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Abstract

We develop a strategic model of network interdiction in a non-cooperative game of �ow. A security

agency operates a network with arc capacities. An adversary, endowed with a bounded quantity of bads,

chooses a �ow that speci�es a plan for carrying bads through the network from a base to a target.

Simultaneously, the agency chooses a blockage, which speci�es a plan for blocking the transport of bads

through arcs in the network. However, the blockage of arcs disrupts the operation of the network. The

adversary gains and the agency loses from the target damage and the network disruption. The adversary

incurs the expense of carrying bads. We characterize the Nash equilibria in terms of the primitives of our

model. Our model contributes to the literature of game theory by introducing non-cooperative behavior

into a Kalai-Zemel type mode of a (cooperative) game of �ow. Our research also advances models and

results on network interdiction.
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1 Introduction

National security is a public good whose reliable provision reduces economic uncertainty and promotes

economic activity. Although the government of a country provides its citizens with national security, the

country�s security level is not determined only by the government�s decision. Non-state actors, as well as

other governments, may also a¤ect the country�s security level. For example, as a violent non-state actor, a

terrorist group can critically a¤ect a country�s security level.

In this paper we develop a strategic model of network interdiction. A security agency operates a network

with arc capacities; airlines, railroads, pipelines, public transportation, and computer networks are examples

of such networks. An adversary is endowed with a bounded quantity of bads; explosives, biochemicals,

nuclear weapons, and computer viruses are examples of bads. The adversary chooses a �ow that speci�es a

plan for carrying bads through the network from a base to a target. By carrying bads through the network,

the adversary can damage the target. Simultaneously, the agency chooses a blockage that speci�es a plan

for blocking arcs in the network. By blocking arcs, the agency can decrease the amount of bads carried to

the target. However, the blockage of arcs disrupts the operation of the network. The adversary gains and

the agency loses from the target damage and the network disruption. The adversary incurs the expense of

carrying bads.

The properties of the Nash equilibria depend on the primitives of the model. When the marginal loss of

the target is no greater than the marginal expense of carrying bads, there are pure strategy Nash equilibria

in which the adversary carries no bads from the base to the target and the agency blocks no arcs, regardless

of the bound on the quantity of bads. When the marginal target loss is greater than the marginal expense,

there are various types of Nash equilibria, depending on the marginal target loss, the network and the

bound on the quantity of bads. First, if the bound on the quantity of bads is small, there are pure strategy

Nash equilibria in which the adversary carries bads from the base to the target up to the bound and the

agency blocks no arcs. Second, if the bound on the quantity of bads is large, there are mixed strategy Nash

equilibria in which the adversary carries the maximum possible amount of bads through the network with

positive probability and the agency blocks no arcs with positive probability. Third, if the bound on the

quantity of bads is intermediate, there are mixed strategy Nash equilibria in which the adversary carries

bads up to the bound with positive probability and the agency blocks no arcs with positive probability.

In a Nash equilibrium the adversary damages the target if and only if the adversary successfully carries

bads from the base to the target and the agency blocks none of the arcs used. By computing the probability

of this joint event, we calculate the equilibrium probability of the adversary damaging the target. When

the marginal target loss is greater than the marginal expense and the bound on the quantity of bads is

either intermediate or large, the equilibrium probabilities can be expressed as negative power functions of

the marginal target loss. Assuming constant marginal target loss, we can conclude that the equilibrium

probabilities are negative power functions of the target damage. This theoretical �nding is consistent with
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empirical evidence.1

This paper contributes to the game theory literature by introducing noncooperative behavior into a Kalai-

Zemel network �ow model. Kalai and Zemel [14] de�ne a (transferable utility) cooperative game, called a

�ow game, in which the worth of a coalition is de�ned as the value of a maximum �ow in the network

restricted to the members of the coalition.2 Their main result is that a cooperative �ow game is totally

balanced and thus has a nonempty core (that is, there are distributions of the total payo¤ of the game that

are stable against the formation of coalitions). Our framework di¤ers in that players interact strategically.

Moreover, one might think of the nodes in our game as points in a transportation route or as servers in the

Internet rather than as players themselves or locations of players.

This paper also contributes to the literature on network interdiction. Washburn and Wood [18] introduce

a zero-sum game between an evader and an interdictor, in which the evader chooses a path to move through

a network and the interdictor chooses an arc at which to set up an inspection site. If the evader traverses a

path that includes the inspected arc, the evader is detected with some exogenously given positive probability;

otherwise, the evader is not detected. The detection probability of each arc in the network is exogenously

given. Both players are allowed to choose mixed strategies. Given a mixed strategy pro�le, the interdiction

probability is de�ned to be the average probability of the evader being detected. The evader aims to

minimize the interdiction probability by choosing a path-selection mixed strategy while the interdictor aims

to maximize the interdiction probability by choosing an arc-inspection mixed strategy. By using linear

programming and network �ow techniques, Washburn and Wood [18] �nd Nash equilibria of this game.

Kodialam and Lakshman [15] also introduce a related game of network interdiction in the context of network

security.3

Our model di¤ers from the existing models on network interdiction in four aspects:

(i) Networks are capacitated. That is, a capacity is assigned to each arc in a network.

(ii) The adversary is endowed with a bounded quantity of bads, which may, in equilibrium, be binding.

(iii) The adversary chooses a �ow rather than a path. If there are multiple paths in a network, the adversary

can choose them at once.

(iv) Our network interdiction game is not a zero-sum game nor even a strictly competitive game.

Because of (i), we do not need to take as given detection probabilities; in our model these probabilities are

determined by player behaviors. By virtue of (ii) and (iii), our model has a larger set of strategies for the

1 In empirical research Bohorquez et al. [5] and Clauset et al. [6] show that the fatality distribution of terrorist events follows

a power law.
2For other studies on cooperative �ow games, see Kalai and Zemel [13], Granot and Granot [10], Potters et al. [16], and

Reijnierse et al. [17].
3Other than these papers, most of the literature on network interdiction deals with an interdictor�s optimization problem

subject to some budget constraints. See Cormican et al. [7], Israeli and Wood [11], and Wood [19].
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adversary than Washburn and Wood [18]. Our consideration of �ows rather than paths as in [18], however,

creates a more tractable environment and enables us to obtain sharper characterizations of equilibrium

strategies. Because of (iv), we need to use a di¤erent solution technique to �nd equilibria. We exploit the

idea that in any Nash equilibrium each player makes rival players indi¤erent between the pure strategies

played with positive probability.

We remark that security in network games has attracted signi�cant interest. For example, Ballester et

al. [4] study the interaction between players whose payo¤s depend on a network. They obtain a proportional

relationship between how much e¤ort a player exerts and how central position the player has in the network.

Baccara and Bar-Isaac [2] study the formation of networks between criminals and terrorists and �nd optimal

policies for law enforcement agencies. Baccara and Bar-Isaac [3] further study how the choice of interrogation

methods a¤ects the formation of terrorist networks. Goyal and Vigier [9] study the design and protection of

networks robust to attacks from outside on the networks�nodes.4

The remainder of this paper is organized as follows. Section 2 develops a game-theoretic model of

network interdiction. Section 3 studies Nash equilibria of the model. Section 4 discusses our theoretical

�nding, together with empirical evidence, and also discusses future research topics.

2 The Model

2.1 Networks

Let N be a set of nodes with a base node s and a target node t. Let A � N �N be a set of arcs where each

arc is an ordered pair of distinct nodes. Let c := (cij)(i;j)2A be a (row) vector of arc capacities where each

entry cij � 0 denotes the capacity of arc (i; j). A network is de�ned as a collection G := (N;A; s; t; c).

For each j 2 N , let RS(j) := f(i; j) : (i; j) 2 Ag be the reverse star of node j in network G. For each

j 2 N , let FS(j) := f(j; i) : (j; i) 2 Ag be the forward star of node j in network G.

A bound quantity q > 0 is given. This bound limits the quantity of bads that are available to an adversary

to carry through network G from base s to target t. A �ow f := (fij)0(i;j)2A with bound quantity q in network

G is a (column) vector satisfying the following constraints:

0 � fij � cij for each (i; j) 2 A, (1)X
(i;j)2RS(j)

fij �
X

(j;i)2FS(j)

fji = 0 for each j 2 N n fs; tg, (2)

�q �
X

(i;s)2RS(s)

fis �
X

(s;i)2FS(s)

fsi � 0 and (3)

0 �
X

(i;t)2RS(t)

fit �
X

(t;i)2FS(t)

fti � q. (4)

4For a survey on other literature on networks, see Jackson [12].
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Constraint (1) requires that for each arc (i; j), the �ow fij be between zero and the capacity cij . Constraint

(2) requires that for each node j other than base s and target t, the sum of the �ows fij carried to node j

be equal to the sum of the �ows fji carried from node j. Constraint (3) requires that the sum of the �ows

fis carried to base s less the sum of the �ows fsi carried from base s be between zero and the bound �q.

Constraint (4) requires that the sum of the �ows fit carried to target t less the sum of the �ows fti carried

from target t be between zero and the bound q. Let F be the set of all �ows with bound quantity q in

network G.

Let v := (vij)(i;j)2A be a (row) vector with vit = 1 for each (i; t) 2 RS(t), vti = �1 for each (t; i) 2 FS(t),

and vij = 0 for each (i; j) =2 RS(t) [ FS(t). Then the value of any �ow f is de�ned as

v � f =
X

(i;t)2RS(t)

fit �
X

(t;i)2FS(t)

fti; (5)

that is, the value of a �ow f = (fij)0(i;j)2A is the sum of the �ows fit carried to target t less the sum of the

�ows fti carried from target t. Constraint (4) implies that for each f 2 F ,

0 � v � f � q. (6)

A �ow fo 2 F is the zero �ow if fo is the vector of zeros. A �ow f� 2 F is a maximum �ow if for each

f 2 F , we have v � f� � v � f .

A cut (C;C) in network G is a partition of the node set N such that s 2 C and t 2 C. For each cut

(C;C), let A(C;C) := f(i; j) 2 A : i 2 C and j 2 Cg be the set of all arcs directed from a node in C to a node

in C.

A blockage b := (bij)
0
(i;j)2A in network G is a (column) vector with bij 2 f0; 1g for each (i; j) 2 A. If

bij = 1, arc (i; j) is blocked; if bij = 0, arc (i; j) is not blocked. Let B be the set of all blockages in network

G. The capacity of any blockage b is de�ned as

c � b =
X

(i;j)2A

cijbij ; (7)

that is, the capacity of a blockage is the sum of the capacities of the blocked arcs.

A blockage bo 2 B is the zero blockage if bo is the vector of zeros. For each b 2 B, let Ab := f(i; j) 2 A :

bij = 1g be the set of all arcs blocked under b. A blockage b 2 B is a cut blockage if there is a cut (C;C)

such that A(C;C) = Ab. A cut blockage b
� 2 B is a minimum cut blockage if for each cut blockage b, we have

c � b� � c � b.

If q > c � b�, we have

v � f� = c � b�. (8)

That is, if the bound quantity is greater than the capacity of a minimum cut blockage, the value of a

maximum �ow is equal to the capacity of a minimum cut blockage. Equality (8) is called the max-�ow
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min-cut theorem.5 If q � c � b�, however, we have

v � f� = q. (9)

That is, if the bound quantity is less than or equal to the capacity of a minimum cut blockage, the value of

a maximum �ow is equal to the bound quantity.

An s � t path in network G is a sequence of distinct nodes i1; : : : ; iK such that (ik; ik+1) 2 A for each

k 2 f1; : : : ;K � 1g with i1 = s and iK = t. In this case, we say that the s� t path includes arcs (i1; i2); : : : ;

(iK�1; iK). A cycle in network G is a sequence of distinct nodes i1; : : : ; iK such that (ik; ik+1) 2 A for each

k 2 f1; : : : ;K�1g with (iK ; i1) 2 A. In this case, we say that the cycle includes arcs (i1; i2); : : : ; (iK�1; iK);

and (iK ; i1). Let H be the set of all s� t paths and cycles in network G.

The arc-path-cycle incidence matrix 6 of network G is a matrix M := (mah)a2A;h2H with

mah =

8<: 1 if h 2 H includes a 2 A

0 otherwise.

For each �ow f , there is a (column) vector x := (xh)0h2H such that

f =Mx

by the �ow decomposition algorithm, which is stated in Appendix A. For such vector x and each blockage

b, let xb := (xbh)
0
h2H be a (column) vector with

xbh =

8<: xh if h is an s� t path including no blocked arcs

0 otherwise.

For each (f; b) 2 F � B, the net �ow to target t under f and b is a (column) vector f b := (f bij)
0
(i;j)2A such

that

Mxb = f b.

In any net �ow, all cycles have zero �ow and only s� t paths have positive �ow. For each (f; b) 2 F �B, we

have

f � f b = Mx�Mxb

= M(x� xb)

� 0 (10)

because f = Mx, f b = Mxb, and x � xb. In other words, if f b = (f bij)0(i;j)2A is the net �ow under a �ow

f = (fij)
0
(i;j)2A and a blockage b, for each arc (i; j), the net �ow f

b
ij cannot exceed the �ow fij . The following

example illustrates how to �nd net �ows.

5For a detailed discussion, see Ahuja et al. [1] and Ford and Fulkerson [8].
6This extends the arc-path incidence matrix used in Washburn and Wood [18] to allow cycles.
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Example 1 Let G = (N;A; s; t; c) be a network, where N = fs; i1; i2; tg is a node set with base s and target

t, A = f(s; i1); (s; i2); (i1; i2); (i2; t); (t; i1)g is an arc set, and c = (csi1 ; csi2 ; ci1i2 ; ci2t; cti1) = (4; 1; 2; 5; 2)

is an arc capacity vector. Suppose that q = 3. A �ow with bound quantity q in network G is given as

f = (fsi1 ; fsi2 ; fi1i2 ; fi2t; fti1)
0 = (1; 1; 2; 3; 1)0. See Figure 1. The arc-path-cycle incidence matrix of network

G is

M =

0BBBBBBBBB@

1 0 0

0 1 0

1 0 1

1 1 1

0 0 1

1CCCCCCCCCA
where the �rst two columns describes the s� t paths s; i1; i2; t and s; i2; t respectively and the third column

describes the cycle i1; i2; t; i1. By the �ow decomposition algorithm, there is a vector x = (1; 1; 1)0 such that

f =Mx. That is, 0BBBBBBBBB@

1

1

2

3

1

1CCCCCCCCCA
=

0BBBBBBBBB@

1 0 0

0 1 0

1 0 1

1 1 1

0 0 1

1CCCCCCCCCA

0BBB@
1

1

1

1CCCA .

Now a blockage in network G is given as b = (bsi1 ; bsi2 ; bi1i2 ; bi2t; bti1)
0 = (0; 1; 0; 0; 0)0. Then, xb = (1; 0; 0)0.

Thus, the net �ow to target t under f and b is f b = (1; 0; 1; 1; 0)0. As in inequality (10), we have f � f b. �

s �HHHHHHHHj

1 1

��
��

��
��*

1 4

i1

�

6

2 2

i2

�HHHHHHHHj

3 5

t����������
1 2

Figure 1 Each solid circle indicates a node; each arrow indicates an arc; in each pair of numbers, the �rst

bold number indicates a �ow and the second light number indicates the capacity of an arc.

2.2 Players and Strategies

A network G = (N;A; s; t; c) is given. There are two players, say player 1 and player 2. Let player 1 be an

adversary and let player 2 be an agency. Suppose that both players move simultaneously.
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Player 1 is endowed with a bound quantity q > 0 of bads located at base node s. Player 1 plans to

damage target node t and disrupt the operation of network G. Player 1 chooses a plan for carrying bads

through network G from base s to target t. Formally, player 1 chooses a �ow (of bads) with bound quantity

q in network G. Player 1�s set of pure strategies is denoted by F , the set of all �ows with bound quantity q

in network G. For each f 2 F , player 1 carries fij amount of bads through arc (i; j).

Player 2 aims to protect target t and operate network G e¤ectively. Player 2 chooses a plan for blocking

arcs in the network. Formally, player 2 chooses a blockage (of arcs) in network G. Player 2�s set of pure

strategies is denoted by B, the set of all blockages in network G. For each b 2 B, if bij = 1, player 2 blocks

arc (i; j); otherwise, she does not block the arc.

Players are allowed to choose mixed strategies. Player 1�s set of mixed strategies is denoted by �(F) and

player 2�s set of mixed strategies is denoted by �(B).

2.3 Payo¤s

The net �ow to the target determines how severely the target is damaged. If player 1 chooses a �ow f and

player 2 chooses a blockage b, then f b is the net �ow to target t under f and b. Let ` := (`ij)(i;j)2A be a (row)

vector of target losses where each entry `ij denotes the target damage caused by one unit of bads carried

through arc (i; j). We assume that `it = `t > 0 for each (i; t) 2 RS(t) and `ij = 0 for each (i; j) =2 RS(t).

We call `t the marginal target loss. For each (f; b) 2 F � B, the target damage amounts to

` � f b = `t
X

(i;t)2RS(t)

f bit. (11)

Then player 1 gains ` � f b while player 2 loses the same amount.

By blocking arcs, player 2 decreases the net �ow of bads to the target. However, the blockage of arcs

disrupts the operation of network G. The capacity of the arc blockage determines how severely the network

is disrupted. For each b 2 B, the network disruption amounts to

c � b =
X

(i;j)2A

cijbij . (12)

Then player 1 gains c � b while player 2 loses the same amount.

Player 1 incurs the expense of carrying bads from the base to the target. Let e := (eij)(i;j)2A be a (row)

vector with esi = 1 for each (s; i) 2 FS(s) and eij = 0 for each (i; j) =2 FS(s). For each f 2 F , the expense

of carrying bads amounts to

e � f =
X

(s;i)2FS(s)

fsi. (13)

Player 2 obtains a constant worth w � 0 while operating network G.

For each (f; b) 2 F � B, the payo¤ of player 1 is de�ned as

u1(f; b) = ` � f b + c � b� e � f ,
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and the payo¤ of player 2 is de�ned as

u2(f; b) = w � ` � f b � c � b.

For each � = (�1; �2) 2 �(F)��(B), the expected payo¤s of the players are

u1(�1; �2) = E�[u1(f; b)] and u2(�1; �2) = E�[u2(f; b)].

Let � := (G; q;�(F);�(B); u1; u2) be a network interdiction game.

3 Nash Equilibria of the Model

A network interdiction game is given as � = (G; q;�(F);�(B); u1; u2). We use Nash equilibrium as our

solution concept. In a Nash equilibrium, no player can be (strictly) better o¤ by changing his or her

strategy.

De�nition 1 A strategy pro�le (�1; �2) 2 �(F)��(B) constitutes a Nash equilibrium of network interdic-

tion game � if for each �01 2 �(F) and each �02 2 �(B),

u1(�1; �2) � u1(�01; �2) and u2(�1; �2) � u2(�1; �02).

Depending on whether the marginal target loss is greater than one, we consider two cases. Suppose �rst

that the marginal target loss is less than or equal to one.

A �ow f� 2 F is a trivial �ow if e � f� = 0. In any trivial �ow, all s� t paths have zero �ow. Thus, the

net �ow to the target under any trivial �ow f� and any blockage b is the zero �ow. That is, for each b 2 B,

(f� )b = fo. (14)

We call (f� ; bo) a trivial-�ow zero-blockage strategy pro�le. If the marginal target loss is less than or equal

to one, player 1, the adversary, does not have an incentive to carry bads from the base to the target and

player 2, the agency, does not have an incentive to block arcs. Thus, we have the following proposition.

Proposition 1 If `t � 1, any trivial-�ow zero-blockage strategy pro�le (f� ; bo) is a Nash equilibrium of

network interdiction game �.

The proof of Proposition 1 is presented in Appendix B. Notice that Proposition 1 holds regardless of the

bound quantity. We provide an example of trivial-�ow zero-blockage Nash equilibria.

Example 2 Consider network G in Example 1. Suppose that bound quantity q is any positive real number.

A trivial �ow is given as f� = (0; 0; 2; 2; 2)0. See Figure 2. Suppose that `t � 1. From Proposition 1, strategy

pro�le (f� ; bo) is a Nash equilibrium of the network interdiction game. In this Nash equilibrium, player 1

carries no bads from the base to the target and player 2 blocks no arcs. �
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s �HHHHHHHHj

0 1

��
��

��
��*

0 4

i1

�

6

2 2

i2

�HHHHHHHHj

2 5

t����������
2 2

Figure 2 The bold numbers indicate the trivial �ow.

Now suppose that the marginal target loss is greater than one. Then player 1 has the incentive to

carry bads from the base to the target. Thus, any trivial-�ow zero-blockage strategy pro�le is not a Nash

equilibrium. To study Nash equilibria in this case, we divide into three subcases, depending on the marginal

target loss, the capacity of a minimum cut blockage, and the bound quantity. The bound quantity q is small

if q � (1=`t)c � b�. The bound quantity q is intermediate if (1=`t)c � b� < q � c � b�. The bound quantity q is

large if c � b� < q.

Let f� denote a maximum �ow with large bound quantity q in network G. Because q is large, that is,

because q > c � b�, from equality (8), we have v � f� = c � b�. A maximum �ow f� with large bound quantity

q in network G is acyclic if f� = (f�)b
o

. Let f� denote an acyclic maximum �ow with large bound quantity

q in network G. Then equality (8) can be rewritten as

v � f� = c � b�. (15)

We �rst study the subcase when `t > 1 and q � (1=`t)c � b�. A �ow f� 2 F is a binding �ow if

f� = (q=(c � b�))f�. Because v � f� = c � b� from equality (15),

v � f� = (q=(c � b�))v � f�

= q; (16)

that is, the value of a binding �ow is equal to the bound quantity. We call (f� ; bo) a binding-�ow zero-

blockage strategy pro�le. If the marginal target loss is greater than one and the bound quantity is small,

player 1, the adversary, has an incentive to carry bads from the base to the target up to the bound quantity

but player 2, the agency, does not have the incentive to block arcs. Thus, we have the following proposition.

Proposition 2 If `t > 1 and q � (1=`t)c � b�, any binding-�ow zero-blockage strategy pro�le (f� ; bo) is a

Nash equilibrium of network interdiction game �.

The proof of Proposition 2 is presented in Appendix B. We provide an example of binding-�ow zero-

blockage Nash equilibria.
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Example 3 Consider network G in Example 1. Note that the acyclic maximum �ow is f� = (2; 1; 2; 3; 0)0

and that the minimum cut blockage is b� = (0; 1; 1; 0; 0)0. The capacity of the minimum cut blockage is

c � b� = 3. Suppose that `t = 2 and q = 1. Then the binding �ow is f� = (2=3; 1=3; 2=3; 1; 0)0. See Figure

3. From Proposition 2, strategy pro�le (f� ; bo) is a Nash equilibrium of the network interdiction game. In

this Nash equilibrium, player 1 carries bads from the base to the target up to the bound quantity but player

2 does not block any arc. �

s �HHHHHHHHj

1
3 1

��
��

��
��*

2
3 4

i1

�

6

2
3 2

i2

�HHHHHHHHj

1 5

t����������
0 2

Figure 3 The bold numbers indicate the binding �ow.

We next study the subcase when `t > 1 and c � b� < q. Recall that f� is an acyclic maximum �ow

with large bound quantity q in network G. A mixed strategy ��1 2 �(F) is a max-�ow strategy for player

1 if ��1(f
� ) = 1 � 1=`t and ��1(f�) = 1=`t. A mixed strategy ��2 2 �(B) is a min-cut strategy for player 2

if ��2(b
o) = 1=`t and ��2(b

�) = 1 � 1=`t. We call (��1; ��2) a max-�ow min-cut strategy pro�le. We provide

max-�ow min-cut Nash equilibria of the network interdiction game.

Proposition 3 If `t > 1 and c � b� < q, any max-�ow min-cut strategy pro�le (��1; ��2) is a Nash equilibrium

of network interdiction game �.

The proof of Proposition 3 is presented in Appendix B.

Here we show that given a min-cut strategy ��2, player 1 is indi¤erent between f
� and f�, and that given

a max-�ow strategy ��1, player 2 is indi¤erent between b
o and b�. In any max-�ow min-cut Nash equilibrium,

strategy pro�les (f� ; bo), (f� ; b�), (f�; bo), and (f�; b�) are assigned positive probability. Figure 4 illustrates

the players�payo¤s for these strategy pro�les. The calculation of these payo¤s can be found in the proof

of Proposition 3. Because ��2(b
o) = 1=`t and ��2(b

�) = 1 � 1=`t, player 1�s expected payo¤ for (f� ; ��2) is

calculated as

u1(f
� ; ��2) = ��2(b

o)u1(f
� ; bo) + ��2(b

�)u1(f
� ; b�)

= (1=`t)(0) + (1� 1=`t)c � b�

= (1� 1=`t)c � b�. (17)

10



Similarly, player 1�s expected payo¤ for (f�; ��2) is

u1(f
�; ��2) = ��2(b

o)u1(f
�; bo) + ��2(b

�)u1(f
�; b�)

= (1=`t)(`t � 1)c � b� + (1� 1=`t)(0)

= (1� 1=`t)c � b�. (18)

Thus, u1(f� ; ��2) = u1(f
�; ��2). That is, by choosing a min-cut strategy �

�
2, player 2makes player 1 indi¤erent

between f� and f�. Because ��1(f
� ) = 1� 1=`t and ��1(f�) = 1=`t, player 2�s expected payo¤ for (��1; bo) is

calculated as

u2(�
�
1; b

o) = ��1(f
� )u2(f

� ; bo) + ��1(f
�)u2(f

�; bo)

= (1� 1=`t)w + (1=`t)(w � (`t)c � b�)

= w � c � b�. (19)

For (��1; b
�), player 2�s expected payo¤ is

u2(�
�
1; b

�) = w � c � b�. (20)

Thus, u2(��1; b
o) = u2(�

�
1; b

�). That is, by choosing a max-�ow strategy ��1, player 1makes player 2 indi¤erent

between bo and b�.

1�2 bo b�

f� 0; w c � b�; w � c � b�

f� (`t � 1)c � b�; w � (`t)c � b� 0; w � c � b�

Figure 4 Payo¤s for strategy pro�les (f� ; bo), (f� ; b�), (f�; bo), and (f�; b�).

In any max-�ow min-cut Nash equilibrium (��1; �
�
2) of the game, player 1 gains a payo¤ of (1� 1=`t)c � b�

and player 2 gains w� c � b�. That is, u1(��1; ��2) = (1� 1=`t)c � b� and u2(��1; ��2) = w� c � b�. Thus, any two

max-�ow min-cut Nash equilibria are payo¤ equivalent.

In any max-�ow min-cut Nash equilibrium (��1; �
�
2) of the network interdiction game, player 1, the

adversary, chooses a trivial �ow f� with probability ��1(f
� ) = 1 � 1=`t and chooses an acyclic maximum

�ow f� with probability ��1(f
�) = 1=`t. That is, player 1 carries no bads from the base to the target with

probability 1�1=`t and carries the maximum possible amount of bads through the network with probability

1=`t. In this equilibrium, player 2, the agency, chooses the zero blockage bo with probability ��2(b
o) = 1=`t

and chooses a minimum cut blockage b� with probability ��2(b
�) = 1� 1=`t. That is, player 2 blocks no arcs

with probability 1=`t and blocks all the arcs necessary to disconnect the target from the base with probability

1� 1=`t.

11



In any max-�ow min-cut Nash equilibrium, we can calculate the probability of the adversary damaging the

target. Note that in this equilibrium, player 1 damages the target if and only if player 1 carries the maximum

amount of bads and player 2 blocks no arcs. This joint event takes place with probability (1=`t)(1=`t) = `
�2
t .

Thus, in any max-�ow min-cut Nash equilibrium, the probability of the adversary damaging the target is

`�2t .

We provide an example of max-�ow min-cut Nash equilibria.

Example 4 Consider network G in Example 1. Note that the acyclic maximum �ow is f� = (2; 1; 2; 3; 0)0

and that the minimum cut blockage is b� = (0; 1; 1; 0; 0)0. The capacity of the minimum cut blockage is

c � b� = 3. Suppose that `t = 4 and q = 5. In a max-�ow min-cut Nash equilibrium (��1; �
�
2), player 1

chooses the zero �ow fo with probability ��1(f
o) = 3=4 and the acyclic maximum �ow f� with probability

��1(f
�) = 1=4. Player 2 chooses the zero blockage bo with probability ��2(b

o) = 1=4 and the minimum cut

blockage b� with probability ��2(b
�) = 3=4. Thus, the equilibrium probability of player 1 damaging the target

is 1=16. See Figure 5. �
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Figure 5 The bold numbers indicate the acyclic maximum �ow; the line segments indicate the minimum

cut blockage.

A mixed strategy ��1 2 �(F) is a �-scaled max-�ow strategy, or simply a �-�ow strategy, for player 1 if

for some � 2 [1=`t; 1], ��1 (f� ) = 1� 1=�`t and ��1 (�f�) = 1=�`t. Note that any �-�ow strategy with � = 1

is a max-�ow strategy. We call (��1 ; �
�
2) a �-�ow min-cut strategy pro�le. We present �-�ow min-cut Nash

equilibria of the network interdiction game.

Proposition 4 If `t > 1 and c � b� < q, any �-�ow min-cut strategy pro�le (��1 ; ��2) is a Nash equilibrium of

network interdiction game �.

The proof of Proposition 4 is presented in Appendix B.

In any �-�ow min-cut Nash equilibrium (��1 ; �
�
2) of the network interdiction game, player 1 gains a payo¤

of (1�1=`t)c �b� and player 2 gains w�c �b�. That is, u1(��1 ; ��2) = (1�1=`t)c �b� and u2(��1 ; ��2) = w�c �b�.

Thus, any two �-�ow min-cut Nash equilibria are payo¤ equivalent.

12



In any �-�ow min-cut Nash equilibrium (��1 ; �
�
2) of the game, player 1, the adversary, chooses a trivial

�ow f� with probability ��1 (f
� ) = 1 � 1=�`t and chooses a �ow �f� with probability ��1 (�f

�) = 1=�`t.

Player 2, the agency, chooses the zero blockage bo with probability ��2(b
o) = 1=`t and chooses a minimum cut

blockage b� with probability ��2(b
�) = 1 � 1=`t. Note that in this equilibrium, player 1 damages the target

if and only if player 1 chooses �f� and player 2 chooses bo. This joint event takes place with probability

(1=�`t)(1=`t) = (1=�)`�2t . Thus, in any �-�ow min-cut Nash equilibrium, the probability of the adversary

damaging the target is (1=�)`�2t .

In any �-�ow min-cut Nash equilibrium, if the adversary damages the target, the target damage amounts

to ` � (�f�)bo = (�`t)c � b�. Let TD� := (�`t)c � b� denote the target damage in a �-�ow min-cut Nash

equilibrium. Let p� := (1=�)`�2t denote the probability of the adversary damaging the target in a �-�ow

min-cut Nash equilibrium. Because p� = (1=�)`
�2
t and `t = (1=�)(1=(c � b�))TD�, we have

p� = �(c � b�)2(TD�)�2 (21)

where � 2 (1=`t; 1]. Thus, in any �-�ow min-cut Nash equilibrium with � 2 (1=`t; 1], the probability of the

adversary damaging the target is a negative power function of the target damage. In addition, if � = (`t)��

for some � 2 [0; 1), equality (21) can be rewritten as

p� = (c � b�)
��2
��1 (TD�)

� ��2
��1 (22)

because p� = (`t)
��2 and `t = (c � b�) 1

��1 (TD�)
� 1
��1 . However, if � = 1=`t, the equilibrium probability is

independent of the target damage, because p� = `
�1
t and TD� = c � b�.

We �nally study the subcase when `t > 1 and (1=`t)c � b� < q � c � b�. Recall that f� is a binding

�ow. A mixed strategy ��1 2 �(F) is a �-�ow strategy for player 1 if �
�
1 (f

� ) = 1 � (1=`t)((c � b�)=q) and

��1 (f
�) = (1=`t)((c � b�)=q). We call (��1 ; ��2) a �-�ow min-cut strategy pro�le. We provide �-�ow min-cut

Nash equilibria of the network interdiction game.

Proposition 5 If `t > 1 and (1=`t)c � b� < q � c � b�, any �-�ow min-cut strategy pro�le (��1 ; ��2) is a Nash

equilibrium of network interdiction game �.

The proof of Proposition 5 is presented in Appendix B.

Here we show that given a min-cut strategy ��2, player 1 is indi¤erent between f
� and f� , and that given

a �-�ow strategy ��1 , player 2 is indi¤erent between b
o and b�. In any �-�ow min-cut Nash equilibrium,

strategy pro�les (f� ; bo), (f� ; b�), (f� ; bo), and (f� ; b�) are assigned positive probability. Figure 6 illustrates

the players�payo¤s for these strategy pro�les. The calculation of these payo¤s can be found in the proof

of Proposition 5. Because ��2(b
o) = 1=`t and ��2(b

�) = 1 � 1=`t, player 1�s expected payo¤ for (f� ; ��2) is

calculated as

u1(f
� ; ��2) = ��2(b

o)u1(f
� ; bo) + ��2(b

�)u1(f
� ; b�)

= (1=`t)(0) + (1� 1=`t)c � b�

= (1� 1=`t)c � b�. (23)
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Similarly, player 1�s expected payo¤ for (f� ; ��2) is

u1(f
� ; ��2) = ��2(b

o)u1(f
� ; bo) + ��2(b

�)u1(f
� ; b�)

= (1=`t)(`t � 1)q + (1� 1=`t)(c � b� � q)

= (1� 1=`t)c � b�. (24)

Thus, u1(f� ; ��2) = u1(f
� ; ��2). That is, by choosing a min-cut strategy �

�
2, player 2 makes player 1 indi¤erent

between f� and f� . Because ��1 (f
� ) = 1�(1=`t)((c�b�)=q) and ��1 (f�) = (1=`t)((c�b�)=q), player 2�s expected

payo¤ for (��1 ; b
o) is calculated as

u2(�
�
1 ; b

o) = ��1 (f
� )u2(f

� ; bo) + ��1 (f
�)u2(f

� ; bo)

= (1� (1=`t)((c � b�)=q))w + (1=`t)((c � b�)=q)(w � (`t)q)

= w � c � b�. (25)

For (��1 ; b
�), player 2�s expected payo¤ is

u2(�
�
1 ; b

�) = w � c � b�. (26)

Thus, u2(�
�
1 ; b

o) = u2(�
�
1 ; b

�). That is, by choosing a �-�ow strategy ��1 , player 1 makes player 2 indi¤erent

between bo and b�.

1�2 bo b�

f� 0; w c � b�; w � c � b�

f� (`t � 1)q; w � (`t)q c � b� � q; w � c � b�

Figure 6 Payo¤s for strategy pro�les (f� ; bo), (f� ; b�), (f� ; bo), and (f� ; b�).

In any �-�ow min-cut Nash equilibrium (��1 ; �
�
2) of the game, player 1 gains a payo¤ of (1 � 1=`t)c � b�

and player 2 gains w � c � b�. That is, u1(��1 ; ��2) = (1 � 1=`t)c � b� and u2(�
�
1 ; �

�
2) = w � c � b�. Thus, any

two �-�ow min-cut Nash equilibria are payo¤ equivalent.

In any �-�ow min-cut Nash equilibrium (��1 ; �
�
2) of the network interdiction game, player 1, the adversary,

chooses a trivial �ow f� with probability ��1 (f
� ) = 1� (1=`t)((c � b�)=q) and chooses a binding �ow f� with

probability ��1 (f
�) = (1=`t)((c � b�)=q). That is, player 1 carries no bads from the base to the target with

probability 1 � (1=`t)((c � b�)=q) and carries the bound quantity of bads with probability (1=`t)((c � b�)=q).

In this equilibrium, player 2, the agency, chooses the zero blockage bo with probability ��2(b
o) = 1=`t and

chooses a minimum cut blockage b� with probability ��2(b
�) = 1� 1=`t. That is, player 2 blocks no arcs with

probability 1=`t and blocks all the arcs necessary to disconnect the target from the base with probability

1� 1=`t.

14



In any �-�ow min-cut Nash equilibrium, we can calculate the probability of the adversary damaging the

target. Note that in this equilibrium, player 1 damages the target if and only if player 1 carries the bound

quantity of bads and player 2 blocks no arcs. This joint event takes place with probability ((c � b�)=q)`�2t .

Thus, in any �-�ow min-cut Nash equilibrium, the probability of the adversary damaging the target is

((c � b�)=q)`�2t .

We provide an example of �-�ow min-cut Nash equilibria.

Example 5 Consider network G in Example 1. Note that the acyclic maximum �ow is f� = (2; 1; 2; 3; 0)0

and that the minimum cut blockage is b� = (0; 1; 1; 0; 0)0. The capacity of the minimum cut blockage is

c�b� = 3. Suppose that `t = 4 and q = 3=2. Then the binding �ow is f� = (1; 1=2; 1; 3=2; 0)0. In a �-�ow min-

cut Nash equilibrium (��1 ; �
�
2), player 1 chooses the zero �ow f

o with probability ��1 (f
o) = 1=2 and the binding

�ow f� with probability ��1 (f
�) = 1=2. Player 2 chooses the zero blockage bo with probability ��2(b

o) = 1=4

and the minimum cut blockage b� with probability ��2(b
�) = 3=4. Thus, the equilibrium probability of player

1 damaging the target is 1=8. See Figure 7. �
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Figure 7 The bold numbers indicate the binding �ow; the line segments indicate the minimum cut blockage.

A mixed strategy ��1 2 �(F) is a �-�ow strategy for player 1 if for some � 2 [(1=`t)((c � b�)=q); 1],

��1 (f
� ) = 1� (1=�`t)((c � b�)=q) and ��1 (�f�) = (1=�`t)((c � b�)=q). Note that any �-�ow strategy with � = 1

is a �-�ow strategy. We call (��1 ; �
�
2) a �-�ow min-cut strategy pro�le. We present �-�ow min-cut Nash

equilibria of the network interdiction game.

Proposition 6 If `t > 1 and (1=`t)c � b� < q � c � b�, any �-�ow min-cut strategy pro�le (��1 ; ��2) is a Nash

equilibrium of network interdiction game �.

The proof of Proposition 6 is presented in Appendix B.

In any �-�ow min-cut Nash equilibrium (��1 ; �
�
2) of the network interdiction game, player 1 gains a payo¤

of (1�1=`t)c �b� and player 2 gains w�c �b�. That is, u1(��1 ; ��2) = (1�1=`t)c �b� and u2(�
�
1 ; �

�
2) = w�c �b�.

Thus, any two �-�ow min-cut Nash equilibria are payo¤ equivalent.

In any �-�ow min-cut Nash equilibrium (��1 ; �
�
2) of the game, player 1, the adversary, chooses a trivial

�ow f� with probability ��1 (f
� ) = 1� (1=�`t)((c � b�)=q) and chooses a �ow �f� with probability ��1 (�f�) =
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(1=�`t)((c � b�)=q). Player 2, the agency, chooses the zero blockage bo with probability ��2(bo) = 1=`t and

chooses a minimum cut blockage b� with probability ��2(b
�) = 1� 1=`t. Note that in this equilibrium, player

1 damages the target if and only if player 1 chooses �f� and player 2 chooses bo. This joint event takes place

with probability (1=�)((c � b�)=q)`�2t . Thus, in any �-�ow min-cut Nash equilibrium, the probability of the

adversary damaging the target is (1=�)((c � b�)=q)`�2t .

In any �-�ow min-cut Nash equilibrium, if the adversary damages the target, the target damage amounts

to ` � (�f�)bo = (�`t)q. Let TD� := (�`t)q denote the target damage in a �-�ow min-cut Nash equilibrium.

Let p� := (1=�)((c�b�)=q)`�2t denote the probability of the adversary damaging the target in a �-�ow min-cut

Nash equilibrium. Because p� = (1=�)((c � b�)=q)`�2t and `t = (1=�)(1=q)TD�, we have

p� = �q(c � b�)(TD�)�2 (27)

where � 2 ((1=`t)((c � b�)=q); 1]. Thus, in any �-�ow min-cut Nash equilibrium with � 2 ((1=`t)((c � b�)=q); 1],

the probability of the adversary damaging the target is a negative power function of the target damage. In

addition, if � = (q=(c � b�))��(`t)�� for some � 2 [0; 1), equality (27) can be rewritten as

p� = (q=(c � b�))
1

��1 (q)
��2
��1 (TD�)

� ��2
��1 (28)

because p� = (q=(c � b�))��1(`t)��2 and `t = (q=(c � b�))�
�

��1 (q)
1

��1 (TD�)
� 1
��1 . However, if � = (1=`t)((c �

b�)=q), the equilibrium probability is independent of the target damage, because p� = `
�1
t and TD� = c � b�.

In summary, the Nash equilibria of the network interdiction game depend on the marginal target loss,

the capacity of a minimum cut blockage, and the bound quantity. When the marginal target loss is less

than or equal to one, we �nd trivial-�ow zero-blockage Nash equilibria. When the marginal target loss is

greater than one and the bound quantity is small, we �nd binding-�ow zero-blockage Nash equilibria. When

the marginal target loss is greater than one and the bound quantity is large, we �nd �-�ow min-cut Nash

equilibria. Thus, we can view max-�ow min-cut Nash equilibria as a special case of �-�ow min-cut Nash

equilibria. When the marginal target loss is greater than one and the bound quantity is intermediate, we

�nd �-�ow min-cut Nash equilibria. We can then view �-�ow min-cut Nash equilibria as a special case of

�-�ow min-cut Nash equilibria.

When the marginal target loss is greater than one and the bound quantity is either intermediate or

large, the equilibrium probabilities of the adversary damaging the target can be expressed as negative power

functions of the target damage. In the following section we discuss our theoretical �nding together with

empirical evidence.

4 Discussion

We �rst relate our results to some empirical studies of terrorist events and then discuss related research in

progress and further directions.
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4.1 Fatality Distribution of Terrorist Events

Let z denote the number of fatalities in a terrorist event and let p(z) denote the frequency of a terrorist

event in which the number of fatalities is z. The fatality distribution of terrorist events follows a power law

if for each z � zmin,

p(z) / z�

where zmin and  are the parameters of the distribution. The estimates of the parameters are derived from

data and denoted by ẑmin and ̂.

Recent empirical studies show that the fatality distribution of terrorist events follows a power law. Clauset

et al. [6] use the database of National Memorial Institute for the Prevention of Terrorism (MIPT) and

conclude that the fatality distribution follows a power law. The estimate of the scaling parameter is ̂ = 2:38.

Bohorquez et al. [5] construct a data set on insurgent wars and conclude that for each insurgent war the

fatality distribution follows a power law. The estimates of the scaling parameter are clustered around 2:5.

Recall that in any �-�ow min-cut Nash equilibrium with � = (`t)�� for some � 2 [0; 1), the probability

of the adversary damaging the target, p�, is a negative power function of the target damage TD�. Precisely,

from equality (22), we have

p� = (c � b�)
��2
��1 (TD�)

� ��2
��1 ,

which can be rewritten as

p�(TD�) / (TD�)
� ��2
��1 .

To link this theoretical �nding and empirical evidence we make two additional assumptions. Suppose that

the target damage is measured by the number of fatalities and that the probability of the adversary damaging

the target is proportional to the frequency of a terrorist event.

Now suppose that the estimate of the scaling parameter, ̂ � 2, is derived from data. By setting ̂ = �̂�2
�̂�1

and solving for �̂, we have �̂ = ̂�2
̂�1 . Notice that �̂ 2 [0; 1). Therefore, in the �-�ow min-cut Nash equilibrium

with � = (`t)��̂, the fatality distribution is predicted to be

p�(TD�) / (TD�)�̂

and is consistent with data. Similarly, in the �-�ow min-cut Nash equilibrium with � = (q=(c � b�))��̂(`t)��̂,

the predicted fatality distribution, p�(TD�) / (TD�)�̂ , is consistent with data.

4.2 Further Research

This paper presents a strategic model of network interdiction in which two players, an adversary and an

agency, have complete information and simultaneously choose their strategies. Building on this research a

further approach is to assume that the players have incomplete information about each other�s strategies

and payo¤s and about the sources and targets; the agency may not know the adversary�s type �its feasible
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strategies, its payo¤s, the sources of the bads and also their targets. The extension to incomplete information

is, in our view, of clear importance. (It may also be interesting to have more than two players.) An alternative

approach is to assume that the players sequentially choose their strategies. The agency may observe the

adversary�s choice of strategy and choose her own strategy conditional on this observation or, alternatively,

the agency may move �rst in setting up a security system. Both these approaches are subjects of our current

and future planned research.

Appendix A

In this appendix we provide the �ow decomposition algorithm.7 A network is given as G = (N;A; s; t; c).

For each f 2 F , we can �nd a vector x = (xh)
0
h2H such that f = Mx by using the �ow decomposition

algorithm. Initially we are given a �ow f and the zero vector x. At each step of the algorithm, we construct

a sequence of distinct nodes, and obtain either an s� t path or a cycle. We then update vector x and �ow

f . This algorithm terminates when the updated �ow is the zero �ow.

Algorithm 1 Flow Decomposition

Let f = (fij)0(i;j)2A 2 F be given. We set x = (xh)0h2H = 0, the vector of zeros.

At Step k = 1; 2; : : : ; if f is the zero �ow, this algorithm terminates and yields vector x. If f is not the

zero �ow, there is an arc (i; j) 2 A with fij > 0.

(i) We start from base s. If there is (i1; i2) 2 A with i1 = s and fi1i2 > 0, beginning with the two nodes

i1; i2 we begin the construction of a sequence of distinct nodes with the two nodes i1 and i2. If there is

(i2; i3) 2 A with fi2i3 > 0, we add node i3 to the sequence. Repeat this until we add target t or a previously

added node to the sequence. In the former case, an s � t path is obtained and, in the latter case, a cycle is

obtained. We denote the outcome by h 2 H. We replace xh = 0 with the minimum �ow of the arcs included

in h. We then replace fij with fij � xh if h includes (i; j). We proceed to the next step.

(ii) If there is no (i1; i2) 2 A with i1 = s and fi1i2 > 0, we �nd another arc (i; j) with fij > 0. We start

from node i. By applying the argument in (i), we obtain a cycle and update vector x and �ow f . We proceed

to the next step. �

Appendix B

A network interdiction game is given as � = (G; q;�(F);�(B); u1; u2). We start from the following lemmas.

Lemma 1 For each (f; b) 2 F � B, e � f b = (1=`t)` � f b.
7See for reference Ahuja et al. [1].
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Proof. Since f b is the net �ow to the target under �ow f and blockage b, only s� t paths have positive �ow.

Thus,
P

(s;i)2FS(s) f
b
si =

P
(i;t)2RS(t) f

b
it. Because e � f b =

P
(s;i)2FS(s) f

b
si and ` � f b = `t

P
(i;t)2RS(t) f

b
it, we

have e � f b = (1=`t)` � f b. �

Lemma 2 For each (f; b) 2 F � B, e � f b = v � f b.

Proof. Since f b is the net �ow to the target under �ow f and blockage b, only s � t paths have positive

�ow. This implies that
P

(s;i)2FS(s) f
b
si =

P
(i;t)2RS(t) f

b
it and that v � f b =

P
(i;t)2RS(t) f

b
it. Because e � f b =P

(s;i)2FS(s) f
b
si, we have e � f b = v � f b. �

Lemma 3 For each (f; b) 2 F � B, (1=`t)` � f b
o � c � b+ (1=`t)` � f b.

Proof. Because f b
o

is the net �ow to the target under �ow f and the zero blockage bo, we have f b
o

ij � cij for

each (i; j) 2 A. Thus, blocking arc (i; j) decreases the value of the net �ow by at most cij . Hence, for each

b 2 B, v � f bo � v � f b �
P

(i;j)2Ab
cij . Because

P
(i;j)2Ab

cij = c � b, we have v � f b
o � c � b+ v � f b. Therefore,

from Lemmas 1 and 2, (1=`t)` � f b
o � c � b+ (1=`t)` � f b. �

From Lemmas 1, 2, and 3, we deduce the following.

Lemma 4 If f� is an acyclic maximum �ow with large bound quantity q in network G, then e � f� =

(1=`t)` � f�. Furthermore, if f� is a binding �ow, it holds that e � f� = (1=`t)` � f�.

Proof. Note that e � (f�)bo = (1=`t)` � (f�)b
o

from Lemma 1. Because f� is acyclic, (f�)b
o

= f�. Thus,

e �f� = (1=`t)` �f�. Now multiplying both sides by q=(c �b�), we have (q=(c �b�))e �f� = (1=`t)(q=(c �b�))` �f�.

Because f� is a binding �ow, f� = (q=(c �b�))f�. Because e �f� = (q=(c �b�))e �f� and ` �f� = (q=(c �b�))` �f�,

we have e � f� = (1=`t)` � f� . �

Lemma 5 If f� is an acyclic maximum �ow with large bound quantity q in network G, then e � f� = v � f�.

Furthermore, if f� is a binding �ow, it holds that e � f� = v � f�.

Proof. Note that e � (f�)bo = v � (f�)bo from Lemma 2. Because f� is acyclic, (f�)b
o

= f�. Thus,

e � f� = v � f�. Now multiplying both sides by q=(c � b�), we have (q=(c � b�))e � f� = (q=(c � b�))v � f�. Because

f� is a binding �ow, f� = (q=(c � b�))f�. Because e � f� = (q=(c � b�))e � f� and v � f� = (q=(c � b�))v � f�, we

have e � f� = v � f� . �

Lemma 6 If f� is an acyclic maximum �ow with large bound quantity q in network G, for each b 2 B,

(1=`t)` � f� � c � b+ (1=`t)` � (f�)b. Furthermore, if q � (1=`t)c � b� and f� is a binding �ow, for each b 2 B,

` � f� � c � b+ ` � (f�)b.
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Proof. Note that for each b 2 B, (1=`t)` � (f�)b
o � c � b+ (1=`t)` � (f�)b from Lemma 3. Since f� is acyclic,

(f�)b
o

= f�. Thus, for each b 2 B, we have (1=`t)` � f� � c � b + (1=`t)` � (f�)b. Now multiplying both

sides by (`t)(q=(c � b�)), we have (q=(c � b�))` � f� � (`t)(q=(c � b�))c � b + (q=(c � b�))` � (f�)b. This implies

that (q=(c � b�))` � f� � c � b + (q=(c � b�))` � (f�)b because q � (1=`t)c � b�. Since f� is a binding �ow,

f� = (q=(c � b�))f�. Because ` � f� = (q=(c � b�))` � f� and ` � (f�)b = (q=(c � b�))` � (f�)b, for each b 2 B, we

have ` � f� � c � b+ ` � (f�)b. �

We now present the proofs of the propositions.

Proof of Proposition 1. Suppose that `t � 1. We show that no player can be (strictly) better o¤ by

unilaterally deviating from (f� ; bo). Note that u1(f� ; bo) = 0 and u2(f� ; bo) = w. Since c � bo = 0, f � f b
o

,

e � f bo = (1=`t)` � f b
o

from Lemma 1, and `t � 1, if player 1 chooses any �ow f , his payo¤ is calculated as

u1(f; b
o) = ` � f b

o

+ c � bo � e � f

� ` � f b
o

� e � f b
o

= ` � f b
o

� (1=`t)` � f b
o

� 0:

Thus, player 1 cannot be better o¤. If player 2 chooses any blockage b, her payo¤ is calculated as

u2(f
� ; b) = w � ` � (f� )b � c � b

= w � c � b

� w,

since (f� )b = fo and c � b � 0. Thus, player 2 cannot be better o¤. Therefore, (f� ; bo) is a Nash equilibrium

of �. �

Proof of Proposition 2. Suppose that `t > 1 and q � (1=`t)c �b�. We show that no player can be (strictly)

better o¤ by unilaterally deviating from (f� ; bo). Calculate the players�payo¤s for strategy pro�le (f� ; bo).

Since (f�)b
o

= f� , ` � f� = (`t)e � f� from Lemma 4, e � f� = v � f� from Lemma 5,

u1(f
� ; bo) = ` � (f�)b

o

+ c � bo � e � f�

= ` � f� � e � f�

= (`t � 1)e � f�

= (`t � 1)v � f�

= (`t � 1)q.

The last equality comes from equality (16). Similarly,
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u2(f
� ; bo) = w � ` � (f�)b

o

� c � bo

= w � (`t)q.

If player 1 chooses any �ow f , his payo¤ is calculated as

u1(f; b
o) = ` � f b

o

+ c � bo � e � f

� ` � f b
o

� e � f b
o

= (`t � 1)e � f b
o

= (`t � 1)v � f b
o

� (`t � 1)q,

because f � f bo , ` � f bo = (`t)e � f b
o

from Lemma 1, e � f bo = v � f bo from Lemma 2, and v � f bo � q from

inequality (6). Thus, player 1 cannot be better o¤. If player 2 chooses any blockage b, her payo¤ is calculated

as

u2(f
� ; b) = w � ` � (f�)b � c � b

� w � ` � f�

= w � (`t)e � f�

= w � (`t)v � f�

= w � (`t)q,

because ` � f� � c � b+ ` � (f�)b from Lemma 6, ` � f� = (`t)e � f� from Lemma 4, e � f� = v � f� from Lemma

5. Note that the last equality comes from equality (16). Thus, player 2 cannot be better o¤. Therefore,

(f� ; bo) is a Nash equilibrium of �. �

Proof of Proposition 3. Suppose that `t > 1 and c � b� < q. To show that (��1; ��2) is a Nash equilibrium

of �, it su¢ ces to show that (i) u1(f� ; ��2) = u1(f
�; ��2), (ii) u2(�

�
1; b

o) = u2(�
�
1; b

�), (iii) for each f 2 F ,

u1(f
� ; ��2) � u1(f; ��2) and (iv) for each b 2 B, u2(��1; bo) � u2(��1; b).

(i) We show that u1(f� ; ��2) = u1(f
�; ��2). First, calculate player 1�s payo¤s for strategy pro�les (f

� ; bo),

(f� ; b�), (f�; bo), and (f�; b�). Because (f� )b
o

= fo and e � f� = 0,

u1(f
� ; bo) = ` � (f� )b

o

+ c � bo � e � f�

= 0.

Because (f� )b
�
= fo and e � f� = 0,

u1(f
� ; b�) = ` � (f� )b

�
+ c � b� � e � f�

= c � b�.
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Because (f�)b
o

= f� and ` � f� = (`t)e � f� from Lemma 4,

u1(f
�; bo) = ` � (f�)b

o

+ c � bo � e � f�

= (`t � 1)e � f�

= (`t � 1)c � b�.

The last equality comes from Lemma 5 and equality (15). Because (f�)b
�
= fo and e � f� = v � f� from

Lemma 5,

u1(f
�; b�) = ` � (f�)b

�
+ c � b� � e � f�

= c � b� � v � f�

= 0.

The last equality comes from equality (15). Then, as in (17), player 1�s expected payo¤ for (f� ; ��2) is

u1(f
� ; ��2) = (1�1=`t)c � b�. As in (18), player 1�s expected payo¤ for (f�; ��2) is u1(f�; ��2) = (1�1=`t)c � b�.

Thus, u1(f� ; ��2) = u1(f
�; ��2).

(ii) We show that u2(��1; b
o) = u2(�

�
1; b

�). First, calculate player 2�s payo¤s for strategy pro�les (f� ; bo),

(f�; bo), (f� ; b�), and (f�; b�). Because (f� )b
o

= fo,

u2(f
� ; bo) = w � ` � (f� )b

o

� c � bo

= w.

Because (f�)b
o

= f� and ` � f� = (`t)e � f� from Lemma 4,

u2(f
�; bo) = w � ` � (f�)b

o

� c � bo

= w � (`t)e � f�

= w � (`t)c � b�.

The last equality comes from Lemma 5 and equality (15). Because (f� )b
�
= fo,

u2(f
� ; b�) = w � ` � (f� )b

�
� c � b�

= w � c � b�.

Because (f�)b
�
= fo,

u2(f
�; b�) = w � ` � (f�)b

�
� c � b�

= w � c � b�.

Then, as in (19), player 2�s expected payo¤ for (��1; b
o) is u2(��1; b

o) = w � c � b�. As in (20), player 2�s

expected payo¤ for (��1; b
�) is u2(��1; b

�) = w � c � b�. Thus, u2(��1; bo) = u2(��1; b�).
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(iii) We show that for each f 2 F , u1(f� ; ��2) � u1(f; ��2). For each f 2 F , we calculate player 1�s payo¤s.

Because f � f bo ,

u1(f; b
o) = ` � f b

o

+ c � bo � e � f

� ` � f b
o

� e � f b
o

.

Because f b
�
= fo and f � f bo ,

u1(f; b
�) = ` � f b

�
+ c � b� � e � f

� c � b� � e � f b
o

.

Then, for each f 2 F ,

u1(f; �
�
2) = ��2(b

o)u1(f; b
o) + ��2(b

�)u1(f; b
�)

� (1=`t)(` � f b
o

� e � f b
o

) + (1� 1=`t)(c � b� � e � f b
o

)

= (1=`t)` � f b
o

� e � f b
o

+ (1� 1=`t)c � b�

= (1� 1=`t)c � b�,

because ��2(b
o) = 1=`t and ��2(b

�) = 1 � 1=`t. Note that the last equality comes from Lemma 1. From (i),

we know that u1(f� ; ��2) = (1� 1=`t)c � b�. Thus, for each f 2 F , u1(f� ; ��2) � u1(f; ��2).

(iv) We show that for each b 2 B, u2(��1; bo) � u2(��1; b). For each b 2 B, we calculate player 2�s payo¤s.

Because (f� )b = fo,

u2(f
� ; b) = w � ` � (f� )b � c � b

= w � c � b.

Also, we have u2(f�; b) = w � ` � (f�)b � c � b. Then, for each b 2 B,

u2(�
�
1; b) = ��1(f

� )u2(f
� ; b) + ��1(f

�)u2(f
�; b)

= (1� 1=`t)(w � c � b) + (1=`t)(w � ` � (f�)b � c � b)

= w � c � b� (1=`t)` � (f�)b

� w � (1=`t)` � f�

because ��1(f
� ) = 1� 1=`t and ��1(f�) = 1=`t. Note that the last inequality comes from Lemma 6. Because

(1=`t)`�f� = e�f� and e�f� = c�b�, we have u2(��1; b) � w�c�b�. From (ii), we know that u2(��1; bo) = w�c�b�.

Thus, for each b 2 B, u2(��1; bo) � u2(��1; b). This proves that (��1; ��2) is a Nash equilibrium of �. �

Proof of Proposition 4. Suppose that `t > 1 and c � b� < q. To show that (��1 ; ��2) is a Nash equilibrium

of �, it su¢ ces to show that (i) u1(f� ; ��2) = u1(�f
�; ��2), (ii) u2(�

�
1 ; b

o) = u2(�
�
1 ; b

�), (iii) for each f 2 F ,

u1(f
� ; ��2) � u1(f; ��2) and (iv) for each b 2 B, u2(��1 ; bo) � u2(��1 ; b).
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(i) We show that u1(f� ; ��2) = u1(�f
�; ��2). Calculate player 1�s expected payo¤ for (�f

�; ��2). Because

(�f�)b
o

= �f� and (�)` � f� = (�`t)e � f� from Lemma 4,

u1(�f
�; bo) = ` � (�f�)b

o

+ c � bo � e � (�f�)

= (�`t)e � f� � (�)e � f�

= �(`t � 1)e � f�.

Because (�f�)b
�
= fo,

u1(�f
�; b�) = ` � (�f�)b

�
+ c � b� � e � (�f�)

= c � b� � (�)e � f�.

Because ��2(b
o) = 1=`t and ��2(b

�) = 1� 1=`t, player 1�s expected payo¤ for (�f�; ��2) is

u1(�f
�; ��2) = ��2(b

o)u1(�f
�; bo) + ��2(b

�)u1(�f
�; b�)

= (1=`t)�(`t � 1)e � f� + (1� 1=`t)(c � b� � (�)e � f�)

= �(1� 1=`t)e � f� + (1� 1=`t)c � b� � �(1� 1=`t)e � f�

= (1� 1=`t)c � b�.

From part (i) of the proof of Proposition 3, we have u1(f� ; ��2) = (1 � 1=`t)c � b�. Thus, u1(f� ; ��2) =

u1(�f
�; ��2).

(ii) We show that u2(��1 ; b
o) = u2(�

�
1 ; b

�). From part (ii) of the proof of Proposition 3, we have

u2(f
� ; bo) = w and u2(f� ; b�) = w � c � b�. Now calculate player 2�s payo¤s for strategy pro�les (�f�; bo)

and (�f�; b�). Because (�f�)b
o

= �f� and (�)` � f� = (�`t)e � f� from Lemma 4,

u2(�f
�; bo) = w � ` � (�f�)b

o

� c � bo

= w � (�`t)e � f�

= w � (�`t)c � b�.

The last equality comes from Lemma 5 and equality (15). Because (�f�)b
�
= fo,

u2(�f
�; b�) = w � ` � (�f�)b

�
� c � b�

= w � c � b�.

Because ��1 (f
� ) = 1� 1=�`t and ��1 (�f�) = 1=�`t, player 2�s expected payo¤ for (��1 ; bo) is

u2(�
�
1 ; b

o) = ��1 (f
� )u2(f

� ; bo) + ��1 (�f
�)u2(�f

�; bo)

= (1� 1=�`t)w + (1=�`t)(w � (�`t)c � b�)

= w � c � b�.

Also, player 2�s expected payo¤ for (��1 ; b
�) is u2(��1 ; b

�) = w � c � b�. Thus, u2(��1 ; bo) = u2(��1 ; b�).
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(iii) This is already shown in part (iii) of the proof of Proposition 3.

(iv) We show that for each b 2 B, u2(��1 ; bo) � u2(��1 ; b). For each b 2 B, we calculate player 2�s payo¤s.

From part (iv) of the proof of Proposition 3, we have u2(f� ; b) = w � c � b. Because (�f�)b = �(f�)b,

u2(�f
�; b) = w � ` � (�f�)b � c � b

= w � (�)` � (f�)b � c � b.

Because ��1 (f
� ) = 1� 1=�`t and ��1 (�f�) = 1=�`t, player 2�s expected payo¤ for (��1 ; b) is

u2(�
�
1 ; b) = ��1 (f

� )u2(f
� ; b) + ��1 (�f

�)u2(�f
�; b)

= (1� 1=�`t)(w � c � b) + (1=�`t)(w � (�)` � (f�)b � c � b)

= w � c � b� (1=�`t)(�)` � (f�)b

= w � c � b� (1=`t)` � (f�)b

� w � (1=`t)` � f�.

Note that the last inequality comes from Lemma 6. Because (1=`t)` � f� = e � f� and e � f� = c � b�,

we have u2(��1 ; b) � w � c � b�. From (ii), we know that u2(��1 ; b
o) = w � c � b�. Thus, for each b 2 B,

u2(�
�
1 ; b

o) � u2(��1 ; b).

Therefore, (��1 ; �
�
2) is a Nash equilibrium of �. �

Proof of Proposition 5. Suppose that `t > 1 and (1=`t)c � b� < q � c � b�. To show that (��1 ; ��2) is a

Nash equilibrium of �, it su¢ ces to show that (i) u1(f� ; ��2) = u1(f
� ; ��2), (ii) u2(�

�
1 ; b

o) = u2(�
�
1 ; b

�), (iii)

for each f 2 F , u1(f� ; ��2) � u1(f; ��2) and (iv) for each b 2 B, u2(�
�
1 ; b

o) � u2(��1 ; b).

(i) We show that u1(f� ; ��2) = u1(f
� ; ��2). First, calculate player 1�s payo¤s for strategy pro�les (f

� ; bo),

(f� ; b�), (f� ; bo), and (f� ; b�). Because (f� )b
o

= fo and e � f� = 0,

u1(f
� ; bo) = ` � (f� )b

o

+ c � bo � e � f�

= 0.

Because (f� )b
�
= fo and e � f� = 0,

u1(f
� ; b�) = ` � (f� )b

�
+ c � b� � e � f�

= c � b�.

Because (f�)b
o

= f� and ` � f� = (`t)e � f� from Lemma 4,

u1(f
� ; bo) = ` � (f�)b

o

+ c � bo � e � f�

= (`t � 1)e � f�

= (`t � 1)q.
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The last equality comes from Lemma 5 and equality (16). Because (f�)b
�
= fo and e � f� = v � f� from

Lemma 5,

u1(f
� ; b�) = ` � (f�)b

�
+ c � b� � e � f�

= c � b� � v � f�

= c � b� � q.

The last equality comes from equality (16). Then, as in (23), player 1�s expected payo¤ for (f� ; ��2) is

u1(f
� ; ��2) = (1�1=`t)c � b�. As in (24), player 1�s expected payo¤ for (f� ; ��2) is u1(f� ; ��2) = (1�1=`t)c � b�.

Thus, u1(f� ; ��2) = u1(f
� ; ��2).

(ii) We show that u2(�
�
1 ; b

o) = u2(�
�
1 ; b

�). First, calculate player 2�s payo¤s for strategy pro�les (f� ; bo),

(f� ; bo), (f� ; b�), and (f� ; b�). Because (f� )b
o

= fo,

u2(f
� ; bo) = w � ` � (f� )b

o

� c � bo

= w.

Because (f�)b
o

= f� and ` � f� = (`t)e � f� from Lemma 4,

u2(f
� ; bo) = w � ` � (f�)b

o

� c � bo

= w � (`t)e � f�

= w � (`t)q.

The last equality comes from Lemma 5 and equality (16). Because (f� )b
�
= fo,

u2(f
� ; b�) = w � ` � (f� )b

�
� c � b�

= w � c � b�.

Because (f�)b
�
= fo,

u2(f
� ; b�) = w � ` � (f�)b

�
� c � b�

= w � c � b�.

Then, as in (25), player 2�s expected payo¤ for (��1 ; b
o) is u2(�

�
1 ; b

o) = w � c � b�. As in (26), player 2�s

expected payo¤ for (��1 ; b
�) is u2(�

�
1 ; b

�) = w � c � b�. Thus, u2(��1 ; bo) = u2(�
�
1 ; b

�).

(iii) This is already shown in part (iii) of the proof of Proposition 3.

(iv) We show that for each b 2 B, u2(��1 ; bo) � u2(�
�
1 ; b). For each b 2 B, we calculate player 2�s payo¤s.

Because (f� )b = fo,

u2(f
� ; b) = w � ` � (f� )b � c � b

= w � c � b.
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Also, we have u2(f� ; b) = w � ` � (f�)b � c � b. Then, for each b 2 B,

u2(�
�
1 ; b) = ��1 (f

� )u2(f
� ; b) + ��1 (f

�)u2(f
� ; b)

= (1� (1=`t)((c � b�)=q))(w � c � b) + (1=`t)((c � b�)=q)(w � ` � (f�)b � c � b)

= w � c � b� (1=`t)((c � b�)=q)` � (f�)b

= w � c � b� (1=`t)((c � b�)=q)(q=(c � b�))` � (f�)b

= w � c � b� (1=`t)` � (f�)b

� w � (1=`t)` � f�

because ��1 (f
� ) = 1�(1=`t)((c �b�)=q), ��1 (f�) = (1=`t)((c �b�)=q), and f� = (q=(c �b�))f�. Note that the last

inequality comes from Lemma 6. Because (1=`t)` �f� = e �f� and e �f� = c �b�, we have u2(��1 ; b) � w�c �b�.

From (ii), we know that u2(�
�
1 ; b

o) = w � c � b�. Thus, for each b 2 B, u2(��1 ; bo) � u2(�
�
1 ; b).

Therefore, (��1 ; �
�
2) is a Nash equilibrium of �. �

Proof of Proposition 6. Suppose that `t > 1 and (1=`t)c � b� < q � c � b�. To show that (��1 ; ��2) is a Nash

equilibrium of �, it su¢ ces to show that (i) u1(f� ; ��2) = u1(�f
� ; ��2), (ii) u2(�

�
1 ; b

o) = u2(�
�
1 ; b

�), (iii) for

each f 2 F , u1(f� ; ��2) � u1(f; ��2) and (iv) for each b 2 B, u2(�
�
1 ; b

o) � u2(��1 ; b).

(i) We show that u1(f� ; ��2) = u1(�f
� ; ��2). Calculate player 1�s expected payo¤ for (�f

� ; ��2). Because

(�f�)b
o

= �f� and (�)` � f� = (�`t)e � f� from Lemma 4,

u1(�f
� ; bo) = ` � (�f�)b

o

+ c � bo � e � (�f�)

= (�`t)e � f� � (�)e � f�

= �(`t � 1)e � f� .

Because (�f�)b
�
= fo,

u1(�f
� ; b�) = ` � (�f�)b

�
+ c � b� � e � (�f�)

= c � b� � (�)e � f� .

Because ��2(b
o) = 1=`t and ��2(b

�) = 1� 1=`t, player 1�s expected payo¤ for (�f� ; ��2) is

u1(�f
� ; ��2) = ��2(b

o)u1(�f
� ; bo) + ��2(b

�)u1(�f
� ; b�)

= (1=`t)�(`t � 1)e � f� + (1� 1=`t)(c � b� � (�)e � f�)

= �(1� 1=`t)e � f� + (1� 1=`t)c � b� � �(1� 1=`t)e � f�

= (1� 1=`t)c � b�.

From part (i) of the proof of Proposition 5, we have u1(f� ; ��2) = (1 � 1=`t)c � b�. Thus, u1(f� ; ��2) =

u1(�f
� ; ��2).
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(ii) We show that u2(�
�
1 ; b

o) = u2(�
�
1 ; b

�). From part (ii) of the proof of Proposition 5, we have

u2(f
� ; bo) = w and u2(f� ; b�) = w � c � b�. Now calculate player 2�s payo¤s for strategy pro�les (�f� ; bo)

and (�f� ; b�). Because (�f�)b
o

= �f� and (�)` � f� = (�`t)e � f� from Lemma 4,

u2(�f
� ; bo) = w � ` � (�f�)b

o

� c � bo

= w � (�`t)e � f�

= w � (�`t)q.

The last equality comes from Lemma 5 and equality (16). Because (�f�)b
�
= fo,

u2(�f
� ; b�) = w � ` � (�f�)b

�
� c � b�

= w � c � b�.

Because ��1 (f
� ) = 1 � (1=�`t)((c � b�)=q) and ��1 (�f�) = (1=�`t)((c � b�)=q), player 2�s expected payo¤ for

(��1 ; b
o) is

u2(�
�
1 ; b

o) = ��1 (f
� )u2(f

� ; bo) + ��1 (�f
�)u2(�f

� ; bo)

= (1� (1=�`t)((c � b�)=q))w + (1=�`t)((c � b�)=q)(w � (�`t)q)

= w � c � b�.

Also, player 2�s expected payo¤ for (��1 ; b
�) is u2(�

�
1 ; b

�) = w � c � b�. Thus, u2(��1 ; bo) = u2(�
�
1 ; b

�).

(iii) This is already shown in part (iii) of the proof of Proposition 3.

(iv) We show that for each b 2 B, u2(��1 ; bo) � u2(�
�
1 ; b). For each b 2 B, we calculate player 2�s payo¤s.

From part (iv) of the proof of Proposition 5, we have u2(f� ; b) = w � c � b. Because (�f�)b = �(f�)b,

u2(�f
� ; b) = w � ` � (�f�)b � c � b

= w � (�)` � (f�)b � c � b.

Because ��1 (f
� ) = 1 � (1=�`t)((c � b�)=q), ��1 (�f�) = (1=�`t)((c � b�)=q), and f� = (q=(c � b�))f�, player 2�s

expected payo¤ for (��1 ; b) is

u2(�
�
1 ; b) = ��1 (f

� )u2(f
� ; b) + ��1 (�f

�)u2(�f
� ; b)

= (1� (1=�`t)((c � b�)=q))(w � c � b) + (1=�`t)((c � b�)=q)(w � (�)` � (f�)b � c � b)

= w � c � b� (1=�`t)((c � b�)=q)(�)` � (f�)b

= w � c � b� (1=�`t)((c � b�)=q)(q=(c � b�))(�)` � (f�)b

= w � c � b� (1=`t)` � (f�)b

� w � (1=`t)` � f�.

Note that the last inequality comes from Lemma 6. Because (1=`t)` � f� = e � f� and e � f� = c � b�,

we have u2(�
�
1 ; b) � w � c � b�. From (ii), we know that u2(�

�
1 ; b

o) = w � c � b�. Thus, for each b 2 B,

u2(�
�
1 ; b

o) � u2(��1 ; b).

28



Therefore, (��1 ; �
�
2) is a Nash equilibrium of �. �
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