
Modeling drug perturbations at multiple resolutions: Mechanism extraction from multi-omic,

multiple timepoint data to single cell mechanistic simulations.

By

James C. Pino

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Chemical Physical Biology

August 7, 2020

Nashville, Tennessee

Approved:

Professor Carlos F. Lopez

Professor Jens Meiler

Professor Vito Quaranta

Professor John Wikswo

Professor Sandra Zinkel

To those who persevered when others could not.

ii

TABLE OF CONTENTS

Page

DEDICATION . ii

Chapter

1 Introduction . 1
1.1 Approaches to model cellular behaviour . 1

1.1.1 Introduction to global approaches . 3
1.1.2 Introduction to mechanistic models . 4
1.1.3 Introduction to apoptosis . 5

2 Top down approaches to identify mechanism . 7
2.1 Mechanism extraction through the development of novel computational tools . . . 8

2.1.1 Introduction . 8
2.1.2 Results . 10

2.1.2.1 Design and Implementation . 10
2.1.2.2 Case study: Using MAGINE to explore the temporal response

of bendamustine-treated leukemia cells 18
2.1.2.2.1 Bendamustine affects HIV infection-related genes . . . 30

2.1.3 Methods . 32
2.1.3.1 MAGINE software implementation 32

2.1.4 Discussion . 32
2.1.4.1 Limitations . 34

2.1.5 Notes . 34
2.1.6 Additional Methods . 34

2.1.6.1 Data format . 34
2.1.6.2 Enrichment term aggregation 36
2.1.6.3 Annotated gene set network construction 36
2.1.6.4 Software availability and requirements 39
2.1.6.5 Experimental methods . 40

3 Advancements in mechanistic modelling . 41
3.1 Background . 41

3.1.1 Bottoms up approach . 41
3.1.2 Stochastic and deterministic simulations 42
3.1.3 Extrinsic apoptosis reaction model (EARM) 43

3.2 Model simulation . 44
3.2.1 Deterministic simulation . 44

3.2.1.1 Enabling high throughput simulations using GPUs 44
3.2.1.2 Features and Implementation 45
3.2.1.3 Result . 47
3.2.1.4 Conclusion . 48

iii

3.2.2 Efficient stochastic simulations . 49
3.2.2.1 Introduction . 49
3.2.2.2 Implementation . 50
3.2.2.3 Models . 54

3.2.2.3.1 Michaelis-Menten 54
3.2.2.3.2 Schlögl . 54
3.2.2.3.3 Kinase Cascade . 55
3.2.2.3.4 EARM1.0 . 55

3.2.2.4 Results . 55
3.2.2.4.1 Validation of implementation 55
3.2.2.4.2 Benchmarks . 57
3.2.2.4.3 Additional benchmarks 60
3.2.2.4.4 OpenCL . 60

3.2.2.5 Discussion . 63
3.3 Fitting models to data . 65

3.3.1 Introduction to particle swarm optimization 66
3.3.2 simplePSO: Fast modeling calibration for Rule based models. 67

3.4 Quantifing the effects of initial protein concentrations on the model’s prediction
of cell fate. 70

3.4.1 Results and Discussion . 75

4 Conclusion and Future directions . 81
4.1 Bridging the gap : Reactome2Rules . 82

5 Appendix . 86
5.1 MAGINE Jupyter notebooks . 95

5.1.1 MAGINE data exploration . 95
5.1.2 MAGINE network exploration . 95
5.1.3 MAGINE enrichment analysis exploration 95
5.1.4 MAGINE AGN creation exploration . 95

BIBLIOGRAPHY . 96

iv

LIST OF TABLES

Table Page

2.1 Data module . 12

2.2 Table of enrichment module functions . 12

2.3 Network methods . 17

2.4 Example data input used in MAGINE . 35

3.1 Models used for PySB/cupSODA performance testing 47

3.2 Size of the different models used in this section. 55

3.3 Simulation run times. 64

5.1 Reference initial species populations for EARM. 87

v

LIST OF FIGURES

Figure Page

1.1 Summary of approaches of drug response . 2

2.1 The MAGINE platform. 13

2.2 Example of MAGINE workflow. 14

2.3 Time series enrichment analysis pipeline. 15

2.4 Construction of data seeded network. 17

2.5 Overlap between experimental measurements. 19

2.6 Example workflow of bendamustine mechanism extraction. 22

2.7 Zoom in of Fig. 2.6. 23

2.8 Demonstration of enrichment compression. 24

2.9 Custom workflows for exploring known biological processes of bendamustine. . 28

2.10 Similarity between Bendamustine and HIV infection. 31

2.11 Zoom in of Fig 2.10. 31

2.12 Annotated gene set network construction . 38

3.1 Run time comparisons between PySB/cupSODA and SciPy/LSODA. 47

3.2 Workflow for the GPU-SSA implementation. 53

3.3 Validation of the CUDASimulator and OpenCLSimulator. 56

3.4 Comparing BioNetGen, StochKit and GPU-SSA timings run on the NVIDIA
V100. 58

3.5 Fold change improvements of the CUDASimulator compare to CPU
implementation . 59

vi

3.6 Timing analysis for multiple generations of GPUs. 60

3.7 OpenCL vs CUDA timings. 62

3.8 Timing analysis for CPU implementations. 62

3.9 Best fit parameters from simplePSO. 68

3.10 Example output using simplePSO on with stochastic simulations. 68

3.11 Performance of PSO vs simulated annealing 69

3.12 Summary view of EARM 2.0 sensitivity . 75

3.13 Individual initial concentration sensitivity for EARM 2.0 76

3.14 Summary view of EARM 1.0 sensitivity . 77

3.15 Comparing sensitivities of the BCL2 family of proteins 78

3.16 Individual initial concentration sensitivity for EARM 1.0 79

4.1 The EARM model expanded based on enriched terms identified by MAGINE. . 83

4.2 Reactome2Rules creation of MAGINE edge ‘BID activate BAX’ 85

5.1 Time course for active maturation-promoting factor (MPF) 88

5.2 Sensitivity analysis for the Tyson cell cycle model. 89

5.3 Time course for cAMP in the Ras/cAMP/PKA model. 90

5.4 Sensitivity analysis for the Ras/cAMP/PKA model. 91

5.5 Time course for active Smac (aSmac). 92

5.6 Sensitivity analysis for parameter set 1 of EARM 2.0. 93

5.7 Sensitivity analysis for parameter set 2 of EARM 2.0. 94

vii

Chapter 1

Introduction

1.1 Approaches to model cellular behaviour

Understanding and predicting how a cell will respond to an external signal is a central theme

in systems biology (Ideker et al., 2001; Hood et al., 2004; Kremling and Saez-Rodriguez, 2007).

For example, several cancer therapies are currently being used to induce apoptosis, the main form

of programmed cell death (Thompson, 1995; Fulda and Debatin, 2006; Ghobrial et al., 2005). In

cancer, cells are unable to commit to apoptosis due an imbalance of anti-apoptotic signals or the

lack of necessary machinery (Hanahan and Weinberg, 2011). Many therapeutics are designed to

regulate apoptosis (Fischer and Schulze-Osthoff, 2005). Yet, current treatments often result in

non-optimal response, resistance to the drug, or unwanted side effects (Stuckey and Shah, 2013).

Thus, being able to predict how cells will respond prior to administration is clinical relevant. This

is a difficult task due to the fact that the cell is complex (Csete and Doyle, 2002). There are an

extremely large number of possibilities of molecular species: ∼ 20k genes, 40% to 60% of which

have alternatively spliced variants, an average of 2.5 post-translation modifications per protein,

resulting in an extremely large number of unique molecular states (Papin et al., 2005). It is these

relationships and the resulting non-linear dynamics that make predicting drug response a difficult

task (Huang, 2012).

Methods used to study the signaling dynamics can be broadly be classified into two

categories: local simulation and global discovery Kitano (2002), summarized in Figure 1.1. The

local approach uses mechanistic models of the most important molecules and the interactions

involved in the cellular response based on extensive experimental analysis. These models are

exploratory, allowing different mechanisms to be postulated, numerically tested via simulation,

then validated by experimentation (Schleich and Lavrik, 2013; Kholodenko, 2006). If the model

is not capable of explaining the observation, this means there is knowledge missing from the

1

model. Identifying what is missing is a difficult step. Additionally, after identifying the missing

components or interactions, the model would need to be re-calibrated and characterized. The

simulations required for calibrating and characterizing the model are already time consuming,

which is further amplified with increasing the models size.

Conversely, the discovery-based global approach typically begins with the measurements of a

complete physiological system. This can be performed before and after drug treatment, allowing

the calculation of quantitative changes of the molecular species. This allows for a near unbiased

discovery of components of responsible for the response. Unfortunately, for the purposes of

mechanistic exploration, such approaches result in large, complex datasets and ultimately fail to

provide insights about molecular interactions that could drive a process.

Approaches to understanding
a biological System

Knowledge discovery
● Advantages

● Unbiased
● Monitors global response
● High throughput

● Cons
● Lack predictive capabilities
● Difficult to interrogate large datasets
● Converting list of species into

mechanism

Mechanistic detailed modeling
● Advantages

● High resolution of detail
● Hypothesis generating
● Predictive model output

● Cons
● Manual construction is time consuming
● Limited scope of molecules involved
● Computationally demanding

Figure 1.1: Summary of approaches of drug response. Pros and cons of the global, global discovery driven approach
and the local, mechanistic modeling approach.

In this dissertation, I address the limitations mentioned above and introduce methods in

modeling techniques in order to better understand how cells respond to drug. I demonstrate these

advances in the mechanism(s) of apoptosis, an ideal system to study with computational modeling

due to the extensive ground work provided by previous models. First, I introduce methods to use

high throughput multi-omics data to identity components of models in section 2. The methods

introduced allow large datasets to be explored and interrogated easily with the level of detail

required for mechanistic models. I then address the bottlenecks facing mechanistic modeling by

2

introducing orders of magnitude faster simulation methods in section 3.2.2 and 3.2.1, introduce

efficient model calibration implementations in section 3.3, and demonstrate their capabilities to

describe published models of apoptosis in section 3.4. Finally, in future directions 4.1 I discuss

how these two approaches complement one another and discuss how they can be used in the

automation of model construction.

1.1.1 Introduction to global approaches

Identifying the molecular components (proteins, RNA, metabolites) and how their interactions

give rise to a phenotypic response is a difficult task. To fill in these gaps, omics studies have

become a vital tool (Aebersold and Mann, 2003, 2016). These studies typically measure and

quantify a cellular state, that is everything detectable within the cell, before and after treatment. In

this way, molecular species that are significantly altered before and after drug are identified for

further study. However, there are often a large number of species that are altered due to drug, so

identifying and selecting the key contributors is often hard. Multiple approaches to analyze

-omics data have been proposed with the goal to extract knowledge from complex datasets. Of

these approaches, enrichment- and network-based methods seem to provide the most insightful

analyses that can be useful for hypotheses generation and further guide experiments. Enrichment

analysis can provide relevant insights about the biological processes that are modulated when a

system is perturbed (Subramanian et al., 2005; King et al., 2003). Typically, enrichment analysis

compares the quantitative molecular profiles from two or more experimental conditions to yield a

list of proteins that have been significantly modulated by the perturbation. The list of proteins is

then analyzed and matched to ontology in databases, which effectively maps key protein hits with

specific cellular processes. Unfortunately, for the purposes of mechanistic exploration,

enrichment approaches fail to provide insights about molecular interactions that could drive a

process, which can be essential to generate novel hypothesis for further experimental validation.

In contrast, network analysis can generate maps between measured molecular species to generate

a node-edge graph depiction of complex cellular processes. Data-driven approaches to network

3

analysis employ large datasets typically derived from multiple measurements to generate ab initio

interaction networks (Omony, 2014). Topology-driven networks, on the other hand, employ prior

knowledge from (curated) databases that comprise biochemical interactions derived from

literature and provide mappings for many biochemical processes in the cell. Although these

approaches can be very powerful to explore interactions among measured species, they become

impenetrable after a certain number of interactions (i.e. the “hairball” problem) and thus obscures

possible interpretation. Methods that enable the extraction of key species involved in the cellular

response, as well as at the level of detail required for predictive modelling, are lacking and can

greatly benefit the systems biology community.

1.1.2 Introduction to mechanistic models

Mechanistic models represent the current state of knowledge of the system (Ingalls, 2013).

Traditionally, models are constructed in a piece-wise manner, where components and their

interactions are added as need until the observation can be recreated (Albeck et al., 2008;

Le Novere, 2015). Simulations of the models provides validation of the models assumptions and

allows the prediction of the system dynamics (Schleich and Lavrik, 2013; Kholodenko, 2006;

Aldridge et al., 2006). Such approaches have been successfully applied in identifying the source

of NF-κB oscillations (Kearns et al., 2006), predicting targets to control metabolism (Bakker

et al., 1999), and identifying the source of the all-or-nothing commitment to apoptosis (Albeck

et al., 2008). A models inability to recapitulate observation informs that there is missing

information about the system. Identifying what is missing from the system is a difficult task.

Additionally, calibrating models to experimental data can be computational expensive, requiring

thousands to hundred of thousands of simulations (Eydgahi et al., 2013) This is because the

parameters can vary over order of magnitudes of space, leading to near infinite number of

parameter sets that fit the model equally well (Gutenkunst et al., 2007). Finally, once the model is

fit, it can be characterized under different experimental settings (drug doses, knockdowns/outs) to

provide experimental predictions. This could result in identifying molecular species that

4

negatively affect the desired outcome (key anti-apoptotic proteins), co-druggable targets (amplify

death signal through alternative signaling pathways), or eliminate drug targets due to the models

insensitivity to changes in their concentration. Again, such analysis involves thousands of time

consuming simulations. Thus, there is a need to accelerate the number of simulations that can be

performed in order to overcome the bottlenecks in training and characterizing models.

1.1.3 Introduction to apoptosis

Apoptosis is a main form of programmed cell death (Thompson, 1995). It is vital throughout

development and its dysregulation can result in diseases such as neurodegenerative, auto immune

diseases (Lockshin, 2016), and cancer (Hanahan and Weinberg, 2011). Apoptosis induction can

be classified into either intrinsic or extrinsic (Reed, 2000). Extrinsic apoptosis is activated via

external stimuli binding to surface death receptors. This binding results in the formation of the

death-inducing signaling complex (DISC) and caspase-8 activation. Caspase-8 then activates BID,

which ultimately activates BAX resulting in its translocation into the mitochondria outer membrane

(MOM).Alternatively, intrinsic apoptosis is activated via intracellular signals that activate the pro-

apoptotic BCL2 family of proteins. These proteins result in the activation of BAK in the MOM.

From there, both intrinsic and extrinsic apoptosis share downstream components. Activate BAX

or BAK oligomerize to form pores in the MOM, resulting in the mitochondria outer membrane

permeabilization (MOMP). MOMP releases cytochrome-c and smac to from the mitochondria.

Cytochrome-c binds to the apaf-1 and caspase-9 proteins, resulting in formation of the apoptosome.

The apoptosome cleaves caspase-3/7, marking the commitment to cell death. It is these activate

caspases that result in the destruction of the cell: protein degradation, DNA fragmentation, and

collapse of the cell into apoptotic bodies (Lockshin, 2016).

Since many cancer therapeutics are designed to regulate apoptosis, deciphering the response

of drugs could prove clinical useful (Fischer and Schulze-Osthoff, 2005; Ghobrial et al., 2005;

Schleich and Lavrik, 2013). A prime example is the application of mechanistic modeling of the

response of HL60 cells to TNF-Related Apoptosis Inducing Ligand (TRAIL) (Albeck et al.,

5

2008; Spencer et al., 2009). When the cells are exposed to TRAIL in the presence of

cyclohexamide (a transcription disabling drug), the cells all displayed sharp, “snap action”

dynamics, however the time at which they committed to death was variable. In the absence of

cyclohexamide, some cells died and others did not. The models were able to recreate and explain

the sharp, all-or-nothing dynamics marking the commitment to cell death, however were unable to

explain or predict the heterogeneous responses outside the presence of cyclohexamide. This can

be in part due to the exclusion of necessary molecular species or interactions involved in the

response. These observations represent a gap in our understanding of apoptotic response and raise

the following questions: What molecular species are responsible for the cells response to the

drug? Why do some cells die and others don’t? Answering such questions would allow us to

design more efficient treatments that can increase desired outcome, such as cell death; prevent

undesired side effects; and ultimately improve clinical outcomes. Thus, current models of

apoptosis must be improved. Expanding the model to include additionally species requires one to

first identify the species, properly incorporate them into the model, fit the new models parameters

to the experimental data, reproduce observations, and make new predictions based on the model.

6

Chapter 2

Top down approaches to identify mechanism

Modelling intrinsic apoptosis is more complicated than extrinsic apoptosis. This is because

there are more ways to engage intrinsic apoptosis (such as cell cycle, DNA damage response, or

anti-proliferation signals) than engaging extrinsic apoptosis (stimulating the death receptor). This

simplicity explains the development of detailed extrinsic apoptosis models rather than intrinsic

models. However, many therapeutics (such as chemotherapy) attempt to activate intrinsic

apoptosis, creating a need for intrinsic apoptosis models. Once again, since the therapies can

activate apoptosis via multiple mechanisms, these models will need to be drug specific.

Constructing a model requires identifying the molecular species involved in the response to a

drug. Traditional bottoms-up models often include only the most studied molecular components

that are known to be involved with pathways involved with the drug. This narrows the scope of

possible molecules and makes it easier to construct models. However, the focus of what is known,

limiting the exclusion of molecules that may be vital. An alternative approach would be to

measure the global response, that is everything following perturbation to the cell. This would

allow a near unbiased view of the response of the cell. However, since measuring all the

components can lead to large number of changes, it makes it difficult to decipher what are the

most important components versus what could possibly be noise. To make things more

complicated, responses are dynamic in time, requiring the monitoring of the cell across multiple

time points (Norris et al., 2017). This makes managing, interrogating, and deciphering knowledge

from these types of datasets difficult. This chapter introduces methods for exploring and

extracting out the key components and trends of global measurements. The methods presented

here should enable the identification of molecular components that are involved with any provided

data set, making the identification of species needed for drug specific mathematical modeling.

7

2.1 Mechanism extraction through the development of novel computational tools
2.1.1 Introduction

The cellular response to chemical perturbation manifests across multiple molecular and

macro-molecular subsystems, which can include changes in RNA transcript abundance, protein

abundance and activity, metabolic activity, and–over longer time frames–changes in DNA (e.g.

mutations). In cases of acute toxicity (seconds to days), we hypothesize that the first three

molecular subsystems are the principal actors, i.e. the transcriptome, proteome, and metabolome.

It is now possible to obtain deep measurements of these systems in a matter of hours using a

plethora of techniques; primarily, mass spectrometry and RNA-sequencing (Aebersold and Mann,

2003; Toby et al., 2016; Wang et al., 2009). Falling cost and technological improvements make it

feasible to obtain data from multiple platforms and time points, yielding thousands to millions of

data points from one experiment (Narayan et al., 2016; Sacco et al., 2016; Aebersold and Mann,

2016). Recent work by our labs and others have shown how these kinds of datasets can be used to

gain a systems-level understanding of cellular responses to perturbations (Norris et al., 2017;

Palmer et al., 2019). Multiple methods to analyze these datasets have emerged over the years with

the goal to translate -omics data into biological knowledge and use this knowledge to make

predictions and guide experiments. Enrichment-based methods and literature-based network

methods stand out as the most commonly used to analyze -omics data (Papin et al., 2004; Huang

et al., 2008). However, the amount of data collected to compare multiple cellular responses to

perturbations or to follow the dynamic response of cellular processes can easily surpass millions

of datapoints. Although existing tools can handle some aspects of data analysis (Wang et al.,

2017; Tang et al., 2016; Huang et al., 2007; Chen et al., 2013; Komurov et al., 2012), there is a

dearth of tools necessary to integrate emerging large -omics datasets that will integrate data from

multiple platforms and enable exploration of complex datasets to extract mechanisms of cellular

response to perturbations, necessary to guide all aspects of cell biology experimentation.

Multiple approaches to analyze -omics data have been proposed with the goal to extract

knowledge from complex datasets. Of these approaches, enrichment- and network-based methods

8

seem to provide the most insightful analyses that can be useful for hypotheses generation and

further guide experiments. Enrichment analysis can provide relevant insights about the biological

processes that are modulated when a system is perturbed (Subramanian et al., 2005; King et al.,

2003). Typically, enrichment analysis compares the quantitative molecular profiles from two or

more experimental conditions to yield a list of proteins that have been significantly modulated by

the perturbation. The list of proteins is then analyzed and matched to ontology in databases,

which effectively maps key protein hits with specific cellular processes. Enrichment analysis can

be useful when exploring large -omics datasets to identify relevant biological processes by

matching proteins that are consistently up- or down-regulated after a perturbation. Unfortunately,

for the purposes of mechanistic exploration, enrichment approaches fail to provide insights about

molecular interactions that could drive a process, which can be essential to generate novel

hypothesis for further experimental validation. In contrast, network analysis can generate maps

between measured molecular species to generate a node-edge graph depiction of complex cellular

processes. Data-driven approaches to network analysis employ large datasets typically derived

from multiple measurements to generate ab initio interaction networks (Omony, 2014).

Topology-driven networks, on the other hand, employ prior knowledge from (curated) databases

that comprise biochemical interactions derived from literature and provide mappings for many

biochemical processes in the cell. Although these approaches can be very powerful to explore

interactions among measured species, they become impenetrable after a certain number of

interactions (i.e. the “hairball” problem) and thus obscures possible interpretation. Importantly,

both methods fail when considering multiple experiments such as those comprising comparisons

across multiple treatments or multiple time points.

Given the emergence of multi-omics experiments to characterize cellular response to

perturbations, we have the Mechanism of Action Generator Incorporating Network Evidence

(MAGINE). We believe MAGINE is a timely tool to address the emerging data challenges for the

analysis of omics datasets. MAGINE departs from the approach taken by previously developed

tools by providing an exploration framework, in the Python programming language, that

9

leverages existing tools traditionally used in isolation and provides a platform whereby these tools

can be used concurrently to extract biological insights from -omics data. MAGINE provides a

Pandas-based database platform for omics data integration, and provides a common interface for

enrichment based databases through the EnrichR API as well as a link to multiple network-based

analysis tools including KEGG, REACTOME, HMDB, SIGNOR, and BioGrid. We have chosen

Python as a suitable language for this exploration platform due to its ease of use, large user base,

and integration with almost 200,000 packages in the Python Package Index as of the writing of

this manuscript. In this work, we demonstrate how MAGINE can be used to integrate RNA-Seq

data, as well as multiple modalities of Mass Spectrometry proteomics to explore the response of

HL-60 cells to Bendamustine. Although it is well established that bendamustine is a

DNA-damage agent, our analysis reveals that the cellular response to the drug is far from a simple

biochemical chain of events and instead comprises thousands of biochemical interactions and

multiple cellular processes. We conclude this work by showcasing how MAGINE can be used for

the exploration of Bendamustine side-effects related to HIV-treatments and validated by recent

literature. Finally, given the Python-based nature of MAGINE, we introduce the use of Python

notebooks as a method to transparently report the full analysis of our work, suitable for members

of the scientific community to both, evaluate our analysis and expand on it for their own use.

Therefore, MAGINE unifies multiple practices in the field onto a common sustainable platform

that enables the extraction of cellular response mechanisms from large, complex -omics datasets.

2.1.2 Results

2.1.2.1 Design and Implementation

MAGINE is a software stool for interactive analysis and exploration of multi-time point, multi-

omics cellular perturbation data. It can identify and elucidate which molecular species are involved

in differential drug response and how this response manifests in molecular and macromolecular

processes such as cell signaling, and in turn whose those processes interact. MAGINE summarizes

and visualizes large datasets and analyses efficiently and interactively, allowing the user to ask

10

questions across biological scales and to iteratively ask and refine hypotheses of the data through

flexible analysis workflows.

MAGINE is split into three main modules (Figure 2.1): data management and visualization,

enrichment analysis, and network analysis. Each module can be used independently, yet is

designed to allow easy transfer of information across modules. This is accomplished by designing

each module to have accessible outputs that can be used as input for other modules (Figure 2.2).

Briefly, the data management module handles data analysis. Data are loaded in using a tabular,

comma-separated values (CSV) file, with one measurement per row (see Methods). MAGINE

stores these in an ExperimentalData class, which provides a simple, high-level interface including

methods to access, filter, and search these data as required. A summary of these methods is shown

in Table 2.1 and example usage can be found online or in Notebook 5.1.1).

The enrichment analysis module identifies over-represented sets of species that share common

annotation compared to random background sets (Huang et al., 2007). MAGINE utilizes EnrichR,

which includes 120 gene set “libraries” (Chen et al., 2013; Kuleshov et al., 2016). Users provide

one or more lists of genes, which can be manually constructed or created by the ExperimentalData

class (e.g. all up-regulated genes, species detected on a specific experimental platform), or filtered

by time point). MAGINE automates analysis through EnrichR, as shown in Figure 2.3. The results

are stored in an EnrichmentResult class which, like the ExperimentalData class, including methods

to further query, filter, and visualize enrichment terms. Terms can be compared, ranked, grouped,

and visualized with built in methods. Genes corresponding to each term can be extracted and used

to subset ExperimentalData or create subgraphs.

11

Name Description

Function

load data Load MAGINE formatted csv
create summary table Create summary of counts per experimental method and sample id
subset Filter data based on list of species
require n sig Filter data to include species that were measured at least N times

Plots

heatmap Create heatmap or clustermap of species
volcano plot Create volcano plot
volcano by sample Create a series of volcano plots for each sample
plot species Plot scatter plots of selected species
plot histogram Creates histogram of fold change values

Properties

sig Filter data to include only significant flagged entries
up Filter data to include fold change >0
down Filter data to include fold change <0
id list Compile a list of unique species from sample
by sample Generate list of unique species for each sample

Table 2.1: Data module

Name Description

Functions

load enrichment Load MAGINE created enrichment analysis csv
run Run enrichment analysis for list of genes across selected gene sets
run samples Run enrichment analysis for multiple lists of genes across selected gene sets
run enrichment for project Run enrichment for entire ExperimentalData instance
require n sig Filter data to include species that were measured at least N times
filter multi Filter by multiple criteria (p value, combined score, database, etc)
find similar terms Rank order terms by similar gene sets
filter based on words Filter by key words
all genes from df Generate list of all genes in current EnrichmentResult instance
term to genes Generate list of genes for given term
remove redundant Remove terms that are less enriched but highly similar

Plots
heatmap Find all paths between list
dist matrix Plot distance matrix of all terms

Table 2.2: Table of enrichment module functions

12

Feature
extraction

Enrichment
compression

Enrichment module

Interactive network
 simplification &

expansion

Network
exploration

Network module

Metabolites

Genes

Data-specific networks

Sample
comparison

Time series
clustering

Trends of
species

Data management and visualization module

Proteomics
Metabolomics
Transcriptomics

Data normalization
Fold change calculation
Replicate consolidation
Significance calculation

Pre-processingExperimental data

Enrichment analysis

Complex query capabilities
Export to common formats

Interactive visualization

M A G I N E

CSV

Figure 2.1: The MAGINE platform. MAGINE is designed for fold change quantified multi-sample, multi-omic
data. It is built around three concepts: data management, enrichment analysis, and network exploration. The modular
design allows flow of information between the data, enrichment, and network module, allowing an iterative cycle with
varying levels of resolution. Example outputs of each module is provided in each panel.

13

load_data(...)

run_enrichment(...)

create_subgraph(...)

visualize(...)

User MAGINE External tools Result

Enrichment analysis

Create
dataframe

Create
network

Call enrichR

Create
annotated
network

KEGG
SIGNOR
HMDB

 ReactomeFI
BioGrid

Data
structure

Cytoscape
Cytoscape.js

Igraph
Graphviz

Interactive data

Data driven network

Annotated network

Molecular network

build_network(...)

Figure 2.2: Example of MAGINE workflow.Calls made by the user (in left column) and how this are handled by
MAGINE, external tools, and examples of resulting output (right column). This is a typical processing workflow
where users desire to run enrichment analysis, construct a data specific network, and construct a compressed annotated
gene set network.

14

Enriched
Terms

RNA Proteomics

Ref
er

en
ce

Dat
ab

as
e

up-regulated down-regulated up-regulated down-regulated

time time time time

Enrichment
Analysis

Data

Term
Exploration

Figure 2.3: Time series enrichment analysis pipeline.Automation of running enrichment analysis on multiple time
points and experimental platforms. We utilize EnrichR to access various databases. We then organize the data. This
allows us to explore the output in various ways. We can use word clouds to compress various databases to see common
terms across them all. We can also plot enriched terms over times to see trends of biological processes.

15

A significant problem in traditional enrichment analyses is the highly varied granularity of

terms, which can be very broad (e.g. “biological proces”), or highly specific (e.g. “cysteine-type

endopeptidase inhibitor activity involved in apoptotic process”). In addition, each gene often maps

to multiple terms. This introduces the possibility of redundancy of terms, which increases the total

of number of terms to explore, and hinders human interpretation of results. To address these issues,

we introduce a method that allows the aggregation of terms based on their gene content similarity

(described in Methods). The reduces the overall number of enrichment terms and their redundancy,

greatly aiding human interpretation.

A summary of functions available in the enrichment modules is shown in Table 2.2 and example

usage can be found online or in Table 5.1.3).

MAGINE’s network module allows users to build, query, and visualize molecular and gene

annotation networks. A summary of the network module’s methods is shown in Table 2.3 and

example usage can be found online or in Notebook 5.1.2. The network module utilizes connectivity

information from multiple databases, including KEGG (Ogata et al., 1999; Kanehisa et al., 2016),

SIGNOR (Perfetto et al., 2016), Reactome Functional Interactions (Wu et al., 2010), BioGrid

(Chatr-Aryamontri et al., 2017; Stark, 2006), and HMDB (Wishart et al., 2009, 2007). The graphs

underlying these database are merged into a “background” network, which can be used to perform

queries or construct context-specific networks based on a user-provided “seed species” list. The list

can be created from various sources: significantly changed species, mutational evidence, literature

review, or manual curation. We iterate through the databases and add edges and nodes based on

connectivity to the seed species, shown in Figure 2.4. The resulting networks are a subset of the

background network, focused around the specific molecular species of interest. These networks

can be large, (> 20 000 nodes and > 100 000 edges), MAGINE users can use the Subgraph class

to generate subnetworks based on various queries (Table 2.3). The functions enable users to find

paths between species or expanding networks of finding neighbors (upstream or downstream) of

nodes of interest. Options are provided to limit the network expansion, such as setting a maximum

distance from specific nodes.

16

A. Seed species

Pathway 1 Pathway 2 Pathway 3

B. Add KEGG pathways C. Combine pathways

D. Find neighboring reactions from
additional databases

F. Combine to final network

A B G F J N

A

B D

C

A

B

E

F

C

A

B E

G

F

H
A

B D

EC

F

GH

A

B D E

C

F

G

N

H

J

J

B

G

N

E

Figure 2.4: Construction of data seeded network. Example set of seed species to build network (a) are search across
KEGG pathways (b). Pathways in which seed species are contained are merged (c). Next, edges between seed species
and nodes added by the KEGG pathways are identifier (d). Finally, all nodes and edges are combined into a single
network (e).

Table 2.3: Network methods

Name Description
build network Generate network centered around provided species
create subnetwork Creates annotated set network from enriched terms and background network
paths between pair Find shortest path(s) between pair
paths between list Find all paths between list
paths between two lists Find paths between two lists
neighbors Find neighbors (upstream and/or downstream) of node
expand neighbors Add neighbors of node to network
draw Draw using igraph, matplotlib, graphviz, cytoscape.js
RenderModel Create Cytoscape instance of network through py2cytoscape

Additionally, we introduce a method to create a coarse-grained network from gene sets that

we call an annotated gene set network (AGN). The AGN is motivated by the desire to combine

“big picture” information about biological processes and when they occur from enrichment

analysis with inter-process communication provided by molecular networks. This results in a

coarse-grained network, where nodes are terms and the edges are frequency of connections

between the sets of nodes in the molecular network, and a fine-grained network, which contains

the species and the connections between them. By using both, we are able explore at a high level

17

and zoom in on detail when required.

Finally, MAGINE’s network module provides various tools for network visualization, allowing

users to overlay data or update attributes of the network. Users can visualize networks in Jupyter

notebooks using cytoscape.js (Franz et al., 2015), modify a cytoscape session via py2cytoscape, or

create a sequence of figures of network activity through matplotlib, igraph, or graphviz. Networks

can be exported through Networkx, allowing users to use the networks externally.

MAGINE is implemented in the Python language, leveraging its ease of use, large open source

ecosystem, and growing presence in scientific applications (Pérez et al., 2011). It has been tested

on Windows, Mac OS, and Linux using Python versions 2.7, 3.6, and 3.7. It can be used within the

Python console, interactive Jupyter Notebooks, or within data processing and analysis pipelines.

We envisage the majority of users are best served through the Jupyter notebook option, and thus

we described that in the most detail and provide a tutorial notebook.

2.1.2.2 Case study: Using MAGINE to explore the temporal response of bendamustine-

treated leukemia cells

MAGINE can be utilized on a wide variety of datasets that have case/control measurements

from one or more -omics platforms. Here, we demonstrate the capabilities of MAGINE on a

recently generated dataset: the response of HL60 cells, a human leukemia cell line, to treatment

with bendamustine, a nitrogen mustard alkylating agent used for the treatment of chronic

lymphocytic leukemia and non-Hodgkin lymphoma (Cheson and Rummel, 2009). Bendamustine

is a cytotoxic agent that can induce DNA interstrand cross links (ICLs) which can prevent

replication and transcription, induce cell cycle arrest, and ultimately cell death (Leoni and

Hartley, 2011). The main goal of this study was to identify molecular species and biological

processes involved in the cellular response to bendamustine. Data were gathered across multiple

proteomics platforms and RNA-sequencing, spanning between 30 seconds and 72 hours post-drug

exposure (see Methods; Figure 2.5). The analysis is summarized and documented in Notebook

5.1.1.

18

a

b c d

Detected

Significantly changed

Figure 2.5: Overlap between experimental measurements. a.) Table of time points per experimental platform that
were measured for the bendamustine study. b.) Summary of number of significant changed species vs detected. c.)
Venn diagram comparing ph-silac, label-free, and silac. d.) Venn diagram comparing proteomics (ph-silac, label-free,
silac) vs RNAseq.

19

In total, we detected 54 818 unique molecular species across all platforms, of which 14 426

were significantly changed in at least one time point upon drug treatment. For the proteomics

data, we saw 5 115 significant changed species in at least one time point from PH-SILAC, 1 653

from label free, 133 from SILAC, and 736 from RNA-seq, as shown in Figure 2.5 b. Early

changes versus control (untreated) cells were detected at the phosphorylation level;

phospho-SILAC detected > 700 such changes. Phosphorylation events occurred relatively even

across all sample time points while a gradual increase of changes occurred over time at the

protein and RNA level. We calculated the overlap between species measured with each platform

as shown in Figure 2.5 c and d. The highest overlap among platforms was between ph-SILAC and

label free (643 species). However, only 88 genes were significantly changed at both RNA and

protein (ph-SILAC, SILAC, and label-free) levels. A majority of proteomic measured species

were unique to a single platform (>2 500), while 688 species were measured in at least two

platforms, and only 22 species were measured in all three platforms. Technical replicates and

statistical significance suggest within-platform detection is generally reliable and repeatable, thus

the low overlap between significant species changes across platforms demonstrates the value of

integrative, multi-platform analysis.

We proceeded to further analyze the dataset with a custom MAGINE workflow (2.6). First, we

constructed a signaling network centered around the significantly changed species. Next, we

performed an enrichment analysis across 52 databases for each time point and experimental

platform with the data. Each sample was arranged by up-regulated, down-regulated, and

significantly changed species, resulting in 78 total samples across 12 time points and 3 change

types. In total, there were 20 758 enriched terms across the 52 reference gene sets with an

adjusted p-value ≤ 0.05. Manual exploration of 20 758 terms is not feasible, but using MAGINE,

users are able to focus further exploration. Using the EnrichmentResult Class, we filtered the

terms to only include ph-SILAC enrichment with the Reactome 2016 reference gene set for

further analysis, resulting in 561 unique terms. Next, we required terms to be significantly

enriched in 3 of 5 time points, resulting in 84 terms. To reduce redundancy of terms (e.g. ‘cell

20

cycle’, ‘cell cycle, mitotic’), we applied the remove redundancy method, resulting in 17 terms

shown in Figure 2.8. We created a heatmap of these terms to visualize their dynamics over time.

Enriched terms include cell cycle, processing of capped intron-containing pre-mrna, dna repair,

apoptosis, and hiv infection. As shown in Figure 2.8c, we are able to expand individual terms

such as cell cycle to retrieve terms removed in the compression process such as nuclear envelope

breakdown, dna replication, and g2/m checkpoints, all of which are known bendamustine

responses (Leoni and Hartley, 2011). Thus, MAGINE allows users to easily filter and visualize

enrichment results, and to reversibly compress enrichment terms for ease of interpretation.

21

 Data-driven network
Enriched biological
process heatmap

Annotation level network Molecular level network

Public databases

RNA-seq
4 time points

SILAC
5 time points

ph-SILAC
5 time points

Significantly changed Detected

label-free
12 time points

Cell cycle

DNA repair

Apoptosis

DNA repair &
Cell cycle

DNA repair &
Cell cycle &
Apoptosis

Cell Cycle &
Apoptosis

Multi-omics data

Interactive
exploration

Figure 2.6: Multi-omics datasets (top left) are combined with public databases (top right) to generate detailed
interaction networks (middle left) and enriched annotated gene set (AGS) heatmaps (middle right). The data-derived
network is then pruned by extracting a subnetwork around genes from high-ranking AGS terms and collapsed to
produce an annotation-level network (bottom), where each node is labeled by an AGS term and scaled according to
enrichment of that term; the width of each edge represents the number of edges between the terms. The network can
be viewed at each time point or as an animation.

22

Figure 2.7: Zoom in of Fig. 2.6.

23

50 terms
110 genes

A

7 terms
110 genes

B

C

Figure 2.8: A. Top 50 terms from Reactome for the 30 second ph-silac timepoint. The left figure shows
the terms and their enriched values while the right shows the Jaccard index between all pairs. B. After
filtering based on Jaccard index similarity. The resulting left figure has 7 terms, retaining all 110 genes that
were contained in the terms from A. The right figure demonstrates that we have minimal overlap between
corresponding terms. C. Demonstration of the collapsing of terms to a parent term. The left shows all terms
that were collapsed from the term ’cell cycle’. The table on the right provides the genes that make up each
term. Not that if a term was too broad (’cell cycle’), the user could remove it and repeat the process to
maintain the level of detail which they require.

24

An enrichment analysis by itself provides no detail on how terms affect one another.

Therefore, we constructed an annotated gene set network (AGN) (description of AGN described

in methods), as shown in bottom left of Figure 2.6. Each nodes in the AGN represents an enriched

term, and the edges between the nodes reflect the connectivity between species that are

encompassed in the nodes. As shown in Figure 2.6 this network can be visualized over time,

where the node size will be adjusted based on the enriched value of the term at each time point,

providing a high level representation of the dynamics of signal flow. For example, rna polymerase

ii transcription is regulated by four terms (cellular response to stress, cell cycle, sumo e3 ligases

sumoylate target proteins, hiv infection, but only regulates a single term (rho gtpase effectors),

suggesting the transcription is highly regulated in response to bendamustine. Additionally, the

connectivity of the terms can provide insight into key driving processes in the response. For

example, the cell cycle node is connected to all other nodes in the AGN, in agreement with its

importance in regulating response to bendamustine (Leoni and Hartley, 2011). The AGN provides

a coarse representation of the data that allow us to visualize the major processes and how they

regulate one another.

Importantly, the AGN simplifies the true network structure in order to allow users to identify

terms of importance that can then be used as a starting point for more detailed exploration. For

example, to understand the data’s ability to capture the canonical mechanism of bendamustine, we

extracted a molecular network focused on the terms most commonly associated with bendamustine

response (Leoni and Hartley, 2011) : dna repair, cell cycle, and apoptosis as shown in the bottom

right of Fig 2.6 and center left of Figure 2.9. There is a total of 65, 146, 28 genes for the terms

dna repair, cell cycle, and apoptosis respectively, 33 genes classified as both dna repair and cell

cycle, 37 genes were classified as cell cycle and apoptosis, two genes in all three terms, while no

genes were classified as both dna repair and apoptosis. We saw higher connectivity between dna

repair and cell cycle (132 outgoing and 117 edges) and cell cycle and apoptosis (154 outgoing and

609 incoming edges) compared to dna repair and apoptosis (24 outgoing and 56 incoming edges).

This agrees with the canonical understanding in how dna repair leads to changes in the cell cycle

25

and ultimately apoptosis, however also sheds light on the complexity of the cross talk between

terms that make the signal non-linear (there is not a clear sequence of events).

26

Visualize changes
in downstream

targets

Extract
downstream

targets of
CASP3Cell cycle

DNA repair

DNA repair &
Cell cycle

DNA repair &
Cell cycle &
Apoptosis

Cell Cycle &
Apoptosis

Apoptosis

Identify term of
interest

Create network
of interactions

Cluster cell
cycle related

genes

Create
network of

up-regulated
species

27

Figure 2.9: Custom workflows for exploring known biological processes of bendamustine. Molecular
network constructed from DNA repair, cell cycle, and apoptosis classified species, the canonical processes
involved in bendamustine response (center left). The network is an expanded version of the annotated
gene network from Figure 2.6. From the term “DNA repair”, MAGINE can visualize (top left) as well
as construct a signaling network corresponding to the terms molecular species(top right). Due to CASP3
importance in executing apoptosis, we constructed a network of downstream species (top right). We used
these species to filter our experimental data to generate the heatmap shown in center right, Only one species
is up-regulated (PKN1) while eight species are down-regulated, suggesting CASP3 activation. Subsetting
and visualizing the experimental data based on cell cycle related genes over time bottom left. We then
constructed a molecular network based on CCNB1 and CDK1 (center right), two genes responsible for
G2-M transition of cell cycle.

28

We can further explore the data by leveraging MAGINE’s ability to extract out subsets of the

data and focus on molecular level resolution of interactions among thing, simplifying the

complexity. For example, based on the term dna repair, we extracted 173 phosphorylation events

across 80 proteins, 43 changes in protein expression, and 5 changes of RNA expression. Of these,

we identified proteins involved in DNA ligase (LIG1, LIG2), required to alleviate ICLs, double

stranded break response MRN complex (RAD50, MRE11A, NBN), suggesting that the ICLs are

corrected during DNA replication creation of double stranded breaks. We also saw proteins

involved with base excision repair pathways (DDB1, XRCC1, XRCC2, XRCC5, XCCC6) and

nucleotide excision repair (ERCC3, ERCC5, ERRC6), suggesting the the pyramide analog

properties of bendamustine also contribute to DNA damage in addition to ICL. This allows users

to identify molecular species specific to their drug and by looking at interactions can provide

insight into targets to increase/decrease the desired effect. Another example, as shown in Figure

2.9, is our ability to extract out and visualize changes in cell cycle status. For cell cycle, we saw

444 phosphorylation events across 153 proteins, 111 changes in protein expression, and 17

changes of RNA expression. We clustered protein expression changes and create an influence

network between up regulated species. We saw up regulation of CDK1, AURKA, AURKB,

CCNB1, CDC20, and PLK1. CDC20, CDK1, and CCNB1 regulate chromosome separation while

expression of AURKA/AURKB/PLK1 regulate progress through G2-M checkpoint. Without this

checkpoint, activated apoptotic signals could lead to Mitotic catastrophe during

metaphase/anaphase transition, a mechanism known to occur in response to bendamustine (Leoni

and Hartley, 2011). Finally, we can use MAGINE’s Subgraph module to explore downstream

targets of CASP3, an effector caspase that cleavage of proteins marks commitment to

apoptosis (Slee et al., 1999). Though our data did not measure changes in CASP3, we wanted to

test if its downstream targets were changed in any capacity. As shown in the middle right of

Figure 2.9, we created a network of down stream targets of CASP3 and visualize their expression

levels over time. We saw 9 proteins that were down regulated only and one protein up regulated at

late time points, after apoptosis was induced. Thus, despite not measuring changes in CASP3,

29

MAGINE allowed us to gather evidence suggesting its activation, although this remains subject to

be further experimental validation.

2.1.2.2.1 Bendamustine affects HIV infection-related genes Throughout the exploration of

the HL-60 response to bendamustine dataset, we noticed that the term HIV infection was a

significantly enriched ontology term that apparently played no role in the cell-death response

associated with bendamustine. However, since HIV infection hijacks and modulates cell cycle

and DNA repair Chaurushiya and Weitzman (2009); Humphries and Temin (1972), we examined

whether a plausible explanation of the enrichment in proteins associated with HIV infection is the

overlap of underlying species with these expected biological process terms. The data showed that

this overlap did not completely account for the finding (Figure 2.10). Proteins down-regulated in

response to bendamustine marked with the HIV infection term include those related to the nuclear

pore (NUP107, NUP133, NUP153, NUP155, NUP160, NUP188, NUP210, NUP214, NUP35,

NUP37, NUP50, NUP62, NUP88, NUP93, NUP98) as well as regulators of the trafficking

through the nuclear pore (RANBP1, RANBP2). Perturbations to RANBP2 are known to disrupt

the HIV virus’ ability to shuttle the HIV-1 Rev protein between the cytoplasm and nucleus,

making it a potential target for inhibition of HIV Zhang et al. (2010). Additionally, CCNT1, a

co-factor of the HIV-1 Tat protein necessary for full activation of viral transcription, is

down-regulated at the 60 and 72 hour time points. Thus, the ability of bendamustine to perturb

HIV infection-related genes could have clinical relevance. While treatment with bendamustine

(for other disease indications) in HIV-positive patients is rare, case reports state that two

HIV-positive patients with chronic lymphocytic leukemia received bendamustine without adverse

outcomes Shimada et al. (2015). Therefore, unbiased analysis of this dataset enabled side effects

exploration that could lead to further leads in HIV treatment. Although such results clearly

require further validation, they demonstrates the ability of MAGINE to identify non-canonical

cellular pathways effected by drug treatment. Since this study was performed without the ability

for valdiation or further exploratory experiments, we were unable to test any of our findings.

30

Figure 2.10: Similarity between Bendamustine and HIV infection. An unexpected outcome of the analysis revealed
that proteins related to HIV infection were modulated with bendamustine. HIV infection depends on regulating cell
cycle and DNA repair in order to hijack the replication machinery. Yet, proteins classified as only HIV infection, that
is outside of DNA repair and cell cycle, are somehow regulated by bendamustine. An annotated gene set network
of the interaction between dna repair, hiv infection, and cell cycle (top left). The overlap between genes labeled in
each pathway labeled by Reactome (bottom left). Molecular interaction network of all significantly changed species
grouped according to their classified pathway (right).

Figure 2.11: Zoom in of Fig 2.10. The molcular interaction between dna repair, cell cycle, and hiv infection related
genes.

31

2.1.3 Methods

2.1.3.1 MAGINE software implementation

MAGINE is implemented as Python package. It leverages several existing Python packages

including pandas (McKinney et al., 2010), NumPy (Van Der Walt et al., 2011),

Bioservices (Cokelaer et al., 2013), Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017),

matplotlib-venn, and networkx (Hagberg et al., 2005) packages. Optional but recommended

dependencies include Jupyter notebook (Kluyver et al., 2016), python-igraph (Csardi et al.,

2006), py2cytoscape (Ono et al., 2015), and plotly (Sievert et al., 2016) Python packages and

graphviz (Ellson et al., 2001) and Cytoscape (Shannon et al., 2003) software for additional

visualization features.

2.1.4 Discussion

Experimental advances in omics data generation has provided a wealth of data and

opportunities to advance currently available tools. The most common analysis types include

network and enrichment analysis, which were designed for single sample, single ‘omic’ studies.

Although network construction and enrichment analysis have been widely used, tools allowing

their merger and utilization in multi-sample, multi-omics data have been lacking.

The software presented here provides new opportunities to integrate multi-sample omic data

with enrichment analysis and data specific signaling networks within a single environment.

MAGINE provides an intuitive flow between enrichment analysis, molecular interaction

networks, and experimental data. It enables users to construct custom analysis protocols in

Jupyter notebooks that are both reproducible and transferable. Recently, the Biojupies (Torre

et al., 2018) and PaDua (Ressa et al., 2019) packages were created to streamline RNAseq and

phopsho-protemoimcs analysis in Jupyter notebooks. We expect such approaches utilizing

Jupyter notebooks to increase and see MAGINE as an ideal addition to such pipelines.

Importantly, MAGINE saves users time by automating enrichment analysis across multiple

32

samples, removing the tedious task of manually uploading data to web-based tools. For instance,

to recreate the above analysis through EnrichR, it would have required 78 uploads of gene lists,

78 downloads for each of the 52 libraries, manual collation of the results, and some form of

manual visualization and analysis. Instead, MAGINE performed all enrichment analysis with one

function call, retrieving and storing the results in a reproducible and transparent manner, as well

as performed down stream analysis, all of which documented and packaged for other users.

Additionally, since multi-omics data provides more cellular coverage than typical in vitro/in

cell measurements (western blots), measuring significantly changed species that were not

“expected” is common, resulting in enriched terms that seem out of place. This could be due to

noise in measurements, multiple classifications of species, or completely new context in biology.

Further exploration of such terms can provide critical context in deciphering these signals but rate

limiting due to the time required for exploration. Here we demonstrated MAGINE’s ability to

quickly explore hiv infection and its relationship to known bendamustine responses. We expect

this utility to be useful in identifying and exploring non-canonical cellular pathways that are often

disregarded or ignored.

Our results show the complexity in interpreting multi-omics data as the response to

bendamustine is not a clear linear chain of events. Single time point measurements might not

capture an entire mechanism, with some events occurring early (phosphoylation events of DNA

repair proteins), some occur later (up-regulation of cell cycle proteins), and some occur late

(cleavage events of apoptotic CASP3). Interactive exploration of the data enables users to piece

together the mechanism and design further experiments to validation.

In summary, MAGINE enables users to easily switch between enrichment analysis, networks,

and experimental data in an iterative cycle. This allows users to vary resolutions dependent on

the question at hand, generate new hypothesis, and switch resolutions to focus exploration. As

improvements with omic data generation allow multiple sample acquisitions per perturbation, we

envision the need for tools such as MAGINE will grow.

33

2.1.4.1 Limitations

One of the main bottlenecks we encountered with the above mentioned data and analysis

encircled the limited ability to incorporate metabolomics data into our analysis pipeline. enrichR

allows an easy point of access for gene based enrichment analysis, allowing large lists to be

distilled into summarized information. As annotations and reference databases become

developed, we envision easily extending MAGINE to incorporate them into the pipeline.

2.1.5 Notes

All scripts, Jupyter notebooks, and data are available online at

https://github.com/LoLab-VU/MAGINE Supplement notebooks. Scripts were created using

Python 3.7 and tested on Windows 10 x64. Installation of MAGINE can be performed with pip

install magine.

2.1.6 Additional Methods

2.1.6.1 Data format

MAGINE is designed for fold change quantification datasets. These data are loaded from a

single file in a tabular format, with columns identifying the sample, time point, and experimental

platform. Due to the large number of possible experimental platforms, we generalized naming

of columns to support a wide variety of data types. MAGINE requires the following column

labels: identifier, label, species type, significant, fold change, p value, source, and sample id, with

a sample table shown in Table 2.4. This format uses a stacked data file notation (denormalized,

in database parlance), which provides ease of editing and compatibility (a single, text format table

is all that’s needed) at the expense of data redundancy. For identifier, we use HGNC (Bruford

et al., 2007) and Human Metabolite Database (HMDB) (Wishart et al., 2007) IDs for genes and

compounds respectively (we also provide tools to map other identifiers to these formats). The label

column can be used to store any other information, such as post-translational modifications, aliases,

34

or molecular weights. The source and sample id are used to label the experimental platform and

sample condition (i.e. timfe point). The species type column is used to state if the species is a

metabolite or gene (we use ’gene’ to label all possible gene products and allow the source column

to specify the specific type). The fold change column and p value column are for the fold-change

and statistical significance of the data compared to control (supplied from the raw data processing

step performed before data are loaded into MAGINE). Note that the p value should be the adjusted

value if using any form of multiple hypothesis testing. Finally, the significant column is used to

identify if a given measurement is significant compared to control. The definition of significant

is deliberately left to the user: in the situation where each experimental platform is handled by a

different team, those teams can apply their own standards or software to defining significance, if

desired.

Table 2.4: Example data input used in MAGINE

identifier label type significant fold change p value source sample id
BAX BAX S(ph)292 gene True 4 0.01 SILAC 01hr

HMDB00012 Deoxyuridine metabolite True -2 0.01 HILIC 02hr

Once loaded, data are stored in an instance of MAGINE’s ExperimentalData class, built on

the Pandas DataFrame with added methods designed for biological data. Our goal was to simplify

and provide shorthand properties/methods to minimize the code needed to perform common

operations such as filtering, querying, aggregating, and visualization of the data. A summary of

these methods is shown in Table 2.1 and example usage can be found online or in Notebook

5.1.1). Python properties are constructed around the significant, source and sample id columns,

allowing users to gather only significant changes (data.sig), extract only label free proteomics

data (data.label free), extract out only sample id rows labeled “wild type” (data.wild type), or

filter up regulated fold changed species (data.up). Importantly, filters can be chained together to

create complex queries, with less complex syntax, and methods directly applied to the resulting

information (data.label free.sig.up.heatmap()). Identifiers or labels of these queries can then be

aggregated (data.id list or data.label list) and passed to enrichment analysis or to construct a

network. Additionally, the class has direct access to common biological plotting functions such as

35

volcano plots (data.volcano()), heatmaps (data.heatmap()), or individual species

plots (data.plot species(...)).

2.1.6.2 Enrichment term aggregation

MAGINE contains a method, remove redundancy, for reducing the number of gene enrichment

terms by aggregating redundant terms. First, it calculates the ratio of the sizes of the intersection

and union (Jaccard index (Gilbert, 1972)) between genes within all term pairs. It then ranks all

terms based on either their combined score (from EnrichR), number of genes in the term, or p-

value. Starting from the highest ranked, it compares all lower ranked terms and remove them if

their similarity is above a user defined threshold, as shown in Text 1 and demonstrated in Figure 2.8.

This allows the user to minimize the number of total terms while maintaining a level of information

content that preserves total information.

2.1.6.3 Annotated gene set network construction

Enriched terms provide us with big picture information about processes and when they occur,

yet they do no provide us with details about the interconnection among them. Why is DNA damage

repair up regulated at 1 hour and apoptosis up-regulated at 24? Is there a cause and effect? Are

they independent? To answer these questions, we created an algorithm to extract trimmed signaling

networks derived from the enriched terms. The terms can be selected based on expert knowledge,

rank of enrichment, all compressed terms, or any other criteria.

Once the terms are selected, we find the nodes in the network for each term. From there, we

search through all possible combinations of pairs between the terms. For example, if term 1 has

genes (A, B, C) and term 2 has (D, E), we count the number of edges from the possible sets ((A,

D), (A, E), (B, D), (B, E), (C, D), (C, E)) that are found in the network edges. We then do the

reverse (term 2 to term 1). If a node is in both sets, we consider only the edges that connect the

other term, not edges that are within the term. This is demonstrated in 2.12 (N). This results in one

coarse-grained network, where nodes are terms and the edges are frequency of edges between any

36

two terms, and the fine-grained network, which contains the species and the connections between

them. By using both, we are able explore at a high level and zoom in on detail when required.

37

 Term 1 to Term 2

A

B

E

D

CC

Term 1 Term 2

T
hr

es
ho

ld

Term 1 Term 2

Node size ~ enrichment score
Edge width ~ edges between terms

A

B

E

D

CC

 Term 2 to Term 1

Figure 2.12: Annotated gene set network construction Nodes belonging to Term 1 are labeled as pink, Term 2 as
blue, and nodes in both are colored both. We calculate the number of edges between nodes in Term 1 to Term 2 and
Term 2 and Term 1. We then create nodes for each Term, with the size of the node corresponding to the enrichment
value. Edges are created between the terms and width set according to the number of edges between the terms. A
thresholding can be applied to remove edges with low number of connecting edges.

38

2.1.6.4 Software availability and requirements

MAGINE is released as an open source software under the GNU General Public License,

version 3. Source code for MAGINE can be found at github.com/LoLab-VU/Magine. Full

documentation can be found at magine.readthedocs.io. MAGINE has a full software test suite,

which is executed using continuous integration, and checked for code coverage. The project is

version controlled on GitHub. We encourage the community to post issues, questions,

enhancement requests, and code contributions.

Enriched term compression

We created a method that filters the number of enriched terms based on redundancy in gene

content.Starting with a ranked array with columns term name, rank, and set of genes. We then rank

all terms based on either their combined score (from EnrichR), number of genes in the term, or

p-value. Starting from the highest ranked, we compare all lower ranked terms and remove them if

their similarity is above a user defined threshold. We use the Jaccard index(Gilbert, 1972), which

is the size of the intersection divided by the size of the union of any two sets, as our similarity

metric.

Using this approach, we are able to minimize the total number of terms while maintaining their

enrichment content, as shown in 1 and demonstrated in figure 2.8. It should also be noted that we

can take the compressed terms and back calculate from the original enrichment array which terms

were removed as demonstrated in 2.8 C.

Algorithm 1 Enrichment compression
1: procedure FILTER

2: entry = [term, rank, geneSet]
3: array = sorted list of entries . EnrichmentResult class
4: to remove = set()
5: for i in array do
6: for j in array not including i do
7: score = jaccard index(i.geneSet,j.geneSet)
8: if score > threshold then . i contains more information than j
9: to remove.add(j) . remove to remove from array

39

www.magine.readthedocs.io

2.1.6.5 Experimental methods

Briefly, HL60 cells were plated and exposed to 100 µM bendamustine in triplicate for each

time point as described previously (Gutierrez et al., 2018). After introduction of drug,

measurements were collected at 12 time points ranging from 30 seconds to 72 hours across 6

experimental platforms shown in Fig. 2.5a. Raw data was processed according to a previously

described protocol (Norris et al., 2017). Sample preparation for transcriptomics, label-free

proteomics, and metabolomics analyses were performed as previously described (Gutierrez et al.,

2018). SILAC and phSILAC samples were prepared in a similar manner as reported (Norris et al.,

2017), with the exception that SILAC samples were run by 1D chromatography rather than

MudPIT. Each data set was then formatted and combined into a single CSV to be used with

MAGINE.

40

Chapter 3

Advancements in mechanistic modelling

3.1 Background

3.1.1 Bottoms up approach

Kinetic modeling of complex biochemical systems is central to the emerging field of systems

biology (Kitano, 2002; Le Novere, 2015). Kinetic models require definition of numerous free

parameters, usually obtained by calibration to experimental data, that specify initial species

concentrations and kinetic rate constants. This process involves simulating the model and

comparing its output to experimental data. Generally this has been done by hand (Albeck et al.,

2008), through exhaustive, computationally inefficient methods (Kim et al., 2010), custom single

use code (Lopez et al., 2013), or recently through packages designed for biological

models (Shockley et al., 2018). Biological models can have many parameters that can vary over

order of magnitudes of space, leading to near infinite number of parameter sets that fit the model

equally well (Gutenkunst et al., 2007).

Once calibrated, a model should be analyzed for its sensitivity and predictive power over

ranges of parameter values (Fisher and Henzinger, 2007).This could result in identifying

molecular species that negatively affect the desired outcome (key anti-apoptotic proteins),

co-druggable targets (amplify death signal through alternative signaling pathways), or eliminate

drug targets due to the models insensitivity to changes in their concentration.

Both model calibration and analysis can require thousands to millions of model simulations

for statistical convergence and significance (Gutenkunst et al., 2007; Eydgahi et al., 2013). In

many cases, the computational expense of simulation at this scale makes detailed model analysis

infeasible.

This chapter addresses these three issues. First, in Section 3.2, I introduce simulation methods

41

that offer orders of magnitude more simulation faster simulations. In Section 3.3, I introduce a

particle swarm optimization toolkit that allow PySB users an efficient way to link their models to

experimental data. In Section 3.4, I introduce a sensitivity analysis approach and apply it to both

models of EARM.

3.1.2 Stochastic and deterministic simulations

As mentioned above, both model training and characterization requires hundreds to thousands

of simulations to be performed. Models can be simulated deterministically or stochastically. Which

formalism to use is based on model assumptions. If the system is well mixed, can be regarded

as continuous concentration of species, and reactions occur frequently, then the model can be

simulated using deterministic methods. This is done by solving a system of ordinary differential

equations(ODEs). ODEs are typically solved using numerical methods such as LSODAPetzold

(1983). ODE simulations are more cost efficient than stochastic methods. However, when having

to do thousands of simulations, simulation of the model is a rate limiting step.

If the model has low species copies or infrequent events (low rates), then the model should be

formulated stochastically, discussed in section 3.2.2. This is often done using the Gillespie

algorithm (Gillespie, 1976), otherwise called the stochastic simulation algorithm (SSA). Each

stochastic simulations take substantially longer than an ODE simulation. In addition, hundreds to

thousands of simulations are required to properly explore the state space of the model. Though

many of these assumptions have not been extensively validated, the computational cost of the

alternative approach to ODEs (stochastic simulations) has allowed this assumption to pass

without notice (Spencer et al., 2009).

Thus, there is a need to decrease the time spent simulating models. In sections 3.2.1 and 3.2.2,

I introduce simulation methods that increase the number of simulations to be performed compared

to current methods. These improvement have direct impact on the time required for both parameter

optimization and sensitivity analysis.

42

3.1.3 Extrinsic apoptosis reaction model (EARM)

In this section, I introduce extrinsic apoptosis reaction model (EARM), a family of models of

extrinsic apoptosis that links a death signal to cell destruction (Albeck et al., 2008; Lopez et al.,

2013). The models are encoded in PySB, a Python package for rule based modeling (Lopez et al.,

2013). Using PySB, a model can be constructed in a modular manner, allowing the ability to

construct various models in a systematic way.

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) binds to a death

receptor on the cell membrane, leading to the formation of death-inducing signaling complex

(DISC), which if not inhibited by FLIP can cleave and activate caspase-8 (CASP8). Active

caspase-8 truncates Bid (into tBid), targeting it to the mitochondrial outer membrane. When at the

membrane, tBid recruits cytoplasmic BAX to be inserted into the membrane, where tBid can

further activate BAX and the closely related membrane-bound protein BAK. Active BAX/BAK

then homo-oligomerize, causing pore formation in the mitochondria. This process, known as

mitochondrial outer membrane permeabilization (MOMP), is the “point of no return” in

apoptosis (Kuwana et al., 2002; Certo et al., 2006). MOMP releases mitochondrial proteins, in

particular cytochrome c (CYTOC) and Smac. CYTOC binds to the cytosolic protein Apaf-1 and

to caspase-9, forming the “apoptosome,” which activates caspase-3 (CASP3). Smac binds to

XIAP, preventing XIAP from binding and inhibiting active CASP3. CASP3 activation marks the

beginning of the end: DNA and structural proteins degrade and the cell eventually collapses in a

controlled manner (Taylor et al., 2008).

Apoptosis is extensively regulated via the BCL-2 family of proteins (Volkmann et al., 2014).

Their main functions are to control mitochondrial outer membrane permeabilization

(MOMP) (Chipuk et al., 2008; Martinou and Youle, 2011; Kuwana et al., 2002), considered the

most critical step of commitment to apoptosis (Brenner and Mak, 2009; Borner and Andrews,

2014; Elkholi et al., 2014; Gillies et al., 2015).

In this work, I focus on EARM 1.0 and EARM 2.0-M1a ‘embedded together’ model. The main

differences of these models are their treatment of the BCL-2 proteins. EARM 2.0 is an expanded

43

version of EARM 1.0 (Albeck et al., 2008). In EARM 1.0, the pro-apoptotic (BAX and BAK)

and anti-apoptotic species (BCL2, BCL-XL, MCL1) are represented as a single species, BAX and

BCL2 respectively. The implications of this simplification will be discussed in section 3.4.1.

3.2 Model simulation

3.2.1 Deterministic simulation

3.2.1.1 Enabling high throughput simulations using GPUs

1 Kinetic modeling of complex biochemical systems is central to the emerging field of

systems biology (Kitano, 2002; Le Novere, 2015). Kinetic models require definition of numerous

free parameters, usually obtained by calibration to experimental data, that specify initial species

concentrations and kinetic rate constants. Once calibrated, a model should be analyzed for its

sensitivity and predictive power over ranges of parameter values (Fisher and Henzinger, 2007).

Both model calibration and analysis can require thousands to millions of model simulations for

statistical convergence and significance (Gutenkunst et al., 2007; Eydgahi et al., 2013). In many

cases, the computational expense of simulation at this scale makes detailed model analysis

infeasible.

Recently, efforts have been made to leverage the highly parallel structure of graphics

processing units (GPUs) to accelerate scientific computations (Dematté and Prandi, 2010; Nobile

et al., 2016). GPUs are well suited for applications in which the same arithmetic operations are

applied to many independent data elements, e.g., solving independently parameterized systems of

ordinary differential equations (ODEs). GPU-based kinetic simulators thus hold great promise for

accelerating tasks such as model calibration and analysis, but are challenging for non-experts to

use because they require specialized settings and inputs.

We have created a user-friendly interface between the GPU-based kinetic simulator

cupSODA (Nobile et al., 2013, 2014) and PySB, a Python-based modeling and simulation

1Section modified from Harris et al. (2017)

44

platform (Lopez et al., 2013). cupSODA is built around the well-known adaptive stiff/non-stiff

ODE integrator LSODA (Petzold, 1983). It is designed to perform thousands of parallel

simulations, each independently parameterized, of mass-action kinetic models by leveraging the

high-performance memories on the GPU, specifically the cached and non-mutable constant

memory and the low-latency on-chip shared memory. PySB is a rule-based modeling (Chylek

et al., 2014, 2015) platform for constructing and analyzing complex models of biochemical

systems. Models can be constructed in native Python code or imported from various formats,

including the Systems Biology Markup Language (SBML) (Hucka et al., 2003). PySB leverages

powerful libraries within the Python ecosystem, such as NumPy, SymPy, and SciPy (Pérez et al.,

2011), and provides user-friendly interfaces to numerous third-party simulation and analysis

tools, including BioNetGen (Faeder et al., 2009; Harris et al., 2016), KaSim (Suderman and

Deeds, 2013), and StochKit (Sanft et al., 2011).

Below, we briefly describe the main features of the PySB/cupSODA interface and showcase

its utility by performing run time and sensitivity analyses for three model systems of varying size

(Table 3.1).

3.2.1.2 Features and Implementation

cupSODA is designed to exploit the massive parallelism of the CUDA architecture (Nickolls

et al., 2008). To run simulations with cupSODA, one must construct multiple input files containing,

e.g., the reaction stoichiometries and the initial species concentrations and rate parameter values

for each specified simulation. Numerous simulator-specific parameters must also be defined, such

as the number of CUDA “blocks” to use and the desired cupSODA memory configuration (see

Supplementary Information). The number of simulations that cupSODA can run in parallel is

limited by the number of CUDA “cores” on the GPU (usually a few thousand; see Supplementary

Table S1), but the number of simulations that can be loaded onto the GPU at one time is usually

many more than this, limited by the available memory (Nobile et al., 2013, 2014).

The PySB/cupSODA interface simplifies the use of cupSODA via a CupSodaSimulator

45

class, available within the PySB package. The class constructor accepts the following arguments:

• model: A PySB model object (required)

• tspan: A list of output time points (default: None)

• initials: A list or dictionary of initial species concentrations for each simulation

(default: None)

• param values: A list or dictionary of rate parameter values for each simulation (default:

None)

• verbose: Verbose output (default: False)

The CupSodaSimulator constructor also recognizes numerous keyword arguments (kwargs),

such as n blocks, the number of CUDA blocks, and memory usage, the desired memory

configuration. Importantly, default values are defined for each kwarg, removing the need for user

input. For example, if a user-defined value is not provided, the number of CUDA blocks is

automatically calculated by querying the specifications of the GPU in use.

The CupSodaSimulator.run() method performs the simulations by constructing the

cupSODA input files and invoking cupSODA as a subprocess (the method takes tspan,

initials, and param values as optional arguments). Additionally, the method reads into a

three-dimensional array the results of the simulations (species time courses), which cupSODA

outputs to (typically thousands of) separate text files. The user then has the ability to analyze

and/or visualize the results using tools available within the Python ecosystem, e.g., plotting the

time courses using the Matplotlib library (Pérez et al., 2011). For convenience, a run cupSODA

wrapper function has also been implemented that combines invocations of the

CupSodaSimulator constructor and run method into a single step. A workflow diagram and

example Python script using the run cupSODA function are provided in Supplementary Figs. S1

and S2, respectively.

46

Table 3.1: Models used for PySB/cupSODA performance testing

.

Model Species Reactions End time N steps

Cell cycle Tyson (1991) 5 7 100 100
Ras/cAMP/PKA Besozzi et al. (2012) 33 39 1500 100
EARM Lopez et al. (2013) 77 105 20 000 100

3.2.1.3 Result

In Fig. 3.1A–C we compare the run time efficiency of PySB/cupSODA to the CPU-bound

ODE integrator LSODA, available in the Python package SciPy (Oliphant, 2007), for three

example models listed in Table 3.1. These include models of the eukaryotic cell cycle (Tyson,

1991), the Ras/cAMP/PKA signaling pathway in Saccharomyces cerevisiae (Besozzi et al., 2012),

and extrinsically induced apoptosis in mammalian cells (EARM: extrinsic apoptosis reaction

model) (Lopez et al., 2013). Run time comparisons show that in all cases SciPy/LSODA is faster

for small numbers of simulations but PySB/cupSODA overtakes it for large numbers of

simulations, achieving a maximum speedup of approximately one order of magnitude.

Figure 3.1: Run time comparisons between PySB/cupSODA and SciPy/LSODA.(A–C) Run time comparisons
between PySB/cupSODA and SciPy/LSODA for the example models in Table 3.1 (all simulations performed with
the same initial protein concentrations and rate parameters). (D) Sensitivity in time-to-death in EARM to variations
(±20%; 25 410 total simulations) in the initial protein concentrations (gold lines are medians; boxes range from the
first to third quartile; whiskers extend to the minimum and maximum values). PySB/cupSODA simulations were run
using cupSODA 1.0.0 on a GeForce GTX 980 Ti GPU (2816 cores, 16 threads/block); SciPy/LSODA simulations
were run on an Intel Xeon E5-2667 v3 @ 3.20 GHz CPU (see Supplementary Table S1).

47

For each model in Table 3.1, we also performed sensitivity analyses (Fig. 3.1D) by

quantifying changes in defined model outputs to variations (±20%) in initial protein

concentrations around a set of reference values. The ability to efficiently perform such analyses is

critical since non-genetic variability within isogenic cell populations has been attributed to

significant variations in protein concentrations across cells (Spencer et al., 2009). In Fig. 3.1D,

we analyze the sensitivity in “time-to-death” in EARM (defined as the time at which Smac

reaches 50% cleavage; demonstrated in Appendix Figure 5.5) for a specific set of rate parameters.

Our results show that time-to-death is sensitive to the initial levels of six of the 21 proteins

considered. Of particular interest is the sensitivity to Bak. The same analysis performed for a

different set of rate parameters (Appendix Figure 5.7) shows insensitivity to Bak but sensitivity to

Bax. This indicates that the model harbors at least two alternative pathways to apoptosis

induction. The analysis comprised 25 410 total simulations and took ∼11 min with

PySB/cupSODA and ∼35 min with SciPy/LSODA (for both parameter sets). Similar

accelerations were seen for the cell cycle and Ras/cAMP/PKA models (Appendix 5.3 and 5.1).

3.2.1.4 Conclusion

The PySB/cupSODA interface provides the modeling community with a high-performance

GPU-based kinetic simulator, that can run thousands of parallel simulations on a common

desktop workstation, within the easy-to-use framework of a full-fledged, open-source

programming and analysis environment in Python. This will greatly accelerate and streamline the

process of analyzing complex biochemical models for systems biology applications.

48

3.2.2 Efficient stochastic simulations

3.2.2.1 Introduction

Chemical kinetic simulations can be either deterministic or stochastic. Which formalism to

use is based on model assumptions. If the system is well mixed(can be regarded as continuous

concentration of species, and reactions occur frequently), then the model can be considered

deterministic and represented as a set of ordinary differential equations(ODEs). Otherwise, if the

number of particles are low or the reactions that occur are infrequent, the model should be

described with the chemical master equation (CME). Solving the CME is analytically intractable

for most systems, which has led to development of sampling or simulation method, most notably

the Doob-Gillespie stochastic simulation algorithm (SSA) (Gillespie, 1976, 2007). The Gillespie

algorithm, otherwise called the stochastic simulation algorithm (SSA), is one such method to

sample the CME (Gillespie, 1976). One realization of the CME can be understood as one possible

set of reactive events and the resulting changes in the molecular population. In order to

approximate the CME, a large number of simulations of the SSA are required. This has made the

use of the SSA computationally prohibitive for many problems (Gillespie, 2001; Rathinam et al.,

2003; Gillespie, 2007; McCollum et al., 2006; Gillespie, 2001; Harris et al., 2009).

From a computational perspective, the independence of each individual simulation in the SSA

formalism makes parallelization an appealing approach for simulation speedup. Software

packages such as StochKit (Sanft et al., 2011) provide this form of parallelism using Central

Processing Units (CPUs). In these implementations, the total simulation time decreases linearly

with the number of CPU cores. However, for large and complex biochemical reaction systems,

significant computational resources are required beyond typically available CPUs in a research

setting. To address this limitation, researchers have increasingly turned to Graphical Processing

Units (GPUs) to accelerate numerical simulations (Dematté and Prandi, 2010). Originally

designed for rendering (thus the name), GPUs are equipped with potentially thousands of cores

and perform the same calculations across data very efficiently. Previous implementations of the

49

SSA algorithm in GPUs have already reported significant speedup, up to 200 times faster

compared to CPU-based implementations (Li and Petzold, 2010). However, these

implementations have faced challenges associated with writing and maintaining specialized code

in hardware-specific programming languages, as well as restricting the access of GPUs for novice

users.

To address this challenge, we developed GPU SSA, an implementation of the SSA solver in

Python that can be used within the PySB (Lopez et al., 2013) modeling framework developed in

our lab, leveraging middle layer programming (Klöckner et al., 2012) that allows minimal user

involvement and easier code maintenance. PySB enables users to encode biochemical reaction

networks using a rule-based formalism in Python and supports import of models from other

platforms including SBML (Tapia and Faeder, 2013). We believe that our implementation will

enable quantitative biologists, that lack specialized GPU knowledge, to carry out SSA-based

simulations routinely. Our implementation includes two versions of GPU-SSA simulators: a

CUDA version, specific to NVIDIA branded GPUs; and an OpenCL version that enables the use

of parallel hardware independent of hardware platform. We demonstrate the performance of the

implementation version BioNetGen (Faeder et al., 2009) CPU implementation.

3.2.2.2 Implementation

For N(t) = (N1(t),N2(t), ...,Nn(t)), where Ni is the number of molecules of type i and n is the

number of distinct chemical species, the chemical master equation (CME)

dP(N, t)
dt

= ∑
r∈R

ar (N−νr)P(N−νr, t)− ∑
r∈R

ar(N)P(N, t)

describes the change of all possible states P(N, t) in which the system can be over time. Let R be

the full set of all reactions occurring in the chemical system.

In Gillespies direct method (Gillespie, 1976), the time development of each possible state

depends on the reaction propensities ar(N), which are the probabilities per unit time, that reaction

50

Algorithm 2 Gillespie’s Direct Method
1: Set t = 0. Initialize the rate constants c1, . . . ,cv and the initial molecule numbers N1, . . . ,Nu.
2: while t < Tmax do
3: Calculate each propensity ai(N,ci), i = 1, . . . ,v based on the current state, N.
4: Calculate total propensity atot = ∑

N
i=1 ai(N,ci).

5: Generate two random numbers u1,u2
6: Calculate time until next reaction τ =−log(u1)/atot
7: if t + τ > tend then
8: end
9: Select reaction µ = min(k : ∑

k
i=1 a[i]> atotu2).

10: Update t+= τ ′

11: Update N according to reaction µ N = N +Sµ .
12: Output N and t based on desired sampling.

r ∈ R occurs given that the composition of the system is of the form N. The rate of change is

updated via the stoichiometric vector νr, which describes the change in the numbers of each

species as a result of given reaction r.

The propensities ar(N) can be directly calculated via the reaction rate κr. For a first-order

reaction of type i, the propensity is ar = κrNi. The second-order reaction of the same type i has

the propensity ar = κrNi (Ni−1)/2, and for reactions of two different types i and j ar = κrNiN j.

The propensities at a certain time point are representing the probabilities of a reaction happening

per unit time. To generate random reactive events, a random reaction time τ , which is

exponentially distributed, and a random reaction µ have to be selected. Every time a reaction is

firing, the state of N changes and therefore the propensities. Algorithm 2 shows the basic step of

the direct method.

The GPU-SSA algorithm has been implemented using PyCUDA and PyOpenCL as a

simulator class within the Python based framework for building mathematical models of

biochemical systems PySB (Lopez et al., 2013). PySB enables the usage of rule-based languages

such as BioNetGen (Faeder et al., 2009) or Kappa (Danos et al., 2007) within a domain specific

programming language. Using PySB, the user can encode the chemical reactions of the

biochemical system by representing each reaction with a rule. Users can then simulate their

model using various simulators in PySB, including stochastic simulations with Kappa or

51

BioNetGen, network-free simulations with NFSim (Sneddon et al., 2011), or deterministic

simulations using Scipy or cupSODA (Harris et al., 2017). The CUDASimulator is designed for

NVIDIA GPUs while the OpenCLSimulator can be ran on GPUs (AMD or NVIDIA), CPUs, and

other supported devices. Both simulators generate and compile model specific code to be

executed on the devices. Memory allocation (for parameters, initials values, time courses) is

automatically handled without requiring any user input. Once compiled, the SSA algorithm is

performed across the device and results returned after all simulations have been completed. The

entire simulation is performed on the GPU, saving communication time between the CPU and

GPU, often the most time consuming task in GPU acceleration. A schematic workflow is outlined

in Figure 3.2.

If the user has no GPU available, OpenCL enables the available parallelism of the multi-core

CPU. In Algorithm 3.1, we demonstrate a use case of the CUDASimulator in PySB.

from pysb . s i m u l a t o r s i m p o r t CUDASSASimulator

from pysb . examples . michment i m p o r t model

S e t t h e s i m u l a t i o n l e n g t h and t h e number o f t ime p o i n t s

t = np . l i n s p a c e (0 , 20 , 11)

a s s i g n t h e CUDASimulator s i m u l a t o r t o t h e model and run

sim = CUDASimulator (model)

Run 1000 s i m u l a t i o n s

t r a j = sim . run (t s p a n = t , number s im =1000)

Listing 3.1: Usage of the GPUSimulator in PySB.

52

Figure 3.2: Workflow for the GPU-SSA implementation. A PySB model is imported and the GPU simulator is
chosen. Both the PyCUDA version as well as the PyOpenCL version declare the working arrays for the SSA kernel,
manage the memory allocation on the GPU, create the SSA kernel in C and pull the results from the SSA from the
GPU back to the CPU. The kernel is created as a C-file that runs on every available hardware core. For each simulation,
a thread is created that runs the full kernel, i.e. performs one realization of the stochastic simulation algorithm. After
every thread is done with the simulation, the result vector is pulled back from the device and the device-memory gets
cleaned up.

53

Since every simulation on the GPU is independent, each simulation starts with its own initial

conditions and parameters, allowing users to simulate numerous initial conditions and/or parameter

sets. The .run call also accepts param values and/or initials input matrices as arguments, where

every row holds the parameters/initial conditions for the particular simulation.

3.2.2.3 Models

In this subsection, we introduce example models implemented in PySB and demonstrate the

performance of our implementation versus BioNetGen and StockKit, the two SSA methods

currently available to PySB users. All models are written in PySB and are available as examples

on the github repository of PySB. The computational size of the models is summarized in Table

3.2.

3.2.2.3.1 Michaelis-Menten Michaelis-Menten kinetics can be seen as one of the most

prominent test cases for biochemical reactions. It represents the reversible binding of an enzyme

E with a substrate S to release a product P in a non-reversible process. The process can be written

as

E +S
k f

kr

ES kc→ E +P,

where k f , kr, kc, denote the rate constants forward rate, reverse rate, and catalytic rate respectively.

3.2.2.3.2 Schlögl In (Schlögl, 1972), Friedrich Schlögl introduced chemical reaction models

that describe the transition of a steady state into non-equilibrium steady states, a phenomenon at

that time observed in thermodynamics. The chemical species in this example are representing

rarefied gases and homogeneity is assumed due to constant stirring of the system.

One possible representation of such a non-equilibrium phase transition is

2X
k1

k2

3X

I
k3

k4

I +X

54

Number of reactions Number of species Number of parameters
Michaelis-Menton 3 4 4
Schlögl 4 3 6
Kinase Cascade 30 21 36
EARM1.0 70 58 88

Table 3.2: Size of the different models used in this section.

Note, that the concentration of I remains constant over the simulation time, while the concentration

of X changes over time.

The Schlögl model is considered to be a standard test model to capture bi-stable states.

3.2.2.3.3 Kinase Cascade This model is adapted from (Chen et al., 2009)

3.2.2.3.4 EARM1.0 The extrinsic apoptosis reaction model (EARM) was introduced by

(Albeck et al., 2008) which describes the model pathway of apoptosis induced by an extrinsic

signal. The system captures the permeabilization of the outer mitochondrial membrane (MOMP)

resulting in the inhibition of apoptosis inhibitors, as well as the activation of apoptosome

caspases.

3.2.2.4 Results

3.2.2.4.1 Validation of implementation We validate the simulation output by comparing them

with the well-established SSA implementation provided by BioNetGen (BNG) (Harris et al., 2016)

and Stochkit (Sanft et al., 2011). Since SSA is a stochastic algorithm, comparing the results must

be done statistically. The Kolmogorov-Smirnov test is a measure whether two samples are drawn

from the same distribution. A significant p-value would reject the hypothesis, that the samples

come from two different distributions. As shown on the left of Figure 3.3, our two implementations

can not be distinguished from StochKit and BNG according to the Kolmogorov-Smirnov test.

55

Figure 3.3: Validation of the CUDASimulator and OpenCLSimulator. The Schlögl model was simulated 1000
times and the end time point (shown on right) was used to compute Kolmogorov-Smirnov P-values for all pairs of
simulators.

56

3.2.2.4.2 Benchmarks In this section, we compare the run-time of our method with BNG as

well as the CPU-parallelised version of SSA provided by StochKit (Sanft et al., 2011). CUDA

and Opencl simulations were performed on a NVIDIA Volta

V100 (https://www.nvidia.com/en-us/data-center/v100/). CPU simulations were performed on the

IBM POWER9. For StochKit simulations, we performed single CPU as well as running across 64

cores. Figure 3.4 shows the timing results for the different models introduced in section 3.2.2.3

and values can be found in Table 3.3.

As shown in 3.4, the GPU implementations are faster by orders of magnitude for all models

in the single core implementations of BNG and StochKit. StochKit on 64 cores is fast when

performing small number of simulations (<1024). This is because each CPU simulation is faster

than on the GPU, requiring multiple simulations to be performed in order to gain from the GPUs

parallelism. However, as the number of simulations on CPU doubles, do does the simulation time.

On the contrary, there is a plateau in the GPU run-time until it is at full capacity (roughly 8192

simulations). Then, the GPU times share the same pattern (double the simulations = double the the

simulation time). Thus, the GPU simulator is nearly always better than the CPU counter part, with

the exception of running smaller number of simulations (1000) across many cores (64).

57

https://www.nvidia.com/en-us/data-center/v100/

Figure 3.4: Comparing BioNetGen, StochKit and GPU-SSA timings run on the NVIDIA V100. On the x−axis, we
see the number of simulations of each model. On the y−axis, we see the amount of time in seconds the simulation
of the model takes for this number of simulations. Each simulation is a realization of a possible state of the system.
BioNetGen depicted in green is implemented to run on only one CPU. Doubling the number of simulations from 2048
to 4096 would result in a run-time of more than two days. In blue and orange, we depict the run-time for StochKit on
1 CPU, as well as a parallelization on 64 CPU cores, respectively.

58

Figure 3.5: Fold change improvements of the CUDASimulator compare to CPU implementation. The ratio of
BNG, StochKit, or Stockit on 64 cores simulation time divided by our CUDA simulator time.

59

3.2.2.4.3 Additional benchmarks Though users are able to access the NVIDIA Volta GPU

(their current flagship compute GPU) via Amazon Web Services, we don’t expect or require users

to have the newest and fastest GPUs. Thus, we also evaluated older generations of the less

expensive GeForce consumer graphics cards. As shown in Figure 3.6, we saw improvements in

timings across each generation of GPU. All GPU simulations were faster for large number of

simulations (> 20k) than the sequential CPU implementation on each machine (data not shown).

Thus users are not required to have the flagship Volta GPU to gain improvements from our

simulators. We also saw improvements in simulation times across GPU generations, giving

promise that our simulators will also improve with the next generations of GPUs to come.

Figure 3.6: Timing analysis for multiple generations of GPUs.The GPUs represent the last three generation of
consumer ‘gaming’ cards (GTX980TI, GTX1080, RTX2080) and two generations of data center cards (Tesla K20C
and Tesla Volta V100).

3.2.2.4.4 OpenCL CUDA is only accessible via NVIDIA GPUs. OpenCL is able to run on

NVIDIA or AMD GPUs and it possible to run on multi-core CPUs. Thus, we created an OpenCL

implementation to make GPU-SSA more accessible to the user. As shown in Figure 3.7, we

performed simulations across various GPUs using both OpenCL and CUDA simulators. Since

CUDA is optimized for NVIDIA GPUs, it is not surprising that the CUDA implementation runs

more efficient than OpenCL on NVIDIA devices3.7. Sadly, we were not able to test on any

modern AMD GPUS and were only able to test on a decade old HD7970 AMD card (that was

found for 30 dollars on Craigslist). AMD consumer cards are known to have higher double

precision than NVIDIA consumer GPUs, which is required for stochastic simulations. Despite the

60

old AMD card, it still performs better than the CPU implementations (8.63 seconds vs 2467.47

seconds for 65536 simulations of the Schlögl model). Our benchmarks show that we do not lose

much performance using OpenCL, and that even non-NVIDIA specific GPUs can give the user a

significant benefit over a sequential CPU implementation.

Additionally, since OpenCL is capable of using CPUs, we ran the benchmark for various CPUs

that were available. We used three different CPUs, Intel i5-6500T, Ryzen 1600x, and Ryzen 3900x,

each having 4, 12, and 24 compute cores (Ryzen have 6 and 12 core, but hyper threading allows

them to double capacity). We compare run times for the Schlögl across various CPUs versus the

BNG and StochKit timings, shown in Figure 3.8. Our implementation outperform the BNG and

single CPU StochKit implementation. The 64 core StochKit times are within the 12 core Ryzens

timing and even beat by the 24 core Ryzen 3900x. Note that despite their improvement over the

BNG and StochKit, our OpenCL CPU timings are still slower than the of the slowest GPU runs

(12.74 seconds vs 8.63 seconds) and two orders of magnitude than the fastest times (12.74 seconds

vs .76 seconds),

61

Figure 3.7: OpenCL vs CUDA timings. With the exception of the H7970 (only OpenCL capable), all GPUs were
benchmarked with CUDA and OpenCL. In nearly all cases, the OpenCL timings are slightly more than the CUDA
timings. This can be attributed to CUDA being specific for NVIDIA devices.

Figure 3.8: Timing analysis for CPU implementations. BNG, StochKit 1, and StochKit 64 timings are performed
using their respective software. The timings for the remaining CPUs were performed using the OpenCLSimulator.
Each rows name reflects the name of the CPU and the number of cores (name Ncores).

62

3.2.2.5 Discussion

We introduced an implementation of the stochastic simulation algorithm (SSA) on GPUs, as a

newly integrated simulator for the rule-based modeling framework PySB. This enables the user to

gather statistics about the chemical master equation underlying the chemical kinetics system in a

more feasible time frame, than currently accessible simulators accessible to the PySB community

(BioNetGen and StochKit). Both GPU implementations enables orders of magnitude faster

simulations than the CPU implementations, even beating StochKit running across 64 CPUs. We

also saw an increase in speed up across each newer generation of GPUs, suggesting that the time

required to run many SSA simulations will continue to decrease as GPUs improve in the future.

Finally, by creating an OpenCL based simulators, users are able to leverage AMD GPUs and

multi-core systems without requiring them to write specialized code.

63

Table 3.3: Simulation run times.

Simulator times (seconds) Timing ratio

m
od

el

n sim B
N

G

C
U

D
A

O
pe

nC
L

St
oc

kK
it

St
oc

hK
it

64

B
N

G
\C

U
D

A

St
oc

hK
it
\C

U
D

A

St
oc

hK
it6

4
\C

U
D

A

ea
rm

1
0 256 6348.13 216.74 378.81 2115.36 104.16 29.28 9.75 0.48

512 12628.22 205.83 389.54 4104.66 168.92 61.35 19.94 0.82
1024 25805.27 204.04 391.39 8150.94 313.07 126.47 39.94 1.53
2048 53670.92 209.45 399.20 16577.10 593.39 256.24 79.14 2.83
4096 113075.98 207.04 399.75 32606.80 1163.14 546.14 157.48 5.61
8192 203555.37 236.80 400.28 66849.00 2296.05 859.58 282.29 9.69
16384 404603.91 375.10 494.27 133109.00 4535.86 1078.65 354.86 12.09
32768 827438.20 870.26 1005.73 259961.00 9144.92 950.78 298.71 10.50
65536 NaN 1610.57 1933.24 520748.00 18158.80 NaN 323.32 11.27

ki
na

se
ca

sc
ad

e 256 1051.37 5.29 11.41 249.35 10.58 198.47 47.07 1.99
512 2102.81 5.29 11.41 497.49 22.44 396.98 93.92 4.23
1024 4199.72 5.29 11.43 995.78 36.28 792.66 187.94 6.84
2048 8393.11 5.30 11.43 1939.52 68.77 1583.29 365.87 12.97
4096 16418.15 5.31 11.43 3993.20 134.53 3092.10 752.05 25.33
8192 32634.33 5.33 11.45 7976.93 265.45 6122.02 1496.42 49.79
16384 65257.74 6.20 11.51 16007.70 550.34 10524.15 2581.57 88.75
32768 130748.75 12.51 22.84 30782.20 1104.34 10450.20 2460.29 88.26
65536 261432.90 23.79 45.76 70123.80 2142.31 10986.69 2946.94 90.03

m
ic

hm
en

t 256 0.755 0.002 0.003 0.160 0.096 417.16 88.42 52.88
512 1.462 0.002 0.003 0.319 0.101 634.79 138.69 43.90
1024 2.927 0.002 0.003 0.629 0.118 1581.74 340.03 63.85
2048 5.858 0.002 0.003 1.234 0.160 2763.85 582.21 75.40
4096 11.741 0.002 0.003 2.467 0.245 4881.25 1025.42 101.88
8192 23.522 0.003 0.003 4.968 0.402 7102.32 1500.02 121.40
16384 47.253 0.005 0.003 9.797 0.864 8932.86 1851.96 163.28
32768 94.376 0.010 0.004 19.612 1.543 9226.00 1917.22 150.86
65536 189.680 0.022 0.008 39.380 3.167 8786.72 1824.22 146.71

Sc
hl

ög
l 256 9.519 0.258 0.073 2.206 0.285 36.87 8.54 1.10

512 19.118 0.188 0.271 4.602 0.340 101.47 24.42 1.80
1024 38.555 0.291 0.335 8.881 0.602 132.52 30.52 2.06
2048 77.159 0.267 0.504 17.755 1.012 288.67 66.42 3.78
4096 154.493 0.282 0.581 35.702 1.819 547.08 126.42 6.44
8192 310.031 0.285 0.555 71.408 3.472 1089.10 250.85 12.19
16384 617.244 0.291 0.564 142.701 6.716 2119.73 490.06 23.06
32768 1235.297 0.305 0.629 284.565 12.736 4049.66 932.88 41.75
65536 2467.469 0.351 0.762 572.178 20.598 7025.57 1629.15 58.64

64

3.3 Fitting models to data

Ideally, model parameters would reflect those that occur naturally within the cell. Though

binding constants can be measured in isolated systems in vitro, experimentally measuring rate

constants within live cells is difficult. Even parameters that are measured experimentally, they

may not reflect the exact system conditions. This paired with the total number of parameters of

large models (binding rates, synthesis and degradation rates, diffusion rates) makes measuring all

parameters for a model is currently beyond experimental limitations. Thus, models are often fit to

experimental data using parameter optimization (Eydgahi et al., 2013; Lopez et al., 2013). This

calibration process involves simulating the model and comparing it to experimental protein

concentration time course data. A common metric used to measure the distance between

experiment and simulation is χ2, described by the function χ2

χ
2 =

tend

∑
t=0

N

∑
i=1

(X i
simulated(t,Θ)−X i

measured(t))
2

σ2
measured(t)

(3.1)

where X is the species of interest, t is time-points of experimental measurement, i to N is species,

and Θ the parameter vector. Thus, the goal is to find parameter sets that minimize the difference

between simulations and experiment. Typically this has been performed by hand (Albeck et al.,

2008) or by problem specific programs (Lopez et al., 2013). Due to the non-linearity of the system,

local optimization methods require expensive compute time to find optimal solutions (Kim et al.,

2010). Markov Chain Monte Carlo methods can be used but still require extensive computer

time (Vrugt and Ter Braak, 2011; Vrugt, 2014; Eydgahi et al., 2013). Though general optimization

packages exist (Fortin et al., 2012), biologists may not have the experience required to implement

complex algorithms. Thus, the systems biology field would benefit from a model optimization

package that enables users to easily and quickly train models to data. 2

Here, we present simplePSO, a simple and efficient implementation of the Particle Swarm

2This was one of the earlier projects in this thesis work. Since then, a package call PyNetFit has been published that
offers a lot more than this implementation. Though the design of this solution was to be as simple to use as possible,
a further exploration of PyNetFits offerings should be considered. Future work should entail comparisons.

65

Optimization algorithm for PySB models. It is designed for PySB models, thus alleviating the

requirements of designing custom use optimize scripts. It can be used to train both deterministic

and stochastic models, allowing the use of GPU simulators mentioned in 3.2.13.2.2. We

demonstrate its performance in finding better fit parameters than a commonly used simulated

annealing method used in Lopez et al. (2013).

3.3.1 Introduction to particle swarm optimization

Particle swarm optimization (PSO) was developed to mimic the behavior or a flock of birds

finding food (Kennedy and Eberhart, 1995). Particles, representing birds, spread out over a defined

search space. Each particle then assesses its fitness, cost function score (or the availability of

food), and reports to the rest of the population. Then each particle adjusts its course based on

the population’s best position. However, each particle also remembers where it had its best cost

function and takes a step towards its best position. This is repeated until all the particles are within

a threshold of distance from one another or a predefined number of iterations.

It requires basic addition, subtraction and multiplication operators, and is computational

inexpensive in both memory and computation standards. Compared to other methods of

optimization, PSO has strengths in convergence, easy implementation and a global search (Coello

Coello and Reyes-Sierra, 2006), making it an ideal candidate for biological models. The steps of

the algorithm are shown in Figure 3. Each solution of the optimization is called a particle (P).

Each particle has a position (P.pos), velocity (P.vel), and a personal best (P.pba vector of

parameters where the cost function had its best value). A group of particles is contained within a

swarm. The algorithm begins by randomly choose starting positions for each particle. Then, for

each iteration, each particles position is scored using the user defined cost function, the

currentbest (CB) particle (particle with the lowest cost function) is distinguished from the others,

and each particle compares its current cost versus its own personal best. Each particles velocity is

calculated by creating a vector towards the global best particles as well as towards its best

location. The particles position is updated by adding the particles velocity to its current position.

66

Algorithm 3 Particle swarm optimization
1: Generate starting positions and velocities for each particle.
2: while stopping criteria not met do
3: Evaluate each particles fitness.
4: Identify global best particle GB
5: for P in swarm do
6: if P. f it < P.pb then
7: P.pb = P.pos
8: for P in swarm do
9: . Update particle velocity

10: P.vel = w∗P.vel(t)+ c1r1(P.pb−P.pos)+ c2r2(GB−P.pos))
11: P.pos = P.pos+P.vel . Update particle position

. where w is the acceleration weight, c1 and c2 are learning constants, and r1 and r2 are random
numbers from [0,1].

This process is repeated until a maximum number of iterations has been performed or the

particles converge to a solution.

3.3.2 simplePSO: Fast modeling calibration for Rule based models.

simplePSO is a Python package designed to train PySB models to experimental data. It leverage

multi-core systems to evaluate each particles cost function in parallel, speeding up each iteration

of the algorithm. It can be use to train deterministic or stochastic models. It is implemented in

Python and available for install via PyPi (pip install simplepso).

To demonstrate simplePSO, we trained the EARM2.0 model using the same cost function and

experimental data used in Lopez et al. (2013). Example fits are shown in Figure 3.9. We wanted

to compare the efficiency of simplePSO to the simulated annealing protocol in Lopez et al. (2013).

We used the exact objective function, where the cleavage of PARP, tBID trained EARM2.0 with

exact conditions as done in . We compare our ability to find equally fitting parameter sets as the

well as the number of iterations to find them. Since each iteration of simplePSO uses multiple

cores, we allowed the four times (the number of cores used) as many iterations of the simulated

annealing steps to provide a fair comparison. As shown in Figure 3.11, simplePSO is able to find

better fits (lower score) and can reach those values faster.

67

0 1 2 3 4 5
Time(hr)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

ol
ec

ul
es

tBID sim
tBID exp

0 1 2 3 4 5
Time(hr)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 m

ol
ec

ul
es

cPARP sim
cPARP exp

0 1 2 3 4 5
Time(hr)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 m
ol

ec
ul

es
aSMAC sim
aSMAC exp

Figure 3.9: Best fit parameters from simplePSO. Example fits obtained from 100 runs of simplePSO of the
EARM2.0 model.

Figure 3.10: Example output using simplePSO on with stochastic simulations. Top right) Trajectories of Schlögl
with ideal parameters. Top middle) Trajectories of random parameters used as the starting position, Top right)
Trajectories of the best fit parameters obtained from simplePSO. Bottom) Distribution of the total number of X
molecules.

68

Additionally, as shown in Figure 3.10, simplePSO can be used to train to train models using

stochastic simulations. We demonstrate this using the Schlögl model, with an attempt to recreate

distribution of X molecules at the end of the simulation. For an objective function, we calculated

the distance between the distributions of each particle with ideal parameters using one minus the

p-value obtained by the Kolmogorov-Smirnov (Massey Jr, 1951).

Figure 3.11: Performance of PSO vs simulated annealing. The objective function is shown versus iteration number
for each individual runs of the simulated annealing(blue) and the best fit particle from PSO(red).

69

3.4 Quantifing the effects of initial protein concentrations on the model’s prediction of cell fate.

3

After fitting the model to experimental data, the model can be characterize to predict sensitivity

to changes in initial concentrations. This analysis can be used to answer questions such as How

much does each species contribute to variability in time of death?. Similar to knockdown or over

expression experiments, we expect the models output to change based on the initial concentrations.

This can be done by perturbing a species (i.e. decrease by initial concentration by 10 %), run a

simulation, and compare the result to a control (simulation without a perturbation).

To systematically characterize the models, we created a sensitivity analyses with respect to

initial species populations. The approach is similar to that found in (Gaudet et al., 2012). Let

Θ = [θ0. . .θN−1]
T ∈ RN

≥0 be a vector of N initial populations of chemical species, such that θk 6= 0

for at least one value of k ∈ {0, . . . ,N− 1}. Let also F : Θ→ R be a model output given Θ (e.g.,

the population of a species at a given time point, the time required for a species population to reach

a predefined threshold). We denote by Θ0 = [θ 0
0 . . .θ

0
N−1]

T a vector of reference initial population

values obtained. The model sensitivity to changes in the initial species populations is then defined

as

S : Θ→ R

Θ 7→ F(Θ)−F(Θ0)

F(Θ0)
·100. (3.2)

Let J = [0 . . .N−1]T ∈ NN be a vector of N species indices and ∆ = [δ0 . . .δM−1]
T ∈ RM

≥0,

M ≥ 1, be a vector of M multiplicative factors representing perturbations to each initial species

population. We generate an NM-length vector of 2-tuples A ≡ vec(∆× J), where × denotes the

Cartesian product and vec is the matrix vectorization. We then generate the NM×NM matrix

B≡ A×A by taking the Cartesian product of A with itself. Element Bi j of this matrix is a 2-tuple

of 2-tuples, where the first element of each inner 2-tuple is a perturbation (an element of ∆) and the

3Parts of this section are modified from (Harris et al., 2017)

70

second element is a species index (an element of J). The perturbations and species indices relate

to the row and column indices of B via

Bi j =
(
(δi%M,Jbi/Mc),(δ j%M,Jb j/Mc)

)
, i, j ∈ {0, . . .,NM−1}, (3.3)

where % is the modulo operator and b·c is the floor operator. For convenience, we also define the

vector A′ ≡ vec(1M×J), where 1M = [1. . .1]T is an all-ones vector of length M. This allows us to

define the matrix B′ ≡ A′×A, the i j-th element of which is

B′i j =
(
(1,Jbi/Mc),(δ j%M,Jb j/Mc)

)
, i, j ∈ {0, . . .,NM−1}, (3.4)

i.e., the initial population of species Jbi/Mc is unperturbed.

We define the function

G : Bi j→ RN
≥0

if Jbi/Mc 6= Jb j/Mc :

θ 0
Jbi/Mc

7→ δi%M ·θ 0
Jbi/Mc

θ 0
Jb j/Mc

7→ δ j%M ·θ 0
Jb j/Mc

θ 0
k 7→ θ 0

k , k ∈ J\{Jbi/Mc,Jb j/Mc}

else :

θ 0
k 7→ θ 0

k , k ∈ J

, (3.5)

which takes an element Bi j and returns a vector of initial species populations that differs from the

reference vector Θ0 at indices Jbi/Mc and Jb j/Mc if and only if Jbi/Mc 6= Jb j/Mc. We then define the

71

function

H : B→ RNM×NM
≥0

Bi j 7→ S(G(Bi j)), ∀ i, j ∈ {0, . . .,NM−1}, (3.6)

which sequentially applies Eqs. 3.5 and 3.2 to each element of B to produce an NM×NM matrix

of sensitivity values. Let P ≡ H(B) be the pairwise sensitivity matrix. Note that P is symmetric

and that the elements of the block diagonal are all zero. Therefore, N·(N−1)·M2/2 < (NM)2

evaluations of F (i.e., simulations) are needed to construct it. Further, let P′ ≡ H(B)−H(B′) be

the normalized pairwise sensitivity matrix, i.e., each sensitivity value is normalized by subtracting

the corresponding sensitivity value in which the initial population of species Jbi/Mc is unperturbed

(see Eq. 3.4). In principle, to construct P′ an additional N·(N−1)·M evaluations of F are

required.However, these can be avoided if 1 is contained within ∆.

Finally, we define the single-parameter sensitivity multiset4

Qk =
⋃

kM≤ i<(k+1)M
kM> j≥(k+1)M

P′i j, k ∈ J, (3.7)

which can be plotted as a boxplot to visualize the range of model outputs due to changes in the

initial population of species k.

Example: Two species, three perturbations (N = 2, M = 3)

Θ0 =

[
100 100

]T

J =

[
0 1

]T

∆ =

[
0.8 1.0 1.2

]T

4A multiset is a generalization of a set that allows for duplicate elements (Knuth, 1997). It is defined as a 2-tuple
(A,m), where A is a set and m : A→ N≥1 is the multiplicity.

72

A = vec

(0.8,0) (0.8,1)

(1.0,0) (1.0,1)

(1.2,0) (1.2,1)

=

[
(0.8,0) (1.0,0) (1.2,0) (0.8,1) (1.0,1) (1.2,1)

]T

B =

((0.8,0),(0.8,0)) ((0.8,0),(1.0,0)) ((0.8,0),(1.2,0)) | ((0.8,0),(0.8,1)) ((0.8,0),(1.0,1)) ((0.8,0),(1.2,1))

((1.0,0),(0.8,0)) ((1.0,0),(1.0,0)) ((1.0,0),(1.2,0)) | ((1.0,0),(0.8,1)) ((1.0,0),(1.0,1)) ((1.0,0),(1.2,1))

((1.2,0),(0.8,0)) ((1.2,0),(1.0,0)) ((1.2,0),(1.2,0)) | ((1.2,0),(0.8,1)) ((1.2,0),(1.0,1)) ((1.2,0),(1.2,1))

−−−−−−−− −−−−−−−− −−−−−−−− | −−−−−−−− −−−−−−−− −−−−−−−−
((0.8,1),(0.8,0)) ((0.8,1),(1.0,0)) ((0.8,1),(1.2,0)) | ((0.8,1),(0.8,1)) ((0.8,1),(1.0,1)) ((0.8,1),(1.2,1))

((1.0,1),(0.8,0)) ((1.0,1),(1.0,0)) ((1.0,1),(1.2,0)) | ((1.0,1),(0.8,1)) ((1.0,1),(1.0,1)) ((1.0,1),(1.2,1))

((1.2,1),(0.8,0)) ((1.2,1),(1.0,0)) ((1.2,1),(1.2,0)) | ((1.2,1),(0.8,1)) ((1.2,1),(1.0,1)) ((1.2,1),(1.2,1))

B′=

((1.0,0),(0.8,0)) ((1.0,0),(1.0,0)) ((1.0,0),(1.2,0)) | ((1.0,0),(0.8,1)) ((1.0,0),(1.0,1)) ((1.0,0),(1.2,1))

((1.0,0),(0.8,0)) ((1.0,0),(1.0,0)) ((1.0,0),(1.2,0)) | ((1.0,0),(0.8,1)) ((1.0,0),(1.0,1)) ((1.0,0),(1.2,1))

((1.0,0),(0.8,0)) ((1.0,0),(1.0,0)) ((1.0,0),(1.2,0)) | ((1.0,0),(0.8,1)) ((1.0,0),(1.0,1)) ((1.0,0),(1.2,1))

−−−−−−−− −−−−−−−− −−−−−−−− | −−−−−−−− −−−−−−−− −−−−−−−−
((1.0,1),(0.8,0)) ((1.0,1),(1.0,0)) ((1.0,1),(1.2,0)) | ((1.0,1),(0.8,1)) ((1.0,1),(1.0,1)) ((1.0,1),(1.2,1))

((1.0,1),(0.8,0)) ((1.0,1),(1.0,0)) ((1.0,1),(1.2,0)) | ((1.0,1),(0.8,1)) ((1.0,1),(1.0,1)) ((1.0,1),(1.2,1))

((1.0,1),(0.8,0)) ((1.0,1),(1.0,0)) ((1.0,1),(1.2,0)) | ((1.0,1),(0.8,1)) ((1.0,1),(1.0,1)) ((1.0,1),(1.2,1))

G(B00) = G(((0.8,0),(0.8,0))) =

[
100 100

]T

= Θ0

G(B05) = G(((0.8,0),(1.2,1))) =
[

80 120

]T

G(B50) = G(((1.2,1),(0.8,0))) =
[

80 120

]T

= G(B05)

G(B55) = G(((1.2,1),(1.2,1))) =
[

100 100

]T

= Θ0

S(G(B00)) = S(Θ0) =
F(Θ0)−F(Θ0)

F(Θ0)
·100 = 0

S(G(B05)) = S([80 120]T) =
F
(
[80 120]T

)
−F(Θ0)

F(Θ0)
·100

S(G(B50)) = S(G(B05))

S(G(B55)) = S(Θ0) = 0

73

P≡ H(B)

=

0 0 0 | S([80 80]T) S([80 100]T) S([80 120]T)

0 0 0 | S([100 80]T) 0 S([100 120]T)

0 0 0 | S([120 80]T) S([120 100]T) S([120 120]T)

−−−−−−− −−−−−−− −−−−−−− | −−−−−−− −−−−−−− −−−−−−−
S([80 80]T) S([100 80]T) S([120 80]T) | 0 0 0

S([80 100]T) 0 S([120 100]T) | 0 0 0

S([80 120]T) S([100 120]T) S([120 120]T) | 0 0 0

P′≡H(B)−H(B′)

=

0 0 0
| S([80 80]T)−

S([80 100]T)
S([80 120]T)−

| S([100 80]T) S([100 120]T)

0 0 0 | 0 0 0

0 0 0
| S([120 80]T)−

S([120 100]T)
S([120 120]T)−

| S([100 80]T) S([100 120]T)

−−−−−−− −−−−−−− −−−−−−− | −−−−−−− −−−−−−− −−−−−−−
S([80 80]T)−

S([100 80]T)
S([120 80]T)− |

0 0 0
S([80 100]T) S([120 100]T) |

0 0 0 | 0 0 0

S([80 120]T)−
S([100 120]T)

S([120 120]T)− |
0 0 0

S([80 100]T) S([120 100]T) |

Q0 =
{

0, 0, 0, S([80 100]T), S([120 100]T),

S([80 80]T)−S([100 80]T), S([80 120]T)−S([100 120]T),

S([120 80]T)−S([100 80]T), S([120 120]T)−S([100 120]T)
}

Q1 =
{

0, 0, 0, S([100 80]T), S([100 120]T),

S([80 80]T)−S([80 100]T), S([120 80]T)−S([120 100]T),

S([80 120]T)−S([80 100]T), S([120 120]T)−S([120 100]T)
}

74

3.4.1 Results and Discussion

In (Harris et al., 2017), we performed sensitively analysis on EARM 2.0 across two best fit

parameter sets obtained from simplePSO. Despite each parameter set fitting the model equally

well, the sensitivities of changing the initial concentration for each parameter set varied across all

parameter To further explore if that was a consequence of the two parameter sets we found, or

a property of the model, we performed sensitivity analysis on the top fit parameter sets obtained

from running simplePSO. The results of each individual are shown in Figure 3.13 and summarized

in Figure 3.12. Initial concentrations of BAD, SMAC, NOXA, C9 (caspase 9), and APAF make

minimal impact on model outcome across all parameter sets, while the initial conditions of C8, C3,

C6 (caspases), R (receptor), L (trail), and BID impact all model outcomes.

C8_0 R_0 Mcl1_0 Bid_0 L_0 Bak_0 BclxL_0 C3_0 C6_0 XIAP_0 Bcl2_0 Bax_0 BAR_0 Flip_0 CytoC_0 PARP_0 Apaf_0 C9_0 Noxa_0 Smac_0 Bad_0
name

10

5

0

5

10

15

va
lu

es

Figure 3.12: Summary view of EARM 2.0 sensitivity Violin plot of the percent change of time-to-death per initial
concentration across 100 of the best fit parameter sets for EARM 2.0.

75

10

0

10

va
lu

es

name = L_0 name = R_0 name = Flip_0

10

0

10

va
lu

es

name = C8_0 name = BAR_0 name = Apaf_0

10

0

10

va
lu

es

name = C3_0 name = C6_0 name = C9_0

10

0

10

va
lu

es

name = PARP_0 name = XIAP_0 name = Bid_0

10

0

10

va
lu

es

name = Bax_0 name = Bak_0 name = Bcl2_0

10

0

10

va
lu

es

name = BclxL_0 name = Mcl1_0 name = Bad_0

parameter_set
10

0

10

va
lu

es

name = Noxa_0

parameter_set

name = CytoC_0

parameter_set

name = Smac_0

Figure 3.13: Individual initial concentration sensitivity for EARM 2.0. Distribution of percent change of time-to-
death vs parameter set. The data are grouped by initial condition and visualized in each subplot.

Next, we examine the impact of the BCL2 family of proteins. First, we checked if the model

was more sensitive to BAX or BAK, the effector apoptotic signals responsible for MOMP. As

shown in Figure 3.15ba, our results suggest that MOMP signal dependence on BAX or BAK is

parameter set dependent. Some parameter sets show no dependence on BAX while others show no

dependence of BAK. Only two show that changes either would impact the model. Additionally,

since these proteins are regulated by either MCL1, BCL2, or BCL-XL, we saw similar trends as

76

shown in Figure 3.15bb. This could be a consequence of evolution and help explain where there

are so many proteins with near identical functions. Does having proteins with redundant properties

ensure that the cell fully commit to signals of apoptosis? Or more simply, does it mean that

despite equally fitting the model, some of these parameter sets are wrong? Since these species are

grouped together in EARM 1.0, we tested to see if parameter sets for the grouped terms (BAX(BAX

and BAK) and BCL2(MCL1, BCL2, BCL-XL)) are also parameter set dependent. For this, we

performed sensitivity analysis on EARM 1.0 to compare as shown in 3.16. We then averaged

across each initial condition, shown in 3.14.

pC8_0 Bid_0 pR_0 Bax_0 Bcl2c_0 Bcl2_0 pC6_0 pC3_0 XIAP_0 BAR_0 L_0 flip_0 mCytoC_0 PARP_0 mSmac_0 Mito_0 pC9_0 Apaf_0
name

10

5

0

5

10

15

va
lu

es

Figure 3.14: Summary view of EARM 1.0 sensitivity. Violin plot of the percent change of time-to-death per initial
concentration across 100 of the best fit parameter sets for EARM 1.0.

77

10

0

10

 ti
m

e
to

 d
ea

th

name = Bax_0

Parameter set
10

0

10

 ti
m

e
to

 d
ea

th

name = Bak_0

(a) Anti-correlation between initial concentrations of
BAX and BAK.

10

0

10

 ti
m

e
to

 d
ea

th

name = Bcl2_0

10

0

10

 ti
m

e
to

 d
ea

th

name = BclxL_0

Parameter set
10

0

10

 ti
m

e
to

 d
ea

th

name = Mcl1_0

(b) Anti-correlation between initial concentrations of
anti-apoptotic proteins.

Figure 3.15: a.) Change in time to death versus parameter set for the pro-apoptotic proteins BAX and BAK. A
majority of the parameter sets show that the model is either sensitive to BAX or BAK. b.) Change in time to death
versus parameter set for the anti-apoptotic proteins BCL2, BCL-XL, and MCL.

78

10

0

10

va
lu

es

name = L_0 name = pR_0 name = flip_0

10

0

10

va
lu

es

name = pC8_0 name = BAR_0 name = pC3_0

10

0

10

va
lu

es

name = pC6_0 name = XIAP_0 name = PARP_0

10

0

10

va
lu

es

name = Bid_0 name = Bcl2c_0 name = Bax_0

10

0

10

va
lu

es

name = Bcl2_0 name = Mito_0 name = mCytoC_0

parameter_set
10

0

10

va
lu

es

name = mSmac_0

parameter_set

name = Apaf_0

parameter_set

name = pC9_0

Figure 3.16: Individual initial concentration sensitivity for EARM 1.0 Distribution of percent change of time-to-
death vs parameter set for EARM 1.0. The data are grouped by initial condition and visualized in each subplot.

79

Interestingly, the grouped BAX terms and BCL impact model outcome for every parameter set.

Thus, the added detail of EARM 2.0 compared to EARM 1.0 increases the difficulty in finding

key perturbation patterns. If we were to use a single parameter set, rather than an ensemble, we

might be lead to think that either BAX or BAK is required for apoptosis to occur. Since EARM 1.0

groups anti-apoptotic proteins and effector proteins, regardless of which parameter set we would

see that the group impacts apoptosis. This simplification decreasing the degrees of freedom in the

parameter space and easier to interpret the model sensitivities. This means that we must ensure that

we use ensembles of parameter sets for such analysis, or try to keep the model as simple as possible.

I believe that EARM 1.0 is a better model to use until more experimental constraints can be used to

decipher the relative amounts of contribution. It should also be noted that despite the difference in

EARM 1.0 and EARM 2.0, the sensitivities to remaining proteins are striking similar. C9, APAF,

PARP, and SMAC initial conditions make little impact on model outcome, while C8, C3, C6, R,

L, and BID contribute significantly. Regardless of which models complexity is used, we can use

these information to prioritize or eliminate targets for future treatments. Our analysis showed that

not all proteins in the EARM model impact output, regardless of the optimized parameters used.

Such analysis would allow us to prioritize additional targets to gain therapeutic benefits. Proteins

in the model that do not change cellular death should be lower in the perturbation priority list. This

would be especially useful if the model being characterized was less studied than EARM.

80

Chapter 4

Conclusion and Future directions

The central contributions of this dissertation are 1.) the development of MAGINE to extract

out key features and allow multi-scale exploration of large, time series, multi-omics datasets and

2.) development of modeling tools that greatly decrease the time in simulating, parameterizing,

and characterizing models behaviour. Though seemingly distinct units, there are two of the main

steps required to automate the creation of models from high throughput omics data.

Envision a scenario where a doctor biopsies a tumor and acquires multi-omic measurements to

determine the state of the cell. They then construct a model using MAGINE that describes the main

signaling activity that regulate the cancer. This information is then used to construct a mass action

model. The model is then parameterized quickly with simplePSO, gathering all possible parameter

values that could explain its state. Next, the model is characterized to find targetable molecular

species. The doctor uses simulations to test drug combinations to predict outcome and side effects.

This information is then used to create a patient specific treatment plan that maximizes the control

of the cancer while also minimizing the side effects.

Though this dissertation does not reach this ultimate goal, it does provide advances that make

it more realistic. Using MAGINE, it is possible to identify and integrate thousands of data points

at multiple resolutions. It is possible to focus attention on these identified components and

construct or expand more mechanistic models, such as EARM. Then, it is possible to leverage

GPU simulations to characterize the model to quickly train and characterize the model. This

information is used to determine drug combinations, which can then be quickly tested via

simulation. Once an ideal treatment is identified, it is used in the clinic on the same patient in

which the original sample came, providing a better, more personalized treatment.

81

4.1 Bridging the gap : Reactome2Rules

In order to complete the automatic model creation from data, a few remaining steps must be

taken. MAGINE can help identify key components, yet converting that information into a

mechanistic model is still a manual process. Expanding a model, such as EARM, based on this

information is rather straight forward. This would involve adding the missing components and

their interactions as shown in Fig 4.1. In this hypothetical demonstration, both pro and

anti-apoptotic proteins are identified based on MAGINEs enrichment analysis and added to the

pre-existing EARM model. Using PySB, new components can be built into different modular

units. Then, these modules can be loaded and added to the EARM model. This makes the

construction of the drug specific model easier than constructing all aspects of the module new

each time. Then, the model could be trained, characterized, and used for in silico testing to

determine an appropriate coarse of action to increase cell death.

82

Figure 4.1: The EARM model expanded based on enriched terms identified by MAGINE. This figure represents
the future goals of this thesis. The EARM model, which is already mechanistically detailed, would be expanded
using knowledge obtained from MAGINE. Then, the model would be characterized to understand how each molecular
species contributes to its outcome(top left). In this case increasing concentrations of BCL2 would increase likelihood
of survival while increased concentrations of BAX would increase change of death. The model can be used to predict
probability of cell death (top right), which would allow for in silico testing of perturbations for further experimental
validation.

83

Ideally, the level of detail of the interactions, that is the state of each molecule (phosphorylation,

cellular compartment, etc), would come from the experimental data. With that information known,

it would be possible to reference Reactome (Matthews et al., 2009) and query information about

how those species interact with the current model. Reactome provides the required level of detail.

For instance, as shown in Figure 4.2, the event of BID activating BAX is shown. BID, which has

to be truncated to amino acid 62-195, binds to BAX in the cytosol. It then activates BAX, which

translocates into the mitochondria. Once there, BAX oligomerizes with other BAX molecules,

become an active BAX species. This level of information is nearly identical to the manually

created EARM model, yet was all automated with the what I have been calling ‘Reactome2Rules’.

It takes a list of species, find connecting interaction among them, then translates it into a PySB

model. Though only an initial implementation, this is the most promising outlook of my many

projects. Imagine automatically extending models based on new experimental data, quickly testing

the impact of adding a few molecules into your model, without the need to extensively research

and dig out those interactions. This is all dependent on the information stored in Reactome, and not

all interactions are stored there (or known). The remaining steps for this to be fully implemented

would involve fully mapping out all the Reactome API capabilities, developing macro level groups

of rules to easily be imported into models, create a database for initial concentrations for the

new species that are incorporated into the model. The Reactome database model is large. I have

spent many hours trying to find a perfect mapping of information they have, and how it maps to

information needed for a PySB model. Though time consuming, future students can hopefully

endure to complete the Reactome2Rules.

84

Figure 4.2: Reactome2Rules creation of MAGINE edge ‘BID activate BAX’. Oval shapes represent ‘Rules’ and
box shapes are molecular components. The state of the molecule is located at the bottom of the box.

85

Chapter 5

Appendix

86

Table 5.1: Reference initial species populations for EARM (Lopez et al., 2013). The PySB version of the model,
earm lopez embedded flat.py, is available at github.com/LoLab-VU/PySB cupSODA Bioinfo2017.

Parameter Reference value

Apaf 0 100 000
Bad 0 1000
Bak 0 20 000
BAR 0 1000
Bax 0 80 000
Bcl2 0 20 000
BclxL 0 20 000
Bid 0 40 000
C3 0 10 000
C6 0 10 000
C8 0 20 000
C9 0 100 000

CytoC 0 500 000
flip 0 100
L 0 3000

Mcl1 0 20 000
Noxa 0 1000
PARP 0 1 000 000
R 0 200

Smac 0 100 000
XIAP 0 100 000

87

https://github.com/LoLab-VU/PySB_cupSODA_Bioinfo2017

0 10 20 30 40 50 60

Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

a
ct
iv
e
 M

P
F
/
to
ta
l
cd

c2

Figure 5.1: [Time course for active maturation-promoting factor (MPF).Time course for active maturation-
promoting factor (MPF), as a ratio with respect to total cdc2, for the Tyson cell cycle model (Tyson, 1991). Model
sensitivity to changes in the initial populations of cyclin and cdc2 was assessed with respect to the period of oscillation
of active MPF (double arrow and black dashed lines).

88

-2 -1 0 1 2

% change

cd
c0

cy
c0

cyc0

cdc0

A

−3 −2 −1 0 1 2 3
Percent change in period

cyc0

cdc0

B

Figure 5.2: Sensitivity analysis for the Tyson cell cycle model.Sensitivity analysis for the Tyson cell cycle model
Tyson (1991): (A) pairwise sensitivity matrix P (Eq. 3.6); (B) single-parameter sensitivity multisets Qk (Eq. 3.7),
plotted as boxplots (red lines are medians; boxes range from the first to third quartile; whiskers extend to the minimum
and maximum values). cdc0: initial population of cdc2; cyc0: initial population of cyclin.

89

0 200 400 600 800 1000

Time (s)

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

cA
M
P
 (
co
u
n
t)

Figure 5.3: Time course for cAMP in the Ras/cAMP/PKA model (Besozzi et al., 2012). Model sensitivity to
changes in initial species populations was assessed with respect to the amplitude of the initial peak (the maximum
value achieved; black circle and dashed black line).

90

-114 -57 0 57 114

% change

A
T
P
_0

C
Y
R

1
_0

C
d
c2

5
_0

G
D

P
_0

G
T
P
_0

Ir
a
2

_0

P
K

A
_0

P
P
A

2
_0

P
d
e
1

_0

P
d
e
2

_0

R
a
s2

_G
D

P
_0

Ras2_GDP_0

Pde2_0

Pde1_0

PPA2_0

PKA_0

Ira2_0

GTP_0

GDP_0

Cdc25_0

CYR1_0

ATP_0

A

80 60 40 20 0 20 40 60 80 100
Percent change in amplitude

Ras2_GDP_0

Pde2_0

Pde1_0

PPA2_0

PKA_0

Ira2_0

GTP_0

GDP_0

Cdc25_0

CYR1_0

ATP_0

B

Figure 5.4: Sensitivity analysis for the Ras/cAMP/PKA model (Besozzi et al., 2012): (A) pairwise sensitivity matrix
P (Eq. 3.6); (B) single-parameter sensitivity multisets Qk (Eq. 3.7), plotted as boxplots (red lines are medians; boxes
range from the first to third quartile; whiskers extend to the minimum and maximum values).

91

0 1 2 3 4 5 6
Time (hr)

0.0

0.2

0.4

0.6

0.8

1.0

a
S
m
a
c
/
S
M
A
C
_0

Figure 5.5: Time course for active Smac (aSmac), as a ratio with respect to total Smac (SMAC 0), in EARM (Lopez
et al., 2013). Model sensitivity to changes in the initial species populations was assessed with respect to the “time-to-
death,” defined as the time point at which Smac reaches 50% cleavage (aSmac/SMAC 0 = 0.5; black circle and black
dashed line).

92

-17 -8 0 8 17

% change

A
p

a
f_

0
B

A
R

_0
B

a
d

_0
B

a
k_

0
B

a
x

_0
B

cl
2

_0
B

cl
x

L_
0

B
 d

_0
C

3
_0

C
6

_0
C

8
_0

C
9

_0
C

y
t%

C
_0

Fl
 p

0 L
0

M
cl

1
_0

N
%

x
a

_0
P

A
R

P
_0

R
_0

S
m

a
c_

0
X

IA
P

_0

XIAP_0
Smac_0

R_0
PARP_0
N%xa_0
Mcl1_0

L_0
Fl p_0

Cyt%C_0
C9_0
C8_0
C6_0
C3_0
B d_0

BclxL_0
Bcl2_0
Bax_0
Bak_0
Bad_0
BAR_0
Apaf_0

A

−10 −5 0 5 10
Percent change n t me-t%-death

XIAP_0
Smac_0

R_0
PARP_0
N%xa_0
Mcl1_0

L_0
Fl p_0

Cyt%C_0
C9_0
C8_0
C6_0
C3_0
B d_0

BclxL_0
Bcl2_0
Bax_0
Bak_0
Bad_0
BAR_0
Apaf_0

B

Figure 5.6: Sensitivity analysis for parameter set 1 of EARM 2.0. (Lopez et al., 2013): (A) pairwise sensitivity
matrix P (Eq. 3.6); (B) single-parameter sensitivity multisets Qk (Eq. 3.7), plotted as boxplots (red lines are medians;
boxes range from the first to third quartile; whiskers extend to the minimum and maximum values). Note that (B) is
the same as Fig. 1D in the main text.

93

-12 -6 0 6 12

% change

A
%
a
f_
0

B
A
R
_0

B
a
d
_0

B
a
 _
0

B
a
x
_0

B
cl
2
_0

B
cl
x
L_
0

B
id
_0

C
3
_0

C
6
_0

C
8
_0

C
9
_0

C
y
to
C
_0

Fl
i%
0 L
0

M
cl
1
_0

N
o
x
a
_0

P
A
R
P
_0

R
_0

S
m
a
c_
0

X
IA
P
_0

XIAP_0
Smac_0

R_0
PARP_0
Noxa_0
Mcl1_0

L_0
Fli%_0

CytoC_0
C9_0
C8_0
C6_0
C3_0
Bid_0

BclxL_0
Bcl2_0
Bax_0
Ba _0
Bad_0
BAR_0
A%af_0

A

−10 −5 0 5 10
Percent change in time-to-death

XIAP_0
Smac_0

R_0
PARP_0
Noxa_0
Mcl1_0

L_0
Fli%_0

CytoC_0
C9_0
C8_0
C6_0
C3_0
Bid_0

BclxL_0
Bcl2_0
Bax_0
Ba _0
Bad_0
BAR_0
A%af_0

B

Figure 5.7: Sensitivity analysis for parameter set 2 of EARM (Lopez et al., 2013): (A) pairwise sensitivity matrix
P (Eq. 3.6); (B) single-parameter sensitivity multisets Qk (Eq. 3.7), plotted as boxplots (red lines are medians; boxes
range from the first to third quartile; whiskers extend to the minimum and maximum values). Note that this parameter
set fits the experimental data comparably to that used in Fig. 5.6, yet shows sensitivity to a significantly different set
of initial species populations.

94

5.1 MAGINE Jupyter notebooks

5.1.1 MAGINE data exploration

5.1.2 MAGINE network exploration

5.1.3 MAGINE enrichment analysis exploration

5.1.4 MAGINE AGN creation exploration

95

BIBLIOGRAPHY

Aebersold, R. and Mann, M. (2003). Mass spectrometry-based proteomics. Nature,
422(6928):198–207.

Aebersold, R. and Mann, M. (2016). Mass-spectrometric exploration of proteome structure and
function. Nature, 537(7620):347–355.

Albeck, J. G., Burke, J. M., Spencer, S. L., Lauffenburger, D. A., and Sorger, P. K. (2008).
Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS biology,
6(12):e299.

Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., and Sorger, P. K. (2006). Physicochemical
modelling of cell signalling pathways. Nature cell biology, 8(11):1195.

Bakker, B. M., Walsh, M. C., Ter Kuile, B. H., Mensonides, F. I., Michels, P. A., Opperdoes, F. R.,
and Westerhoff, H. V. (1999). Contribution of glucose transport to the control of the glycolytic
flux in trypanosoma brucei. Proceedings of the National Academy of Sciences, 96(18):10098–
10103.

Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., and Martegani, E. (2012).
The role of feedback control mechanisms on the establishment of oscillatory regimes in the
Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinforma. Syst. Biol., 2012(1):10.

Borner, C. and Andrews, D. W. (2014). The apoptotic pore on mitochondria: are we breaking
through or still stuck? Cell Death Differ., 21(2):187–91.

Brenner, D. and Mak, T. W. (2009). Mitochondrial cell death effectors. Curr. Opin. Cell Biol.,
21(6):871–877.

Bruford, E. A., Lush, M. J., Wright, M. W., Sneddon, T. P., Povey, S., and Birney, E. (2007).
The hgnc database in 2008: a resource for the human genome. Nucleic acids research,
36(suppl 1):D445–D448.

Certo, M., Moore, V. D. G., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A., and Letai,
A. (2006). Mitochondria primed by death signals determine cellular addiction to antiapoptotic
BCL-2 family members. Cancer Cell, 9(5):351–365.

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K., O’Donnell,
L., Oster, S., Theesfeld, C., Sellam, A., Stark, C., Breitkreutz, B. J., Dolinski, K., and Tyers, M.
(2017). The BioGRID interaction database: 2017 update. Nucleic Acids Res., 45(D1):D369–
D379.

Chaurushiya, M. S. and Weitzman, M. D. (2009). Viral manipulation of dna repair and cell cycle
checkpoints. DNA repair, 8(9):1166–1176.

96

Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., and Ma’ayan,
A. (2013). Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool.
BMC Bioinformatics, 14(1).

Chen, W. W., Schoeberl, B., Jasper, P. J., Niepel, M., Nielsen, U. B., Lauffenburger, D. A., and
Sorger, P. K. (2009). Input–output behavior of erbb signaling pathways as revealed by a mass
action model trained against dynamic data. Molecular systems biology, 5(1):239.

Cheson, B. D. and Rummel, M. J. (2009). Bendamustine: Rebirth of an old drug. J. Clin. Oncol.,
27(9):1492–1501.

Chipuk, J. E., Fisher, J. C., Dillon, C. P., Kriwacki, R. W., Kuwana, T., and Green, D. R. (2008).
Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc.
Natl. Acad. Sci. U. S. A., 105(51):20327–20332.

Chylek, L. A., Harris, L. A., Faeder, J. R., and Hlavacek, W. S. (2015). Modeling for (physical)
biologists: an introduction to the rule-based approach. Physical biology, 12(4):045007.

Chylek, L. A., Harris, L. A., Tung, C.-S., Faeder, J. R., Lopez, C. F., and Hlavacek, W. S. (2014).
Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell
signaling systems. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(1):13–36.

Coello Coello, C. a. and Reyes-Sierra, M. (2006). Multi-Objective Particle Swarm Optimizers: A
Survey of the State-of-the-Art. Int. J. Comput. Intell. Res., 2(3):287–308.

Cokelaer, T., Pultz, D., Harder, L. M., Serra-Musach, J., Saez-Rodriguez, J., and Valencia,
A. (2013). BioServices: A common Python package to access biological Web Services
programmatically. Bioinformatics, 29(24):3241–3242.

Csardi, G., Nepusz, T., et al. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1–9.

Csete, M. E. and Doyle, J. C. (2002). Reverse engineering of biological complexity. Science,
295(5560):1664–9.

Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. (2007). Rule-based modelling of
cellular signalling. In International conference on concurrency theory, pages 17–41. Springer.

Dematté, L. and Prandi, D. (2010). Gpu computing for systems biology. Briefings in
bioinformatics, 11(3):323–333.

Elkholi, R., Renault, T. T., Serasinghe, M. N., and Chipuk, J. E. (2014). Putting the pieces together:
How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer
Metab., 2(1):16.

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. (2001). Graphviz—open
source graph drawing tools. In International Symposium on Graph Drawing, pages 483–484.
Springer.

97

Eydgahi, H., Chen, W. W., Muhlich, J. L., Vitkup, D., Tsitsiklis, J. N., and Sorger, P. K. (2013).
Properties of cell death models calibrated and compared using Bayesian approaches. Mol. Syst.
Biol., 9:644.

Faeder, J. R., Blinov, M. L., and Hlavacek, W. S. (2009). Rule-based modeling of biochemical
systems with bionetgen. In Systems biology, pages 113–167. Springer.

Fischer, U. and Schulze-Osthoff, K. (2005). New approaches and therapeutics targeting apoptosis
in disease. Pharmacological reviews, 57(2):187–215.

Fisher, J. and Henzinger, T. A. (2007). Executable cell biology. Nat. Biotechnol., 25(11):1239–49.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C. (2012). DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research, 13:2171–2175.

Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader, G. D. (2015). Cytoscape. js: a
graph theory library for visualisation and analysis. Bioinformatics, 32(2):309–311.

Fulda, S. and Debatin, K.-M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer
chemotherapy. Oncogene, 25:4798–4811.

Gaudet, S., Spencer, S. L., Chen, W. W., and Sorger, P. K. (2012). Exploring the contextual
sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis. PLoS
Comput. Biol., 8(4).

Ghobrial, I. M., Witzig, T. E., and Adjei, A. A. (2005). Targeting apoptosis pathways in cancer
therapy. CA: a cancer journal for clinicians, 55(3):178–194.

Gilbert, G. (1972). Distance between sets. Nature, 239(5368):174.

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. Journal of computational physics, 22(4):403–434.

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting
systems. The Journal of chemical physics, 115(4):1716–1733.

Gillespie, D. T. (2007). Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.,
58:35–55.

Gillies, L. A., Du, H., Peters, B., Knudson, C. M., Newmeyer, D. D., and Kuwana, T. (2015). Visual
and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes.
Mol. Biol. Cell, 26(2):339–49.

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and Sethna, J. P. (2007).
Universally sloppy parameter sensitivities in systems biology models. PLoS computational
biology, 3(10).

Gutierrez, D. B., Gant-Branum, R. L., Romer, C. E., Farrow, M. A., Allen, J. L., Dahal, N., Nei,
Y. W., Codreanu, S. G., Jordan, A. T., Palmer, L. D., Sherrod, S. D., McLean, J. A., Skaar,
E. P., Norris, J. L., and Caprioli, R. M. (2018). An Integrated, High-Throughput Strategy for
Multiomic Systems Level Analysis. J. Proteome Res., 17(10):3396–3408.

98

Hagberg, A., Schult, D., and Swart, P. (2005). Networkx: Python software for the analysis of
networks. Mathematical Modeling and Analysis, Los Alamos National Laboratory.

Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell,
144(5):646–674.

Harris, L. A., Hogg, J. S., Tapia, J.-J., Sekar, J. A., Gupta, S., Korsunsky, I., Arora, A., Barua,
D., Sheehan, R. P., and Faeder, J. R. (2016). Bionetgen 2.2: advances in rule-based modeling.
Bioinformatics, 32(21):3366–3368.

Harris, L. A., Nobile, M. S., Pino, J. C., Lubbock, A. L., Besozzi, D., Mauri, G., Cazzaniga, P.,
and Lopez, C. F. (2017). Gpu-powered model analysis with pysb/cupsoda. Bioinformatics,
33(21):3492–3494.

Harris, L. A., Piccirilli, A. M., Majusiak, E. R., and Clancy, P. (2009). Quantifying stochastic
effects in biochemical reaction networks using partitioned leaping. Physical Review E,
79(5):051906.

Hood, L., Heath, J. R., Phelps, M. E., and Lin, B. (2004). Systems biology and new technologies
enable predictive and preventative medicine. Science, 306(5696):640–643.

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2008). Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research,
37(1):1–13.

Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler,
M. W., Lane, H. C., et al. (2007). David bioinformatics resources: expanded annotation database
and novel algorithms to better extract biology from large gene lists. Nucleic acids research,
35(suppl 2):W169–W175.

Huang, S. (2012). The molecular and mathematical basis of waddington’s epigenetic landscape:
A framework for post-darwinian biology? Bioessays, 34(2):149–157.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein,
B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M.,
Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J. H., Hunter, P. J., Juty, N. S.,
Kasberger, J. L., Kremling, A., Kummer, U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P.,
Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff,
J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M.,
Wagner, J., and Wang, J. (2003). The systems biology markup language (SBML): A medium
for representation and exchange of biochemical network models. Bioinformatics, 19(4):524–
531.

Humphries, E. H. and Temin, H. M. (1972). Cell cycle-dependent activation of rous sarcoma virus-
infected stationary chicken cells: avian leukosis virus group-specific antigens and ribonucleic
acid. Journal of virology, 10(1):82–87.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(3):90.

99

Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: systems biology.
Annual review of genomics and human genetics, 2(1):343–372.

Ingalls, B. P. (2013). Mathematical modeling in systems biology: an introduction. MIT press.

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res., 44(D1):D457–D462.

Kearns, J. D., Basak, S., Werner, S. L., Huang, C. S., and Hoffmann, A. (2006). Iκbε provides
negative feedback to control nf-κb oscillations, signaling dynamics, and inflammatory gene
expression. The Journal of cell biology, 173(5):659–664.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. 1995 IEEE Int. Conf. Neural
Networks (ICNN 95), 4(1):1942–1948.

Kholodenko, B. N. (2006). Cell-signalling dynamics in time and space. Nature reviews Molecular
cell biology, 7(3):165–176.

Kim, K. A., Spencer, S. L., Albeck, J. G., Burke, J. M., Sorger, P. K., Gaudet, S., and Kim, D. H.
(2010). Systematic calibration of a cell signaling network model. BMC Bioinformatics, 11:202.

King, O. D., Foulger, R. E., Dwight, S. S., White, J. V., and Roth, F. P. (2003). Predicting gene
function from patterns of annotation. Genome research, 13(5):896–904.

Kitano, H. (2002). Computational systems biology. Nature, 420(6912):206–210.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A. (2012). Pycuda and
pyopencl: A scripting-based approach to gpu run-time code generation. Parallel Computing,
38(3):157–174.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J. B., Grout, J., Corlay, S., et al. (2016). Jupyter notebooks-a publishing format for
reproducible computational workflows. In ELPUB, pages 87–90.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Komurov, K., Dursun, S., Erdin, S., and Ram, P. T. (2012). NetWalker: A contextual network
analysis tool for functional genomics. BMC Genomics, 13(1).

Kremling, A. and Saez-Rodriguez, J. (2007). Systems biology—an engineering perspective.
Journal of biotechnology, 129(2):329–351.

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S.,
Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen,
G. W., and Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res., 44(W1):W90–W97.

100

Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green,
D. R., and Newmeyer, D. D. (2002). Bid, Bax, and lipids cooperate to form supramolecular
openings in the outer mitochondrial membrane. Cell, 111(3):331–342.

Le Novere, N. (2015). Quantitative and logic modelling of molecular and gene networks. Nature
Reviews Genetics, 16(3):146–158.

Leoni, L. M. and Hartley, J. A. (2011). Mechanism of Action: The Unique Pattern of
Bendamustine-Induced Cytotoxicity. Semin. Hematol., 48(SUPPL. 1):S12–S23.

Li, H. and Petzold, L. (2010). Efficient parallelization of the stochastic simulation algorithm for
chemically reacting systems on the graphics processing unit. The International Journal of High
Performance Computing Applications, 24(2):107–116.

Lockshin, R. (2016). Programmed cell death 50 (and beyond). Cell Death & Differentiation,
23(1):10–17.

Lopez, C. F., Muhlich, J. L., Bachman, J. A., and Sorger, P. K. (2013). Programming biological
models in python using pysb. Molecular systems biology, 9(1):646.

Martinou, J. C. and Youle, R. J. (2011). Mitochondria in Apoptosis: Bcl-2 Family Members and
Mitochondrial Dynamics. Dev. Cell, 21(1):92–101.

Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78.

Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish,
J., Hermjakob, H., Jassal, B., Kanapin, A., Lewis, S., Mahajan, S., May, B., Schmidt, E., Vastrik,
I., Wu, G., Birney, E., Stein, L., and D’eustachio, P. (2009). Reactome knowledgebase of human
biological pathways and processes. Nucleic Acids Res., 37(SUPPL. 1):619–622.

McCollum, J. M., Peterson, G. D., Cox, C. D., Simpson, M. L., and Samatova, N. F. (2006). The
sorting direct method for stochastic simulation of biochemical systems with varying reaction
execution behavior. Comput. Biol. Chem., 30(1):39–49.

McKinney, W. et al. (2010). Data structures for statistical computing in python.

Narayan, V., Ly, T., Pourkarimi, E., Murillo, A. B., Gartner, A., Lamond, A. I., and Kenyon, C.
(2016). Deep Proteome Analysis Identifies Age-Related Processes in C. elegans. Cell Syst.,
3(2):1–16.

Nickolls, J. et al. (2008). Scalable parallel programming with CUDA. ACM Queue, 6:40–53.

Nobile, M. S., Besozzi, D., Cazzaniga, P., Mauri, G., and Pescini, D. (2013). CupSODA: A cuda-
powered simulator of mass-action kinetics. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), 7979 LNCS:344–357.

Nobile, M. S., Cazzaniga, P., Besozzi, D., and Mauri, G. (2014). GPU-accelerated simulations of
mass-action kinetics models with cupSODA. J. Supercomput., 69(1):17–24.

101

Nobile, M. S. et al. (2016). Graphics processing units in bioinformatics, computational biology
and systems biology. Brief. Bioinform., 2016:bbw058.

Norris, J. L., Farrow, M. A., Gutierrez, D. B., Palmer, L. D., Muszynski, N., Sherrod, S. D., Pino,
J. C., Allen, J. L., Spraggins, J. M., Lubbock, A. L., et al. (2017). Integrated, high-throughput,
multiomics platform enables data-driven construction of cellular responses and reveals global
drug mechanisms of action. Journal of proteome research, 16(3):1364–1375.

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999). KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res., 27(1):29–34.

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng., 9:10–20.

Omony, J. (2014). Biological network inference: A review of methods and assessment of tools and
techniques. Annual Research & Review in Biology, pages 577–601.

Ono, K., Muetze, T., Kolishovski, G., Shannon, P., and Demchak, B. (2015). Cyrest:
Turbocharging cytoscape access for external tools via a restful api. F1000Research, 4.

Palmer, L. D., Jordan, A. T., Maloney, K. N., Farrow, M. A., Gutierrez, D. B., Gant-Branum,
R., Burns, W. J., Romer, C. E., Tsui, T., Allen, J. L., Beavers, W. N., Nei, Y.-W., Sherrod,
S. D., Lacy, D. B., Norris, J. L., McLean, J. A., Caprioli, R. M., and Skaar, E. P. (2019). Zinc
intoxication induces ferroptosis in A549 human lung cells. Metallomics.

Papin, J. A., Hunter, T., Palsson, B. O., and Subramaniam, S. (2005). Reconstruction of cellular
signalling networks and analysis of their properties. Nature reviews Molecular cell biology,
6(2):99.

Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and Palsson, B. O. (2004).
Comparison of network-based pathway analysis methods. Trends in biotechnology, 22(8):400–
405.

Pérez, F., Granger, B. E., and Hunter, J. D. (2011). Python: An ecosystem for scientific computing.
Comput. Sci. Eng., 13(2):13–21.

Perfetto, L., Briganti, L., Calderone, A., Perpetuini, A. C., Iannuccelli, M., Langone, F., Licata,
L., Marinkovic, M., Mattioni, A., Pavlidou, T., Peluso, D., Petrilli, L. L., Pirró, S., Posca, D.,
Santonico, E., Silvestri, A., Spada, F., Castagnoli, L., and Cesareni, G. (2016). SIGNOR: A
database of causal relationships between biological entities. Nucleic Acids Res., 44(D1):D548–
D554.

Petzold, L. (1983). Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of
Ordinary Differential Equations.

Rathinam, M., Petzold, L. R., Cao, Y., and Gillespie, D. T. (2003). Stiffness in stochastic
chemically reacting systems: The implicit tau-leaping method. J. Chem. Phys., 119(24):12784.

Reed, J. C. (2000). Mechanisms of apoptosis. The American journal of pathology, 157(5):1415–
1430.

102

Ressa, A., Fitzpatrick, M., Van Den Toorn, H., Heck, A. J., and Altelaar, M. (2019). PaDuA: A
Python Library for High-Throughput (Phospho)proteomics Data Analysis. J. Proteome Res.,
18(2):576–584.

Sacco, F., Silvestri, A., Posca, D., Pirrò, S., Gherardini, P. F., Castagnoli, L., Mann, M., and
Cesareni, G. (2016). Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires
Signaling Networks Away from a Pro-growth State. Cell Syst., 2(3):159–171.

Sanft, K. R., Wu, S., Roh, M., Fu, J., Lim, R. K., and Petzold, L. R. (2011). Stochkit2: software for
discrete stochastic simulation of biochemical systems with events. Bioinformatics, 27(17):2457–
2458.

Schleich, K. and Lavrik, I. N. (2013). Mathematical modeling of apoptosis. Cell Communication
and Signaling, 11(1):44.

Schlögl, F. (1972). Chemical reaction models for non-equilibrium phase transitions. Zeitschrift für
physik, 253(2):147–161.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N.,
Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome research, 13(11):2498–2504.

Shimada, N., Uchimaru, K., Yuji, K., Oyaizu, N., Tojo, A., Koibuchi, T., and Ohno, N. (2015).
Treatment of chronic lymphocytic leukemia with bendamustine in an HIV-infected patient on
antiretroviral therapy: a case report and review of the literature. Clin. Case Reports, 3(6):453–
460.

Shockley, E. M., Vrugt, J. A., and Lopez, C. F. (2018). Pydream: high-dimensional parameter
inference for biological models in python. Bioinformatics, 34(4):695–697.

Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., and Despouy,
P. (2016). plotly: Create interactive web graphics via plotly’s javascript graphing library
[software].

Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang,
H.-G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., et al. (1999). Ordering the cytochrome c–
initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-
9–dependent manner. The Journal of cell biology, 144(2):281–292.

Sneddon, M. W., Faeder, J. R., and Emonet, T. (2011). Efficient modeling, simulation and coarse-
graining of biological complexity with nfsim. Nature methods, 8(2):177.

Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., and Sorger, P. K. (2009). Non-genetic
origins of cell-to-cell variability in trail-induced apoptosis. Nature, 459(7245):428–432.

Stark, C. (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res.,
34(90001):D535–D539.

103

Stuckey, D. W. and Shah, K. (2013). Trail on trial: preclinical advances in cancer therapy. Trends
in molecular medicine, 19(11):685–694.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005). Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550.

Suderman, R. and Deeds, E. J. (2013). Machines vs. Ensembles: Effective MAPK Signaling
through Heterogeneous Sets of Protein Complexes. PLoS Comput. Biol., 9(10):e1003278.

Tang, H., Thomas, P. D., Kang, D., Mills, C., Muruganujan, A., Huang, X., and Mi, H. (2016).
PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways,
and data analysis tool enhancements. Nucleic Acids Res., 45(D1):D183–D189.

Tapia, J.-J. and Faeder, J. R. (2013). The atomizer: extracting implicit molecular structure from
reaction network models. In Proceedings of the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics, pages 726–727.

Taylor, R. C., Cullen, S. P., and Martin, S. J. (2008). Apoptosis: controlled demolition at the
cellular level. Nat. Rev. Mol. Cell Biol., 9(3):231–241.

Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science,
267(5203):1456–1462.

Toby, T. K., Fornelli, L., and Kelleher, N. L. (2016). Progress in top-down proteomics and the
analysis of proteoforms. Annual review of analytical chemistry, 9:499–519.

Torre, D., Lachmann, A., and Ma’ayan, A. (2018). BioJupies: Automated Generation of Interactive
Notebooks for RNA-Seq Data Analysis in the Cloud. Cell Syst., 7(5):556–561.e3.

Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl.
Acad. Sci. U. S. A., 88(16):7328–7332.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22.

Volkmann, N., Marassi, F. M., Newmeyer, D. D., and Hanein, D. (2014). The rheostat in the
membrane: BCL-2 family proteins and apoptosis. Cell Death Differ., 21(2):206–15.

Vrugt, J. A. (2014). Markov chain Monte Carlo Simulation Using the DREAM Software Package:
Theory, Concepts, and MATLAB Implementation. Environ. Model. Softw., page 82.

Vrugt, J. A. and Ter Braak, C. J. F. (2011). DREAM(D): An adaptive Markov Chain Monte Carlo
simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter
estimation problems. Hydrol. Earth Syst. Sci., 15(12):3701–3713.

104

Wang, J., Ma, Z., Carr, S. A., Mertins, P., Zhang, H., Zhang, Z., Chan, D. W., Ellis, M. J. C.,
Townsend, R. R., Smith, R. D., McDermott, J. E., Chen, X., Paulovich, A. G., Boja, E. S.,
Mesri, M., Kinsinger, C. R., Rodriguez, H., Rodland, K. D., Liebler, D. C., and Zhang, B.
(2017). Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene
Function Prediction. Mol. Cell. Proteomics, 16(1):121–134.

Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: a revolutionary tool for transcriptomics.
Nature reviews genetics, 10(1):57.

Waskom, M. et al. (2017). mwaskom/seaborn: v0.8.1 (september 2017).

Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau, D. D., Psychogios,
N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J. A., Lim, E., Sobsey,
C. A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D.,
Clements, M., Lewis, A., De souza, A., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner,
R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H. J., and Forsythei, I. (2009). HMDB: A
knowledgebase for the human metabolome. Nucleic Acids Res., 37(SUPPL. 1):603–610.

Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K.,
Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang,
P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J.,
Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., MacInnis,
G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie,
T., Sykes, B. D., Vogel, H. J., and Querengesser, L. (2007). HMDB: The human metabolome
database. Nucleic Acids Res., 35(SUPPL. 1):521–526.

Wu, G., Feng, X., and Stein, L. (2010). A human functional protein interaction network and its
application to cancer data analysis. Genome Biol., 11(5):R53.

Zhang, R., Mehla, R., and Chauhan, A. (2010). Perturbation of host nuclear membrane component
RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration complex
(DNA). PLoS One, 5(12).

105

	DEDICATION
	Chapter
	Introduction
	Approaches to model cellular behaviour
	Introduction to global approaches
	Introduction to mechanistic models
	Introduction to apoptosis

	Top down approaches to identify mechanism
	Mechanism extraction through the development of novel computational tools
	Introduction
	Results
	Design and Implementation
	Case study: Using MAGINE to explore the temporal response of bendamustine-treated leukemia cells
	Bendamustine affects HIV infection-related genes

	Methods
	MAGINE software implementation

	Discussion
	Limitations

	Notes
	Additional Methods
	Data format
	Enrichment term aggregation
	Annotated gene set network construction
	Software availability and requirements
	Experimental methods

	Advancements in mechanistic modelling
	Background
	Bottoms up approach
	Stochastic and deterministic simulations
	Extrinsic apoptosis reaction model (EARM)

	Model simulation
	Deterministic simulation
	Enabling high throughput simulations using GPUs
	Features and Implementation
	Result
	Conclusion

	Efficient stochastic simulations
	Introduction
	Implementation
	Models
	Michaelis-Menten
	Schlögl
	Kinase Cascade
	EARM1.0

	Results
	Validation of implementation
	Benchmarks
	Additional benchmarks
	OpenCL

	Discussion

	Fitting models to data
	Introduction to particle swarm optimization
	simplePSO: Fast modeling calibration for Rule based models.

	Quantifing the effects of initial protein concentrations on the model's prediction of cell fate.
	Results and Discussion

	Conclusion and Future directions
	Bridging the gap : Reactome2Rules

	Appendix
	MAGINE Jupyter notebooks
	MAGINE data exploration
	MAGINE network exploration
	MAGINE enrichment analysis exploration
	MAGINE AGN creation exploration

	 BIBLIOGRAPHY

