
triple-combination modulator therapy, which has shown greater efficacy
than either dual combination and has been approved by the U.S. Food
and Drug Administration. With the approval of the triple-combination
drug, 90% of patients with CF will be eligible for a CFTR modulator
(13). It is plausible that in the not-too-distant future, most infants
diagnosed with CF will begin a highly effective CFTR modulator,
such as the triple-combination treatment, shortly after birth, and
continue receiving it indefinitely. This possibility highlights the
continuing need for postmarketing observational analyses, such as
this one by Burgel and colleagues, as we know relatively little about
the long-term efficacy or safety of any CFTR modulator. n
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Coming to “Grp(s)” with Senescence in the Alveolar Epithelium

According to the current paradigm of idiopathic pulmonary fibrosis
(IPF) pathogenesis, injury to and dysfunction of the lung epithelium
play a major role in driving the disease process (1). Over the past
two decades, studies of families with PF implicated rare mutations
in genes related to surfactant biology as monogenic causes of PF
(2), and subsequent work from multiple groups has indicated that

at least a subset of surfactant protein mutations lead to misfolding
of the proprotein, leading to endoplasmic reticulum (ER) stress and
activation of the unfolded protein response (UPR) (3–5). Although
surfactant protein mutations appear to be rare causes of adult PF,
evidence of UPR activation in the lung epithelium is a common, if
not ubiquitous, feature of IPF lungs (6, 7). Studies using several
different pharmacologic UPR inducers and transgenic mouse
models have demonstrated links between UPR activation, epithelial
cell death by apoptosis or necroptosis (4, 5, 8, 9), and chronic
inflammation (10). Conceptually, these studies suggest that high-
level expression of misfolded proteins can overwhelm ER
chaperone function, promoting a proinflammatory epithelial cell
phenotype and premature death of the alveolar epithelium.
Consistent with this hypothesis, global haploinsufficiency for the
ER chaperone Grp78 (glucose-related peptide 78, also known as the
immunoglobulin heavy-chain chaperone protein, Bip) appears to

This article is open access and distributed under the terms of the Creative
Commons Attribution Non-Commercial No Derivatives License 4.0
(http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage
and reprints, please contact Diane Gern (dgern@thoracic.org).

Supported by NIH grants T32HL094296 (N.I.W.) and R01HL145372
(J.A.K.), the Doris Duke Charitable Foundation (J.A.K.), and Department of
Defense grant W81XWH-19-1-0415 (J.A.K.).

Originally Published in Press as DOI: 10.1164/rccm.201910-2052ED on
December 3, 2019

EDITORIALS

134 American Journal of Respiratory and Critical Care Medicine Volume 201 Number 2 | January 15 2020

http://www.atsjournals.org/doi/suppl/10.1164/rccm.201910-1894ED/suppl_file/disclosures.pdf
http://www.atsjournals.org
http://orcid.org/0000-0002-2900-0595
http://orcid.org/0000-0003-1534-5629
http://crossmark.crossref.org/dialog/?doi=10.1164/rccm.201910-2052ED&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dgern@thoracic.org
http://dx.doi.org/10.1164/rccm.201910-2052ED


worsen experimental fibrosis (11). However, a clear understanding
of the mechanisms linking lung epithelial UPR activation to
parenchymal fibrosis has remained frustratingly elusive.

In this issue of the Journal, Borok and colleagues (pp. 198–211)
provide new insights into the mechanisms through which the ER
chaperone Grp78 plays a homeostatic role in the lung epithelium
and protects against alveolar inflammation and fibrosis (12).
Focusing specifically on the role of Grp78 in type II alveolar
epithelial (AT2) cells, the authors generated novel tamoxifen-
inducible, AT2-cell–specific, Grp78-deficient mouse models. By
day 14 after tamoxifen administration, these mice developed patchy
histologic fibrosis, increased lung collagen content, and reduced
lung compliance. Consistent with the authors’ hypothesis, deletion
of Grp78 in AT2 cells led to evidence of downstream UPR
activation, including increased levels of Grp94 and Chop, and
increased apoptosis in the lung epithelium. In most mice, by 90
days after tamoxifen treatment, there was resolution of injury and
fibrosis. Lineage-tracing studies indicated that epithelial repair was
mediated primarily by mobilization and proliferation of unlabeled
(i.e., Grp78-competent) cells. This finding suggested a potential
role of Grp78 in the regulation of AT2 progenitor potential.

The authors hypothesized that rather than being a direct effect
of Grp78, this process could be mediated by UPR-driven induction
of senescence. Using an elegant precision-cut lung-slice
model, they demonstrated that mitigation of ER stress and
apoptosis/senescence through administration of TUDCA, a
pan-caspase inhibitor, and dasatinib/quercetin, respectively, led
to enhanced resolution of hallmarks of fibrotic change and
senescence. Although a protective role for TUDCA was previously
demonstrated in mice (13), remarkably, these observations were
also recapitulated in slices from human IPF lungs, suggesting
that targeting these pathways may be an avenue for possible
therapeutic intervention.

As the authors note, the impact of the Sftpc-CreER transgenic
construct introduces complexity into interpretation of these
studies. As demonstrated in the study, this construct leads to a
functionally SP-C null allele, and therefore all Grp78-deficient mice
were either haploinsufficient for SP-C or were SP-C null. It is
difficult to ascertain how this impacts the findings. Loss or
reduction of a highly expressed and processed protein may have
reduced the burden on the ER quality-control systems and
potentially mitigated the phenotypic severity and/or persistence to
some degree. Conversely, prior work indicates that SP-C null mice
have exaggerated injury responses and delayed injury repair (14).
Regardless of these complexities, the net effect of simultaneously
modulating levels of SP-C and Grp78 clearly alters the balance of
the ER stress response in AT2 cells, leading to a profibrotic state.

Notably, it is becoming increasingly evident that the UPR
pathway likely plays a significant role outside of the alveolar
compartment in the context of fibrosis. For example, it was recently
demonstrated that the UPR-regulated transcription factor XBP1 is
critical for regulation of airway mucus secretion (15), and transgenic
mice overexpressing Muc5b in the secretory cells appear to have
increased fibrotic susceptibility in experimental models (16). A link
between the UPR and senescence in the airway epithelium has not
yet been established; however, several recent reports have described
the presence of senescent basal-like cells in IPF lungs (17, 18),
raising the possibility that this mechanism could play a broader
role in the pathologic remodeling of the fibrotic lung epithelium.

This study has several significant implications. First, it adds to
the growing body of evidence that widespread injury to AT2 cells is
sufficient to trigger an acute inflammatory and fibrotic response in
mice (10, 19–23). One question that has remained unresolved is
why only a subset of models of AT2 injury lead to significant
fibrosis; for example, LPS and influenza are both capable of causing
severe alveolar injury but only minimal parenchymal fibrosis. This
study suggests that the induction of a senescent phenotype in
surviving AT2 cells may be one of the critical mechanisms that
promote parenchymal fibrosis. Second, and perhaps more
importantly, this work provides tantalizing evidence that alveolar
epithelial senescence actively inhibits the resolution of fibrosis in a
therapeutically targetable manner. Although further studies are
clearly required to better elucidate the underlying mechanism, this
finding suggests that cross-talk between the senescent epithelium
and local mesenchymal populations is a central driver of lung
fibrosis. With a growing understanding of the pathobiology linking
epithelial senescence to fibrosis, there is reason to be optimistic that
future therapies targeting senescence and its paracrine
consequences in the lung epithelium will be able to improve
outcomes for patients with PF. n
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Hitting a HOMER: Epidemiology to the Bedside when Evaluating for
Stereotactic Ablative Radiotherapy

In this issue of the Journal, Martinez-Zayas and colleagues (pp.
212–223) report and validate a novel prediction model (HOMER)
to calculate the probability of patients with non-small cell lung
cancer (NSCLC) having mediastinal lymph node involvement (1).
Determining a patient’s likelihood of lymph node metastasis is
paramount in determining the stage of lung cancer and therefore
appropriate treatment options. Clinical staging, including imaging
modalities and biopsy techniques, remains a challenge and
frequently falls short of surgical staging, depending on how
aggressive the preoperative evaluation is (2). Accurate staging has
been associated with improved survival and remains a huge

emphasis in the care of patients with lung cancer (3). The study by
Martinez-Zayas and colleagues is the first to derive and validate a
risk model aimed at discriminating between the most clinically
useful forms of nodal disease in patients who were both surgical
and nonsurgical candidates: N0, N1, and N2/3 disease.

The authors should be commended for the statistical rigor used
to derive and validate their model. Covariates used to develop the
model were pragmatic, clinically relevant, and appropriately limited
by the last common outcome. By externally validating their
prediction model at other medical centers, the authors offer a model
with the possibility of geographic stability for patients with NSCLC
without T4 tumors or distant metastasis, after adjusting for the local
institution’s population. The authors further supported their model
with temporal validation to show stability over time (4). HOMER
therefore has the potential to be generalizable in both the short
term and the long term for patients with NSCLC seeking treatment
at well-practiced thoracic oncology centers that use systematic
endobronchial ultrasound-guided transbronchial needle aspiration
(EBUS TBNA) lymph node staging. To carry out the systematic
EBUS lymph node staging that the output of HOMER applies to,
an examination of the intrathoracic nodes is required by EBUS,
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