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Chapter 1

INTRODUCTION

1.1 Human Evolutionary history

It has been said that humans are made by history1, and this is particularly true in terms of evolu-

tionary and genetic history. The human genome has been shaped by billions of years of changing

environments and circumstances that today influence everything from the number of limbs hu-

mans walk on2,3 to their susceptibility to certain diseases4,5. More fundamentally, exposures to

certain retroviruses influenced the mechanisms by which genes are regulated6,7, and every eukary-

otic cell’s source of energy was determined by a lucky encounter between a prokaryote and an

archaeon8. Understanding ancient history and how it impacted humans at the genomic and phe-

notypic level is therefore fundamental to understanding how our bodies work and why diseases

happen, as well as how future changes might affect us.

A large portion of what we know about human origins is based on the fossil record. While

humans and chimpanzees and bonobos diverged 5 to 12 million years ago9,10, there was a long,

tangled web of history between their most recent common ancestor and the origin of anatomically

modern humans (“AMH”; Homo sapiens). There are dozens of archaic hominins such as Sahelan-

thropus and Australopithecus that lived 2 to 7 million years ago, primarily in Africa11,12. More

recent hominins such as Denisovans and Neanderthals appear around 600,000 and 200,000 years

ago, respectively, and were present throughout Eurasia13. These different species often overlapped

in timespan, and it is difficult to exactly resolve which are direct ancestors of AMHs with only the

fossil record14.

The advent of widespread genome sequencing, as well as the ability to isolate and sequence

DNA from ancient bones, has increased our ability to resolve questions about more recent relation-

ships by combining knowledge gleaned from the fossil record with analysis of genetic similarities.

Some of the oldest AMH skulls were dated to 196,000 and 160,000 years ago and were both found
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in East Africa15,16. Genetic studies using mitochondrial and Y-chromosome DNA from modern

populations also suggest that the most recent common ancestor (MRCA) on the maternal and pater-

nal lineages for modern populations was between 150,000 and 200,000 years ago in Africa17,18,19.

More recent studies have suggested that AMH origins may have been more widely spread around

Africa and as much as 100,000 years earlier20,21.

Large-scale population movements are a recurring theme in human history, and the most sig-

nificant one may have been the “Out-of-Africa” migration that was the origin of all non-African

populations, which occurred 60,000 to 130,0000 years ago22. While the presence of AMH bones

that predate that time period in the Levant and Europe indicate that that was not the first time

AMHs left Africa23, analyses of mutational rate and mitochondrial haplotypes indicate that the

split-time of non-African populations was in that later time range24,25,26,27. This suggests that the

earlier migrations contributed very little, if any, ancestry to modern populations.

Given that Neanderthals were present in Eurasia as recently as 40,000-50,000 years ago28,29,

to what extent they interacted with AMHs, if at all, has been a longstanding question30. While

Neanderthals and AMHs are closely related, whole genome analysis done on a draft Neanderthal

genome revealed that Neanderthals are more genetically similar to non-Africans than to Africans,

which would not be expected if their genetic similarity was only due to common ancestry31. In

addition, Neanderthal-like haplotypes are longer than would be expected if they had been present in

AMH populations since the MRCA of Neanderthals and AMHs32. This suggested that it was likely

that Neanderthals and the ancestors of modern Eurasians had interbred and some Neanderthal

genes had introgressed into AMH genomes. Subsequent studies based on haplotype structure

and sequence identity have shown that 30-48% of the Neanderthal genome is present in modern

Eurasians, and that 1-2% of an average Eurasian genome is of Neanderthal ancestry33,34,35.

The existence of the Denisovans was discovered much more recently using genetic analysis,

and it has since been shown that they, too, introgressed with the ancestors of East and South

Asian populations33,36, as well as with Neanderthals37. Neanderthal introgression likely took

place 50,000-60,000 years ago, while Denisovan introgression is more recent22. In both cases,
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introgression likely occurred multiple times, resulting in varying amounts of archaic ancestry in

different AMH populations38,39. Because so little physical evidence has been found of the Deniso-

vans, they represent a particularly exciting opportunity for ancient DNA to provide new insights.

While much can be learned from genome sequences about relationships between individuals, in

most cases it is difficult to interpret what observed differences mean for the organism at a broader

scale. Therefore, using aDNA to study physical characteristics of groups like Denisovans requires

the development of methods to interpret phenotypes based only on genotype.

Much of the cultural change that occurred after the primary Out-of-Africa migration has been

inferred from archaeological research on artifacts and building remains at ancient sites. While

AMHs started out as hunter-gatherers, humans began domesticating plants and animals (starting

with the wolf, at least 15,000 years ago)40, and roughly 10,000 years ago these practices rapidly

spread throughout the ancient world (“The Neolithic Revolution”)41. There were two primarily

lifestyles that arose as part of this. The first was nomadic pastoralism, where people managed

herds of domesticated animals, moving around frequently to graze them. The second type is agri-

culture, which is characterized by settled communities growing domesticated plants as well as

animals. Archaeologically, both can be identified by the presence of those domesticated animals,

and evidence such as traces of milk in pottery, or tools one associated with domestication (for

example, bit-wear on the teeth of ancient horses)42,43. However, agricultural sites have additional

evidence of the presence of seeds and evidence of plant cultivation, as well as more permanent

settlements44,45. However, before the availability of genetic information, it was unknown whether

the spread of these different cultures were due to cultural transmission along trade routes, or to the

movement of people and population turnover.

Many of the ancient DNA (aDNA) studies published in recent years have been focused on

distinguishing between cultural transmission and population replacement. Because of the ready

availability of ancient samples of good enough quality for genome analysis, the most detailed

studies have been done on populations from Europe and Central Asia46. The genetic studies show

that the history of the AMHs in the last tens of thousands of years is characterized by repeated
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population replacement and migration22. For example, while some ancestry in modern Europeans

can be traced to Mesolithic hunter-gatherers in the region 30,000 years ago, more of their ancestry

is traceable to farmers from Anatolia who migrated into Europe around 8,000 years ago, while the

largest proportion is from more recent pastoralists who came into Europe from the Asian Steppe

during the Bronze Age47,48,49. aDNA studies have also identified populations that existed in the

past without contributing substantial ancestry to later populations in the same location50,51. A

similar story of changes in culture being accompanied by changes in genetic ancestry is true in

many other places as well52,53,54,55,56,57.

1.2 Deriving phenotypes from DNA sequence

While current aDNA studies have deepened our understanding of AMH population changes

and migrations through recent history, they have not been informative about phenotypic changes

that may have occurred in response to those migrations and cultural changes. Deducing phenotype

based on DNA sequence is complicated; most traits, especially those of interest in recent human

evolution, involve multiple genes and often are influenced by environment58. Model organism

studies and analyses in human cells can identify the causal genetics of traits affected by a few

genes, particularly if the genetic variants involve protein-coding changes in the genes. For ex-

ample, missense alleles in two genes responsible for the variability in skin pigmentation in AMH

populations (SLC24A5 and SLC45A2) were originally identified in fish59,60. Using aDNA it is

possible to study where and when these alleles appeared and rose in frequency61,51, but exam-

ples like these are rare, particularly for complex traits. An attractive alternate method of studying

changes in phenotypes is to use evolutionary metrics to identify interesting regions of the genome

before identifying phenotypes potentially impacted by those alleles, thereby prioritizing regions of

interest to target with powerful, low-throughput experimental techniques.

One area of particular focus in recent years has been the regions of the genome in modern

populations with Neanderthal ancestry. Electronic health records (“EHRs”) and other large col-

lections of paired genotype and phenotype information allow Phenotype-wide Association Studies
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(PheWAS) in which each introgressed haplotype is tested for higher frequency in individuals with

a certain phenotype compared to controls, repeated over many phenotypes. Studies like these have

identified Neanderthal introgressed haplotypes associated with a variety of neurological and skin

phenotypes62,63, as well as brain structure64. These have proved informative about potential dif-

ferences between AMHs and Neanderthals, as well as the effects of those alleles on AMH disease.

However, in isolation these methods do not provide a mechanistic explanation for observed cor-

relations, and it can be ambiguous whether the Neanderthal-specific variants or linked ancestral

alleles are causing the association65. An alternative is to identify introgressed alleles associated

with gene expression and protein-coding changes, rather than with a wider phenotype. This has

the advantage of tying hypotheses to specific genes, although interpreting findings then requires

knowing the function of the gene. Introgressed alleles are more likely to have effects through gene

regulation than through protein sequence changes66, and are likely to have tissue-specific effects.

For example, gene transcripts carrying Neanderthal alleles are specifically downregulated in the

brain and testis67.

These studies have several limitations in their informativeness about important phenotypic dif-

ferences between Neanderthals and AMHs. The first is that they are limited to only the percentage

of the Neanderthal genome that is present in modern populations, thereby missing at least half of it.

This also means that everything is studied in the context of the archaic sequences’ behaviour when

combined with the human genome, not necessarily what the phenotypic consequences would be

in the context of the Neanderthal genome. The second limitation is that these differences were not

necessarily subject to strong selection. Indeed, introgressed segments of the genome were gener-

ally selected against (particularly in regulatory regions), implying that many of those that survived

were unlikely to have large effects on fitness68.

Instead, some studies start by identifying regions of the genome that appear to have been sub-

ject to strong selection, then identifying genes to explain the peaks. For example, a haplotype

introgressed from Denisovans around EPAS1 bears signs of very strong selection in Tibetans, and

has been implicated in adaptation to high altitudes69. A genome-wide test for selection based on
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identifying alleles with frequencies that are inconsistent with the alleles’ frequencies in ancestral

populations identifies both skin pigmentation alleles discussed previously, as well as variants near

genes associated with diet and immunity61. A regulatory variant for LCT has undergone strong

recent selection in Europeans, putatively in response to the advent of dairy farming70. However,

integrating information from aDNA has suggested that this allele didn’t rise in frequency until

long after that time, casting doubt on the explanation for that selection22,61. Similarly, a selected

haplotype that regulates FADS1, a gene involved in metabolizing nutrients from grains and associ-

ated with metabolic disorders in modern populations, remained at low frequencies for a long time

after the advent of farming, suggesting that this transition was not itself the cause of the selec-

tion71. However, as with PheWAS studies, links between alleles and organism-level phenotypes

with ready mechanistic explanations are rare, and those explanations have to be elucidated on a

case-by-case basis.

Given that most recent phenotypic changes are due to changes in gene regulation72,73, it is

tempting to use our knowledge of the biology behind gene regulation to understand the mecha-

nisms behind phenotype associations. The vast majority of genomic variants associated with dis-

ease are non-coding, and many of them overlap intergenic regulatory elements like enhancers74.

While there are many methods to identify enhancers, identifying causal variants is complicated

by our limited understanding of how those methods relate to one another75, and by the highly

combinatorial nature of enhancer function76. In addition, because enhancers can be as much as

a megabase distant from their target genes, pairing them with the genes they regulate is compli-

cated77. While it is possible to identify methylation patterns in high-coverage ancient genomes78,

ancient genomes are generally too degraded for widespread identification of enhancers in them,

which limits our ability to understand gene regulation in Neanderthals and Denisovans.

In summary, existing methods of studying the recent evolution of human phenotypes are limited

by our lack of ability to study combinations of genetic variants and by the complexity of many phe-

notypes that could of interest. Together, these challenges mean that it is often difficult to connect

genetic variation to evolutionarily relevant phenotypic variation, and to identify the mechanisms
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by which genetics influences the phenotype.

1.3 Overview of this dissertation

In this dissertation, I will describe analyses that address the gaps in knowledge described above.

Specifically, we wanted to be able to provide mechanism-based explanations for potentially evolu-

tionarily important regions of the genome on a large scale. Our approach centers around the idea

of using combinations of genetic variants to predict patterns of gene regulation in order to identify

genes and pathways with evidence of changes in gene expression during recent evolution. To do

this, we used a statistical method called PrediXcan, which is trained to predict RNA-seq data based

on allele counts of nearby genetic variants79.

In Chapter 2, we applied PrediXcan models to the genomes of three archaic hominins: two

Neanderthals and one Denisovan. In order to identify genes that had significant differences in

regulation in these hominins, we compared the archaic predictions to predictions made on a large,

diverse set of AMHs. We first focused on genes in regions of AMH genomes that contain no ob-

served Neanderthal ancestry. While in many cases this may be due to genetic drift, some are likely

to have been places where variation in gene regulation was selected against. We identified hun-

dreds of these genes for which Neanderthals were predicted to have significantly divergent patterns

of gene regulation compared to modern humans. Based on gene annotations, the affected genes

influence a range of traits that could be plausibly affected by selection, including reproduction,

skeletal development, language, and the immune system. We also used an EHR-linked biobank to

establish that divergent regulation of these genes is associated with many clinical phenotypes in

modern populations. This suggested to us that it was possible that divergent regulation of some

genes might have been a barrier to archaic introgression.

In addition, in order to identify phenotypes where the archaic hominins may have differed

from each other and from AMHs, we compared their predicted gene regulation. We showed

Neanderthal-specific regulatory patterns in genes related to skin pigmentation and height, and

regulation specific to Denisovans for morphological traits. We also identified an enrichment for

7



immune-related genes among those that showed divergent regulation between the two Neanderthal

individuals. These analyses show that imputing ancient gene regulatory profiles has promise for

studying ancient phenotypes, particularly those that cannot be studied directly from the skeletal

remains, by prioritizing genes and phenotypes for more detailed analysis.

In the next chapter, we explored the possibility of applying PrediXcan to datasets with other

challenging characteristics. While the archaic hominin genomes were high-coverage and fairly

complete, that is not the case for the vast majority of aDNA samples. This could potentially ham-

per the extension of this framework into more recent AMH evolution. We therefore evaluated

PrediXcan’s ability to function when given low-coverage genomes, and dissected the models’ be-

haviour to learn the conditions under which they remained accurate. We did this by simulating

genomes with high amounts of missing variants, and by limiting the variants available for training.

Our results suggest that PrediXcan can retain utility even when variant data are limited, as long as

the models are trained for the specific application and their limitations properly taken into account.

In the case of aDNA studies, this involves training on the set of variants most likely to be covered

in genotyping of ancient samples, and filtering for models that, based on simulations, retain ac-

curacy in that situation. This is encouraging for the expansion of gene regulatory studies like the

ones described here into different, larger datasets, whether they involve aDNA or not.

For Chapter 4, we demonstrated the utility of PrediXcan in this context by applying our

methodology to a large-scale analysis of regulatory differences between ancient hunter-gatherer,

pastoralist, and farming AMH populations. We found over 5,000 genes that showed evidence

for differences in regulation among the three groups. We recapitulated the pattern of regulation

observed over time for FADS1, wherein agriculturalists and modern populations have higher ex-

pression than ancient hunter-gatherers, and also suggested new explanations for previously ob-

served signals of selection, such as that around LEPR. Expanding our analyses to examine specific

classes of genes, we found that housekeeping genes were enriched among those with significant

differences, in part because of the increased power to model them. Overall, genes with significant

differences by lifestyle were enriched for metabolic and immune processes, indicating that these
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pathways are the most likely to have been affected by altered gene regulation between ancient

human groups with different diets and lifestyles.

Overall, the studies described here demonstrate the power of methods that predict intermedi-

ate phenotypes, such as gene expression, to study evolution in a function-aware manner. Such

genome-wide methods are well-poised to take advantage of the increasing availability of whole-

genome data. PrediXcan in particular provides the opportunity to characterize gene regulation

across diverse geographical and temporal ranges. These studies contribute to a larger understand-

ing of the genome’s response to large-scale environmental changes, as well as the potential impact

they have on phenotypes in modern AMHs.

9



Chapter 2

GENE REGULATORY PATTERNS IN ARCHAIC HOMININS*

2.1 Introduction

Most aspects of archaic hominin biology cannot be directly studied due to their lack of preser-

vation in fossils. The sequencing of DNA extracted from remains of extinct hominins has enabled

the study of these groups’ origins and evolutionary histories on a scale not possible from fos-

sils alone31,36,80,81. However, even with whole genome sequences available, the ability to infer

traits of these hominins and how they differed from one another and anatomically modern hu-

mans (AMHs) is limited82. Greater morphological knowledge would be especially valuable for

groups like the Denisovans that lack a substantial fossil record36,83. A key challenge in this task

is the difficulty of mapping from genetic sequence differences to function. Archaic hominins in-

terbred with anatomically modern humans (AMHs)31,36,84, and as a result, more than one third of

the Neanderthal genome remains in introgressed sequences in AMH genomes33,34. However, the

factors that determined the patterns of Neanderthal ancestry in AMH genomes are not fully under-

stood. The Neanderthal DNA that remains in modern Eurasian populations influences a range of

traits, with a particular influence on immune, hair and skin, and neurological phenotypes62. This

suggests differences between Neanderthals and AMHs that could have been selected for after inter-

breeding. There are only a small number of protein-coding differences between archaic hominins

and modern humans85, but introgressed archaic sequences often exert their effects by modifying

gene expression patterns62,66. One quarter of Neanderthal sequences remaining in AMHs have cis-

regulatory effects, and gene transcripts carrying Neanderthal alleles are particularly downregulated

in the brain and testes67. Thus, divergent gene regulation between archaic and AMH sequences

produces physiologically relevant effects. While the functional effects of introgressed sequences

have been studied in detail, much less is known about the functions of non-introgressed Nean-

*This chapter has been previously published in Colbran et al. 2019. Nat. Eco. Evo.
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derthal sequences. Understanding the functions of these regions would provide valuable insight

into barriers to introgression, the role of selection in determining the landscape of archaic DNA

in modern populations, and the phenotypic differences between archaic and modern humans. We

addressed this challenge by quantifying divergence in gene regulation between archaic hominin

and AMH sequences and associating divergently regulated genes with AMH phenotypes using ex-

isting annotations and a large biobank linked to electronic health records (EHRs)79. Our results

demonstrate substantial divergence in gene regulation between hominins and have the promise to

highlight previously inaccessible differences in archaic hominin biology.

2.2 Quantifying gene regulatory divergence with PrediXcan

To identify archaic hominin sequences likely to have divergent gene regulatory effects com-

pared to AMH sequences, we developed a statistic based on applying PrediXcan models to mod-

ern and archaic sequences. PrediXcan imputes the cis genetically regulated component of gene

expression for genes in specific tissues using paired genotype and transcriptome data from human

populations (Fig. 2.1A, B). Previous work has demonstrated that PrediXcan can impute the ge-

netically regulated component of gene expression for thousands of genes, especially those whose

regulatory architecture is dominated by common variants79. We considered accurate (FDR < 0.05)

PrediXcan models of autosomal gene regulation from 44 tissues that were trained and evaluated

on paired genotypes and normalized transcriptomes from the GTEx Consortium86, which consists

of 85% European ancestry and 15% African ancestry individuals (Methods).

The output of a PrediXcan model is not a direct proxy for gene expression in an individual.

Instead, it is an estimate of the genetically regulated component of gene expression in reference to

the distribution observed in the population used to train the model. Thus, differences in PrediXcan

values between individuals reflect differences in variant genetic regulatory effects, not necessarily

differences in overall gene expression (Fig. 2.1B, C). Furthermore, the regulatory effects captured

only capture those variants present in modern human populations (Fig. 2.2). To emphasize this

distinction, we refer to these differences as divergent regulation.
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We consider the regulation of two classes of genes: 1) those that lack archaic ancestry in any

variant in their PrediXcan model and 2) those with archaic ancestry in at least one modeled variant

in at least one AMH (Fig. 2.3A, Methods). We will first focus on the former group and refer to

them as “genes without archaic regulatory regions” (GWARRs). For simplicity, we will refer to

the latter as non-GWARRs.
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Figure 2.1: Identifying divergent gene regulation between individuals using PrediXcan.
(a) Statistical models for imputing genetic regulation of gene expression (PrediXcan) were trained
on genetic variants and normalized transcriptomes for 44 tissues from all individuals in the
Genotype-Tissue Expression (GTEx) Project. Genetic variants within 1 Mb of each gene (Gene
Regulatory Region indicated by gray box) were considered in the PrediXcan models; variants in-
cluded in the models are illustrated by red vertical lines. (b) Gene expression levels are the result
of genetic and non-genetic (e.g., environmental) factors. Our approach imputes the cis-genetic
component of gene expression. (c) Our approach can identify divergent regulation between indi-
viduals, which reflects changes in the gene regulatory architecture, but does not necessarily imply
differences in overall gene expression.
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2.3 Identifying Neanderthal divergently regulated (DR) genes

We applied the imputation models to each gene’s regulatory region from the high-quality

genome sequence of the Altai Neanderthal84. This enabled us to estimate the effects of Nean-

derthal sequences on the regulation of 8587 GWARRs and 8854 non-GWARRs (Fig. 2.3A). We

compared the gene regulatory effects of the Neanderthal sequence to the distributions observed

when applying the same models to the corresponding regulatory regions of 2504 diverse AMH

individuals from Phase 3 of the 1000 Genomes (1kG) Project87 and computed empirical P-values

for the observed differences (Fig. 2.3A). Again, since our approach estimates the genetically con-

trolled component of gene expression in AMHs, their output should not be seen as a direct proxy

for gene expression (Fig. 2.1C). Thus, we use difference in the values for a gene between AMHs

and Neanderthals as a proxy for differences in the regulatory architecture between the groups. We
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refer to genes for which the Neanderthal sequence’s value is outside the range observed over all

1kG individuals as Neanderthal divergently regulated (DR) genes (Fig. 2.3A).
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Figure 2.3: Neanderthal sequences drive substantial divergent regulation compared to modern hu-
mans.

(a) Pipeline for comparing the effects of modern human and archaic hominin DNA on gene reg-
ulation in modern humans. We identified genes in modern humans without archaic introgres-
sion in their regulatory regions (GWARRs). We compared the imputed gene regulatory effects of
Neanderthal sequences to the regulatory effects of the corresponding human sequences in indi-
viduals from the 1000 Genomes Project (1kG). Genes for which the regulatory effect of the Nean-
derthal sequence was outside the range of all modern humans were labeled as divergently regulated
(DR). (b) 766 GWARRs across the human genome (black lines) are divergently regulated by non-
introgressed Neanderthal sequences in at least one tissue. (c) To illustrate the DR pattern, if the
Altai Neanderthal sequence surrounding ZDBF2, a GWARR, were present in AMH genomes, it is
predicted to drive regulation in tibial artery significantly lower than levels observed for all modern
humans in 1kG (imputed regulation = –0.376, P = 0). (d) DR GWARRs are enriched for roles in
several diseases, including spontaneous abortion, myocardial infarction, and melanoma, compared
to all DR genes (FDR < 0.1, hypergeometric enrichment test on DisGeNET annotations).

2.4 Non-introgressed Neanderthal sequences divergently regulate 766 genes

Across all autosomes, non-introgressed Neanderthal sequences are predicted to divergently reg-

ulate 766 GWARRs in at least one tissue (Fig. 2.3B; table available at www.github.com/colbrall/).

We refer to these genes with predicted divergent regulation as DR GWARRs. DR GWARRs are

found on all autosomes, with the greatest density on gene-rich chromosome 19 (Fig. 2.3B). DR

GWARRs are also observed across all tissues in GTEx (Appendix 1, Fig. 6.1), and are similarly

likely to be upregulated or downregulated by the Neanderthal sequence (Appendix 1, Table 6.1).

Neanderthal sequences drive significantly more divergent regulation than observed when com-

paring sequences from an individual AMH to all others (12.4 times higher than maximum observed

for an AMH, P < 0.02; Appendix 1, Fig. 6.2). Most genes exhibit similar regulatory effect dis-

tributions between human populations (Appendix 1, Fig. 6.3), and genes with large population

differences are not enriched among DR GWARRs (P = 0.821, Fisher’s exact test). This suggests

that the divergent regulation is specific to Neanderthals. Additionally, DR genes have a simi-

lar number of Neanderthal-specific alleles in their regulatory regions when compared to non-DR

genes, indicating that the amount of unmodeled variation is not driving the differences (Appendix

1, Fig. 6.4).
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To highlight bodily systems that were not receptive to Neanderthal sequences with diver-

gent regulatory potential, we tested for enrichment of specific disease and phenotype associations

among DR GWARRs compared to all DR genes. DR GWARRs were significantly enriched (FDR

< 0.1, hypergeometric test on DisGeNET annotations with Benjamini-Hochberg (BH) multiple

testing correction) for genes involved in spontaneous abortion, polycystic ovary syndrome, mam-

mary neoplasms, myocardial infarction, melanoma, and stomach neoplasms (Fig. 2.3D). Given

their potential fitness effects, the DR GWARRs associated with spontaneous abortion (HSD17B1,

IFI35, MUC4, IL20RA, TGFBI, TNFSF13, CD7) are of particular interest for further investigation.

We also tested for enrichment of Human Phenotype Ontology (HPO) annotations among DR

GWARRs. While it did not pass multiple testing correction, the strongest enrichment was for genes

involved in pectus carinatum, a deformity of the chest caused by overgrowth of the ribs and charac-

terized by protrusion of the sternum (P = 4.3E–4; HP:0000768: GNPTG, HBA1, HBA2, MYH11,

ORC4, SOS1, TNFRSF11B). The top associations also included other phenotypes that mirror

physiological differences between humans and Neanderthals such as supraorbital ridge develop-

ment (HP:0009891; HBA1, HBA2, PEX11A, and PEX13). Furthermore, many individual DR

GWARRs function in human-specific phenotypes, including reproduction, neurotransmitter trans-

port, circadian rhythm, and language. Overall, the large number of DR GWARRs suggests that

there were substantial differences in gene regulation between modern humans and Neanderthals.

2.5 Divergent regulation of GWARRs is associated with clinical phenotypes in AMHs

To gain further insight into organism-level effects of divergent regulation of GWARRs in mod-

ern humans, we quantified the association of their imputed regulation with clinical phenotypes

using BioVU, Vanderbilt University’s biobank of patient DNA samples linked to de-identified

EHRs. We used logistic regression to test for associations between the imputed regulatory profiles

of Neanderthal DR GWARRs with phenotypes derived from the EHRs of 23,000 individuals of

European descent (Fig. 2.4A).

Variation in DR GWARR regulation in BioVU is associated with many phenotypes (22 at P
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< 1E–7 and 284 at P < 1E–5) across a broad range of phenotypic categories (Fig. 2.4B). The

strongest associations include (Table 2.1): MSH5, PRSS16, VARS, and NCR3 with type 1 dia-

betes (T1D, Phecode: X250.1*; P = 1.3E–11, 5.2E–8, 7.1E–8, 8.0E–8, respectively), C11orf65

with transient mental disorders (Phecode: X291.1; P = 3.1E–9), SPINT1 with pulmonary em-

bolism and infarction (Phecode: X452.1; P = 7.2E–8), and PSRC1 with hyperlipidemia (Phecode:

X272.1; P = 3.1E–8). Each of the genes associated with T1D is located in or proximal to the hu-

man major histocompatibility complex (MHC) locus on chromosome 6. Certain MHC alleles may

have been acquired through adaptive introgression88; our results suggest that variation in other

regions of the MHC that were not receptive to introgression is associated with disease. Driven

by the large number of associations with T1D and other autoimmune diseases, the endocrine and

metabolic disorders phenotype category had the largest number of associations (Fig. 2.4B), but the

raw number of associations is difficult to compare across categories due to differences in sample

size, power, and between-phenotype correlations. Furthermore, the directions of effect for these

associations do not always suggest that regulation by the Neanderthal haplotype increases risk.

Nonetheless, divergent regulation of genes for which Neanderthal sequences likely altered regula-

tion is associated with risk for clinical phenotypes in modern human populations. This highlights

genes and bodily systems for which the lack of Neanderthal ancestry near genes may be due to

divergent gene regulatory function.

Overall, the functions of DR GWARRs observed in the enrichment and biobank analyses sug-

gest effects on a range of phenotypes, including reproductive, skeletal, cardiovascular, and immune

traits. These systems are also influenced in AMHs by introgressed Neanderthal sequences62,66.

This is consistent with a model in which these systems differed between Neanderthals and AMHs,

and the genetic variants influencing these differences potentially had a range of fitness effects in

the AMH context.
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Figure 2.4: Modern human variation in the regulation of GWARRs is associated with clinical
phenotypes.
(a) Pipeline for associating variation in gene regulation with diverse clinical phenotypes. Using
Vanderbilt’s BioVU biobank, human regulation of genes divergently regulated by non-introgressed
Neanderthal sequences (DR GWARRs; Fig. 2.3) were imputed across 23,000 European ancestry
individuals. Combining these genes’ imputed regulation and phenotypes extracted from electronic
health records (EHRs), we associated differences in imputed regulation to disease status using
logistic regression controlling for standard covariates (Methods). (b) The number of associations
between Neanderthal DR GWARRs and phenotypes in different phenotype categories at P < 1E–5.
The endocrine and metabolic disorders phenotype category had the largest number of associations
driven by many associations with T1D and other autoimmune diseases (Table 2.1). However, we
caution against comparing across categories due to differences in sample size and power.

2.6 Genes in introgression deserts are not more likely to be divergently regulated

Given the potential importance of introgression deserts—long regions of the human genome

significantly depleted of archaic ancestry—to human-specific biology, we examined the potential

for divergent regulation by Neanderthal sequences among genes in six previously defined introgres-

sion deserts of greater than 8 Mb (Fig. 2.5)33. Each desert contained at least one DR GWARR, and

the deserts contained a total of 26 DR GWARRs. DR desert genes have been implicated—either

in previous work or our biobank association tests—with a variety of traits important to human-

ness, including neural development (CELSR2, CHMP2B)89,90,91 and learning and spatial memory

(CARF)92.

Desert genes are not significantly more likely to be divergently regulated than other GWARRs

(P = 0.60, permutation test). However, deserts have significantly lower recombination rates than

19



Table 2.1: Strongest associations between imputed regulation in BioVU and EHR-derived pheno-
types for DR GWARRs.

Trait Gene Beta P-value
Type 1 Diabetes MSH5 3.81 1.28×10−11

Transient Mental Disorders C11orf65 11.6 3.14×10−9

Hyperlipidemia PSRC1 -0.36 3.06×10−8

Type 1 Diabetes with opthalmic manifestations PRSS16 1.33 5.20×10−8

Type 1 Diabetes VARS 0.66 7.06×10−8

Pulmonary Embolism SPINT1 6.76 7.15×10−8

Type 1 Diabetes with renal manifestations NCR3 2.87 7.99×10−8

**Each gene associated with T1D is located in or near the MHC locus.

other regions (Fig. 2.5B), and the deserts also have significantly lower gene densities. Controlling

for these factors, there was still no significant difference in the likelihood of desert genes being

DR than other GWARRs (Fig. 4C; matched recombination rate OR = 1.02; Fisher’s exact test P =

0.99; matched gene density OR = 1.04, P = 0.96). Recent work suggests that recombination rate

influences the retention of introgressed sequences93, so it is possible that selection against a small

number of diverged and deleterious regulatory Neanderthal haplotypes in these low recombination

rate regions could have contributed to the formation of introgression deserts.

2.7 Imputing gene regulation in multiple archaic hominins

Due to the rapid degradation of most tissues and RNA, we are unlikely to ever be able to

study gene expression levels directly from archaic samples. Archaic methylation status can be

imputed for some regions of the genome78, but this approach is limited to the bone cells from

which archaic DNA can be extracted. In the previous analyses, we focused on the gene regulatory

effects of Neanderthal DNA in the AMH genomic context. However, comparing gene regulatory

profiles from archaic hominins directly may also reveal attributes of tissues in archaic hominins

and their differences from one another. This approach is particularly promising for groups, like the

Denisovans, that lack a substantial fossil record.
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Figure 2.5: Genes in introgression deserts exhibit divergent regulation between modern humans
and Neanderthals.
(a) Location of Neanderthal introgression deserts (blue boxes) and desert genes divergently regu-
lated by Neanderthal sequences (black lines). Neanderthal DR genes are listed next to each desert.
These genes have functions in a range of traits important to humanness, including neural develop-
ment (CELSR2, CHMP2B) and spatial memory (CARF). (b) Recombination rate is significantly
lower near genes (+/- 2 Mb) in introgression deserts than near other GWARRs or genes with archaic
regulatory regions (Kruskal-Wallis test P 0, Dunn’s post hoc analysis P 0.0). Box plots show the
median, inner quartiles, and 95% confidence intervals. (c) Desert GWARRs are not significantly
more likely to be DR compared to other GWARRs, even after controlling for recombination rate
(OR = 1.02; Fisher’s Exact test P = 0.99).

We expanded our analysis and imputed the regulation of all genes in the high-quality genomes

of the Altai Neanderthal, a Neanderthal from Vindija, Croatia80, and a Denisovan from the Altai

cave94. To enable direct comparison, we reanalyzed the Altai Neanderthal using the smaller set of

variants called in both Neanderthal genomes.

To obtain a global view of the similarity of regulatory patterns across tissues for each archaic

individual compared to modern human populations from 1kG, we hierarchically clustered individ-

uals based on the Pearson correlation of their regulatory profiles for all genes analyzed in each
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tissue. This revealed that, as expected, the three archaic individuals are closer to one another than

to any AMH (Fig. 2.6A). Also, as expected, despite being separated by more than 50,000 years

and nearly 5,000 kilometers, the two Neanderthals’ imputed regulatory profiles are more similar

to one another than to the Denisovan (Fig. 2.6A, inset). Modern humans consistently group by

continental population and all pairs of humans are more similar to one another than to any of the

archaic individuals. Thus, the divergence of regulatory patterns in the archaic samples reflects our

understanding of their evolutionary relationships with respect to one another and AMHs. These

results held across all tissues analyzed and when we separated genes by the presence of archaic

ancestry in their regulatory regions. We view these trees as a qualitative sanity check and caution

against quantitative interpretation of the branch lengths as they are influenced by selective and

demographic factors95, as well as unmodeled archaic alleles (Appendix 1, Fig. 2.2).
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Figure 2.6: Comparison of genome-wide regulatory profiles between two Neanderthals, a Deniso-
van, and modern humans.
(a) Hierarchical clustering of imputed gene regulation for all genes in the frontal cortex of archaic
hominins and modern human populations from 1kG. (b) Venn diagram of divergently regulated
genes identified in each archaic hominin vs. all AMHs. Examples of the top 10 enriched Human
Phenotype Ontology annotations among genes divergently regulated in all archaic individuals, in
both Neanderthals, and in the Denisovan are shown. All terms are given in Appendix 1, Tables 6.2-
6.4. (c) Enrichment for GO Biological Process annotations among the 75 genes with the largest de-
viation (>1 standard deviation) in imputed regulation between the Altai and Vindija Neanderthals.
Immune functions are significantly enriched for differences between the two Neanderthals. Only
enrichments with FDR < 0.05 are plotted.
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2.8 Differences in regulation between archaic hominins reflect potential phenotypic differences

To identify specific differences in gene regulation between AMHs and the archaic groups, we

determined divergently regulated genes in each archaic hominin compared to AMHs and tested for

enrichment of phenotype annotations from the HPO (Fig. 2.6B). Across all tissues, 97% of DR

genes in the Altai Neanderthal were also DR in Vindija with the same direction of effect. Genes

divergently regulated in all three archaic individuals compared to AMHs were nominally enriched

for associations with short tibia (7.15x, P = 0.0017, hypergeometric test), abnormal bone struc-

ture (1.62x, P = 0.0034), hirsutism (2.61x, P = 0.0042), and many other traits (Appendix 1, Table

6.2). DR genes specific to Neanderthals and the Denisovan were both nominally enriched for phe-

notypes involving dental morphology (Appendix 1, Tables 6.3 and 6.4). The Neanderthal-specific

DR set also included genes involved in skin pigmentation (1.96x, P = 0.0058) and stature (7.62x, P

= 0.0063). The repeated enrichment for genes involved in skeletal and dental morphology is strik-

ing given the known differences between modern and archaic hominins in these traits. DR genes

specific to the Denisovan were uniquely enriched for several phenotypes including impulsivity,

cerebral cortex development (pachygyria and lissencephaly), hand morphology, and nasal speech

(Appendix 1, Table 6.4). The potential Denisovan-specific differences in speech are further sup-

ported by recent results based on imputed DNA methylation changes96. However, we note that due

to the large number of phenotype categories these associations did not pass FDR-based multiple

testing correction. Collectively, these analyses highlight genes involved in known morphological

differences between archaic hominins and AMHs and suggest additional phenotypic differences

that cannot be directly studied from fossils.

To identify differences in regulation between the archaic individuals without comparison to

AMHs, we analyzed genes with large magnitude (>1 SD of the GTEx distribution) differences

in regulation between archaic individuals. As expected, the two Neanderthals have the fewest

differences (75 genes vs. 950 for each compared to the Denisovan). Immune response functions

are significantly overrepresented among the genes different between the Neanderthals (Fig. 2.6C;

FDR < 0.05), including transporting viral proteins (366.8x, P = 0.0015, hypergeometric test) and

24



cellular response to interferon-gamma (12.03x, P = 0.0085). These 75 genes include 5 MHC class

II genes. This suggests that gene regulatory differences between the two Neanderthals influenced

immune function, possibly reflecting adaptations in these populations. The genes that differed

in the Denisovan compared to both Neanderthals are associated with many more general terms.

Altogether, these results identify thousands of candidate genes for which regulation has likely

diverged between archaic hominins and modern humans.

2.9 Discussion

Our application of PrediXcan to archaic genomes is a powerful approach for studying the evo-

lution of gene regulation and the biology of archaic groups. The molecular machinery and genetic

architecture of gene regulation are largely conserved across humans, and most common human reg-

ulatory variants have similar effects across populations97,98. Our approach enabled us to study the

regulation of many genes by archaic hominin sequences. However, accurate predictions cannot be

made for all genes in all populations, especially for genes with regulatory architectures dominated

by rare variants99,100 or trans effects101. Furthermore, since the imputation models are trained in

modern humans, they do not incorporate the effects of archaic-specific alleles not present in human

populations (Appendix 1, Fig. 2.2). Thus, it is likely for some genes that archaic-specific alleles

could further modulate regulation. In these cases, the imputed effects are likely less accurate than

in human populations, but any predicted deviations would still indicate divergence in regulatory

architecture between archaic and AMH groups. As our understanding of the relationship between

genotype and gene regulation improves and more tissues are characterized, our approach will en-

able testing of additional hypotheses about aspects of archaic hominin biology that are inaccessible

to direct study.

In summary, there was substantial divergence in gene regulation between archaic hominins and

modern humans. The affected genes influence a range of traits, including reproduction, skele-

tal development, language, and the immune system. Applying the regulation imputation models

to a large, EHR-linked human biobank cohort further enabled the connection of divergent gene
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regulatory patterns with clinical phenotypes in modern human populations, in particular with au-

toimmune and cardiovascular disease. Our results suggest that divergent regulation may have been

a barrier to Neanderthal introgression in some regions of the human genome; however, more work

is needed to demonstrate this. We additionally show that imputing ancient gene regulatory profiles

has promise for studying ancient phenotypes. This approach is also potentially applicable to more

recent ancient human genomes, where there is less sequence divergence than among Neanderthals

and AMHs, and could provide an opportunity to characterize gene regulation across diverse geo-

graphical and temporal ranges.

2.10 Methods

Modern and Archaic Genetic Data

We analyzed the high-coverage genome sequences of three archaic hominins. For most compar-

isons to modern humans, we used the high quality archaic genome from an 122,000-year-old Ne-

anderthal individual found in the Altai mountains (“Altai Neanderthal”)84, which was sequenced

to 52x coverage and enabled PrediXcan analysis of the largest number of genes. For the com-

parisons that included multiple archaic individuals, we analyzed the 30x genome from a 72,000-

year-old Denisovan from the Altai mountains (“Denisovan”)94, and a 30x coverage genome of

a 52,000-year-old Neanderthal from Croatia (“Vindija Neanderthal”)80. For all three genomes,

we considered only autosomal SNPs from the publicly available genomes. To represent modern

humans, we analyzed the genomes of 2504 individuals sequenced by the 1000 Genomes Project

(1kG) and released in Phase 387. These include individuals from the European (EUR), African

(AFR), East Asian (EAS), South Asian (SAS), and Admixed American (AMR) continental ances-

try super-populations.

PrediXcan Gene Regulation Imputation Models

We considered PrediXcan models across 44 tissues from the PredictDB Data Repository (accessed

Nov. 16, 2016). The models were trained on GTEx V6p86 using variants identified by 1kG (Phase

1)102 within 1 Mb of the gene. We considered only those models that explained a significant
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amount of variance in gene expression in each tissue (FDR < 0.05); this left us with 17,748 unique

genes with an accurate model in at least one tissue (159,368 models total)79. We abbreviate the

44 tissues considered as follows: Adipose - Subcutaneous: ADPS, Adipose - Visceral Omentum:

ABPV, Adrenal Gland: ADRNLG, Artery - Aorta: ARTA, Artery - Coronary: ARTC, Artery -

Tibial: ARTT, Brain - Anterior Cingulate Cortex: BRNACC, Brain - Caudate: BRNCDT, Brain

- Cerebellar Hemisphere: BRNCHB, Brain - Cerebellum: BRNCHA, Brain - Cortex: BRNCTX,

Brain - Frontal Cortex: BRNFCTX, Brain - Hippocampus: BRNHPP, Brain - Hypothalamus:

BRNHPT, Brain - Nucleus Accumbens basal ganglia: BRNNCC, Brain - putamen basal ganglia:

BRNPTM, Breast: BREAST, Cells - Transformed Fibroblasts: FIBS, Colon - Sigmoid: CLNS,

Colon - Transverse: CLNT, Esophagus - Gastroesophageal Junction: ESPGJ, Esophagus - Mu-

cosa: ESPMC, Esophagus - Muscularis: ESPMS, Heart - Atrial Appendage: HRTAA, Heart - Left

Ventricle: HRTLV, Liver: LIVER, Lung: LUNG, Cells- EBV-transformed Lymphocytes: LYMPH,

Ovary: OVARY, Pancreas: PNCS, Pituitary: PTTY, Prostate: PRSTT, Skeletal Muscle: MSCSK,

Skin - Not sun-exposed: SKINNS, Skin - Sun-exposed: SKINS, Small Intestine: SMINT, Spleen:

SPLEEN, Stomach: STMCH, Testis: TESTIS, Thyroid: THYROID, Tibial Nerve: NERVET,

Uterus: UTERUS, Vagina: VAGINA, Whole Blood: WHLBLD.

Imputation of Archaic Hominin and Modern Human Gene Regulation

Using the PrediXcan prediction program available from PredictDB, we applied the accurate pre-

diction models to the relevant portions of the genome of the Altai Neanderthal to impute the effects

of its sequence on gene regulation. The resulting predictions are normalized values in reference

to the distribution observed in GTEx individuals used to train the original prediction models. To

characterize regulatory patterns in modern human populations, we applied the same PrediXcan

models to 2504 individuals from the 1kG87. For all cross-archaic comparisons, we applied the

same models to the sequenced Vindija Neanderthal, the Altai Neanderthal, and Denisovan, which

were all recently processed with the same pipeline80. Imputed regulation based on the previous

and new versions of the Altai Neanderthal were strongly correlated (0.78–0.85 across tissues).

Identification of Genes Divergently Regulated by Archaic Sequences
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To identify genes divergently regulated by archaic compared to modern human sequences, we cal-

culated an empirical P-value for the archaic predicted regulatory profile for each gene and tissue by

calculating the proportion of modern humans who had a predicted value farther from the median of

the full 1kG distribution for the tissue. Genes for which the archaic sequence is predicted to drive

regulation completely outside the distribution observed in 1kG in at least one tissue were consid-

ered significantly divergently regulated (DR) genes (N = 2290), 766 of these were GWARRs (see

next section for more on the GWARR definition). We plotted gene locations using karyoploteR103.

We excluded all genes which were missing genotype calls at SNPs of at least one model.

Assessment of Imputation Accuracy on Neanderthal Sequences

It is not possible to directly assess the accuracy of gene regulation imputation models trained

in AMH when applied to Neanderthal sequences. To estimate how much Neanderthal-specific

variation the PrediXcan models trained on AMHs could be missing, we counted the number of

Neanderthal-specific alleles present in the regulatory region of each gene (1 Mb up and down-

stream). For this analysis, Neanderthal-specific sites include any site where the Altai Neanderthal

had at least one allele not observed in 1kG. To account for different overall evolutionary rates be-

tween genes, we computed the relative amount of Neanderthal-specific variation for each gene by

dividing it by the total number of variants (Neanderthal-specific alleles plus all variable sites in

1kG). We then compared relative levels of Neanderthal-specific variation between DR and non-

DR genes. Further steps taken to assess model performance are described in full in Colbran et al.,

2019104.

Divergent Regulation Between Humans

To aid interpretation of the number of divergently regulated genes observed with archaic sequences,

we called DR genes in 50 random 1kG individuals, 10 from each continental population, using the

same criteria as for archaic sequences: imputed regulation outside the range for all other 1kG

individuals. For each population, we compared the distribution of the number of DR genes in each

individual with the number identified in Neanderthal (Appendix 1, Fig. 6.2).

We also examined the stability of the imputed values across all 1kG populations. For all
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PrediXcan models in all tissues, we computed the median imputed regulation for each 1kG popu-

lation. We then found the maximum difference between populations (Appendix 1, Fig. 6.3). Only

2.7% of all gene models have a maximum difference in population median regulation greater than

1 SD.

Classification and Comparison of Non-Introgressed and Desert Genes

We used the S*-based Neanderthal introgression map from Vernot et al.33 to identify the over-

lap between variants considered in gene regulation prediction models and introgressed sequences.

After filtering out models that had no variants present in the Altai genome, we classified genes

to be genes without archaic regulatory regions (GWARRs) if none of the variants considered in

their prediction models were Neanderthal tag SNPs or in linkage disequilibrium (r2 > 0.8) with

Neanderthal tag SNPs in Europeans (N = 8587). Genes with at least one introgressed Neanderthal

SNP in their model were classified as “non-GWARRs.”

We also analyzed the effects of genes in introgression deserts that were recently identified using

coalescent simulations based on demographic models33. By this definition, deserts are long regions

where modern humans lack introgressed sequence. Desert regions >8 Mb long are significantly

more common than expected from simulations, and they also exhibit higher levels of background

selection. In our analyses, “desert” genes are the subset of GWARRs for which variants in their

regulatory effect prediction models overlap the bounds of an introgression desert, excluding those

that also include SNPs on introgressed haplotypes (N = 311).

We calculated the enrichment of DR GWARRs within and outside deserts by shuffling GWARR

locations across the genome, constrained by chromosome. For each of 1000 permutations, we

counted the number overlapping a desert to compute an empirical p-value. To evaluate DR enrich-

ment accounting for recombination rate, we first calculated the recombination rate in 250 kb non-

overlapping windows across the entire genome, using recombination maps calculated in African

Americans93,105. We then intersected those windows with the regulatory region considered by

PrediXcan for each gene. For each gene, we calculated the mean recombination rate across all

windows overlapping the gene region, weighted by the number of base-pairs of overlap. We then
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binned genes by recombination rate (31 equal-width bins) and randomly selected 3454 GWARRs

such that the overall distribution across bins was equal to the distribution of desert genes (the max-

imum without emptying a bin).We then performed a Fisher’s Exact test on DR status in desert

genes vs. the recombination rate-matched GWARRs. To match by gene density, for each gene we

counted the number of genes that overlapped the region considered by PrediXcan (1 Mb flanking

on either side). We then repeated the binning and Fisher’s Exact test analyses as for recombination

rate.

We identified gene regions overlapping human accelerated regions as those genes with at least

one HAR within 1Mb106. We then computed an odds ratio to assess the likelihood of certain

classes of genes to be nearby a HAR compared to others.

Association and Enrichment Between Divergent Regulation and Phenotypes

To investigate potential phenotypic implications of DR GWARRs, we conducted two main analy-

ses: gene set enrichment analysis and PrediXcan on Vanderbilt’s BioVU biobank. To test for en-

richment of genes known to be involved in particular human phenotypes or diseases, we performed

gene set overrepresentation enrichment analysis on Disgenet disease annotations and human phe-

notype ontology terms between DR GWARRs and other DR genes using WebGestalt107. We used

the hypergeometric test with BH multiple testing correction, a false discovery rate (FDR) threshold

of 10%, and did not consider disease categories with fewer than 10 genes.

To explore the systems potentially impacted by divergent regulation of DR GWARRs in modern

human populations, we used the PredixVU system at Vanderbilt University Medical Center to

discover associations between predicted regulation and clinical phenotypes. The phenotypes were

extracted from de-identified electronic medical records using ICD-9 codes that were organized into

PheWAS codes in 17 groups (https://phewascatalog.org/phecodes) and were linked to genotypes

from the BioVU biobank. In total, this involved 23,000 subjects of European descent; the total

number of cases and controls for each phenotype varied (on average 780 cases, 17176 controls).

We considered only phenotypes with case counts greater than 30. The models used to impute

regulation for these individuals were trained on HapMap SNPs, and there is a high correlation
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between the imputed values for the models trained on HapMap and 1kG79. For each phenotype,

we used logistic regression to regress imputed regulation onto phenotype status, and included age,

sex, and genetic principal components (3 for Europeans, 10 for African Americans) as covariates.

N.B. associations between divergent regulation of a gene and a phenotype in this context are not

necessarily in the same direction as the divergence in the Neanderthal.

Comparing Gene Regulation Among Archaic Hominins

To visualize global similarities between different groups for each tissue, we compared the imputed

regulatory profiles of non-admixed 1kG populations (excluded: MXL, CLM, PUR, ACB, ASW,

PJL, PEL) and the three archaic hominins. We hierarchically clustered each individual for each

tissue using Pearson correlation on imputed regulation across all genes as the distance metric. We

visualized the resulting trees using FigTree. Results were similar when using Spearman correlation

and when stratifying by GWARR status.

To identify specific genes of interest to differences between the archaic groups, we generated

lists of genes divergently regulated between the Altai Neanderthal, the Vindija Neanderthal, and

the Denisovan. First, we called DR genes versus the 1kG individuals for each archaic individual,

and then intersected the DR genes. We then conducted gene set ORA over the Human Phenotype

Ontology using WebGestalt107, using only categories containing at least 10 genes.

To focus on genes with the largest differences in regulation, we computed the difference in

predicted regulation between pairs of archaic individuals for each gene in each tissue for which it

had an accurate model. We then picked genes that differed in imputed regulatory effect by greater

than 1 (i.e., were >1 standard deviation apart with respect to the distribution of the GTEx training

population). To identify general biological processes influenced by these genes that differed be-

tween the archaic hominins, we conducted gene set enrichment analyses on GO biological process

terms versus the full GTEx project gene list using WebGestalt107.
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Chapter 3

MODELING GENE REGULATION WITH LOW-COVERAGE GENOMES

3.1 Introduction

The previous chapter demonstrated the potential power of PrediXcan and similar frameworks in

answering evolutionary questions. However, that study represented a relatively simple case where

the data we were interested in consisted of complete, high-quality genomes (despite the concerns

over divergence). In many other potential use-cases available genetic data varies in coverage,

depth, and quality. This creates a tradeoff between number of samples analyzed and the overall

quality of the genotyping. In addition, many potential applications of PrediXcan are in populations

that differ from the training populations; there is no guarantee, even if they are of similar ancestry,

that all the variants the models are using to predict gene expression are actually assayed in the

population of interest. Therefore it is of great interest to understand how PrediXcan behaves under

these less-than-ideal conditions with varying levels of missing variant data, and develop ways to

optimize its performance in such cases.

Being in the field of paleogenomics, we were particularly interested in the application of

PrediXcan to ancient DNA (”aDNA”) sequences. Because of time and chemistry, high-quality

ancient genomes like the ones used in the previous chapter are a rarity. Given enough time in

the elements, DNA gets physically degraded and contaminated in ways that must be taken into

account108,109. Unlike studies using modern individuals, the option of resampling an individual

if there was a lack of DNA the first time often is not an option due to the destructive nature of

sampling. We therefore focused on the application of PrediXcan to lower-quality aDNA as a test

case.

This chapter explores the impact of changing the variants available for the models during train-

ing, and quantifies the impact on predictions caused by missing variants used in training the mod-

els. As a case study, we focus on the application of PrediXcan to an aDNA dataset consisting of

32



thousands of individual samples compiled on a common genotyping chip, and produce recommen-

dations for optimizing PrediXcan for this application.

3.2 Model performance decreases with missing data

First, we set out to evaluate how missing data influences the performance of models. Math-

ematically, if a PrediXcan model does not have genotype information for a site included in the

model, it assumes the genotype was homozygous reference (i.e. dosage of alternate alleles equals

zero). Therefore it multiplies the weight by zero, and because models are trained on normalized

expression, a predicted value of zero (i.e. if sample was homozygous reference at all positions)

results in the predicted expression being the mean of the training data. Because of this, missing

variants ought to bias predictions toward that mean. The models thereby lose power to detect

differences in populations and individuals, and potentially miss out on capturing the full genetic

component of gene regulation. However, because PrediXcan does not explicitly filter variants that

are in high linkage disequilibrium with each other, we would expect some models to be more ro-

bust to missing variants as they also include variants that are well-correlated with the missing ones.

The exact dynamics of the performance of PrediXcan genotypes with missing data in practice is

not well understood.

To better understand and quantify these patterns, we applied PrediXcan models trained on

GTEx v8 with all available variants (“Full models”) to genome sequencing information for 2504

individuals from the 1000 Genomes Project (1kG)87. We then selected nine thresholds for percent-

age of missing SNPs and downsampled 20 random European individuals per threshold such that

they were missing a random set of SNPs and applied the full PrediXcan models to these downsam-

pled genomes (Fig. 3.1A). Unsurprisingly, the agreement between the predictions on downsampled

genomes and those for the full genomes was strongly correlated with the percentage of SNPs miss-

ing (Fig. 3.1B). However Spearman correlations were always above 0.75 even when genomes were

missing as many as 45% of their SNPs, suggesting model accuracy can be maintained even at rel-

atively high rates of missingness.
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While this is encouraging, depending on the situation missing SNPs may not be randomly dis-

tributed throughout the genome. To check whether that nonrandomness could affect these results,

we repeated the comparison described above. However, instead of randomly downsampling SNPs,

we matched the patterns of missingness to a dataset (Fig. 3.1A) of particular interest to us: 3383

aDNA samples, with widely varying numbers of missing SNPs (Fig. 3.1C). Overall, the correla-

tions were much lower (median Spearman ρ=0.39; Fig. 3.1D). This is unsurprising given that the

aDNA samples were obtained on a genotyping chip, while the model training data was based on

whole genome sequencing. At most, the aDNA samples had 714,959 SNPs, while the training data

had over 5 million (i.e. 87% missing). This indicates that, while models can tolerate a fair amount

of missing data, the missingness caused by a mismatch between genotyped SNPs and training

SNPs is likely to cause problems with predictions.
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Figure 3.1: Impact of Missing SNPs on PrediXcan performance.
(a) Schematic of process for generating random and matched simulated genomes. Starting from
a complete genome from 1kG, for the random simulations we mask a random number of variants
corresponding to the specified missing percentage. For the matched simulations, we pair a com-
plete modern genome and an ancient genome, and mask any variants in the modern genome that
are not present in the ancient one. (b) The Spearman ρ between predictions in 4 tissues calculated
for the complete genome vs. random simulations decreases as the percentage of missing variants
increases. (c) Distribution of the proportion of missing variants in the aDNA data compared to
all variants included in 1kG. (d) Spearman ρ between predictions in 4 tissues calculated for the
complete genome vs. aDNA-matched simulated genomes.

3.3 Models can be trained with targeted variant sets

Due to the findings above, we evaluated whether models could be optimized for a given ap-

plication by customizing the training data to contain only variants that will be available in the

application data. This step would thereby ensure that any variants used to model gene expression

were at least assayed in the application data and limit the models’ reliance on SNPs they would be

unable to use.
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To pick a targeted set, we chose to use only the SNPs present on the 1240k genotyping chip

that is commonly used in aDNA studies (“1240k set”; Fig. 3.2A). This resulted in 714,959 input

variants for the models training (the number that were successfully lifted over to the hg38 genome

build), as opposed to the 5,310,489 variants available for the full models. However, because most

of the samples genotyped on this chip tend to be low-coverage (Fig. 3.1C), we also tested the

use-case where we chose the SNPs in the dataset most likely to provide information. To do this,

we ranked SNPs by the number of samples in the 3383 ancient samples used above with genotype

calls, and weighted that count by the overall coverage of those samples. We then chose the 600,000

SNPs with the best ranking (“top600k set”), thereby prioritizing SNPs that were frequently present

in the best-quality samples.

Unsurprisingly, we found that both sets of targeted models used fewer SNPs than when allowed

access to the full data (Fig. 3.2B). While there was not a large drop in the variance in gene expres-

sion (r2) the models explained, stricter targeting resulted in fewer significant models (Fig. 3.2C).

While there was a high correlation between the variance explained in individual genes’ expression,

when there was disagreement, the targeted models had a lower r2 (Fig. 3.3). This, coupled with

the r2 threshold required to be significant (Methods), likely explains the drop in the number of

significant models. The models that were significant in both the Full set and targeted sets were

those that had higher numbers of SNPs and explained more variance (Fig. 3.2D&E). This suggests

that those models lost by selected targeted SNPs were lower-confidence ones.

While these results are encouraging for the applicability of PrediXcan to lower-coverage data,

they do not speak to the performance of the targeted models on data independent of the training

set. We therefore applied models trained on both the 1240k set and top600k set to all 2504 people

in 1kG. We then compared the predictions obtained in those cases to those obtained by the Full

models. We found that the targeted models generally predicted the same patterns of expression as

the full ones did, although it varied by specific model (Fig. 3.4). This comparison could therefore

be useful for filtering models in downstream analyses, allowing focus on those that are consistent

when given targeted variants.
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Figure 3.2: Targeted models show overall decrease in performance.
(a) Schematic of creating targeted variants sets to train PrediXcan models. (b) Number of SNPs in
each set of models for Whole Blood. (c) r2 between predicted and observed expression for each
model in Whole Blood. By definition, significant models had to have r2 > 0.01. (d) Number of
SNPs and (f) r2 in models identified as significant in both the Full set and either the 1240k or
top600k Set (metrics plotted are those from the Full set). Full set replotted for comparison. Other
tissues tested matched trends.

When comparing by individual, Both sets of targeted models were reasonably consistent with

the Full models (Fig. 3.5A). Interestingly the more highly-targeted models had higher median and

lower variance in agreement with the Full set (median ρ=0.67 for 1240k, ρ=0.80 for top600k).

This is likely due to the enrichment for better models caused by using fewer SNPs. Overall,

these results suggest that limiting the available SNPs does impact the ability of this framework to

model gene expression. However, it does not hugely impact the ability to gain information about

regulatory patterns of more easily-modeled genes.
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Figure 3.3: Scatterplots of training r2

for (a) 1240k models and (b) top600k models vs. Full models in Whole Blood. Other tissues tested
matched trends. r2 is calculated over observed vs. predicted expression.
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Figure 3.4: Targeted models predict consistent gene regulatory patterns.
(a) Pearson r by model between Full model 1kG predictions and (a) 1240k and (b) top600k mod-
els for all genes in 4 tissues- Liver, Ovary, Whole Blood, Skeletal Muscle. Agreement between
predictions made on all 1kG individuals using Full models vs. 1240k or top600k models.

3.4 Targeting models increases susceptibility to missing data

Because models trained on variants targeted to a particular dataset use fewer variants, it is

possible that they would be more susceptible to missing data than the full models. Therefore the

outstanding question is whether model performance is more consistent when trained on fewer SNPs

without a large missing data percentage, or if it is better to include more SNPs during training,

but allow more missing data during application. To answer this, we applied our targeted models

described above to 1kG genomes downsampled to match the various sets of SNPs used during

model training and compared their agreement with the full models applied to the full genomes.
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For the top600k models, we further downsampled the application set to 500k SNPs using the same

methodology.

In line with our initial findings, we found that all models lost consistency when applied to

genomes with missing SNPs (Fig. 3.5B). The 1240k models maintained the highest agreement

with the Full models when applied to incomplete data (median ρ=0.61, vs 0.55 and 0.39 for Full

and top600k models, respectively), though they also had a larger variance in agreement. The Full

models likely did worse because there was a much larger drop in the number of SNPs available

compared to training, while the top600k models’ reliance on fewer SNPs may have increased their

susceptibility to missing SNPs. This suggests that a balance between targeting model training for

the dataset in question and allowing some missingness is the best course of action.
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Figure 3.5: Models with fewer SNPs in training are more susceptible to missing data.
a) Spearman rho between predictions on 1kG individuals using Full vs 1240k models and top600k
models with all SNPs available. b) Spearman rho between predictions of Full models applied
to 1kG with all SNPs available vs downsampled 1kG genomes. In X-axis labels, the top row
indicates what models were used, and the bottom row indicates what SNPs were available from
the 1kG genomes.
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3.5 Discussion

Overall, PrediXcan models perform best when there is a large number of variants available to

train them and these variants are also assayed in the application population. If the training variants

are limited in number, the significant models decrease in number (by as many as 2000 for top600k

models in Whole Blood), though the performance of those models is not drastically altered. If

missing variants are prevalent in the application data, model predictions become more unstable

(median Spearman rho as low as 0.38 for top600k models with missing data vs. Full models and

all SNPs).

However, millions of variants are not required for PrediXan models to be informative about

gene expression. These simulations show that targeting the training SNPs specifically to the dataset

of interest allows performance to be maintained better than if the models are trained on a larger

set of SNPs that includes many that are not present in the application cohort (median Spearman

ρ=0.67 for 1240k models vs. 0.55 for Full models with missing data vs. Full models and all SNPs).

Collectively, while small percentages of missing data do not cause drastic decreases in model

performance, using too few SNPs in training does increase the susceptibility to incomplete data.

Therefore, while it is advisable to target training data to the application, it is better to err on the side

of including more SNPs initially while allowing some to be missing in some samples the models

will be applied to. In our test case, for example, we would opt for models trained only with the

variants on the genotyping chip commonly used in aDNA research, and then select samples with a

low percentage of missing variants to run downstream analyses on.

In addition to better understanding the impact of limited data on genetic-based models, this

work demonstrates the power of simulated data for better understanding how models behave under

different conditions. This allows for better-informed decision making about what will work for a

given dataset. Simulations also provide additional criteria for filtering both samples and genes to

those for which the given framework and conditions will work. In our test case, we would filter the

samples to which we’d apply PrediXcan models to just those within a certain threshold of missing

SNPs, based on the simulations described here. In addition, we would filter the specific models
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under consideration to include those that demonstrated robust predictions when limited data were

available.

Overall, these results suggest that PrediXcan and other similar methods can retain utility even

when variant data are limited, as long as the models are trained for the specific application and their

limitations properly taken into account. This is encouraging for the expansion of gene regulatory

studies into datasets that do not exactly match the training data, and indicates that it is possible and

potentially useful to balance data quality requirements in terms of numbers of SNPs with called

genotypes with obtaining a larger sample size. As newer, more accurate methods are developed,

it will be important to keep this aspect of their performance in mind, and encourage their use in

diverse applications.

3.6 Methods

Training and evaluating models. We trained PrediXcan models using code adapted from the

PredictDB pipeline. We trained all models on RNA-seq from 4 tissues collected post-mortem,

and whole genome sequencing data from GTEx version 8110. The tissues were Skeletal Muscle,

Whole Blood, Liver, and Ovary, and were selected to represent a range of available sample sizes.

We evaluated each models by calculating an r2 between the predicted expression and observed

expression. To be considered significant, a model had to pass an FDR correction in that tissue and

have and r2 > 0.01.

Simulating random missing data. For each percentage missing threshold, we randomly se-

lected 20 European individuals from 1kG87, then randomly removed that percentage of genotype

calls from their genomes before applying PrediXcan models to the simulated genomes. For each

downsampled genome, we calculated a Spearman correlation between the predicted regulation of

each gene in 4 tissues for the downsampled vs. the full genome. Therefore, each box in Fig. 3.1B

has 80 (20× 4) points. We then calculated the Spearman correlation between the median corre-

lation between downsampled and full model predictions for each threshold and the percentage of

SNPs missing at that threshold.
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Simulating matched missing data. For our example study population, we used 3383 ancient

human samples compiled and made available by the Reich lab on March 1, 2020 (v42.4). Our set

includes all that passed their QC process. We picked three random Europeans from 1kG, then for

each ancient sample we created three matching downsampled genomes that were missing exactly

the same complement of SNPs. For each downsampled genome, we calculated the Spearman

correlation between the predicted regulation of each gene in all 4 tissues for the downsampled vs.

the full genome.

Selecting target SNPs for model training. We chose three sets of variants for training PrediX-

can models. The ”full set” consisted of all variable sites identified in GTEx v8 (this included both

SNPs and short indels, hg38 coordinates). The “1240k set” was formed by intersecting the full set

with the set of variants genotyped on the 1240k chips, which totalled 714,959 SNPs after lifting

them over to hg38. Lastly, we assembled the ”top600k set” of SNPs, which is a subset of the

1240k set. To do this, we calculated the “support” for each SNP; for N aDNA samples, support

equals ∑
N
n=1 NumSNPsn, where NumSNPs is the number of SNPs successfully called in sample n.

In other words, support for a SNP is the number of samples in which that SNP was successfully

genotyped, weighted by the quality (i.e. number of genotyped SNPs) of the sample. A SNP can

therefore obtain a high support either by being genotyped in many low-quality samples, or in fewer

high-quality samples. We ranked the SNPs by their support, and identified the value at which 600k

SNPs were above it, then used all SNPs with support equal to or greater than that value for our

top600k set (N= 599,900). For the purposes of simulating the behaviour of models trained on those

SNPs when applied to incomplete data, we further downsampled that SNP list to be the 500k SNPs

with the highest support (“top500k”; N = 499,666)
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Chapter 4

TRACING GENE REGULATORY CHANGES IN RECENT HUMAN EVOLUTION

4.1 Introduction

In previous chapters, we showed that statistical methods built to predict biological characteris-

tics from large-scale genomic data can be instrumental in filling gaps in evolutionary studies. This

is particularly true in the cases where we cannot study those characteristics by another method.

While we previously focused on gene regulatory and phenotypic characteristics of Neanderthals

and Denisovans, many of the same questions remain unanswered in more recent human evolution.

Within the last several years, the number of ancient DNA (aDNA) samples from anatomically

modern humans (AMHs) has increased dramatically46. These samples span the globe, and cover

time periods from several hundred to tens of thousands of years ago. While this is a potentially rich

data source for understanding more recent genetic changes and adaptation that have taken place

at the population level since AMHs left Africa, there are several challenges to overcome. First,

while the samples are often paired with archaeological information from the site where they were

found, this sort of information is limited to what can survive thousands of years in the grounds,

which usually does not include soft tissues. Second, due the complexity of many phenotypes and

gaps in biological understanding, there is a lack of large-scale methods to draw conclusions about

phenotypes based on genetic information alone.

To date, most studies have focused on comparing aDNA from different regions in order to

understand where and when people moved54,56. Of particular interest has been the population-

level shifts from a nomadic hunter-gatherer lifestyle to that of pastoral herding and to stationary

agricultural farming. This change had profound implications for multiple aspects of life. While

this included changes in day-to-day activities and population density, it also involved substantial

dietary shifts, including increasing reliance on domesticated grains41,111. This shift is likely to

have resulted in changing selective pressures as populations changed circumstances.
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Studies done in modern populations have identified key differences in a handful of metabolic

traits112,113. In addition, scans for signals of recent selection have linked selected regions to

changes in specific genes. This task is easier when it involves a protein-coding change, but the

vast majority of recent evolutionary change is driven by more subtle effects caused by changes in

gene regulation72,114. One of the few loci that has been identified in this category is the FADS1

gene. Increased expression of this gene is associated with an increased ability to metabolize nutri-

ents from grains, and alleles that increase its expression are known to have increased in frequency

after populations changed to an agricultural lifestyle71,115.

However, in many cases, the mechanistic explanation for the observed selection remains poorly

understood. For example, the leptin receptor (LEPR) is surrounded by a haplotype that has under-

gone recent positive selection116, and protein-coding changes have been implicated in increased

cold tolerance117. However, altered expression of this gene is also associated with altered appetite

regulation and metabolism118,119, and it remains unknown which association is the source of the

selective pressure, and by which mechanism120. In addition, examples like the previous two, where

selection signals can be confidently attributed to specific genes on the basis of known function or

mendelian phenotypes, are the exception. In most cases selection peaks span many genes, with

little indication which might be the one that underwent changes that affected fitness.

To identify genes whose regulation potentially underwent adaptive changes in response to

changes in lifestyle, we applied targeted PrediXcan models to hundreds of ancient humans repre-

senting populations from hunter-gatherer, pastoral, and agricultural lifestyles. As well as recapit-

ulating the known pattern of the FADS1 regulatory haplotype, we identified changes in regulation

of LEPR among lifestyles, suggesting that its function in metabolism and appetite regulation could

have been more relevant for adaptation among this group of individuals. In addition, we show that

broader metabolic and immune pathways are enriched for differences between lifestyles, which is

potentially reflective of both the altered metabolic requirements and immune pressures. This study

is a demonstration of the potential of methods like PrediXcan to shed light on questions of recent

evolution.
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4.2 Defining an ancient human cohort

We collected ancient human samples that were analysed using a variety of sequencing and

genotyping platforms (Methods). Based on the guidelines established in the previous chapter, we

ranked individuals by the number of sites successfully genotyped, and took the top quartile of

individuals, focusing on Eurasians due to sample availability (Fig. 4.1A). The samples ranged in

date from 90 years before present (yBP) to 45,000 yBP, with the majority between 2,500 and 6,000

yBP (Fig. 4.1B).

We then assigned individuals to a lifestyle (hunter-gatherer, pastoralist, or agricultural) based

on literature review about the associated archaeological culture. In general, hunter-gatherers were

at sites that showed evidence for meat consumption, while pastoralist sites showed artifacts and

structures associated with animal domestication. Agriculturalists additionally showed evidence for

domesticated grains. This review resulted in 490 ancient individuals with an assigned lifestyle for

study (Fig. 4.1C).

4.3 Imputing gene regulatory differences between ancient humans

Previous work has demonstrated that PrediXcan can impute the genetically regulated compo-

nent of gene expression for thousands of genes, particularly those whose regulatory architecture is

dominated by common variants79. We trained PrediXcan models in 49 tissues from GTEx v8110,

using only the roughly 700,000 variants that were genotyped in the aDNA samples and were vari-

able in GTEx (“1240k Models” in Chapter 3). We considered accurate (FDR < 0.05m r2 > 0.01)

PrediXcan models of autosomal gene regulation.

We then applied these models to our 490 ancient samples, as well as to 503 modern Europeans

from the 1000 Genomes Project87. This resulted in 210,800 models of Ancient Imputed Regulation

(“AIR”) for 14,873 unique genes. Because the output of a PrediXcan model is not a direct proxy

for gene expression in an individual, differences in PrediXcan values between individuals reflect

differences in the genetic regulatory effects of the variants involved in training. Therefore we will
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Figure 4.1: Predicting gene regulatory patterns in ancient humans.
(a) Distribution of the number of SNPs with genotype call in the aDNA samples. Maximum is
1233013, which is the number of SNPs on the 1240k genotyping chip (prior to lifting over to
hg38). The red line is at the 3rd quartile (771029 SNPs), above which are the samples we focused
on. (b) Distribution of the age of eurasian samples in the top quartile in years before present. (c)
We analyzed 490 ancient Eurasians from three lifestyles with sufficient genomic data. Green =
Agriculturalist, Blue = Pastoralist, Yellow = Hunter-gatherer.

refer to any imputed differences as differences in gene regulation.

4.4 AIR identifies regulatory changes relevant to diet changes

To demonstrate this method’s potential, we applied it to genes previously suggested to be in-

volved in shifts in ancient human diets. We first compared the predicted regulation of FADS1

between agriculturalists, pastoralists, and hunter-gatherers (Methods). FADS1 showed significant

significant differences in 21 tissues. Furthermore, in each tissue, hunter-gatherers had significantly
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lower FADS1 levels than in agriculturalists or modern Europeans, as would be expected from their

diets (Fig. 4.2A). 32 ancient Africans follow a similar trend, indicating this is not specific to the

Eurasian population (Fig. 4.2B). Unsurprisingly, SNPs driving this pattern are in linkage dise-

quilibrium (LD) with the haplotype implicated in previous evolutionary studies (Fig. 4.2C; Table

4.2)71. Overall, FADS1 AIR is also negatively correlated with the date of the sample (Spearman

ρ= –0.32, P = 1.95×10−20, which also agrees with known allele frequency trajectories.
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Figure 4.2: Ancient AMHs show significant differences in regulation of key diet genes
(a) FADS1 shows significant difference in predicted normalized expression in Subcutaneous Adi-
pose tissue by lifestyle (Kruskal-Wallis P = 5.7× 10−24), as well as in 20 other tissues. (b) 27
ancient Africans follow a similar trend in expression differences to that seen in ancient Eurasian
populations. (c) Breakdown of the 8 SNPs in the model of FADS1 in Adipose Subcutaneous tis-
sue and their presence in representative ancient Eurasians across a range of predicted normalized
expression values. Cells are coloured by the weight that SNP contributed to the prediction, while
the circles indicate the alleles present in that individual (filled = homozygous effect, empty = ho-
mozygous reference). A grey square indicates the SNP was ungenotyped in that individual. The
vast majority of ancient samples appear homozygous due to being extremely low-coverage, such
that many sites are represented by only a single read. (d) LEPR shows a significant difference
by lifestyle in Cerebellum (Kruskal-Wallis P = 3.6×10−17). Plotted with 503 modern Europeans
for comparison. Green = Agriculturalists, Blue = Pastoralists, Yellow = Hunter-Gatherers. AIR =
Ancient Imputed Regulation.
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Tissue Agri. AIR Past. AIR HG AIR K-W P
Adipose Subcutaneous –0.183 –0.259 –0.480 5.71×10−24

Adipose Visceral Omentum –0.132 –0.158 –0.158 1.79×10−6

Brain Cerebellar Hemisphere –0.882 –1.228 –1.422 8.07×10−19

Brain Cerebellum –0.887 –1.184 –1.716 4.08×10−20

Brain Frontal Cortex –0.391 –0.602 –0.690 1.06×10−21

Brain Putamen basal ganglia –0.360 –0.469 –0.530 2.51×10−6

Cells Cultured fibroblasts –0.712 –0.768 –1.024 7.57×10−9

Colon Sigmoid –0.360 –0.456 –0.859 1.26×10−21

Esophagus Gastroesophageal Junction –0.378 –0.426 –0.579 2.27×10−21

Esophagus Mucosa –0.620 –0.769 –0.836 4.87×10−10

Esophagus Muscularis –0.319 –0.409 –0.506 1.47×10−9

Heart Atrial Appendage –0.225 –0.281 –0.382 6.03×10−9

Heart Left Ventricle –0.169 –0.330 –0.924 2.52×10−26

Lung –0.106 –0.154 –0.237 2.56×10−25

Muscle Skeletal –0.410 –0.674 –0.787 3.24×10−28

Nerve Tibial –0.560 –0.748 –0.868 2.84×10−9

Pancreas –0.452 –0.882 –1.414 4.40×10−18

Stomach –0.401 –0.641 –0.872 8.00×10−27

Testis –0.610 –0.774 –0.862 1.09×10−13

Thyroid –0.295 –0.483 –0.649 1.27×10−21

Whole Blood 0.0914 0.108 0.132 7.57×10−6

Table 4.1: FADS1 models with significant differences by lifestyle
AIR (Ancient Imputed Regulation) given as the median of that group. FADS1 was modeled in an

additional 9 tissues.

We next imputed the regulation of LEPR, another gene with nearby signatures of selection

potentially relevant to its function in appetite or cold tolerance, across ancient individuals from

the three lifestyle groups. LEPR was significantly divergently regulated between groups in the

cerebellum (Fig. 4.2D) (the only brain tissue with a model for LEPR), both adipose tissues, and

several other tissues. In each tissue, it was consistently predicted to be downregulated in Agricul-
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Model SNP rsID Weight Haplotype Tag SNP r2

rs2072114 –0.111 B rs174546 0.340

rs2072114 –0.111 C rs102274 0.329

rs2072114 –0.111 D rs174576 0.421

rs174549 –0.0914 B rs174546 0.918

rs174549 –0.0914 C rs102274 0.892

rs174549 –0.0914 D rs174576 0.673

rs174556 –0.0380 B rs174546 0.914

rs174556 –0.0380 C rs102274 0.889

rs174556 –0.0380 D rs174576 0.675

Table 4.2: FADS1 model SNPs LD with established haplotype.
The 3 highest-weight SNPs from Subcutaneous Adipose. Haplotype labels correspond to those in

Mathieson & Mathieson (2018)71.

turalists compared to the other two groups. Given that its function in appetite regulation primarily

involves leptin signalling between adipose tissues and the brain, this suggests a possible mecha-

nism behind the observed selection signal. This is particularly intriguing given the association of

decreased LEPR function with obesity and metabolic disorders121,122. Collectively, these results

demonstrate the potential for the imputation of gene regulation in ancient samples to both identify

genes for which allele frequency shifts likely resulted in population-level changes in regulation,

and to suggest mechanistic explanations for previous observations of selection.

4.5 Housekeeping genes are enriched among genes with differences

Encouraged by the identification of genes with previous support for being influenced by the

shift in diets, we next explored whether PrediXcan could identify trends in the regulation of sets

of genes with functions or evolutionary histories potentially relevant to the lifestyle shifts. First,

we compiled a set of genes that have experienced stabilizing selection on their levels of gene

expression across many species123. Given such long-term stability, we expect these to maintain
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Tissue Agri. AIR Past. AIR HG AIR K-W P
Adipose Subcutaneous –0.504 –0.374 –0.325 4.68×10−9

Adipose Visceral Omentum –0.251 –0.0661 –0.0555 2.87×10−15

Brain Cerebellar Hemisphere 0.00454 0.199 0.317 5.87×10−16

Brain Cerebellum –0.191 0.0699 0.0395 3.62×10−17

Esophagus Gastroesophageal Junction –0.0109 0.0443 0.174 3.73×10−13

Heart Atrial Appendage –0.136 –0.0663 –0.0537 4.80×10−16

Testis –0.246 –0.0970 –0.0659 1.77×10−20

Whole Blood 0.0559 0.211 0.178 6.15×10−6

Table 4.3: LEPR models with significant differences by lifestyle
AIRs given are medians. LEPR was modeled in an additional 11 tissues.

similar regulatory patterns across population, regardless of lifestyle. Indeed, these selected genes

show no enrichment for significant differences between lifestyle groups across tissues (Table 4.4).

Similarly, we next analyzed genes that are intolerant to loss-of-function coding variation in modern

humans124 (Methods). We predicted that regulatory variation for genes with such strong coding

constraint in modern populations might also be unfavourable. As expected, these genes were

significantly depleted among the genes with significant differences across the ancient groups (OR

= 0.89, 95% CI [0.8131,0.9833]; Fisher’s Exact P = 0.021).

The last set of genes we explored were housekeeping genes125; given their importance to funda-

mental cellular processes, we hypothesized that they too would be depleted among the significantly

divergently regulated genes. To the contrary, they were significantly more likely to show a signifi-

cant difference across the lifestyle groups in at least 1 tissue (OR = 1.14) than all genes overall. By

definition, housekeeping genes tend to have robust expression in all tissues, so this pattern could

partially be explained by an increased power to model changes in their regulation in multiple tis-

sues. However, many housekeeping genes are also involved in basic cellular metabolism126, which

could require fine tuning in response to changes in nutrient sources or other environmental shifts.

Together, these results demonstrate the ability of this method to highlight particular gene sets of
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interest, and suggest targets for future studies.

Gene Set N Modeled % Significant OR [95% CI] Fisher’s Exact P
Stabilizing Selection 4519 40.6 0.84 [0.6648, 1.0831] 0.19

LoF-Intolerant 2195 36.5 0.89 [0.8131, 0.9833] 0.021

Housekeeping 3127 41.2 1.14 [1.0524, 1.238] 0.0014

Table 4.4: Odds ratios for gene sets
Overall, 38.7% of genes showed a significant difference in AIR in at least one tissue (per-tissue

Bonferroni correction). The odds ratio was calculated as the odds of a gene’s presence in the
category given it being a significant gene. Not all genes were tested in the stabilizing selection

analysis, so the OR only included those that were (44.6% of tested, but unselected, genes showed
a difference).

4.6 Genes divergently regulated between lifestyle groups are enriched for immune and

metabolic functions

While the previous analyses targeted specific genes or gene sets of interest, our approach can

also generate hypotheses through genome-wide analyses. Overall, 5759 genes showed significant

divergent regulation between lifestyles in at least 1 tissue (median 2 tissues; Fig. 4.3A), and an

average of 9.8% of genes in each tissue were divergent (Fig. 4.3B). Most significantly divergent

genes had relatively small changes in magnitude by group (i.e. maximum 1.17 magnitude dif-

ference between hunter-gatherers and agriculturalists in Subcutaneous Adipose), and distributions

generally overlapped, suggesting that, as is the case with FADS1 (Fig. 4.2A&C), these differences

are often driven by variation in allele frequencies between groups, not complete presence/absence

of alleles.

We next tested for overall patterns in the function of genes that showed divergent regulation in

specific tissues. In each tissue, we conducted over-representation analysis to identify the groups of

genes most over-represented among the significant genes. The most-enriched term in Whole Blood

was response to leptin (6.56x; Table 4.5). This category included both LEPR, which was the subject

of a targeted analysis above, as well as two other genes in that pathway (SIRT1 and BBS2). The top
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Figure 4.3: Thousands of genes are divergently regulated between lifestyle groups.
(a) Distribution of the number of tissues in which each gene is significantly dif-
ferent between lifestyles. (b) The proportion of significant models out of all mod-
els in a tissue. Tissues are in alphabetical order: Adipose Subcutaneous, Adi-
pose Visceral Omentum, Adrenal Gland, Artery Aorta, Artery Coronary, Artery Tibial,
Brain Amygdala, Brain Anterior cingulate cortex, Brain Caudate basal ganglia,
Brain Cerebellar Hemisphere, Brain Cerebellum, Brain Cortex, Brain Frontal Cortex,
Brain Hippocampus, Brain Hypothalamus, Brain Nucleus accumbens basal ganglia,
Brain Putamen basal ganglia, Brain Spinal cord cervical c-1, Brain Substantia nigra,
Breast Mammary Tissue, Cells Cultured fibroblasts, Cells EBV-transformed lymphocytes,
Colon Sigmoid, Colon Transverse, Esophagus Gastroesophageal Junction, Esopha-
gus Mucosa, Esophagus Muscularis, Heart Atrial Appendage, Heart Left Ventricle, Kid-
ney Cortex, Liver, Lung, Minor Salivary Gland, Muscle Skeletal, Nerve Tibial, Ovary,
Pancreas, Pituitary, Prostate, Skin Not Sun Exposed Suprapubic, Skin Sun Exposed Lower leg,
Small Intestine Terminal Ileum, Spleen, Stomach, Testis, Thyroid, Uterus, Vagina,
Whole Blood.

ten terms also included glycoprotein and aminoglycan metabolic processes, as well as more basic

cellular functions. The presence of more housekeeping-like functions suggests that the enrichment

observed in the previous analysis is not entirely due to power differences. On the other hand,

the top ten terms in Subcutaneous Adipose included several immune-related functions, including

response to interferon-gamma, as well as genes involved in transporting organophosphate esters

and other xenobiotic factors (Table 4.6). Differences in these genes related to interacting with the

environment are more likely related to differences in living conditions between the groups than

specifically related to diet.

We next tested for patterns in the function of genes that showed divergent regulation overall.
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Table 4.5: Top 10 enriched GO terms in Whole Blood.

GO term Num. Genes Enrichment P
response to leptin 3 6.56 0.0066

protein hydroxylation 5 3.91 0.0062

multivesicular body sorting pathway 4 3.65 0.019

neuromuscular process 6 2.98 0.012

cytokinesis 9 2.19 0.019

aminoglycan metabolic process 11 2.07 0.014

negative regulation of cell activation 11 2.07 0.014

glycoprotein metabolic process 22 2.02 9.3×10−4

carbohydrate derivative catabolic process 12 1.90 0.021

regulation of protein stability 13 1.90 0.017

We conducted gene set enrichment analysis using biological process GO terms on significant genes

ranked by the number of tissues they were significant in. The majority of the positively-associated

terms were housekeeping functions (cell cycle regulation, metabolic processes) (Appendix 2, Table

6.5), recapitulating the targeted analysis in the previous section. Antigen processing and presenta-

tion, which includes 5 HLA genes that showed significant regulatory differences in as many as 44

tissues, was also enriched among genes with significant differences in many tissues.

4.7 Discussion

In this study, we applied PrediXcan models of gene regulation from 49 tissues to hundreds of

ancient humans from three different lifestyles—Hunter-Gatherers, Pastoralists, and Agricultural-

ists. We found that over 5,000 genes showed evidence for divergent regulation among the three

groups in at least one tissue. Our results recapitulated known instances of altered gene expression

relevant to population changes diet and lifestyles, such as FADS1, and they also suggested expla-

nations for previously observed signals of selection on LEPR. Altered expression of LEPR in these
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Table 4.6: Top 10 enriched GO terms in Subcutaneous Adipose.

GO term Num. Genes Enrichment P
DNA-templated transcription, elongation 9 4.41 9.6×10−5

multi-organism cellular process 9 4.25 0.0045

secretion by tissue 3 4.25 0.028

peptide catabolic process 3 3.82 0.038

interstrand cross-link repair 6 3.48 0.0057

response to interferon-gamma 14 2.62 6.4×10−4

antigen processing and presentation 12 2.51 0.0023

organophosphate ester transport 7 2.35 0.026

regulation of cell division 7 2.23 0.034

negative regulation of defense response 9 2.05 0.029

groups, as well as the regulatory divergence seen in two other genes in the leptin processing path-

way (SIRT1, BBS1), suggest that appetite and adipose regulation may be relevant for adaptation in

these groups in addition to the connection to cold tolerance. While housekeeping genes were en-

riched among significantly divergent genes, in part because of the increased power to model them,

overall genes were enriched for metabolic and immune processes, indicating that these pathways

are the most likely to have been affected by altered gene regulation during recent human evolution.

The frequent occurrence of metabolic and immune genes is partly to be expected. The shift

from nomadic hunting and gathering to stationary farming brought many changes in lifestyle. Diet

is perhaps the most striking, and population-level shifts in gene expression would likely been re-

quired to optimize metabolism of the differing types and amounts of nutrients available. Similarly,

population density and interactions with other individuals and species changed as well, making it

likely that human immune systems had to adapt to more and different pathogens over the thousands

of years covered by this study.

Many studies have found examples of selection acting on variation that was present at low lev-
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els in populations, influenced only by genetic drift, for a long time prior to selection beginning to

act71,127,128. Our study supports this scenario in many cases by the overlapping distributions of

predicted gene expression; while there are group-level shifts, the range of the predictions is fairly

constant. Because this method focuses on the genetically-regulated component of gene expression,

it cannot distinguish between cases where the actual expression changed and cases where the reg-

ulatory architecture turned over. Downstream analyses on highlighted genes and functions will be

necessary to distinguish these scenarios and identify the functional variants.

Overall, this study demonstrates the power of methods trained to predict molecular phenotypes,

such as gene expression, to study evolution by focusing on variants with a demonstrated relation-

ship to those phenotypes. Our approach is well-positioned to take advantage of the increasing

availability of modern and ancient genome data to provide both mechanistic explanations of se-

lection signals observed in other studies and to generate hypothesis about phenotypic differences

between ancient and modern groups. While this study focused on one specific question about

the gene regulatory shifts in response to changes in lifestyle, similar methods could be applied in

many other questions and sets of ancient samples. Given the importance of gene regulation in re-

cent evolution, this is an important step in identifying candidate regions that have been shaped by

recent human evolution. Further analyses will contribute to understanding the genome’s response

to large-scale environmental changes and the impact of these changes on humans today.

4.8 Methods

Human Genome Samples. We obtained ancient human genotypes from a set compiled and ana-

lyzed by the Reich lab (v42.4; accessed March 1, 2020). We filtered out any that did not pass

their QC procedure, then ranked the samples by genotype count (i.e. the number of SNPs with a

genotype call in that sample). We then manually assigned lifestyle by literature review based on

archaeological information about the site and previous research about the associated culture. We

then filtered samples by their continent of origin, and primarily focused on 490 ancient Eurasians.

For a modern comparison, we used 503 European samples from the 1000 Genomes Project87.
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PrediXcan Models. Models were trained on whole genome sequencing and RNA-seq data

from GTEx v8 in 49 tissues using 1̃,240,000 SNPs that were genotyped by first enriching for those

targeted SNPs (“1240k set”)48,129. For each tissue, we filtered models to those that explained a

significant amount of variance (FDR < 0.05, r2 > 0.01). In addition, we filtered models such that

we only included those that high correlations (r > 0.5) on predictions of all 2504 1kG individuals

when trained on these 1240k SNPs vs. all available SNPs (see Chapter 3 for more details). We

calculated LD between variants in all 1kG Populations using LDLink130.

We abbreviate the 49 tissues considered as follows: Adipose - Subcutaneous: ADPS, Adipose

- Visceral Omentum: ABPV, Adrenal Gland: ADRNLG, Artery - Aorta: ARTA, Artery - Coro-

nary: ARTC, Artery - Tibial: ARTT, Brain - Amygdala: BRNAMY, Brain - Anterior Cingulate

Cortex: BRNACC, Brain - Caudate: BRNCDT, Brain - Cerebellar Hemisphere: BRNCHB, Brain

- Cerebellum: BRNCHA, Brain - Cortex: BRNCTX, Brain - Frontal Cortex: BRNFCTX, Brain

- Hippocampus: BRNHPP, Brain - Hypothalamus: BRNHPT, Brain - Nucleus Accumbens basal

ganglia: BRNNCC, Brain - putamen basal ganglia: BRNPTM, Brain- Spinal Cord Cervical C-1:

BRNSPN, Brain- Substantia Nigra: BRNSN, Breast: BREAST, Cells - Transformed Fibroblasts:

FIBS, Colon - Sigmoid: CLNS, Colon - Transverse: CLNT, Esophagus - Gastroesophageal Junc-

tion: ESPGJ, Esophagus - Mucosa: ESPMC, Esophagus - Muscularis: ESPMS, Heart - Atrial

Appendage: HRTAA, Heart - Left Ventricle: HRTLV, Kidney Cortex: KDNY, Liver: LIVER,

Lung: LUNG, Minor Salivary Gland: MNRSG, Cells- EBV-transformed Lymphocytes: LYMPH,

Ovary: OVARY, Pancreas: PNCS, Pituitary: PTTY, Prostate: PRSTT, Skeletal Muscle: MSCSK,

Skin - Not sun-exposed: SKINNS, Skin - Sun-exposed: SKINS, Small Intestine: SMINT, Spleen:

SPLEEN, Stomach: STMCH, Testis: TESTIS, Thyroid: THYROID, Tibial Nerve: NERVET,

Uterus: UTERUS, Vagina: VAGINA, Whole Blood: WHLBLD.

Identifying significant differences in predicted expression. To identify genes with significant

differences in predicted gene expression between the three lifestyle groups, we conducted a Kruskal-

Wallis test for each gene model. To account for multiple testing, we used Bonferroni correction

within each tissue. Genes that pass that correction in at least 1 tissue are said to show evidence for
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a significant difference in regulation. We did not correct for the number of tissues tested, because,

while gene expression can be correlated across tissues, those patterns remain poorly understood.

Gene Set Enrichment Analyses. For the targeted gene set enrichment analyses, we used three

gene sets; 1) genes whose expression in particular tissues is under stabilizing selection across

17 mammalian species123; genes that are intolerant to loss-of-function variants in their protein

products(called if the upper bound of the 95% confidence interval of the observed/expected ratio is

lower than 0.35)124; and 3) housekeeping genes that show consistent expression across tissues125.

We calculated an odds ratio for each, and used a Fisher’s exact test to determine significance. For

the genes under stabilizing selection on gene expression, we considered only those tested in that

study before calculating statistics.

To conduct functional enrichment analyses on the full set of significant genes, we took two ap-

proaches. For the first, we ranked all genes by the number of tissues in which they show significant

regulatory differences, then conducted gene set enrichment analysis using WebGestalt with default

parameters131. For the second, we focused on specific tissues. For each one, we analyzed all genes

with significant divergence in that tissue between the lifestyles, then conducted over-representation

analysis with WebGestalt under default parameters. For both we used the annotations for the bio-

logical process GO terms.
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Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

The decades since the human genome was completed have been fruitful for understanding the

impact processes of evolution have on human genetics and phenotypes. However, the genome is a

big, complicated place, and much is still unknown. While we can identify regions of the genome

that appear to have been subject to selection, we can rarely explain the mechanisms and reasons

behind those signals. In addition, it has been difficult to confidently identify variants with effects

on evolutionarily-relevant phenotypes genome-wide. Specifically, while we know that changes

in gene regulation have affected recent evolution114, we lack a genome-wide, functionally-based

picture of what genes likely have been affected. In this dissertation, I described the studies we

undertook to fill these gaps in knowledge. We focused on a statistical method called PrediXcan,

which is trained to predict RNA-seq data based on allele counts of nearby genetic variants79, in

order to study combinations of variants and their effect on an intermediate phenotype. This allowed

us to identify genes and pathways likely influenced by changes in gene expression during recent

evolution.

In Chapter 2, we used this framework to study gene regulatory differences between Anatom-

ically Modern Humans (“AMHs”) and two closely-related species: Neanderthals and Denisovans

(“archaic hominins”). Initially we focused on the evolutionary dynamics of Neanderthal genomic

regions that had been removed from AMH genomes since introgression took place. Study of

these regions is complicated to do directly, since they no longer exist in extant cells, making it

difficult to distinguish between ones that were evolutionarily neutral and removed due to genetic

drift, and those that might have been deleterious and selected against. We identified thousands

of genes whose divergent regulation in Neanderthals, and potential phenotypic impact of altering

dosage of those genes, suggested them as candidates for being in the latter category. In order to

identify systems and phenotypes that may have differed in the archaic hominins more broadly,
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we also compared regulatory characteristics between them in general. We identified several cat-

egories, including morphological traits and the immune system, for which many genes showed

large differences in regulation. Some of these were consistent with the limited information in the

archaeological record, but many were novel, which is particularly intriguing in the case of the

Denisovan, given the lack of information about that group. These results established differences in

gene regulatory architecture between AMHs and archaic hominins that will be interesting to follow

up on in the future, and demonstrated the potential for exploring phenotypic differences between

archaic groups from genomic information alone.

However, genomic information is not always of the best quality, particularly when derived from

ancient samples. In Chapter 3, we examined PrediXcan’s ability to be applied on low-coverage

genotyping data. We simulated low-coverage genomes in a variety of ways and characterized the

models’ behaviour under those conditions. To study the flexibility of this framework, we addi-

tionally trained new models with several different variant sets. Overall our results demonstrated

that in many cases PrediXcan models maintain reasonable performance even when applied to low-

coverage genomes. However, there were problems when there was a large mismatch between the

variant set available during model training and that available in the application dataset. It is there-

fore advisable to retrain models using specifically the variants that will be used in downstream

applications. While this means it is impossible to train a set of models that would be useful in all

situations, overall these results demonstrate that this framework is flexible enough to applied in

many different contexts. Additionally, they demonstrate several types of analyses that are useful

for focusing on gene regulation models that will work well in a given situation.

In Chapter 4, we applied what we learned in Chapter 3 to study differences in gene regu-

lation that exist between ancient AMH groups from three different lifestyles: hunter-gatherers,

pastoralists, and agriculturalists. While a few genes are known to have regulatory differences be-

tween these groups71,132, genome-wide tests for differences had not been done. We identified

thousands of genes that showed a significant difference in regulation, many of which are involved

in metabolism and the immune system. These included a gene, LEPR, for which there was an
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observed signal of recent selection without a mechanistic explanation. Follow-up studies will be

informative for understanding changes in response to diet shifts, and which were in response to

changes in activity or population density. Overall, this study demonstrated the utility of this frame-

work both for suggesting explanations for known patterns of genome variation, and for suggesting

phenotypes and pathways that may have differences between populations.

5.1 Contextualizing our results

Overall, our results provide additional support for known hypotheses about particular genes and

pathways being altered during recent evolutionary history, and identify new candidate regions that

could be under some form of selection on their regulation. Several studies in modern humans had

implicated brain functions as being influenced by introgressed Neanderthal variants62,66,63,67, and

it is not terribly surprising that genes affecting the brain were included among those divergently

regulated by regions that did not survive in AMH genomes. However, particularly in the case of

genes in introgression deserts, our results narrow down the list of potential genes that might be

interesting to study further, and suggested that, among non-introgressed regions of the genome,

introgression deserts are remarkable more for their unusually low recombination rates, not due to

having multiple important divergently regulated genes. Under this model, the low recombination

rate at deserts causes selective pressure to be applied over a larger area of the chromosome than

in regions with higher recombination rate. Similarly, the divergent regulation of genes involved

in reproductive phenotypes ties in well with the hypothesis of there being barriers to introgression

related to reproductive fitness133,134, and provides additional loci to examine.

Findings related to phenotypic differences between archaic hominins are exciting and poten-

tially novel, but are also more difficult to confirm. As the immune system is among the fastest-

evolving systems, and there are many population-level differences in it in AMHs135, identifying

differences in the regulation of immune genes between different Neanderthal populations, although

novel, is not surprising. However, given that population-level data for Neanderthals is increas-

ing81,136, it will be exciting to follow up with more individuals. In the case of Denisovans, there
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is so little physical evidence about them that findings about their phenotypes are simultaneously

the most exciting and the most difficult to follow up on. Skeletal differences between AMH and

Neanderthals are well-established137, and there has been a general assumption that Denisovans

were similar based on the small number of fragments found138. A recent study done by predicting

differentially methylated regions in Denisovan bone suggested specific morphological characteris-

tics in which they may have differed from both AMHs and Neanderthals139. Some of those traits

overlap with those affected by genes that we identified as having Denisovan-unique regulation, and

in the future it will be informative to explore those more.

The proof-of-concept analysis of regulatory patterns in different AMH lifestyles provided sup-

port for pre-existing hypotheses and suggested several new ones. Studying genetic responses to

diet changes is of particular interest in modern populations because of the prevalence of metabolic

disorders such as obesity140, and the understanding the evolutionary history of those traits could

be informative, or help identify candidate regions to explore in more detail. In the case of LEPR,

we demonstrated the ability of our method to provide explanations for signals of selection already

observed116. More broadly, our analyses highlighted metabolic and immune genes, which is what

we expected to find. However, it might be informative to further dissect the specific genes in-

volved to gain a more-detailed picture of how specific pathways might have changed. Collectively,

these show the utility of PrediXcan as a tool for understanding genome-wide changes in recent

evolutionary history.

5.2 Limitations of PrediXcan

Despite PrediXcan’s strengths, a major limitation is that it does not directly model gene expres-

sion. Rather, even in the best case scenario where a model includes all variants involved in affecting

a gene’s expression with the correct effect sizes, PrediXcan models the genetically-regulated com-

ponent of gene expression. This quantity is capped by the heritability of that gene’s expression,

and does not take into account environmental influences. These include both responses to physical

environment such as temperature, variables such as age or developmental stage, and also non-

61



sequence-based modes of regulation like DNA methylation. In addition, it focuses primarily on

effects driven by common variants. In our case, particularly when applying it to archaic hominins,

there is some proportion of models are missing relevant variants that were not in the training pop-

ulation in enough numbers to be modeled accurately. This is because the training population is

primarily made up of one AMH population (85% European, 12% African-American)110, which is

not necessarily representative of other populations, and does not include variants that are specific

to Neanderthals or Denisovans. Therefore, in some applications of PrediXcan, we are working

with an incomplete model of genetic regulation.

However, we believe this method can be informative despite its limitations. The molecular

machinery and genetic architecture of gene regulation are largely conserved across humans, and

most common human regulatory variants have similar effects across populations97,98. While Ne-

anderthals and Denisovans are separate species, they were related to AMHs closely enough to have

interbred at least moderately successfully, so we do not expect many genes to have drastic differ-

ences in their mechanisms of regulation. Furthermore, with the aid of collaborators, we showed

that PrediXcan models are capable of predicting accurate regulatory effects for genes affected by

Neanderthal variants, even prevented from seeing Neanderthal variants during training104. There-

fore we expect most of the limitations of this framework to be driven by the inherent difficulty in

trying to predict a trait influenced by multiple variables based on only one.

These issues complicate the interpretation of differences identified by these models. At its most

basic, a predicted difference between two individuals in a model indicates that the variants in the

model are combining to do something different to the regulation of that gene. The most straightfor-

ward result of those differences would be a change in the expression of that gene between the two.

Alternatively, there could be additional, unmodeled, variants in one individual that compensate for

the changes occurring in the modeled variants. This latter option might be indicative of turnover

in regulatory regions such as enhancers, which is a relatively common phenomenon141. This is

impossible to disentangle without additional, detailed lines of evidence, and also means that we

cannot put a direction on our hypothesis of selection acting on some of these regions. In the first
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case, predicted differences could indicate the influence of directional selection changing the gene’s

expression, while in the second there could be stabilizing selection acting to ensure expression is

maintained despite the shifting regulatory landscape. Both cases involve altered regulation (albeit

with different results), and would be interesting to explore in more detail in downstream studies.

5.3 Future directions

There are several avenues that could be explored that could increase the ability of frameworks

like PrediXcan to model gene expression more directly. Different types of statistical models might

prove able to give a more accurate prediction of gene expression values. For example, deep learning

models have proved capable of predicting complicated states of regulatory regions142,143. How-

ever, what these models gain in performance, they often lose in ready understanding of how they

got their predictions. A more fruitful avenue of improvement might therefore be improving the

training data. Datasets from more diverse populations that pair genotype and gene expression

data would increase the number of variants represented in the training data, and minimize con-

cerns about cross-population generalization. In addition, it could be worth exploring the use of

additional biological information to aid predictions. This could take the form of taking greater

advantage of cross-tissue correlations in gene expression to increase power144, or by including

non-sequence information such as methylation state. However the downside of including types of

information in the models is that the application dataset would then need that information as well.

As we learn more about the structure of regulatory landscapes and enhancers, it might be exciting

to incorporate some of that information to help weight or prioritize variants, rather than including

entirely separate variables.

No matter how good a model of gene expression is, however, it will gain the most power when

combined with other downstream analyses. Recent developments in Massively-Parallel Reporter

Assays and CRISPR-based mutagenesis mean that it should soon be (or already is) possible to

test hypotheses about the behaviour of specific regulatory regions and genes at a large scale145,77.

As developments happen in that realm this will become possible dissect much more complicated
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combinations of variants to understand exactly how they impact gene expression.

As a field, paleogenomics is in an exciting phase of expansion, as the number and diversity

of available aDNA samples is rapidly increasing. While, we were able to analyze a handful of

ancient Africans, it will be exciting to have large enough sample sizes to extend analyses of gene

regulation and selection outside Eurasia. Of particular interest would be studying which patterns

of differences, for example those observed between the different lifestyles we studied in ancient

Eurasians, might be universal to the transition in lifestyle as opposed to unique to specific locations

and situations. Studying region-specific effects might also inform the extent to which the specific

environment influences some of these regulatory shifts. These could be connected to longitudinal

studies of populations who have recently made large lifestyle shifts146,147,148, to understand some

of the time scales on which environmental vs. genetic effects occur. In addition, there are increas-

ing amounts of paleoclimatology data becoming available149,150,151, which could be very infor-

mative when intersected with aDNA data to understand population shifts and genetic responses to

specific environmental changes.

In summary, we’ve taken a step toward understanding genome-wide changes in gene regulation

over recent human evolution. We’ve contributed hypotheses about specific genes that can be fol-

lowed up on, and lead to greater understanding of differences between AMHs and close relatives,

as well as AMH responses to large lifestyle changes. This will be useful both in understanding our

history, and predicting what effect future events could have on modern populations.
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Chapter 6

APPENDICES

6.1 Appendix 1

Figure 6.1: The number of DR GWARRs found in each GTEx tissue.
We caution against direct comparisons of the number of DR GWARRs in each tissue due to differ-
ences in power resulting from variation in sample size, genetic architecture, and expression levels
across tissues. See Methods for tissue abbreviations.

6.2 Appendix 2
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Figure 6.2: Distributions of the number of DR genes found in 50 random humans from 1kG.
For 50 random individuals from the 1kG cohort (10 from each continental population), we counted
the number of unique DR genes found across any of the tissues considered. Europeans have the
largest number of DR genes. The other individuals with high DR gene counts are from populations
with significant amounts of admixture with Europeans (AMR; PJL and GIH from SAS (N=6);
ASW and ACB from AFR (N=2)). This suggests that power to detect DR is greatest in the training
population, and that divergence from the training population is unlikely to cause a large number of
false positives. The Altai Neanderthal has significantly more DR genes (2325 total; P ¡ 0.02) than
any modern human, despite its greater evolutionary distance from the training population.
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Figure 6.3: Distribution of the maximum difference in the median imputed regulation between
1000 Genomes populations for all PrediXcan models.
Very few models have large predicted regulation differences between populations.

Figure 6.4: Neanderthal-specific variant density in gene regulatory regions.
(A) Density of Neanderthal-specific variants in the regulatory regions of genes. (B) The percentage
of Neanderthal-specific variants out of all variable sites (observed in humans, Neanderthals, or
both) in a gene region is similar for both DR and Non-DR genes: median 0.182 for DR genes,
0.186 for non-DR genes. The difference is significant due to the large number of genes compared
(P = 0.0095, MWU Test), but is very small in magnitude. The regulatory region is defined as the
gene plus 1 Mb flanking on either side, corresponding to the region considered by PrediXcan.
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Table 6.1: No tissues were significantly depleted or enriched for Neanderthal upregulation com-
pared to the overall proportion of upregulated genes (0.43). See Methods for tissue abbreviations.

Tissue Prop. Up P-value Tissue Prop. Up P-value
ADPS 0.43 1.00 ESPMS 0.67 0.02

ABPV 0.56 0.32 HRTAA 0.47 0.82

ADRNLG 0.35 0.51 HRTLV 0.50 0.64

ARTA 0.29 0.33 LIVER 0.60 0.21

ARTC 0.42 1.00 LUNG 0.48 0.71

ARTT 0.37 0.56 LYMPH 0.44 1.00

BRNACC 0.60 0.35 OVARY 0.60 0.21

BRNCDT 0.50 0.77 PNCS 0.50 0.56

BRNCHB 0.52 0.41 PTTY 0.50 0.76

BRNCHA 0.57 0.12 PRSTT 0.44 1.0

BRNCTX 0.38 0.79 MSCSK 0.32 0.31

BRNFCTX 0.36 0.77 SKINNS 0.60 0.11

BRNHPP 0.18 0.13 SKINS 0.47 0.72

BRNHPT 0.50 0.76 SMINT 0.45 1.00

BRNNCC 0.36 0.60 SPLEEN 0.47 0.81

BRNPTM 0.40 1.00 STMCH 0.46 0.84

BREAST 0.59 0.20 TESTIS 0.41 0.85

FIBS 0.52 0.38 THYROID 0.50 0.49

CLNS 0.62 0.26 NERVET 0.63 0.03

CLNT 0.45 1.00 UTERUS 0.45 1.00

ESPGJ 0.38 0.80 VAGINA 0.43 1.00

ESPMC 0.39 0.73 WHLBLD 0.47 0.72
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Table 6.2: HPO phenotypes enriched in DR genes common to all archaic hominins.

gene set description Num. DR Genes OR P-value
HP:0005736 Short tibia 4 7.146 0.0017

HP:0004691 2-3 toe syndactyly 6 4.149 0.0026

HP:0003330 Abnormal bone structure 31 1.621 0.0034

HP:0001650 Aortic valve stenosis 6 3.783 0.0042

HP:0001007 Hirsutism 10 2.614 0.0042

HP:0006498 Aplasia/Hypoplasia of the patella 5 4.288 0.0051

HP:0002205 Recurrent respiratory infections 26 1.630 0.0071

HP:0001712 Left ventricular hypertrophy 8 2.766 0.0073

HP:0001769 Broad foot 6 3.298 0.0085

HP:0012745 Short palpebral fissure 6 3.216 0.0096

Table 6.3: HPO phenotypes enriched in DR genes among the union of all DR genes in the Altai
and Vindija Neanderthals.

gene set description Num. DR Genes OR P-value
HP:0011065 Conical incisor 4 9.528 0.00063

HP:0006342 Peg-shaped maxillary lateral incisors 3 11.43 0.0018

HP:0011063 Abnormality of incisor morphology 4 6.929 0.0022

HP:0011792 Neoplasm by histology 12 2.499 0.0025

HP:0000698 Conical tooth 4 6.352 0.0031

HP:0000557 Buphthalmos 4 6.098 0.0037

HP:0000676 Abnormality of the incisor 5 4.537 0.0044

HP:0001019 Erythroderma 4 5.444 0.0056

HP:0001000 Abnormality of skin pigmentation 16 1.961 0.0058

HP:0001519 Disproportionate tall stature 3 7.622 0.0063
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Table 6.4: HPO phenotypes enriched in DR genes unique to the Denisovan.

gene set description Num. DR Genes OR P-value
HP:0100710 Impulsivity 3 7.743 0.0063

HP:0001302 Pachygyria 6 3.392 0.00766

HP:0001611 Nasal speech 3 6.361 0.0110

HP:0100803 Abnormality of the periungual region 2 11.87 0.0115

HP:0000954 Single transverse palmar crease 5 3.373 0.0152

HP:0000829 Hypoparathyroidism 2 9.894 0.0165

HP:0001339 Lissencephaly 4 3.958 0.0174

HP:0001805 Thick nail 2 9.133 0.0193

HP:0200039 Pustule 2 9.133 0.0193

HP:0011061 Abnormality of dental structure 7 2.503 0.0198

GO Term N Genes Norm. Enrich P
microtubule organizing center localization 2 1.56 0.017

CENP-A containing chromatin organization 2 1.54 0.011

multi-organism localization 3 1.53 0.015

antigen processing and presentation 12 1.50 0

DNA-templated transcription, elongation 11 1.49 0.003

deoxyribonucleotide metabolic process 3 1.49 0.023

nucleoside bisphosphate metabolic process 15 1.42 0.008

membrane docking 13 1.40 0.006

tRNA metabolic process 20 1.35 0.005

cell cycle checkpoint 20 1.33 0.009

positive regulation of cell cycle 21 1.29 0.006

Table 6.5: Overall enriched biological process GO terms
We conducted GSEA over all genes with at least one significant difference, and ranked them by
the number of tissues there were significant in. None pass an FDR multiple testing correction.
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[18] Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation
and the origin of modern humans. Nature 408, 708–713 (2000). URL https://doi.org/10.
1038/35047064.

[19] Poznik, G. D. et al. Sequencing Y Chromosomes Resolves Discrepancy in Time to Common
Ancestor of Males Versus Females. Science 341, 562 LP – 565 (2013). URL http://science.
sciencemag.org/content/341/6145/562.abstract.

[20] Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of
Homo sapiens. Nature 546, 289–292 (2017). URL https://doi.org/10.1038/nature22336.

[21] Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human di-
vergence to 350,000 to 260,000 years ago. Science 358, 652 LP – 655 (2017). URL
http://science.sciencemag.org/content/358/6363/652.abstract.

[22] Skoglund, P. & Mathieson, I. Ancient Human Genomics: The First Decade.
Annu. Rev. Genom. Hum. Genet 198, 1–824 (2018). URL https://doi.org/10.1146/
annurev-genom-083117-021749.

[23] Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eura-
sia. Nature 571, 500–504 (2019). URL https://doi.org/10.1038/s41586-019-1376-z.

[24] Pagani, L. et al. Genomic analyses inform on migration events during the peopling of
Eurasia. Nature 538, 238–242 (2016). URL https://doi.org/10.1038/nature19792.

72

https://pubmed.ncbi.nlm.nih.gov/30007846 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092560/
https://pubmed.ncbi.nlm.nih.gov/30007846 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092560/
http://www.sciencedirect.com/science/article/pii/S0092867415012593
http://www.sciencedirect.com/science/article/pii/S0092867415012593
http://science.sciencemag.org/content/360/6395/1296.abstract
http://science.sciencemag.org/content/360/6395/1296.abstract
https://doi.org/10.1038/nature01669
https://doi.org/10.1038/nature03258
https://doi.org/10.1038/nature03258
https://doi.org/10.1038/325031a0
https://doi.org/10.1038/35047064
https://doi.org/10.1038/35047064
http://science.sciencemag.org/content/341/6145/562.abstract
http://science.sciencemag.org/content/341/6145/562.abstract
https://doi.org/10.1038/nature22336
http://science.sciencemag.org/content/358/6363/652.abstract
https://doi.org/10.1146/annurev-genom-083117-021749
https://doi.org/10.1146/annurev-genom-083117-021749
https://doi.org/10.1038/s41586-019-1376-z
https://doi.org/10.1038/nature19792


[25] Poznik, G. D. et al. Punctuated bursts in human male demography inferred
from 1,244 worldwide Y-chromosome sequences. Nature genetics 48, 593–599
(2016). URL https://pubmed.ncbi.nlm.nih.gov/27111036https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4884158/.

[26] Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China.
Proceedings of the National Academy of Sciences 110, 2223 LP – 2227 (2013). URL
http://www.pnas.org/content/110/6/2223.abstract.

[27] Fu, Q. et al. A Revised Timescale for Human Evolution Based on Ancient Mitochon-
drial Genomes. Current Biology 23, 553–559 (2013). URL http://www.sciencedirect.com/
science/article/pii/S0960982213002157.

[28] Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance.
Nature 512, 306–309 (2014). URL https://doi.org/10.1038/nature13621.

[29] Galván, B. et al. New evidence of early Neanderthal disappearance in the Iberian Peninsula.
Journal of Human Evolution 75, 16–27 (2014). URL http://www.sciencedirect.com/science/
article/pii/S0047248414001481.

[30] Huxley, T. H. The Aryan Question and Pre-Historic Man (1890).

[31] Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722
(2010). URL http://science.sciencemag.org/content/328/5979/710.abstract.

[32] Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for
archaic adaptive introgression in humans. Nature reviews. Genetics 16, 359–371
(2015). URL https://pubmed.ncbi.nlm.nih.gov/25963373https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4478293/.

[33] Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melane-
sian individuals. Science 352, 235–239 (2016).

[34] Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of
Denisovan and Neanderthal ancestry in present-day humans. Current Biology 26, 1241–
1247 (2016). URL http://dx.doi.org/10.1016/j.cub.2016.03.037.

[35] Skov, L. et al. The nature of Neanderthal introgression revealed by 27,566 Icelandic
genomes. Nature (2020). URL https://doi.org/10.1038/s41586-020-2225-9.

[36] Reich, D. et al. Genetic history of an archaic hominin group from Denisova cave in Siberia.
Nature 468, 1053–1060 (2010).

[37] Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father.
Nature 561, 113–116 (2018).

[38] Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of Human
Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. Cell 173, 53–61.e9
(2018). URL http://dx.doi.org/10.1016/j.cell.2018.02.031.

73

https://pubmed.ncbi.nlm.nih.gov/27111036 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884158/
https://pubmed.ncbi.nlm.nih.gov/27111036 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884158/
http://www.pnas.org/content/110/6/2223.abstract
http://www.sciencedirect.com/science/article/pii/S0960982213002157
http://www.sciencedirect.com/science/article/pii/S0960982213002157
https://doi.org/10.1038/nature13621
http://www.sciencedirect.com/science/article/pii/S0047248414001481
http://www.sciencedirect.com/science/article/pii/S0047248414001481
http://science.sciencemag.org/content/328/5979/710.abstract
https://pubmed.ncbi.nlm.nih.gov/25963373 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478293/
https://pubmed.ncbi.nlm.nih.gov/25963373 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4478293/
http://dx.doi.org/10.1016/j.cub.2016.03.037
https://doi.org/10.1038/s41586-020-2225-9
http://dx.doi.org/10.1016/j.cell.2018.02.031


[39] Villanea, F. A. & Schraiber, J. G. Multiple episodes of interbreeding between Neanderthal
and modern humans. Nature Ecology and Evolution 3, 39–44 (2019). URL http://dx.doi.
org/10.1038/s41559-018-0735-8.

[40] McHugo, G. P., Dover, M. J. & MacHugh, D. E. Unlocking the origins and biol-
ogy of domestic animals using ancient DNA and paleogenomics. BMC biology 17,
98 (2019). URL https://pubmed.ncbi.nlm.nih.gov/31791340https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC6889691/.

[41] Olsson, O. & Paik, C. Long-run cultural divergence: Evidence from the Neolithic Rev-
olution. Journal of Development Economics 122, 197–213 (2016). URL http://www.
sciencedirect.com/science/article/pii/S0304387816300360.

[42] Robertshaw, P. T. & Collett, D. P. The Identification of Pastoral Peoples in the Archaeolog-
ical Record: An Example from East Africa. World Archaeology 15, 67–78 (1983). URL
http://www.jstor.org/stable/124638.

[43] Outram, A. K. et al. The Earliest Horse Harnessing and Milking. Science 323, 1332 LP –
1335 (2009). URL http://science.sciencemag.org/content/323/5919/1332.abstract.

[44] Kislev, M. E., Hartmann, A. & Bar-Yosef, O. Early Domesticated Fig in the Jordan Valley.
Science 312, 1372 LP – 1374 (2006). URL http://science.sciencemag.org/content/312/5778/
1372.abstract.

[45] Simmons, A. H., Kohler-Rollefson, I., Rollefson, G. O., Mandel, R. & Kafafi, Z. Ain
Ghazal: A Major Neolithic Settlement in Central Jordan. Science 240, 35 LP – 39 (1988).
URL http://science.sciencemag.org/content/240/4848/35.abstract.

[46] Marciniak, S. & Perry, G. H. Harnessing ancient genomes to study the history of human
adaptation. Nature Reviews Genetics 18, 659–674 (2017). URL http://dx.doi.org/10.1038/
nrg.2017.65.

[47] Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-
day Europeans. Nature 513, 409–413 (2014). URL http://www.nature.com/doifinder/10.
1038/nature13673. 1312.6639.

[48] Haak, W. et al. Massive migration from the steppe was a source for Indo-European lan-
guages in Europe. Nature 522, 207–211 (2015). URL http://www.nature.com/doifinder/10.
1038/nature14317. 1502.02783.

[49] Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205
(2016). URL http://dx.doi.org/10.1038/nature17993http://www.nature.com/nature/journal/
v534/n7606/pdf/nature17993.pdf.

[50] Bramanti, B. et al. Genetic Discontinuity Between Local Hunter-Gatherers and Central
Europe’s First Farmers. Science 326, 137 LP – 140 (2009). URL http://science.sciencemag.
org/content/326/5949/137.abstract.

74

http://dx.doi.org/10.1038/s41559-018-0735-8
http://dx.doi.org/10.1038/s41559-018-0735-8
https://pubmed.ncbi.nlm.nih.gov/31791340 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889691/
https://pubmed.ncbi.nlm.nih.gov/31791340 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889691/
http://www.sciencedirect.com/science/article/pii/S0304387816300360
http://www.sciencedirect.com/science/article/pii/S0304387816300360
http://www.jstor.org/stable/124638
http://science.sciencemag.org/content/323/5919/1332.abstract
http://science.sciencemag.org/content/312/5778/1372.abstract
http://science.sciencemag.org/content/312/5778/1372.abstract
http://science.sciencemag.org/content/240/4848/35.abstract
http://dx.doi.org/10.1038/nrg.2017.65
http://dx.doi.org/10.1038/nrg.2017.65
http://www.nature.com/doifinder/10.1038/nature13673
http://www.nature.com/doifinder/10.1038/nature13673
1312.6639
http://www.nature.com/doifinder/10.1038/nature14317
http://www.nature.com/doifinder/10.1038/nature14317
1502.02783
http://dx.doi.org/10.1038/nature17993 http://www.nature.com/nature/journal/v534/n7606/pdf/nature17993.pdf
http://dx.doi.org/10.1038/nature17993 http://www.nature.com/nature/journal/v534/n7606/pdf/nature17993.pdf
http://science.sciencemag.org/content/326/5949/137.abstract
http://science.sciencemag.org/content/326/5949/137.abstract


[51] Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic
Britain. Nature Ecology and Evolution 3, 765–771 (2019). URL http://dx.doi.org/10.1038/
s41559-019-0871-9.

[52] Schlebusch, C. M. et al. Genomic Variation in Seven Khoe-San Groups Reveals Adaptation
and Complex African History. Science 338, 374 LP – 379 (2012). URL http://science.
sciencemag.org/content/338/6105/374.abstract.

[53] Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Na-
ture 538, 510–513 (2016). URL http://dx.doi.org/10.1038/nature19844http://10.0.4.14/
nature19844http://www.nature.com/nature/journal/v538/n7626/abs/nature19844.html{#}
supplementary-information.

[54] Posth, C. et al. Language continuity despite population replacement in Remote
Oceania. Nature Ecology & Evolution (2018). URL http://www.nature.com/articles/
s41559-018-0498-2.

[55] Prendergast, M. E. et al. Ancient dna reveals a multistep spread of the first herders into
sub-saharan africa. Science 6275, 1–19 (2019).

[56] Narasimhan, V. M. et al. The formation of human populations in South and Central
Asia. Science 365, eaat7487 (2019). URL http://science.sciencemag.org/content/365/6457/
eaat7487.abstract.

[57] Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature
(2019).

[58] Boyle, E. A., Li, Y. I. & Pritchard, J. K. An Expanded View of Complex Traits: From
Polygenic to Omnigenic. Cell 169, 1177–1186 (2017). URL http://www.sciencedirect.com/
science/article/pii/S0092867417306293.

[59] Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in ze-
brafish and humans. Science (New York, N.Y.) 310, 1782–1786 (2005).

[60] Nakayama, K. et al. Distinctive distribution of AIM1 polymorphism among major human
populations with different skin color. Journal of human genetics 47, 92–94 (2002).

[61] Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature
528, 499–503 (2015). URL http://dx.doi.org/10.1038/nature16152.

[62] Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and
Neandertals. Science 351, 737–741 (2016).

[63] Dannemann, M. & Kelso, J. The contribution of Neanderthals to phenotypic variation in
modern humans. American Journal of Human Genetics 101, 578–589 (2017).

[64] Gunz, P. et al. Neandertal Introgression Sheds Light on Modern Human Endocranial Glob-
ularity. Current Biology 29, 120–127.e5 (2019).

75

http://dx.doi.org/10.1038/s41559-019-0871-9
http://dx.doi.org/10.1038/s41559-019-0871-9
http://science.sciencemag.org/content/338/6105/374.abstract
http://science.sciencemag.org/content/338/6105/374.abstract
http://dx.doi.org/10.1038/nature19844 http://10.0.4.14/nature19844 http://www.nature.com/nature/journal/v538/n7626/abs/nature19844.html{#}supplementary-information
http://dx.doi.org/10.1038/nature19844 http://10.0.4.14/nature19844 http://www.nature.com/nature/journal/v538/n7626/abs/nature19844.html{#}supplementary-information
http://dx.doi.org/10.1038/nature19844 http://10.0.4.14/nature19844 http://www.nature.com/nature/journal/v538/n7626/abs/nature19844.html{#}supplementary-information
http://www.nature.com/articles/s41559-018-0498-2
http://www.nature.com/articles/s41559-018-0498-2
http://science.sciencemag.org/content/365/6457/eaat7487.abstract
http://science.sciencemag.org/content/365/6457/eaat7487.abstract
http://www.sciencedirect.com/science/article/pii/S0092867417306293
http://www.sciencedirect.com/science/article/pii/S0092867417306293
http://dx.doi.org/10.1038/nature16152


[65] Rinker, D. C. et al. Neanderthal introgression reintroduced functional ancestral alleles lost
in Eurasian populations. bioRxiv 533257 (2019). URL http://biorxiv.org/content/early/2019/
11/15/533257.abstract.
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