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CHAPTER I

Introduction

I.1 Motivation

Over the last two decades, there has been a blossom in artificial intelligence (AI), with implications reaching

everywhere from healthcare, marketing, banking, gaming to the automotive industry. It is not an exaggeration

to claim that AI will significantly benefit and affect many aspects of human life now and in the future.

Although AI is powerful and performs even better than humans on many complicated tasks, it has stimulated

a longstanding debate for many years between researchers, tech companies, and lawmakers as to whether we

can bet human lives on AI?

To be able to use AI in safety-critical applications, there is an urgent need for methods that can prove

the safety of AI systems. Conventional methods for demonstrating the safety of AI systems using extensive

simulation and rigorous testing are usually costly and incomplete. For example, to achieve the catastrophic

failure rates of less than one per hour, autonomous vehicle systems need to perform billions of miles of test-

driving [44]. More importantly, these driving tests do not cover all corner-cases that may arise in the field.

Consequently, new approaches based on formal methods, safe planning and synthesis, and robust learning are

urgently needed for not only proving but also enhancing the safety and reliability of AI systems. In principle,

these new approaches can automatically explore all unforeseen scenarios when verifying or falsifying the

safety of AI systems. They also can generate provably correct planning decisions, safe control actions, and

improve the robustness of AI systems under uncertain scenarios and adversarial attacks. As an essential

step to tackle these challenging problems, this document focuses on developing computationally efficient

and scalable formal techniques to prove the safety and robustness of safety-critical AI systems at an

acceptable cost.

Deep neural networks (DNNs) have become one of the most powerful techniques to deal with challeng-

ing and complex problems such as image processing [55] and natural language translation [35, 57] due to

its learning ability on large data sets. Recently, the power of DNNs has inspired a new generation of intelli-

gent autonomy, which makes use of DNNs-based learning enable components such as autonomous vehicles

[14] and air traffic collision avoidance systems [39]. Although utilizing DNNs is a promising approach,

assuring the safety of autonomous applications containing neural network components is difficult because

DNNs usually have complex characteristics and behavior that are generally unpredictable. Notably, it has

been proved that well-trained DNNs may not be robust and are easy to be fooled by a slight change in the
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input [60]. Several recent incidents in autonomous driving (e.g., Tesla and Uber) raises an urgent need for

techniques and tools that can formally verify the safety and robustness of DNNs before utilizing them in

safety-critical applications. In this thesis, we propose a verification framework for deep neural networks

and neural-network-based control systems using set-based reachability analysis. Particularly, our approach

focuses on four major challenging problems: 1) safety verification of feedforward neural networks (FNNs),

2) safety verification of neural-network-based control systems (NNCSs), 3) robustness verification of image

classification convolutional neural networks (CNNs) and 4) robustness analysis of semantic segmentation

networks (SSNs).

I.2 Contribution

I.2.1 Star-Based Reachability for Verification of Feedforward Neural Networks

In this document, we propose a novel, fast and scalable approach [84] for the exact and over-approximate

reachability analysis of FNNs with ReLU activation functions using the concept of star sets [9], or shortly

“star”. Star fits perfectly for the reachability analysis of DNNs due to its following essential characteristics:

1) an efficient (exact) representation of large input sets; 2) fast and cheap affine mapping operations; 3)

inexpensive intersections with half-spaces and checking empty. By utilizing star, we avoid the expensive affine

mapping operation in a polyhedron-based approach [83] and thus, reduce the verification time significantly.

Our approach performs reachability analysis for feedforward DNNs layer-by-layer. In the case of exact

analysis, the output reachable set of each layer is a union of a set of stars. Based on this observation, the star-

based exact reachability algorithm naturally can be designed for efficient execution on multi-core platforms

where each layer can handle multiple input sets at the same time. In the case of over-approximate analysis,

the output reachable set of each layer is a single star which can be constructed by doing point-wise over-

approximation of the reachable set at all neurons of the layer.

We evaluate the proposed algorithms in comparison, Reluplex [41], zonotope [74] and abstract do-

main [75] approaches on safety verification of the ACAS Xu neural networks [39] and robust certification of

image classification DNN. The experimental results show that our exact reachability algorithm can achieve

27×-30× faster than Reluplex when running on a multi-core platform (only six cores were used for verifi-

cation). Notably, our exact algorithm can visualize the precise behavior of the ACAS Xu networks and can

construct the complete set of counterexample inputs in the case that a safety property is violated. Our over-

approximate reachability algorithm can achieve 960×-1400× faster than Reluplex. It successfully verifies

many safety properties of ACAS Xu networks while the zonotope and abstract domain approaches fail due

to their large over-approximation errors. Our over-approximate reachability algorithm also provides a better

robustness certification for image classification DNN in comparison with the zonotope and abstract domain
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approaches.

I.2.2 Star-Based Reachability for Verification of Neural Network Control Systems

Safety verification of neural network control systems (NNCS) is a challenging problem because the behaviors

of the systems are difficult to estimate or characterize. To explicitly analyze the safety of NNCS, we need

to calculate the exact or overapproximate reachable set containing all possible trajectories of the plant that

takes the control set from the neural network controller as inputs. The output set of the plant is feedback

to the controller to compute the control set for the next control step. Therefore, if the error in the reachable

set computation is large, it quickly becomes larger and larger over time, which results in too conservative

reachable sets that cannot be used for safety verification. In addition, the scalability and efficiency of the

reachable set computation are crucial for safety verification of control systems with DNN controllers. It is

required methods that can compute the reachable set of NNCS with large neural network controllers with a

reasonable computation time and a small over-approximation error. However, calculating an exact or tight,

overapproximate reachable set of a neural network quickly is fundamentally difficult due to the non-linearity

of the network. This challenging problem has not addressed well in the existing literature.

In this document, we propose a new reachability analysis approach for safety verification of CPS

with neural network controllers using star set [81]. We limit our reachability analysis approach to feed-

forward neural network controllers with ReLU/Saturation activation functions. Our reachability algorithms

can compute both exact and over-approximate reachable sets of linear NNCS. Exact reachable set compu-

tation is expensive since the number of the reachable sets increases over time steps. In contrast, the over-

approximate reachability scheme is much cheaper as it produces a single reachable set at each time step.

Importantly, by using star sets, our reachability analysis approach can eliminate or reduce significantly the

over-approximation errors which is the main reason that makes the obtained reachable sets more and more

conservative over time as shown in the polyhedron approach [100, 103, 83] (and maybe in some existing

methods). Our approach successfully verifies the safety of the advanced emergency braking system (AEBS)

and the learning-based adaptive cruise control systems (ACC). This demonstrates the promising applicability

of our approach in verifying safety properties of neural network-based autonomous systems at design time.

We note that the polyhedron and interval approaches fail to prove the safety property of the system due to its

over-approximation errors explode quickly over time.

I.2.3 ImageStar-Based Reachability for Verification of Convolutional Neural Networks

The convolutional neural network (CNN) is a significant innovation in the field of deep learning that has been

used in many practical applications such as face recognition [49], image classification [46] and document
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analysis [51]. Recently, it has been shown that CNNs are vulnerable to adversarial attacks where a well-

trained CNN can give wrong results if there is a tiny change in the input [33]. To apply CNNs in safety-

critical applications such as autonomous driving, there is an urgent need for evaluating the robustness of a

trained CNN.

Although rigorous results and tools have been proposed for neural network verification, only a few meth-

ods can deal with CNN [45, 75, 74, 42, 68]. Importantly, in those existing approaches, only the one proposed

in [68] can verify the real-world deep CNN such as VGGNet [73] using the concept of L0 distance between

two images. This impressive optimization-based approach estimates a tight bound on the number of pixels in

an image that may be changed without affecting the classification result of the network. It can also generate

efficiently adversarial examples that can be used for training more robust networks. As a complementary

approach for verifying the robustness of real-world deep CNNs, we propose in this document a set-based

analysis method based on the concept of ImageStar, a new set representation capturing a set of an in-

finite number of images caused by an adversarial attack on an image. Using ImageStar, we propose the

exact and over-approximate reachability algorithms to construct the reachable sets containing all possi-

ble outputs of a CNN under adversarial attacks. These reachable sets are then used to reason about the

robustness of the network. When CNN violates its robustness property, our exact reachability scheme can

construct a set of adversarial examples. Our approach is different from [68] in two aspects. First, our method

does not provide the robustness guarantee of a network in terms of the number of pixels that are allowed

to be changed, i.e., L0 distance. Instead, we prove the robustness of the network on an image attacked by

disturbances bounded by arbitrary linear constraints. Second, our approach relies on reachable set computing

of a network corresponding to a bounded input set. To the best of our knowledge, our approach is the first

approach that can compute the exact reachable set of the real-world VGG networks with small input set while

the current set-based approaches [75, 74] provides only an over-approximation of the actual reachable sets,

and more importantly, they cannot deal with VGG networks due to scalability issue.

I.2.4 ImageStar-Based Reachability for Verification of Semantic Segmentation Networks

Most state-of-the-art techniques for robustness verification of DNNs focus on image classification networks

[45, 75, 74, 42, 68]. There is a lack of methods that can verify the robustness of semantic segmentation

networks (SSN), which perform more complex tasks than image classification networks. Recently, a rigorous

testing-based approach has been proposed to evaluate the robustness of real-world SSNs [7]. In this context,

a wide range of SSN architectures have been evaluated. From thorough testing-based evaluation, the authors

have presented an insightful discussion about how robust different SSN architectures are corresponding to

different adversarial attacks. Such work provides a better understanding and potential defenses against ad-
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versarial examples. However, while such testing-based methods are scalable, they cannot provide formal

guarantees for SSN robustness.

In this document, we propose the first formal verification approach for establishing the robustness of

SSNs using reachability analysis. The central idea of our approach is, provided an input image that is

attacked with some bounded disturbance, construct a reachable output set that contains all possible pixel

labels. From the reachable output set, we can formally guarantee SSN robustness at the pixel-level, i.e., a

pixel is provably classified correctly (or not). We can also compute the percentage of the number of pixels

in the image that are correctly classified, which we call the robustness value of the SSN corresponding to the

attack. An average robustness value of the network can be obtained by analyzing sets of images.

Our reachability-based approach builds on ImageStars, which are efficient data structures for verifying

convolutional neural networks (CNNs) [80] to construct the input set and compute the reachable set layer-by-

layer throughout the SSN. Our approach focuses on two popular SSN architectures, including dilated CNNs

and transposed CNNs. We evaluate the proposed method on a set of SSNs trained with different architectures

on variants of the MNIST and M2NIST data sets [50, 51, 18, 2] using digits as segmentation masks on black

backgrounds. From thorough experiments, we discuss the robustness of various architectures, such as what

types of SSNs are amenable to verification.

I.2.5 NNV: Neural Network Verification Tool

As a part of this document, we introduce NNV (Neural Network Verification), which is a tool that performs

set-based verification for DNNs and learning-enabled CPS [86]. NNV offers a collection of reachability

algorithms that compute both the exact and over-approximate reachable sets of the states of DNNs and NNCSs

using variety of set representations such as polyhedra [83, 102, 100, 103, 101], the star set [84, 81, 82, 59],

zonotopes [74], and abstract domain representations[75]. The obtained reachable set from NNV contains all

the possible states of a DNN or an NNCS corresponding to bounded input sets and initial states of the plant

(only for the NNCS). NNV declares a DNN and an NNCS to be safe if and only if their reachable sets do

not violate safety properties. That is, all states in the reachable sets satisfy the safety properties. In the case

of a violation, NNV can construct a complete set of counter-examples demonstrating the set of all possible

unsafe initial inputs and states by using the star-based, exact reachability algorithm [84, 81]. To speed up

the computation, NNV exploits the power of parallel computing. The majority of reachability algorithms in

NNV are more efficient when executed on multi-core platforms and clusters. We note that NNV implements

enhanced versions of the star-based reachability algorithms [84]. Particularly, we minimize the number of

linear programming (LP) optimization problems that we must solve in order to construct the reachable set

of a DNN by quickly estimating the ranges of all states in a star set using only the ranges of the predicate
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variables.

NNV has been successfully applied in verifying the safety and robustness of many real-word DNNs

and learning-enabled CPS. It is currently used in Northrup Grumman Company for the DARPA Assured

Autonomy project. It is also used in VMWARE research and General Motor. NNV has received positive

feedback for industrial users, e.g., the feedback from a researcher in General Motor is given at https://github.

com/verivital/nnv/issues/18).

I.3 Thesis Outline

This thesis is organized as follows. Chapter III presents reachability algorithms for verification of feed-

forward neural networks (FFNN) using star set. Chapter IV extends the star-set approach to neural network

control systems (NNCS). Chapter V investigates the reachability analysis and robustness verification of image

classification convolutional neural networks (CNNs) using a new concept named ImageStar, an efficient

extension of star set data structure. Chapter VI studies the robustness verification of semantic segmentation

networks under adversarial attacks using ImageStar-based reachability analysis. Chapter VII presents the

implementation of all proposed techniques in our neural network verification (NNV) tool. Chapter VIII

concludes the thesis and discusses some future research directions.
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CHAPTER II

State-of-Art Verification, Falsification, and Testing for Deep Learning Systems

II.1 Deep Neural Network Verification

Safety verification and robustness certification of DNNs have attracted a huge attention from different com-

munities such as machine learning [58, 45, 3, 74, 4, 91, 93, 106], formal methods [64, 41, 102, 100, 37,

24, 101], and security [31, 91, 90], and a recent survey of the area is available [98]. Verifying neural net-

works is a difficult problem, and it has been demonstrated that validating even simple properties about their

behavior is NP-complete [41]. The difficulties encountered in verification mainly arise from the presence

of activation functions and the complex structure of neural networks. Moreover, neural networks are large-

scale, nonlinear, non-convex, and often incomprehensible to humans. The action of a neuron depends on its

activation function described as yi = f (∑n
j=1 ωi jx j + θi), where x j is the jth input of the ith neuron, ωi j is

the weight from the jth input to the ith neuron, θi is called the bias of the ith neuron, yi is the output of the

ith neuron, and f (·) is the activation function. Typically, the activation function is either the rectified linear

unit, logistic sigmoid, hyperbolic tangent, the exponential linear unit, or another linear function. In general,

existing methods for neural network verification can be categorized into geometric (reachability) methods,

mix-integer linear programming (MILP) methods, satisfiability (SAT)-based and satisfiability modulo theory

(SMT)-based methods, optimization-based methods, and others.

II.1.1 Geometric and Reachability Methods

To circumvent the difficulties brought by the nonlinearities present in the neural networks, the majority of

recent results focus on activation functions of piecewise linear forms, f (x) = max(0,x), and in particular the

Rectified Linear Unit (ReLU). Taking advantage of the piecewise linear feature of ReLU and considering

the input as polyhedra or special classes of polyhedra such as zonotopes or hyper-rectangles, the verification

process can be turned into a sequence of operations on polyhedra. For instance in [100, 83], the computation

process involves standard polytope operations, such as intersection and projection, and all of these can be

computed by employing sophisticated computational geometry tools, such as MPT3 [34]. The essence of

the approach is to be able to obtain an exact output set with respect to the input set. However, the number

of polytopes involved in the computation process increases exponentially with the number of neurons in

its worst case performance which makes the method not scalable to neural networks with a large number

of neurons. Remarkably, due to the parallelability of the approach, parallel computing techniques can be

employed to speed up the computation to some extent. In the framework of zonotopes, a verification engine

8



for ReLU neural networks called AI2 was proposed in [31]. In their approach, the authors abstract perturbed

inputs and safety specifications as zonotopes, and reason about their behavior using operations for zonotopes.

The framework AI2 is capable of handling neural networks of realistic size, and, in particular, their approach

has had success dealing with convolutional neural networks. Another special class of polyhedra which are

called interval sets or hyper-rectangles is also considered for verification problems. Those interval-based

methods perform reachability analysis as propagation of interval sets across hidden layers and eventually

derive the output intervals. A specification-guided method is developed to provide an adaptive partitioning

methods for input space [102]. By making use of the information of specification, unnecessary partition can

be avoided so that the computational complexity can be reduced significantly. In [91], an interval symbolic

method is developed to compute rigorous bounds for outputs of neural networks. Their approach is easily

parallelizable and makes use of symbolic interval analysis in order to minimize overestimations. The authors

implement their approach as part of ReluVal, a system for checking the security properties of RelU-based

neural networks.

3

Input 

Set𝒳
Output 

Set 𝒴

Property P

Figure II.1: Illustration of neural network reachability, where the output reachable set of a mathematical
function F representing the neural network’s behavior under a set of inputs I is defined and computed in an
exact or overapproximative manner.

II.1.2 MILP Methods

The use of binary variables to encode piecewise linear functions is standard in optimization [88]. In [58], the

constraints of ReLU functions are encoded as an MILP. Combining output specifications that are expressed

in terms of linear programming (LP), the verification problem for output set eventually turns to the feasibility
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problem of MILP. For layer i, the MILP encoding is given as

Ci = {x[i]j ≥W [i]
j x[i−1]+θ

i
j,

x[i]j ≤W [i]
j x[i−1]+θ

i
j +Mδ

[i]
j ,

x[i]j ≥ 0,

x[i]j ≤M(1−δ
[i]
j ) | j = 1 . . .

∣∣∣L[i]
∣∣∣} (II.1)

where M is sufficiently large so that it is larger than the maximum possible output at any node. A similar MILP

problem is formulated in [79], where the authors conduct a robustness analysis and search for adversarial

examples in ReLU neural networks. It is well known that MILP is an NP-hard problem and, in [24, 26],

the authors elucidate significant efforts for solving MILP problems efficiently to make the approach scalable.

Their methods combine MILP solvers with a local search yielding a more efficient solver for range estimation

problems of ReLU neural networks than several other approaches. Basically, a local search is conducted using

a gradient search and then a global search is formulated as MILP. Instead of finding the global optimum

directly, it performs the search seeking values greater/smaller than the upper/lower bound obtained in the

preceding local search. This is the primary reason for the computational complexity reduction. This MILP-

based approach is integrated in their tool called Sherlock [23]. In [61], an MILP encoding scheme is used

for a class of neural networks whose input spaces are encoded as binaries. This MILP encoding has a similar

flavor to the other encodings present in the research literature for non-binarized networks. In their framework,

since all the inputs are integer values, the real valued variables can be rounded so that they can be safely

removed, resulting in a reformulated integer linear programming (ILP) problem that is smaller in comparison

to the original MILP encoding. With the ILP encoding, a SAT solver is utilized in order to reason about the

behavior of a mid-size binarized neural network.

II.1.3 Satisfiability and SMT Methods

In [41], an SMT solver called Reluplex is developed. An algorithm, that stems from the Simplex algorithm

for linear functions, for ReLU functions is proposed. Due to the piecewise linear feature of ReLU functions,

each node is divided into two nodes. Thus, in their formulation, each node consists of a forward-facing and

backward-facing node. If the ReLU semantics are not satisfied, two additional update functions are given to

fix the mismatching pairs. Thus, the search process is similar to the Simplex algorithm that pivots and updates

the basic and non-basic variables with the addition of a fixing process for ReLU activation pairs. This method

is applied on a deep neural network implementation of a next-generation airborne collision avoidance system

for unmanned aircrafts (ACAS-X), which has been used as a benchmark for a number of successive works.
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In [69], they use bounded model checking (BMC) to create formulas that are solved using the SMT-solver

iSAT3, which is able to deal with transcendental functions such as exp and cos that frequently appear in

neural network controllers and plants. Although the verification framework is rigorously developed, the ver-

ification problem is hardly solved due to the curse of dimensionality and state-space explosion problems. An

approach for finding adversarial inputs using SMT solvers that relies on a layer-by-layer analysis is presented

in [37]. The work focuses on the robustness of a neural network where safety is defined in terms of classi-

fication invariance within a small neighborhood of one individual input. An exhaustive search of the region

is conducted by employing discretization and propagating the analysis layer by layer. In a similar manner, a

recent paper, proposed by Ruan et al. [68], generalizes the local robustness criterion into a global notion on a

set of test examples. In another work, a software tool, called Planet, was developed based on the MILP ver-

ification approaches [28]. This LP-based framework combine SAT solving and linear over-approximation of

piecewise linear functions in order to verify ReLU neural networks against convex specifications. Given the

output of a ReLU denoted by d and the input c ∈ [l,u], the relationship between c and d can be approximated

by the linear constraints d ≥ 0, d ≥ c, and d ≥ u c−l
u−l . Based on the LP problem formulation, additional heuris-

tic algorithms were developed to detect infeasibility and imply phase inference faster. Pulina et al present

an abstraction-refinement and SMT-based tool for verifying feed-forward neural networks. Their scheme is

based on encoding the network into a boolean satisfaction problem over linear arithmetic constraints [65].

II.1.4 Other Optimization-Based Methods

As some of the earliest papers for neural network verification, in [64, 66], a piecewise-linearization of the

nonlinear activation functions is used to reason about their behavior. In this framework, the authors replace

the activation functions with piecewise constant approximations and use the bounded model checker hybrid

satisfiability (HySAT) [29] to analyze various properties. The authors highlight the difficulty of scaling this

technique and, currently, are only able to tackle small networks with at most 20 hidden nodes. In [101], a

simulation-based approach was developed, which used a finite number of simulations/computations to esti-

mate the reachable set of multi-layer neural networks in a general form. Despite this success, the approach

lacks the ability to resolve the reachable set computation problem for neural networks that are large-scale,

non-convex, and nonlinear. Still, simulation-based approaches, like the one developed in [101], present a

plausibly practical and efficient way of reasoning about neural network behavior. The critical step in improv-

ing simulation-based approaches is bridging the gap between finitely many simulations and the essentially

infinite number of inputs that exist in the continuity set. A critical concept that is introduced in the work is

called maximal sensitivity, which measures of the maximal deviation of outputs for a set of inputs suffering

disturbances in a bounded cell. The output set of the neural network can be over-approximated by the union
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of a finite number of reachtubes computed using a union of individual cells that cover the input set. Thus,

verification of a network can be done by checking the existence of intersections of the estimated reachable set

and safety regions. This approach has been extended to allow for the reachable set estimation and verification

of nonlinear autoregressive-moving average (NARMA) models in the form of neural networks [97] as well

as closed-loop system verification with the help of the state-of-the-art reachability tool for hybrid systems

dealing with the plant dynamics [96]. In particular, it is applicable to a variety of neural networks regardless

of the specific form of the activation functions. Given a neural network, there is a trade-off between the

precision of the reachable set estimation and the number of simulations used to execute the procedure. In

addition, since the approach executes in a layer-by-layer manner, the approximation error will accumulate

as the number of layers present in the network increases. In this case, more simulations are required at the

expense of increasing the computational cost. A novel approach for neural network verification based on

optimization duality has been developed [27]. The verification problem is posed as an optimization problem

that tries to find the largest violation of a property related to the output of the network.

II.1.5 Other Methods

There exists a rich literature of other methods for neural network verification [98, 56], but we highlight a

few. A comparison of the verification approaches mentioned above can be found in [15]. Additionally, the

authors present a novel approach for neural network verification called Branch and Bound Optimization. This

approach adds one more layer behind the output layer cy−b to represent the linear property cy > b that we

wish to verify. If cy− b > 0, it means that the property is satisfied, otherwise it is unsatisfiable. Thus, the

verification problem is converted into a computation of the minimum or maximum value of the output of the

neural network. By treating the neural network as a nonlinear function, model-free optimization methods

are utilized to find optimal solution. In order to have a global optimum, the input space is also discretized

into sub-regions. This approach is not only applicable to ReLU neural networks, but the model-free method

allows the approach to be applied to neural networks with more general activation functions. However,

despite its generalization capabilities, in the model-free framework, there is no guarantee that the algorithm

will converge to a solution.

Cheng et al. have studied the verification of Binarizied neural networks (BNNs) [17]. The forward

propagation of input signals is reduced to bit arithmetic. The authors argue that the verification of BNNs can

be reduced to hardware verification and represents a more scalable problem than traditional neural network

verification. A randomized approach for rigorously verifying neural networks in safety critical applications

has been developed [105]. In an effort to mitigate challenges related to the curse of dimensionality, the

authors make use of Monte Carlo methods to estimate the probability of neural network failure. However,
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4

Input set:

3 inputs, 2 outputs, 7 hidden layers of 7 

neurons each.

Figure II.2: Example output reachable set computation for a neural network with 3 inputs, 2 outputs, and 7
hidden layers with 7 neurons each, where all activation functions are ReLUs and all parameters of the network
(weights, biases) are chosen randomly. The input set I = {x | ‖x‖∞ ≤ 1,x ∈ R3} is a cube and convex, while
the output set shown is non-convex, represented as the union of the different colored polygons.

although Monte Carlo methods are more efficient than methods that deterministically search through hyper-

rectangular input spaces, they are probabilistic in nature. The authors further demonstrate that although

the number of samples needed to guarantee this may be large, it is not as prohibitive as other methods.

Another fascinating area in neural network verification is falsification. Several ideas for integrating semantics

into adversarial learning have been explored, including a semantic modification space and the use of more

detailed information about the outputs produced by machine learning models [22]. In work by Tsui Weng

et al. [94], an attack independent robustness metric against adversarial examples for neural networks is

described. Their approach converts the robustness analysis into a local Lipschitz constant estimation problem

and uses Extreme Value Theory for efficient solving. In [78], an automatic test case generator is presented

that leverages real-world changes in driving conditions like rain, fog, lighting conditions, etc. The tool,

called DeepTest, systematically explores different parts of the deep neural network logic by generating test

inputs that maximize the number of activated neurons. An improved version of the tool, called DeepXplore, is

proposed in [63], which is the first efficient whitebox testing framework for large-scale deep learning systems.

II.1.6 Summary

In summary, analyzing the behavior of a DNN can broadly be categorized into exact and over-approximate

analyses. For the exact analysis, the SMT-based [41] and polyhedron-based approaches [83, 100] are notable

representatives. For the over-approximate analysis, the mixed-integer linear program (MILP) [24], interval

arithmetic- [91, 90], zonotope- [74], input partition- [102], linearization- [93], and abstract-domain- [75]

based are fast and efficient approaches. While the over-approximate analysis is usually faster and more scal-
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Name Network Type Approach Activation Function Size of Network Completeness

Reluplex [41] FFNN SMT ReLU 300 neurons Yes

Marabou [42] FFNN SMT ReLU 300 neurons Yes

DeepZ [74] FFNN, CNN Reachability ReLU, Sigmoid, Tanh 88000 neurons No

DeepPoly [75] FFNN, CNN Reachability ReLU, Sigmoid, Tanh 88000 neurons No

Plannet [28] FFNN, CNN SAT, LP ReLU 1341 neurons Yes

Sherlock [76] FFNN MILP ReLU 3822 neurons No

ReluVAL [91] FFNN Interval Analysis ReLU 300 neurons Yes

Fast-Lin [93] FFNN Optimization ReLU 7168 neurons No

Fast-Lip [93] FFNN Optimization ReLU 7168 neurons No

NSVerify [58] FFNN MILP ReLU 4746 neurons Yes

Table II.1: Verification approaches for neural networks.

Name Plant Dynamics Discrete/Continuous Activation Function Size of Controller

Polyhedron-based [103] Linear Discrete ReLU ≤ 100 neurons

Verisig [38] Linear, Nonlinear Discrete, Continuous Sigmoid, Tanh ≤ 50 neurons

SMC-based [77] Linear Discrete ReLU ≤ 200 neurons

Sherlock [76] Linear, Nonlinear Discrete, Continuous ReLU ≤ 500 neurons

ReachNN [36] Nonlinear Discrete, Continuous ReLU, Sigmoid, Tanh ≤ 100 neurons

Table II.2: Verification approaches for NNCS.

able than the exact analysis, it guarantees only the soundness of the result. In contrast, the exact analysis is

usually more time-consuming and less scalable. However, it guarantees both the soundness and complete-

ness of the result [41]. Although the over-approximate analysis is fast and scalable, it is unclear how good

the over-approximation is in term of conservativeness since the exact result is not available for compari-

son. Importantly, if an over-approximation approach is too conservative for neural networks with small or

medium sizes, it will potentially produce huge conservative results for DNNs with a large number of layers

and thousands of neurons since the over-approximation error is accumulated quickly over layers. Therefore,

a scalable, exact reachability analysis is crucial not only for formal verification of DNNs, but also for estimat-

ing the conservativeness of current and up-coming over-approximation approaches. Table II.1 summarizes

representative approaches for neural network verification.

II.2 Neural Network Control System Verification

Verification of CPS with learning-enabled components have become an emerging research topic recently.

Several methods have been proposed to verify the safety of feedback neural network control systems [25, 97,

38, 76, 103, 77].
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II.2.1 Extended Polyhedron Approach

The early polyhedron-based approach for ReLU feedforward neural networks has been extended for safety

verification of a neural network controlled systems in [103] where a ReLU network controller controls a

discrete linear switching plant model. This approach computes the polyhedron-based reachable set of the

neural network controller at every control step. The convex hull of all polyhedra in the reachable set is used

as the control input to the plant model to compute the plant’s reachable set. The proposed method works

for neural network controlled systems with a small number of neurons and low-dimensional plant models.

However, taking the convex hull of all polyhedra in the reachable set as the control input to the plant makes

this approach become conservative due to the over-approximation error. Importantly, the over-approximation

error may be accumulated quickly over time steps when dealing with a large set of initial states.

Recently, the authors have proposed a new simulation-guided approach for safety verification of an NNCS

[99]. The novel idea of this approach is the combination of interval arithmetic and simulation-guided input

set partition to estimate the neural network’s output ranges, which are used as inputs for the plant model

reachability. The experiments have shown that the proposed approach can efficiently verify the safety of a

neural network-based adaptive cruise control system. Additionally, this approach is much less expensive than

the maximum sensitivity based approach [101].

II.2.2 Verisig Approach

Verisig [38] proposes an approach that transforms a neural network controller with sigmoid activation func-

tion to an equivalent nonlinear hybrid system by exploiting the fact that sigmoid is the solution to a quadratic

differential equation. Particularly, a neural network with L layers and N neurons per layer can be repre-

sented as a hybrid system with L + 1 modes and 2N states. The hybrid system representation of the neural

network controller is combined with the plant model to form a single hybrid system representation of the

neural network control system, which is then fed to hybrid systems verification tools such as Flow* [16]

and dReach [43] for verifying the system safety properties. The Verisig approach has applied successfully

on safety verification of the mountain car benchmark and DNN-based quadcopter application. The authors

evaluated the scalability of their approach via investigating the reachable set computation times between the

Verisig + Flow* and the prior mix-integer linear programming (MILP) approach for DNNs with increasing

sizes. Interestingly, the Verisig + Flow* reachability time increases linearly with the size of the network,

while the MILP approach shows an exponential jump in the reachability time.
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II.2.3 Sherlock Approach

A common approach for the reachability of NNCS combines the flow-pipe construction of ODEs and range

analysis for neural network controllers to construct the reachable set. However, this approach may suffer

from large overestimation errors due to the wrapping effect [62], which motivated the proposal of a new

abstraction method to abstract function computed by the network using a local polynomial approximation

along with rigorous error bounds [76]. Formally, given a set of inputs, the authors obtain a polynomial

function capturing the outputs using regression. The difference between the polynomial abstraction and the

network is bounded by an error interval that is computable. The combination of the polynomial function and

the error interval yields a local Taylor model overapproximation of the network, which can be integrated into

the flow-pipe construction tool Flow*. The major challenge in this approach is the computation of the error

interval, which was solved in three steps. First, the author obtained a piecewise linearization (PWL) of the

polynomial with a given tolerance bound on their difference. Then, the maximum and minimum differences

between the network and PWL are computed using MILP solver combining with the local gradient descent

search method [24]. The experimental results have shown that this abstraction-based method is fast and

scalable for NNCS verification, and more importantly, it can reduce overapproximation errors significantly

in the reachable set computation process and can deal with relatively large input sets.

II.2.4 ReachNN Approach

Similar to the Sherlock approach, [36] proposes new reachability approached based on Bernstein polynomials

abstraction to verify NNCS with more general activation functions such as Sigmoid and Tanh. To avoid

wrapping effect in the reachability, tightly bound on the difference between Bernstein polynomial and the

corresponding neural network is essential. The authors proposed two approaches to compute this bound,

including a priori theoretical approach based on existing results on Bernstein polynomials and a posteriori

approach based on adaptive sampling. Although the first approach is time-efficient, it usually obtains a

coarse result that causes the accumulation in the over-approximation error in the reachability. In contrast,

the posterior approach requires more computation time but can get very tightly bound. Theoretically, we

can achieve arbitrary precision in computing the bound by increasing the number of sampling points of the

input set of the network. However, higher precision requires larger computation time and resources. The

proposed approach can speed up by parallelizing the calculation of the sampling-based error bound using

GPU. The experimental results have shown that the ReachNN approach is less conservative than the Sherlock

and Verisig approaches but requires much more computation time.
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II.2.5 SMC Approach

The Satisfiability Modulo Convex (SMC) approach [77] is the first approach to dealing with LiDAR image

inputs handled by a neural network controller. It synthesizes a set of safe initial states of a neural network

control system working in a given workspace containing a set of polytopic obstacles. The SMC approach’s

central idea is the construction of a finite-state abstraction of the system, which is then analyzed by a standard

reachability method to compute the set of safe initial states. This approach first constructs a set of affine

imaging-functions mapping the autonomous robot position to the LiDAR image by partitioning the workspace

into smaller sets called ”imaging-adapted sets” in polynomial-time. A finite-state abstraction of the closed-

loop system is then computed by leveraging the partitioned workspace, the discrete-time linear dynamics of

the robot, and a pre-trained ReLU network controller. Finally, an SMC formula is encoded to analyze the

behavior of the network under the constraints on the robot dynamics and partitioned workspace. The encoded

SMC formula is fed into an SMC solver [72], which combines a Boolean satisfiability solver and a convex

programming solver, to iteratively reason about the behavior of the system.

II.2.6 Summary

The main challenges in safety verification of NNCS are the over-approximation error in the reachability

analysis step and the computation time. So far, different methods have both advantages and disadvantages

and can deal with a variety of activation functions and plant models. The polyhedron approach may face

with the over-approximation error accumulation over time steps. The Verisig approach can avoid the over-

approximation error accumulation due to the wrapping effect. However, it is only efficient for network

controllers with Sigmoid/Tanh activation functions. Similarly, the Sherlock approach can only deal with the

ReLU activation function. The ReachNN approach is the one that can deal with different types of activation

functions while reducing the over-approximation error. However, the over-approximation error reduction

comes with an expensive computational cost. The SMC approach currently can only deal with discrete linear

plant models. A summary of recent verification methods is given in Table II.2.

II.3 Testing and Falsification

Besides verification methods, testing and falsification for NNCS are efficient approaches for enhancing the

safety and reliability of learning-based autonomous systems. These approaches are especially scalable and

efficient for systems with larger neural network components, e.g., perception component in autonomous

driving cars, where the verification approaches are not applicable due to their limited scalability. In the

testing context, a simulation-based test generation framework for autonomous vehicles with machine learning

components has been proposed in [87] to enhance the reliability of autonomous driving systems. In the
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falsification context, a compositional falsification framework for CPS with machine learning components has

been proposed in [20]. In this framework, a temporal logic falsifier cooperates efficiently with a machine

learning analyzer to find falsifying executions of the system. The effectiveness of the proposed framework

was shown via Automatic Emergency Braking System (AEBS).
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CHAPTER III

Star-Based Reachability for Verification of Feedforward Neural Networks

III.1 Preliminaries

III.1.1 Machine Learning Models and Symbolic Verification Problem

A feed-forward neural network (FNN) consists of an input layer, an output layer, and multiple hidden layers

in which each layer comprises of neurons that are connected to the neurons of preceding layer labeled using

weights. Given an input vector, the output of an FNN is determined by three components: the weight matrices

Wk, representing the weighted connection between neurons of two consecutive layers k− 1 and k, the bias

vectors bk of each layer, and the activation function f applied at each layer. Mathematically, the output of a

neuron i is defined by:

yi = f (Σn
j=1ωi jx j +bi),

where x j is the jth input of the ith neuron, ωi j is the weight from the jth input to the ith neuron, bi is the

bias of the ith neuron. In this paper, we are interested in FNN with ReLU activation functions defined by

ReLU(x) = max(0,x).

Definition 1 (Reachable Set of FNN). Given a bounded convex polyhedron input set defined as I , {x | Ax≤

b,x ∈Rn}, and an k-layers feed-forward neural network F , {L1, · · · ,Lk}, the reachable set F(I ) = RLk of

the neural network F corresponding to the input set I is defined incrementally by:

RL1 , {y1 | y1 = f1(W1x+b1), x ∈I },

RL2 , {y2 | y2 = f2(W2y1 +b2), y1 ∈RL1},
...

RLk , {yk | yk = fk(Wkyk−1 +bk) yk−1 ∈RLk−1},

where Wk, bk and fk are the weight matrix, bias vector and activation function of the kth layer Lk, respectively.

The reachable set RLk contains all outputs of the neural network corresponding to all input vectors x in the

input set I .

Definition 2 (Safety Verification of FNN). Given a k-layers feed-forward neural network F, and a safety

specification S defined as a set of linear constraints on the neural network outputs S , {yk | Cyk ≤ d},

the neural network F is called to be safe corresponding to the input set I , we write F(I ) � S, if and only

if RLk ∩¬S = /0, where RLk is the reachable set of the neural network with the input set I , and ¬ is the
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symbol for logical negation. Otherwise, the neural network is called to be unsafe F(I ) 2 S.

III.1.2 Generalized Star Sets

Definition 3 ( Generalized Star Set [9]). A generalized star set (or simply star) Θ is a tuple 〈c,V,P〉 where

c∈Rn is the center, V = {v1,v2, · · · ,vm} is a set of m vectors in Rn called basis vectors, and P :Rm→{>,⊥}

is a predicate. The basis vectors are arranged to form the star’s n×m basis matrix. The set of states

represented by the star is given as:

JΘK = {x | x = c+Σ
m
i=1(αivi) such that P(α1, · · · ,αm) =>}. (III.1)

Sometimes we will refer to both the tuple Θ and the set of states JΘK as Θ. In this work, we restrict the

predicates to be a conjunction of linear constraints, P(α) , Cα ≤ d where, for p linear constraints, C ∈

Rp×m, α is the vector of m-variables, i.e., α = [α1, · · · ,αm]
T , and d ∈ Rp×1. A star is an empty set if and

only if P(α) is empty.

Proposition III.1.1. Any bounded convex polyhedron P , {x |Cx≤ d,x∈Rn} can be represented as a star.

Proof. The polyhedron P is equivalent to the star set Θ with the center c = [0,0, · · · ,0]T , the basic vectors

V = {e1,e2, · · · ,en} in which ei is the ith basic vector of Rn, and the predicate P(α),Cα ≤ d.

Proposition III.1.2. [Affine Mapping of a Star] Given a star set Θ = 〈c,V,P〉, an affine mapping of the star

Θ with the affine mapping matrix W and offset vector b defined by Θ̄ = {y | y = Wx+ b, x ∈ Θ} is another

star with the following characteristics.

Θ̄ = 〈c̄,V̄ , P̄〉, c̄ =Wc+b, v̄ = {Wv1,Wv2, · · · ,Wvm}, P̄≡ P.

Proof. From the definition of a star, we have Θ̄ = {y | y =Wc+b+Σm
i=1(αiWvi), such that P(α1, · · · ,αm) =

>} which implies that Θ̄ is another star with the center c̄ =Wc+b, basic vectors V̄ = {Wv1,Wv2, · · · ,Wvm}

and the same predicate P as the original star Θ.

Proposition III.1.3 (Star and Half-space Intersection). The intersection of a star Θ , 〈c,V,P〉 and a half-

space H , {x | Hx≤ g} is another star with following characteristics.

Θ̄ = Θ∩H = 〈c̄,V̄ , P̄〉, c̄ = c, V̄ =V, P̄ = P∧P′,

P′(α), (H×Vm)α ≤ g−H× c,Vm = [v1 v2 · · ·vm].
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Proof. For any x ∈ Θ∩H , we have x = c+Σm
i=1(αivi)∧Hx ≤ g, or equivalently, x = c+Σm

i=1(αivi)∧H×

Vm×α ≤ g−H×c which implies that the intersection is another star with the same center c and basic vectors

V as Θ, and an updated predicate P̄ = P∧P′,P′(α), H×Vm×α ≤ g−H× c.

III.1.3 Zonotope

Definition 4 (Zonotope). A zonotope Z is a tuple 〈l,G〉 where l ∈ Rn is the center, G = {g1,g2, · · · ,gm} is a

set of m generators in Rn. The set of states represented by a zonotope is given as:

Z = {x | x = l +Σ
m
i=1(αigi) such that −1≤ αi ≤ 1}. (III.2)

A zonotope is basically a star set in which all predicate variables in the ranges of [−1, 1]. The affine map-

ping of a zonotope is another zonotope. However, the intersection of a zonotope and a half-space generally

is not a zonotope. One advantage of a zonotope compared with a star set is that we can compute quickly the

ranges of a state in a zonotope without solving LP optimization. For example, the range of the state x( j) in a

zonotope is:

l( j)−Σ
m
i |gi( j)| ≤ x( j)≤ l( j)+Σ

m
i |gi( j)|.

III.2 Reachability of FNNs with ReLU Activiation Functions

III.2.1 Exact and complete analysis

In this section, we investigate the exact and complete analysis of FNNs with ReLU activation functions. Since

any bounded convex polyhedron can be represented as a star (Proposition III.1.1), we assume the input set I

of an FNN is a star set. From Definition 5, one can see that the reachable set of an FNN is derived layer-by-

layer. Since the affine mapping of a star is also a star (Proposition III.1.2), the core step in computing the exact

reachable set of a layer with a star input set is applying the ReLU activation function on the star input set, i.e.,

compute ReLU(Θ), Θ= 〈c,V,P〉. For a layer L with n neurons, the reachable set of the layer can be computed

by executing a sequence of n stepReLU operations as follows RL = ReLUn(ReLUn−1(· · ·ReLU1(Θ)))..

The stepReLU operation on the ith neuron, i.e., ReLUi(·), works as follows. First, the input star set Θ is

decomposed into two subsets Θ1 =Θ∧xi ≥ 0 and Θ2 =Θ∧xi < 0. Note that from Proposition III.1.3, Θ1 and

Θ2 are also stars. Let assume that Θ1 = 〈c,V,P1〉 and Θ2 = 〈c,V,P2〉. Since the later set has xi < 0, applying

the ReLU activation function on the element xi of the vector x = [x1 · · ·xi xi+1 · · ·xn]
T ∈ Θ2 will lead to the

new vector x′ = [x1 x2 · · ·0 xi+1 · · ·xn]
T . This procedure is equivalent to mapping Θ2 by the mapping matrix

M = [e1 e2 · · ·ei−1 0 ei+1 · · ·en]. Also, applying the ReLU activation function on the element xi of the vector

x ∈ Θ1 does not change the set since we have xi ≥ 0. Consequently, the result of the stepReLU operation on
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Figure III.1: An example of a stepReLU operation on a layer with two neurons.

input set Θ at the ith neuron is a union of two star sets ReLUi(Θ) = 〈c,V,P1〉 ∪ 〈Mc,MV,P2〉. A concrete

example of the first stepReLU operation on a layer with two neurons is depicted in Figure III.1.

The number of stepReLU operation can be reduced if we know beforehand the ranges of all states in the

input set. For example, if we know that xi is always larger than zero, then we have ReLUi(Θ) = Θ, or in

other words, we do not need to execute the stepReLU operation on the ith neuron. Therefore, to minimize the

number of stepReLU operations and the computation time, we first determine the ranges of all states in the

input set by solving n-linear programming problems.

Lemma III.2.1. The worst-case complexity of the number of stars in the reachable set of an N-neurons FNN

is O(2N).

Proof. Given a star input set, each stepReLU operation produces at most two more stars which leads to the

total number of stars in the worst case of one layer is 2nL where nL is the number of neurons in the layer.

For an FNN, the output reachable sets of one layer is the inputs of the next layer. Therefore, in the worst-

case, the total number of stars in the reachable set of an k-layers and N-neurons FNN is 2nL1 ×·· ·× 2nLk =

2nL1+···+nLk = 2N .

Lemma III.2.2. The worst-case complexity of the number of constraints of a star in the reachable set of an

N-neuron FNN is O(N).

Proof. From the stepReLU sub-procedure, we can see that given a star input set Θ, each stepReLU operation

produces one or two stars that have at most one more constraint than the star input set. Therefore, with a layer

of n neurons, at most n- stepReLU operations are executed which result star reachable sets in which each one
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has at most n constraints more than the star input set. Consequently, the number of constraints in a star input

set increases linearly over layers, and thus, the worst-case complexity of the number of constraints of a star

in the reachable set of an N-neurons FNN is O(N).

Theorem III.2.3 (Verification complexity). Let F be an N-neuron FNN, Θ be a star set with p linear con-

straints and m-variables in the predicate, S be a safety specification with s linear constraints. In the worst

case, the safety verification or falsification of the neural network F(Θ) |= S? is equivalent to solving 2N

feasibility problems in which each has N + p+ s linear constraints and m-variables.

Proof. From Lemma III.2.1, there are at most 2N stars in the reachable set of the neuron network. Also, from

Lemma III.2.2, each star has at most N + p constraints. To verify or falsify the safety of the neural network,

we need to check if each star in the reachable set intersects with the safety specification. From Proposition

III.1.3, this intersection creates a new star with at most N+ p+s constraints. Note that the number of variables

m in the predicate of a star does not change over stepReLU operations or in the intersection operation with the

half-space. Therefore, the new star has m-variables and at most N+ p+ s linear constraints, and checking the

intersection is equivalent to checking if the new star is an empty set which is a feasibility linear programming

problem which can be solved efficiently in polynomial time.

Remark III.2.4. Although in the worst-case, the number of stars in the reachable set of an FNN is 2N , in

practice, the actual number of stars is usually much smaller than the worst-case result which enhances the

applicability of the star-based exact reachability analysis for practical DNNs.

Theorem III.2.5 ( Safety and complete counter input set). Let F be an FNN, Θ = 〈c,V,P〉 be a star input set,

F(Θ) = ∪k
i=1 Θi, Θi = 〈ci,Vi,Pi〉 be the reachable set of the neural network, and S be a safety specification.

Denote Θ̄i = Θi∩¬S = 〈ci,Vi, P̄i〉, i = 1, · · · ,k. The neural network is safe if and only if P̄i = /0 for all i. If the

neural network violates its safety property, then the complete counter input set containing all possible inputs

in the input set that lead the neural network to unsafe states is CΘ = ∪k
i=1〈c,V, P̄i〉, P̄i 6= /0.

Proof. Safety. The exact reachable set is a union of stars. It is trivial that the neural network is safe if and

only if all stars in the reachable set do not intersect with the unsafe region, i.e., Θ̄i is an empty set for all i, or

equivalently, the predicate P̄i is empty for all i (Definition 6).

Complete counter input set. Note that all star sets in computation process are defined on the same

predicate variable α = [α1, · · · ,αm]
T which is unchanged in the computation (only the number of constraints

on α changes). Therefore, when P̄i 6= /0, it contains values of α that makes the neural network unsafe. It is

worth noticing that from the basic predicate P, new constraints are added over stepReLU operations, thus, P̄i
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contains all constraints of the basic predicate P. Consequently, the complete counter input set containing all

possible inputs that make the neural network unsafe is defined by CΘ = ∪k
i=1〈c,V, P̄i〉, P̄i 6= /0.

III.2.2 Over-approximate analysis

Although the exact and complete analysis can compute the exact reachable sets of a ReLU FNN, the number

of stars grows exponentially with the number of layers and leads to an increase in computation cost that limits

scalability. In this section, we investigate an over-approximation reachability algorithm for ReLU FNNs in

which at each layer, only a single star is constructed by using the following approximation rule.

Lemma III.2.6. For any input x ∈ [l, u], the output set Y = {y| y = ReLU(x)} satisfies:

• If l ≥ 0, then y = x.

• If u≤ 0, then y = 0.

• If l < 0 and u > 0, then Y ⊂ Ȳ = {y| y≥ 0, y≤ u(x−l)
u−l , y≥ x}.

The over-approximation rules for the ReLU activation function of different approaches are depicted in

Figure III.2 which shows that our approximation rule is less conservative than the zonotope’s [74] and new

abstract domain’s rules [75]. The zonotope-based approach [74] over-approximates the ReLU activation

function by a minimal parallelogram while the abstract-domain approach [75] over-approximates the ReLU

activation function by a triangle. Our star-based approach also over-approximates the ReLU activation func-

tion with a triangle as in the abstract-domain approach. However, the new abstract-domain approach only

uses lower bound and upper bound constraints for the output yi = ReLU(xi) to avoid the state space explosion

[75], for example, in Figure III.2, these constraints are yi ≥ 0, yi ≤ ui(xi− li)/(ui− li). Notably, the zonotope

and the new abstract domain approaches construct the reachable set based on estimated ranges which is

usually very conservative. Consequently, these approaches obtain coarse a over-approximation of the actual

reachable set which will be shown in the later section. To obtain a tighter over-approximation, our star

set approach uses three constraints for the output yi instead. Additionally, it constructs the reachable set

using the ranges computed from solving LP problems.

Similar to the exact approach, the over-approximate reachable set of a Layer with n neurons can be

computed by executing a sequence of n approximate-stepReLU operations that work as follows. First, we

compute the lower bound and upper bound of the input at the ith neuron. If the lower bound is not negative,

the approximate-stepReLU operation returns a new intermediate reachable set which is exactly the same as its

input set. If the upper bound is not positive, the approximate-stepReLU operation returns a new intermediate

reachable set which is the same as its input set except the ith state variable is zero. If the lower bound is neg-

ative and the upper bound is positive, the approximate-stepReLU operation introduces a new variable αm+1
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to capture the over-approximation of ReLU function at the ith neuron. As a result, the obtained intermediate

reachable set has one more variable and three more linear constraints in the predicate in comparison with the

corresponding input set. Therefore, in the worst case, the over-approximate reachability algorithm will obtain

a reachable set with N +m0 variables and 3N +n0 constraints in the predicate, where m0, n0 respectively are

the number of variables and linear constraints of the predicate of the input set and N is the total number of

neurons of the FNN.

Figure III.2: The star set approach is less conservative than the zonotope [74] and new abstract-domain
approaches [75].

III.2.3 Zonotope pre-filter

One can see that, computing the ranges of all states in a star set is an important step in our star set approach that

requires solving a set of LP optimization problems. In the exact analysis, the number of LP problems increase

exponentially since the number of star sets grows exponentially as proved in Lemma III.2.1. Therefore, to

optimize the computation time and enhance the scalability of the star set approach, we need to minimize

the number of LP problems solved in the analysis. Fortunately, for exact analysis, we do not need to know

the exact range of a state of the input to a specific neuron to compute the exact reachable set. The only

information we need to know is whether the range contains the zero point. If this is the case, then the star set

is split into two new stars which can constructed efficiently without using the range information. If the range

does not contain the zero point, the new star set is constructed even more easily. If the zero point relies on the

left hand side of the range, i.e., the input is larger than zero, the output star set at the neuron is equal to the

input star set. If the zero point relies on the right hand side of the range, i.e., the input is smaller than zero,

the output star set is a projection of the input star set in which the neuron output is projected to zero. In the

over-approximate analysis, the range information is needed to construct an over-approximate reachable

set at a specific neuron if and only if it contains the zero point.

Based on above important observation, we propose a zonotope pre-filtering step [10] in which a star set

is equipped with an outer-zonotope which is an over-approximation of the star set. This outer-zonotope

helps to estimate quickly the range of a state in a star set when doing reachability analysis as a zonotope

is efficient for this task. Using this estimated range, we neglect all neurons in the layer that do not affect
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the analysis. If the estimated range contains the zero point, we solve two LP problems to get the actual

range of this specific input. We reexamine whether the actual range contain the zero point to perform an

appropriate operation, i.e., splitting the input set in the exact analysis or constructing an over-approximation

of the reachable set using the range information in the over-approximate analysis. We note that, the new

constructed star set inherits the outer-zonotope from its preceptor. Importantly, this outer-zonotope is also

updated through the analysis.

III.2.4 Reachability algorithms (code)

The improved star-based exact reachability algorithm using zonotope pre-filtering given in Algorithm 1 works

as follows. The layer takes the star output sets of the preceding layer as input sets I = [Θ1, · · · , ΘN ]. The main

procedure in the algorithm is layerReach which processes the input sets I in parallel. On each input element

Θi = 〈ci,Vi,Pi,Zi〉, the main procedure maps the element with the layer weight matrix W and bias vector b

which results a new star I1 = 〈Wci+b,WVi,Pi,WZi〉, where Zi is the outer-zonotope of the star input set. The

reachable set of the layer corresponding to the element Θi is computed by reachReLU sub-procedure which

executes a minimized sequence of stepReLU/approxStepReLU operations on the new star I1, i.e., iteratively

calls stepReLU/approxStepReLU sub-procedure. Note that that the stepReLU sub-procedure is designed to

handle multiple star input sets since the number of star sets may increase after each stepReLU operation.

Remark III.2.7. The star-based reachability analysis algorithm is much faster and more reliable than the

polyhedron-based algorithm [83, 28] because the affine mapping step in reachable set computation can be

done efficiently by matrix-vector multiplications while in the polyhedron-based approach, this step is very

expensive especially for a layer with a large number of neurons since it may need to compute all vertices of

the polyhedron input set [48].

III.3 Dealing with Other Piecewise Activation Functions

The star set method can be extended to FNNs with other classes of piecewise activation functions such as

satlin, satlins and leaky ReLU. In this section, we present the extension of the star set method for these type

of activation functions. Similar to a ReLU layer, a reachable set of a layer with satlin, satlins, and leaky

ReLU can be constructed by performing a sequence of step reachability operations. These step operations

can produce an exact or over-approximate reachable set at specific neurons.

26

https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/fnn/PosLin.m


Algorithm 1 Improved star-based reachability with zonotope pre-filtering.

Input: I = [Θ1 · · · ΘN ], W , b . star input sets, weight matrix, bias vector

Output: R . exact reachable set

1: procedure R = LAYERREACH(I,W,b,method)
2: R = /0
3: parfor i = 1 : N do . parallel for loop

4: I1 =W ∗Θi +b = 〈Wci +b,WVi,Pi,WZi〉
5: R1 = reachReLU(I1, method), R = R∪R1
6: end parfor
7: procedure R1 = REACHRELU(I1, method)
8: In = I1
9: [lb,ub] = In.Z.getRanges . estimate ranges of all input variables

10: map = f ind(ub < 0) . list of neglected neurons

11: In.c(map,1) = 0, In.V (map, :) = 0 . update the input star set

12: In.Z.l(map,1) = 0, In.Z.G(map, :) = 0 . update the outer-zonotope

13: map = f ind(lb < 0 & ub > 0) . construct computation map

14: m = length(map) . minimized number of step operations

15: for i = 1 : m do
16: if method = exact then
17: In = stepReLU(In,map(i)) . stepReLU operation

18: else if method = approx then
19: In = approxStepReLU(In,map(i)) . approxStepReLU operation

20: R1 = In
21: procedure R̃ = STEPRELU(Ĩ, i)
22: R̃ = /0, Ĩ = [Θ̃1 · · · Θ̃k] . intermediate star input and output sets

23: for j = 1 : k do
24: [lbi, ubi] = Θ̃ j.getRange(i) . get exact range of the jth input

25: R1 = /0, M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
26: if lbi ≥ 0 then R1 = Θ̃ j = 〈c̃ j,Ṽ j, P̃j, Z̃ j〉
27: if ubi ≤ 0 then R1 = M ∗ Θ̃ j = 〈Mc̃ j,MṼ j, P̃j,MZ̃ j〉
28: if lbi < 0 & ubi > 0 then
29: Θ̃′j = Θ̃ j ∧ x[i]≥ 0 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉,
30: Θ̃′′j = Θ̃ j ∧ x[i]< 0 = 〈c̃ j,Ṽ j, P̃′′j , Z̃ j〉
31: R1 = Θ̃′j ∪M ∗ Θ̃′′j

32: R̃ = R̃∪R1

33: procedure R̃ = APPROXSTEPRELU(Ĩ, i)
34: Ĩ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
35: [l,u] = Θ̃.getRange(i) . get actual range of the ith input

36: M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
37: if l ≥ 0 then R̃ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
38: if u≤ 0 then R̃ = M ∗ Θ̃ = 〈Mc̃,MṼ , P̃,MZ̃〉
39: if l < 0 & u > 0 then
40: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

41: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

42: C1 = [0 0 · · · 0 -1], d1 = 0 . αm+1 ≥ 0⇔C1α ′ ≤ d1

43: C2 = [ ˜V (i, :) -1], d2 =−c̃[i] . αm+1 ≥ x[i]⇔C2α ′ ≤ d2

44: C3 = [ −u
u−l × ˜V (i, :) 1], d3 =

ul
u−l × (1− c̃[i]) . αm+1 ≤ u(x[i]−l)

u−l ⇔C3α ′ ≤ d3

45: C0 = [C̃ 0m×1], d0 = d̃
46: C′ = [C0;C1;C2;C3], d′ = [d0;d1;d2;d3]
47: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

48: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = ReLU(x[i]) = αm+1

49: R̃ = 〈c′,V ′,P′, Z̃〉
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III.3.1 Reachability of a satlin layer

The satlin activation function is defined by:

f (x) =


0 if x≤ 0

x if 0≤ x≤ 1

1 if x≥ 1

The star-based reachability algorithm with zonotope pre-filtering for a satlin layer is given in Algorithm 2.

Similar to a ReLU layer, we use a zonotope pre-filter to determine all neurons where splitting cannot happen.

We update quickly the reachable set at these neurons, i.e., project the output to zero or one. Then, we consider

the neurons where the splitting may occur. For those neurons, we solve LP optimization to determine their

actual ranges to split the input set (in the exact analysis) or to construct an over-approximate reachable set (in

the over approximate analysis).

III.3.2 Reachability of a satlins layer

The satlins activation function is defined by:

f (x) =


−1 if x≤−1

x if −1≤ x≤ 1

1 if x≥ 1

The reachability algorithms for a satlins layer is given in Algorithm 3.

III.3.3 Reachability of a leaky ReLU layer

The leaky ReLU activation function is defined by:

f (γ,x) =


γx if x≤ 0

x if −1≤ x≤ 0

The reachability algorithms for a leaky ReLU layer is given in Algorithm 4. These algorithms are similar to

the ones for a ReLU layer except for the case that when the input to a specific neuron is smaller than zero,

the output is proportional to the input with a coefficient γ instead of being set by zero.
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Algorithm 2 Improved star-based reachability for a satlin layer.

Input: I = [Θ1 · · · ΘN ], W , b . star input sets, weight matrix, bias vector

Output: R . exact reachable set

1: procedure R = LAYERREACH(I,W,b,method)
2: R = /0
3: parfor i = 1 : N do . parallel for loop

4: I1 =W ∗Θi +b = 〈Wci +b,WVi,Pi,WZi〉
5: R1 = reachSatlin(I1, method), R = R∪R1
6: end parfor
7: procedure R1 = REACHSATLIN(I1, method)
8: In = I1
9: [lb,ub] = In.Z.getRanges . estimate ranges of all input variables

10: map = f ind(ub≤ 0) . list of neglected neurons

11: In.c(map,1) = 0, In.V (map, :) = 0 . update the input star set

12: In.Z.l(map,1) = 0, In.Z.G(map, :) = 0 . update the outer-zonotope

13: map = f ind(lb≥ 1) . list of neglected neurons

14: In.c(map,1) = 1, In.V (map, :) = 0 . update the input star set

15: In.Z.l(map,1) = 1, In.Z.G(map, :) = 0 . update the outer-zonotope

16: map = f ind(lb < 1 || ub > 0) . construct computation map

17: m = length(map) . minimized number of step operations

18: for i = 1 : m do
19: if method = exact then
20: In = stepSatlin(In,map(i)) . stepSatlin operation

21: else if method = approx then
22: In = approxStepSatlin(In,map(i)) . approxStepSatlin operation

23: R1 = In
24: procedure R̃ = STEPSATLIN(Ĩ, i)
25: R̃ = /0, Ĩ = [Θ̃1 · · · Θ̃k] . intermediate star input and output sets

26: for j = 1 : k do
27: [lbi, ubi] = Θ̃ j.getRange(i) . get exact range of the jth input

28: R1 = /0, M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
29: if lbi ≥ 0 & ubi ≤ 1 then R1 = Θ̃ j = 〈c̃ j,Ṽ j, P̃j, Z̃ j〉
30: if ubi ≤ 0 then R1 = M ∗ Θ̃ j = 〈Mc̃ j,MṼ j, P̃j,MZ̃ j〉
31: if lbi < 0 & ubi ≤ 1 then
32: Θ̃′j = Θ̃ j ∧ x[i]≥ 0 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉,
33: Θ̃′′j = Θ̃ j ∧ x[i]< 0 = 〈c̃ j,Ṽ j, P̃′′j , Z̃ j〉
34: R1 = Θ̃′j ∪M ∗ Θ̃′′j

35: if 0≤ lbi ≤ 1 & ubi ≥ 1 then
36: Θ̃′j = Θ̃ j ∧ x[i]≤ 1 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉,
37: Θ̃′′j = Θ̃ j ∧ x[i]≥ 1 = 〈c̃′′j ,Ṽ ′′j , P̃′′j , Z̃′′j 〉
38: c̃′′j = c̃ j, c̃′′j (i) = 1,Ṽ ′′j = Ṽ j,Ṽ ′′j (i, :) = 0,
39: Z̃′′j = Z̃ j, Z̃′′j .l(i) = 1, Z̃′′j .G(i, :) = 0
40: R1 = Θ̃′j ∪ Θ̃′′j

41: if lbi ≤ 0 & ubi ≥ 1 then
42: Θ̃′j = Θ̃ j ∧0≤ x[i]≤ 1 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉
43: Θ̃′′j = Θ̃ j ∧ x[i]< 0 = 〈c̃ j,Ṽ j, P̃′′j , Z̃ j〉
44: Θ̃′′′j = Θ̃ j ∧ x[i]≥ 1 = 〈c̃′′′j ,Ṽ ′′′j , P̃′′′j , Z̃′′′j 〉
45: c̃′′′j = c̃ j, c̃′′′j (i) = 1,Ṽ ′′′j = Ṽ j,Ṽ ′′′j (i, :) = 0,
46: Z̃′′′j = Z̃ j, Z̃′′′j .l(i) = 1, Z̃′′′j .G(i, :) = 0
47: R1 = Θ̃′j ∪M ∗ Θ̃′′j ∪ Θ̃′′′j

48: R̃ = R̃∪R1
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49: procedure R̃ = APPROXSTEPSATLIN(Ĩ, i)
50: Ĩ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
51: [l,u] = Θ̃.getRange(i) . get actual range of the ith input

52: M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
53: if l ≥ 0 & u≤ 1 then R̃ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
54: if l ≥ 1 then
55: c̃′ = c̃, c̃(i) = 1, Ṽ ′ = Ṽ ,Ṽ (i, :) = 0, Z̃′ = Z̃, Z̃.l(i) = 1, Z̃.G(i, :) = 0
56: R̃ = Θ̃′ = 〈c̃′,Ṽ ′, P̃, Z̃′〉
57: if u≤ 0 then R̃ = M ∗ Θ̃ = 〈Mc̃,MṼ , P̃,MZ̃〉
58: if l < 0 & 0 < u≤ 1 then
59: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

60: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

61: C1 = [0 0 · · · 0 -1], d1 = 0 . αm+1 ≥ 0⇔C1α ′ ≤ d1

62: C2 = [ ˜V (i, :) -1], d2 =−c̃[i] . αm+1 ≥ x[i]⇔C2α ′ ≤ d2

63: C3 = [ −u
u−l × ˜V (i, :) 1], d3 =

ul
u−l × (1− c̃[i]) . αm+1 ≤ u(x[i]−l)

u−l ⇔C3α ′ ≤ d3

64: C0 = [C̃ 0m×1], d0 = d̃
65: C′ = [C0;C1;C2;C3], d′ = [d0;d1;d2;d3]
66: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

67: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = satlin(x[i]) = αm+1

68: R̃ = 〈c′,V ′,P′, Z̃〉
69: if 0≤ l < 1 & u > 1 then
70: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

71: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

72: C1 = [0 0 · · · 0 1], d1 = 1 . αm+1 ≤ 1⇔C1α ′ ≤ d1

73: C2 = [− ˜V (i, :) 1], d2 = c̃[i] . αm+1 ≤ x[i]⇔C2α ′ ≤ d2

74: C3 = [ 1−l
u−l × ˜V (i, :) -1], d3 =

l(1−l)
u−l c̃(i)− l . αm+1 ≥ (1−l)(x[i]−l)

u−l + l⇔C3α ′ ≤ d3

75: C0 = [C̃ 0m×1], d0 = d̃
76: C′ = [C0;C1;C2;C3], d′ = [d0;d1;d2;d3]
77: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

78: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = satlin(x[i]) = αm+1

79: R̃ = 〈c′,V ′,P′, Z̃〉
80: if l < 0 & u > 1 then
81: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

82: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

83: C1 = [0 0 · · · 0 -1], d1 = 0 . αm+1 ≥ 0⇔C1α ′ ≤ d1

84: C2 = [0 0 · · · 0 1], d2 = 1 . αm+1 ≤ 1⇔C2α ′ ≤ d2

85: C3 = [− ˜V (i, :) 1], d3 =
c̃[i]
1−l −

l
1−l . αm+1 ≤ x[i]

1−l −
l

1−l ⇔C3α ′ ≤ d3

86: C4 = [ 1
u × ˜V (i, :) -1], d4 =− 1

u c̃(i) . αm+1 ≥ x[i]
u ⇔C4α ′ ≤ d4

87: C0 = [C̃ 0m×1], d0 = d̃
88: C′ = [C0;C1;C2;C3;C4], d′ = [d0;d1;d2;d3;d4]
89: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

90: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = satlin(x[i]) = αm+1

91: R̃ = 〈c′,V ′,P′, Z̃〉
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Algorithm 3 Improved star-based reachability for a satlins layer.

Input: I = [Θ1 · · · ΘN ], W , b . star input sets, weight matrix, bias vector

Output: R . exact reachable set

1: procedure R = LAYERREACH(I,W,b,method)
2: R = /0
3: parfor i = 1 : N do . parallel for loop

4: I1 =W ∗Θi +b = 〈Wci +b,WVi,Pi,WZi〉
5: R1 = reachSatlin(I1, method), R = R∪R1
6: end parfor
7: procedure R1 = REACHSATLINS(I1, method)
8: In = I1
9: [lb,ub] = In.Z.getRanges . estimate ranges of all input variables

10: map = f ind(ub≤−1) . list of neglected neurons

11: In.c(map,1) =−1, In.V (map, :) = 0 . update the input star set

12: In.Z.l(map,1) =−1, In.Z.G(map, :) = 0 . update the outer-zonotope

13: map = f ind(lb≥ 1) . list of neglected neurons

14: In.c(map,1) = 1, In.V (map, :) = 0 . update the input star set

15: In.Z.l(map,1) = 1, In.Z.G(map, :) = 0 . update the outer-zonotope

16: map = f ind(lb < 1 || ub >−1) . construct computation map

17: m = length(map) . minimized number of step operations

18: for i = 1 : m do
19: if method = exact then
20: In = stepSatlins(In,map(i)) . stepSatlins operation

21: else if method = approx then
22: In = approxStepSatlins(In,map(i)) . approxStepSatlins operation

23: R1 = In
24: procedure R̃ = STEPSATLINS(Ĩ, i)
25: R̃ = /0, Ĩ = [Θ̃1 · · · Θ̃k] . intermediate star input and output sets

26: for j = 1 : k do
27: [lbi, ubi] = Θ̃ j.getRange(i) . get exact range of the jth input

28: R1 = /0, M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
29: if lbi ≥−1 & ubi ≤ 1 then R1 = Θ̃ j = 〈c̃ j,Ṽ j, P̃j, Z̃ j〉
30: if ubi ≤−1 then
31: c̃′j = c̃ j, c̃′j(i) =−1,Ṽ ′j = Ṽ j,Ṽ ′j(i, :) = 0
32: Z̃′j = Z̃ j, Z̃′j.l(i) =−1, Z̃′j.G(i, :) = 0
33: R1 = Θ̃′j = 〈c̃′j,Ṽ ′j , P̃j, Z̃′j〉
34: if lbi <−1 & ubi ≤ 1 then
35: Θ̃′j = Θ̃ j ∧ x[i]≥−1 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉,
36: Θ̃′′j = Θ̃ j ∧ x[i]<−1 = 〈c̃′′j ,Ṽ ′′j , P̃′′j , Z̃′′j 〉
37: c̃′′j = c̃ j, c̃′′j (i) =−1,Ṽ ′′j = Ṽ j,Ṽ ′′j (i, :) = 0
38: Z̃′′j = Z̃ j, Z̃′′j .l(i) =−1, Z̃′′j .G(i, :) = 0
39: R1 = Θ̃′j ∪ Θ̃′′j

40: if −1≤ lbi ≤ 1 & ubi ≥ 1 then
41: Θ̃′j = Θ̃ j ∧ x[i]≤ 1 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉,
42: Θ̃′′j = Θ̃ j ∧ x[i]≥ 1 = 〈c̃′′j ,Ṽ ′′j , P̃′′j , Z̃′′j 〉
43: c̃′′j = c̃ j, c̃′′j (i) = 1,Ṽ ′′j = Ṽ j,Ṽ ′′j (i, :) = 0,
44: Z̃′′j = Z̃ j, Z̃′′j .l(i) = 1, Z̃′′j .G(i, :) = 0
45: R1 = Θ̃′j ∪ Θ̃′′j

46: if lbi <−1 & ubi > 1 then
47: Θ̃′j = Θ̃ j ∧−1≤ x[i]≤ 1 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉
48: Θ̃′′j = Θ̃ j ∧ x[i]<−1 = 〈c̃′′j ,Ṽ ′′j , P̃′′j , Z̃′′ j 〉
49: c̃′′j = c̃ j, c̃′′j (i) =−1,Ṽ ′′j = Ṽ j,Ṽ ′′j (i, :) = 0,
50: Z̃′′j = Z̃ j, Z̃′′j .l(i) =−1, Z̃′′j .G(i, :) = 0
51: Θ̃′′′j = Θ̃ j ∧ x[i]≥ 1 = 〈c̃′′′j ,Ṽ ′′′j , P̃′′′j , Z̃′′′j 〉
52: c̃′′′j = c̃ j, c̃′′′j (i) = 1,Ṽ ′′′j = Ṽ j,Ṽ ′′′j (i, :) = 0,
53: Z̃′′′j = Z̃ j, Z̃′′′j .l(i) = 1, Z̃′′′j .G(i, :) = 0
54: R1 = Θ̃′j ∪ Θ̃′′j ∪ Θ̃′′′j

55: R̃ = R̃∪R1
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56: procedure R̃ = APPROXSTEPSATLINS(Ĩ, i)
57: Ĩ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
58: [l,u] = Θ̃.getRange(i) . get actual range of the ith input

59: M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
60: if l ≥−1 & u≤ 1 then R̃ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
61: if l ≥ 1 then
62: c̃′ = c̃, c̃(i) = 1, Ṽ ′ = Ṽ ,Ṽ (i, :) = 0, Z̃′ = Z̃, Z̃.l(i) = 1, Z̃.G(i, :) = 0
63: R̃ = Θ̃′ = 〈c̃′,Ṽ ′, P̃, Z̃′〉
64: if u≤−1 then
65: c̃′ = c̃, c̃(i) =−1, Ṽ ′ = Ṽ ,Ṽ (i, :) = 0, Z̃′ = Z̃, Z̃.l(i) =−1, Z̃.G(i, :) = 0
66: R̃ = Θ̃′ = 〈c̃′,Ṽ ′, P̃, Z̃′〉
67: if l <−1 & 0 < u≤ 1 then
68: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

69: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

70: C1 = [0 0 · · · 0 -1], d1 = 1 . αm+1 ≥−1⇔C1α ′ ≤ d1

71: C2 = [Ṽ (i, :) -1], d2 =−c̃(i) . αm+1 ≥ x[i]⇔C2α ′ ≤ d2

72: . αm+1 ≤ (u+1)(x[i]−u)
u−l +u⇔C3α ′ ≤ d3

73: C3 = [−u−1
u−l ×Ṽ (i, :) 1], d3 =

−u(u+1)
u−l × c̃[i]+u

74: C0 = [C̃ 0m×1], d0 = d̃
75: C′ = [C0;C1;C2;C3], d′ = [d0;d1;d2;d3]
76: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

77: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = satlins(x[i]) = αm+1

78: R̃ = 〈c′,V ′,P′, Z̃〉
79: if −1≤ l < 1 & u > 1 then
80: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

81: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

82: C1 = [0 0 · · · 0 1], d1 = 1 . αm+1 ≤ 1⇔C1α ′ ≤ d1

83: C2 = [−Ṽ (i, :) 1], d2 = c̃(i) . αm+1 ≤ x[i]⇔C2α ′ ≤ d2

84: C3 = [ 1−l
u−l ×Ṽ (i, :) -1], d3 =

l(1−l)
u−l c̃(i)− l . αm+1 ≥ (1−l)(x[i]−l)

u−l + l⇔C3α ′ ≤ d3

85: C0 = [C̃ 0m×1], d0 = d̃
86: C′ = [C0;C1;C2;C3], d′ = [d0;d1;d2;d3]
87: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

88: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = satlins(x[i]) = αm+1

89: R̃ = 〈c′,V ′,P′, Z̃〉
90: if l <−1 & u > 1 then
91: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

92: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

93: C1 = [0 0 · · · 0 -1], d1 = 1 . αm+1 ≥−1⇔C1α ′ ≤ d1

94: C2 = [0 0 · · · 0 1], d2 = 1 . αm+1 ≤ 1⇔C2α ′ ≤ d2

95: C3 = [− 2
1−l Ṽ (i, :) 1], d3 =

2c̃[i]
1−l −1 . αm+1 ≤ 2x[i]

1−l −1⇔C3α ′ ≤ d3

96: C4 = [ 2
u+1 ×Ṽ (i, :) -1], d4 =− 2

u+1 c̃(i)+1 . αm+1 ≥ 2(x[i]+1)
u+1 −1⇔C4α ′ ≤ d4

97: C0 = [C̃ 0m×1], d0 = d̃
98: C′ = [C0;C1;C2;C3;C4], d′ = [d0;d1;d2;d3;d4]
99: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

100: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = satlins(x[i]) = αm+1

101: R̃ = 〈c′,V ′,P′, Z̃〉
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Algorithm 4 Improved star-based reachability for a leaky ReLU layer.

Input: I = [Θ1 · · · ΘN ], W , b . star input sets, weight matrix, bias vector

Output: R . exact reachable set

1: procedure R = LAYERREACH(I,W,b,γ,method)
2: R = /0
3: parfor i = 1 : N do . parallel for loop

4: I1 =W ∗Θi +b = 〈Wci +b,WVi,Pi,WZi〉
5: R1 = reachLeakyReLU(I1,γ, method), R = R∪R1
6: end parfor
7: procedure R1 = REACHLEAKYRELU(I1,γ, method)
8: In = I1, Mi = [e1 e2 · · ·ei−1 γ× ei ei+1 · · · en]
9: [lb,ub] = In.Z.getRanges . estimate ranges of all input variables

10: map = f ind(ub < 0) . list of neglected neurons

11: In.c = MmapIn.c, In.V = MmapIn.V . update the input star set

12: In.Z.l = MmapIn.Z.l, In.Z.G = MmapIn.Z.G . update the outer-zonotope

13: map = f ind(lb < 0 & ub > 0) . construct computation map

14: m = length(map) . minimized number of step operations

15: for i = 1 : m do
16: if method = exact then
17: In = stepLeakyReLU(In,map(i)) . stepLeakyReLU operation

18: else if method = approx then
19: In = approxStepLeakyReLU(In,map(i)) . approxStepLeakyReLU operation

20: R1 = In
21: procedure R̃ = STEPLEAKYRELU(Ĩ, i,γ)
22: R̃ = /0, Ĩ = [Θ̃1 · · · Θ̃k] . intermediate star input and output sets

23: for j = 1 : k do
24: [lbi, ubi] = Θ̃ j.getRange(i) . get exact range of the jth input

25: R1 = /0, M = [e1 e2 · · ·ei−1 γ× ei ei+1 · · · en]
26: if lbi ≥ 0 then R1 = Θ̃ j = 〈c̃ j,Ṽ j, P̃j, Z̃ j〉
27: if ubi ≤ 0 then R1 = M ∗ Θ̃ j = 〈Mc̃ j,MṼ j, P̃j,MZ̃ j〉
28: if lbi < 0 & ubi > 0 then
29: Θ̃′j = Θ̃ j ∧ x[i]≥ 0 = 〈c̃ j,Ṽ j, P̃′j, Z̃ j〉,
30: Θ̃′′j = Θ̃ j ∧ x[i]< 0 = 〈c̃ j,Ṽ j, P̃′′j , Z̃ j〉
31: R1 = Θ̃′j ∪M ∗ Θ̃′′j

32: R̃ = R̃∪R1

33: procedure R̃ = APPROXSTEPLEAKYRELU(Ĩ, i,γ)
34: Ĩ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
35: [l,u] = Θ̃.getRange(i) . get actual range of the ith input

36: M = [e1 e2 · · ·ei−1 γ× ei ei+1 · · · en]
37: if l ≥ 0 then R̃ = Θ̃ = 〈c̃,Ṽ , P̃, Z̃〉
38: if u≤ 0 then R̃ = M ∗ Θ̃ = 〈Mc̃,MṼ , P̃,MZ̃〉
39: if l < 0 & u > 0 then
40: P̃(α), C̃α ≤ d̃, α = [α1,α2, · · · ,αm]

T . input set’s predicate

41: α ′ = [α1, · · · ,αm,αm+1]
T . new variable αm+1

42: C1 = [Ṽ (i, :) -1], d1 =−γ c̃(i) . αm+1 ≥ γx[i]⇔C1α ′ ≤ d1

43: C2 = [Ṽ (i, :) -1], d2 =−c̃[i] . αm+1 ≥ x[i]⇔C2α ′ ≤ d2

44: C3 = [ −u
u−l ×Ṽ (i, :) 1], d3 =

ul
u−l × (1− c̃[i]) . αm+1 ≤ u(x[i]−l)

u−l ⇔C3α ′ ≤ d3

45: C0 = [C̃ 0m×1], d0 = d̃
46: C′ = [C0;C1;C2;C3], d′ = [d0;d1;d2;d3]
47: P′(α ′),C′α ′ ≤ d′ . output set’s predicate

48: M = [e1 e2 · · ·ei−1 0 ei+1 · · · en]
49: c′ = Mc̃, V ′ = MṼ , V ′ = [V ′ ei] . y[i] = leakyReLU(x[i]) = αm+1

50: R̃ = 〈c′,V ′,P′, Z̃〉
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III.4 Evaluation

In this section, we re-evaluate the improved star-based reachability algorithms in comparison to the newest

version of Reluplex [41], the zonotopes [74], and the abstract domain [75] methods implemented in our NNV

tool [86]. The implementation of the zonotope and new abstract domain methods allows us to the visualize

of the over-approximate reachable set of these approaches to intuitively evaluate their conservativeness. All

results presented in this section and their corresponding scripts are available online1.

III.4.1 Safety Verification for ACAS Xu DNNs

The ACAS Xu networks are DNN-based advisory controllers that map the sensor measurements to advisories

in the Airborne Collision Avoidance System X [39]. It is a series of 45 feedforward neural networks which

map input variables to actions for horizontal maneuvers. The output means the order to the UAV to follow,

and this can be: clear of conflict (COC), weak left, weak right, strong left or strong right. All the networks

have 6 fully connected layers with a total of 300 neurons, 5 inputs and 5 outputs, with all ReLU activation

functions. The inputs are:

• ρ: distance from ownship to intruder (feet)

• θ : angle to intruder relative to ownship heading direction (radians)

• ψ: heading angle of intruder relative to ownship heading direction (radians)

• vown: speed of ownship (feet per second)

• vint : speed of intruder (feet per second)

Two other variables, τ , time until loss of vertical separation (seconds), and aprev, previous advisory, are

discretized and used to generate the 45 neural networks mentioned.

The following safety properties are used to re-evaluate the performance of different methods.

• Property φ3.

– If the intruder is directly ahead and is moving towards the ownship, the score for COC will not

be minimal.

– The desired output property is that the score for COC is not the minimal score.

– It has 5 input constraints: 1500 ≤ ρ ≤ 1800, θ ≤ |0.06|, ψ ≥ 3.10, vown ≥ 980, vint ≥ 960.

• Property φ4.
1https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/FM2019 Journal
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Figure III.3: Vertical view of a generic example of the ACAS Xu benchmark set.[41]

– If the intruder is directly ahead and is moving away from the ownship but at a lower speed than

that of the ownship, the score for COC will not be minimal.

– The desired output property is that the score for COC is not the minimal score.

– It has 5 input constraints: 1500 ≤ ρ ≤ 1800, θ ≤ |0.06|, ψ = 0, vown ≥ 1000, 700 ≤ vint ≤ 800.

Our experiments are done on a laptop with the following configuration: Intel Core i7-8850H CPU @

2.6GHz 8 core Processor, 32 GB Memory, and 64-bit Windows 10 OS.2 The verification results are presented

in Tables III.1 and III.2. We used 6 cores for the exact reachability analysis of the ACAS Xu networks using

the polyhedron- and star- based approaches, and only 1 core for the over-approximate reachability analysis

approaches.

Verification results and timing performance. Safety verification using star-based reachability algo-

rithms consists of two major steps. The first step constructs the whole reachable set of the networks. The

second step checks the intersection of the constructed reachable set with the unsafe region. The verification

time (VT) in our approach is the sum of the reachable set computation time (RT) and the safety checking time

(ST). The reachable set computation time dominates (averagely 95% of) the verification time in all cases and

the verification time varies for different properties.

Star set approach. The experimental results show that the improved exact star method is on average

27× and 29.8× times faster than Reluplex on property P3 and P4 respectively when we use parallel comput-

ing. Impressively, the approximate star method can achieve on average 1408× (for property P3) and 961×

(for property P4) faster than Reluplex. This notable improvement illustrates the efficiency of star set in the

reachability analysis and verification of piecewise linear DNNs where the affine mapping and half-space in-

2In [84], this experiment was done using Amazon Web Services Elastic Computing Cloud (EC2), on a powerful m5a.24xlarge
instance with 96 cores and 384 GB of memory.
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ID
Reluplex Exact-Star Approx-Star Zonotope Abstract Domain

Res. VT Res. VT Imp. Res. VT Imp. Res. VT Imp. Res. VT Imp.
N11 UNSAT 6156.00 UNSAT 383.68 16× UNK 1.16 5326× UNK 0.04 140157× UNK 0.10 64073×
N12 UNSAT 4942.00 UNSAT 244.63 20× UNK 0.86 5760× UNK 0.02 266171× UNK 0.06 78243×
N13 UNSAT 1134.00 UNSAT 55.96 20× UNK 0.95 1199× UNK 0.02 57670× UNK 0.07 16221×
N14 UNSAT 528.00 UNSAT 13.68 39× UNSAT 0.17 3077× UNK 0.02 24553× UNK 0.08 6917×
N15 UNSAT 317.00 UNSAT 18.25 17× UNSAT 0.24 1348× UNK 0.02 14100× UNK 0.06 5091×
N16 UNSAT 64.00 UNSAT 4.60 14× UNSAT 0.09 701× UNK 0.02 3673× UNK 0.07 885×
N17 SAT 1.00 SAT 2.17 0× UNK 0.07 15× UNK 0.02 62× UNK 0.05 18×
N18 SAT 3.00 SAT 1.73 2× UNK 0.05 57× UNK 0.02 187× UNK 0.04 70×
N19 SAT 2.00 SAT 1.55 1× UNK 0.03 77× UNK 0.01 137× UNK 0.05 37×
N21 UNSAT 1208.00 UNSAT 67.63 18× UNK 0.55 2212× UNK 0.02 65048× UNK 0.06 20498×
N22 UNSAT 653.00 UNSAT 22.24 29× UNK 0.36 1833× UNK 0.02 37376× UNK 0.05 14029×
N23 UNSAT 1043.00 UNSAT 38.68 27× UNK 0.66 1586× UNK 0.02 47091× UNK 0.05 19669×
N24 UNSAT 41.00 UNSAT 1.71 24× UNSAT 0.05 819× UNK 0.02 1856× UNK 0.05 907×
N25 UNSAT 235.00 UNSAT 8.45 28× UNSAT 0.26 900× UNK 0.02 13639× UNK 0.06 3913×
N26 UNSAT 79.00 UNSAT 1.64 48× UNSAT 0.10 806× UNK 0.02 4271× UNK 0.06 1346×
N27 UNSAT 116.00 UNSAT 4.16 28× UNSAT 0.12 983× UNK 0.02 7341× UNK 0.07 1637×
N28 UNSAT 83.00 UNSAT 1.74 48× UNSAT 0.06 1498× UNK 0.02 4568× UNK 0.05 1552×
N29 UNSAT 27.00 UNSAT 1.21 22× UNSAT 0.02 1106× UNSAT 0.01 1838× UNK 0.03 776×
N31 UNSAT 177.00 UNSAT 19.99 9× UNSAT 0.22 810× UNK 0.02 7332× UNK 0.05 3380×
N32 UNSAT 1561.00 UNSAT 210.03 7× UNK 0.86 1819× UNK 0.02 82581× UNK 0.07 23248×
N33 UNSAT 1105.00 UNSAT 35.06 32× UNSAT 0.62 1784× UNK 0.02 63345× UNK 0.05 20432×
N34 UNSAT 209.00 UNSAT 8.64 24× UNK 0.78 268× UNK 0.02 10255× UNK 0.07 2906×
N35 UNSAT 83.00 UNSAT 3.96 21× UNSAT 0.13 629× UNK 0.02 5085× UNK 0.05 1594×
N36 UNSAT 255.00 UNSAT 7.90 32× UNK 0.34 749× UNK 0.02 13679× UNK 0.07 3597×
N37 UNSAT 35.00 UNSAT 1.11 31× UNSAT 0.04 922× UNK 0.02 2225× UNK 0.06 605×
N38 UNSAT 179.00 UNSAT 2.87 62× UNSAT 0.17 1082× UNK 0.02 10501× UNK 0.06 3228×
N39 UNSAT 118.00 UNSAT 4.83 24× UNSAT 0.11 1102× UNK 0.02 7119× UNK 0.05 2462×
N41 UNSAT 201.00 UNSAT 8.77 23× UNK 0.22 909× UNK 0.02 11469× UNK 0.04 4832×
N42 UNSAT 2882.00 UNSAT 83.21 35× UNK 0.52 5541× UNK 0.02 160403× UNK 0.06 50234×
N43 UNSAT 1767.00 UNSAT 121.59 15× UNK 0.82 2149× UNK 0.02 90979× UNK 0.06 31555×
N44 UNSAT 86.00 UNSAT 2.19 39× UNSAT 0.07 1280× UNK 0.02 5094× UNK 0.06 1367×
N45 UNSAT 35.00 UNSAT 1.40 25× UNSAT 0.06 561× UNK 0.02 2045× UNK 0.04 833×
N46 UNSAT 300.00 UNSAT 11.27 27× UNSAT 1.01 297× UNK 0.02 14910× UNK 0.07 4140×
N47 UNSAT 126.00 UNSAT 3.50 36× UNSAT 0.09 1476× UNK 0.02 8054× UNK 0.06 2152×
N48 UNSAT 142.00 UNSAT 2.66 53× UNSAT 0.07 2121× UNK 0.02 8927× UNK 0.06 2406×
N49 UNSAT 143.00 UNSAT 4.03 35× UNSAT 0.19 763× UNK 0.02 7372× UNK 0.06 2287×
N51 UNSAT 1131.00 UNSAT 34.87 32× UNK 0.47 2395× UNK 0.02 62184× UNK 0.05 24665×
N52 UNSAT 151.00 UNSAT 7.28 21× UNSAT 0.22 701× UNK 0.02 9363× UNK 0.03 4530×
N53 UNSAT 341.00 UNSAT 8.53 40× UNSAT 0.39 886× UNK 0.02 20814× UNK 0.05 6427×
N54 UNSAT 62.00 UNSAT 3.02 21× UNSAT 0.14 447× UNK 0.02 3322× UNK 0.06 1043×
N55 UNSAT 86.00 UNSAT 4.36 20× UNSAT 0.24 365× UNK 0.02 4614× UNK 0.06 1507×
N56 UNSAT 283.00 UNSAT 4.75 60× UNSAT 0.24 1184× UNK 0.02 14773× UNK 0.06 4483×
N57 UNSAT 35.00 UNSAT 0.89 39× UNSAT 0.02 1730× UNSAT 0.02 2311× UNK 0.04 831×
N58 UNSAT 310.00 UNSAT 9.14 34× UNSAT 0.18 1681× UNK 0.02 16909× UNK 0.06 4933×
N59 UNSAT 19.00 UNSAT 1.05 18× UNSAT 0.05 396× UNK 0.01 1306× UNK 0.02 799×
VT 28454.00 1480.60 14.01 0.84 2.56
UNSAT 42/45 42/45 29/45 2/45 0/45
Imp. 27× 1408× 29705× 9919×

Table III.1: Verification results for property P3 on 45 ACAS Xu networks in which V T is the verification time
in seconds. The exact-star method is on average 27× faster than Reluplex. The approx-star is on average
1408× faster than Reluplex. It can verify 29/45 networks while the zonotope can verify only 2/45 networks,
and the new abstract domain approaches cannot verify any networks.

tersection operations can be done quickly. The improvement is also come from the utilization of the zonotope

pre-filtering step. In comparison with the original star set method, the improved exact method reduces the

total verification time by 5× for property P3 and by 2.6× for property P4 (the original exact method verifies

45 networks with 7457 seconds for P3 and 1157 seconds for P4). Similarly, the improved approximate method

reduces the total verification time by 3.7× for property P3 and by 2.5× for property P4 (the original approx-

36



ID
Reluplex Exact-Star Approx-Star Zonotope Abstract Domain

Res. VT Res. VT Imp. Res. VT Imp. Res. VT Imp. Res. VT Imp.
N11 UNSAT 1291.00 UNSAT 76.95 17× UNK 0.42 3107× UNK 0.02 74511× UNK 0.04 31883×
N12 UNSAT 1267.00 UNSAT 47.54 27× UNK 0.54 2336× UNK 0.02 75568× UNK 0.05 23811×
N13 UNSAT 1150.00 UNSAT 36.29 32× UNK 0.61 1890× UNK 0.02 57693× UNK 0.06 20327×
N14 UNSAT 107.00 UNSAT 3.51 30× UNK 0.14 774× UNK 0.02 6034× UNK 0.06 1842×
N15 UNSAT 352.00 UNSAT 26.58 13× UNK 0.21 1688× UNK 0.02 21426× UNK 0.03 10327×
N16 UNSAT 219.00 UNSAT 12.80 17× UNSAT 0.24 926× UNK 0.02 13294× UNK 0.05 4320×
N17 SAT 1.00 SAT 2.03 0× UNK 0.05 18× UNK 0.01 70× UNK 0.04 22×
N18 SAT 3.00 SAT 2.10 1× UNK 0.06 47× UNK 0.01 200× UNK 0.04 74×
N19 SAT 3.00 SAT 1.94 2× UNK 0.04 69× UNK 0.02 195× UNK 0.03 116×
N21 UNSAT 330.00 UNSAT 15.69 21× UNK 0.42 782× UNK 0.02 20119× UNK 0.05 6262×
N22 UNSAT 415.00 UNSAT 14.79 28× UNK 0.40 1044× UNK 0.02 24470× UNK 0.06 7016×
N23 UNSAT 243.00 UNSAT 3.23 75× UNSAT 0.12 2101× UNK 0.02 14842× UNK 0.03 7480×
N24 UNSAT 86.00 UNSAT 3.55 24× UNSAT 0.22 397× UNK 0.02 4907× UNK 0.03 2625×
N25 UNSAT 151.00 UNSAT 11.95 13× UNSAT 0.42 359× UNK 0.02 8584× UNK 0.05 2924×
N26 UNSAT 118.00 UNSAT 5.65 21× UNSAT 0.37 320× UNK 0.02 6231× UNK 0.07 1812×
N27 UNSAT 34.00 UNSAT 2.47 14× UNSAT 0.12 283× UNK 0.02 1921× UNK 0.07 512×
N28 UNSAT 549.00 UNSAT 8.41 65× UNK 1.24 442× UNK 0.02 27415× UNK 0.07 8003×
N29 UNSAT 52.00 UNSAT 1.29 40× UNSAT 0.04 1384× UNK 0.01 3721× UNK 0.03 1860×
N31 UNSAT 478.00 UNSAT 14.23 34× UNSAT 0.32 1490× UNK 0.02 27161× UNK 0.05 9575×
N32 UNSAT 107.00 UNSAT 27.10 4× UNSAT 0.21 504× UNK 0.02 6648× UNK 0.03 3313×
N33 UNSAT 116.00 UNSAT 3.70 31× UNSAT 0.12 992× UNK 0.02 7316× UNK 0.03 3956×
N34 UNSAT 75.00 UNSAT 4.18 18× UNSAT 0.13 582× UNK 0.02 4733× UNK 0.03 2245×
N35 UNSAT 206.00 UNSAT 16.68 12× UNSAT 0.71 292× UNK 0.02 10914× UNK 0.05 4387×
N36 UNSAT 141.00 UNSAT 5.57 25× UNSAT 0.31 461× UNK 0.02 7652× UNK 0.07 1979×
N37 UNSAT 304.00 UNSAT 4.07 75× UNSAT 0.11 2707× UNK 0.02 14354× UNK 0.07 4671×
N38 UNSAT 131.00 UNSAT 2.98 44× UNK 0.28 475× UNK 0.02 5796× UNK 0.05 2899×
N39 UNSAT 621.00 UNSAT 13.04 48× UNSAT 0.44 1424× UNK 0.02 29817× UNK 0.06 9948×
N41 UNSAT 49.00 UNSAT 2.73 18× UNSAT 0.07 661× UNSAT 0.02 3158× UNK 0.03 1931×
N42 UNSAT 244.00 UNSAT 4.96 49× UNSAT 0.32 761× UNK 0.02 14887× UNK 0.05 5170×
N43 UNSAT 243.00 UNSAT 9.79 25× UNSAT 0.32 750× UNK 0.02 14721× UNK 0.05 5205×
N44 UNSAT 206.00 UNSAT 4.94 42× UNK 0.57 362× UNK 0.02 11038× UNK 0.06 3643×
N45 UNSAT 217.00 UNSAT 3.91 56× UNSAT 0.22 992× UNK 0.02 12636× UNK 0.07 3225×
N46 UNSAT 177.00 UNSAT 7.96 22× UNSAT 0.30 582× UNK 0.02 9665× UNK 0.06 3215×
N47 UNSAT 47.00 UNSAT 1.26 37× UNSAT 0.09 496× UNK 0.02 2843× UNK 0.06 845×
N48 UNSAT 195.00 UNSAT 6.10 32× UNSAT 0.18 1094× UNK 0.02 10859× UNK 0.06 3280×
N49 UNSAT 422.00 UNSAT 8.74 48× UNSAT 0.17 2443× UNK 0.02 26394× UNK 0.05 8591×
N51 UNSAT 513.00 UNSAT 19.88 26× UNSAT 0.22 2305× UNK 0.02 28381× UNK 0.05 11007×
N52 UNSAT 210.00 UNSAT 13.37 16× UNSAT 0.15 1390× UNK 0.02 13414× UNK 0.04 5715×
N53 UNSAT 124.00 UNSAT 5.16 24× UNSAT 0.27 458× UNK 0.02 7316× UNK 0.05 2617×
N54 UNSAT 144.00 UNSAT 3.61 40× UNSAT 0.19 754× UNK 0.02 8361× UNK 0.04 3492×
N55 UNSAT 114.00 UNSAT 5.29 22× UNSAT 0.16 693× UNK 0.02 6813× UNK 0.06 2060×
N56 UNSAT 160.00 UNSAT 3.01 53× UNSAT 0.19 856× UNK 0.02 9600× UNK 0.04 3954×
N57 UNSAT 38.00 UNSAT 1.13 34× UNSAT 0.07 541× UNK 0.02 2272× UNK 0.05 772×
N58 UNSAT 111.00 UNSAT 3.09 36× UNSAT 0.28 399× UNK 0.02 6110× UNK 0.06 1715×
N59 UNSAT 116.00 UNSAT 3.77 31× UNSAT 0.14 821× UNK 0.02 6647× UNK 0.05 2205×
VT 11880.00 477.01 12.20 0.78 2.19
UNSAT 42/45 42/45 32/45 1/45 0/45
Imp. 29.8× 961.1× 14904.7× 5396.2×

Table III.2: Verification results for property P4 on 45 ACAS Xu networks in which V T is the verification time
in seconds. The exact-star method is on average 29.8× faster than Reluplex. The approx-star is on average
961× faster than Reluplex. It can verify 32/45 networks while the zonotope can verify only 1/45 networks,
and the new abstract domain approaches cannot verify any networks.

imate method verifies 45 networks with 52 seconds for P3 and 30 seconds for P4). We note that due to these

essential characteristics of a star set, the exact star-based method is also much more efficient and scalable

than the polyhedron-based approach [83] whose the verification results are not presented in this paper.

Figure III.4 describes the benefits of parallel computing which can be exploited naturally with the star set

approach. The figure shows that when a single core is used for verifying property P4 on N13, our approach

37



1 2 3 4 5 6
N

0

200

400

600

800

1000

1200

V
T

 (
se

c)

Star
Reluplex

Figure III.4: Verification times for property φ4 on N13 network with different number of cores.

takes 525.8 seconds which is 2.2× faster than Reluplex ( with 1150 seconds). With only 2 cores, our verifi-

cation time drops quickly to 86.7 seconds which is 13.3× faster than Reluplex. When 4 cores are used, the

verification time decreases to 42 seconds which is 27.4× faster than Reluplex. The figure shows that fact that

when we use more cores for verification, the verification time may not be improved much. This is because

the communication overhead between different cores becomes larger which affects directly to the verification

time.

Zonotope-based method [74]. The experimental results show that the over-approximate, zonotope-based

method is significantly faster than the exact methods. In some cases, it can verify the safety of the networks

with a tiny verification time, for example, the zonotope-based method successfully verifies property φ4 on N41

network in 0.02 seconds. Although the zonotope-based method is very time-efficient, it is unable to verify

the safety of most of networks due to its huge over-approximation error. The zonotope approach can verify

only 2/45 (≈ 4.44%) networks for property P3 and 1/45 (≈ 2.22%) networks for property P4. In comparison

with our approximate star method, we can verify 29/45 (≈ 64.44%) networks for property P3 and 32/45

(≈ 71.11%) networks for property P4. This shows the fact that our method is significantly less conservative

than the zonotope approach.

Abstract-domain based method [75] Similar to zonotope method, the abstract-domain is very time-

efficient. However, it is the most conservative approach since it cannot verify any networks for both proper-

ties. We note that in [84], we implemented an improved version of the new abstract domain method in which

we still solve LP optimization problems to find the lower and upper bounds of an input to a specific neuron

38



Figure III.5: The (normalized) complete counter input set for property φ ′4 on N2 8 network is a part of the
normalized input set (red boxes).

and use these bounds to construct the reachable set. In this paper, to have a fair comparison, we re-implement

the original abstract domain method in which the lower and upper bounds are found using only ranges of

new predicate variables. We have experienced that the abstract-domain method utilizing only the estimated

ranges of new predicate variables to construct the reachable set is even more conservative than the zonotope

approach.

Benefits of computing the reachable set. The computed reachable sets are useful for intuitively observe

the complex behavior of the network. For example, Figure III.6 describes the behaviors of N51 network

corresponding to property φ4 requiring that the output COC is not the minimal score. From the figure, one

can see that the COC > StrongRight and thus, property φ4 holds on N41 network. Importantly, as shown in

the figure, via visualization, one can intuitively observe the conservativeness of different over-approximation

approaches in comparison to the exact ones which is impossible if we use ERAN, a C-Python implementation

of the zonotope and new abstract domain methods. We note that the reachable set obtained by the new abstract

domain method is neglected for visualization because it is too large. Last but not least, the reachable set is

useful in the case that we need to verify a set of safety properties corresponding to the same input set. In

this case, once the reachable set is obtained, it can be re-used to check different safety properties without

rerunning the whole verification procedure as Reluplex does, and thus helps saving a significant amount of

time.

Complete counter example input set construction. Another strong advantage of our approach in com-

parison with other existing approaches is, in the case that a neural network violates its safety specification,
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Figure III.6: Reachable sets of N41 network w.r.t property φ4 with different methods.

our exact star method can construct a complete counter input set that leads the neural network to the unsafe

region. The complete counter input set can be used as a adversarial input generator [33, 13] for robust training

of the network. We note that finding a single counter input falsifying a safety property of a neural network

can be done efficiently using only random simulations. However, constructing a complete counter input set

that contains all counter inputs is very challenging because of the non-linearity of a neural network. To the

best of our knowledge, our exact star-based approach is the only approach that can solve this problem. For

example, assume that we want to check the following property φ ′4 , ¬(COC ≥ 15.8∧StrongRight ≤ 15.09)

on N2 8 network with the same input constraints as in property φ4. Using the available reachable set of N2 8

network, we can verify that the above property φ ′4 is violated in which 60 stars in 421 stars of the reachable

set reach the unsafe region. Using Theorem III.2.5, we can construct a complete counter input set which is a

union of 60 stars in 0.9893 seconds. This counter input set depicted in Figure III.5 is a part of the input set

that contains all counter inputs that make the neural network unsafe.

III.4.2 Robustness Ceritification of Image Classification DNNs under adversarial attacks

Robustness certification of DNNs becomes more and more important as many safety-critical applications

using image classification DNNs can be fooled easily by slightly perturbing a correctly classified input. A

network is said to be δ -locally-robust at input point x if for every x′ such that ‖x− x′‖
∞
≤ δ , the network

assigns the same label to x and x′. In this case study, instead of proving the robustness of a network cor-
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Net Parameters Tol
δmax

Zonotope Approximate-Star Abstract-Domain Exact-Star

N1 k=5, N = 140 0.0001 0.0046 0.0048 0.0025 ≥0.0058

N2 k=5, N = 250 0.0001 0.0087 0.0101 0.0042 TimeOut

N3 k=2, N = 1000 0.0001 0.0072 0.0089 0.0052 TimeOut

N4 k = 1, N = 2000 0.0001 0.0027 0.0027 0.0027 TimeOut

N5 k = 1, N = 4000 0.0001 0.0035 0.0035 0.0035 TimeOut

Table III.3: Maximum robustness values (δmax) of image classification networks with different methods in
which k is the number of hidden layers of the network, N is the total number of neurons, Tol is the tolerance
error in searching.
responding to a given robustness certification δ , we focus on finding the maximum robustness certification

value δmax that a verification method can provide a robustness guarantee for the network. We investigate this

interesting problem on a set of image classification DNN with different architectures trained (with an accu-

racy of 98%) using the well-known MNIST data set consisting of 60000 images of handwritten digits with

a resolution of 28×28 pixels [50]. The trained networks have 784 inputs and a single output with expected

value from 0 to 9. We find the maximum robustness verification value δmax for the networks on an image

of digit one with the assumption that there is a δmax-bounded disturbance modifying the (normalized) values

of the input vector x at all pixels of the image, i.e., |x[i]− x′[i]| ≤ δmax. The result are presented in Table

III.3. We note that the polyhedron and Reluplex approaches are not applicable for these networks because

they cannot deal with a high-dimensional input space. The table shows that our approximate star approach

produces larger upper bounds of the robustness values of the networks with many layers. For single layer

networks, our approach gives the same results as the zonotope [74] and the abstract domain [75] methods.

The exact-star method can prove that the network N1 is robust with the bounded disturbance δ = 0.0058.

When δ > 0.0058, we ran into the “out of memory” issue in parallel computation since the number of the

reachable sets becomes too large. The exact star method reaches timeout (set as 1 hour) when finding the

maximum robustness value for the other networks.
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CHAPTER IV

Star-Based Reachability for Verification of Neural Network Control Systems

IV.1 System Model and Problem Formulation

x (k+1)=Ax (k)+Bu(k)
y (k )=Cx (k )

FNN Controller

u(k)=F ( y (k ))

Plant

Figure IV.1: Neural network control system (NNCS).

IV.1.1 System model

In this chapter, we are interested in safety verification of CPS with neural network controllers as depicted in

Figure IV.1 in which x(k) and y(k) are the state and the output of the plant at the time step k. The controller

is a feedforward neural network (FNN) with the ReLU activation functions.

IV.1.2 Problem formulation

Problem IV.1.1 (Safety Verification of NNCS). Given a CPS with an FNN controller F, and a discrete, linear

plant P with the initial states x(0) in an initial set X0, verify whether or not the state of the plant satisfies

a safety property in a bounded time steps kmax. Formally, we want to verify if ∀x(0) ∈ X0 → g(x(k)) |=

S(g(x(k))),∀0≤ k ≤ kmax in which g is a nonlinear transformation function, S is a linear predicate over the

transformed state variables g(x(k)) defining the safety requirements of the system.

The core challenges in problem 1 are: 1) given the initial set of states of the plant, how can we efficiently

compute the reachable set of the plant over time steps which depends on the control input produced by the

FNN controller with nonlinear activation functions, 2) how can we transform the computed reachable set

with a nonlinear transformation function to verify the safety property of the system. It is worth to emphasize

that a small over-approximation error and timing efficiency in reachable set computation are two crucial

metrics that determine the applicability of reachability analysis methods in safety verification of practical

NNCS. Therefore, safety verification of NNCS requires computationally efficient methods that can compute

the exact or tight over-approximate reachable sets of NNCS in a reasonable time. However, computing the

exact or tight over-approximate reachable sets of an FNN is difficult and usually time-consuming. In addition,

simple utilization of the control set from the controller to compute the reachable set of the plant may produce
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a very coarse reachable set which is useless in safety verification. Overcome the challenges in problem 1 is a

fundamental step to tackle the following important problem.

Problem IV.1.2 (Safety-critical initial condition of NNCS). Given a CPS in problem 1 with the initial states

x(0) ∈ X0, determine the initial condition of the ith state xi(0) that “may” make the system unsafe while

keeping the initial conditions of other states unchanged. We call this initial condition is a “safety-critical

initial condition” of the system and assume that the initial conditions of all states are independent.

Problem 2 is even harder than problem 1 since it is almost impossible to perform backward analysis of

CPS with neural network controllers to determine an unsafe initial condition (backward analysis is generally

intractable in this case). In the following, we first present our core reachability algorithm for neural network

control systems (NNCS). Then, we discuss handling the nonlinear transformation on the computed reachable

set for checking the safety of the system, i.e., Problem 1 as well as searching safety-critical initial condition,

i.e., Problem 2.

IV.2 Reachability Analysis of Neural Network Control Systems

The reachability analysis of a NNCS depicted in Figure IV.1 is done as follows. First, from the initial set of

states X0 of the plant P, the controller F takes the output set of the plant Y0 as an input to compute the control

set U = F(Y0). Note that Y0 is an affine mapping of the initial set X0 with the output matrix C, i.e., Y0 =CX0.

The control set U is then applied to the plant to compute the set of the next state X1 = AX0+BU . This routine

is performed iteratively to obtain the reachable set of the plant X0,X1, · · ·Xk, 0 ≤ k ≤ kmax. To obtain tight

reachable sets of the NNCS, we compute the exact control set U given the output set Y . Also, we compute

the exact reachable set of state Xk given its initial set Xk−1 and the corresponding control set Uk−1.

IV.2.1 Exact reachability analysis of the neural network controller

The first step in our reachability analysis is to compute the exact control set Uk = F(CXk) using star-set

approach [84]. Although the star set based method is similar to the polyhedron-based approach [83], it is

much more efficient and scalable because star set is very fast in affine mapping which is the most expensive

step in the polyhedron-based approach, especially for a high dimensional set. More importantly, the computed

output set and the input set of the FNN are defined based on the same set of predicate variables, i.e., α =

[α1, · · · ,αm]
T . This property is crucial in eliminating the over-approximation error in computing the reachable

set for the plant as addressed in the following.
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IV.2.2 Exact reachability analysis of the discrete linear plant

As shown in previous subsection, the exact control set Uk = F(CXk) is a union of stars, Uk = ∪L
j=1Θ̃ j. There-

fore, the exact reachable set of the plant for the next step is also a union of stars, Xk+1 = AXk +BUk. Interest-

ingly, the state set Xk = 〈c,V,P〉 and the control set Uk are defined based on a unique predicate variable vector

α and for any star in the control set, its predicate contains all linear constraints of the state set Xk as can be

seen in Figure III.1. This leads to an important fact that, only a subset of Xk can lead to an individual control

set Θ̃ j ∈U and the predicate of this subset is exactly the predicate of the individual control set. Therefore, the

next state set corresponding to the individual control set Θ̃ j = 〈c̃ j,Ṽj, P̃j〉 is X j
k+1 = 〈Ac+Bc̃ j,AV +BṼj, P̃j〉.

Consequently, the exact next state set of the plant is Xk+1 = ∪L
j=1X j

k+1.

IV.2.3 Reachability algorithm for NNCS

As shown previously, we can compute the exact reachable set of NNCS depicted in Figure IV.1 by computing

the exact control set and the exact state set of the plant. For a single initial state set, after one time step, it may

produce many other state sets. Therefore, the number of state sets increases quickly over time which makes

the exact analysis time-consuming even using parallel computing. To handle this state sets explosion, we can

obtain a single convex hull of the state sets after every step and use it for the next step computation. Comput-

ing the convex hull for a set of stars is essentially computing the convex hull of a set of convex polyhedrons

which is computationally expensive. To overcome this challenge, we instead compute the interval hull of a

set of stars for the next step computation which can be done efficiently by solving a set of linear programming

optimization problems. The experimental results show that, by using only the interval hull of the star state

sets, we still can obtain a tight over-approximation of the exact reachable set for the NNCS and more im-

portantly, the over-approximation error does not explode over time. The reachability algorithm for a NNCS

is summarized in Algorithm 5 in which the user can choose to compute the exact or the over-approximate

reachable sets of the NNCS.

Lemma IV.2.1. The exact scheme in Algorithm 5 produces the exact reachable sets of the NNCS depicted in

Figure IV.1.

Proof. The proof can be derived inductively based on the exact computation of the reachable set of the plant

and the neural network controller in every step.

IV.2.4 Extension to NNCS with nonlinear plants

It is interesting to emphasize that the proposed star-based reachability algorithm can be extended to deal

with neural network control systems with nonlinear plants. The core idea of the extension is that we can use
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Algorithm 5 Reachability Algorithm for NNCS

1: % F : neural network controller
2: % A,B,C: plant’s matrices xk+1 = Ax+Bu, yk =Cxk
3: % I: initial set of states of the plant
4: % kmax: number of steps
5: % scheme: reachability analysis scheme, “exact” or “approx”
6: % R: reachable set
7: procedure R = REACH(F,A,B,C, I,kmax,scheme)
8: R = cell(1,kmax +1)
9: R{1,1}= I

10: for k = 1 : kmax do
11: Xk = R{1,k}, M = length(Xk)
12: for i = 1 : M do
13: X i

k = Xk(i) = 〈c,V,P〉
14: Uk = F(CX i

k) = ∪L
j=1Θ̃ j = ∪L

j=1〈c̃ j,Ṽj, P̃j〉
15: Xk+1 = []
16: for j = 1 : L do
17: X j

k+1 = 〈Ac+Bc̃ j,AV +BṼj, P̃j〉
18: Xk+1 = [Xk+1 X j

k+1]

19: if scheme == exact then R{1,k+1}= Xk+1
20: else R{1,k+1}= IntervalHull(Xk+1)

existing hybrid systems reachability methods, such as the zonotope-based reachability algorithm in CORA

[5] that we chose to use, to compute the reachable set of a nonlinear plant between two time steps tk and tk+1.

This algorithm first further divides the time between tk and tk+1 into Np smaller time steps, and then performs

a sound linearization-based reachable set computation for the plant along with Np time steps to obtain a

reachable set with Np stars (we note that a zonotope is also a star). We refer readers to [6] for the technical

details of this hybrid systems reachability approach. The last star in the union is the initial set of states of the

plant for the next time interval [tk+1, tk+2]. This star is also feedback to the neural network controller. Then,

the exact star-based reachability algorithm is invoked to compute the control input U for the next control

step.

IV.3 Verification of Neural Network Control Systems

IV.3.1 Safety verification

Although safety properties in CPS are often represented as a linear predicate over the system’s states xk, there

are many cases where the safety property is defined as a linear predicate over a variable zk that is a nonlinear

transformation of the system’s states, i.e., zk = g(xk), where g is a nonlinear function. Let U (zk),Hzk ≤ h be

the unsafe region of a NNCS, then safety verification of the NNCS, i.e., Problem 1, is equivalent to checking

Zk ∩U (zk) = /0? ∀0 ≤ k ≤ kmax, where Zk = {zk| zk = g(xk), xk ∈ Xk} is the transformed reachable set of

the system by applying g(·) to it. Since computing the exact transformed reachable set is computationally

45



Algorithm 6 Safety Verification for NNCS

Input: R,g,U : Reachable set of the NNCS, transformation function, unsafe region
Output: sa f e = true or sa f e = uncertain

1: procedure sa f e = VERIFY(R,g,U)
2: kmax = length(R)
3: for k = 1 : kmax do
4: Xk = R{1,k}
5: zk = min(g(xk)), z̄k = max(g(xk)), xk ∈ Xk
6: Z̃k = [zk, z̄k]
7: if Z̃k ∩U = /0 then sa f e = true
8: else sa f e = uncertain, break

expensive and may be even infeasible, we compute an over-approximation of the exact transformed reachable

set Z̃k and use it for safety verification. The system is safe if Z̃k∩U (zk) = /0, ∀0≤ k≤ kmax. Particularly, we

compute the tightest interval bounding the exact transformed reachable set by solving the following nonlinear

optimization problem:

Z̃k = [zk, z̄k], zk = min(g(xk)), z̄k = max(g(xk)), xk ∈ Xk.

Safety verification of the NNCS is summarized in Algorithm 6, which solves the above nonlinear optimization

problem to obtain the tightest interval of the transformed reachable set and uses it to verify safety of the system

at each time step.

IV.3.2 Characterization of safe initial condition

Safety verification of a NNCS can reason about the safety of the system w.r.t a specific initial condition. In

some cases, we are interested in the upper bound of a particular state xi(0) in the initial condition where the

safety of the system is still guaranteed. For example, if a car detects an obstacle and applies the brake to

stop, it is important to know what is the maximum velocity of the vehicle such that the braking action can

guarantee the safety of the car. To search for that maximum velocity, we start from the initial condition that

the system is safe, then we increase the upper bound of the speed by some δ , i.e., xi(0) = xi(0)+ δ , and

check the safety of the system with the new initial condition. We continue to increase the upper bound until

the safety is uncertain. We can obtain the maximum allowable velocity with the error of [−δ ,δ ].

IV.4 Evaluation

Our approach is implemented in NNV [83, 84], a Matlab toolbox for safety verification of DNNs and

learning-enabled CPS. The proposed approach is evaluated on a practical automatic emergency braking sys-

tem (AEBS) and a adaptive cruise control system (ACC) for an autonomous car. The experiment is done
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on a computer with following configurations: Intel Core i7-8859H CPU @ 2.6GHz × 4 Processor, 32 GiB

Memory, Window 10 Pro OS.1

IV.4.1 Advanced Emergency Braking System

The architecture of the AEBS is described in Figure IV.2 in which the car is equipped with a perception

component to detect automatically the obstacle on the road and a reinforcement learning (RL) based controller

to control the brake of the car.

Perception

Environment
RL

Control
Vehicle

Camera Distance Brake

Velocity

Figure IV.2: Emergency Braking System Architecture

IV.4.1.1 Scenario of Interest

In our system, we consider the scenario that the host car automatically detects another static vehicle and

applies a brake to decelerate and stop to avoid the potential collision as shown in Figure IV.3.

Acceleration Const Braking Region
Far Close Collision

Figure IV.3: Illustration of Emergency Braking System

The host car starts from rest and accelerates to a random initial velocity v0, which introduces the uncer-

tainty to the system. Then, the car keeps this velocity v0 till an obstacle is detected at distance d0 from the

perception module and switches to the reinforcement learning braking controller. The goal of the controller

is to stop the car to avoid the collision and also not too far from the obstacle, which means the car should stop

within the safety and close region.

IV.4.1.2 Safety Specification

The safety property of the AEBS is defined based on the concept of time-to-collision (TTC) [52, 47]. TTC

measures the time it wold take to collide if the vehicle continues traveling based on the current acceleration

of ak = uk and velocity vk. Smaller TTC means a higher collision risk. The safety specification of the AEBS

can be written by

(TTCk(dk,vk,ak)> τ(vk)) U (k = kmax)

1All results presented in this paper and their corresponding scripts are available online at https://github.com/verivital/nnv/releases/
tag/emsoft2019.
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where τ(vk) is the time to stop when applying the full brake for velocity vk, shown in Figure IV.4, dk is the

current distance from the car to the obstacle, kmax is the maximum number of steps we want to verify the

safety of the system, and U is the until operator. Generally, the safety specification means that the car is safe

if it still has enough time for a full braking action, i.e., full braking action can successfully stop the car before

a collision occurs.
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Figure IV.4: Obtaining the required number of reachability analysis steps from the full-braking characteristic
of the car at different speeds.

Because of the discontinuity caused by the denominator when velocity or acceleration equals zero, it is

more efficient to evaluate the collision risk using the inverse TTC introduced in [12]. The inverse TTC is

proportional to the collision risk: the higher it is, the higher the collision risk is. The safety specification

using the inverse TTC is given below,

(TTC−1
k (dk,vk,ak)< τ

−1(vk)) U (k = kmax),

where, the inverse TTC is defined by:

TTC−1
k (dk,vk,ak) =



vk
dk

for ak = 0

−ak

vk−
√

v2
k+2akdk

for v2
k +2akdk ≥ 0∧ak 6= 0

0 for v2
k +2akdk < 0∧ak 6= 0.

IV.4.1.3 RL-based Controller

We train the RL-based controller for the host car using Deep Deterministic Policy Gradient (DDPG)[53],

which is a popular reinforcement learning method that combines the value-based and the policy-based method.

There are two parts in this approach including actor and critic. Critic uses the off-policy data to learn the Q-

function, which evaluates how good the action a taken is in given state s. The actor can learn the continuous
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action policy by using the Q-function. In practice, it is difficult to obtain the exact Q-function and policy func-

tion. Therefore, two neural networks are introduced to solve this problem, which is critic network Q(s,a|θ Q)

and actor network µ(s|θ µ) with weights θ Q and θ µ . Coming back to our braking system, the reinforcement

learning controller consumes the state s, consisting of distance to the leader vehicle d and host car’s velocity

v, and computes the action – brake T .

For a reinforcement learning system, the reward function should be appropriately designed to achieve the

goal. In our case, the task is to stop the car in a safe and close region. Thus, we define the reward function as

r =−α× I×1(collision)− [(dt −B)×β +λ ]×1(vt = 0∧dt > B)

where dt and vt indicates the distance to the leader car and velocity at time step t, α , β and λ are coefficients

greater than zero, 1(·) returns a value of 1 if the statement inside is true and 0 otherwise.

The term of the reward function, −α× I×1(collision) penalizes a collision event based on the collision

impulse I. The other term −[(dt −B)×β +λ ]× 1(vt = 0∧ dt > B) penalizes a too early stop based on B,

the final distance to the boundary line between close and far region. During the braking process (before the

car comes to a stop), there is no penalty or reward. Intuitively, this reward function will guide the car to stop

within the close region.

We use CARLA [19] to generate the scenario and to train the reinforcement learning controller. The time

step used in the simulation is ∆t = 1/15s. In the simulations, the vehicle firstly accelerates to a velocity of

v0, and keeps the speed untill it detects an obstacle at a distance d0. The d0 and v0 are the initial states of the

braking system. To simulate a more realistic scenario, we introduce some uncertainty to the initial states of

the system. The initial velocity of the vehicle is uniformly sampled between 90km/h and 100km/h, and the

initial distance depends on the range of the perception module, which is approximately 100m. After initial

state, the car switches to the reinforcement learning controller which consists of two neural networks trained

with DDPG algorithm with the hyper-parameters in Table IV.1 is presented below:

• Actor NN architecture2:

2(State)×50(ReLU)×30(ReLU)×1(SatReLU, Action)
2SatReLU is the ReLU function with max value 1.
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Table IV.1: Hyper-parameters for DDPG algorithm.

Actor Critic

Optimizer Adam Adam

Learning rate 10−4 10−3

Target update rate 0.9 0.9

Reply buffer size 105

Reply batch size 32

Discount factor 0.99

Reward function α = 0.01, B = 5, β = 1.6, λ = 20

• Critic NN architecture3:

2(State)×50(ReLU)×30

1(Action)×30

×30(ReLU)×1(Q Value)

We trained the reinforcement learning for 1000 episodes, and the neural network converges, showing an

attractive performance. Also, one of the experiment trajectories is plotted in Figure IV.6. At the beginning

of involving the reinforcement learning controller, the distance is 97.3m, and the velocity is 91.98km/h

(= 25.55 m/s). After 128 steps, about 8.53s, the ego vehicle stops at about 1.88m far from the obstacle

vehicle.

IV.4.1.4 System Identification and Validation

We transfer the braking system from CARLA to MATLAB & Simulink to perform reachability analysis and

safety verification for the system. The diagram of the Simulink model of the AEBS is shown in Figure IV.5.

For simulation and verification, only the actor is needed. The plant of the braking system is described by

Transform Plant TTC−1

RL
Control

X0

uk yk

Tk

vk

Figure IV.5: Emergency Braking System Simulink Diagram

3The empty activation function means no activation is applied.
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following discrete state-space equation


xk+1 = Axk +Buk

yk =Cxk +Duk

where xk = [dk vk]
T is the state vector including the distance dk and the velocity vk of the car at step k, uk

is the input, which is the acceleration applied to the plant, yk is the output, and A,B,C,D are the coefficient

matrices given below,

A =

1 −∆t

0 1

 ,B =

 0

∆t

 ,C =

1 0

0 1

 ,D =

0

0


where ∆t = 1/15 is simulation time step.

It is important to emphasize that the input of the plant uk does not match with the output of the reinforce-

ment learning controller Tk. The uk is the acceleration applied to the car, but the Tk is the braking force. Thus,

a neural network transformation with 80 neurons is trained to bridge this gap between uk and Tk.

To validate the Simulink model of AEBS, we run experiments in Simulink and CARLA with the same

initial states and compare them as shown in Figure IV.6. From the plot, we can see that the Simulink model

captures very well the behaviors of the (actual) AEBS in CARLA.
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Figure IV.6: Validation of the Simulink model of AEBS. The Simulink model captures well the behaviors of
the actual AEBS in CARLA.
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IV.4.1.5 Safety Verification of the AEBS

Physical constraints for safety verification. To verify the safety of the AEBS, we need to take into account

some essential physical constraints of the system. First, the AEBS system uses a perception component to

detect the obstacle. The operating range of the perception component is from 0 to 100 meters. Therefore,

we are going to verify the safety of the AEBS for the distance (between the car to the obstacle) from 10 to

100 meters (we assume that the car is at least 10 meters far away from the obstacle). Secondly, we limit the

maximum allowable velocity of the car is 35 m/s, i.e., ≈ 80 miles per hour which is a usual upper limit of the

speed on highways.

Thirdly, we need to know what is a reasonable constraint between initial conditions of the car’s velocity

and its distance to the obstacle such that if we apply a full braking action, the car is safe. This information is

important that we should know before verifying the safety of AEBS because there are cases when even if we

apply the full braking action, the collision still occurs. For example, the car is too close to the obstacle and is

travelling at a high speed. From Figure IV.4, we approximate an analytical formula for the full braking time

that is τ(v) ≈ v/12.5. When the full braking action occurs, the car goes a distance ds = 0.5aτ2 + vτ before

stopping, where a is the average acceleration of the car which is equal to a = ∆v/∆t = (0− v)/τ . Therefore,

the average travel distance of the car after applying a full brake is: ds = 0.5vτ = 0.5v2/12.5 = v2/25. To

guarantee the safety, the initial distance of the car d0 should be larger than this travel distance, i.e., d0 > ds.

Combining the above limitation on the distance dmax = 100 m and the maximum allowable velocity vmax = 35

(m/s), a safe initial condition region for full braking action is depicted in Figure IV.7. By partitioning the

safe initial condition region of the full braking action, we can derive the reasonable initial conditions that

need to be verified for the safety of the AEBS with the RL controller as shown in Figure IV.8. This is

because, under the safety aspect, the RL controller cannot overcome the full-braking action.
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Figure IV.7: Safe initial conditions for full braking action.
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Figure IV.8: Set of initial conditions that needs to be verified for the AEBS with the RL controller.

Finally, we need to find out what the minimum number of steps that we should at least give a guarantee

about the safety of the system is. We should prove the safety of the system at least τ(v) seconds in the future

where τ(v) is the full braking time w.r.t the velocity v. Therefore, the minimum number of steps that needs

to prove the safety is: min(kmax) = τ(v)/∆t. For example, if v = 25 m/s, we should at least prove the safety

of the system until k = kmax = 2/(1/15) = 30 time steps.

Challenges and drawbacks of the polyhedron [83, 103] and interval [25] approaches. A main chal-

lenge in safety verification of AEBS is how to compute a tight reachable set of the AEBS model depicted in

Figure IV.5. One can see that the control set U = {ut} applied to the plant is derived from the transformation

component that takes the output set T = {Tt} from the RL controller and the velocity V = {vt} as the input

set. Therefore, to compute the control set U , we need to compute the output set T of the RL controller and

then combine with the velocity set V = {vt} of the plant to form the input set for the transformation neural

network. The problem is how to efficiently combine these sets to form the exact input set for the transforma-

tion neural network. This problem is unsolvable if we use the polyhedron-based [83, 103] or the interval [25]

methods since the relationship between the output set T of the RL controller and the velocity set V of the plant

cannot be preserved in the computation. This leads to a coarse combination which returns a coarse input set

for the transformation neural network. Consequently, the over-approximation error is exploded quickly after

only 2 time steps as shown in Figure IV.9 which makes the obtained reachable sets become too conservative

and cannot be used for safety verification.

Minimizing overapproximation while maintaining scalability with star sets. As shown in Figure IV.9,

our star-based approach is an efficient technique to overcome the main challenges discussed above. We com-

pute the reachable set for the AEBS system in 50 steps. One can see that our star-based approach eliminates

(in the exact method) or reduces significantly (in the over-approximation method) the over-approximation

errors caused by the polyhedron-based and the interval approaches. The reachable sets computed from the
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Figure IV.9: Reachable sets of the AEBS computed by the polyhedron and the interval approaches become
too conservative are quickly after only 2 time steps while the proposed star methods obtains the exact or
tight over-approximate reachable sets for many time steps. The initial conditions are d0 ∈ [97, 97.5], v0 ∈
[25.2, 25.5].

star-based approach are tight and useful for safety verification of the AEBS.

Error analysis. Since we can compute the exact reachable sets of the system, we can analyze the over-

approximation errors of different approaches. These overapproximation errors are measured using the fol-

lowing metrics OverApprox−Error = max(|lb− lbexact |, |ub−ubexact |) which measures that largest distance

between the lower- and upper- bounds of an output computed from the overapproximation methods and the

exact lower- and upper-bounds computed by the exact star method. The overapproximation errors of the

polyhedron, interval, and the proposed over-approximate star methods are depicted in Figure IV.10. One can

see that the overapproximation errors of the polyhedron and the interval methods are increased quickly after

only two steps while these errors are almost zeros for the first 45 steps and very small in the last five steps in

the over-approximate star method.

Timing performance. The reachability analysis times of two proposed methods are presented in Table

IV.2. The Table shows that the over-approximation method is faster than the exact method while still produces

tight reachable sets for the system. From the figures, one can see that the reachable sets computed by the two

methods are almost the same. The time improvement of using the over-approximation method increases as

the number of time steps grows. The reason that makes the over-approximation method faster is, it produces

only a single reachable set at every time step while in the exact method, the number of reachable sets may

grow over time as depicted in Figure IV.11.

Checking safety using the computed reachable sets. To verify the safety of the AEBS, we consider the
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Figure IV.10: The Over-approximation errors of the polyhedron and the interval approaches are exploded
quickly after only 2 time steps. These over-approximation errors are reduced siginificantly by the proposed
star method.
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Figure IV.11: Number of stars in the reachable sets of the AEBS grows over time with the exact star-based
method.

Method N = 5 N = 10 N = 20 N = 30 N = 40 N = 50

Exact star 12.47 32.24 162.95 400.13 532.1 831

Over-approximate star 10.07 21.09 42.86 63.98 83.3 104.44

Time improvement 1.24x 1.53x 3.8x 6.25x 6.39x 7.96x

Table IV.2: Reachability analysis times (measured in seconds) of the exact and over-approximate star methods
in which N is the number of time steps

.
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worst case, i.e., we want to verify if the following constraint is satisfied in a bounded time, max(T TC−1(d,a,v))<

τ−1(max(v)). To do that, we estimate the ranges of T TC−1 in 60 time steps (two times larger than the min-

imum requirement kmax = 30) using the ranges of the distance, velocity, and acceleration of the car from the

computed reachable sets and check if it satisfies the requirement or not. The result is illustrated in Figure

IV.12 which shows that the inverse TTC is smaller than the worst case inverse full braking time τ−1(max(v)).

Therefore, the AEBS is safe for 60 time steps in the future.
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Figure IV.12: The inverse TTC over time is smaller than the worst case inverse full braking time τ−1(max(v)).
The AEBS is safe (for 60 time steps) with the initial conditions d0 ∈ [97, 97.5], v0 ∈ [25.2, 25.5].

IV.4.1.6 Safe Initial Conditions of the AEBS

From the physical constraints of the car, we have derived the set of initial conditions that need to be verified

for the AEBS with RL controller as depicted in Figure IV.8. It is important to determine in these initial

conditions, which regions are safe for the AEBS with RL controller and which ones are risks. We perform

our safety verification methods on each partition Ii, i = 1,2, · · · ,9 of the initial conditions to find the safe

regions. We perform the search as follows. We partition the distance range [10, 100] into 9 smaller ranges

with the same width of 10, i.e., di = [10i, 10(i+ 1)],1 ≤ i ≤ 9. For the ith individual distance range, we

search for the maximum velocity vi
max such that the RL controller can guarantee the safety of the system in

kmax = 50 time steps for the initial condition of [di,vi
max]. The results of vmax are presented in Table IV.3.

From the information of vmax, we visualize the safe region of the initial conditions for the AEBS as depicted

in Figure IV.13.
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Figure IV.13: Safe region of the initial conditions of the AEBS with the RL controller.

d(m) [0, 10] [10, 20] [20, 30] [30, 40] [40, 50] [50, 60] [60, 70] [70, 80] [80, 90] [90, 100]

vmax(m/s) — 4 7 8 10 15 19 21 24 26

Table IV.3: Safe initial conditions for the AEBS with RL controller in which d is the distance range and vmax
is the maximum allowable velocity such that the system is still safe.

IV.4.2 Adaptive Cruise Control System

IV.4.2.1 System Decription

Figure IV.14: Neural network adaptive cruise control system.

The extension of the proposed star-based reachability algorithm is evaluated on the safety verification of

neural network-based adaptive cruise control systems (ACC). The ACC system depicted in Figure IV.14

consists of two cars in which the ego car equipped with adaptive cruise control has a radar sensor to measures

the distance to the lead car in the same lane, Drel , as well as the relative velocity of the lead car, Vrel . In speed

control mode, the ego car travels at a driver-set speed Vset = 30 while in spacing control mode, the ego car

maintains a safe distance from the lead car, Dsa f e. Neural network adaptive cruise controllers with different
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sizes are trained to replace the existing MPC controller. The control period is selected as 0.1 seconds. The

car’s dynamics are as follows.

ẋlead(t) = vlead(t), v̇lead(t) = γlead ,

γ̇lead(t) =−2γlead(t)+2alead−µv2
lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego,

γ̇ego(t) =−2γego(t)+2aego−µv2
ego(t),

where xlead(xego), vlead(vego) and γlead(γego) are the position, velocity and acceleration of the lead (ego) car

respectively, alead(aego) is the acceleration control input applied to the lead (ego) car, and µ = 0.0001 is the

friction parameter.

IV.4.2.2 Scenario of Interest

Safety-related scenario. The safety verification scenario of interest is that when the ego is in the speed

control mode and the two cars are running with a safe distance between them, the lead car driver suddenly

de-accelerate with alead = −2 to reduce the speed. We expect that the neural network controllers will also

de-accelerate the ego car to remain a safe distance between two cars. Formally, the safety specification of the

system is Drel = xlead−xego≥Dsa f e =Dde f ault +Tgap×vego, where Tgap = 1.4 seconds and Dde f ault = 10. We

want to check if there is a collision in the next 5 seconds after the lead car de-accelerate. The initial conditions

of the system are: xlead(0) ∈ [90,110], vlead(0) ∈ [32,32.2], γlead(0) = γego(0) = 0, vego(0) ∈ [30,30.2],

xego ∈ [10,11].
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xlead(0)
Controller 1 (3x20) Controller 2 (5x20) Controller 3 (7x20) Controller 4(10x20)

Result VT (sec) Result VT (sec) Result VT (sec) Result VT (sec)

[108, 110] safe 211.84 safe 292.67 safe 398.41 safe 1762

[106, 108] safe 210.16 safe 288.83 safe 393.35 safe 2270.3

[104, 106] safe 211.54 safe 302.31 safe 412.81 safe 2674.5

[102, 104] safe 215.21 safe 292.94 safe 446.47 safe 2863.8

[100, 102] safe 222.87 safe 294.81 safe 440.94 safe 2606

[98, 100] safe 233.02 safe 302.74 safe 491.29 uncertain 2855

[96, 98] safe 237.12 safe 289.87 safe 515.43 uncertain 3249.9

[94, 96] safe 238.46 safe 301.99 uncertain 571.75 uncertain 3851.5

[92, 94] safe 259.46 safe 325.51 uncertain 598.22 uncertain 3220.2

[90, 92] uncertain 265.29 safe 359.92 uncertain 558.65 uncertain 2336.9

Table IV.4: Verification results for the ACC system in which V T is the verification time and controller k×n
means the controller has k hidden layer and n neuron per layer.

Figure IV.15: The safe distance does not intersect with the relative distance, the ACC system is safe.
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Figure IV.16: A falsification trace of the ACC system with the first controller (3x20) and xlead(0) ∈ [65,70].

IV.4.2.3 Verification Results

Verification results. The verification results are presented in Table IV.4 which shows that the second con-

troller is the safest controller since it guarantees the safety of the ACC system for the whole range of the

lead car’s initial position. The safety of the system can be observed intuitively via Figure VII.2 which shows

that the relative distance is larger than the safe distance. Interestingly, the controllers with a large number

of neurons, e.g., the third and the fourth controllers, are not necessarily the good candidates for keeping

the system safe. In many cases, the verification results for these controllers are uncertain which imply that

these controllers may or may not control the system safely. In these cases, the relative distance reachable

set intersects with the safe distance reachable set. However, we do not know this intersection is due to the

over-approximation error of the related reachable sets or the relative distance is actually smaller than the

required safe distance. Since the safety of the system may be violated in these cases, we further randomly

generate simulation traces of the system to find counter example inputs that make the system unsafe. If

counter example inputs are found, we can conclude that the system is actually unsafe. Otherwise, we can

conclude nothing about the safety of the system. The falsification results for the NNACC system using 1000

random simulations are presented in Table IV.5. Interestingly, we cannot find counter examples for the sys-

tem whenever xlead ∈ [70,110]. However, when xlead ∈ [65,70], we can find counter examples of the system

for all controllers. Figure IV.16 describes a counter example to prove that the NNACC system is unsafe as

xlead ∈ [65,70] in which the relative distance between two cars is smaller than the required safe distance.

Note that in this case, even the controllers de-accelerates the ego car. It still can not guarantee the safety for
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xlead(0)
Controller 1 (3 x 20) Controller 2 (5 x 20) Controller 3 (7 x 20) Controller 4 (10 x 20)

Nc FT (sec) Nc FT (sec) Nc FT (sec) Nc FT (sec)

[65, 70] 100 43.63 303 45.25 486 46.91 134 49.13

[70, 110] 0 44.14 0 45.35 0 46.82 0 49.07

Table IV.5: Falsification results for NNACC system with different neural network controllers using 1000
random simulations in which Nc is the number of counter examples and FT is the falsification time.

the system.

IV.4.2.4 Timing Performance

Timing performance. As depicted in Table IV.4, the verification time depends on the size of the controller.

A controller with a large number of neurons causes a substantial verification time. Our approach can prove

the safety of the NNACC system with the fourth controller having totally 200 neurons in some cases with

reasonable verification times (less than 1 hour). A brief comparison with recent approaches [38, 76, 77] is

given as follows. Verisig takes averagely 1690 seconds (on their personal computer) to verify a single safety

property (corresponding to a single input set) in 30 time steps of the quadrotor system with 12 state variables

and a neural network controller having 40 neurons while our approach spends averagely 275.68 seconds to

verify a single safety property of the ACC system with 6 state variables and a neural network controller

having 100 neurons in 50 time steps. The SMC-based approach can falsify safety property of neural network

control system with fairly large number of neurons in the controller (22 to 182 neurons). However, in the

case that there is no counter example exist, the SMC-based approach usually reaches timeout (= 1 hour).

Its experimental results show that only three controllers (in 17 controllers) with 22, 32 and 82 neurons are

successfully verified. An important factor making our approach potentially faster and more scalable than the

Verisig and SMC-based approaches is, our approach can efficiently compute the exact reachable set of DNNs

on multi-core platforms. Therefore, our verification time for neural network control system can be reduced

significantly by exploiting the power of parallel computing. The new abstraction-based approach proposed

recently in [76] is promisingly the fastest and the most scalable approach for safety verification of NNCS

since it can compute the reachable set of NNCS with neural network controller of 500 neurons in 50 time

steps with just 1081 seconds.
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CHAPTER V

ImageStar-Based Reachability for Verification of Convolutional Neural Networks

V.1 Problem formulation

Reachability of CNN is the problem that given a trained CNN and some perturbed input set, we want to

construct an output set containing all possible outputs of the network. In this paper, we consider the reacha-

bility of a CNN N consisting of a series of layers L including the convolutional layer, fully connected layer,

max-pooling layer, average pooling layer, and relu layer. Mathematically, we define a CNN with n layers as

N = {Li}, i = 1,2, . . . ,n. The reachability of the CNN N is defined based on the concept of reachable sets.

Definition 5 (Reachable set of a CNN). An (output) reachable set RN of a CNN N = {Li}, i = 1,2, . . . ,n

corresponding to a linear input set I is defined incrementally as

RL1 , {y1 | y1 = L1(x), x ∈I },

RL2 , {y2 | y2 = L2(y1), y1 ∈RL1},
...

RN = RLn , {yn | yn = L3(yn−1) yn−1 ∈RLn−1},

where Li(·) is a function presenting the operation corresponding to the ith layer.

The definition shows that the reachable set of the CNN N can be constructed layer-by-layer. The core

computation is constructing the reachable set of each layer Li embedded with a specific operation, i.e., con-

volution, affine mapping, max pooling, average pooling, ReLU.

V.2 ImageStar

Definition 6. An ImageStar Θ is a tuple 〈c,V,P〉where c∈Rh×w×nc is the anchor image, V = {v1,v2, · · · ,vm}

is a set of m images in Rh×w×nc called generator images, P : Rm→{>,⊥} is a predicate, and h,w,nc are the

height, width and number of channels of the images respectively. The generator images are arranged to form

the ImageStar’s h×w×nc×m basis array. The set of images represented by the ImageStar is given as:

JΘK = {x | x = c+Σ
m
i=1(αivi) such that P(α1, · · · ,αm) =>}.
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Figure V.1: An example of an ImageStar.

Sometimes we will refer to both the tuple Θ and the set of states JΘK as Θ. In this work, we restrict the

predicates to be a conjunction of linear constraints, P(α) , Cα ≤ d where, for p linear constraints, C ∈

Rp×m, α is the vector of m-variables, i.e., α = [α1, · · · ,αm]
T , and d ∈ Rp×1. A ImageStar is an empty set if

and only if P(α) is empty.

Example 1 (ImageStar). A 4×4×1 gray image with a bounded disturbance b ∈ [−2,2] applied on the pixel

of the position (1,2,1) can be described as an ImageStar depicted in Figure V.1.

Remark V.2.1. An ImageStar is an extension of the generalized star set defined in [9, 11, 85] recently. In

a generalized star set, the anchor and the generators are vectors while in an ImageStar, the anchor and

generators are images with multiple channels. We will show later that, an ImageStar is very efficient for

reachability analysis of convolutional layers, fully connected layers and average pooling layers.

Proposition V.2.2 (Affine mapping of an ImageStar). An affine mapping of an ImageStar Θ = 〈c,V,P〉 with a

scale factor γ and an offset image β is another ImageStar Θ′= 〈c′,V ′,P′〉 in which the new anchor, generators

and predicate are as follows.

c′ = γ× c+β , V ′ = γ×V, P′ ≡ P.

Note that, the scale factor γ can be a scalar or a vector containing scalar scale factors in which each factor

is used to scale one channel in the ImageStar.

V.3 Reachability of CNN using ImageStars

In this section, we focus on the reachable set computation of the convolutional layer, fully connected layer,

average pooling layer, max pooling layer, and ReLU layer with the input set is an ImageStar. The proofs of

all lemmas in this section can be found in the appendix.

V.3.1 Reachability of a convolutional layer

We consider a two-dimensional convolutional layer with following parameters: the weights WConv2d ∈Rh f×w f×nc×n f ,

the bias bConv2d ∈ R1×1×n f , the padding size P, the stride S and the dilation factor D where h f ,w f ,nc are the
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Figure V.2: The reachable set of a convolutional layer with an ImageStar input set is another ImageStar.

height, width, and the number of channels of the filters in the layer respectively, and n f is the number of

filters. The reachability of a convolutional layer is given in the following lemma.

Lemma V.3.1. The reachable set of a convolutional layer with an ImageStar input set I = 〈c,V,P〉 is

another ImageStar I ′ = 〈c′,V ′,P〉 where c′ =Convol(c) is the convolution operation applied to the anchor

image, V ′ = {v′1, . . . ,v′m},v′i =ConvolZeroBias(vi) is the convolution operation with zero bias applied to the

generator images, i.e., only using the weights of the layer.

Example 2 (Reachable set of a convolutional layer). The reachable set of a convolutional layer with single

2× 2 filter and the ImageStar input set in Example 1 is described in Figure V.2 in which the weights and

the bias of the filter are W =

 1 1

−1 0

, b = −1 respectively, the stride is S = [2 2], the padding size is

P = [0 0 0 0] and the dillation factor is D = [1 1].

V.3.2 Reachability of an average pooling layer

The reachability of an average pooling layer with the pooling size PS, the padding size P, the stride S is given

below.

Lemma V.3.2. The reachable set of a average layer with an ImageStar input set I = 〈c,V,P〉 is another

ImageStar I ′ = 〈c′,V ′,P〉 where c′ = average(c), V ′ = {v′1, . . . ,v′m},v′i = average(vi), average(·) is the

average operation applied to the anchor and generator images.

Example 3 (Reachable set of an average pooling layer). The reachable set of an 2×2 average pooling layer

with the padding size P = [0 0 0 0], the stride S = [2 2] and the ImageStar input set in Example 1 is described

in Figure V.3.
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Figure V.3: The reachable set of an average pooling layer with an ImageStar input set is another ImageStar.

V.3.3 Reachability of a fully connected layer

The reachability of a fully connected layer is stated in the following lemma.

Lemma V.3.3. Given a two-dimensional fully connected layer with the weight Wf c ∈ Rn f c×m f c and the bias

b f c ∈ Rn f c , and an ImageStar input set I = 〈c,V,P〉, the reachable set of the layer is another ImageStar

I ′ = 〈c′,V ′,P〉 where c′ =W ∗ c̄+b, V ′ = {v′1, . . . ,v′m},v′i =Wf c ∗ v̄i, c̄(v̄i) = reshape(c(vi), [m f c,1]). Note

that it is required the consistency between the ImageStar and the weight matrix that is m f c = h×w× nc,

where h,w,nc are the height, width and number of channels of the ImageStar.

V.3.4 Reachability of a batch normalization layer

In the prediction phase, a batch normalization layer normalizes each input channel xi using the mean µ and

variance σ2 over the full training set. Then the batch normalization layer further shifts and scales the activa-

tions using the offset β and the scale factor γ that are learnable parameters. The formula for normalization is

as follows.

x̄i =
xi−µ√
σ2 + ε

, yi = γ x̄i +β .

where ε is a used to prevent division by zero. The batch normalization layer can be described as a tuple

B = 〈µ,σ2,ε,γ,β 〉. The reachability of a batch normalization layer with an ImageStar input set is given in

the following lemma.

Lemma V.3.4. The reachable set of a batch normalization layer B = 〈µ,σ2,ε,γ,β 〉 with an ImageStar input

set I = 〈c,V,P〉 is another ImageStar I ′ = 〈c′,V ′,P′〉 where:

c′ =
γ√

σ2 + ε
c+β − γ√

σ2 + ε
µ, V ′ =

γ√
σ2 + ε

V, P′ ≡ P.

Proof. The reachable set of a batch normalization layer can be obtained in a straightforward fashion using
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two affine mappings of the ImageStar input set.

V.3.5 Reachability of a max pooling layer

Reachability of max pooling layer with an ImageStar input set is challenging because the value of each pixel

of an image in the ImageStar depends on the predicate variables αi. Therefore, the local max point when

applying max-pooling operation may change with the values of the predicate variables. In this section, we

investigate the exact reachability and over-approximate reachability of max pooling layer with an ImageStar

input set. The former one obtains the exact reachable set while the later constructs an over-approximate

reachable set.

V.3.5.1 Exact reachability of a max pooling layer

The central idea of the exact analysis of the max-pooling layer is finding a set of local max point candidates

when we apply the max pooling operation on the image. We consider the max pooling operation on the

ImageStar in Example 1 with the pool size of 2×2, the padding size of P = [0 0 0 0], and the stride S = [2 2]

to clarify the exact analysis step-by-step. First, the max-pooling operation is applied on 4 local regions

I, II, III, IV , as shown in Figure V.4. The local regions II, III, IV have only one max point candidate, i.e., the

pixel that has the maximum value in the region. Interestingly, the region I has two max point candidates of

the positions (1,2,1) and (2,2,1) and these candidates corresponding to different conditions of the predicate

variable α . For example, the pixel at the position (1,2,1) is the max point if and only if 4+α×1≥ 3+α×0.

Note that with −2≤ α ≤ 2, we always have 4+α ∗1≥ 2+α×0≥ 0+α×0. Since the local region I has

two max point candidates, and other regions have only one, the exact reachable set of the max-pooling layer

is the union of two new ImageStars Θ1 and Θ2. In the first reachable set Θ1, the max point of the region I

is (1,2,1) with an additional constraint on the predicate variable α ≥ −1. For the second reachable set Θ2,

the max point of the region I is (2,2,1) with an additional constraint on the predicate variable α ≤−1. One

can see that from a single ImageStar input set, the output reachable set of the max-pooling layer is split into

two new ImageStars. Therefore, the number of ImageStars in the reachable set of the max-pooling layer may

grow quickly if each local region has more than one max point candidates. The worst-case complexity of the

number of ImageStars in the exact reachable set of the max-pooling layer is given below.

Lemma V.3.5. The worst-case complexity of the number of ImageStars in the exact reachability of the max

pooling layer is O(((p1× p2)
h×w)nc) where [h,w,nc] is the size of the ImageStar output sets, and [p1, p2] is

the size of the max-pooling layer.

Finding a set of local max point candidates is the core computation in the exact reachability of max-

pooling layer. To optimize this computation, we divide the search for the local max point candidates into two
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Figure V.4: Exact reachable set of a max pooling layer with an ImageStar input set is a union of ImageStars.

steps. The first one is to estimate the ranges of all pixels in the ImageStar input set. We can solve hI×wI×nc

linear programming optimizations to find the exact ranges of these pixels, where [hI ,wI ,nc] is the size of the

input set. However, this is, unfortunately, a time-consuming computation. For example, if a single linear

optimization can be done in 0.01 seconds, for an ImageStar of the size 224×224×32, we need about 10

hours to find the ranges of all pixels. To overcome this bottleneck, we quickly estimate the ranges using

only the ranges of the predicate variables to get rid of a vast amount of non-max-point candidates. In the

second step, we solve a much smaller number of LP optimizations to determine the exact set of the local max

point candidates and then construct the ImageStar output set based on these candidates.

Lemma V.3.5 shows that the number of ImageStars in the exact reachability of max-pooling layer may

grow exponentially. To overcome this problem, we propose in the following an over-approximate reachability

method for the max-pooling layer.

V.3.5.2 Over-approximate reachability of a max pooling layer

The central idea of the over-approximate analysis of the max-pooling layer is that if a local region has more

than one max point candidates, we introduce a new predicate variable standing for the max point of that

region. We revisit the example in the exact analysis to clarify this idea. Since the first local region I has

two max point candidates, we introduce new predicate variable β to represent the max point of this region

by adding three new constraints: 1) β ≥ 4+α ∗ 1, i.e., β much be equal or larger than the value of the
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Figure V.5: Over-approximate reachable set of a max pooling layer with an ImageStar input set is another
ImageStar.

first candidate ; 2) β ≥ 3+α ∗ 0, i.e., β much be equal or larger than the value of the second candidate; 3)

β ≤ 6, i.e., β much be equal or smaller than the upper bound of the pixels values in the region. With the new

predicate variable, a single over-approximate reachable set Θ′ can be constructed in Figure V.5.

Lemma V.3.6. The worst-case complexity of the new predicate variables introduced in the over-approximate

analysis is O(h×w×nc) where [h,w,nc] is the size of the ImageStar output set.

V.3.6 Reachability of a ReLU layer

Similar to max-pooling layer, reachability of ReLU layer is also challenging because the value of each pixel in

an ImageStar may be smaller than zero or larger than zero depending on the values of the predicate variables

(with reminding that ReLU(x) = max(0,x)). In this section, we investigate the exact and over-approximate

reachability algorithms for a ReLU layer with an ImageStar input set. The techniques we use in this section

is adapted from in [84].

V.3.6.1 Exact reachability of a ReLU layer

The central idea of the exact analysis of a ReLU layer with an ImageStar input set is performing a sequence

of stepReLU operations over all pixels of the ImageStar input set. Mathematically, the exact reachable set of
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a ReLU layer L can be computed as follows.

RL = stepReLUN(stepReLUN−1(. . .(stepReLU1(I )))),

where N is the total number of pixels in the ImageStar input set I . The stepReLUi operation determines

whether or not a split occurs at the ith pixel. If the pixel value is larger than zero, then the output value of

that pixel remains the same. If the pixel value is smaller than zero than the output value of that pixel is reset

to be zero. The challenge is that the pixel value depends on the predicate variables. Therefore, there is the

case that the pixel value may be negative or positive with an extra condition on the predicate variables. In

this case, we split the input set into two intermediate ImageStar reachable sets and apply the ReLU law on

each intermediate reach set. An example of the stepReLU operation on an ImageStar is illustrated in Figure

V.6. The value of the first pixel value −1+α would be larger than zero if α ≤ 1, and in this case we have

ReLU(−1+α) = −1+α . If α <= 1, then ReLU(−1+α) = 0+α × 0. Therefore, the first stepReLU

operation produces two intermediate reachable sets Θ1 and Θ2, as shown in the figure. The number of

ImageStars in the exact reachable set of a ReLU layer increases quickly along with the number of splits in

the analysis, as stated in the following lemma.

Lemma V.3.7. The worst-case complexity of the number of ImageStars in the exact analysis of a ReLU layer

is O(2N), where N is the number of pixels in the ImageStar input set.

Similar to [84], to control the explosion in the number of ImageStars in the exact reachable set of a ReLU

layer, we propose an over-approximate reachability algorithm in the following.
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Figure V.7: approxStepReLU operation on an ImageStar.

V.3.6.2 Over-approximate reachability of a ReLU layer

The central idea of the over-approximate reachability of ReLU layer is replacing the stepReLU operation at

each pixel in the ImageStar input set by an approxStepReLU operation. To do that, at each pixel where a split

occurs, we introduce a new predicate variable to over-approximate the result of the stepReLU operation at

that pixel. An example of the overStepReLU operation on an ImageStar is depicted in Figure V.7 in which

the first pixel of the input set has the ranges of [l1 =−3,u1 = 1] indicating that a split occurs at this pixel. To

avoid this split, we introduce a new predicate variable β to over-approximate the exact intermediate reachable

set (i.e., two blue segments in the figure) by a triangle. This triangle is determined by three constraints: 1)

β ≥ 0 (the ReLU(x) ≥ 0 for any x); 2) β ≥ −1+α (ReLU(x) ≥ x for any x); 3) β ≤ 0.5+ 0.25α (upper

bound of the new predicate variable). Using this over-approximation, a single intermediate reachable set Θ′

is produced as shown in the figure. After performing a sequence of approxStepReLU operations, we obtain

a single over-approximate ImageStar reachable set for the ReLU layer. However, the number of predicate

variables and the number of constraints in the obtained reachable set increase.

Lemma V.3.8. In the worst case, the number of predicates variables and the number of constraints increases

in the over-approximate reachability of a ReLU layer are O(N) and O(3×N) respectively, where N is the

number of pixels in the ImageStar input set.

One can see that determining where splits occur is crucial in the exact and over-approximate analysis of

a ReLU layer. To do this, we need to know the ranges of all pixels in the ImageStar input set. However, as

mentioned earlier, the computation of the exact range is expensive. To reduce the computation cost, we first

use the estimated ranges of all pixels to get rid of a vast amount of non-splitting pixels. Then we compute the
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exact ranges for the pixels where splits may occur to compute the exact or over-approximate reachable set of

the layer.

V.4 Evaluation

The proposed reachability algorithms are implemented in NNV [86], a tool for verification of deep neural

networks and learning-enabled autonomous CPS. NNV utilizes core functions in MatConvNet [89] for the

analysis of the convolutional and average pooling layers. The evaluation of our approach consists of two

parts. First, we evaluate our approach in comparison with the zonotope [74] and polytope methods [75] re-

implemented in NNV via robustness verification of deep neural networks. Second, we evaluate the scalability

of our approach and the DeepPoly polytope method using real-world image classifiers, VGG16, and VGG19

[73]. The experiments are done on a computer with following configurations: Intel Core i7-6700 CPU @

3.4GHz × 8 Processor, 62.8 GiB Memory, Ubuntu 18.04.1 LTS OS.1

V.4.1 Robustness Verification of MNIST Classification Networks

We compare our approach with the zonotope and polytope methods in two aspects including verification

time and conservativeness of the results. To do that, we train 3 CNNs a small, a medium, and a large CNN

with 98%,99.7% and 99.9% accuracy respectively using the MNIST data set consisting of 60000 images

of handwritten digits with a resolution of 28× 28 pixels [50]. The network architectures are given in the

Appendix of the long version of this paper. The networks classify images into ten classes: 0,1, . . . ,9. The

classified output is the index of the dimension that has maximum value, i.e., the argmax across the 10 outputs.

We evaluate the robustness of the network under the well-known brightening attack used in [32]. The idea

of a brightening attack is that we can change the value of some pixels independently in the image to make it

brighter or darker to fool the network, to misclassify the image. In this case study, we darken a pixel of an

image if its value xi (between 0 and 255) is larger than a threshold d, i.e., xi ≥ d. Mathematically, we reduce

the value of that pixel xi to the new value x′i such that 0≤ x′i ≤ δ × xi.

The robustness verification is done as follows. We select 100 images that are correctly classified by the

networks and perform the brightening attack on these, which are then used to evaluate the robustness of the

networks. A network is robust to an input set if, for any attacked image, this is correctly classified by the

network. We note that the input set contains an infinite number of images. Therefore, to prove the robustness

of the network to the input set, we first compute the output set containing all possible output vectors of the

network using reachability analysis. Then, we prove that in the output set, the correctly classified output

always has the maximum value compared with other outputs. Note that we can neglect the softmax and

1Codes are available online at https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/CAV2020 ImageStar.
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classoutput layers of the networks in the analysis since we only need to know the maximum output in the

output set of the last fully connected layer in the networks to prove the robustness of the network.

We are interested in the percentage of the number of input sets that a network is provably robust and the

verification times of different approaches under different values of d and θ . When d is small, the number

of pixels in the image that are attacked is large and vice versa. For example, the average number of pixels

attacked (computed on 100 cases) corresponding to d = 250, 245 and 240 are 15, 21 and 25 respectively.

The value of δ dictates the size of the input set that can be created by a specific attack. Stated differently it

dictates the range in which the value of a pixel can be changed. For example, if d = 250 and δ = 0.01, the

value of an attacked pixel many range from 0 to 2.55.

The experiments show that using the zonotope method, we cannot prove the robustness of any network.

The reason is that the zonotope method obtains very conservative reachable sets. Figure V.8 illustrates the

ranges of the outputs computed by our ImageStar (approximate scheme), the zonotope and polytope ap-

proaches when we attack a digit 0 image with brightening attack in which d = 250 and δ = 0.05. One can see

that, using ImageStar and polytope method, we can prove that the output corresponding to the digit 0 is the

one that has a maximum value, which means that the network is robust in this case. However, the zonotope

method produces very large output ranges that cannot be used to prove the robustness of the network. The

figure also shows that our ImageStar method produces tighter ranges than the polytope method, which means

our result is less conservative than the one obtained by the polytope method. We note that the zonotope

method is very time-consuming. It needs 93 seconds to compute the reachable set of the network in this

case, while the polytope method only needs 0.3 seconds, and our approximate ImageStar method needs 0.74

seconds. The main reason is that the zonotope method introduces many new variables when constructing the

reachable set of the network, which results in the increase in both computation time and conservativeness.

The comparison of the polytope and our ImageStar method is given in Tables V.1, V.2, and V.3. The tables

show that in all networks, our method is less conservative than the polytope approach since the number of

cases that our approach can prove the robustness of the network is larger than the one proved by the polytope

method. For example, for the small network, for d = 240 and δ = 0.015, we can prove 71 cases while the

polytope method can prove 65 cases. Importantly, the number of cases proved by DeepPoly reduces quickly

when the network becomes larger. For example, for the case that d = 240 and δ = 0.015, the polytope

method is able to prove the robustness of the medium network for 38 cases while our approach can prove

88 cases. This is because the polytope method becomes more and more conservative when the network or

the input set is large. The tables show that the polytope method is faster than our ImageStar method on the

small network. However, it is slower than the ImageStar method on any larger networks in all cases. Notably,

for the large network, the ImageStar approach is significantly faster than the polytope approach, 16.65 times
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Figure V.8: An example of output ranges of the small MNIST classification networks using different ap-
proaches.

faster in average. The results also show that the polytope approach may run into memory problem for some

large input sets.

V.4.2 Robustness Verification of VGG16 and VGG19

In this section, we evaluate the polytope and ImageStar methods on real-world CNNs, the VGG16 and

VGG19 classification networks [73]. We use Foolbox [67] to generate the well-known DeepFool adver-

sarial attacks [60] on a set of 20 bell pepper images. From an original image ori im, Foolbox generates

an adversarial image adv im that can fool the network. The difference between two images is defined by

di f f im = adv im−ori im. We want to verify if we apply (l+δ ) percent of the attack on the original image,

whether or not the network classifies the disturbed images correctly. The set of disturbed images can be

represented as an ImageStar as follows disb im = ori im+(l + δ )× di f f im, where l is the percentage of

the attack at which we want to verify the robustness of the network, and δ is a small perturbation around l,

i.e., 0 ≤ δ ≤ δmax. Intuitively, l describes how close we are to the attack, and the perturbation δ represents

the size of the input set.

Table V.4 shows the verification results of VGG16 and VGG19 with different levels of the DeepFool

attack. The networks are robust if they classify correctly the set of disturbed images disb im as bell peppers.

To guarantee the robustness of the networks, the output corresponding to the bell pepper label (index 946)
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Robustness Results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 86.00 87.00 84.00 87.00 83.00 87.00

d = 245 77.00 78.00 72.00 78.00 70.00 77.00

d = 240 72.00 73.00 67.00 72.00 65.00 71.00

Verification Times (in Seconds)

d = 250 11.24 16.28 18.26 28.19 26.42 53.43

d = 245 14.84 19.44 24.96 40.76 38.94 85.97

d = 240 18.29 25.77 33.59 64.10 54.23 118.58

Table V.1: Verification results of the small MNIST CNN.

Robustness Results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 86.00 99.00 73.00 99.00 65.00 99.00

d = 245 74.00 95.00 58.00 95.00 46.00 95.00

d = 240 69.00 90.00 49.00 89.00 38.00 88.00

Verification Times (in Seconds)

d = 250 213.86 52.09 627.14 257.12 1215.86 749.41

d = 245 232.81 68.98 931.28 295.54 2061.98 1168.31

d = 240 301.58 102.61 1451.39 705.03 3148.16 2461.89

Table V.2: Verification results of the medium MNIST CNN.

Robustness Results (in Percent)

δ = 0.005 δ = 0.01 δ = 0.015

Polytope ImageStar Polytope ImageStar Polytope ImageStar

d = 250 90.00 99.00 83.00 99.00 MemErr 99.00

d = 245 91.00 100.00 75.00 100.00 MemErr 100.00

d = 240 81.00 99.00 MemErr 99.00 MemErr 99.00

Verification Times (in Seconds)

d = 250 917.23 67.45 5221.39 231.67 MemErr 488.69

d = 245 1420.58 104.71 6491.00 353.02 MemErr 1052.87

d = 240 1872.16 123.37 MemErr 476.67 MemErr 1522.50

Table V.3: Verification results of the large MNIST CNN.
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needs to be the maximum output compared with others. The table shows that with a small input set, small

δ , the polytope and ImageStar can prove the robustness of VGG16 and VGG19 with a reasonable amount of

time. Notably, the verification times as well as the robustness results of the polytope and ImageStar methods

are similar when they deal with small input sets except for two cases where ImageStar is faster than the

polytope method. It is interesting to note that according to the verification results for the VGG and MNIST

networks, deep networks seem to be more robust than shallow networks.

Robustness Results (in percentage)

VGG16 VGG19

δ = 10−7 δ = 2×10−7 δ = 10−7 δ = 2×10−7

Polytope ImageStar Polytope ImageStar Polytope ImageStar Polytope ImageStar

l = 0.96 85.00 85.00 85.00 85.00 100.00 100.00 100.00 100.00

l = 0.97 85.00 85.00 85.00 85.00 100.00 100.00 100.00 100.00

l = 0.98 85.00 85.00 85.00 85.00 95.00 95.00 95.00 95.00

Verification Times (in Seconds)

l = 0.96 319.04 318.60 327.61 319.93 320.91 314.14 885.07 339.30

l = 0.97 324.93 323.41 317.27 324.90 315.84 315.27 319.67 314.58

l = 0.98 315.54 315.26 468.59 332.92 320.53 320.44 325.92 317.95

Table V.4: Verification results of VGG networks.

V.4.3 Exact Analysis vs. Approximate Analysis

We have compared our ImageStar approximate scheme with the zonotope and polytope approximation meth-

ods. It is interesting to investigate the performance of ImageStar exact scheme in comparison with the ap-

proximate one. To illustrate the advantages and disadvantages of the exact scheme and approximate scheme,

we consider the robustness verification of VGG16 and VGG19 on a single ImageStar input set created by

an adversarial attack on a bell pepper image. The verification results are presented in Table V.5. The table

shows that for a small perturbation δ , the exact and over-approximate analysis can prove the robustness of

the VGG16 around some specific levels of attack in approximately one minute. We can intuitively verify the

robustness of the VGG networks via visualization of their output ranges. An example of the output ranges

of VGG19 for the case of l = 0.95%,δmax = 2×10−7 is depicted in Figure V.9. One can see from the figure

that the output of the index 946 corresponding to the bell pepper label is always the maximum one compared

with others, which proves that VGG19 is robust in this case. From the table, it is interesting that VGG19 is

not robust if we apply ≥ 98% of the attack. Notably, the exact analysis can give us correct answers with a

counter-example set in this case. However, the over-approximate analysis cannot prove that VGG19 is not

robust since its obtained reachable set is an over-approximation of the exact one. Therefore, it may be the

case that the over-approximate reachable set violates the robustness property because of its conservativeness.

A counter-example generated by the exact analysis method is depicted in Figure V.10 in which the disturbed

image is classified as strawberry instead of bell pepper since the strawberry output is larger than the bell
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pepper output in this case.

l δmax

VGG16 VGG19

Exact Approximate Exact Approximate

Robust VT Robust VT Robust VT Robust VT

50%
10−7 Yes 64.56226 Yes 60.10607 Yes 234.11977 Yes 72.08723

2×10−7 Yes 63.88826 Yes 59.48936 Yes 1769.69313 Yes 196.93728

80%
10−7 Yes 64.92889 Yes 60.31394 Yes 67.11730 Yes 63.33389

2×10−7 Yes 64.20910 Yes 59.77254 Yes 174.55983 Yes 200.89500

95%
10−7 Yes 67.64783 Yes 59.89077 Yes 73.13642 Yes 67.56389

2×10−7 Yes 63.83538 Yes 59.23282 Yes 146.16172 Yes 121.91447

97%
10−7 Yes 64.30362 Yes 59.79876 Yes 77.25398 Yes 64.43168

2×10−7 Yes 64.06285 Yes 61.23296 Yes 121.70296 Yes 107.17331

98%
10−7 Yes 64.06183 Yes 59.89959 No 67.68139 Unkown 64.47035

2×10−7 Yes 64.01997 Yes 59.77469 No 205.00939 Unknown 107.42679

98.999%
10−7 Yes 64.24773 Yes 60.22833 No 71.90568 Unknown 68.25916

2×10−7 Yes 63.67108 Yes 59.69298 No 106.84492 Unknown 101.04668

Table V.5: Verification results of the VGG16 and VGG19 in which V T is the verification time (in seconds)
using the ImageStar exact and approximate schemes.
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Figure V.9: Exact ranges of VGG19 shows that VGG19 correctly classifies the input image as a bell pepper.

To optimize the verification time, it is important to know the times consumed by each type of layers in the

reachability analysis step. Figure V.11 described the total reachability times of the convolutional layers, fully

connected layers, max pooling layers and ReLU layers in the VGG19 with 50% attack and 10−7 perturbation.

As shown in the figure, the reachable set computation in the convolutional layers and fully connected layers
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Figure V.10: A counter-example shows that VGG19 misclassifies the input image as a strawberry instead of
a bell pepper.

can be done very quickly, which shows the advantages of the ImageStar data structure. Notably, the total

reachability time is dominated by the time of computing the reachable set for 5 max pooling layers and 18

ReLU layers. This is because the computation in these layers concerns solving a large number of linear

programing (LP) optimization problems such as finding lower bound and upper bound, and checking max

point candidates. Therefore, to optimize the computation time, we need to minimize the number of LP

problems in the future.
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Figure V.11: Total reachability time of each type of layers in the VGG19 in which the max pooling and ReLU
layers dominate the total reachability time of the network.
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V.5 Discussion

V.5.1 Effect of Input Sizes on Verification Performance

When we apply our approach on real-world networks, it has been shown that the size of the input set is the

most important factor that affects the performance of verification approaches. However, this important

issue has not been emphasized in the existing literature. Most of the existing approaches focus on the size

of the network that they can analyze. We believe that all methods (including the method we proposed in

this paper) are scalable for large networks only for small input sets. When the input set is large, it causes

three major problems in the analysis, which are the explosions in 1) computation time; 2) memory usage;

and 3) conservativeness. In the exact analysis method, a large input set causes more splits in the max-pooling

layer and the ReLU layer. A single ImageStar may split into many new ImageStars after these layers, which

leads to the explosion in the number of ImageStars in the reachable set as shown in Figure V.12. Therefore,

it requires more memory to handling the new ImageStars and more time for the computation. One may think

that the over-approximate method can overcome this challenge since it obtains only one ImageStar at each

layer and the cost we need to pay is only the conservativeness of the result. The fact is, an over-approximate

method usually helps reduce the computation time, as shown in the experimental results. However, it is not

necessarily efficient in terms of memory consumption. The reason is, if there is a split, it introduces a new

predicate variable and new generator. If the number of generators and the dimensions of the ImageStar are

large, it requires a massive amount of memory to store the over-approximate reachable set. For instance, if

there are 100 splits happened in the first ReLU layer of the VGG19, the second convolutional layer

will receive an ImageStar of size 224× 224× 64 with 100 generators. To store this ImageStar with

double precision, we need approximately 2.4GB of memory. In practice, the dimensions of the ImageStars

obtained in the first several convolutional layers are usually large. Therefore, if splitting happens in these

layers, we may need to deal with “out of memory” problem. We see that all existing approaches such as

the zonotope [74] and polytope [75], all face the same challenges. Additionally, the conservativeness of an

over-approximate reachable set is a crucial factor in evaluating an over-approximation approach. Therefore,

the exact analysis still plays an essential role in the analysis of neural networks since it helps to evaluate the

conservativeness of the over-approximation approaches.

V.5.2 Benefit of Parallel Computing

We can speed up the exact analysis using parallel computing. When there is more than one ImageStar in

the reachable set, we can handle them independently on multiple cores machine. Using parallel computing,

the total reachability time can be reduced significantly as shown in Figure V.13 for the VGG19 with

l = 50%,δmax = 1.8× 10−7. To compute the reachable set of the networks with a large input set, we can
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Figure V.12: Number of ImageStars in exact analysis increases with input size.

decompose the input set into a number of smaller input sets and perform the analysis in parallel on a multi-

cores platform or on distributed systems.
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Figure V.13: The reachability time in the exact analysis reduces as the number of cores used in computation
increases.
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CHAPTER VI

ImageStar-Based Reachability for Verification of Semantic Segmentation Neural Networks

VI.1 Preliminaries

VI.1.1 Semantic Segmentation Networks and Reachability

Definition 7. A semantic segmentation network (SSN) f is a nonlinear function that maps each pixel xi j in

a multichannel input image x to a class yi j from a set of classes L = {1,2, . . . ,L}.

f : x ∈ Rh×w×c→ y ∈ Rh×w×L (VI.1)

where h, w, and c are the height, width, and number of channels of x (y), respectively. This definition has

each output pixel yi j prior to taking the softmax to yield the class of each pixel L h×w.

Definition 8. Reachability analysis (or shortly, Reach) of a semantic segmentation network f on an ImageS-

tar input set I is the process of computing all possible classes corresponding to every pixel in all input images

x in the input set I.

Reach( f , I) : I→R f

x→ y = f (x)
(VI.2)

We call R f the “pixel-class reachable set” of the network corresponding to the input set I in which each

pixel-class pci j ∈R f may contain more than one class, i.e., pci j = {l1, . . . , lm} ⊆L ,m≥ 1.

VI.1.2 Adversarial Attacks and Robustness

Definition 9. An adversarial attack adds noise xnoise with a small coefficient ε to the input image x to

change the classification result of a network. Mathematically, an adversarial attack in this work is a linear

parametrized function gε,xnoise(·) that takes an image as an input and produces the corresponding adversarial

image.

xadv = gε,xnoise(x) = x+ ε× xnoise (VI.3)

Developing new adversarial attack methods (i.e., obtaining xnoise and ε coefficient) has been an active

research topic in machine learning for several years. Many powerful techniques have been proposed recently,

such as the fast gradient sign method (FGSM) [33], DeepFool [60], etc. At the same time, defending against

adversarial attacks is an active research area [54, 95]. In this paper, we focus on the robustness analysis of
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semantic segmentation networks under adversarial attacks. We refer readers to [104] for a survey of state-of-

the-art approaches for attacks and defences.

Definition 10. An unknown, bounded adversarial attack (UBAA) is an adversarial attack in which the value

of the coefficient ε is unknown but bounded in a range [ε,ε]. An UBAA can be defined formally as a tuple

A = 〈ε,ε,xnoise〉.

Proposition VI.1.1 (UBAA as an ImageStar). Applying an UBAA A = 〈ε,ε,xnoise〉 on an image x creates a

set of images, which can be represented as an ImageStar I = 〈c≡ x,V ≡ xnoise,P(α)≡ P(ε)≡ ε ≤ ε ≤ ε〉.

Definition 11. Given an SSN f and an input image x, a pixel xi j ∈ x is called robust to an UBAA A (or robust

in short) if and only if: ∀ gε,xnoise ∈ A , f (xadv
i j ) = f (xi j), where xadv

i j ∈ xadv = gε,xnoise(x). If ∃ gε,xnoise ∈ A

such that f (xadv
i j ) 6= f (xi j), the pixel xi j is called unrobust.

We note that a pixel xi j is attacked by the UBAA if the corresponding noise to the pixel is not zero, i.e.,

xnoise
i j 6= 0.

Definition 12. The robustness value (RV) of an SSN corresponding to an UBAA applied to an input image is

defined as

RV =
Nrobust

Npixels
×100%. (VI.4)

where Nrobust is the total number of robust pixels under the attack, and Npixels is the total number of pixels of

the input image.

Definition 13. The robustness sensitivity (RS) of an SSN corresponding to an UBAA applied to an input

image is defined as

RS =
Nunrobust +Nunknown

Nattacked pixels
. (VI.5)

where Nunrobust is the total number of unrobust pixels under the attack, Nunknown is the total number of pixels

whose the robustness are unknown (may or may not robust), and Nattacked pixels is the total number of attacked

pixels of the input image.

While the robustness value quantifies the robustness of the network under an unknown bounded adver-

sarial attack, the robustness sensitivity illustrates how significant the network output may change under the

attack, i.e., if one pixel in the input image is attacked, how many pixels (on average) at the segmentation

output image are influenced (unrobust or unknown).

VI.2 Verification

We consider two robustness verification problems.
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Problem VI.2.1. Given an SSN f , an image x and an UBAA A , prove for every pixel xi j ∈ x that xi j is robust

or unrobust to the attack A .

Problem VI.2.2. Given an SSN f , a set of N test images {x1, . . . ,xN} and an UBAA A , compute the average

robustness value RV and the average robustness sensitivity RS of the network (corresponding to A ).

In this section, we investigate a reachability-based algorithm to prove the robustness of an SSN f under

an UBAA A at the pixel-level, i.e., Problem VI.2.1. The core of our approach is the computation of the

pixel-class reachable set R f = Reach( f , I) that contains all possible classes of every pixel in the input set I

constructed by applying the attack A on an image x (Proposition VI.1.1). The pixel-class reachable set is

computed by propagating the ImageStar input set through the layers of the network.

We analyze the robustness of an SSN that is composed of the following layers: convolution, max-

pooling, average-pooling, batch normalization, ReLU, transposed convolution, dilated convolution, softmax,

and pixel-classification. Reachability of the convolution, max-pooling, average-pooling, batch normalization,

and ReLU layers has been developed previously [80]. In this section, we develop reachability techniques for

the up-sampling layers, including transposed convolution, dilated convolution and pixel-classification. We

note that the softmax layer can be neglected in the analysis [80].

VI.2.1 Reachability of a Transposed (Dilated) Convolutional Layer

Lemma VI.2.3. The reachable set of a transposed (dilated) convolutional layer with an ImageStar input set

I = 〈c,V,P〉 is another ImageStar I ′ = 〈c′,V ′,P〉 where c′ = Trans(Dil)Conv(c) is the transposed (dilated)

convolution operation applied to the anchor image, V ′ = {v′1, . . . ,v′m},v′i = Trans(Dil)ConvolZeroBias(vi) is

the transposed (dilated) convolution operation with zero bias applied to the generator images, i.e., only using

the weights of the layer.

Proof. Similar to the reachability of a convolutional layer [80], the tranposed (dilated) convolution operation

applied to an ImageStar is the combination of 1) the transposed (dilated) convolution operation with the bias

on the anchor image, and 2) the transposed (dilated) convolution operation with zero bias on the basis images.

This combination results in a new ImageStar output set. The convenience in computing the output set of a

transposed convolutional layer comes from the linearity of the input set and operation itself.

VI.2.2 Reachability of a Pixel-classification Layer

The last layer in an SSN f is a pixel-classification layer, which assigns a specific class (label) to each pixel

of an input image. Given an h×w× nc input image, the size of the input x to the pixel-classification layer

is h×w×N, where N is the number of classes (labels) of the network (we can neglect softmax layer in the
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analysis). To assign a specific class l,1≤ l≤N to a pixel pi j ∈ x,1≤ i≤ h,1≤ j≤w, the value of the pixel pi j

at channel l, i.e., x(i, j, l), needs to be the maximum one among N channels. When the input to the network is

an ImageStar set instead of a single image, the input to the pixel-classification layer is a h×w×N ImageStar

set. Depending on the value of the predicate variables in the input set, a pixel pi j in the set may be assigned

to more than one classes. For example, if l1, . . . , lm are the cross-channel max-point candidates of the pixel

pi j in N channels, the pixel-class reachable set of the layer at the considered pixel is pci j = {l1, . . . , lm}. By

determining all cross-channel max-point candidates of all pixels in the input set, we can obtain the pixel-class

reachable set of the layer, which is also the reachable set of the network R f = [pci j]h×w.

Similar to the max-pooling layer [80], determining all cross-channel max-point candidates of all pixels

in the input set can be done via solving linear programming (LP) optimization problems, which is time-

consuming due to the number of LPs required (or equivalenlty the size of the LP). To reduce computation

time, we estimate the lower and upper bounds of the ImageStar input to the layer using only the ranges of the

predicate variables. These bounds are then used to predict all possible cross-channel max-point candidates of

all pixels .

VI.2.3 Verification Algorithm

Our reachability-based verification algorithm for an SSN is presented in Algorithm 7. The algorithm takes a

network f , an input image x, an UBAA A , and a reachability method (exact or approximate) as inputs and

returns the pixel-class reachable set R f , the robustness value RV , and sensitivity RS of the network. The

algorithm works as follows. First, it constructs the input set corresponding to the attack using Proposition

VI.1.1 (line 2). Then, it computes the pixel-class reachable set of the network using reachability analysis

layer-by-layer (line 3). Using the pixel-class reachable set, it verifies the robustness of each pixel in the

reachable set by comparing its classes with the non-attacked output segmentation image, i.e., y = f (x). If

R f (i, j) = y(i, j), the pixel pi, j is robust under the attack (line 10). If R f (i, j) 6= y(i, j)∧ y(i, j) 6⊂R f (i, j),

the pixel pi, j is unrobust under the attack (line 12). Otherwise, the robustness of the pixel pi, j is unknown

(may be robust or unrobust), due to overapproximation. Beyond verifying the robustness of each pixel in the

reachable set, it also counts the numbers of 1) robust pixels Nrobust (line 10), 2) unrobust pixels Nunrobust (line

12), and 3) pixels with unknown robustness Nunknown (line 13). Finally, it computes the robustness value and

sensitivity of the network (line 12 and 13).

Average Robustness Value and Sensitivity. The robustness of a network under an UBAA should be

evaluated on a set of test images (Problem VI.2.2). Suppose we have a test set of N images X = {x1, . . . ,xN}

that we want to estimate the average robustness value RV and sensitivity RS over for the network. This can

be done by computing the robustness value RVk and sensitivity RSk on each image xk using Algorithm 7 and
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Algorithm 7 Robustness verification of a semantic segmentation network.
Input: f ,x,A ,method . network, input image, attack, reachability method

Output: R f ,RV,RS . pixel-class reachable set, robustness value, robustness sensitivity

1: procedure [R f ,RV,RS] = VERIFY( f ,x,A ,method)
2: I = constructInputSet(x,A ) . construct an ImageStar input set

3: R f = Reach( f , I,method) . compute the pixel-class reachable set

4: y = f (x) . compute non-attacked output segmentation image

5: H = x.Height, W = x.Width
6: Nrobust = 0, Nunrobust = 0, Nunknown = 0, Nattacked pixels = 0
7: for i = 1 : H do
8: for i = 1 : W do
9: if A .xnoise(i, j) 6= 0 then Nattacked pixels = Nattacked pixels +1

10: if R f (i, j) = y(i, j) thenNrobust = Nrobust +1 . the pixel xi j is robust under the attack

11: else
12: if y(i, j) 6⊂R f (i, j) then Nunrobust = Nunrobust +1 . the pixel xi j is unrobust

13: elseNunknown = Nunknown +1 . the pixel xi j robustness is unknown

14: RV = (Nrobust/(H×W ))×100%) . robustness value

15: RS = (Nunrobust +Nunknown)/Nattacked pixels . robustness sensitivity

then taking the average of these values.

VI.3 Evaluation

Experimental Setup.

The approach is implemented in NNV, a software tool for verification of deep neural networks and learning-

enable cyber-physical systems [86] by Tran et al. We evaluate our approach by verifying the robustness of

a set of deep semantic segmentation networks trained on the MNIST and M2NIST datasets shown in Table

VI.1. All networks are trained using Matlab Deep Learning Toolbox. The experiments are performed on a

personal computer with the following configuration: Intel Core i7-8850H CPU @ 2.6GHz 8 core Processor,

32 GB Memory, and 64-bit Windows 10 OS. The overapproximate reachability method and 6 cores are used

for computing pixel-class reachable set of all networks.

We randomly selected 100 MNIST images (of the size 28× 28) and 100 M2NIST images to evaluate

ID Name Accuracy(IoU) Down-sampling Up-sampling Input size Layers

N1 mnist ap tc 0.87 C+AP TC 28×28 21 (1I, 7C, 3R, 4B, 2AP, 2TC, 1S, 1L)

N2 mnist mp tc 0.85 C+MP TC 28×28 21 (1I, 7C, 3R, 4B, 2MP, 2TC, 1S, 1L)

N3 mnist dc 0.83 C DC 28×28 21 (1I, 3C, 3R, 3B, 9DC, 1S, 1L)

N4 m2nist ap dc 0.62 C+AP DC 64×84 16 (1I, 4C, 3R, 3AP, 3DC, 1S, 1L)

N5 m2nist mp dc 0.75 C+AP TC 64×84 22 (1I, 7C, 8R, 2AP, 2TC, 1S, 1L)

N6 m2nist dc 0.72 C DC 64×84 24 (1I, 1C, 5R, 5B, 10DC, 1S, 1L)

Table VI.1: Semantic Segmentation Network Benchmarks. Notation: ‘I’: input, ‘C’: convolution, ‘TC’: trans-
posed convolution, ‘DC’: dilated convolution, ‘R’: ReLU, ‘B’: batch normalization, ‘AP’: average-pooling,
‘MP’: max-pooling, ‘S’: softmax, ‘L’: label (pixel classification)

.

84



10 20 30 40 50
0.85

0.9

0.95
(a)

10 20 30 40 50
2

3

4

5
(b)

10 20 30 40 50
0

200

400

600

800

1000

(c)

10 20 30 40 50
660

680

700

720

740

760
(d)

10 20 30 40 50
20

40

60

80

100

120
(e)

10 20 30 40 50
0

1

2

3

4

5
(f)

Figure VI.1: MNIST networks: RV ,RS, V T vs. NattackedPixels (∆ε = 0.001).

the robustness of the trained networks. We attack each image x in two test sets using brightening attack

[80]. Particularly, we darken a pixel x(i, j) in the image if its value is larger than a threshold d, i.e. if

x(i, j) > d → xadv(i, j) = a� d. Mathematically, the adversarial darkening attack on the image x can be

described as:

xadv = x+ ε× xnoise, 1−∆ε ≤ ε ≤ 1,

xnoise(i, j) =−x(i, j), if x(i, j)> d, otherwise xnoise(i, j) = 0.

One can see that for ε = 1, we completely darken all the pixels whose values are larger than d (= 150 in our

experiments), i.e., xadv(i, j) = 0. The size of the input set caused by the attack is defined by ∆ε . Generally,

we have a large input set when ∆ε is large. To evaluate the average robustness values (RV ) and sensitivities

(RS) of the networks (on the test sets) in the connection with the number of attacked pixels, we future restrict

the maximum allowable number of attacked pixels by Nmax.

VI.3.1 Robustness and Sensitivity of Different Network Architectures

Max-pooling vs. average-pooling. Max-pooling is a preferred choice for training deep neural networks

compared with average-pooling because of its nonlinear characteristics. We investigate whether max-pooling
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Figure VI.2: MNIST networks: RV ,RS, V T vs. ∆ε (Nmax = 20).

is actually better than average-pooling in terms of accuracy and robustness of deep SSN. Figures VI.1, VI.2

illustrate the average robustness and sensitivities of MNIST networks under different number of attacked

pixels (Figure VI.1, 20 images are used) and input sizes (Figure VI.2, 10 images are used). We focus on the

first two networks, i.e. N1 and N2. These networks have the same architectures (with 21 layers). The only

difference is N1 uses average-pooling for down-sampling while N2 uses max-pooling for the same task (both

networks use two transposed convolutional layers for up-sampling). With training, we experienced that N1 is

more accurate than N2, (0.87 IoU vs. 0.85 IoU, see Table VI.1). Interestingly, N1 is also more robust than N2

since it has a larger average robustness value (Figure VI.1 -a) and more robust pixels (Figure VI.1 -d). One

can also see that the average-pooling-based network is less sensitive to the attack than the max-pooling-based

network (Figure VI.1 -(b, e, f)). Notably, when more pixels are attacked or larger input sizes are used, the

max-pooling-based network (i.e., N2) produces more pixels with unknown robustness (Figures VI.1 -f, VI.2

-f, VI.3, VI.4). Lastly, when the input size increases, the robustness of the max-pooling-based network drops

more quickly than the average-pooling-based networks (Figure VI.2 (a,d)) and its sensitivity increases faster

(Figure VI.2 -b). We believe that the main reason causing the max-pooling-based network more sensitive to

the attack is its high nonlinearity due to using max-pooling layers.

Accuracy vs. robustness; deeper network and ReLU layer robustness. Accuracy is one of the most
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Figure VI.3: Example of R f (N1),Nunknown = 6 (Nmax = 50,∆ε = 0.003).
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Figure VI.4: Example R f (N2),Nunknown = 19 (Nmax = 50,∆ε = 0.003).

important factors for evaluating deep neural networks. We investigate whether more accurate and deeper

networks are more robust compared to other architectures. To determine this, we analyze the robustness of

two networks with different architectures and accuracy trained on M2NIST data set. The first network N4

is based on dilated convolution with 16 layers and 0.62 (IoU) accuracy (Table VI.1). The second network

N5 is based on transposed convolution with 22 layers and 0.75 (IoU) accuracy. Here, the second network

is deeper and more accurate than the first network. We run the robustness analysis on these two networks

on a set of 20 M2NIST images. The results are depicted in Figure VI.5. In terms of robustness, the more

accurate and deeper network N5 is worse than the less accurate one N4 (Figures VI.5 -(a,d), VI.7, and VI.8)

when the number of attacked pixels is increases. Additionally, N5 is also more sensitive to the attack than

N4 (Figure VI.5 -(b,e)). The main reason for this result is, the more accurate network contains many ReLU

layers (8 ReLU layers) compared with the less accurate one (3 ReLU layers). Similar to the max-pooling

layer, using many ReLU layers increases the nonlinearity of the network to capture complex features of

images. Unfortunately, it also makes the network more sensitive to the attack.
Dilated convolution vs. Transposed convolution. Dilated convolution and transposed convolution are

typical choices for semantic segmentation tasks. We compare these techniques in terms of accuracy and

robustness. On MNIST networks, although the transposed-convolution networks N1,N2 and the dilated-

convolution network N3 have the same number of layers (21 layers with 3 ReLU), N3 is less accurate than

N1 and N2 (0.83 vs. 0.87 and 0.85 IoU, see Table VI.1). In terms of robustness, N3 is less robust and more

sensitive to the attack than N1 and N2 when the number of attacked pixels is smaller than 40 (Figure VI.1-

(a,b,d,e)). When the input size increases, the dilated-convolution network is less robust and more sensitive to
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Figure VI.5: M2NIST networks: RV ,RS, V T vs. NattackedPixels (∆ε = 10−5).
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Figure VI.6: Reach-Times of M2NIST networks (Nmax = 25, ∆ε = 10−5).
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Figure VI.7: Example of R f (N4),Nunrobust = 43 (Nmax = 25,∆ε = 0.00001).
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Figure VI.8: Example of R f (N5),Nunrobust = 51 (Nmax = 25,∆ε = 0.00001).

the attack than the transposed-convolution networks (Figure VI.2-(a,b,d,e)). On M2NIST networks, by con-

sidering 21-layer (8 ReLU) transposed-convolution network N5 and 24-layer (4 ReLU) dilated-convolution

network N6, one can see that even using more layers, N6 is less accurate than N5 (0.72 vs. 0.75 IoU, see

Table VI.1). In terms of robustness, N6 is also less robust and more sensitive to the attack than N5 (Figure

VI.5-(a,b,d,e)).

VI.3.2 Verification Performance

More max-pooling and ReLU layers, more number of attacked pixels and large input size lead to

greater verification time and memory consumption. Using max-pooling layer for down-sampling not only

decreases the robustness of an SSN but also causes a dramatically increase in time and memory consumption

in verification. Figures VI.1-c and VI.2-c show that the verification time (in seconds) of the max-pooling-

based network N2 grows significantly compared with the average-pooling-based network N1 when increasing

the number of attacked pixels Nattacked pixels or the input size ∆ε . When dealing with more number of attacked

pixels or larger input size, the max-pooling layer introduces more predicate variables to over-approximate the

reachable set which causes the increase both in computation time and memory usage [80]. Similar to max-

pooling layer, ReLU layer is also a main source of robustness degradation. Additionally, it also dominates

the reachability time of a network. Figure VI.6 shows that 3 ReLU layers constitutes 50.68% the total

reachability time of 16-layer network N4 and 8 ReLU layers constitutes 62.12% the total reachability time of

22-layer network N5.

Dilated convolution vs. transposed convolution. Figures VI.1-c, VI.2-c and VI.5-c consistently show
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that the dilated-convolution-based networks requires more verification time than the ones using transposed

convolution even in the case that they have the same or less number of ReLU layers (i.e., N3 vs. N1,N2, or N6

vs. N5).

VI.4 Training robust and verification-friendly networks.

Robust deep learning is an active area of research. Our analysis on robustness and sensitivity of SSNs can ben-

efit robust deep learning methods by carefully choosing appropriate layers and architectures prior to training.

As shown in this paper for semantic segmentation tasks, average-pooling seems to be better than max-pooling

in both accuracy and robustness. In addition, it is also easier to verify. Importantly, since ReLU layers are

crucial in training, users can minimize the number of ReLU layers used in training to enhance the robustness

of the network, as well as easing the verification task. From our analysis, SSNs using average-pooling for

down-sampling and transposed convolution for up-sampling seem to be better than dilated-convolution-based

SSNs in both accuracy and robustness. Training accurate and robust deep neural networks requires knowl-

edge about different layers and architecture characteristics. Generally, increasing nonlinearity of a network,

e.g. by adding max-pooling and ReLU layers, may allow it to learn complex features with high accuracy, but

may simultaneously result in a less robust network vulnerable to adversarial attacks. Therefore, optimizing

the nonlinearity and the depth of a network in training is crucial to achieve simultaneously high accuracy and

robust network that is amenable to verification.
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CHAPTER VII

NNV: Neural Network Verification Tool

VII.1 Overview and Features

Figure VII.1: An overview of NNV.

NNV is an object-oriented toolbox written in Matlab, which was chosen in part due to the prevalence of Mat-

lab/Simulink in the design of CPS. It uses the MPT toolbox [48] for polytope-based reachability analysis and

visualization [83], and makes use of CORA [5] for zonotope-based reachability analysis of nonlinear plant

models [81]. NNV also utilizes the Neural Network Model Transformation Tool (NNMT) for transforming

neural network models from Keras and Tensorflow into Matlab using the Open Neural Network Exchange

(ONNX) format, and the Hybrid Systems Model Transformation and Translation tool (HyST) [8] for plant

configuration.

The NNV toolbox contains two main modules: a computation engine and an analyzer, shown in Figure

VII.1. The computation engine module consists of four subcomponents: 1) the FFNN constructor, 2) the

NNCS constructor, 3) the reachability solvers, and 4) the evaluator. The FFNN constructor takes a network

configuration file as an input and generates a FFNN object. The NNCS constructor takes the FFNN object

and the plant configuration, which describes the dynamics of a system, as inputs and then creates an NNCS

object. Depending on the application, either the FFNN (or NNCS) object will be fed into a reachability solver

to compute the reachable set of the FFNN (or NNCS) from a given initial set of states. Then, the obtained

reachable set will be passed to the analyzer module. The analyzer module consists of three subcomponents: 1)

a visualizer, 2) a safety checker, and 3) a falsifier. The visualizer can be called to plot the obtained reachable

set. Given a safety specification, the safety checker can reason about the safety of the FFNN or NNCS with

respect to the specification. When an exact (sound and complete) reachability solver is used, such as the star-

based solver, the safety checker can return either ”safe,” or ”unsafe” along with a set of counterexamples.
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Feature Exact Analysis Over-approximate Analysis

Components FFNN, CNN, SEGNET, NNCS FFNN, CNN, SEGNET, NNCS

Plant dynamics (for NNCS) Linear ODE Linear ODE, Nonlinear ODE

Discrete/Continuous (for NNCS) Discrete Time Discrete Time, Continuous Time

Activation functions ReLU, Satlin ReLU, Satlin, Sigmoid, Tanh

CNN Layers MaxPool, Conv, TConv, MaxPool, BN, AvgPool, FC MaxPool, Conv, TConv, BN, AvgPool, FC

Reachability methods Star, Polyhedron, ImageStar Star, Zonotope, Abstract-domain, ImageStar

Reachable set/Flow-pipe Visualization Yes Yes

Parallel computing Yes Partially supported

Safety verification Yes Yes

Falsification Yes Yes

Robustness verification (for FFNN/CNN) Yes Yes

Counterexample generation Yes Yes

Table VII.1: Overview of major features available in NNV. Links refer to relevant files/classes in the NNV
codebase. BN refers to batch normalization layers, FC to fully-connected layers, AvgPool to average pool-
ing layers, Conv to convolutional layers (including dilated convolution), TConv to transposed convolutional
layers and MaxPool to max pooling layers.

When an over-approximate (sound) reachability solver is used, such as the zonotope-based scheme or the

approximate star-based solvers, the safety checker can return either ”safe” or ”uncertain” (unknown). In this

case, the falsifier automatically calls the evaluator to generate simulation traces to find a counterexample. If

the falsifier can find a counterexample, then NNV returns unsafe. Otherwise, it returns unknown. A summary

of NNV’s major features is given in Table VII.1.

VII.2 Set Representations and Reachability Algorithms

NNV implements a set of reachability algorithms for sequential FFNNs and CNNs, as well as NNCS with

FFNN controllers. The reachable set of a sequential FFNN is computed layer-by-layer. The output reachable

set of a layer is the input set of the next layer in the network.

VII.2.1 Polyhedron [83]

The polyhedron reachability algorithm computes the exact polyhedron reachable set of a FFNN with ReLU

activation functions. The exact reachability computation of layer L in a FFNN is done as follows. First, we

construct the affine mapping Ī of the input polyhedron set I, using the weight matrix W and the bias vector

b, i.e., Ī =W × I +b. Then, the exact reachable set of the layer RL is constructed by executing a sequence of

stepReLU operations, i.e., RL = stepReLUn(stepReLUn−1(· · ·(stepReLU1(Ī)))). Since a stepReLU operation

can split a polyhedron into two new polyhedra, the exact reachable set of a layer in a FFNN is usually a union

of polyhedra. The polyhedron reachability algorithm is computationally expensive because computing affine

mappings with polyhedra is costly. Additionally, when computing the reachable set, the polyhedron approach

extensively uses the expensive conversion between the H-representation and the V-representation. These

92

https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/segnet
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nncs
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/fnn
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/cnn
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/segnet
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nncs
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nncs/LinearODE.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nncs/NonLinearODE.m
https://github.com/verivital/nnv/tree/master/code/nnv/engine/nn/funcs/ReLU.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/funcs/SatLin.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/funcs/ReLU.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/funcs/SatLin.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/funcs/LogSig.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/funcs/TanSig.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/Conv2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/TransposedConv2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/MaxPooling2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/Conv2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/TransposedConv2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/BatchNormalizationLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/AveragePooling2DLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/nn/layers/FullyConnectedLayer.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/set/ImageStar.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/set/Star.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/set/Zono.m
https://github.com/verivital/nnv/blob/master/code/nnv/engine/set/ImageStar.m


are the main drawbacks that limit the scalability of the polyhedron approach. Despite that, we extend the

polyhedron reachability algorithm for NNCSs with FFNN controllers. However, the propagation of polyhedra

in NNCS may lead to a large degree of conservativeness in the computed reachable set [81].

VII.2.2 Star Set [84, 81] (code)

The star set is an efficient set representation for simulation-based verification of large linear systems [9, 11,

85] where the superposition property of a linear system can be exploited in the analysis. It has been shown

in [84] that the star set is also suitable for reachability analysis of FFNNs. In contrast to polyhedra, the

affine mapping and intersection with a half space of a star set is more easily computed. NNV implements an

enhanced version of the exact and over-approximate reachability algorithms for FFNNs proposed in [84] by

minimizing the number of LP optimization problems that need to be solved in the computation. The exact

algorithm that makes use of star sets is similar to the polyhedron method that makes use of stepReLU opera-

tions. However, it is much faster and more scalable than the polyhedron method because of the advantage that

star sets have in affine mapping and intersection. The approximate algorithm obtains an over-approximation

of the exact reachable set by approximating the exact reachable set after applying an activation function, e.g.,

ReLU, Tanh, Sigmoid. We refer readers to [84] for a detailed discussion of star-set reachability algorithms

for FFNNs.

We note that NNV implements enhanced versions of earlier star-based reachability algorithms [84]. Par-

ticularly, we minimize the number of linear programming (LP) optimization problems that must be solved

in order to construct the reachable set of a FFNN by quickly estimating the ranges of all of the states in the

star set using only the ranges of the predicate variables. Additionally, the extensions of the star reachability

algorithms to NNCS with linear plant models can eliminate the explosion of conservativeness in the poly-

hedron method [81, 82]. The reason behind this is that in star sets, the relationship between the plant state

variables and the control inputs is preserved in the computation since they are defined by a unique set of

predicate variables. We refer readers to [81, 82] for a detailed discussion of the extensions of the star-based

reachability algorithms for NNCSs with linear/nonlinear plant models.

VII.2.3 Zonotope [74] (code)

NNV implements the zonotope reachability algorithms proposed in [74] for FFNNs. Similar to the over-

approximate algorithm using star sets, the zonotope algorithm computes an over-approximation of the exact

reachable set of a FFNN. Although the zonotope reachability algorithm is very fast and scalable, it produces

a very conservative reachable set in comparison to the star set method as shown in [84]. Consequently,

zonotope-based reachability algorithms are usually only more efficient for very small input sets. As an
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example it can be more suitable for robustness certification.

VII.2.4 Abstract Domain [75]

NNV implements the abstract domain reachability algorithm proposed in [75] for FFNNs. NNV’s abstract

domain reachability algorithm specifies an abstract domain as a star set and estimates the over-approximate

ranges of the states based on the ranges of the new introduced predicate variables. We note that better

ranges of the states can be computed by solving LP optimization. However, better ranges come with more

computation time.

VII.2.5 ImageStar Set [80] (code)

NNV recently introduced a new set representation called the ImageStar for use in the verification of deep

convolutional neural networks (CNNs) and semantic segmentation networks (SSNs). Briefly, the ImageStar

is a generalization of the star set where the anchor and generator vectors are replaced by multi-channel

images. The ImageStar is efficient in the analysis of convolutional layers, transposed convolutional layers,

average pooling layers, and fully connected layers, whereas max pooling layers and ReLU layers consume

most of the computation time. NNV implements exact and over-approximate reachability algorithms using

the ImageStar for serial CNNs. In short, using the ImageStar, we can analyze the robustness under adversarial

attacks of the real-world VGG16 and VGG19 deep perception networks [73] that consist of > 100 million

parameters [80].

VII.3 Evaluation

The experiments presented in this section were performed on a desktop with the following configuration:

Intel Core i7-6700 CPU @ 3.4GHz 8 core Processor, 64 GB Memory, and 64-bit Ubuntu 16.04.3 LTS OS.

VII.3.1 Safety verification of ACAS Xu networks

We evaluate NNV in comparison to Reluplex [41], Marabou [42], and ReluVal [92], by considering the

verification of safety property φ3 and φ4 of the ACAS Xu neural networks [40] for all 45 networks.1 All

the experiments were done using 4 cores for computation. The results are summarized in Table VII.2 where

(SAT) denotes the networks are safe, (UNSAT) is unsafe, and (UNK) is unknown. We note that (UNK) may

occur due to the conservativeness of the reachability analysis scheme. For a fast comparison with other tools,

we also tested a subset of the inputs for Property 1-4 on all the 45 networks. We note that the polyhedron

method [83] achieves a timeout on most of networks, and therefore, we neglect this method in the comparison.

1We omit properties φ1 and φ2 for space and due to their long runtimes, but they can be reproduced in the artifact.
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ACAS XU φ3 SAT UNSAT UNK TIMEOUT TIME(s)1h 2h 10h
Reluplex 3 42 0 2 0 0 28454
Marabou 3 42 0 1 0 0 19466
Marabou DnC 3 42 0 3 3 1 111880
ReluVal 3 42 0 0 0 0 416
Zonotope 0 2 43 0 0 0 3
Abstract Domain 0 10 35 0 0 0 72
NNV Exact Star 3 42 0 0 0 0 1371
NNV Appr. Star 0 29 16 0 0 0 52
ACAS XU φ4
Reluplex 3 42 0 0 0 0 11880
Marabou 3 42 0 0 0 0 8470
Marabou DnC 3 42 0 2 2 0 25110
ReluVal 3 42 0 0 0 0 27
Zonotope 0 1 44 0 0 0 5
Abstract Domain 0 0 45 0 0 0 7
NNV Exact Star 3 42 0 0 0 0 470
NNV Appr. Star 0 32 13 0 0 0 19

Table VII.2: Verification results of ACAS Xu networks.

Verification time. For property φ3, NNV’s exact-star method is about 20.7× faster than Reluplex, 14.2×

faster than Marabou, 81.6× faster than Marabou-DnC (i.e., divide and conquer method). The approximate

star method is 547× faster than Reluplex, 374× faster than Marabou, 2151× faster than Marabou-DnC, and

8× faster than ReluVal. For property φ4, NNV’s exact-star method is 25.3× faster than Reluplex, 18.0×

faster than Marabou, 53.4× faster than Marabou-DnC, while the approximate star method is 625× faster

than Reluplex, 445× faster than Marabou, 1321× faster than Marabou-DnC.

Conservativeness. The approximate star method is much less conservative than the zonotope and abstract

domain methods. This is illustrated since it can verify more networks than the zonotope and abstract domain

methods, and is because it obtains a tighter over-approximate reachable set. For property φ3, the zonotope and

abstract domain methods can prove safety of 2/45 networks, (4.44%) and 0/45 networks, (0%) respectively,

while NNV’s approximate star method can prove safety of 29/45 networks, (64.4% ). For property φ4,

the zonotope and abstract domain method can prove safety of 1/45 networks, (2.22%) and 0/45 networks,

(0.00%) respectively while the approximate star method can prove safety of 32/45, (71.11%).

VII.3.2 Safety Verification of Adaptive Cruise Control System

To illustrate how NNV can be used to verify/falsify safety properties of learning-enabled CPS, we analyze a

learning-based ACC system [1, 81], in which the ego (following) vehicle has a radar sensor to measure the

distance to the lead vehicle in the same lane, Drel , as well as the relative velocity of the lead vehicle, Vrel . The

ego vehicle has two control modes. In speed control mode, it travels at a driver-specified set speed Vset = 30,

and in spacing control mode, it maintains a safe distance from the lead vehicle, Dsa f e. We train a neural
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v lead(0)
Linear Plant Nonlinear Plant

Sa f ety V T (s) Sa f ety V T (s)

[29, 30] SAFE 9.60 UNSAFE 346.62

[28, 29] SAFE 9.45 UNSAFE 277.50

[27, 28] SAFE 9.82 UNSAFE 289.70

[26, 27] UNSAFE 17.80 UNSAFE 315.60

[25, 26] UNSAFE 19.24 UNSAFE 305.56

[24, 25] UNSAFE 18.12 UNSAFE 372.00

Table VII.3: Verification results for ACC system with different plant models, where V T is the verification
time (in seconds).

network with 5 layers of 20 neurons per layer with ReLU activation functions to control the ego vehicle using

a control period of 0.1 seconds.

We investigate safety of the learning-based ACC system with two types of plant dynamics: 1) a discrete

linear plant, and 2) a nonlinear continuous plant governed by the following differential equations:

ẋlead(t) = vlead(t), v̇lead(t) = γlead , γ̇lead(t) =−2γlead(t)+2alead−µv2
lead(t),

ẋego(t) = vego(t), v̇ego(t) = γego, γ̇ego(t) =−2γego(t)+2aego−µv2
ego(t),

where xlead(xego), vlead(vego) and γlead(γego) are the position, velocity and acceleration of the lead (ego)

vehicle respectively. alead(aego) is the acceleration control input applied to the lead (ego) vehicle, and µ =

0.0001 is a friction parameter. To obtain a discrete linear model of the plant, we let µ = 0 and discretize

the corresponding linear continuous model using a zero-order hold on the inputs with a sample time of 0.1

seconds (i.e., the control period).

Verification Problem. The scenario we are interested in is when the two vehicles are operating at a safe

distance between them and the ego vehicle is in speed control mode. In this state the lead vehicle driver

suddenly decelerates with alead =−5 to reduce the speed. We want to verify if the neural network controller

on the ego vehicle will decelerate to maintain a safe distance between the two vehicles. To guarantee safety,

we require that Drel = xlead− xego ≥ Dsa f e = Dde f ault +Tgap× vego where Tgap = 1.4 seconds and Dde f ault =

10. Our analysis investigates whether the safety requirement holds during the 5 seconds after the lead vehicle

decelerates. We consider safety of the system under the following initial conditions: xlead(0) ∈ [90,92],

vlead(0) ∈ [20,30], γlead(0) = γego(0) = 0, vego(0) ∈ [30,30.5], and xego ∈ [30,31].

Verification results. For linear dynamics, NNV can compute both the exact and over-approximate reach-

able sets of the ACC system in bounded time steps, while for nonlinear dynamics, NNV constructs an over-

approximation of the reachable sets. The verification results for linear and nonlinear models using the over-

approximate star method are presented in Table VII.3, which shows that safety of the ACC system depends on
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Figure VII.2: Two scenarios of the ACC system. In the first (top) scenario (vlead(0) ∈ [29, 30]m/s), safety is
guaranteed, Drel ≥ Dsa f e. In the second scenario (bottom) (vlead(0) ∈ [24, 25]m/s), safety is violated since
Dre f < Dsa f e in some control steps.

the initial velocity of the lead vehicle. When the initial velocity of the lead vehicle is smaller than 27(m/s),

the ACC system with the discrete plant model is unsafe. Using the exact star method, NNV can construct a

complete set of counter-example inputs. When the over-approximate star method is used, if there is a poten-

tial safety violation, NNV simulates the system with 1000 random inputs from the input set to find counter

examples. If a counterexample is found, the system is UNSAFE, otherwise, NNV returns a safety result

of UNKNOWN. Figure VII.2 visualizes the reachable sets of the relative distance Drel between two vehi-

cles versus the required safe distance Dsa f e over time for two cases of initial velocities of the lead vehicle:

vlead(0) ∈ [29,30] and vlead(0) ∈ [24,25]. We can see that in the first case, Dre f ≥ Dsa f e for all 50 time steps

stating that the system is safe. In the second case, Dre f < Dsa f e in some control steps, so the system is unsafe.

NNV supports a reachLive method to perform analysis and reachable set visualization on-the-fly to help the

user observe the behavior of the system during verification.

The verification results for the ACC system with the nonlinear model are all UNSAFE, which is surprising.

Since the neural network controller of the ACC system was trained with the linear model, it works quite well

for the linear model. However, when a small friction term is added to the linear model to form a nonlinear

model, the neural network controller’s performance, in terms of safety, is significantly reduced. This problem

raises an important issue in training neural network controllers using simulation data, and these schemes may

not work in real systems since there is always a mismatch between the plant model in the simulation engine

and the real system.
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Verification times. As shown in Table VII.3, the approximate analysis of the ACC system with discrete

linear plant model is fast and can be done in 84 seconds. NNV also supports exact analysis, but is com-

putationally expensive as it constructs all reachable states. Because there are splits in the reachable sets of

the neural network controller, the number of star sets in the reachable set of the plant increases quickly over

time [81]. In contrast, the over-approximate method computes the interval hull of all reachable sets at each

time step, and maintains a single reachable set of the plant throughout the computation. This makes the over-

approximate method faster than the exact method. In terms of plant models, the nonlinear model requires

more computation time than the linear one. As shown in Table VII.3, the verification for the linear model

using the over-approximate method is 22.7× faster on average than of the nonlinear model.
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CHAPTER VIII

Conclusion and Future Directions

VIII.1 Conclusion

We have proposed a general framework for the verification of deep learning systems using set-based reach-

ability analysis. Our framework uses the exact and approximate reachability schemes to verify the safety

and robustness of deep neural networks as well as neural-network-based control systems. All reachability

schemes implemented in our NNV tool work on a variety of set representations, including polyhedron, star,

ImageStar, zonotope, and relaxed polytope abstract domain.

For safety and robustness verification of DNNs, we have focused mainly on feedforward neural networks,

image classification convolutional neural networks, and semantic segmentation networks. We have shown

that exact-reachability-based verification for networks with piecewise linear activation functions is feasible

but costly in both computation time and memory consumption. In contrast, approximate-reachability-based

verification is generally faster and less expensive than the exact approach. However, the approximate method

produces an inevitable over-approximation error in the analysis. We have also shown that the exact reachable

set of a neural-network-based control system with a linear plant model and ReLU network controller is

computable. Notably, the approximate scheme works well in this case, with a much less computational cost

and acceptable over-approximation error. Importantly, it can be extended to deal with NNCS with a nonlinear

plant model and network controller having Simoig or Tanh activation function.

VIII.2 Future Directions

VIII.2.1 Scalability vs. Conservativeness

Scalability is still a major challenge for most existing verification techniques. It has been shown in [84]

that the verification time using exact analysis increases exponentially. Particularly, besides the size of the

network, the input set is an important factor affecting the verification time of the exact analysis method.

Generally, a large network or a large input set requires more verification time. To improve scalability, a

large body of research in neural network verification relies on over-approximation methods. Some recent

approaches [75, 74] are optimistic about the scalability of their methods. However, it is shown in [84] that

these methods only can deal with a very small input set due to the explosion of over-approximation error in

the analysis, which leads to a conservative and frequently useless reachable set. In the future, we believe

that new hybrid techniques that can combine the advantages of exact and over-approximate analyses are still

needed to improve both scalability and conservativeness in neural network verification.
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Chapter III has shown the fact that the reachability method using Zonotope is very fast but too conservative

that cannot be used for verification of DNNs. To overcome this challenge, we are developing a new approach

that combines zonotope reachability with input refinement using a maximum sensitive guided method. The

high-level idea is if the reachable set produced by the zonotope reachability method is too conservative and

cannot be used for verifying the safety property of the network. We split the input set into two new smaller

sets, and then perform the verification task on these two new sets. We keep splitting the input set until we can

prove the safety of the network for all new input sets, or we can find a counterexample. However, to reduce

the number of splits significantly, we can use the maximum sensitive guided method in which we choose to

split the input that maximizes the reduction of the conservativeness of the reachable set. We call this input is

the max sensitive input. By determining the max sensitive input at each splitting, we can obtain an optimized

splitting scheme where the number of splits is smallest.

VIII.2.2 Formal specifications and compositional verification

While a large body of research focuses on verifying neural networks and NNCS, fewer works investigate

specification formalization for such systems [71, 30, 21]. For neural network verification, most current meth-

ods investigate safety and robustness properties, which can be specified as input to output relations of neural

networks [71, 21]. For NNCS verification, existing approaches deal with safety specifications defined as

predicates over the states of the plant model. In the real-world, learning-enabled CPS are complex in which

several LECs, such as perception components and neural network controllers, interact with each other and

the physical world, such as between a physical plant and its environment.

Defining meaningful system-level specifications for the whole system is relatively straightforward (such

as collision avoidance), but the implications and constraints such system-level specifications place on LECs,

especially those for perception, is non-trivial and needs to be investigated deeply. New specification lan-

guages for learning-enabled CPS are crucial to formally define the behavior of the systems and their subcom-

ponents, and equally important, is defining libraries of specifications for meaningful perception problems,

such as classification, semantic segmentation, and object detection/localization. A further challenge, particu-

larly related to perception, is not only in defining specifications, but in evaluating specifications with respect

to meaningful environmental scenarios and data. This challenge is fundamentally different than the typical

approach for verification of closed-loop systems, where a plant model generates new inputs for a controller,

and instead requires verification with respect to pre-recorded environmental data (such as images/video) or

generation thereof. This is partly because it is unreasonable to expect formal models for the environment in

which an NNCS operates, and at best, generative models such as GANs and realistic simulators may exist,

beyond pre-recorded real-world data. Altogether, it is unclear under what circumstances compositional spec-
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ification and verification for learning-enabled CPS are achievable, such as by verifying individual LECs and

attempting to compose guarantees of individual components into system-level guarantees [70].

VIII.2.3 Verification for Recurrent Neural Networks

Recurrent neural networks (RNNs) are powerful machine learning models that are used in a wide range

of applications such as machine translation, speech recognition, face detection, etc. Unlike feedforward

neural networks, RNNs have internal states that help process variable-length sequences of inputs, making

the reachability of RNNs more complex to analyze. Although a rigorous number of techniques and tools

have been proposed for verifying properties of DNNs, there is very little work on RNNs verification. In [4],

an unrolling-based approach has been proposed to verify an RNN in which the RNN is transformed into an

equivalent feedforward neural network by the unrolling process, which is then used for verification. This

approach has limited scalability because the transformation may create a large FFNN, which is expensive to

verify. In the future, scalable set-based reachability methods for verification of RNNs are needed. The new

methods should work for different types of RNNs and directly compute the reachable set of RNNs without

performing any transformation or abstracting the networks.

VIII.2.4 Run-time Verification for Neural Network Control Systems

Am I safe for the next T seconds?

How much time I have to take an action to avoid collision?

Figure VIII.1: Run-time verification example.

Most of the current verification techniques for learning-enabled CPS works in design time. In the real situa-

tion, it is useful for an autonomous system to have the ability for safety prediction at run-time. For example,

if an autonomous system depicted in Figure VIII.1 knows that there is a potential collision in the next few

seconds, it can take a smart action such as re-performing the planning algorithm to find a new safe path to

avoid the collision. Therefore, it is essential to perform verification for learning-enabled CPS at run-time.

The main challenge is how we can compute the reachable set of the system and verify its safety property for

the next few seconds in every control period? To be able to do that, we need to have a very fast reachability

algorithm that can quickly estimate an over-approximation of the exact behavior of the systems. In addition,

the over-approximation of the reachable set cannot be too conservative to be used for safety verification. We

are working on developing a light version of our star set approach to make it works in a real-time manner.

We hope the new method can help to verify the safety of the advanced emergency braking system, learning-

based adaptive cruise control system, and the learning-based UUV in real-time. The high-level idea of the
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light version of our star set approach is, we neglect to solve linear programming problems when constructing

the reachable set. Instead, we quickly estimate the output ranges of a star set using only the ranges of the

predicate variables. The cost we need to pay is that the reachable set we construct is more conservative than

the exact reachable set computed by the exact reachability scheme. However, since we can construct this

conservative reachable set quickly, we can reason about the safety of the system at run-time. The central

question we want to answer in this problem is that, how long will the system be safe from the current time to

the future? If this “safe time” is smaller than a user-defined threshold, the system should take action to avoid

the potential crash in the future. In this dangerous situation, our verification method can estimate the amount

of time the system has to take a smart action to prevent the crash.

VIII.2.5 Robust and Safe Learning

The ultimate goal of the research in safe AI is to build safe, secure, and reliable learning-based autonomous

systems. To do that, new learning methods that integrate verification techniques in the training process

to enhance the robustness of a network or the safety of an NNCS are essential for the future of assured

autonomy.
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