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This paper investigates the relationship between the exchange rate pass-

through (ERPT) and inflation by estimating a nonlinear time series model.

Using a simple theoretical model of ERPT determination, we show that

the dynamics of ERPT can be well-approximated by a class of smooth

transition autoregressive (STAR) models with inflation as a transition

variable. We employ several U-shaped transition functions in the estima-

tion of the time-varying ERPT to U.S. domestic prices. The estimation

result suggests that declines in the ERPT during the 1980s and 1990s are

associated with lowered inflation.
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1 Introduction

Within the framework of new open economy macroeconomic models, the degree

of exchange rate pass-through (ERPT) into domestic prices is one of the key elements

determining the size of the spill-over effects of monetary policy. Over the past decade,

a number of empirical studies investigated whether the ERPT decreased during the

1980s and the 1990s.1 If there is a reduction in the ERPT, it is natural to conjecture

the lower and more stable inflations as a possible factor because the timing corre-

sponds, in many countries, to the period of price stability. This view is emphasized

by Taylor (2000), who states that “the lower pass-through should not be taken as

exogenous to the inflationary environment (p.1390).”

The purpose of this paper is to investigate Taylor’s hypothesis on the positive

relationship between the ERPT to domestic prices and inflation using nonlinear time

series methods. In particular, we employ the class of smooth transition autoregressive

(STAR) models to describe the case in which the degree of ERPT is determined by the

level of the lagged inflation rate. Most of the previous empirical studies on the positive

association between the ERPT and inflation focused on the cross-country evidence,

including the analyses by Calvo and Reinhart (2002), Choudhri and Hakura (2006)

and Devereux and Yetman (2008). Instead of examining the relationship between the

ERPT and average inflation rate across countries, we are interested in examining the

role of inflation in the time-varying ERPT using a time series modeling framework.

In the empirical literature on the nonlinear adjustment of real exchange rates, the

STAR models have been popularly employed in many analyses, including Michael,

Nobay and Peel (1997), Taylor and Peel (2000), Taylor, Peel and Sarno (2001), and

Kilian and Taylor (2003), among others. However, this time series approach has rarely

been used in studies of ERPT.2 We employ several U-shaped transition functions

1See, for example, Goldberg and Knetter (1997), Otani, Shiratsuka and Shirota (2003), Campa

and Goldberg (2005), Sekine (2006) and McCarthy (2007).
2One of the few exceptions is Herzberg, Kapetanios and Price’s (2003) study of UK import prices.

However, they did not find supporting evidence on nonlinearity.
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in the STAR model to consider alternative forms of adjustment. Our method is

applied to monthly U.S. import and domestic price data in evaluating the time-

varying structure of ERPT in the period from 1975 to 2007.

To motivate our nonlinear regression approach, we first construct a simple theo-

retical model of importing firms where ERPT is predicted to be a nonlinear function

of the past inflation rate. The structure of our model is closely related to a model of

ERPT developed by Devereux and Yetman (2008). As in Ball, Mankiw and Romer

(1988), price setters are allowed to endogenously select the probability of adjusting

their price to an optimal level. However, our model differs from that of Devereux and

Yetman (2008) in several aspects. First, instead of all firms facing an infinite horizon

profit maximization problem à la Calvo (1983), a fraction of firms make finite-period

contracts every period as in the Taylor (1980) type staggered contract. Second, each

pricing cohort of firms faces the problem of selecting a probability of opting out of

a contract inflation indexation rule and setting an optimal price with a payment of

a fixed cost. With these modifications, our model predicts that the ERPT depends

on the lagged inflation unlike the case of Devereux and Yetman (2008) where ERPT

depends on the steady-state inflation level of the economy. Using this model, we show

that dynamics of ERPT predicted by the model can be well-approximated by using

the STAR formulation. Our estimates of STAR models suggest that the past decline

during the 1980s and the 1990s and recent increase in the ERPT to U.S. domestic

prices are well-explained by the changes in inflation.

The remainder of the paper is organized as follows. Section 2 describes the the-

oretical model. Section 3 describes the empirical model, followed by the estimation

results. Some concluding remarks are made in Section 4.
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2 Exchange Rate Pass-Through into Domestic Prices

2.1 A Simple Model of Importers

As in the model of Devereux and Yetman (2008), we consider a continuum of

importing firms, each of which imports a differentiated intermediate good from abroad

and sells it in the domestic market as a monopolistic competitor. A representative

domestic final good producer purchases all the imported intermediate goods and

combines them to produce a final output without controlling its output price. To

describe the price setting behavior of importing firms, we modify Taylor’s (1980)

staggered pricing model in which contracts between the importers and the final good

producer are N(≥ 2) periods long, and a constant fraction 1/N of all importing

firms determine their contracts in any given time period. A firm that determines the

pricing contract at time t− j (for j = 0, 1, ..., N − 1) and imports a good i at time t
is facing a demand given by

Ct(i, t− j) =
�
Pt(i, t− j)
Pt(t− j)

�−θ
Ct(t− j)

where θ > 1 is a constant elasticity of substitution, Pt(i, t − j) is the price of a
good i imported by a firm with a contract beginning in period t − j, Pt(t − j) =�U 1
0 Pt(i, t− j)1−θdi

�1/(1−θ)
is the price index for the composite intermediate good

sold by importing firms whose contracts begin in period t − j, and Ct(t − j) is the
demand for the corresponding composite good. All the differentiated intermediate

goods, i ∈ [0, 1], are imported at the same foreign currency price, P ∗t , which is beyond
the control of importers. The importer’s profit, in term of the domestic currency, at

time t is given by

Πt(i, t− j) = Pt(i, t− j)Ct(i, t− j)− (1 + τ)StP
∗
t Ct(i, t− j)

where St is the nominal exchange rate and τ is the iceberg transportation cost the

importer must bear. The importer’s desired price which maximizes the profit under
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flexible price economy is

ePt(i, t− j) = θ

θ − 1(1 + τ)StP
∗
t

where θ/(θ−1) and (1+τ)StP ∗t represent the mark-up and marginal cost, respectively.
By taking a log of the desired price, which is same across all the importing firms ( ePt =ePt(i, t−j)), we have ept = st+p∗t+μ where st = lnSt and μ = ln(θ/(θ−1))+ln(1+τ).3
In this paper, both st and p

∗
t are assumed to follow (possibly mutually correlated)

random walk processes with a variance of the sum of each increment, ∆(st + p
∗
t ),

given by σ2. We further assume that the elasticity of substitution among composite

intermediate goods sold by each fraction 1/N of all importing firms is one, and

thus aggregate price index at time t (in log) is pt = N−1
SN−1
j=0 pt(t − j) where

pt(t− j) = lnPt(t− j). Our interest is the effect of marginal cost changes ∆(st+ p∗t )
on the aggregate inflation rate given by πt = pt − pt−1.4

In reality, contracts written for fixed periods can, in special circumstances, be

re-negotiated. Ball and Mankiw (1994) and Devereux and Siu (2007) add to the

two-period Taylor model the possibility that in the second half of their contracts,

firms can choose to opt out and reset the price by paying a fixed (menu) cost. We

introduce a similar pricing scheme by dividing the total of N periods into two sub-

periods, with the first subperiod N1(≥ 1), during which the firms follow the contract
pricing rule, and the second subperiod N2(= N−N1) after opting out of the contract.
During the contract period, firms are assumed to fully index their prices to aggregate

inflation of the initial period.5 In Devereux and Siu (2007), each firm observes its fix

cost, which is assumed to be i.i.d. across firms, after setting its (two-period) contract

3 In our empirical part of the analysis, we examine not only the case with constant μ but also the
case where μ varies in response to demand shocks.

4As in Devereux and Yetman (2008), a full pass-through of nominal exchange rate changes into

the import prices is implicitly assumed here. A recent empirical study by Goldberg and Campa

(2008) also investigates the pass-through into the domestic prices rather than import prices using a

model of the production sector with imported inputs.
5Note that prices are indexed to inflation of the initial period only, instead of following the period-

by-period lagged inflation indexation rule of Christiano, Eichenbaum and Evans (2005). While the

latter pricing scheme can be also introduced in our model, the former assumption greatly simplifies

the analysis.
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price. Consequently, the pricing in the second period becomes state-dependent with

all firms facing the same probability of opting out in the second period.6 We also

let firms make their decision in a sequential manner by assuming that the aggre-

gate inflation is not observed by individual firms at the time of the contract. Since

the marginal cost follows a random walk and the probability of opting out is not

known in the beginning, all the firms entering into new contracts at time t set their

price at ept. The firm that decides to opt out at time t + N1 also chooses a flexible

price at each period during the second subperiod, with its entire price path given by�ept, ept + πt, ..., ept + (N1 − 1)πt, ept+N1 , ..., ept+(N−1)�.
In this paper, we do not formally derive the state-dependent pricing solution.

Instead, we follow Ball, Mankiw and Romer (1988), Romer (1990) and Devereux

and Yetman (2002, 2008), among others, and re-formulate the firm’s optimization

behavior so that the probability of (not) changing its price to the desired price level

is endogenously determined. Let κ(t) be the probability that a firm under contract

in the current period will maintain the contract price in the next period. Here,

a superscript t in parenthesis signifies that this probability applies to all the firms

entering into new contracts at time t, but not to other pricing cohorts. After setting

the new contract price at t, the firms observe the aggregate inflation πt and choose

κ(t) to maximize their profit. As in Walsh (2003), we can rewrite the intertemporal

profit maximization condition using the expected squared deviation of the actual

price from the desired price in each period. In our case, an optimal value of κ(t) is

selected by minimizing the expected loss function

Lt = Et

⎡⎣N−1[
j=1

(βκ(t))j(ept + jπt − ept+j)2
⎤⎦+ 1− κ(t)

κ(t)

N−1[
j=1

(βκ(t))j

#
N−j[
�=1

β�−1
$
F (1)

where β is a discount factor and F is a fixed cost. The above function implies that the

loss is an increasing function of the squared inflation rate, π2t . As the inflation rate

6For this reason, Devereux and Siu (2007) refer it to the hybrid time- and state-dependent pricing

rule.
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rises (relative to the size of the fixed cost), the firm can minimize the loss by avoiding

the inflation indexation. This strategy leads to a lower κ(t) or a shorter average length

of N1 given by
SN−1

�=1 (κ
(t))� + 1. In an extreme case of a high inflation, κ(t) = 0 (or

N1 = 1) is selected with a pricing path given by
�ept, ept+1, ..., ept+(N−1)�. In the other

extreme case of a large fixed cost, κ(t) = 1 (or N1 = N) is selected with a pricing

path given by {ept, ept + πt, ept + 2πt, ..., ept + (N − 1)πt}.
While the formulation of our model closely follows that of Devereux and Yetman

(2008), there are at least two notable differences between the pricing schemes of

two models. First, importers in Devereux and Yetman (2008) face the problem of

choosing the probability κ of making no price adjustment to maximize the profit

over the infinite horizon under the framework of a standard Calvo (1983) type sticky

price model. In contrast, our importers optimize over the finite contract period in

the Taylor (1980) type staggered pricing model by choosing the probability κ(t) of

maintaining the contract pricing rule. Since the optimization problem is resolved

by importers entering into new contracts every period, the selected probability κ(t)

generally differs across pricing cohorts, unlike κ, which is common for all the firms in

the economy.7 Second, our importers adapt an inflation indexation rule during the

contract period, rather than fix their price at a constant level. Under such a contract,

price deviations from the desired price level depend on the aggregate inflation rate

of the initial contract period. Thus, the optimal level of the probability κ(t) becomes

a function of inflation. Because of this mechanism, our model predicts that the

ERPT depends on the lagged inflation unlike the case of Devereux and Yetman (2008)

where ERPT depends on the steady-state inflation level of the economy. In the next

subsection, we derive the functional form of the ERPT, and show its dependence on

the multiple pricing cohorts in the economy.8

7 It should also be noted that 1−κ in the Calvo type model is an unconditional probability of the
firm setting the optimal price in each period, but 1 − κ(t) in our model is a conditional probability
of adapting the optimal pricing rule given that the firm has been following the contract pricing rule.

8 In addition to the aggregate price level, the model also predicts the aggregate output level. We

only consider the former implication since the main focus of our analysis is the ERPT.
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2.2 Exchange Rate Pass-Through as A Function of Inflation

(A) Two-period contract case

Let us first consider the simplest case where each contract is written for two

periods as in Ball and Mankiw (1994) and Devereux and Siu (2007). The loss function

(1) with N = 2 is given by

Lt = Et

k
βκ(t)(ept + πt − ept+1)2l+ β(1− κ(t))F

= βF − β(F − σ2 − π2t )κ
(t).

Here we exclude the possibility of F < σ2, since the loss is always minimized by

setting κ(t) = 0 in such a case. When F ≥ σ2, the firm selects κ(t) = 1 if π2t ≤ F −σ2

and κ(t) = 0 if π2t > F − σ2. Thus, for the given values of F and σ2, κ(t) is simply

a function of πt. Using the same argument, for any firms entering into contracts at

time t− j, κ(t−j) is a function of πt−j given by

κ(πt−j) =
�
1 if −√F − σ2 ≤ πt−j ≤

√
F − σ2

0 otherwise.

Using the definition of the aggregate price index, we have

pt =
1

2
(pt(t) + pt(t− 1))

= (st + p
∗
t + μ)− κ(πt−1)

2
∆(st + p

∗
t ) +

κ(πt−1)
2

πt−1

since the firms with new contracts set their price pt(t) at the desired price, ept =
st + p

∗
t + μ, and the firms with contracts made in the previous period set their price

pt(t− 1) at (1−κ(πt−1))ept+κ(πt−1)(ept−1+πt−1). The inflation dynamics is written

as

πt =

�
1− κ(πt−1)

2

�
∆(st + p

∗
t ) +

κ(πt−2)
2

∆(st−1 + p∗t−1) +
κ(πt−1)
2

πt−1 − κ(πt−2)
2

πt−2.

(2)

We follow Devereux and Yetman (2008) among others and consider the (short-run)

ERPT in terms of the first derivative of πt with respect to ∆(st + p∗t ), or

ERPT = 1− κ(πt−1)
2
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which depends on the lagged inflation, πt−1.9 When −
√
F − σ2 ≤ πt−1 ≤

√
F − σ2,

κ(πt−1) takes a value of one and the ERPT becomes 0.5. On the other hand, when

|πt−1| >
√
F − σ2, the model predicts a full ERPT. In summary, the model with

N = 2 implies the abrupt transition of the degree of the ERPT depending on the

relative size of a threshold variable |πt−1| and a threshold value
√
F − σ2 as depicted

in Figure 1. The shape of the step function in the figure suggests the possibility of

approximating the ERPT by a variation of a threshold autoregressive model (TAR),

sometimes referred to as the three-regime TAR model or the band TAR model.

(B) Three-period contract case

When N = 3, the loss function (1) becomes a quadratic function of κ(t) given by

Lt = Et

k
βκ(t)(ept + πt − ept+1)2 + (βκ(t))2(ept + 2πt − ept+2)2l

+β(1− κ(t))(1 + β)F + β2κ(t)(1− κ(t))F

= β(1 + β)F − β(F − σ2 − π2t )κ
(t) − β2(F − 2σ2 − 4π2t )(κ(t))2.

The first order condition yields the optimal κ(t) given by

κ(πt) =
−(F − σ2 − π2t )

2β(F − 2σ2 − 4π2t )
provided F − σ2 − π2t > 0 and (F − σ2 − π2t ) + 2β(F − 2σ2 − 4π2t ) < 0. In this case,
κ(t) is a smooth function of the inflation rate πt. Otherwise, κ

(t) becomes a corner

solution taking a value of either 0 or 1.10 The aggregate price is given by

pt =
1

3
(pt(t) + pt(t− 1) + pt(t− 2))

= (st + p
∗
t )−

κ(πt−1) + κ(πt−2)2

3
∆(st + p

∗
t )−

κ(πt−2)2

3
∆(st−1 + p∗t−1)

+
κ(πt−1)
3

πt−1 +
2κ(πt−2)2

3
πt−2

where the second equality follows from pt(t−1) = (1−κ(πt−1))ept+κ(πt−1)(ept−1+πt−1)
and pt(t − 2) = (1 − κ(πt−2)2)ept + κ(πt−2)2(ept−2 + 2πt−2). The inflation dynamics

9Because of the random walk assumption in our model, this ERPT also corresponds to the ERPT

defined by the first derivative of πt with respect to ∆st.
10 If F −σ2−π2t > 0 and (F −σ2−π2t )+2β(F −2σ2−4π2t ) ≥ 0, then κ(πt) = 1. If F −σ2−π2t ≤ 0,

then κ(πt) = 0.
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are given by

πt =

�
1− κ(πt−1) + κ(πt−2)2

3

�
∆(st + p

∗
t )

−1
3

�
κ(πt−2)2 − κ(πt−2)− κ(πt−3)2

�
∆(st−1 + p∗t−1) +

κ(πt−3)2

3
∆(st−2 + p∗t−2)

+
κ(πt−1)
3

πt−1 +
1

3

�
2κ(πt−2)2 − κ(πt−2)

�
πt−2 − 2κ(πt−3)

2

3
πt−3. (3)

The ERPT is given by

ERPT = 1− κ(πt−1) + κ(πt−2)2

3

which now depends on πt−1 and πt−2. The ERPT takes a minimum value of 1/3

when both κ(πt−1) and κ(πt−2) are one. In the other extreme case, a full ERPT can

be obtained when both κ(πt−1) and κ(πt−2) are zero. Figure 2 shows the relationship

between the inflation rate (imposing πt−1 = πt−2) and the ERPT when κ(πt−1) and

κ(πt−2) take some values between zero and one. The smooth nonlinear relationship

between inflation and the ERPT resembles the adjustment dynamics described by

the class of STAR model with lagged inflation rates used as transition variables. In

particular, the symmetric relationship around zero suggests a symmetric U-shaped

transition function such as an exponential function.

(C) N-period contract case

A similar argument yields the ERPT for any N given by

ERPT = 1−
SN−1
j=1 κ(πt−j)j

N

where κ(πt−j) is a nonlinear function of πt−j. The second term N−1
SN−1
j=1 κ(πt−j)j

represents the fraction of firms adapting the indexation rule and the ERPT can now

vary from 1/N to 1. Again, the ERPT is a smooth nonlinear function of inflation,

with its dynamics possibly approximated by a U-shaped transition function with a set

of lagged inflation rates used as transition variables. The current inflation becomes

a function of πt−j for j = 1, ...,N and ∆(st−j + p∗t−j) for j = 0, ...,N − 1.
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3 Nonlinear Time Series Analysis

3.1 STAR Models

To seek for a suitable specification of the STAR model used in the empirical

analysis, let us summarize the predictions of the theoretical model introduced in

the previous section. First, higher inflation (in absolute value) results in a higher

degree of the ERPT. Second, the ERPT is a symmetric function of the past inflation

rates around zero. Finally, in general, dynamics of the ERPT can be described as

a smooth rather than an abrupt transition using past inflation rates as transition

variables possibly with multiple lags. The only exception is a special case of two-

period contract that predicts a discrete transition typically assumed in the TAR

model.

To capture these features in a parsimonious, parametric model, we primarily

employ the exponential STAR (ESTAR) model with an exponential function used

as a symmetric U-shaped transition function. It is a popularly used STAR model

originally proposed by Haggan and Ozaki (1981) and later generalized by Granger

and Teräsvirta (1993) and Teräsvirta (1994). Since our objective is to determine the

relationship between πt and ∆(st+p∗t ), we estimate a bivariate version of the ESTAR

model specified as

πt = φ0 +
N[
j=1

φ1,jπt−j +
N−1[
j=0

φ2,j∆(st−j + p
∗
t−j)

+

⎛⎝ N[
j=1

φ3,jπt−j +
N−1[
j=0

φ4,j∆(st−j + p
∗
t−j)

⎞⎠G(zt; γ) + εt, (4)

where εt ∼i.i.d.(0,σ2ε) and an exponential transition function given by

G(zt; γ) = 1− exp{−γz2t },

where γ( > 0) is a parameter defining the smoothness of the transition, and zt

is a transition variable. While our theoretical model suggests multiple transition

variables, here we consider a parsimonious specification and use a moving average of

10



the past inflation rates as a single transition variable, zt = d
−1Sd

j=1 πt−j.
11 In this

ESTAR framework, our interest is to obtain the time-varying ERPT defined as

ERPT = φ2,0 + φ4,0G(zt; γ).

We impose a restriction 0 ≤ φ2,0 ≤ 1 and φ2,0 + φ4,0 = 1 so that the ERPT falls in

the range of [0, 1].

In addition to the ESTAR model, our primary model in the analysis, we also

consider another STAR model based on a different U-shaped transition function con-

structed from a combination of two logistic functions. This variant of a logistic STAR

(LSTAR) model has been considered in Granger and Teräsvirta (1993) and Bec, Ben

Salem, and Carrasco (2004) and sometimes referred to as the three regime LSTAR

model. Here we simply call the model a dual (or double) LSTAR (DLSTAR) model

to emphasize the presence of two logistic functions.12 The transition function in the

DLSTAR model is given by

G(zt; γ1, γ2, c) = (1 + exp{−γ1(zt − c1)})−1 + (1 + exp{γ2(zt + c2)})−1

where γ1, γ2( > 0) are parameters defining the smoothness of the transition in the

positive and negative regions respectively, and c1, c2( > 0) are location parameters.

The definition of all other variables and parameters remains the same as in the ESTAR

model. The function of our interest, the ERPT, is similarly computed as

ERPT = φ2,0 + φ4,0G(zt; γ1, γ2, c1, c2).

The reason for considering this alternative specification of the transition function

is two-fold. First, as pointed out by van Dijk, Teräsvirta, and Franses (2002), the

transition function in the ESTAR model collapses to a constant when γ approaches

11As in Kilian and Taylor (2003), we can also employ the transition variable, zt =
t
d−1

Sd
j=1 π

2
t−j ,

which yields a similar parsimonious specification. The main result turns out to be unaffected even if

our transition variable is replaced by this alternative one.
12We use this terminology since the model differs from the multple regime STAR models defined

in van Dijk, Teräsvirta, and Franses (2002).
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infinity. Thus the model does not nest the TAR model with an abrupt transition

as predicted by the theory when there are only two pricing cohorts of firms in the

economy. In contrast, the DLSTAR model includes the TAR model by letting γ1,

γ2 tend to infinity. Second, and more importantly, the model can incorporate both

symmetric (γ1 = γ2 and c1 = c2) and asymmetric (γ1 9= γ2 and c1 9= c2) adjust-

ments between the positive and negative regions. Therefore, we can investigate the

case beyond our simple model that predicts a symmetric relationship between the

ERPT and the inflation rate. In the following section, we employ the symmetric

DLSTAR model as one of the baseline specifications, but later consider the case of

an asymmetric adjustment.

3.2 Main Empirical Results

All the data we use in the STAR estimation is the taken from International Finan-

cial Statistics (IFS) of the International Monetary Fund. First, the main regressor in

the ERPT regression is the monthly log changes in nominal exchange rate and import

price in foreign currency. Since the U.S. import price index constructed by Bureau of

Labor Statistics is based on U.S. dollar prices paid by the U.S. importer, ∆(st + p
∗
t )

is simply computed as 100× (ln IMPt− ln IMPt−1) where IMPt is the import price
after making a seasonal adjustment using X-12-ARIMA procedure. The prices are

generally either “free on board (f.o.b.)” foreign port or “cost, insurance, and freight

(c.i.f.)” U.S. port transaction prices, depending on the practices of the individual

industry. In either case, under our assumption of a constant iceberg transaction cost

(proportional to import price in domestic currency), the same formula can be used to

compute the monthly log changes in the prices of imported goods, excluding the cost

of transaction. Second, for the inflation used for the dependent and transition vari-

ables, we employ the producer price index rather than the consumer price index since

the domestic price in our model is the price at which the final good producer sells its
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product.13 The monthly log inflation πt is computed as 100× (lnPPIt − lnPPIt−1)
where PPIt is the seasonally adjusted U.S. producer price index. As shown in Figure

3, our sample period from January 1975 to December 2007 covers the high inflation

episodes in the late 1970s and the relatively stable inflation environment beginning

in the 1980s, as well as the recent resurgence of a hike in the oil prices.

Before estimating the ESTAR model, we first conduct the LM tests of linearity

against the ESTAR alternative developed by Saikkonen and Luukkonen (1988). See

Appendix A.1 for the details of this linearity test. We will denote the original LM

test by LM1 and its heteroskedasticity-robust variant suggested by Granger and

Teräsvirta (1993) by LM∗
1 . The results using N = 6 and d between 1 and 6 are

reported in the upper half of Table 1. Both tests strongly suggest the presence of

nonlinearity in inflation dynamics for all values of d.

Second, we search for the length of moving average d in the transition variable zt

that best fits the specification. We fix the lag length N = 6 and search for the value

of d between 1 and 6 that minimizes the residual sum of squares from the nonlinear

least squares regression of (4). This search procedure leads to the choice of d = 3.

Third, we adopt a general-to-specific approach, as suggested by van Dijk, Teräsvirta,

and Franses (2002), in arriving at the final specification. Starting with a model with

N = 6, we sequentially remove the lagged variables for which the t statistic of the

corresponding parameter is less than 1.0 in absolute value. The resulting final speci-

fication and the estimates for the ESTAR model are provided in the panel A of Table

2. The estimate of the scaling parameter γ is expressed in terms of the transition

variable zt = 3−1
S3
j=1 πt−j divided by its sample standard deviation 0.477. The

model performs well in terms of the goodness of fit and statistically significant coef-

ficient estimates. Furthermore, there is no evidence of remaining autocorrelations in

residuals.

13There are other studies that also reports ERPT to producer price index. See, for example,

Choudhri, Faruqee and Hakura (2005) and McCarthy (2007).
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Based on the parameter estimates, we show the implied ERPT eφ2,0+eφ4,0G(zt; eγ)
in Figure 4 against the transition variable zt = 3

−1S3
j=1 πt−j (the circles denoting

the actual data points). The plot suggests that the degree of ERPT becomes largest

when the transition variable, namely the average inflation rate, becomes above 2

percent in absolute term. Figure 5 shows the time-varying ERPT implied by the

estimates over the sample period. The ERPT takes the values between 0.34 and

0.85. The plots illustrate three distinct high ERPT episodes. The first high ERPT

period corresponds to the second oil shock in the 1970s. During the 1980s and 1990s,

the ERPT is relatively stable except for the early 1990s when the producer price

index is relatively volatile. During the decade beginning in 2000, the ERPT becomes

high again due to the increased volatility of inflation.

For the symmetric version of the DLSTAR model, two LM tests (LM2 and LM
∗
2 )

reported in Table 1 reject the linearity hypothesis for all the lag delay parameters.14

The panel B of Table 2 shows the estimation result of the symmetric DLSTAR model.

Using a procedure similar to the one employed for the ESTAR model estimation, we

select d = 1 for the transition variable and reported lags for the regressors. Again,

the estimate of the scaling parameter γ (= γ1 = γ2) is expressed in terms of a

normalized transition variable. As shown in Figure 6, the shape of the implied ERPTeφ2,0 + eφ4,0G(zt; eγ,ec) as a function of the transition variable zt = πt−1 somewhat

resembles the shape of the transition function of TAR model predicted by the two-

period contract case (Figure 1). In addition to a threshold-model-like shape of the

transition function, a larger variation of the transition variable, due to one lagged

inflation (d = 1) instead of its smoothed average (d > 1), results in many data points

near full ERPT. Because of these features, the time series variation of ERPT based

on the DLSTAR model shown in Figure 7 becomes larger than the one based on the

ESTAR model shown in Figure 5.

14Since the test of linearity against DLSTAR models is not available in the literature, we provide

the details of the construction of this test in Appendix A.1.
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3.3 Further Analyses

(A) Introduction of asymmetric adjustment

We now turn to the estimation of the asymmetric version of the DLSTAR model to

incorporate the possibility of asymmetric adjustment. The statistics LM3 and LM
∗
3

reported in Table 1 suggest the evidence against linearity in favor of the asymmetric

DLSTAR specification.15 Minimizing the sum of the squared residuals yields the

choice of d = 1. The final specification of the model with parameter estimates is

presented in Table 3. Again, the estimates of the scaling parameters γ1 and γ2 are

expressed in terms of the normalized transition variable.

Figure 8 plots the implied ERPT eφ2,0+ eφ4,0G(zt; eγ1, eγ2,ec1,ec2) against the transi-
tion variable zt = πt−1 when we allow for the asymmetric adjustment. In terms of the

shape of the transition function, the asymmetric DLSTAR specification yields a very

similar result compared to the symmetric DLSTAR specification. However, because

the estimate of γ2 is much larger than that of γ1, the transition is much faster in

the negative region. Figure 9 shows the time series plots of the ERPT implied by

the asymmetric DLSTAR model estimates over the sample period. The ERPT varies

between the values of 0.34 and 1.00 and its path is very similar to the one implied by

the symmetric DLSTAR model.

(B) Specification test for the choice of the transition function

Table 4 reports the results of the specification test to select an appropriate tran-

sition function among the ESTAR, the symmetric DLSTAR and the asymmetric

DLSTAR models. The details of the test statistics are provided in Appendix A.2.

In some cases, the null hypothesis of the ESTAR model against the asymmetric DL-

STAR model cannot be rejected (see LM5 with d greater than 3). On the other hand,

the evidence suggests some possibility of rejection of the symmetric DLSTAR model

in favor of the asymmetric DLSTAR (LM4) and the ESTAR specifications (LM6).

15See Appendix A.1 for these tests in detail.
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While the evidence is somewhat mixed, the ESTAR and asymmetric DLSTAR spec-

ifications may be slightly better than the symmetric DLSTAR specification.

(C) Introduction of demand shocks

Following Campa and Goldberg (2005), we also include the real output measure as

an additional variable that represents the demand shock component of the domestic

market. We use the index of industrial production normalized by the consumer price

index (CPI) as a proxy for the change in demand. A modified ESTAR model we

estimate is

πt = F (∆(st + p
∗
t ), ...,∆(st−N+1 + p

∗
t−N+1),πt−1, ...,πt−N , zt;φ, γ) +

p[
j=0

aj∆iipt−j + εt

(5)

where F (∆(st + p
∗
t ), ...,∆(st−N+1 + p∗t−N+1),πt−1, ...,πt−N , zt;φ, γ) is the ESTAR

function part used to obtain the main result, and ∆iipt is the first difference of

logs of real industrial production multiplied by 100. The lag length p is selected

using the same method we use for selecting lags in the ESTAR part. The result is

presented in Table 5. The time series path of ERPT is plotted in Figure 10. Overall,

the performance of this extended ESTAR model is as good as that of the baseline

ESTAR model.

4 Conclusion

In this paper, we show that the STAR models, a parsimonious parametric nonlin-

ear time series model, offer a very convenient framework in examining the relationship

between the ERPT and inflation. First, a simple theoretical model of ERPT deter-

mination suggests that the dynamics of ERPT can be well-approximated by a class of

STAR models with inflation as a transition variable. Second, we can employ various

U-shaped transition functions in the estimation of the time-varying ERPT. When this

procedure is applied to U.S. import and domestic price data, we find the supporting
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evidence of nonlinearities in inflation dynamics. Our empirical results imply that the

period of low ERPT is likely to be associated with the low inflation.

According to our model, the degree of ERPT varies over time because the frac-

tion of importing firms opting out from the contract is endogenously determined

by importing firms’ optimization behavior. In the model, however, all imports are

treated as if they are invoiced in the producer’s (exporter’s) currency. An alternative

approach in introducing a time-varying ERPT is to use a model in which exporting

firms endogenously choose between producer currency pricing (PCP) and local cur-

rency pricing (LCP). For example, a recent study by Gopinath, Itskhoki and Rigobon

(2007) extends the model of Engel (2006) and investigates the role of the invoice cur-

rency in determining the observed ERPT. Our analysis do not consider this channel

partly because we do not have data on individual exporters’ invoice currency. In-

corporating the effect of currency choice in our estimation procedure seems to be a

promising direction for further analysis.
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Appendix

A.1. Linearity test against the DLSTAR model

Saikkonen and Luukkonen (1988) and Teräsvirta (1994) developed a methodology

to test whether a series exhibits nonlinear behaviors described by STAR models. The

test is based on a Taylor series approximation of the transition function of the STAR

models.

Consider the following STAR model

yt = x
�
tφ1 +G(zt; γ)x

�
tφ2

where xt is a vector of explanatory variables. For the ESTAR model, Saikkonen

and Luukkonen (1988) replace G(zt; γ) = 1 − exp{−γz2t } by its third-order Taylor
series approximation with respect to γ evaluated at zero. This substitution yields the

following auxiliary regression:

yt = x
�
tβ1 + x

�
tztβ2 + x

�
tz
2
t β3 + et.

Therefore, the linearity test against the ESTAR model is the same as testing the joint

restriction that all nonlinear terms are zero: β2 = β3 = 0. We refer to the LM test

for this hypothesis as LM1.

Reworking the case of the DLSTAR model is straightforward. We take a third-

order Taylor series approximation of G(zt; γ1, γ2, c) = (1+exp{−γ1(zt−c)})−1+(1+
exp{γ2(zt+c)})−1 with respect to γ1 and γ2 evaluated at γ1 = γ2 = 0. Since the sec-

ond derivative is zero, the derived expansion isG(zt; γ1, γ2, c) ≈
k
γ1
4 (zt − c)−

γ31
48 (zt − c)3

l
+k

−γ2
4 (zt + c) +

γ32
48 (zt + c)

3
l
and the substitution yields the following auxiliary regres-

sion:

yt = x
�
tβ1 + x

�
tztβ2 + x

�
tz
2
t β3 + x

�
tz
3
t β4 + et

provided γ1 9= γ2. Here, the linearity test against the asymmetric DLSTAR model is

identical to testing the joint restriction that all nonlinear terms are zero: β2 = β3 =

β4 = 0. We refer to the LM test for this hypothesis as LM3.

When we consider the symmetric case γ = γ1 = γ2, the derived expansion has a

simpler form G(zt; γ, γ, c) ≈
�
γ3c/24− γc/2

�
+(γ3c/8)z2t and the substitution yields

the following auxiliary regression:
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yt = x
�
tβ1 + x

�
tz
2
t β3 + et.

The linearity test against the symmetric DLSTAR model is identical to the joint

hypothesis that all nonlinear terms are zero: β3 = 0. We refer to the LM test for this

hypothesis as LM2.

A.2. Specification test among ESTAR, symmetric DLSTAR and asym-

metric DLSTAR models

Teräsvirta (1994) proposed a specification test of the LSTAR model with a single

logistic transition function against the ESTAR model based on the auxiliary regres-

sion. Similarly, we can use the auxiliary regression equation for the asymmetric

DLSTAR model (γ1 9= γ2)

yt = x
�
tβ1 + x

�
tztβ2 + x

�
tz
2
t β3 + x

�
tz
3
t β4 + et,

which nests that for the symmetric DLSTAR model (γ1 = γ2)

yt = x
�
tβ1 + x

�
tz
2
t β3 + et.

The test for the symmetric DLSTAR model against the asymmetric DLSTAR model

is identical to testing the joint restriction β2 = β4 = 0 in the auxiliary regression

equation for the asymmetric DLSTAR. We refer to the LM test for this hypothesis

as LM4.

Since the auxiliary regression equation for the ESTAR model is

yt = x
�
tβ1 + x

�
tztβ2 + x

�
tz
2
t β3 + et,

the test for the ESTAR model against the asymmetric DLSTAR model (γ1 9= γ2) is

identical to testing the joint restriction β4 = 0 in the auxiliary regression equation

for the asymmetric DLSTAR model. We refer to the LM test for this hypothesis as

LM5.

Finally, to test for the symmetric DLSTAR model (γ1 = γ2) against the ESTAR

model, we test the joint restriction β2 = 0 in the auxiliary regression equation for the

ESTAR model. We refer to the LM test for this hypothesis as LM6.
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Table 1. LM-type tests for STAR nonlinearity

Transition Variable (zt = d�1
Pd

j=1 �t�j)

H0 vs. H1 Test Statistics d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Linear vs. ESTAR LM1 4.93 4.12 3.89 3.58 3.03 2.36

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

LM�
1 347.1 341.1 341.5 344.6 346.9 344.9

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Linear vs. LM2 4.86 3.07 4.01 3.20 3.23 3.14

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

symmetric DLSTAR LM�
2 372.9 377.2 370.8 371.8 373.1 369.4

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Linear vs. LM3 5.14 4.04 3.57 2.95 2.68 1.98

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

asymmetric DLSTAR LM�
3 351.8 355.3 354.1 357.7 358.2 358.4

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Lag length is N = 6. LM test statistics for linearity against the ESTAR model,
the symmetric DLSTAR model, and the asymmetric DLSTAR model are denoted as LM1,
LM2, and LM3, respectively. The heteroskedasticity-robust variants of the LM1, LM2,
and LM3 are denoted as LM�

1 , LM
�
2 , and LM

�
3 , respectively (see Granger and Teräsvirta,

1993). Numbers in parentheses below LM statistics are p-values.
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Table 2. ERPT regression results: baseline case

A: ESTAR model (d = 3)

�t = 0:099
(3:118)

+ 0:123
(2:322)

�t�1 + 0:200
(4:706)

�t�3 � 0:081
(1:689)

�t�4 + 0:336
(9:746)

�(st + p
�
t )

+0:093
(2:803)

�(st�1 + p
�
t�1) + 0:074

(1:859)
�(st�4 + p

�
t�4) + 0:039

(1:349)
�(st�5 + p

�
t�5)

+

�
0:752
(2:103)

� 1:352
(3:400)

�t�5 + 0:664
(19:246)

�(st + p
�
t )� 0:569

(2:849)
�(st�2 + p

�
t�2)

�0:300
(1:393)

�(st�4 + p
�
t�4)

�
G (zt; b
) + b"t;

G (zt; b
) = 1� exp
8<:�0:076(4:777)

0@1
3

3X
j=1

�t�j

1A2

=0:4772

9=;
R2 = 0:606; se = 0:476; obs = 396; LM(1) = [0:146]; LM(1-12) = [0:189]

B: Symmetric DLSTAR model (d = 1)

�t = 0:098
(3:466)

+ 0:208
(3:866)

�t�1 + 0:159
(4:278)

�t�3 � 0:101
(2:195)

�t�5 + 0:349
(12:519)

�(st + p
�
t )

+0:075
(2:341)

�(st�1 + p
�
t�1)� 0:070

(2:441)
�(st�2 + p

�
t�2) + 0:066

(2:081)
�(st�5 + p

�
t�5)

+

�
0:242
(1:150)

�t�4 � 0:739
(2:749)

�t�5 + 1:230
(5:269)

�t�6 + 0:651
(23:333)

�(st + p
�
t )

�0:438
(5:568)

�(st�1 + p
�
t�1) + 0:350

(3:109)
�(st�2 + p

�
t�2)� 0:534

(2:695)
�(st�4 + p

�
t�4)

�0:356
(1:957)

�(st�5 + p
�
t�5)

�
G (zt; b
;bc) + b"t;

G (zt; b
;bc) =

�
1 + exp

�
�5:130
(2:924)

�
�t�1 � 1:474

(21:283)

�
=0:686

���1
+

�
1 + exp

�
5:130
(2:924)

�
�t�1 + 1:474

(21:283)

�
=0:686

���1
R2 = 0:654; se = 0:448; obs = 396; LM(1) = [0:040]; LM(1-12) = [0:242]

Notes: Numbers in parentheses below coe¢ cient estimates are t-statistics in absolute val-
ues. R2 denotes the coe¢ cient of determination and se is the standard error of the regres-
sion. Numbers in brackets for LM(1) and LM(1-12) are p-values for Lagrange multiplier
test statistics for �rst-order, and up to twelfth-order serial correlations in the residuals,
respectively.
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Table 3. ERPT regression results: asymmetric adjustment

Asymmetric DLSTAR model (d = 1)

�t = 0:095
(3:349)

+ 0:270
(4:183)

�t�1 + 0:153
(4:094)

�t�3 � 0:105
(2:326)

�t�5 + 0:341
(12:352)

�(st + p
�
t )

+0:062
(1:879)

�(st�1 + p
�
t�1)� 0:078

(2:747)
�(st�2 + p

�
t�2) + 0:064

(2:071)
�(st�5 + p

�
t�5)

+

�
�0:198
(1:722)

�t�1 � 0:510
(1:979)

�t�5 + 1:001
(4:666)

�t�6 + 0:659
(23:868)

�(st + p
�
t )

�0:338
(3:324)

�(st�1 + p
�
t�1) + 0:417

(3:352)
�(st�2 + p

�
t�2)� 0:298

(2:685)
�(st�4 + p

�
t�4)

�0:482
(2:699)

�(st�5 + p
�
t�5)

�
G (zt; b
1; b
2;bc1;bc2) + b"t;

G (zt; b
1; b
2;bc1;bc2) =

�
1 + exp

�
�5:762
(1:129)

�
�t�1 � 1:591

(14:924)

�
=0:686

���1
+

�
1 + exp

�
55:253
(1:124)

�
�t�1 + 1:293

(156:218)

�
=0:686

���1
R2 = 0:663; se = 0:443; obs = 396; LM(1) = [0:073]; LM(1-12) = [0:247]

Notes: See notes of Table 2.
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Table 4. LM-type tests for STAR model selection

Transition Variable (zt = d�1
Pd

j=1 �t�j)

H0 vs. H1 Test Statistics d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Symmetric DLSTAR LM4 3.86 3.42 2.84 2.47 2.17 1.26

(0.00) (0.00) (0.00) (0.00) (0.01) (0.19)

vs. Asymmetric DLSTAR LM�
4 358.2 348.6 350.9 356.2 360.3 361.3

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ESTAR LM5 4.41 3.24 2.52 1.56 1.81 1.19

(0.00) (0.00) (0.01) (0.10) (0.05) (0.29)

vs. Asymmetric DLSTAR LM�
5 374.1 376.1 371.3 371.8 372.4 369.2

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Symmetric DLSTAR LM6 2.97 3.34 3.02 3.30 2.47 1.32

(0.00) (0.00) (0.00) (0.00) (0.01) (0.20)

vs. ESTAR LM�
6 377.0 377.0 373.6 373.1 372.6 369.8

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Lag length is N = 6. LM4 is the LM test statistic for the null hypothesis of the
symmetric DLSTAR model against the asymmetric DLSTAR model. LM5 is the LM test
statistic for the null hypothesis of the ESTAR model against the asymmetric DLSTAR
model. LM6 is the LM test statistic for the null hypothesis of the symmetric DLSTAR
model against the ESTAR model. The heteroskedasticity-robust variants of the LM4, LM5,
and LM6 are denoted as LM�

4 , LM
�
5 , and LM

�
6 , respectively. Numbers in parentheses below

LM statistics are p-values.
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Table 5. ERPT regression results: demand shocks

ESTAR model (d = 1)

�t = 0:102
(4:382)

+ 0:279
(5:041)

�t�1 + 0:155
(5:348)

�t�3 � 0:099
(2:440)

�t�4 � 0:119
(3:469)

�t�5 �0:063
(1:834)

�t�6

+ 0:329
(12:792)

�(st + p
�
t ) + 0:091

(3:218)
�(st�1 + p

�
t�1)� 0:078

(3:154)
�(st�2 + p

�
t�2) + 0:051

(1:765)
�(st�4 + p

�
t�4)

+0:105
(4:054)

�(st�5 + p
�
t�5)� 0:096

(3:173)
�iipt + 0:075

(2:569)
�iipt�1 � 0:072

(2:354)
�iipt�4

+

�
0:461
(2:741)

� 0:472
(3:091)

�t�1 � 0:604
(2:924)

�t�2 + 0:631
(2:071)

�t�4 + 0:767
(3:124)

�t�6 + 0:671
(26:089)

�(st + p
�
t )

�0:332
(2:499)

�(st�1 + p
�
t�1) + 0:535

(2:881)
�(st�2 + p

�
t�2)� 0:670

(2:701)
�(st�4 + p

�
t�4)

�0:545
(4:568)

�(st�5 + p
�
t�5) + 0:513

(2:552)
�iipt � 0:459

(4:202)
�iipt�1 + 0:777

(3:302)
�iipt�4

�
G (zt; b
) + b"t;

G (zt; b
) = 1� exp��0:079
(4:499)

�2t�1=0:686
2

�

R2 = 0:652; se = 0:456; obs = 396; LM(1) = [0:021]; LM(1-12) = [0:105]

Notes: See notes of Table 2.
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Figure 1. ERPT and inflation: Two-period contract case (N=2) 
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Notes: Solid line: F = 155 and σ2 = 100. Dotted line: F = 120 and σ2 = 100. 
 
Figure 2. ERPT and inflation: Three-period contract case (N=3) 
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 Notes: Solid line: F = 260 and σ2 = 170. Dotted line: F = 20 and σ2 = 12. 



29 
 

 
Figure 3. Producer price index inflation 
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Note: Seasonally adjusted series. 
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Figure 4. ERPT against transition variable: ESTAR model 
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Figure 5. ERPT over time: ESTAR model 
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Figure 6. ERPT against transition variable: Symmetric DLSTAR model 
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Figure 7. ERPT over time: Symmetric DLSTAR model 
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Figure 8. ERPT against transition variable: Asymmetric DLSTAR model 
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Figure 9. ERPT over time: Asymmetric DLSTAR model 
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Figure 10. ERPT over time: ESTAR model and demand shocks 
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