝑘𝑧, 𝑡) = 𝐹± (𝑘𝑧 ±
γ

2π
Δ𝑡𝐺, 𝑡) .  [7.8] 

 

Eq. (7.8) describes the conventional EPG gradient shift operator denoted as 𝑆. The accuracy 

of Eq. (7.6) is limited by the discretization in 𝑡. 

The effect of the entire RF pulse of length τ, discretized into 𝑁RF components, can 

then be given as 𝐅(𝑘𝑧, 𝜏) = T𝑁RF
𝑆T𝑁RF

T𝑁RF−1𝑆T𝑁RF−1 ⋯T1𝑆T1𝐅(𝑘𝑧, 0). Discretizing k-space 

into units of Δ𝑘𝑧 =
𝛾

2𝜋
Δ𝑡𝐺, we can solve for the EPG state matrix Ω(𝑡) =

[𝐅(0, 𝑡), 𝐅(Δ𝑘𝑧 , 𝑡), 𝐅(2Δ𝑘𝑧, 𝑡),⋯ ] ∈ ℂ3×𝑄 as 

 

Ω(τ) = T𝑁RF
𝑆T𝑁RF

T𝑁RF−1𝑆T𝑁RF−1 ⋯T1𝑆T1Ω(0).   [7.9] 

 

The hard-pulse and matrix splitting approximations give the response of a soft RF pulse in 

terms of the native EPG representation of the magnetization using shift and transition 

operations. The standard EPG framework for interpulse relaxation and gradient dephasing 

is used to model the remainder of the pulse sequence. The signal magnitude at each echo 

time TE is the first entry of Ω(𝑇E) (i.e. the DC component of k-space). If desired, the slice 

profile can be calculated from the Fourier transform of the 𝐹+(𝑘𝑧; 𝑡) (see also §7.7). 

 The spacing between EPG states in ssEPG are coupled to the product of the slice-

select gradient strength 𝐺 and hard-pulse time interval Δ𝑡 (Eq. 7.8). As a result, coupled 

relationships between the RF pulse profile characteristics and the uSSFP gradient crusher 

emerge. These are detailed in §7.7. 
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7.3 Methods 

 

7.3.1 Numerical and experimental validation of ssEPG  

 To validate the proposed method of slice profile computation, we calculated slice 

profiles from a soft RF pulse in a 10 excitation uSSFP sequence using a linear ordinary 

differential equation (ODE) solver of the Bloch equations and using the proposed ssEPG 

method. For reference, the sequence was also modeled with EPG using an idealized slice 

profile. All computations were performed in MATLAB (v. 2018a; MathWorks, Natick, MA). 

A Hanning-windowed sinc excitation pulse with time-bandwidth product (TBW) of four and 

a nominal flip angle of 90° was used. Slice thickness was 8 mm; the gradient crushing 

introduced four cycles of phase across the nominal slice thickness; T1 and T2 were 1000 and 

100 ms, respectively; and the TE/TR were 3/15 ms. We used a nonstiff ODE solver based on 

the Runge-Kutta method (MATLAB function ode45) with 5000 isochromats over four times 

the nominal slice thickness. The number of states 𝑄 used for the ssEPG method was defined 

to match the resolution of the Bloch simulation. 

 The measured transient slice profiles were compared to modeled slice profiles and 

signals from ssEPG and pEPG. A 50 mL conical centrifuge tube was filled with 3% aqueous 

agar (w/w) and doped with 1.0 mM gadolinium-based contrast agent. All MRI experiments 

were performed on a 3T Philips Ingenia (Philips Healthcare, The Netherlands). The tube was 

imaged with an uSSFP sequence with crusher strengths of one and four cycles per nominal 

slice thickness of 6 mm. The sequences were 10 excitations in length and used Hanning-

widowed sinc pulses with TBWs of two, four, and eight for excitation. Three nominal flip 

angles of 30°, 60°, and 90° were used. The readout gradient was along the through-slice 

direction with an FOV of 32 mm and a resolution of 125 μm. The body coil was used for 

signal reception to minimize coil sensitivity changes over the slice. Thirty-two averages 

were used with a time delay of 5.5 s between averages to permit full recovery of 

magnetization between averages. The T1 and T2 of the agar phantom were estimated using 

single voxel MR spectroscopy. ssEPG slice profiling modeling matched the resolution of the 

measurement. The pEPG method used 256 partitions to match the resolution of the 

measurement.  The slice profile partitions were calculated by ssEPG from equilibrium using 
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the respective RF pulse type and flip angle. Signal magnitude root-mean-square-errors 

(RMSE) were calculated for the normalized EPG signal models using the normalized signal 

measurement as a reference. 

 

7.3.2 ssEPG applied to MRF in phantom  

 To assess EPG’s effect on parameter estimation accuracy using uSSFP MRF, we 

estimated T1 and T2 in an MRI system phantom with ssEPG and pEPG slice profile modeling, 

as well as EPG without slice profile modeling. The same RF pulses used in the agar slice 

profile experiment were used to image the system phantom186 (High Precision Devices, 

Boulder, CO) composed of MnCl2-doped calibrated contrast spheres temperature corrected 

with conventional measurements. The MRF acquisition used the first 1250 excitations of a 

previously used flip-angle pattern from this work242 (Fig. 6.1), fixed TR = 16 ms,  a TE ramped 

linearly through the repetitions from 3 to 7 ms, and a crusher strength of one or four cycles 

per nominal slice thickness. The readout used 32 spiral interleaves rotated 11.25° between 

excitations, with an in-plane resolution of 1 mm x 1 mm and 8 mm slice thickness. The pEPG 

dictionary used 50 partitions for four times the nominal slice thickness. All dictionaries used 

the same T1s and T2s ranging from 10 to 3000 ms and 2 to 1500 ms, respectively. The B1+ 

was modeled from 1.0 to 1.35, which matched the range of a separately acquired B1+ 

map243 over the contrast spheres. Comparison of relaxometry estimates between MRF and 

the reference were made using the concordance correlation coefficient225. 

To speed ssEPG dictionary modeling, the code was parallelized for use with MRF. 

GPU functionality within MATLAB as well as a modified CUDA kernel from an EPG-based 

fast dictionary modeling approach244 were employed to speed calculations. Dictionaries 

were generated using an NVIDIA TITAN RTX (Nvidia Corp., Santa Clara, CA). Errors in ssEPG 

modeling will come from truncation of the state matrix: if 𝑄 is too small relative to the 

number of states spanned by repeated gradient crushing (each of number Δ𝑁), information 

can be lost. Using the relationships in §7.7, we optimized 𝑄 for each TBW and crusher 

strength used in the MRF sequence. Over a physiological range of T1 (300 to 1500 ms) and 

T2 (5 to 150 ms) we selected 10 log-spaced values for both T1 and T2, and used all 100 

pairings from all combinations of each metric’s 10 values. We generated high resolution 
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signal models using ssEPG for all these T1 and T2 pairings for each RF pulse and crusher 

strength. For each set of signals, we sequentially incremented the value of 𝑄/Δ𝑁 , which 

defined 𝑄 for the given pulse and crusher strength, and then modeled all T1 and T2 

combinations and 2% above and below the query values (i.e. the dictionary had 9 closely 

spaced atoms × 100 log-spaced atoms = 900 atoms). The unbiased ssEPG high resolution 

signals were then matched against the truncated dictionary and 𝑄/Δ𝑁 was increased until 

the maximum absolute error in the estimated T1 and T2 for all 100 signals was zero. 

 

7.3.3 ssEPG MRF B0 effects and in vivo application 

 To model slice profile effects in vivo, we must consider the interaction of static field 

heterogeneity with slice profile effects. It is difficult to achieve the same homogeneity of 

the static field in vivo as in a phantom, so we model B0 deviations under free precession 

within the EPG model using the relation in §7.7. 

 The ssEPG slice profiles for several off-resonance frequencies were calculated for 

the second excitation of the MRF sequence described above using a T1 and T2 of 1320 and 

30 ms, respectively. The ΔB0s were defined in relation to the fundamental frequency of 

repetition time of the MRF sequence at the following factors of 1/𝑇R: 0, 1/4, 1/2, 5/4, and 

3/2. We also modeled the magnitude and phase of the MRF signals for the given T1 and T2 

sequence at the same frequencies. We investigated the off-resonance frequency 

periodicity of the slice profile, magnitude and phase modulations. 

We evaluated the bias of MRF T1 and T2 when fitting with ΔB0 modeling against 

dictionaries with slice profile effects without ΔB0 effects for TBWs of four and eight at 

nominal crusher cycles per nominal slice thickness of one and four.  The bias calculations 

were done for the following T1/T2 combinations (in ms) as rough estimates of mono-

exponential relaxation times of skeletal muscle, liver, gray matter, and white matter207: 

1320/30, 800/30, 1400/85, and 800/65, respectively. These evaluations of bias were 

evaluated for the following sequences: the MRF sequence described above (variable 

TE/fixed TR), the MRF sequence described above without variations in echo time (fixed 

TE/fixed TR), and an MRF sequence with variable TR (fixed TE/variable TR). To reduce 

discretization effects in fitting, all three dictionaries were generated over a finely spaced 
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domain of 35 T1s and 165 T2s log-spaced over the ranges of 100 to 3000 ms and 2 to 300 

ms, respectively. The variable TR sequence is similar to the first reported uSSFP MRF 

sequence67, using the same TR extension with a minimum TR of 16 ms, as well as the same 

flip angle modulation pattern with a maximum flip angle of 60°, and 1000 excitations. The 

mean relative bias and standard deviation of the query parameter estimates were 

calculated for each TBW, crusher strength, dictionary type, and ΔB0 across the four 

physiological T1 and T2 combinations. 

A single volunteer was imaged in the calf after informed consent and with approval 

from the local institutional review board. The (variable TE/fixed TR) MRF sequence in the 

MRI system phantom experiment was used for acquisition with an FOV of 320 mm × 320 

mm, and in-plane and through-plane resolution of 1.25 mm × 1.25 mm and 5 mm, 

respectively. A 16-channel transmit-receive knee coil was used for image acquisition. 

Images were reconstructed used the Berkley Advanced Reconstruction Toolbox221 with 

numerically calculated sampled density compensation36.  Dictionaries with EPG, pEPG, 

ssEPG, and ssEPG with B0 effects were used to fit the T1 and T2 from the calf data. For the 

calf, B1+ was modeled from 0.7 to 1.15, which matched the range of a separately acquired 

B1+ map243. 

 

7. 4 Results 

 

7.4.1 Numerical and experimental validation of ssEPG  

 The ssEPG slice profile model closely matches the ODE Bloch solution (Fig. 7.1). The 

relatively long T2 (100 ms), relative to the TR (15 ms), permits the development of multiple 

coherence pathways that modulate the slice profile, manifesting as oscillations in the 

profile magnitude. These oscillations in the pulse profile are in close agreement between 

the two models. The normalized signal from the ssEPG simulation has an RMSE of 0.002 

relative to the signal to the Bloch simulation. The normalized signal from the standard EPG 

model without slice profile modeling has an RMSE of 0.115. 
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Fig. 7.1 The magnitudes of the simulated, transient slice profiles calculated by numerical 

solution to the Bloch equations and the slice-selective extended phase graph (ssEPG) 

techniques. The unbalanced SSFP sequence uses an Hanning-windowed sinc pulse with a 

time-bandwidth factor of four, a nominal flip angle of 90°, and four crusher cycles per 

nominal slice thickness, which produces large dynamic oscillations in the profiles. 

 

7.4.2 ssEPG applied to MRF in phantom 

 The ssEPG model of the pulse profile in agar closely matches that of the 

measurement, and the ssEPG signal model error is lower than that of the pEPG method. An 

example plot of the measured and modeled slice profiles, scaled by their root-mean-square 

values of the first profile, shows general agreement between the slice shapes (Fig. 7.2). The 

oscillations in the measured profile are generally matched in the ssEPG model. High 

frequency components visible in ssEPG appear slightly attenuated in the 1D projection 

measurement. pEPG does not model these oscillations. Fig. 7.3 shows that the signal RMSEs 

of the various EPG modeling methods.  
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Fig. 7.2 The measured and simulated magnitudes of the slice profiles from the agar 

phantom. The measured, slice-selective EPG (ssEPG), and partitioned EPG (pEPG) profiles 

were scaled by the root-mean-square of their respective first profiles. 

 

The T2 estimates of the MRI system phantom from ssEPG modeling more closely 

match the ground truth than those from other EPG methods. The plots of T2 estimates over 

a physiological range of T2 (0 to 100 ms) are shown in Fig. 7.4a-c. The CCCs in this T2 range 

are shown in Fig. 7.4d. Over the full dynamic range, the mean CCCs over all RF pulses and 

crusher strengths for T1 are 0.994, 0.999, and 0.999 for EPG, pEPG, and ssEPG, respectively; 

and over the full range of T2s they are 0.919, 0.975, 0.996 for EPG, pEPG, and ssEPG, 

respectively. As measured by an independent B0 mapping, the ΔB0 of the MRI system 

phantom contrast inserts did not deviate more than 6.6 Hz, using the mean ΔB0 for each 

insert. 

  

 

 



127 

 

 

 

 

 

 

 

 

Fig. 7.3 The root-mean-square error (RMSE) of the normalized signals magnitudes modeled 

by slice-selective (ssEPG), partitioned (pEPG), and conventional EPG without slice profile 

modeling, relative to the measured signal from the agar phantom over 10 excitations for a 

crusher strength of one cycle per nominal slice thickness (a), and for four cycles (b). The 

time-bandwidth product (TBW) of the Hanning-windowed sinc pulses and the nominal flip 

angles (FA) in degrees are listed.  
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Fig. 7.4 The MRF T2 estimates over a physiological range in the MRI system phantom and 

concordance correlation coefficients (CCC) from different slice profile modeling techniques 

for different RF time-bandwidth products (TBW) and crusher strengths (C). The EPG without 

slice profile corrections are shown in (a), the partitioned EPG (pEPG) results in (b), and the 

slice-selective EPG (ssEPG) estimates in (c). The dotted line is that of perfect concordance. 

The CCCs are in panel (d) with error bars indicating 95% confidence intervals. 

 

7.4.3 ssEPG MRF B0 effects and in vivo application 

 The simulation of B0 effects in the variable TE/fixed TR MRF sequence modeled with 

ssEPG are shown in Fig. 7.5. For a fixed TR sequence such as this, there are modulations in 

the slice profile magnitude and these modulations are periodic in ΔB0 by frequencies of 



129 

 

 

1/𝑇R. Fig. 7.5a shows that the slice profile magnitudes of ΔB0 = 1/(4𝑇R) and 1/(2𝑇R) are 

equal to 5/(4𝑇R) and 3/(2𝑇R), respectively. The MRF signal magnitudes at these off-

resonant frequencies are also modulated (Fig. 7.5b). These modulations in magnitude also 

follow the periodicity of the slice profiles. The phase modulations (Fig. 7.5c) of the MRF 

signals show monotonic as well as oscillatory behavior. Again, assuming the fixed TR MRF 

sequence, we find that the phase modulations for |Δ𝐵0| > 1/𝑇R, for MRF signal 𝑠𝑛 at 

excitation 𝑛, can be modeled by multiplying the modulo 1/𝑇R frequency by the added 

complex phase, 

 

𝑠𝑛(𝑇E, Δ𝐵0 = 𝑎) = 𝑒
𝑖2π

𝑚
𝑇R

𝑇E𝑠𝑛 (𝑇E, Δ𝐵0 = 𝑎 mod 
1

𝑇R
)   [7.10], 

 

where 𝑚 = 𝑇R [𝑎 − (𝑎 mod
1

𝑇R
)], so 𝑚 is an integer. Two examples of using Eq. (7.10) to 

construct higher order frequencies can be seen in Fig. 7.5c, denoted by asterisks. Using Eq. 

(7.10), B0 effects for a given T1, T2, and B1+ can be modeled if the signal is known for  0 ≤

Δ𝐵0 < 1/𝑇R. 

The modeled T1 biases from B0 effects were generally small for the fixed TE 

sequences, but the relative bias increased with ΔB0 values from the variable TE sequence. 

The maximum magnitude of relative T1 bias for the fixed TE sequences was < 1% for all TBW 

and crusher strength combinations. For the variable TE sequence, the T1 bias increased 

steadily with ΔB0. The maximum magnitude of relative T1 bias for the variable TE sequence 

for all TBW and crusher strength combinations was < 1%, < 1%, 10%, 22%, and 35% for ΔB0 

values (in units of 1/𝑇R) of 0, 1/4, 1/2, 5/4, 3/2, respectively. 

Substantial T2 bias can be observed at low ΔB0 values for several sequences. The 

relative bias in T2 from signals with B0 effects fit against ssEPG dictionaries without B0 

effects are shown in Fig. 7.6. The T2 bias for sequences with κ/2 ≥ 𝑁crush (TBW = κ) 

increases from ΔB0 of 1/(4𝑇R) to 1/(2𝑇R) and decreases from 1/(2𝑇R) to 5/(4𝑇R). Relative 

to this, the T2 bias is reduced for sequences with κ/2 < 𝑁crush. The T2 bias from the fixed 

TE/fixed TR sequence is equal between steps in ΔB0 of 1/𝑇R. The bias of the variable TE/fixed 
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TR sequence for the three lowest ΔB0 values is generally equal to or less than that from the 

other sequences. The contributions to the total crusher strength from the slice-selective 

gradient before the isodelay and added dephasing gradient (calculated using relations given 

in §7.7) for each TBW and crusher combination are given in Table 7.1. 

 

Table 7.1. MRF T2 bias for different RF pulses and crusher strengths 

TBW C 𝑁crush,ss 𝑁crush,g 

Max. Rel. T2 

bias† 

4 1 2 -1 0.933 

4 4 2 2 0.057 

4 8 2 6 0.011 

8 1 4 -3 0.543 

8 4 4 0 0.504 

8 8 4 4 0.028 

 

TBW – time-bandwidth product 

 C – number of crusher cycles per nominal slice thickness 

 𝑁crush,ss – number of crusher cycles from slice-select gradient before isodelay 

𝑁crush,g – number of crusher cycles from dephasing gradient 

† - maximum relative T2 bias from fixed TR/fixed TE MRF sequence from the data used in 

Fig. 7.6 
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Fig. 7.5. The magnitude of the slice profiles from the second excitation of the MRF 

sequences for a TBW of four RF pulse and one cycle per nominal slice thickness gradient 

crusher at the listed 𝛥B0s (a). The magnitude of the of MRF signals modeled at the listed 

𝛥B0s (b). The slice profiles and signal magnitudes of 𝛥B0 = 1/4 and 1/2 overlap with 5/4 and 

3/2, respectively, in (a) and (b). The phase of the MRF signals are shown in (c). The 5/4* 

and 3/2*𝛥B0 signals were reconstructed from the 1/4 and 1/2 𝛥B0 signals, respectively, 

using Eq. (7.10). These reconstructed signals overlap with the explicitly calculated 5/4 and 

3/2 𝛥B0 signals. 

Excitation 

Excitation 

N 

S
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Fig. 7.6 The mean relative T2 bias from MRF signals modeled with B0 effects, fitted against 

models without B0 effects for three different MRF sequences and six different time-

bandwidth (TBW) and crusher cycles per nominal slice thickness (C) combinations. The 

mean is across four physiological T1/T2 combinations noted in the text. Error bars represent 

the standard deviation of the relative bias. 

 

The in vivo parameter maps from the calf using EPG fitting can be seen in Fig. 7.7. 

The T1 maps (Fig. 7.7a) of the three different crusher strengths and four different EPG fitting 

models yield similar results. The EPG T1 estimates without profile effects in the calf muscles 

appear slightly lower than those from the other EPG modeling. The T2 estimates (Fig. 7.7b) 

are substantially biased using EPG without slice profile effects. The pEPG and ssEPG show 

drops or abrupt increases in the T2 estimates in the lateral aspects of the calf muscles. These 

deviations are reduced in the ssEPG with B0 modeling. The mean T1 for the entire non-zero 

parameter maps for EPG, pEPG, ssEPG, and ssEPG with B0 modeling are 1231, 1289, 1290, 

and 1282 ms, respectively; for T2 they are 63, 22, 24, and 23 ms, respectively.  

Δ Δ Δ 

Δ Δ Δ 
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Further analysis of the in vivo calf data can be seen in Fig. 7.8. The coefficient of 

variation (COV) across the different crushers for the different EPG fitting methods (Fig. 7.8a) 

show that ssEPG with B0 modeling has the lowest COV across the different measurements. 

Regions that are within 30% of the an off-resonance magnitude of 1/(2𝑇R) (Fig. 7.8c) 

correspond to regions of highest COV in ssEPG without B0 modeling. These regions have 

reduced COV after B0 is considered. 

 

 

Fig. 7.7 The MRF T1 (a) and T2 (b) maps of the calf from three different crusher strengths fit 

by four different EPG models for a TBW of four RF excitation pulse. The “EPG” fits do not 

consider slice profile effects. The “pEPG” method accounts for slice profile effects from the 

RF pulse but idealizes crusher action. The “ssEPG” method accounts for RF pulse and the 

differences in crusher strength. The T2 of the “EPG” method exceeds the dynamic range of 

the color mapping, which is reduced to better capture variations in the other fitting models. 
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Fig. 7.8 The coefficient of variation (COV) of T2 across the different crusher strengths in the 

calf for the four different fitting methods (a). The mean B0 map in (b) is estimated from the 

slice-selective EPG (ssEPG) with B0 modeling.  An overlay shows regions of ΔB0 that are 

within 30% of an integer multiple of ΔB0 of 1/𝑇R from 1/(2𝑇R) (c). 

 

7.5 Discussion 

Slice profile effects can substantially bias relaxometry estimates in gradient-

crushed, free precession sequences. The ssEPG method proposed here accounts for soft RF 

pulse effects. It also improves on other EPG methods, by accounting for the non-idealized 

gradient crushing interaction. 

The simulation, phantom, and in vivo results demonstrate that ssEPG accurately 

models slice profiles and associated effects on signal. The simulations with ssEPG indicate 

that it accurately captures the highly variable magnitudes of slice-selective profiles that 

result from unbalanced gradients. Such slice profile modulations may be relevant in the 

context of partial volume effects, and possibly in multicompartment MRF parameter 
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estimation,245,246 depending on the length scale of the heterogeneity of the tissue. The 

ssEPG model has the lowest RMSE (Fig. 7.3) and highest CCC (Fig. 7.4) compared to other 

EPG methods. The MRI system phantom and in vivo results show that the ssEPG modeling 

translates to more accurate relaxometry estimates using uSSFP MRF in regions of the |ΔB0| 

≈ 0 relative to other EPG-based methods. 

 The pEPG method markedly improves slice profile modeling effects relative to EPG 

without slice profile considerations, but it is not as accurate as ssEPG over a physiological 

range of T2 due to its simplification of crusher action. The RMSE (Fig. 7.3) and relaxometry 

estimates (Fig. 7.4) from the phantom measurements are better than those from EPG 

without profile modeling. While the accuracy of pEPG in the agar phantom at the larger 

crusher strength is similar to that of the ssEPG method, pEPG used in MRF apparently 

exhibits variable relaxometry bias depending on crusher strength and TBW (Fig. 7.4). The 

pEPG model has more variability in T2 across crusher strengths for the given TBW in vivo. 

 The effect of ΔB0 on MRF uSSFP T2 relaxometry is substantial and pertains to both 

fixed and variable TR MRF sequences, whereas the T1 estimates were relatively unbiased by 

B0 effects. Matching what has been previously reported,239,240 we observe periodicity in the 

T2 bias at frequency of 1/𝑇R, which parallels the modulation of the slice profile over ΔB0. 

Fig. 7.6 shows that the T2 bias from the fixed and variable TE MRF sequence are similar at 

ΔB0 = 1/(2𝑇R) indicating it is not the phase dispersion of the variable TE causing the bias 

seen in vivo variable TE /fixed TR MRF T2 maps in Figs. 7.7-8. Table 7.1 shows that the source 

of the T2 bias is insufficient crushing before the slice-select gradient: off-resonance signal 

components are being transferred by RF action to refocusing and longitudinal states prior 

to their complete dephasing, later contributing to the net signal. A higher TBW does not 

reduce this bias, but Table 7.1 indicates the majority of the T2 bias is eliminated if the signal 

following each excitation has been crushed/dephased well beyond 𝑘𝑧 = 0  prior to the 

beginning of the next RF pulse. Fig. 7.8 demonstrates that incorporation of B0 into ssEPG 

reduces the variability of in vivo T2 estimates, particularly in regions of ΔB0 near integer 

multiples of  1/𝑇R from 1/(2𝑇R).  

Depending on the crusher strength and TBW, the ΔB0 effects and the MRF contrast 

effects in a fixed TR MRF sequence are not separable as they are with idealized 
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crushing220,242.  However, B0 effects are still separable for higher order frequencies as 

shown in Eq. (7.10) and Fig. 7.5. This separability should be restored for higher crusher 

strengths and most 3D acquisitions. Yet, in cases where rapid acquisition is required, 3D 

may not be an option, and diffusion effects247 may limit the use of high crusher strengths. 

A limitation of this study is the uncertainty of all sources of influence on in vivo T2 

estimates. Slice profile effects are only one component that contribute to relaxometry 

errors. Undersampling effects in MRF have shown to limit the accuracy of MRF.75 Multi-

compartment effects, with or without exchange, may bias parameter estimates.11 Notably, 

a 3D MRF uSSFP study of the brain showed T2 values much less than those from 

conventional estimates.69 The skeletal muscle T1 and T2 values in this study are, 

respectively, consistent with and lower than conventional estimates207.  Conversely, the 

ssEPG T2 estimates in phantom (Fig. 7.4) are entirely consistent with conventional 

measurements. Despite this limiting uncertainty, we have shown: ssEPG provides accurate 

signal and slice profile calculations, MRF T2 estimation can be improved using ssEPG, 

gradient crusher interactions with slice-selective excitation may lead to bias that can be 

corrected with ssEPG modeling, and a simple relationship between TBW and crusher 

strength can be applied to ameliorate T2 bias in uSSFP MRF without explicit modeling. 

 While the focus of this work was to apply ssEPG to transient state uSSFP slice 

profiles, such as those in MRF, this modeling technique could be applied to slice-selective 

MSE measurements, as well. In situations of low gradient crusher strength or 

inhomogeneous pulse profiles, ssEPG may yield improvements in T2 estimation. However, 

further investigation is required to determine ssEPG’s utility in MSE.  

 In support of reproducible research, the source code along with figure reproduction 

scripts and data are freely available for download at https://github.com/jostenson. 

 

7.6 Conclusions 

 Transient gradient-spoiled/crushed sequences such as uSSFP MRF are sensitive to 

slice profile effects. These profile effects are dependent on RF pulse, crusher strength, and 

ΔB0. All these effects can be modeled with ssEPG to improve MRF relaxometry estimates 

as well as to provide insights into the source and relationship of different modes of bias. 
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Some of these improvements will be combined with MRF fat-water separation in Chapter 

8. 

 

7.7. Appendix 

The following is a description of relationships between RF model properties, crusher 

gradient, and spatial/frequency resolution in ssEPG. The action of off-resonance frequency 

under free precession in EPG is also noted. 

If we define the constant slice-selective gradient strength 𝐺, in terms of time-

bandwidth product 𝜅, RF pulse approximated in 𝑁RF discrete steps of duration 𝜏 = 𝑁RFΔ𝑡, 

and slice thickness Δsl as  

 

G =
2𝜋𝜅

𝛾𝜏Δsl
  [7.11] 

 

and insert this into the definition of Δ𝑘𝑧 from Eq. (7.8), we can see that spatial-frequency 

discretization can also be given as 

 

Δ𝑘𝑧 =
𝜅

𝑁RFΔsl
.   [7.12] 

 

The EPG state matrix is Ω ∈ ℂ3×𝑄, with 𝑄 states, has the effective field-of-view equal to the 

reciprocal of Eq. (7.12). The discrete spatial-frequency representation of the complex 

magnetization  

 

𝐹+[n; 𝑡]  = {
Ω∗[2, −𝑛; 𝑡], for 1 ≤ −𝑛 ≤ 𝑄 − 1

Ω[1, 𝑛; 𝑡], for 0 ≤ 𝑛 ≤ 𝑄 − 2
} ,   [7.13] 

 

where 𝐹+ ∈ ℂ2𝑄−2 , with spacing between states of Δ𝑘𝑧 and Ω∗ is the complex conjugate 

of Ω.  For a given resolution in the spatial domain Δ𝑧, using Eq. (7.12), 𝑄 can be given as 
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𝑄 =
Δ𝑠𝑙𝑁RF

2Δ𝑧𝜅
+ 1.   [7.14] 

 

 A gradient crusher may be applied to Ω, shifting its transverse states by multiples of 

Δ𝑘𝑧. If 𝑁crush is the number of crusher cycles per nominal slice thickness, and 𝑓r is the 

fraction of the RF duration before the isodelay, then the number of discrete steps applied 

by the gradient crusher 𝑁cycle is 

 

−𝑁cycle = 𝑓r𝑁RF −

𝑁crush

Δsl

Δ𝑘𝑧
.   [7.15] 

 

Combining Eqs. (7.12) and (7.15) we can write 

 

𝑁cycle = 𝑁RF (
𝑁crush

𝜅
− 𝑓r) .   [7.16] 

 

 The net number of discrete steps, Δ𝑁, taken in a time TR from the gradient crusher 

and the portion of slice-select gradient before the isodelay is given by 

 

Δ𝑁 = 𝑓𝑟𝑁RF + 𝑁cycle =
𝑁crush𝑁RF

𝜅
.   [7.17] 

 

From this expression and Eq. (7.14) we can write the number of ssEPG states relative 

to the net shift in state-space each over TR as 

 

𝑄

ΔN
=

1

𝑁crush
  (

Δsl

2Δ𝑧
+

𝜅

𝑁RF
) .   [7.18] 

 

From Eqs. (7.15-17), 𝑁cycle comes from the slice-select and separate dephasing 

gradient contributions. The number of cycles per nominal slice thickness advanced by the 

slice-select gradient, 𝑁crush,ss, is 𝑓𝑟𝜅. The remainder from the dephasing gradient is 
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𝑁crush,g = 𝑁crush–𝑁crush,ss. So, for 𝑓𝑟 = 1/2, there will be at least one cycle of dephasing 

prior to RF excitation for  

 

𝑁crush ≥
𝜅

2
+ 1.   [7.19] 

 

Under free precession, complex transverse magnetization 𝑀± at position 𝑧 

experiencing an off-resonance of frequency Δ𝐵0 for a time 𝜏 can be written as 

 

𝑀±(τ + 𝑡; 𝑧) = 𝑒±𝑖2πΔB0τ𝑀±(𝑡; z).   [7.20] 

 

By taking the Fourier transform of Eq (7.20) and assuming that 𝐵0 is independent of 𝑧 over 

a slice selection, we can write 

 

𝐹±(𝜏 + 𝑡; 𝑘𝒛) = 𝑒±𝑖2𝜋𝛥𝐵0𝜏𝐹±(𝑡; 𝑘𝑧).   [7.21] 
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APPLICATION OF MRF FAT-WATER SEPARATION TO THE LIVER 

 

8.1 Introduction 

 This work was motivated by the potential role for a rapid, MRI-based approach to 

characterizing liver pathology. The MRF fat-water separation technique discussed in 

Chapter 6, incorporating the conjugate phase spiral blurring correction, was applied to a 

single subject in the liver. However, since that study was completed, we have implemented 

several other technical advancements; and there remains a need to evaluate the 

measurement properties of the sequence.  

Regarding the MRF sequence itself, the sequence described in Chapter 6 used a 24 

s total acquisition time, making it slightly too long for some subjects to hold their breath. 

This length of breath-hold is expected to be particularly burdensome for some patients. In 

addition, the post-processing methods described in Chapter 6 exhibited fat-water swaps. 

Given the location of the liver relative to the lungs, respiratory motion, proximity of 

subcutaneous and visceral adipose tissue and the ribs, as well the liver’s large volume, it 

can be difficult to shim B0 sufficiently to avoid large variations in static field across the 

image. All these factors help promote errors that may lead to fat-water swapping. As 

mentioned in §6.5, a possible remedy for these swaps is to regularize the fit for ΔB0 to 

reduce abrupt changes in static field that come with fat-water swaps. Furthermore, the 

slice-profile corrections described in Chapter 7 were implemented after the liver imaging 

in Chapter 6. Depending on the time-bandwidth product (TBW) and nominal crusher cycles, 

it was shown that these slice profile effects could make a substantial difference in the T2 

estimates. Lastly, the repeatability and accuracy of the fully implemented sequence, 

relative to conventional relaxometry methods, needs to be studied. 

  Therefore, the purpose of this chapter is to apply improvements to the MRF fat-

water separation developed in Chapter 6, as well as slice profile modeling (Chapter 7), to 

determine the repeatability of MRF relaxometry metrics in the liver. We also show proof-
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of-concept that MRF fat-water separation can be performed in a subject with biopsy-

proven NASH. 

 

8.2 Methods 

 

8.2.1 Image acquisition 

 A total of six volunteers were imaged following informed consent and with approval 

of the local institutional review board. Five volunteers without a reported history of liver 

disease were recruited to study repeatability of MRF metrics in the liver and one subject 

with biopsy-proven NASH was imaged to evaluate MRF performance in pathological liver. 

All subjects were asked to fast for at least four hours prior to imaging to avoid potential 

post-prandial effects on repeatability. One subject was not compliant with fasting. All 

subjects without liver disease compliant with fasting were included in the repeatability 

cohort. The repeatability cohort had an age range of 23-30 and no reported history of 

metabolic diseases, prescription medication use varied among the subjects. Two of the four 

subjects were taking prescription medications. The NASH subject (62 y, male) had stage 3 

bridging fibrosis on percutaneous image guide liver histology, no reported steatosis or 

inflammation, with a history of diabetes mellitus. 

 All subjects were imaged on a Philips Achieva 3 T (Philips Healthcare, The 

Netherlands) using an anterior body coil array and integrated posterior tabletop coil array.  

Conventional imaging and spectroscopy were acquired for reference and comparison with 

MRF-derived estimates: a six echo Dixon sequence with vendor reconstructed fat fraction, 

T2
*, and B0 mapping (mDixon Quant); a spin-echo based custom Bloch-Siegert mapping 

sequence243; and two subjects’ livers were measured with two forms of single voxel 

stimulated echo acquisition mode spectroscopy (STEAM-MRS). To estimate T1, the first 

MRS sequence used saturation recovery with 12 approximately log-spaced variable TRs (325 

to 3000 ms, TM = 15 ms, TE = 8.3 ms), a voxel size of 21.5 mm x 21.5 mm x 8 mm, and BW = 

2 kHz and 512 samples. To accommodate respiratory motion a total scan duration for a 

single average, including two dummy pulses prior to acquisition, was < 20 s. The signals 

from three separate breath holds (three averages) were separately acquired and 
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concatenated to fit T1. To fit T2, the same MRS voxel and TM were used in a 10 spin-echo (9, 

24, 39, 54, 69, 84, 99, 114, 129, 144 ms) measurement with TR = 1500 ms. Like the variable 

TR MRS, two separate breath holds were used to acquire two averages, separately, from 

which the measurements were concatenated to estimate T2. MRS fitting is further detailed 

in §8.2.2. 

 The MRF sequence used in this work was the variable TE/fixed TR sequence reported 

in Chapter 7 and very similar to that reported in Chapter 6. Briefly, the sequence used 1250 

excitations with oscillating flip angles ranging from 0 to 60°, and a linearly ramped TE from 

3 to 7 ms, and TR of 16 ms. The total scan duration was 20 s, done in a single breath hold. 

For subjects in the repeatability cohort, the MRF sequence was acquired at least three 

times. For the first three MRF acquisitions, the subjects were removed from the scanner 

bore and asked to stand up between scans.  Two of the subjects were scanned a fourth 

time without being removed from the scanner bore.  

 

8.2.2 Reconstruction and fitting techniques 

 The MRS data were apodized, phase and center frequency corrected. The real part 

of each water peak was fit with a Gaussian curve to estimate a scaling factor for the 

subsequent relaxometry curve fit. The T1 and T2 were estimated using an EPG simulation of 

the stimulated echo signal with simultaneous fitting for imperfect B1+. The estimated T1 and 

flip angle correction were used to fit the for T2 using the variable TE MRS data. 

 The MRF images were reconstructed as described in Chapter 6. Following MRF 

image reconstruction and coil combination, the image data were processed in different 

ways to test the effects of different post-processing steps on liver imaging. 

 Since variable TE (or TR) is required to encode the chemical shift information 

necessary for FSF estimation, the MRF data were processed with and without the MRF fat-

water separation to observe the effect of phase dispersion from the variable TE due to 

chemical shift and off-resonance effects. The T1 and T2 estimation without fat separation 

used the standard dictionary matching discussed in §2.4. The MRF fat-water separation 

with ΔB0 fitting used the method discussed in Chapter 6. Example M0, T1 and T2 maps for 
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each method from a subject with significant subcutaneous fat and off-resonance within the 

liver were generated for comparison. 

 To improve ΔB0 fitting, an iterative fitting method64 developed for conventional 

multi-echo Dixon imaging was adapted for MRF fat-water separation method used in 

Chapter 6. This method penalizes the square of the changes of the gradient of ΔB0. Using 

this regularization, Eq. (6.6) becomes 

 

Δ𝐵̂0(𝐫) = arg min
Δ𝐵0

‖[I − AA†]∑𝑎𝑙(Δ𝐵0(𝐫))𝐬𝑙(𝐫)

𝐿

𝑙=1

‖

2

2

+ 𝜇 ∑𝑤𝑟,𝑘(Δ𝐵0(𝐫) − Δ𝐵0,𝑘)
2

𝐾

𝑘

,   [8.1] 

 

where 𝜇 is a weighting factor that controls the smoothness, 𝜇 = 0.02 in this study, the 

summation is around the 𝐾 = 8 nearest voxels to the voxel at position 𝑟, 𝑤𝑟,𝑘 is the voxel-

specific weighting factor given in Ref 64 that ensures proper scaling of the off-resonance 

penalty, and Δ𝐵0,𝑘 is the current estimate of off-resonance at voxel 𝑘. By initializing Δ𝐵̂0(𝐫) 

for all 𝐫 using the first term in Eq. (8.1), the solution method in Chapter 6, this equation can 

be used to iteratively update the solution for Δ𝐵̂0(𝐫). Forty iterations were used in this 

study. Example B0 and FSF maps from a single subject without and with the iterative 

method were compared for differences in these post-processing methods. 

 To improve parameter fitting, slice profile effects were modeled for fat and water 

components. As discussed in Chapter 7, profile effects may bias the signal model needed 

for accurate fitting of parameters using MRF signals. The design matrix A contains models 

of the water and fat signals, which are coupled to ΔB0 in (Eq. 8.2). To partially account for 

slice-profile effects, the MRF water and fat signals were modeled for the specific RF pulse 

used in the MRF acquisition (gaussian-windowed, 𝜅 = 10). These profile improvements were 

combined with the iterative ΔB0 fitting for the repeatability study. Magnetization density 

M0 was defined as the sum of the fat and water magnetization densities. 
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8.2.3 Statistical techniques 

 For each abdominal MRF M0 map, the liver was manually contoured and further 

masked using Otsu’s method190. This segmentation was further thresholded to exclude 

major vessels by masking regions that had T1 > 1500 ms or T2 > 60 ms. This segmentation 

was then applied to the T1, T2, and FSF maps to determine the mean hepatic parameter 

value from the respective maps. A smaller, focal region of interest, away from all major 

vessels in a given subject, was also evaluated. The fat-separated MRF water T1 and T2 

repeatability was assessed using the intra-subject coefficient of variation248. The hepatic 

FSF repeatability was not assessed (but the hepatic FSF is plotted) since none of the subjects 

had known steatosis, and white adipose tissue has high fat fraction such that its 

repeatability is not entirely germane to hepatic steatosis. Absolute and relative changes in 

T1 and T2 between different processing methods were evaluated. Significance was P < 0.05, 

evaluated using a paired t-test. 

 

8.3 Results 

 The comparison of parameter maps with and without fat-water separation is shown 

in Fig. 8.1. Substantial off-resonance within the liver parenchyma and chemical shift with 

the subcutaneous regions cause blurring in the M0 maps (Fig. 8.1a). The phase dispersion 

confounds T1 and T2 fitting without the inline ΔB0 correction provided with fat-water 

separation. With the ΔB0 fitting, the blurring and parameter map quality is markedly 

improved. 

 The addition of iterative ΔB0 fitting is exemplified in Fig. 8.2. Without the iterative 

solution, lateral and posterior aspects of the abdomen experience fat-water swaps seen 

most readily in the B0 maps. With the iterative solution, the fat-water swaps are resolved 

and the B0 map appears smoother than without iteration. 
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Fig. 8.1 MRF parameter maps without (a) and with (b) fat-water separation. The image data 

was the same for the two different sets of parameter maps. The top row shows the proton 

density images from the respective matches. In the case of (b) the fat and water proton 

density maps are summed. Phase dispersion from the variable TE MRF sequence confounds 

T1 and T2 fitting (a) without the 𝛥B0/fat fitting that is used in (b). 
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Fig. 8.2 The B0 and fat signal fraction (𝜂) maps without (left) and with (right) the iterative 

𝛥B0 solution from the same image data set. A red arrowhead denotes a region near the 

hepatic right lower lobe that experiences a fat-water swap in the non-iterative solution, 

resolved in the iteratively derived maps. A detail from the FSF maps near the fat-water 

swap is shown at the bottom. 

 

Another example of combining the iterative ΔB0 fitting with the addition of slice 

profile corrections can be seen in Fig. 8.3. A significant fat-water swap can be seen in the 

left antero-lateral aspect of the subcutaneous adipose tissue that is resolved with the 

enhanced ΔB0 fitting. From the parameter maps using iterative ΔB0 fitting without the 

profile correction (not shown), most of this observed correction in Fig. 8.3 is from the ΔB0 
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fitting improvement. Flow artifacts around the major vessels can be seen in the FSF maps 

in both post-processing techniques. 

 

 

Fig. 8.3 An example of fat signal fraction (𝜂) and 𝛥B0 maps without (left) and with (right) 

the iterative 𝛥B0 fitting and slice profile correction. Fat-water swaps can be seen 

throughout the subcutaneous adipose tissue without improvements to the fitting (left), 

that are mostly resolved with improvements to the fitting (right). Flow artifacts (arrows) 

can be seen near the inferior vena cava and within the liver in the FSF maps. 

 

Changes in estimated liver T1 and T2 without and with iterative ΔB0 fitting and slice 

profile correction in the repeatability cohort can be seen in Fig. 8.4. The mean change in 

the estimated T1 is 24.9 ms (mean relative change 3.0%) and the mean change in the 
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estimated T2 is -6.9 ms (mean relative change -25.2%). Both metric estimate changes are 

significant (P < 10-5).  

 

 

Fig. 8.4 The changes in estimated hepatic T1 and T2 from the repeatability cohort. The 

“original” processing label denotes the fat-water separation used in Chapter 6. The 

“update” label denotes the fat-water separation with iterative 𝛥B0 fitting and slice profile 

modeling. 

 

The T1, T2, FSF, and B0 maps from the first three repetitions of the repeatability 

cohort are shown in Figs. 8.5-8. The mean hepatic T1, T2, and FSF from the repeatability 

cohort are plotted in Fig. 8.9. The intrasubject COVs are listed in Table 8.1. All subjects in 

the repeatability cohort were able to complete the requested breath holds and scanning. 

The mean T1, T2, and 𝜂 over all subjects were 876 ms, 24.4 ms, and 0.07, respectively. The 

standard deviations between subjects were 109 ms, 2.9 ms, and 0.004, respectively. Small 

intra-subject variations in T1 estimates were observed (Table 8.1, Fig. 8.9.a), whereas the 

T2 estimate variations were proportionally much more and had higher variations across the 

liver, as evidenced by higher COV and standard errors of the mean (Table 8.1, Fig. 8.9b). 

The mDixon estimated fat fraction (not shown) was ≲ 2% throughout the liver for all 

subjects in the repeatability cohort. 
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Fig. 8.5 The T1 maps from the first three repetitions of the repeatability cohort. 

 

 

Fig. 8.6 The T2 maps from the first three repetitions of the repeatability cohort. 
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Fig. 8.7 The fat signal fraction (𝜂) maps from the first three repetitions of the repeatability 

cohort. 

 

 

Fig. 8.8 The B0 maps from the first three repetitions of the repeatability cohort. 
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Fig. 8.9 The MRF mean hepatic T1 (a), T2 (b), and fat signal fraction (𝜂; c) of the four 

repeatability cohort subjects for all repetitions (Rep) of the measurement. Subjects were 

removed from the scanner and the scanner bed between Reps 1-3. Scans were repeated 

without removal from the scanner bore (Rep 3a) for Subjects 3 and 4. Estimates were made 

using the iterative 𝛥B0 fitting and slice profile correction. Error bars are standard errors of 

the reported means. 
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Table 8.1 Hepatic relaxometry coefficients of variation (COV) 

 T1 COV (95% CIa) T2 COV (95% CIa) 

Intra-subject mean 2.4% (1.2 – 3.5%) 14.6% (7.2 – 22.4%) 

Intra-subject focalb 5.5% (2.8 – 8.4%) 11.6% (5.8 – 17.8%) 

Inter-subject mean 12.4% 11.7% 

aCI confidence interval 

bfocal liver area is a region of interest liver of ~ 1000 mm3 

 

The MRS voxels overlaid on the corresponding MRF T1 and T2 parameter maps are 

shown in Fig. 8.10. The estimated MRF and MRS T1 and T2 from the voxel in Fig. 8.10 are 

given in Table 8.2.  

 

 

Fig. 8.10 The MRS voxel is overlaid (blue box) on the T1 (a) and T2 (b) parameter maps of 

subjects 3 (left) and 4 (right). The MRS and MRF parameter estimates are given in Table 8.2. 
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Table 8.2 The MRS and MRF relaxometry estimates 

 T1 (ms)a T2 (ms)a 

 MRF MRS MRF MRS 

Subject 3 992 (8) 1099 25.0 (0.4) 29.2 

Subject 4 806 (8) 893 23.7 (0.6) 23.0 

aRelaxometry estimates are listed with standard errors 

 

 The parameter maps for the NASH subject are shown in Fig 8.11. Relative to the 

repeatability cohort, this subject has higher visceral adipose tissue content (Fig. 8.11c), 

higher T2 (Fig. 8.11f), and higher T1 than 3/4 of the repeatability cohort (Fig. 8.11e). The T2 

increases from ~15 ms to > 50 ms posteriorly to anteriorly. The mean liver T1, T2, and 𝜂 

(with SE) are 937 ms (1.6), 32.1 ms (0.2), and 0.094 (0.001), respectively. The mDixon η ≲ 

5%, slightly higher than that of the repeatability cohort. 
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Fig. 8.11 The parameter maps from the NASH subject. The water (a) and fat (b) M0 maps 

yield the fat signal fraction (𝜂) map in (c). The B0 map is shown in (d), with the fat-separated 

water T1 (e) and T2 (f) maps adjacent. 

 

8.4 Discussion 

 The results of the MRF liver imaging and parameter estimation show repeatable T1, 

anatomically consistent FSF that is positively biased in the liver, and T2 values that are 

approximately consistent with MRS estimates but have poor repeatability. 

The inline ΔB0 estimation and iterative fitting markedly improve hepatic MRF image 

and parameter map quality.  Compensation of blurring and phase dispersion from off-

resonance effects is essential given the spiral trajectory and variable TE required for 

chemical shift encoding. Without this fitting/compensation parameter mapping of the liver 

is not possible (Fig. 8.1). Conversely, a fixed TE MRF sequence could be used to reduce the 

effects bias from off-resonance, but this would not compensate for spiral blurring without 

an independently measured B0 map.  Hepatic relaxometry with a fixed TE MRF sequence 
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would also require prior knowledge that fat fraction is low enough not to bias the T1/T2 

estimates (as discussed in Chapter 6). The spatial roughness penalty on ΔB0 reduces fat-

water swapping in adipose tissue as well regions within/ near the liver (Figs. 8.2-3). 

The changes in hepatic T1 and T2 slice profile modeling are consistent with the 

general results of Chapter 7. Like the phantom and in vivo results of Chapter 7, with slice 

profile modeling the T1 estimates increase a small amount and the T2 estimates decrease a 

proportionally greater amount. 

The MRF mean liver T1s and T2s are consistent with the literature, but substantial 

inter-subject variation in T1 can be seen in the repeatability cohort. Reported hepatic T1s 

and T2s of subjects without liver pathology at 3 T have ranged from 717-990 ms228,249,250 

and 30-34 ms228,249, respectively, estimated using imaging techniques or 1H-spectroscopy. 

Imaging studies of liver relaxometry at 3 T have not used fat-water separation in cohorts 

without liver pathology. Given the high prevalence of NAFLD and that it can be 

asymptomatic, this calls into question relaxometry studies without fat fraction estimation 

that have not been screened for hepatic steatosis. In the fat-water separated MRF results 

here, one subject from the MRF repeatability cohort has higher mean water T1 than the 

NASH subject. The controls on the repeatability cohort were not sufficient to guarantee the 

absence of variation in liver relaxometry such as prescription medications, lifestyle 

differences, and previously undiagnosed clinical conditions. Further study with a larger 

number of subjects without liver pathology is needed to understand the inter-subject 

variability of normal hepatic water T1 and T2. 

The higher estimated T1 in the NASH subject’s liver, relative to non-pathological 

liver, follows the results of previous studies, but the T2 estimates in this work need greater 

study to interpret. The higher T1 of the NASH subject relative to the repeatability cohort 

mean T1 is consistent with the expected increase of T1 with fibrosis (see also Chapter 3). 

The estimate of T2 is slightly higher than those of the repeatability cohort, but highly 

uncertain given the dynamic range across this subject’s liver. In comparison to the MRF 

results, a study of 64 subjects with biopsy-proven NAFLD or were at high risk for having 

NAFLD, Hamilton et al.251 reported a mean (and SD) hepatic water T1 and T2 of 822 ms (123) 

and 24.1 ms (4.5), respectively. However, like many relaxometry studies, it is not clear to 
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what degree these results were affected by incomplete modeling of non-idealities such as 

imperfect B1+. 

The intra-subject repeatability values of T1 and T2 are, respectively, low and high 

relative to the expected differences between healthy and fibrotic/inflamed liver, while the 

hepatic FSF values are biased. An estimate for the difference between fibrotic and non-

fibrotic liver T1 is 10%159, and, given the sparsity of T2 estimation in hepatic inflammation, 

we suppose the same relative 10% difference between the T2 of hepatitic and healthy liver. 

The T1 and T2 intra-subjective repeatability values reported here are, respectively, low 

enough and too high to observe these expected differences in an individual subject. Given 

the intra-subject T1 COV (Table 8.1), with further validation of the accuracy of T1 in vivo, 

this metric may be employed for longitudinal studies in the liver. However, the intra-subject 

variability of T2 is much higher and the parameter maps exhibit large changes across the 

liver (Figs. 8.6, 8.10-11). The potential source of these variations is further discussed below. 

The mean hepatic FSF estimated by mDixon suggest that all subjects within the 

repeatability cohort have negligible steatosis, but the mean MRF FSF values are notably 

higher. This is apparently due to elevations around the major vessels. The NASH subject 

mDixon fat fraction measurement was slightly elevated relative to the repeatability cohort 

and parallels the slightly larger MRF FSF estimate in the NASH subject relative to the other 

subjects. Notably, no steatosis was reported on clinical biopsy. 

The mean hepatic T1s and T2s reported in this study depend on the segmentation 

used to define the liver parenchyma. In this study, thresholds on T1 and T2 were used to 

exclude major vessels, but further investigation is needed to determine the sensitivity of 

mean hepatic relaxometry estimates on these thresholds and the presence of major 

vessels. Conversely, the liver is often idealized as homogenous parenchyma, but it’s clear 

from the 1.5 mm x 1.5 mm spatial resolution of the MRF T1 parameter maps that perfusion 

of blood/bile throughout the liver is a multi-scale feature even far from the biliary tree, 

portal vein, and hepatic artery.  The heterogeneity of relaxometry metrics across the liver 

may deserve separate study. In any event, the MRF parameter shows that the liver is not 

homogeneous and parameter estimates may depend on the location and region of interest 

within the liver. 
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Several limitations in the current method may need to be resolved before some of 

the MRF metrics can be used effectively for studies in the pathological liver. The large intra-

hepatic and intra-subject variability of MRF T2 may be explained by the bias in this metric 

with ΔB0 (Chapter 7). Given the RF TBW (10) and number of nominal crusher cycles per 

nominal slice thickness (four) used in this study, we expect to see modulations in phase and 

magnitude of the MRF signals for a given T1, T2, and B1+ depending on ΔB0 that may 

confound fat-water fitting. The slice profile corrections provided in this work do not 

account for this ΔB0 dependency, which is further discussed in Chapter 9. However, a simple 

solution may be to decrease the TBW/increase the crusher strength so that the ΔB0 effects 

are separable. Another source of bias is the apparent flow artifacts around major vessels, 

which particularly bias MRF fat fraction estimates. This may be addressed by incorporating 

flow suppression or by directly fitting the flow effects in the MRF data, further discussed in 

Chapter 9. 

 

8.5 Conclusions 

Despite some limitations, this preliminary study has shown that MRF fat-water 

separation can be done in a single breath hold in the abdomen in healthy and diseased 

subjects. Improvements to fat-water separation fitting reduce fat-water swaps. Mean liver 

relaxometry estimates are approximately consistent with the literature. T1 is a more 

repeatable metric than T2, and the upper limits of repeatability were determined for mean 

hepatic T2. An observed increase in MRF-estimated T1 in the NASH subject relative to the 

repeatability cohort is consistent with previous findings in fibrotic livers. Further 

developments to improve the accuracy and uncertainty of MRF parameter estimates are 

discussed in Chapter 9.  

 



 Chapter 9  
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

9.1 Conclusions 

 This work was motivated by the need for a rapid quantitative MRI sequence capable 

of imaging pathological liver. The challenges of MRF spiral blurring correction, MRF fat-

water separation, and slice-profile modeling were all addressed in this work, as well as 

others. This dissertation makes substantial progress on the specific aims noted in Chapter 

4. The advancement on these technical and measurement developments, as well as 

remaining areas for improvement, are discussed below. A section on future directions 

follows this section. 

This work has addressed multiple facets of blurring in spiral MRF. While significant 

portions of recent MRF developments have used radial acquisitions, presumably in part to 

avoid blurring, the gradient efficiency of spiral k-space trajectories may be higher. The initial 

development of uSSFP MRF reported limited sensitivity to ΔB0 effects, but it can be seen 

from Chapters 4-6 and 8 that as 𝑡acqΔ𝐵0  ≳  1/2, where 𝑡acq is the spiral acquisition time, 

blurring is noticeable in the image domain. Clearly, this blurring is not unique to uSSFP. Any 

spiral MRF sequence with large enough  𝑡acq or Δ𝐵0 will be subject to blurring. In Chapter 5 

MRF spiral blurring was partly resolved using a form of conjugate-phase reconstruction, 

also demonstrating that blurring was coupled to parameter estimation accuracy in regions 

of heterogeneous T1 or T2. Relaxometry bias in blurred voxels was reduced with the MFI 

correction.  

A limitation in Chapter 5 was the need for independent B0 mapping, which was 

addressed in Chapter 6. Simultaneous fitting for ΔB0 was resolved by using the variable 

projection technique with a multi-TE MRF sequence. This enabled simultaneous estimation 

of ΔB0 with fat-separated water T1 and T2, and fat signal fraction (FSF). To use variable 

projection, the off-resonance modeling in Chapter 6 exploited the separability of ΔB0 from 

the MRF contrast effects under the idealized slice profile/instantaneous RF assumption. 

This separability was also used to model a basis for MRF signals with off-resonance effects, 
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avoiding the more time-consuming approach of explicitly modeling each ΔB0. That is, for 

the fixed TR uSSFP MRF sequences described in Chapters 6-8 the MRF signal vector for any 

off-resonance frequency 𝑓, under the separable assumption, can be computed as 

 

𝐬(𝑇1, 𝑇2, 𝐵1+, 𝑓) = Jf 𝐬(𝑇1, 𝑇2, 𝐵1+, 0),   [9.1] 

 

where Jf  is a diagonal matrix with entries 𝑗𝑛,𝑓 = 𝑒𝑖2π𝑓𝑇E,𝑛. Since it likely takes much longer 

to directly compute the off-resonance effects with the MRF contrast effects than to 

compute the MRF contrast effects than the off-resonance phase modulations by Eq. (9.1), 

this dramatically improves the timing of modeling of off-resonance. To form the MRF basis 

with off-resonance in Chapter 6, a set of frequencies that (in linear combination) could 

model any phase evolution on the diagonal of Jf  with MFI was used to generate a storage 

basis using this separable approach. While not discussed explicitly in Chapter 6, this is an 

alternative use of the MFI technique: deblurring is accomplished by demodulation through 

the k-space trajectory acquisition window with conventional MFI, whereas the basis for 

phase modulation of each excitation of the linearly swept TE MRF sequence is modeled by 

this repurposed form of MFI. Chapter 6 also addressed another limitation of Chapter 5, 

where the blurring from chemical shift confounded the blurring from other off-resonance 

effects. 

 To uncouple fat blurring from non-chemical shift blurring, the deblurring correction 

was accomplished by two different ways in the fat-water separation technique from 

Chapter 6. Building on Chapter 5, MFI was incorporated into the ΔB0 fitting to resolve non-

chemical shift related blurring, but direct k-space fitting was used to resolve blurring from 

fat.  This approach resolved the dual deblurring problem noted in Chapter 4, where fat 

blurring adds with off-resonance blurring without pre-existing knowledge of the off-

resonance map or fat distribution. Other recent forms of fat-water MRF using spirals have 

used dictionary-based approaches to directly fit for ΔB0 and then fit for water and fat 

parameters (without T2)216 or used repeated fixed TE MRF acquisitions, with different TEs 

each acquisition, to directly apply Dixon fat-water separation on each frame252,253 (“Dixon-
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MRF”). In the former case, fitting for fat properties can be confounded by ΔB0, presumably 

because the off-resonance was fit sequentially instead of simultaneously with fat. The 

reported dictionary-based method also used RF spoiling, so did not attempt to account for 

any form of refocused transverse relaxation. However, this study did account for B1+ effects. 

The Dixon-MRF approach to MRF fat-water separation theoretically offers greater 

versatility than the method proposed in this work because a simultaneous fat-water 

separation with ΔB0 is accomplished at the outset of processing with a well-established 

method, which then permits an independent analysis of the fat and water signals. This 

permits relaxometry estimates of the fat. Unfortunately, each TE requires an independent 

MRF acquisition, expanding the scan duration, which makes it difficult to acquire in a single 

breath hold. A recent study using Dixon-MRF for cardiac applications overcame the timing 

constraints by inclusion of low a low-rank reconstruction technique (see also §9.2) and 

avoided blurring altogether by using a radial k-space trajectory.253 Without blurring, it may 

be possible to simplify the method in Chapter 6 to directly fit with variable projection in the 

image domain. 

It remains to be seen under what circumstances it is better or worse to use the 

proposed MRF method’s acquisition of ~1000 independent echo times with a fixed fat 

model over the Dixon-MRF approach. The closely spaced echoes should improve fat-water 

fitting relative to coarse discretizations in echo time by providing a high bandwidth for 

fat/ΔB0 determination, but smoothing was still required in practice to avoid fat-water 

swaps in Chapters 6 and 8. In theory, many echo times over a large span of echoes may 

improve resolution/differentiation of multi-peak fat models. This is further discussed in 

§9.2. 

 Chapter 6 showed that fat-water separation was essential to make unbiased 

relaxometry estimates of the water. A common theme throughout MRI is the tension 

between suppressing or fitting unwanted signals such as those from fat. Insofar as the fat 

and water signal models are accurate, fitting for fat permits complete recovery of the water 

signal without the extra scan duration/sequence constraints required for lipid signal 

suppression. This is true to the spirit of MRF, which attempts to minimize the time 

necessary to acquire the data by modeling effects that cannot be fit by conventional 
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analytical assumptions. A complication to fat-water separation noted in Chapter 6 is that 

accurate fitting of fat required the assumption that triglyceride (TG) relaxometry properties 

were unchanged. This assumption is perhaps controversial. On one hand, in vitro mixtures 

of fat with water, have shown to have a significant effect on fat relaxometry values.48 On 

the other hand, in vivo TG storage in hepatocytes occurs within lipid droplets surrounded 

by phospholipid monolayers,108 which likely restricts TG interactions with proteins to a 

greater degree than water interactions with proteins. This may limit relaxometry variability 

within fat. Supporting this hypothesis, a study44 of excised intact white adipose tissue and 

brown adipose tissue have shown only small differences in T1 and T2 between the two fat 

types. 

 The initial validations of FSF estimation in Chapter 6 suggest that J-coupling does 

not strongly influence the MRF fat-water separation. The high concordance between MRF 

and conventional FSF estimates supports this claim. This may be due to a combination of 

the relatively short TR used in the MRF sequence, which will help to reduce J-coupling 

effects relative to longer refocusing periods, and the contribution of FID to the uSSFP MRF 

signal sampled at short TE (~3 ms) relative to the J-coupling period (~ 140 ms). 

 The developments in slice profile modeling illuminate results from previous 

chapters, as well as provide unresolved challenges in MRF fat-water separation. Bloch 

simulations have mostly been used to model slice profile effects in bSSFP MRF. As noted in 

Chapter 7, the use of EPG has been popular in uSSFP MRF signal modeling because the large 

(and possibly unknown) number of isochromats necessary to capture a coherence pathway 

with conventional Bloch simulation can often be characterized by a relatively small number 

of states in EPG. The framework of ssEPG attempts to bridge the gap between a 

conventional (Bloch) spatial-domain approach without altogether abandoning EPG. While 

the advantage of the reduced number of EPG coherence states relative to the number of 

Bloch simulation isochromats may be compromised when slice-profile modeling is 

included, it is not clear in which circumstances one approach may be advantageous over 

another. Nonetheless, the development of ssEPG and associated relationships helped to 

shed light on the mechanism by which bias was observed in T2 depending on time-

bandwidth product and crusher strength. The ssEPG approach may also be applied to other 
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problems such slice-selective multiple spin-echo signal modeling and, potentially, to 

RF/sequence optimization problems. 

The bias in MRF estimated T2 with off-resonance and slice-profile related effects 

may explain some of the phantom and in vivo results in Chapters 6 and 8. For instance, the 

reduction in T2 bias with increasing FSF (Fig. 6.13) was not as much as expected according 

to the simulations and the T1 results in the same phantom. A possible explanation for this 

was the contribution of the highly dynamic slice profiles observed in Chapter 7 that 

interacted with the water-oil boundary to produce bias. In addition to this, imperfect B0 

shimming and incomplete modeling of the fat signal from chemical shifts could bias results. 

In the liver, T2 was found to be more variable than T1, and was likely biased in some cases. 

For instance, the NASH subject’s intra-hepatic T2 estimation variability may be explained by 

ΔB0 effects in the context of Chapter 7. Besides sequence changes to reduce these sources 

of bias, further slice profile modeling (see also §9.2) may be possible to account for them. 

Another potential source of bias in hepatic MRF T1 estimates is magnetization 

transfer (MT). The MRF and MRS results from the liver in Table 8.2 suggest that MRF T1 

measurements may be negatively biased relative to MRS. The repeated on-resonance 

action of the MRF excitation may saturate the hepatic macromolecular pool, which then 

may result in dynamic signal changes not currently modeled. However, given the small 

difference in macromolecular pool fraction reported between non-fibrotic and fibrotic liver 

(3.2.2.2.iv), any MT bias in MRF T1 estimates may be similar between healthy and diseased 

liver. Furthermore, the accuracy of the single breath-hold saturation recovery MRS method 

used to estimate T1 in Chapter 8 needs further study to firmly establish it as a reference. 

Irrespective of the remaining challenges for MRF fat-water parameter estimation in 

the liver, the work presented here has brought multi-fold developments and improvements 

to MRF. MRF spiral blurring has been evaluated and a solution to correct for this was found. 

Accurate fat-signal fraction estimation with simultaneous estimation of water T1 and T2, 

and ΔB0 has been demonstrated with a spiral blurring correction. Reduction of T1 and T2 

estimation bias in the presence of fat has been shown. Incorporation of an established form 

of regularization to improve ΔB0/FSF estimation improved MRF fat-water fitting. The 

extended phase graph formalism has been further extended to account for slice profile 
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effects. Aggregated, these developments have been employed in healthy and diseased 

liver. The intra-subject repeatability of hepatic T1 and T2 using these MRF techniques has 

been determined. Additionally, the role of ΔB0 in slice-selective unbalanced free precession 

sequence T2 bias has been further explained. To promote reproducibility, the code for 

chapters based on publications has been or will be publicly released. The local MRI scanner 

was coded to allow: spiral MRF acquisition with design control; undersampled acquisition; 

options for variations of MRF TR, TE, and flip angle pattern; projection imaging for slice 

profile measurements; and custom radiofrequency pulses. All these MRI system 

developments are available for local institutional use. 

 

9.2 Future Directions 

In Chapter 6, aliasing from undersampled MRF k-space trajectories produced bias in 

the parameter maps. One means to overcome this is to incorporate low-rank233 

reconstruction or matrix completion232. In these iterative methods, the problem of aliasing 

or missing k-space data is resolved by forming an orthogonal signal basis either from a pre-

calculated dictionary or from a fully-sampled calibration region in k-space. Low rank 

reconstruction has been recently applied to cardiac Dixon MRF fat-water separation.253 In 

this form of reconstruction, the vectorized image coefficient estimates 𝐱̂ (of the basis 

vectors in U) can be given as 

 

𝐱̂ = argx min||PUFS𝐱 − 𝐤||2
2.   [9.2] 

 

In Eq. (9.2), P represents a sampling operator that takes fully sampled k-space into its 

undersampled representation, F is a non-uniform Fourier transform operator, S is the coil 

sensitivity weightings, and 𝐤 is the measured k-space data. Regularized versions of this add 

other terms to Eq. (9.2). The challenge of using this approach with the MRF method 

proposed in Chapter 6 is the rank of U may be too high such that there are not enough 

measurements to adequately recover the missing data. The signal T1 and T2 contrast remain 

relatively low rank, but the variable TE provides phase sensitivity that may compound the 

rank of U such that too many observations are needed for accurate reconstruction without 
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increasing the scan duration. However, MRF low rank techniques have been recently 

enhanced by enforcing image sparsity.254 Adding this and other constraints may help to 

limit the possible solution space so that low rank reconstruction is more effective for the 

MRF methods proposed in this work. 

 Another area to improve or expand fat-water MRF is TG definition and 

characterization. The fat model used in the current MRF fat-water separation is based on 

ex vivo MRS measurements of white adipose tissue. While the fat signal fraction models in 

Chapter 6 produce FSF estimates consistent with conventional methods in a fat-water 

phantom, more precise measurements of the relaxometry properties of the different fat 

moieties may yield more accurate results. Conversely, with further sequence optimization, 

it may be possible to assess differences in TG properties like degree of saturation/number 

of double bonds in the acyl chains. This has been done using conventional MRI.43,255 If a 

series of accurate signal models for TG could be generated, a “TG dictionary” can be 

formed. The resulting design matrix for water and TG signals is 

 

A = [Uw Uf].   [9.3] 

 

This matrix forms a signal basis for water and fat, where  Uw and Uf represent the left 

singular vectors of the water and TG dictionaries, respectively. If some degree of 

orthogonality between the TG atoms and the water atoms was maintained, as it is in the 

current MRF fat-water separation, then A may be reasonably conditioned. Alternatively, 

Eq. (9.3) could include some form of regularization to improve its conditioning. After fat-

water separation, a second fitting/dictionary match can be done on the reconstructed fat 

signals to determine the TG atom at each voxel that best matches the signal. 

 As discussed in Chapter 4, MRF fat-water separation advances designed for liver 

imaging are applicable to other anatomical sites. As example, brown adipose tissue (BAT) 

in adults is of great research interest because of its metabolic/thermogenic properties.256 

However, BAT is a challenging tissue to study with MRI because it is predominately located 

near the supraclavicular fossa near the apex of the lung. The partial volume of fat, 

respiratory motion, B0 heterogeneity, and dynamic metabolism suggest that a rapid multi-
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parametric fat-water separation such as those employed in this work may be useful for its 

study. As a proof-of-concept we imaged a volunteer in their BAT depot at 3 T.  Following 

informed consent and with approval of local institutional review board, the single breath 

hold MRF with the variable TE MRF sequence from Chapter 6 was acquired. The parameter 

maps from this subject are shown in Fig. 9.1. Many of the successes and needs for 

improvements apparent in Fig. 9.1 are like those from the liver imaging in this work. MRF 

developments for liver imaging translate to developments in other areas of the body. 

 

 

Fig. 9.1 The MRF parameter maps from a transverse slice through the brown adipose tissue 

(BAT) depot near the supraclavicular fossa. The water (a) and fat (b) maps are shown 

adjacent to the fat signal fraction (𝜂) map (c) with arrows indicating the BAT depots. The B0 

map (d) is shown adjacent to fat-separated T1 and T2 maps. 

 A semi-separable solution may be used to help resolve bias in MRF T2 estimation 

with fat-water separation. A major improvement required for robust MRF relaxometry is 

resolving the ΔB0 dependent T2 bias. The source of this bias came from small fluctuations 
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in magnitude and phase depending on these two parameters. This presents a problem for 

the technique introduced in Chapter 6, which requires MRF T2 effects to be separable from 

ΔB0. A possible solution is to include the small magnitude and phase modulations in the 

MRF signal in the calculation of the water basis sets. While this is not strictly accurate, since 

these signal modulations occur for Δ𝐵0 ≠ 0, which is outside the span of the basis used 

during k-space water-fat separation, it may still permit fat-water separation if these 

modulations are not parallel with the fat signal and do not much increase the rank of the 

water basis. That is, the fat-water design matrix A from Chapter 6 becomes 

 

A = [Ũ 𝑓̃].  [9.3] 

 

Here, Ũ represents the left singular vectors of with all ΔB0-dependent phase and magnitude 

modulations at 𝑇E = 0 with MRF T1 and T2 contrast modeled out to the full 𝑇E, and  𝑓̃ 

represents the fat signal model vector using a full B0 modeling (discussed further below). 

More simply, Eq. (9.3) supposes that the water basis spans a larger space than necessary 

but does not span into the space of the signal basis of fat much more than the idealized 

approach taken in Chapter 6. To improve slice-profile models of the large fat chemical shift, 

the fat model would need to be modeled without the simplifying free precession 

assumption. Examples of an MRF slice profile, signal magnitudes and phases from fat 

modeled with and without free precession are shown in Fig. 9.2. Both model types used 

the same fat model from Chapter 6. The “RF interaction” model type, unlike the free 

precession model, modeled chemical shift during the RF pulse. Differences in the signal 

magnitude and phase can be seen between the models. 
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Fig. 9.2 The simulation of MRF fat profiles and signals under the free precession model of 

chemical shift effects, as well as a model where chemical shifts occur during the RF pulse.  

The magnitude of the slice profile (a) is from the excitation where the signal magnitude (b) 

deviation is large (excitation #543). The phase of the fat signal is shown in (c). 
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 Flow compensation is likely an area of future work that will benefit parameter map 

quality. MRF methods have been developed outside this work that are flow sensitive.257 

Unfortunately, from the MRF in vivo parameter maps in this work, sensitivity to flow with 

spiral acquisition appears to unintentionally confound fitting, particularly of FSF. The source 

of these artifacts is not certainly flow, but it is notable that the radius of blurring appears 

to be dependent on the vessel diameter. This is consistent with phase dispersion 

proportional to vessel radius during the spiral acquisition, but further analysis is needed to 

determine if this is the cause. Remediation of flow artifacts will likely require explicit 

modeling of the flow so that its contributions may be fit out of the data set. Alternatively, 

flow suppression may be built into the MRF sequence, or a fast, radial acquisition may be 

used to minimize blurring effects due to flow. 

 Volumetric acquisition would likely benefit the utility of MRF fat-water separation. 

Single-slice, histologically correlated MRI metrics would drastically increase sampling 

relative to a single needle-core biopsy. However, for diagnostic utility and to reduce 

estimation variability, volumetric imaging would be preferred. Based on the experience in 

this work, the timing requirement for a single breath-hold acquisition is ~20 s scan duration. 

While reductions in the scan time may be achieved by further sequence optimization and 

low rank reconstruction discussed above, alternative strategies may be needed to acquire 

more through-plane data. One approach is simultaneous multi-slice (SMS) acquisition,258 

which, as the name suggests, simultaneously excites multiple slices of data. This has been 

demonstrated for MRF without fat-water separation,259,260 but further exploration is 

required to determine if this can be adapted to k-space based fat-water separation.  

Related to volumetric acquisition is respiratory motion compensation, which 

imposes timing constraints on abdominal imaging. Triggered acquisition strategies have 

been used in cardiac MRF,68,253 so may be useful in liver imaging. The use of respiratory 

navigators could also be employed to prospectively or retrospectively gate MRF acquisition.  

An alternative to these strategies is free-breathing image acquisition. A recent application 

to cardiac MRF, showed that free breathing without ECG triggering was possible using a 

low-rank tensor approach with a fully sampled calibration region in k-space.261 Applied to 
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the abdomen, such an approach may allow very high resolution volumetric parameter 

mapping previously unobtainable in the liver. 

The work presented here provides a basis or a departure point for many future 

studies that may have broad influence over many aspects of quantitative MRI. These future 

developments may help address many current challenges to MRF, extracranial quantitative 

MRI in the liver and other anatomical locations, and in a variety of human diseases and 

pathologies. 
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