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Abstract: A necessary and sufficient condition for dominant strategy im-
plementability when preferences are quasilinear is that, for any individual i
and any choice of the types of the other individuals, all k-cycles in i’s allo-
cation graph have nonnegative length for every integer k ≥ 2. Saks and Yu
(Proceedings of the 6th ACM Conference on Electronic Commerce (EC’05),
2005, 286–293) have shown that when the number of outcomes is finite and
i’s valuation type space is convex, nonnegativity of the length of all 2-cycles
is sufficient for the nonnegativity of the length of all k-cycles. In this article,
it is shown that if each individual’s valuation type space is a convex product
space and a mild domain regularity condition is satisfied, then (i) the non-
negativity of all 2-cycles implies that all k-cycles have zero length and (ii) all
2-cycles having zero length is necessary and sufficient for dominant strategy
implementability.
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1 Introduction

New insights into mechanism design theory, particularly when types are mul-
tidimensional, have recently been obtained using graph theory and linear pro-
gramming. While the literature that uses these techniques focuses on obtaining
general results that are not restricted to particular applications of the mech-
anism design framework, the results that have been obtained can be used in
a wide variety of applications, such as auction design and the provision of
public goods.

One issue that has attracted considerable attention is the development
of necessary and sufficient conditions for dominant strategy implementabil-
ity of an allocation function that chooses an outcome based on the reported
type profile (a list of types, one for each individual) when the type space is
restricted. Outcomes may be purely public or they may have private com-
ponents. The starting point for this literature is a well-known necessary and
sufficient condition for dominant strategy implementability for an arbitrary
type space when utilities are quasilinear (linear in the payment) due to Rock-
afellar (1970) and Rochet (1987). Gui, Müller, and Vohra (2004) have provided
a graph-theoretic interpretation of this condition: for any individual i and any
choice of the types of the other individuals, all cycles with a finite number
of arcs in a directed graph defined using the valuations of the outcomes by
individual i have nonnegative length. In other words, for every integer k ≥ 2,
any cycle with k arcs (a k-cycle) has nonnegative length.

It may be difficult to verify that this condition is satisfied if there are more
than a few possible outcomes. To help overcome this problem, Bikhchandani,
Chatterji, Lavi, Mu’alem, Nisan, and Sen (2006) have identified a fairly ab-
stract domain richness condition for which it is sufficient for dominant strat-
egy implementability that all 2-cycles have nonnegative length. Saks and Yu
(2005) have shown that when there are a finite number of outcomes, if for any
individual, the set of his possible valuations of these outcomes is convex for any
choice of the types of the other individuals and if all 2-cycles in the correspond-
ing graph have nonnegative length, then all cycles with an arbitrary number
of arcs also have nonnegative length and, hence, the Rockafellar–Rochet suffi-
cient condition for dominant strategy implementability is satisfied. Extensions
and variants of Saks and Yu’s results have been established by Archer and
Kleinberg (2008), Ashlagi, Braverman, Hassidim, and Monderer (2010), and
Berger, Müller, and Naeemi (2009, 2010).

In this article, we strengthen the assumption of Saks and Yu (2005) that
the set of individual valuations is convex by requiring that it be a convex
product space. With the addition of a mild regularity condition, we show
that if all 2-cycles have nonnegative length when our domain restriction is
satisfied, then in fact all cycles have zero length. In proving this result, we
identify and exploit some geometric properties of this problem. An implication
of this result is that all 2-cycles having zero length is necessary and sufficient
for dominant strategy implementability given our assumptions.
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In order to state our results more precisely, we need to distinguish between
the traditional concept of a type, here referred to as a characteristic type, and
a valuation type, which we define below. We consider a direct mechanism that
consists of an allocation function and a payment function. For each charac-
teristic type profile, these functions determine an outcome and a payment
(possibly negative) from each individual. The allocation function is dominant
strategy implementable if there exists a payment function such that reporting
one’s true characteristic type is always a dominant strategy in the resulting
direct mechanism.

We assume that the set of possible characteristic type profiles is the Carte-
sian product of the possible types for each individual and that for a fixed char-
acteristic type, utility is quasilinear. For a given individual i and given types
of the other individuals, following Gui, Müller, and Vohra (2004), we define a
complete directed graph called the characteristic graph whose nodes are the
possible characteristic types of individual i and the length (which could be
negative) of the directed arc joining type si to ti is the change in the valuation
of the outcome obtained by individual i when he is of type ti if he truthfully
reports ti instead of si. Note that the payments are being ignored in this con-
struction. In terms of characteristic graphs, the Rockafellar–Rochet Theorem
shows that an allocation function is dominant strategy implementable if and
only if for every individual i and characteristic types of the other individuals,
all k-cycles in the corresponding characteristic graph have nonnegative length
for every integer k ≥ 2.

When there are a finite number of outcomes, for a given individual i and
given characteristic types of the other individuals, we can equivalently describe
i’s characteristic type ti by the vector vti

in R
m whose jth component is the

value of the jth outcome when he is of type ti. Here, m is the number of
outcomes that are attainable for the possible reported types of individual i
given the characteristic types of the other individuals. This vector vti

is i’s
valuation type and the set of such types is i’s valuation space (which depends
on the types of the other individuals). Again following Gui, Müller, and Vohra
(2004), this set of valuation types can be used to define a new graph, the
allocation graph, whose nodes are the set of attainable outcomes and whose
directed arc from a to b is the infimum of the change in valuation for i of having
b instead of a over all characteristic types for him for which the allocation
function assigns b. The Rockafellar–Rochet Theorem can be restated in terms
of the nonnegativity of all k-cycles in these allocation graphs.

The result of Saks and Yu (2005) stated informally above assumes that
there are a finite number of outcomes and that, for each individual i, i’s
valuation type space is convex for any fixed types of the other individuals.
With these assumptions, they show that it is sufficient for the nonnegativity
of all k-cycles in i’s allocation graph that every 2-cycle has nonnegative length.
Thus, in view of the Rockafellar–Rochet Theorem, this 2-cycle nonnegativity
condition is necessary and sufficient for dominant strategy implementability.
This result is the Saks-Yu Theorem.
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We strengthen Saks and Yu’s convexity assumption by requiring that, for
any individual i and for any fixed types of the other individuals, i’s valuation
type space is a convex product space; that is, it is the product of nondegen-
erate intervals of R. We also suppose that i’s valuation type space satisfies
a regularity condition that ensures that there exists an open set of valuation
types for i that results in a being chosen for each outcome a that is attainable
given the types of the other individuals. Our convex product set assumption
and our regularity condition are satisfied if i’s valuation type space is all of
R

m, that is, if it is unrestricted.1 With our assumptions, in our main theorem,
we show that if all 2-cycles in i’s allocation graph have nonnegative length,
then all k-cycles in this graph have zero length for every integer k ≥ 2. It
then follows from this result and the Rockafellar–Rochet Theorem that an
allocation function is dominant strategy implementable if and only if all 2-
cycles have zero length in every allocation graph, that is, in every allocation
graph obtained by selecting an individual i and fixing the types of the other
individuals.

An allocation function that is dominant strategy implementable satisfies
the revenue equivalence property if the payment functions that implement it
have the property that for each individual i, given the types of the other indi-
viduals, the implementing payment functions for i only differ by a constant.
Revenue equivalence was first analyzed by Myerson (1981) in his study of the
design of optimal auctions for a single good when the individual character-
stic type spaces are one-dimensional. Heydenreich, Müller, Uetz, and Vohra
(2009, Corollary 1) show that revenue equivalence is satisfied by an allocation
function that is dominant strategy implementable if and only if all 2-cycles
have zero length in every allocation graph. Thus, an implication of our main
result is that, given our assumptions, our zero-length 2-cycle condition is not
only necessary and sufficient for dominant strategy implementability, it is also
necessary and sufficient for revenue equivalence.

In order to prove that all 2-cycles in i’s allocation graph have nonnegative
length, Saks and Yu (2005) use i’s allocation graph to define a new graph
with the same set of nodes for which the length of the directed arc from a
to b is the total change in i’s valuation along a particular kind of path in i’s
valuation type space. They show that under their assumptions, the length of
any directed arc in this new graph bounds from below the length of this arc
in i’s allocation graph and that the length of any k-cycle in this new graph
is zero, from which their theorem follows. In our proofs, we do not need to
consider this auxillary graph.
1 For a finite set of outcomes containing at least three outcomes, if all of the valu-

ation type spaces are unrestricted, then Roberts (1979, Theorem 3.1) shows that
an allocation function is dominant strategy implementable if and only if the out-
come that is chosen when the individuals have characteristic types (t1, . . . , tn) is
the outcome that maximizes the sum over individuals of an affine function of the
individual valuations. For graph-theoretic proofs of Roberts’ Theorem, see Lavi,
Mu’alem, and Nisan (2009).
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Our main theorem generalizes one of the results in Lavi, Mu’alem, and
Nisan (2009). They show that if i’s valuation type space is unrestricted and
if all 2-cycles in i’s allocation graph have nonnegative length, then these 2-
cycles have zero length. We do not assume that i’s valuation type space is
unrestricted and we show that all k-cycles have zero length, not just the 2-
cycles. Lavi, Mu’alem, and Nisan (2009) also show that a necessary condition
for dominant strategy implementability of the allocation function when i’s
valuation type space is unrestricted is that each 3-cycle in i’s allocation graph
has zero length, not just a nonnegative length, as required by the Rockafellar-
Rochet Theorem. This result is implied by combining our characterization
theorem for dominant strategy implementability with our main theorem.

The plan of the rest of this article is as follows. In Section 2, we introduce
the model and the characteristic and allocation graphs. We also present two
versions of the Rockafellar–Rochet Theorem using these graphs. In Section 3,
we consider the Saks–Yu Theorem. Next, in Section 4, we investigate the
geometry of the partition of an individual’s valuation type space into regions
that are allocated the same outcome. In Section 5, we state and prove our main
theorem. We also provide some geometric intuition for our results. Finally, in
Section 6, we offer some concluding remarks.

2 Dominant Strategy Implementability and the
Rockafellar–Rochet Theorem

Let N be a finite set of n individuals and Ω be a finite set of outcomes. For
each i ∈ N , let T i denote the characteristic type space of individual i with
typical element ti. For now, no assumptions are made about the structure of
T i. The value of ti is private information. Let T−i = ×j∈N\{i}T

j denote the
characteristic type space of all individuals other than individual i. A charac-
teristic type profile is written as (ti, t−i) ∈ T i × T−i.

For each i ∈ N , let vi : Ω×T i → R be the valuation function of individual i.
This function assigns a value vi(a|ti) to each outcome a ∈ Ω and characteristic
type ti ∈ T i. Thus, an individual’s valuation of an outcome only depends on
his private characteristic type.

A direct mechanism (G, P ) consists of an allocation function G : T i ×
T−i → Ω and a payment function P : T i×T−i → R

n. The function P may be
written as P = (P 1, . . . , Pn), where P i is the payment function for individual
i. For each type profile, G determines an outcome in Ω and P i specifies a
payment (which could be negative) from individual i.

An individual need not report his true type. Given the other individuals’
reported types t−i ∈ T−i, the utility of individual i with characteristic type
ti ∈ T i and reported type si ∈ T i is

vi(G(si, t−i)|ti) − P i(si, t−i).
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Definition. An allocation function G is dominant strategy implementable if
there exists a payment function P such that for all i ∈ N and all t−i ∈ T−i,

vi(G(ti, t−i)|ti)−P i(ti, t−i) ≥ vi(G(si, t−i)|ti)−P i(si, t−i), ∀si, ti ∈ T i. (1)

In other words, an allocation function is dominant strategy implementable
if there exists a payment function for which each individual is at least as well
off reporting his true type than reporting any other type regardless of what the
other individuals report. As a consequence, in analyzing dominant strategy
implementability, without loss of generality, we can consider a fixed individual
i ∈ N and fixed types t−i ∈ T−i of the other individuals in the subsequent
discussion. Henceforth, we let t = ti and T = T i.

For the given choice of t−i, let A = {a1, . . . , am} be the finite set of m
attainable outcomes for the allocation function G. That is,

A = {a ∈ Ω | G(t, t−i) = a for some t ∈ T}.

By fixing i ∈ N and t−i ∈ T−i, (G, P ) defines a single person mechanism
(g, p) with allocation function g : T → A and payment function p : T → R

obtained by setting

g(t) = G(t, t−i) and p(t) = P i(t, t−i), ∀t ∈ T.

Note that g is surjective.
For all a ∈ A, let

Ra = {t ∈ T | g(t) = a}
be the set of characteristic types for i that induce outcome a using the allo-
cation function g. By construction, Ra is nonempty for all a ∈ A. Because g
depends on the other individuals’ types, Ra also depends on their types.

For the mechanism (g, p), the dominant strategy implementability condi-
tion (1) simplifies to

v(g(t)|t) − p(t) ≥ v(g(s)|t) − p(s), ∀s, t ∈ T. (2)

For the allocation function g, the characteristic graph Tg is the complete
directed graph with nodes T and arc length

d(s, t) = v(g(t)|t) − v(g(s)|t) (3)

for the directed arc (s, t) from s to t.2 That is, d(s, t) is the change in the val-
uation if the true characteristic type t is reported instead of the characteristic
type s. This change in valuation is not the overall change in utility because
the payments have not been taken into account.
2 We exclude loops. That is, there are no arcs from a node to itself. The character-

istic graph, as well as the allocation graph defined below, were introduced by Gui,
Müller, and Vohra (2004). We adopt their terminology in calling (3) a “length”
instead of an edge weight even though it may be negative.
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For any integer k ≥ 2, a k-cycle in the characteristic graph Tg is a sequence
of distinct arcs (t1, t2), . . . , (tk−1, tk), (tk, t1) whose length is defined to be the
sum of the lengths of the arcs in the cycle. That is, the length of the k-cycle
is d(t1, t2) + · · · + d(tk−1, tk) + d(tk, t1).3

Rochet (1987, Theorem 1) uses a theorem about subdifferentials of mul-
tidimensional convex functions due to Rockafellar (1970, Theorem 24.8) to
provide necessary and sufficient conditions for an allocation function to be
dominant strategy implementable. This result is known as the Rockafellar–
Rochet Theorem. Theorem 1 provides a statement of this theorem in terms of
the characteristic graph Tg.

Theorem 1. The allocation function g : T → A is dominant strategy imple-
mentable if and only if for every integer k ≥ 2, any k-cycle in the characteristic
graph Tg has nonnegative length.

If g is dominant strategy implementable and g(s) = g(t), then p(s) =
p(t) as well. As a consequence, dominant strategy implementability of g is
equivalent to the existence of a payment schedule ρ : A → R that assigns
payments to outcomes for which

g(t) ∈ arg max
a∈A

v(a|t) − ρ(a), ∀t ∈ T.

That is, given the payment schedule ρ, g(t) is an outcome that maximizes the
utility of a type t individual. This equivalence result is known as the taxation
principle (see, e.g., Rochet, 1987) because it was originally obtained in the
context of optimal tax theory.

Given the allocation function g, the corresponding allocation graph Γg is
the complete directed graph that has A as the set of nodes and �(a, b) as the
length of the directed arc from node a to node b, where

�(a, b) = inf
t∈Rb

[v(b|t) − v(a|t)] = inf
t∈Rb

[v(g(t)|t) − v(a|t)] , ∀a, b ∈ A (a �= b).4

(4)
In this graph, the length (which could be negative) of the directed arc from
a to b is the infimum of the change in valuation of having b instead of a over
the set of all characteristic types for which the outcome function assigns b.

For any two nodes a and b in the allocation graph Γg, a path from a to
b is a sequence of distinct arcs (a1, a2), . . . , (ak−1, ak) for which a = a1 and
b = ak. For any integer k ≥ 2, a k-cycle in the allocation graph Γg is a path
with k arcs whose endpoints are both the same. That is, it is a sequence of
arcs (a1, a2), . . . , (ak−1, ak), (ak, a1). The length of a path or k-cycle is the
sum of the lengths of the arcs that comprise it.
3 Note that because there are no loops, there are no 1-cycles.
4 We adopt the convention that the infimum and supremum are equal to −∞ and
∞, respectively, when they are not finite. Our assumptions do not rule out the
possibility that �(a, b) = −∞. As shown by Mishra (2009) and Vohra (2011),
�(a, b) is finite for all a, b ∈ A if (2) is satisfied.
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The Rockafellar–Rochet Theorem can be restated using allocation graphs.5

Theorem 2. The allocation function g : T → A is dominant strategy imple-
mentable if and only if for every integer k ≥ 2, any k-cycle in the allocation
graph Γg has nonnegative length.

Proof. First, suppose that for every integer k ≥ 2, any k-cycle in Γg has
nonnegative length. Because there are a finite number of outcomes in A and,
hence, a finite number of nodes in Γg, between any two nodes in A there exists
a shortest path. Fix a ∈ A. Let p̄ : T → R be the length of a shortest path
from a to g(t). We shall show that the mechanism (g, p̄) satisfies the dominant
strategy implementability condition (2).

Consider any two types s, t ∈ T . We have

p̄(t) ≤ p̄(s) + �(g(s), g(t))

because the length of a shortest path from a to g(t) cannot exceed the length
of a path from a to g(s) to g(t). It follows that

p̄(t) − p̄(s) ≤ �(g(s), g(t))
= inf

r∈Rg(t)

[v(g(t)|r) − v(g(s)|r)]

≤ v(g(t)|t) − v(g(s)|t),

thereby establishing (2).
Second, suppose that there exists a payment function p : T → A such that

(g, p) satisfies (2). Rearranging (2), we obtain

p(t) − p(s) ≤ v(g(t)|t) − v(g(s)|t), ∀s, t ∈ T. (5)

Consider any k-cycle (a1, a2), . . . , (ak−1, ak), (ak, a1) for an arbitrary integer
k ≥ 2. Let ak+1 = a1. Then, for all ε > 0 and all j = {1, . . . , k}, there exist
sε,j ∈ Raj

such that

k∑

j=1

�(aj , aj+1) =
k∑

j=1

inf
t∈Raj+1

[v(aj+1|t) − v(aj |t)]

>

k∑

j=1

[
v(aj+1|sε,j+1) − v(aj |sε,j+1) − ε

]
. (6)

Noting that sε,k+1 = sε,1, it follows from (5) that

k∑

j=1

[
v(aj+1|sε,j+1) − v(aj |sε,j+1) − ε

]
≥

k∑

j=1

[
p(sε,j+1) − p(sε,j) − ε

]
. (7)

5 This version of the Rockafellar–Rochet Theorem is stated without proof in Vohra
(2011). A somewhat different proof may be found in Mishra (2009, Theorem 2).
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The sum on the right-hand side of (7) is −kε. Hence, (6) and (7) imply that

k∑

j=1

�(aj , aj+1) > −kε. (8)

Taking the limit as ε goes to 0 in (8) shows that the length of this k-cycle is
nonnegative. �	

3 The Saks–Yu Theorem

It may be computationally onerous to check that every cycle in either the
characteristic graph Tg or in the allocation graph Γg has nonnegative length
in order to determine if the allocation function g is dominant strategy imple-
mentable. It follows from the Rockafellar–Rochet Theorem that a necessary
condition for dominant strategy implementability is that all the 2-cycles have
nonnegative length. Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan, and Sen
(2006) and Saks and Yu (2005) have identified alternative restrictions on v un-
der which this 2-cycle nonnegativity condition is also sufficient for dominant
strategy implementability. Our results build on those of Saks and Yu.

The 2-cycle nonnegativity condition can be defined in either of our two
graphs. Below we shall show that these two definitions are equivalent. We
begin with the characteristic graph.

Definition. An allocation function g satisfies the characteristic graph 2-cycle
nonnegativity condition if

d(s, t) + d(t, s) ≥ 0, ∀s, t ∈ T. (9)

It follows from (3) that (9) is equivalent to

v(g(t)|t) − v(g(s)|t) ≥ v(g(t)|s) − v(g(s)|s), ∀s, t ∈ T. (10)

That is, the change in valuation obtained by replacing g(s) with g(t) is at least
as large for type t as for type s. For this reason, Bikhchandani, Chatterji, Lavi,
Mu’alem, Nisan, and Sen (2006) call this condition weak monotonicity.

We now define the corresponding condition using the allocation graph.

Definition. An allocation function g satisfies the allocation graph 2-cycle
nonnegativity condition if

�(a, b) + �(b, a) ≥ 0, ∀a, b ∈ A. (11)

Theorem 3 shows that these two 2-cycle nonnegativity conditions are
equivalent. In light of this equivalence, we shall simply refer to this condi-
tion as the 2-cycle nonnegativity condition.
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Theorem 3. An allocation function g : T → A satisfies the characteristic
graph 2-cycle nonnegativity condition if and only if it satisfies the allocation
graph 2-cycle nonnegativity condition.

Proof. First, suppose the allocation rule g satisfies the characteristic graph
2-cycle nonnegativity condition (9) but that, by way of contradiction, there
exist outcomes â and b̂ in A such that �(â, b̂)+�(b̂, â) < 0. Using the definition
of � in (4), we can rewrite the last inequality as

inf
t∈Rb̂

[v(b̂|t) − v(â|t)] + inf
s∈Râ

[v(â|s) − v(b̂|s)] < 0.

Thus, there exist characteristic types ŝ ∈ Râ and t̂ ∈ Rb̂ such that

[v(b̂|t̂) − v(â|t̂)] + [v(â|ŝ) − v(b̂|ŝ)] < 0.

This inequality, however, contradicts (10), which is equivalent to the charac-
teristic graph 2-cycle nonnegativity condition (9).

Second, suppose the allocation rule g satisfies the allocation graph 2-cycle
nonnegativity condition (11) but that, by way of contradiction, there exist
types ŝ and t̂ in T such that d(ŝ, t̂) + d(t̂, ŝ) < 0 or, equivalently, that

[v(b̂|t̂) − v(â|t̂)] + [v(â|ŝ) − v(b̂|ŝ)] < 0,

where â = g(ŝ) and b̂ = g(t̂). From this last inequality, it follows that

�(â, b̂) + �(b̂, â) = inf
t∈Rb̂

[v(b̂|t) − v(â|t)] + inf
s∈Râ

[v(â|s) − v(b̂|s)] < 0,

which contradicts the allocation graph 2-cycle nonnegativity condition (11).
�	

Each characteristic type t ∈ T has associated with it a corresponding
valuation type vt = (vt

a1
, . . . , vt

am
) ∈ R

m, where vt
a = v(a|t) for all a ∈ A.

The jth component of vt is the value of outcome aj when individual i is of
characteristic type t given the fixed characteristic type profile t−i of the other
individuals. Individual i’s valuation type space (given t−i) is

V = {vt ∈ R
m | t ∈ T}.

If characteristic types s and t have the same associated valuation type
v, there is then no loss of generality in identifying them (i.e., treating them
as being the same characteristic type). Henceforth, we assume that if s �= t,
then vs �= vt. With this assumption, there is a unique t ∈ T associated
with each v ∈ V. Hence, individual i can be equivalently characterized by his
characteristic type t or his valuation type v. Let tv denote the characteristic
type associated with v.
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Saks and Yu (2005, Theorem 4) show that if the valuation type space V is
convex, then all k-cycles in the allocation graph Γg have nonnegative length if
Γg satisfies the allocation graph 2-cycle nonnegativity condition (11). In view
of the equivalence in Theorem 3, we thus have that the 2-cycle nonnegativ-
ity condition is sufficient for dominant strategy implementability when V is
convex.

Theorem 4. If V is convex, then the allocation function g : T → A is domi-
nant strategy implementable if the 2-cycle nonnegativity condition is satisfied.

As Saks and Yu have noted, it immediately follows from Theorem 4 and
the Rockafellar–Rochet Theorem that the 2-cycle nonnegativity condition is
necessary and sufficient for dominant strategy implementability when V is
convex. This result, which is Theorem 1 in Saks and Yu (2005), is the Saks–
Yu Theorem.

Theorem 5. If V is convex, then the allocation function g : T → A is domi-
nant strategy implementable if and only if the 2-cycle nonnegativity condition
is satisfied.

Note that the assumption that V is convex implicitly places restrictions
on the characteristic type space T . In particular, T cannot be discrete.

4 Partitioning the Valuation Type Space

Recall that Ra is the set of characteristic types that the allocation function g
maps into outcome a. Because there is a bijection between the characteristic
type space T and the valuation type space V, the sets Ra for a ∈ A induce a
partition of V with each cell in the partition associated with the outcome as-
signed to valuation types in that cell. Our results are obtained by investigating
the geometry of this partition.

The valuation type space V is a subset of R
m. We first define some sets

on all of R
m and then later restrict them to V.

For all a, b ∈ A with a �= b, the difference set for (a, b) is

Qab = {v ∈ R
m | va − vb ≥ �(b, a)}.

Qab is a closed halfspace. A valuation type v is in Qab if the change in valuation
for individual i of having object a instead of b is at least as large as the
infimum of the change in valuation of having b instead of a over the set of all
characteristic types for which the outcome function assigns a.

Difference sets are illustrated in Figure 1 for the case in which A = {a1, a2}.
In this case, the two difference sets are

Qa1a2 = {v ∈ R
2 | va2 ≤ −�(a2, a1) + va1}
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va2

va1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

−�(a2, a1)

Qa1 = Qa1a2

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�(a1, a2)

Qa2 = Qa2a1

Fig. 1. Difference sets when m = 2.

and
Qa2a1 = {v ∈ R

2 | va2 ≥ �(a1, a2) + va1}.
The boundaries of these two sets have slope equal to 1 and their vertical
intercepts are −�(a2, a1) and �(a1, a2), respectively. The 2-cycle nonnegativity
condition �(a1, a2) + �(a2, a1) ≥ 0 holds if and only �(a1, a2) ≥ −�(a2, a1).
Hence, if the 2-cycle nonnegativity condition is satisfied, Qa2a1 lies above
Qa1a2 and the interiors of these sets have an empty intersection.

For each a ∈ A, the difference set for a is

Qa =
⋂

b∈A\{a}
Qab.

Qa is the closed convex polyhedron obtained by intersecting the halfspaces
Qab for all outcomes b distinct from a. For the two-outcome case illustrated
in Figure 1, Qa1 = Qa1a2 and Qa2 = Qa2a1 .

For the case in which A = {a1, a2, a3}, cross sections of the difference sets
Qa1 , Qa2 , and Qa3 for a fixed valuation v̄a3 of the third outcome are illustrated
in Figure 2. Let

Υ = {v ∈ R
3 | va3 = v̄a3}.

In this diagram, Qa1 ∩ Υ is the intersection of

Qa1a2 ∩ Υ = {v ∈ Υ | va2 ≤ −�(a2, a1) + va1}

and
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va2

va1

�
�

�
�

�
�

�
�

�(a3, a1) + v̄a3

���

Qa1 ∩ Υ

�
�

�
�

�

�(a3, a2) + v̄a3

��

Qa2 ∩ Υ

−�(a1, a3) + v̄a3
����

−�(a2, a3) + v̄a3
�	

Qa3 ∩ Υ

Fig. 2. Difference sets when m = 3.

Qa1a3 ∩ Υ = {v ∈ Υ | va1 ≥ �(a3, a1) + v̄a3},
Qa2 ∩ Υ is the intersection of

Qa2a1 ∩ Υ = {v ∈ Υ | va2 ≥ �(a1, a2) + va1}

and
Qa2a3 ∩ Υ = {v ∈ Υ | va2 ≥ �(a3, a2) + v̄a3},

and Qa3 ∩ Υ is the intersection of

Qa3a1 ∩ Υ = {v ∈ Υ | va1 ≤ −�(a1, a3) + v̄a3}

and
Qa3a2 ∩ Υ = {v ∈ Υ | va2 ≤ −�(a2, a3) + v̄a3}.

Let ∂S denote the boundary of set S. The intersections of Qa1a2 and
Qa2a1 with Υ do not depend on the choice of v̄a3 . Hence, for all v̄a3 , the
upward sloping parts of ∂Qa1 ∩Υ and ∂Qa2 ∩Υ have slope equal to 1 and are
contained in lines whose intercepts with the axes do not depend on v̄a3 . As
v̄a3 increases, the horizontal parts of ∂Qa2 ∩Υ and ∂Qa3 ∩Υ move up and the
vertical parts of ∂Qa1 ∩ Υ and ∂Qa3 ∩ Υ move to the right.

When there are more than three outcomes, the analogue of Figure 2 is
obtained by setting Υ = {v ∈ R

m | (va3 , . . . , vam) = (v̄a3 , . . . , v̄am)}. In this
case, the restrictions of the difference sets Qa1 and Qa2 to Υ have the same
shapes as shown in Figure 2. Provided that the 2-cycle nonnegativity condition
is satisfied, there is a single outcome ad∗ that maximizes both �(ad, a1) +
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v̄ad
and �(ad, a2) + v̄ad

for d �= 1, 2. The points in the vertical boundary of
Qa1 ∩ Υ all have first coordinate equal to �(ad∗ , a1) + v̄ad∗ and the points
in the horizontal boundary of Qa2 ∩ Υ all have second coordinate equal to
�(ad∗ , a2)+v̄ad∗ . Generically, the only other difference set that has a nonempty
intersection with Υ is Qad∗ . It has the same shape as Qa3 ∩Υ in Figure 2, with
points in its vertical boundary having first coordinate equal to −�(a1, ad∗) +
v̄ad∗ and points in its horizontal boundary having second coordinate equal to
−�(a2, ad∗) + v̄ad∗ . It is, however, possible that there is an ad̄ �= ad∗ for which
Qad∗ ∩ Υ = Qad̄

∩ Υ . This happens when these sets are common boundary
points of Qad∗ and Qad̄

.
There is a close connection between the set of characteristic types Ta that

are allocated outcome a and the set Qa ∩ V. Except for possibly some of
the boundary points of Qa, the set of characteristic types associated with
valuation types in Qa ∩V is Ra. More precisely, for any t ∈ Ra, the valuation
type vt is in Qa ∩ V. Moreover, if the allocation function satisfies the 2-cycle
nonnegativity condition, then for any v ∈ V that is in the interior Q◦

a of Qa,
the characteristic type tv is in Ra. Proofs of these results may be found in
Mishra (2009) and Vohra (2011), but for completeness, we include them here.

Theorem 6. For any allocation function g : T → A and any outcome a ∈ A,
(i) for any characteristic type t ∈ Ra, the valuation type vt is in Qa ∩ V and
(ii) if g satisfies the 2-cycle nonnegativity condition, then for any valuation
type v ∈ Q◦

a ∩ V, the characteristic type tv is in Ra.

Proof. (i) By definition, g(t) = a for any characteristic type t ∈ Ra. Therefore,

v(a|t) − v(b|t) ≥ inf
t∈Ra

[v(a|t) − v(b|t)] = �(b, a), ∀b ∈ A\{a}.

Hence, by the definition of Qa, we have vt ∈ Qa ∩ V.
(ii) Consider any valuation type v ∈ Q◦

a ∩ V. Because v ∈ Q◦
a, for the

characteristic type tv, we have

va − vb = v(a|tv) − v(b|tv) > �(b, a), ∀b ∈ A\{a}.

Because the allocation rule g satisfies the 2-cycle nonnegativity condition,
�(a, b) ≥ −�(b, a) for all b ∈ A\{a}. The last two inequalities then imply that

vb − va = v(b|tv) − v(a|tv) < −�(b, a) ≤ �(a, b), ∀b ∈ A\{a}.

Hence, v /∈ Qb ∩ V for any b ∈ A\{a}. Therefore, from part (i) it follows that
tv /∈ Rb for any b ∈ A\{a}. Consequently, tv must be in Ra. �	

An immediate implication of Theorem 6 is that for all a, b ∈ A, Q◦
a ∩

Q◦
b = ∅ if the 2-cycle nonnegativity condition is satisfied. Furthermore, if

v ∈ Qa ∩ Qb ∩ V, then va − vb = �(b, a) = −�(a, b).6

6 See Saks and Yu (2005, Proposition 5).
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Our next theorem shows that the allocation function g satisfies a mono-
tonicity property when the 2-cycle nonnegativity condition is satisfied. Specif-
ically, if the valuation of the chosen outcome, say a, increases and the valu-
ation of no other outcome decreases, then no outcome b different from a can
be chosen unless b’s valuation also increases.

Theorem 7. If the allocation function g : T → A satisfies the 2-cycle nonneg-
ativity condition, then for any characteristic type t ∈ Ra and any valuation
type v′ ∈ V with v′ ≥ vt for which v′a > vt

a and v′b = vt
b, the characteristic type

tv
′
is not in Rb.

Proof. Consider any a ∈ A and t ∈ Ra. By Theorem 6, we have

vt
a − vt

c ≥ �(c, a), ∀c ∈ A\{a}.

Consider any b ∈ A\{a} and any valuation type v′ ∈ V with v′ ≥ vt for which
v′a > vt

a and v′b = vt
b. The preceding inequality then implies that

v′b − v′a < vt
b − vt

a ≤ −�(b, a).

By the 2-cycle nonnegativity condition, we thus have

v′b − v′a < �(a, b).

Hence, by Theorem 6, tv
′

/∈ Rb. �	

5 The Main Theorem

In this section, we replace the Saks–Yu assumption that the valuation type
space V is convex with the more restrictive assumption that it is the product
of nondegenerate intervals, what we call a convex product space.

Definition. The valuation type space V is a convex product space if

V = ×a∈A〈La, Ua〉,

where for all a ∈ A, 〈La, Ua〉 is any type of interval of R with endpoints La

and Ua for which La < Ua.7

By construction, Qa ∩ V �= ∅ for all a ∈ A. We henceforth assume that
Qa ∩ V has a nonempty interior for all a ∈ A. We refer to this restriction
as the interiority assumption. This condition necessarily holds if V is open,
which is the case if, for example, V = R

m. If V is not open, requiring Qa ∩ V
to have a nonempty interior is a mild regularity condition.
7 We permit La to be −∞ and Ua to be ∞.
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As we have noted, Saks and Yu (2005) show that if an allocation function
g : T → A satisfies the 2-cycle nonnegativity condition and V is convex, then
all k-cycles in the allocation graph Γg have nonnegative length. Our main
theorem shows that, in fact, all of these k-cycles have zero length if we addi-
tionally assume that V is a convex product space and the intersection of each
difference set Qa with V has a nonempty interior.

Theorem 8. If (i) the allocation function g : T → A satisfies the 2-cycle
nonnegativity condition, (ii) the valuation type space V is a convex product
space, and (iii) Qa ∩ V has a nonempty interior for all a ∈ A, then for every
integer k ≥ 2, any k-cycle in the allocation graph Γg has zero length.

We prove this theorem by a sequence of lemmas. Our first lemma shows
that our assumptions imply that all 2-cycles in Γg have zero length.8 Note
that all 2-cycles in Γg have zero length if and only if � is antisymmetric. That
is, �(a, b) = −�(b, a) for all a, b ∈ A.

Lemma 1. Under the assumptions of Theorem 8, any 2-cycle in the allocation
graph Γg has zero length.

Proof. Consider any a, b ∈ A. We first prove that �(a, b)+ �(b, a) = 0 when Ua

and Ub are both finite. On the contrary, suppose that the sum of these lengths
differs from zero, which by the 2-cycle nonnegativity condition implies that
there exists an arbitrarily small δ > 0 such that

�(a, b) + �(b, a) ≥ δ. (12)

We assume that
Ua − �(b, a) ≤ Ub. (13)

This assumption is without loss of generality because if (13) does not hold,
then the 2-cycle nonnegativity condition implies that Ub − �(a, b) ≤ Ub +
�(b, a) < Ua, and we can reverse the roles of a and b.

Consider any v in the interior of Qa ∩V. By Theorem 6, the characteristic
type tv is in Ra. Because v is in the interior of Qa ∩ V,

va − vb > �(b, a) (14)

and va < Ua. The latter inequality and (13) imply that

va − �(b, a) < Ub. (15)

Define the valuation type ṽ by setting

ṽa = va + ε, ṽb = va − �(b, a) + 2ε, and ṽc = vc, ∀c ∈ A\{a, b}, (16)

8 For the special case in which V is all of R
m, this lemma has also been established

by Lavi, Mu’alem, and Nisan (2009, Claim 8).
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�(ṽa, ṽb)

Fig. 3. Illustration of the Proof of Lemma 1.

where ε > 0 is chosen to be sufficiently close to 0 so that both ṽ is in V and
δ > ε. Because va < Ua, (15) ensures that such a ṽ exists. Note that (14) and
(16) imply that ṽb > vb.

It follows from (16) that

ṽa − ṽb = �(b, a) − ε < �(b, a).

Hence, by Theorem 6, the characteristic type tṽ cannot be in Ra. From (12),
(16), and the assumption that δ > ε, we have

ṽb − ṽa = ε − �(b, a) ≤ ε + �(a, b) − δ < �(a, b),

and so by Theorem 6, tṽ cannot be in Rb. By construction, ṽ ≥ v, ṽa > va,
and ṽc = vc for all c ∈ A\{a, b}. Because tv ∈ Ra, Theorem 7 implies that tṽ

is not in Rc for any c ∈ A\{a, b}. We have shown that g does not assign any
outcome to tṽ, which is impossible. Therefore, �(a, b) + �(b, a) = 0.

If Ub = ∞, we do not need to assume (13) in order for (15) to hold, which
is all that is needed in order for ṽ to be in V.9 If Ub is finite, but Ua = ∞,
an analogous argument with the roles of a and b reversed ensures that the
requisite ṽ exists. �	

The proof of Lemma 1 is illustrated in Figure 3 for the case in which V is
compact. In this diagram,

Υ = {v̂ ∈ R
m | v̂c = vc, ∀c ∈ A\{a, b}},

9 If Ub = ∞, (13) is satisfied if Ua is finite.
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for some fixed values of vc for c ∈ A\{a, b} that will be specified later. The
sets ∂Qab ∩ Υ , ∂Qba ∩ Υ , and V ∩ Υ are all independent of the valuations
chosen for the outcomes other than a and b. The upward sloping parts of
∂Qa ∩ Υ and ∂Qb ∩ Υ are contained in ∂Qab ∩ Υ and ∂Qba ∩ Υ , respectively.
By way of contradiction, we suppose that �(a, b) + �(b, a) > 0, which, by the
2-cycle nonnegativity condition, implies that ∂Qba ∩ Υ lies above ∂Qab ∩ Υ
when va is plotted on the horizontal axis and vb is plotted on the vertical axis.
Our interiority assumption ensures that (i) ∂Qab∩Υ intersects the right-hand
boundary of V ∩ Υ or (ii) ∂Qba ∩ Υ intersects the upper boundary of V ∩ Υ .
Without loss of generality, we consider case (i).

We choose v so that it is in the interior of Qa ∩ V, which is possible by
our interiority assumption. The valuation vector ṽ differs from v only in the
valuations of outcomes a and b. It is chosen so that ṽa > va and ṽb > vb, and
so that (ṽa, ṽb) is not in either Qa ∩ Υ or Qb ∩ Υ , as shown in the diagram.
Because v is in the interior of Qa, by Theorem 6, the characteristic type tv

associated with v is allocated a. Because ṽ is in neither Qa nor Qb, the same
theorem implies that the characteristic type tṽ associated with ṽ cannot be
allocated either a or b. In moving from v to ṽ, the valuations of a and b have
increased with no change in the valuations of the other outcomes. Hence, by
Theorem 7, no outcome other than a or b can be allocated to tṽ. We now
have no outcome allocated to tṽ, which is impossible, and so we conclude that
�(a, b)+�(b, a) = 0. Note that −�(b, a) is the vertical intercept of ∂Qab∩Υ and
�(a, b) is the vertical intercept of ∂Qba ∩ Υ . When these two values concide,
then so do ∂Qab ∩ Υ and ∂Qba ∩ Υ .

If there are only two outcomes, say a1 and a2, only the 2-cycle nonneg-
ativity condition and convexity of V are needed to conclude that �(a1, a2) +
�(a2, a1) = 0. This can be seen using Figure 1. Because V must intersect both
Qa1 and Qa2 , if, as shown in this diagram, �(a1, a2) + �(a2, a1) > 0, then V
must contain valuation vectors that are in neither of the two difference sets
when V is convex. But then some types are not assigned any outcome, which
is impossible.

We now show that if the length of every 2-cycle is zero and the length of
every 3-cycle is nonnegative, then all k-cycles have zero length.

Lemma 2. If all 2-cycles in the allocation graph Γg have zero length and all
3-cycles in Γg have nonnegative length, then for every integer k ≥ 2, any
k-cycle in Γg has zero length.

Proof. By Lemma 1, any 2-cycle has zero length.
Consider any 3-cycle (a1, a2), (a2, a3), (a3, a1). Because all 3-cycles have

nonnegative length,

�(a1, a2) + �(a2, a3) + �(a3, a1) ≥ 0.

Because all 2-cycles have zero length, this inequality is equivalent to

−�(a2, a1) − �(a3, a2) − �(a1, a3) ≥ 0,
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Fig. 4. Inserting a 2-cycle into a 4-cycle.

or, equivalently,
�(a1, a3) + �(a3, a2) + �(a2, a1) ≤ 0.

Because all 3-cycles have nonnegative length, the preceding inequality implies
that the 3-cycle (a1, a3), (a3, a2), (a2, a1) has zero length, which implies that
the original 3-cycle (a1, a2), (a2, a3), (a3, a1) also has zero length.

Induction is used to complete the proof. Consider any integer k ≥ 4
and suppose that any (k − 1)-cycle has zero length. Consider any k-cycle
(a1, a2), . . . , (ak−1, ak), (ak, a1). We now insert the 2-cycle (ak−1, a1), (a1, ak−1)
before the arc (ak−1, ak). This construction is illustrated in Figure 4 for the
case in which k = 4. The inserted 2-cycle has length zero. Thus,

�(a1, a2) + · · · + �(ak−1, ak) + �(ak, a1)
= [�(a1, a2) + · · · + �(ak−2, ak−1) + �(ak−1, a1)]

+ [�(a1, ak−1) + �(ak−1, ak) + �(ak, a1)] .

The first (resp. second) term in square brackets on the right-hand side of this
equation is the length of a (k − 1)-cycle (resp. 3-cycle). Both of these lengths
are zero. Hence, the length of the original k-cycle is also zero. �	

To complete the proof of Theorem 8, it remains to show that the length
of any 3-cycle is nonnegative.

Lemma 3. Under the assumptions of Theorem 8, any 3-cycle in the allocation
graph Γg has nonnegative length.

Proof. Consider any distinct a, b, c ∈ A. We first consider the case in which
Ld �= −∞ for all d ∈ A\{c}. Let
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v∗c = max
d∈A\{c}

[Ld + �(d, c)] (17)

and consider any
d̄ ∈ arg max

d∈A\{c}
[Ld + �(d, c)] . (18)

Because the 2-cycle nonnegativity condition is satisfied, �(d, c) is finite for all
d ∈ A\{c}. Thus, our assumptions ensure that such a d̄ exists and that v∗c
is finite. Note that for any v̄c with v̄c > v∗c , there exist v̄d for all d ∈ A\{c}
arbitrarily close to Ld such that v̄ ∈ Q◦

c and, hence by Theorem 6, that tv̄ ∈ Rc

if v̄ ∈ V.10 We must have v∗c < Uc, otherwise Qc ∩ V would have an empty
interior. Furthermore, Lc < v∗c , otherwise tv ∈ Rc for all v with vc > v∗c , which
implies that Qd ∩ V would have an empty interior for all d ∈ A\{c}. Thus,
Lc < v∗c < Uc.

We now show that

Ua − v∗c > �(c, a) and Ub − v∗c > �(c, b). (19)

If the first inequality in (19) is violated, we have Ua − v∗c ≤ �(c, a). Because
Qa ∩ V has a nonempty interior, we must have

Ua − Ld > �(d, a), ∀d ∈ A\{a}. (20)

Thus, by choosing ε > 0 sufficiently small, there exists a valuation type ṽ ∈ V
defined by setting ṽa = Ua − ε, ṽc = v∗c − ε/2, and ṽd = Ld + ε for all
d ∈ A\{a, c} such that Ua − Ld > �(d, a) + 2ε for all d ∈ A\{a, c}. However,
we cannot assign any outcome in A to valuation type ṽ because

ṽc − ṽd̄ = v∗c − ε/2 − [Ld̄ + ε] < �(d̄, c), (21)

ṽa − ṽc = Ua − ε − [v∗c − ε/2] = Ua − v∗c − ε/2 < Ua − v∗c ≤ �(c, a), (22)

and

ṽd − ṽa = Ld + ε − [Ua − ε] = Ld − Ua + 2ε

< −�(d, a) = �(a, d), ∀d ∈ A\{a, c}, (23)

where the last inequality in (21) follows from (17), the last inequality in (22)
holds by supposition, the inequality in (23) follows from (20), and the last
equality in (23) follows because all 2-cycles have zero length. However, ṽ must
be assigned an outcome in A, so this contradiction shows that Ua−v∗c > �(c, a).
Similarly, we must have Ub − v∗c > �(c, b).

Contrary to what we want to show, now suppose that �(a, b) + �(b, c) +
�(c, a) < 0. Let v̂ be defined by setting

v̂a = v∗c − �(a, c) + 2δ, (24)

10 If Ld ∈ 〈Ld, Ud〉, v̄d can be chosen to be Ld.
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v̂b = v∗c − �(b, c) + ξ, (25)

v̂c = v∗c + δ, (26)

and
v̂d = Ld + δ/2, ∀d ∈ A\{a, b, c}. (27)

Because Lc < v∗c < Uc, for δ > 0 sufficiently small, (26) and (27) imply that
Lc < v̂c < Uc and Ld < v̂d < Ud for all d ∈ A\{a, b, c}. Using (17), for δ > 0
and ξ > 0 sufficiently small, it follows from (24) and (25) that La < v̂a and
Lb < v̂b. Because all 2-cycles have zero length, (24) and (25) also imply that
v̂a = v∗c + �(c, a)+2δ and v̂b = v∗c + �(c, b)+ ξ. For δ > 0 and ξ > 0 sufficiently
small, it then follows from (19) that v̂a < Ua and v̂b < Ub. Hence, by choosing
δ > 0 and ξ > 0 sufficiently small with δ > ξ, it follows that v̂ ∈ V and

�(a, b) + �(b, c) + �(c, a) + 2δ − ξ < 0. (28)

We have

v̂a− v̂b = �(b, c)−�(a, c)+2δ−ξ = �(b, c)+�(c, a)+2δ−ξ < −�(a, b) = �(b, a),

where the first equality follows from (24) and (25), the other two equalities
follow because 2-cycles have zero length, and the inequality follows from (28).
Thus, a cannot be chosen when v = v̂.

Because 2-cycles have zero length and δ > ξ, it follows from (25) and (26)
that

v̂b − v̂c = −�(b, c) − δ + ξ < −�(b, c) = �(c, b).

Thus, b cannot be chosen when v = v̂.
By (24) and (26),

v̂c − v̂a = �(a, c) − δ < �(a, c).

Thus, c cannot be chosen when v = v̂.
Finally, because 2-cycles have zero length, (17), (26), and (27) imply that

v̂d − v̂c = Ld − v∗c − δ/2 < Ld − v∗c ≤ −�(d, c) = �(c, d), ∀d ∈ A\{a, b, c}.

Thus, no d ∈ A\{a, b, c} can be chosen when v = v̂.
We have shown that no outcome in A can be chosen when v = v̂, which

is impossible. Thus, our supposition that �(a, b) + �(b, c) + �(c, a) < 0 is false.
Hence, �(a, b)+�(b, c)+�(c, a) ≥ 0, which completes the proof when Ld �= −∞
for all d ∈ A\{c}.

If some, but not all, d ∈ A\{c} have Ld = −∞, the argument proceeds as
above with a finite value L̄d used instead of Ld for all d ∈ A\{c} for which
Ld = −∞, where L̄d is chosen to be sufficiently small so that d̄ still solves
(18) and (20) still holds. If Ld = −∞ for all d ∈ A\{c}, we then replace Ld

with a finite value L̄d for all d ∈ A\{c}, with L̄d chosen so that (20) still holds
and v∗c < Uc. The proof then proceeds as above. �	
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Fig. 5. 3-cycles with nonzero length.

The conclusion that the lengths of 3-cycles are zero follows from geometric
properties of the difference sets that can be most easily seen when there are
only three outcomes, say a1, a2, and a3, and the valuation type space V is
compact. Fix v3 at its lowest value L3 and let

Υ = {v ∈ R
3 | v3 = L3}.

Recall that if we increase v3, the left-hand boundary of Qa1 moves to the right
and the lower boundary of Qa2 moves up. Thus, our interiority assumption
implies that if we restrict attention to valuation vectors in Υ , then the vertical
part of the boundary of Qa1∩Υ must lie to the left of the right-hand boundary
of V ∩ Υ and the horizontal part of the boundary of Qa2 ∩ Υ must lie below
the upper boundary of V ∩ Υ , as illustrated in Figure 5. Because all 2-cycles
have zero length, in Υ , the upward sloping parts of the boundaries of Qa1

and Qa2 lie on a common line with slope equal to 1, the vertical parts of the
boundaries of Qa1 and Qa3 lie on a common vertical line, and the horizontal
parts of the boundaries of Qa2 and Qa3 lie on a common horizontal line.

Suppose that the kinks on the boundaries of Qa1 ∩ Υ and Qa2 ∩ Υ do not
coincide. Without loss of generality, we can suppose that the kink point for
Qa1 ∩ Υ lies up and to the right of the kink point for Qa2 ∩ Υ . As can be
seen from the diagram, there is a triangular region in Υ whose interior is not
in any of the three difference sets. Furthermore, either (i) the interior of this
triangular region has a nonempty intersection with V or (ii) the interior of
this triangular region lies below the lower horizontal boundary of V ∩ Υ . In
the latter case, we increase the value of v3 until the interior of this triangular
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Fig. 6. 3-cycles with zero length.

region intersects with the new cross section of V obtained by increasing v3

and define Υ using this new value of v3. Because Q◦
a3

∩V �= ∅, such a value of
v3 must exist. In Figure 5, all of the triangular region lies in V ∩ Υ , but this
need not be the case. Moreover, it is possible for Qa3 ∩ V ∩ Υ to be empty.
By Theorem 6, it now follows that the characteristic types that correspond to
valuation types in the intersection of the interior of the triangular region and
V are not allocated any outcome, which is impossible. Thus, the kink points
on the boundaries of Qa1 ∩ Υ and Qa2 ∩ Υ coincide, which implies that this
common point is also the kink point on the boundary of Qa3 ∩ Υ .

We now have a situation like that depicted in Figure 6.11 Because the
common boundary of Qa1 ∩ Υ and Qa2 ∩ Υ has a slope equal to 1,

�(a3, a2) + L3 = �(a1, a2) + �(a3, a1) + L3. (29)

Because all 2-cycles have zero length, � is antisymmetric. Hence, (29) is equiv-
alent to

�(a1, a2) + �(a2, a3) + �(a3, a1) = 0.

That is, the 3-cycle (a1, a2), (a2, a3), (a3, a1) has zero length. The antisym-
metry of � then implies that the only other 3-cycle, (a1, a3), (a3, a2), (a2, a1),
also has zero length. Note that for the situation shown in Figure 5 (which we
have shown to be inconsistent with our assumptions), the right-hand side of

11 If case (ii) in the preceding paragraph applies, then L3 is replaced with the value
of v3 used to ensure that the interior of the triangular region contains valuation
vectors in V.
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(29) is larger than the left-hand side, from which it follows that the length of
the 3-cycle (a1, a2), (a2, a3), (a3, a1) is positive and the length of the 3-cycle
(a1, a3), (a3, a2), (a2, a1) is negative.

If V is a convex product space and our interiority assumption is satisfied, it
follows from the Rockafellar–Rochet Theorem and Theorem 8 that a necessary
condition for dominant strategy implementation of the allocation function g
is that all 2-cycles in the allocation graph Γg have zero length. By Theorem 4,
if all of these 2-cycles have zero length, then g is dominant strategy imple-
mentable. Thus, given our structural assumptions, we have identified a new
necessary and sufficient condition for dominant strategy implementability of
g: all 2-cycles in the allocation graph Γg have zero length. We combine this
observation with the necessary and sufficient conditions in the Rockafellar–
Rochet and Saks–Yu Theorems in the following equivalence theorem.

Theorem 9. If the valuation type space V is a convex product space and Qa∩V
has a nonempty interior for all a ∈ A, then the following conditions for the
allocation function g : T → A are equivalent:

(i) g is dominant strategy implementable;
(ii) for every integer k ≥ 2, any k-cycle in the allocation graph Γg has non-

negative length;
(iii) any 2-cycle in the allocation graph Γg has nonnegative length;
(iv) any 2-cycle in the allocation graph Γg has zero length.

6 Concluding Remarks

We have shown that by requiring the valuation type space to be a convex
product space and by adopting a mild domain regularity condition, the 2-cycle
nonnegativity condition is sufficient for all k-cycles in an allocation graph to
have zero length, not just to have nonnegative length, as is the case in Saks
and Yu (2005). Furthermore, given our assumptions, a necessary and sufficient
condition for dominant strategy implementability of the allocation function
g is that all 2-cycles in the allocation graph Γg have zero length. As noted
in Section 1, it follows from the analysis in Heydenreich, Müller, Uetz, and
Vohra (2009) that this condition is necessary and sufficient for g to satisfy the
revenue equivalence property.

Our proof strategy utilizes the product space structure of a valuation type
space in a number of steps in our proofs. It is an open question whether this
structural condition can be relaxed. In particular, it is unknown whether our
main theorem, Theorem 8, continues to hold if the valuation type spaces are
only required to be convex, as in Saks and Yu (2005).
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