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1 Introduction

Endogenous threats are an essential constituent of bargaining problems, as emphasized in

Nash (1953) at the dawn of modern bargaining theory. The bargaining literature in the 1990s

successfully incorporates endogenous threats into the alternating-offer bargaining model of

Rubinstein (1982). The early contributions in this area, such as Fernandez and Glazer

(1991), Haller (1991) and Haller and Holden (1990), study the selection of industrial action

by a union during its contract negotiations with a firm. In contrast to Rubinstein (1982),

after a proposal is rejected, the union needs to decide what course of industrial action to take

before the next bargaining round.1 Later contributions, such as Busch andWen (1995, 2001),

Houba (1997), and Slantchev (2003), allow for more general forms of endogenous threats,

modeled as a normal-form game, called the disagreement game, to be played between offers

and counteroffers.2 All these references are restricted to stationary contracts,3 and except

Fernandez and Glazer (1991), Muthoo (1999) and Slantchev (2003), to the case of common

time preferences.

Despite our well-understanding of the negotiation model with common time preferences,

it is not trivial to generalize the existing analysis and technique to the case with different

time preferences. In general, this class of games admits multiple equilibria and the set of the

equilibrium payoffs is fully characterized by so-called extreme equilibria that yield the lowest

and highest equilibrium payoffs to each player. Bolt (1995) demonstrates that the strategy

profile supporting the firm’s worst equilibrium provided by Fernandez and Glazer (1991) fails

to be an equilibrium when the firm is less patient than the union. He then provides a no-

concession strategy to the firm and shows that it can be sustained in equilibrium. Recently,

one of the claims by Slantchev (2003) suggests that the firm’s no-concession strategy always

supports the firm’s worst equilibrium when the firm is less patient than the union. This

1Fernandez and Glazer (1991), Haller (1991), and Haller and Holden (1990) consider two industrial
actions. Houba and Bolt (2000) consider the strategic substitutability among several forms of industrial
actions by the union.

2This negotiation model is surveyed in Muthoo (1999) and Houba and Bolt (2002).
3Houba (1997) considers nonstationary contracts under common time preferences.
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implication, however, contradicts another finding reported in Bolt (1993) that an always-

strike strategy sometimes yields an even lower payoff to the firm. Instead of invoking the

technique of Shaked and Sutton (1984) to derive extreme equilibrium payoffs in this model,

Bolt (1995) and Slantchev (2003) simply verify whether a given strategy profile constitutes

an equilibrium. Muthoo (1999) also notices the necessity to apply the technique of Shaked

and Sutton (1984) in studying the negotiation model under different time preferences.

We treat these findings seriously, not only to settle the open issue of extreme equilibria,

but more importantly, to reexamine the method used in previous studies. For more than

twenty years, the backward induction technique of Shaked and Sutton (1984) has proven to be

a very powerful and effective tool in studying bargaining problems. Applying this technique

relies on the presumption that all continuation payoffs are bounded by the bargaining frontier,

which holds in most bargaining situations. Consequently, players always reach an immediate

agreement in any extreme equilibrium, such as in the original study of Shaked and Sutton

(1984). By incorporating the possibility of making unacceptable proposals, Fudenberg and

Tirole (1991) show that it is without loss of generality that only acceptable proposals count

in applying this technique to the model of Rubinstein (1982).

In the negotiation model with common time preferences, all continuation payoffs are

bounded by the bargaining frontier resulting from stationary contracts. Houba and Wen

(2006) show that stationary contracts are Pareto efficient if and only if players have common

time preferences. However, this is definitely not the case when the players have different

time preferences. It has been realized in other dynamic problems that Pareto improvement

is possible through intertemporal trade among agents with different time preferences, see

e.g., Ramsey (1928), Bewley (1972) and, more recently, Lehrer and Pauzner (1999). In

the context of repeated games, Lehrer and Pauzner (1999) demonstrate that many feasible

payoffs are outside the conventionally defined set of ‘feasible payoffs’. What matters is

that, under different time preferences, an infinite sequence of two payoff vectors does not

lead to a convex combination of these two vectors. Unlike repeated games, outcome paths

in bargaining models are less flexible. Since any agreement on a stationary contract, by
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default, ceases any future payoff variation, an immediate agreement may not be Pareto

efficient when players have different time preferences. This is not a serious issue in Rubinstein

(1982), because all possible outcome paths are dominated by some immediate agreement.

However, in the negotiation model it is possible for both players to benefit from playing some

disagreement outcomes for some periods prior to an agreement that rewards the more-patient

player. Those benefits can be so dramatic that the resulting continuation payoff vector is

above the bargaining frontier. This is exactly what has been overlooked and the root of the

problems reported in the current literature.

We do not make any presumption on continuation payoffs. When there are continuation

payoffs above the bargaining frontier, players may not always reach an immediate agreement

in extreme equilibria. We modify the technique of Shaked and Sutton (1984) with the

possibility of unacceptable proposals and obtain a set of necessary and sufficient conditions

for the extreme equilibrium payoffs. The Pareto frontier of continuation payoffs plays an

essential role in solving these extreme payoffs. In order to achieve this Pareto frontier, it

may be necessary to disagree for many periods. In constructing the Pareto frontier from

extreme equilibrium payoffs, we borrow and adapt the technique of Lehrer and Pauzner

(1999) for the negotiation model. The interdependency between the Pareto frontier and

extreme payoffs significantly alters the way we analyze the negotiation model. Although all

extreme payoffs are also interdependent, for sufficiently patient players, the worst equilibrium

payoff of the less-patient player can be solved without knowing the other extreme equilibrium

payoffs. The less-patient player’s equilibrium payoffs are bounded from below by the least

fixed point of a well-defined minimax problem. We provide an equilibrium that supports

such a least fixed point as the less-patient player’s worst equilibrium payoff. Furthermore,

we provide a simple upper bound for the least patient player’s worst equilibrium payoff that

is no more than those in Bolt (1995) and Muthoo (1999). To summarize, we develope a

general technique to characterize the least patient player’s worst equilibrium, from which all

other extreme equilibria can be recovered.

In order to demonstrate the technique developed here and its resolution in Fernandez and
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Glazer (1991) and Slantchev (2003) , we consider common interest disagreement games where

there is a Pareto dominant disagreement outcome.4 We find that there are complications

only in the worst equilibrium to the less-patient player. The worst equilibrium to the more-

patient player closely resembles the worst equilibrium known for common time preferences.

This finding validates the firm’s worst equilibrium in Fernandez and Glazer (1991) only in

case the firm is more patient than the union.

This paper is organized as follows. In Section 2, we present the negotiation model,

summarize some existing results, and discuss why some continuation payoffs can be above

the bargaining frontier. The analysis is partitioned into three subsections. In Section 3.1, we

derive a set of necessary and sufficient conditions for extreme equilibrium payoffs. In order

to solve the extreme equilibrium payoffs, we need to know the Pareto frontier of continuation

payoffs, which is studied in Section 3.2. In Section 3.3, we derive the worst equilibrium to

the proposing player. In Section 4 we focus on the model with common interest disagreement

games and show that complications arise only in the worst equilibrium to the less-patient

player. We present an example to illustrate our findings. Section 5 offers some concluding

remarks.

2 The Model and Pareto Efficiency

Consider the negotiation model in which two players, named 1 and 2, negotiate how to

split an infinite stream of surpluses of certain value, all normalized to be 1 per period. In

any period before reaching an agreement, one player makes a proposal on how to split the

value in all future periods and the other player either accepts or rejects the proposal. If

the proposal is accepted, then it will be implemented immediately, which ceases any future

strategic interaction between the players. If the proposal is rejected, then the players will

play a disagreement game once before the negotiations proceed to the following period.

More specifically, the model consists of infinitely many periods where player 1 proposes

4Common interest games are studied in other dynamic settings, see, e.g., Farrel and Saloner (1985) and
Takahashi (2005).
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in all odd periods and player 2 proposes in all even periods. A proposal is simply a feasible

contract on how to share the future values. As commonly considered in the literature, a

proposal is a stationary contract, denoted as

x = (x1, x2) ∈ ∆ =
©
(x1, x2) ∈ R2+ : x1 + x2 = 1

ª
from which player i’s payoff is xi in every period after both players agree on x ∈ ∆ (the unit

simplex), which we refer to as the bargaining frontier. The disagreement game is given in

normal form:

G = {A1, A2, d1 (·) , d2 (·)} ,

where Ai is the set of player i’s disagreement actions that is assumed to be non-empty and

compact, and di (·) : A→ R is player i’s disagreement payoff function that is assumed to be

continuous, where A = A1×A2 is the set of disagreement outcomes. We also assume d1 (a)+

d2 (a) ≤ 1 so that every disagreement outcome is weakly dominated by some agreement. To
ease exposition, we denote player i’s highest disagreement payoff when he deviates from

a ∈ A unilaterally by

gi (a) = max
a0i∈Ai

di(a
0
i, aj).

We assume that the disagreement game G has at least one Nash equilibrium aN ∈ Ameaning

gi
¡
aN
¢
= di

¡
aN
¢
for i = 1 and 2. Without loss of generality, every player’s minimax value

in G is normalized to be zero;

min
aj∈Aj

max
ai∈Ai

di(a) = min
a∈A

gi(a) = 0.

Let d(A) denote the convex hull of {d(a) : a ∈ A}, the set of feasible disagreement payoffs.
A generic outcome path in the negotiation model, denoted by π =

¡
a1, a2, · · · , aT , x¢

for T ≥ 0, consists of all disagreement outcomes (at ∈ A in period t for t ≤ T ) before the

agreement x ∈ ∆ is reached in period T + 1. Such an outcome path specifies an immediate

agreement with T = 0, and a perpetual disagreement outcome path with T =∞. From such
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an outcome path π, player i’s intertemporal time preference is represented by his average

discounted payoffs from the disagreement game before the agreement and the agreement

itself afterward:

v(π) = (1− δi)
TX
t=1

δt−1i di
¡
at
¢
+ δTi xi, (1)

where δi ∈ (0, 1) represents player i’s discount factor per period.
The negotiation model described so-far is a well-defined noncooperative game of complete

information. A history is a complete description of how the game has been played up to

a period. A player’s strategy specifies one appropriate action for every finite history. For

technical convenience, we allow for public correlated strategies where players can coordinate

their continuation strategies based on public coordination devices. Every strategy profile

induces a unique distribution on outcome paths and players evaluate their strategies based

on their discounted payoffs from the induced outcome paths. The equilibrium concept applied

throughout this paper is subgame perfect equilibrium (SPE).

Next, we summarize some existing results for this model from previous studies in the

form of two propositions for later reference. We state these results without proof and in

terms of player i ∈ {1, 2}, while refer to his opponent as player j 6= i.

Proposition 1 In the negotiation model with different time preferences, for all (δi, δj) ∈
(0, 1)2, there is a stationary SPE where player i receives

di(a
N) +

1− δj
1− δiδj

£
1− di(a

N)− dj(a
N)
¤

when player i proposes and

di(a
N) +

δi(1− δj)

1− δiδj

£
1− di(a

N)− dj(a
N)
¤

when player j proposes,

where aN ∈ A is a Nash equilibrium of G.

Proposition 2 In the negotiation model with common time preferences, i.e., δi = δj = δ,

for sufficiently large δ ∈ (0, 1), player i’s lowest SPE payoff is
1

1 + δ

·
1−max

a∈A
[di(a) + dj(a)− gi (a)]

¸
when player i proposes and

δ

1 + δ

·
1−max

a∈A
[di(a) + dj(a)− gi (a)]

¸
when player j proposes.
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Propositions 1 and 2 assert that the model generally has multiple SPE payoffs when the

players are sufficiently patient. What is less clear is a full characterization of the set of SPE

payoffs when the two different discount factors are sufficiently large.

Pareto efficiency has not yet received enough attention in this type of model. In the

bargaining model of Rubinstein (1982), it is obvious that every immediate agreement is also

Pareto efficient. In the negotiation model with different time preferences, however, this is

no longer the case. Making this more precise requires the insights of Lehrer and Pauzner

(1999) in the context of repeated games and also the modification of their technique for

the negotiation model. Lehrer and Pauzner (1999) show that any sequence of two payoff

vectors may not lead to a convex combination of these two payoff vectors when the players

have different time preferences. Pareto improvement can be realized if the less-patient player

trades his long-run payoffs for short-run payoffs.5 They demonstrate that when two players

have different time preferences, many SPE payoffs in a repeated game are not in the set

of feasible and individually rational payoffs, as traditionally defined. In the negotiation

model, such Pareto improvement is also present so that some feasible payoff vectors could be

above the bargaining frontier. This implies that not every immediate agreement is Pareto

efficient. As we will make clear later, what matters the most in characterizing the set of SPE

payoffs is the Pareto frontier of SPE payoffs, which is quite complicated under different time

preferences.

3 The Sets of SPE Payoffs

The key to characterize the set of SPE payoffs is to derive each player’s lowest and highest

SPE payoffs. We first provide a set of necessary and sufficient conditions for these extreme

SPE payoffs in Section 3.1. In applying these conditions to derive the extreme SPE payoffs

in the current period, we need the Pareto frontier of SPE payoffs in the following period.

We then focus on these effective continuation payoffs in Section 3.2. It turns out that the

5The results in e.g. Ramsey (1928) and Bewley (1972) indicate that similar insights already have a long
history in economics.
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Pareto frontier of SPE payoffs depends on both the discount factors and the extreme SPE

payoffs. This inter-dependency between the extreme SPE payoffs and the Pareto frontier of

SPE payoffs requires a new set of techniques to analyze the negotiation model with different

time preferences. Unlike the case of common time preferences, no closed-form solutions

for the extreme SPE payoffs are available in general. However, our analysis is sufficient to

characterize the extreme SPE payoffs, and hence the set of SPE payoffs in any negotiation

game. We will reexamine the case of common time preferences and tie our analysis to the

existing literature on the negotiation model.

3.1 Extreme SPE Payoffs

Let Ei, for i = 1 and 2, be the set of SPE payoffs in any period in which player i makes

a proposal to player j for j 6= i. For simplicity, we suppress all the other parameters that

Ei may depend on, such as the discount factors. Given the existence of a stationary SPE

(Proposition 1) and the model setup, Ei is a non-empty and bounded subset of R2+. Applying

the technique of self-generating payoffs for a repeated game by Abreu et al. (1986, 1990),

and for a bargaining game by Shaked and Sutton (1984) and Binmore (1987),6 we can prove

that Ei is also compact and convex.7 Given the compactness of Ei for i = 1 and 2, player

l’s lowest and highest SPE payoffs when player i makes a proposal are, respectively,

mi
l = min

v∈Ei
vl and M i

l = max
v∈Ei

vl for l = i and j. (2)

In any period in which player i makes a proposal, if player j rejects player i’s proposal

then they will have to play a disagreement outcome a ∈ A in the current period and a

continuation SPE with payoff vector v = (vi, vj) ∈ Ej in the following period in which player

j proposes. The continuation payoff vector generally depends on the disagreement outcome so

that after a player deviates, the continuation payoff vector may change accordingly. Given the

continuation payoff vector v ∈ Ej, playing a ∈ A in the disagreement game G is sequentially

6See e.g., Mailath and Samuelson (2006) and van Damme (1991) for more comprehensive treatments of
self-generating sets of SPE payoffs.

7Upon request, a detailed proof is available from the authors.
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rational if and only if

(1− δl)dl(a) + δlvl ≥ (1− δl)gl(a) + δlm
j
l for l = i and j. (3)

Inequality (3) states that player l’s payoff from complying is at least what he could obtain by

deviating from a ∈ A followed by his lowest SPE payoff in the following period. Obviously,

any Nash equilibrium ofG satisfies (3) for all discount factors and all continuation payoffs. By

incorporating the possibility of unacceptable proposals explicitly in the backward induction

technique of Shaked and Sutton (1984), we obtain the following result:

Proposition 3 For all (δi, δj) ∈ (0, 1)2, we have

mi
i = min

a∈A,v∈Ej
max

½
(1− δi)di(a) + δivi,
1− (1− δj)dj(a)− δjvj,

s.t. (3), (4)

M i
i = max

a∈A,v∈Ej
max

½
(1− δi)di(a) + δivi,
1− (1− δj)dj(a)− δjvj,

s.t. (3), (5)

mi
j = min

a∈A,v∈Ej
(1− δj)dj(a) + δjvj s.t. (3), (6)

M i
j = max

a∈A,v∈Ej
(1− δj)dj(a) + δjvj s.t. (3). (7)

Proof. Consider the general structure of any SPE in a period in which player i proposes.

Suppose player i proposes x̂ = (x̂i, x̂j) ∈ ∆, player j either accepts or rejects x̂, and the

continuation SPE consists of a(x) ∈ A and v(x) ∈ Ej that satisfy (3) after player j rejects

player i’s proposal x for all x ∈ ∆. Note that the continuation SPE generally depends on

what proposal player j rejects. Denote player i’s payoff from such a SPE as

v∗i =
½
(1− δi)di(a(x̂)) + δivi(x̂), if player j rejects x̂,
1− x̂j, if player j accepts x̂.

(8)

First, consider any sequence of proposals {xn}∞n=1 ⊂ ∆ such that xni = 1 − xnj > v∗i for

all n ≥ 1 and limn→∞ xni = v∗i . For v
∗
i to be player i’s SPE payoff, player j must reject x

n

and player i must receive no more than v∗i after player j rejects x
n for all n ≥ 1 (otherwise,

player i would have an incentive to deviate to propose xn instead). In other words, for all

n ≥ 1, we have

(1− δi)di(a(x
n)) + δivi(x

n) ≤ v∗i and xnj ≤ (1− δj)dj(a(x
n)) + δjvj(x

n). (9)
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Since A is compact by assumption, sequence {a(xn)}∞n=1 ⊂ A has a convergent subsequence,

say (without loss of generality) limn→∞ a(xn) = ā ∈ A. The compactness of Ej then implies

that {v(xn)}∞n=1 ⊂ Ej also has a convergent subsequence, say (without loss of generality)

limn→∞ v(xn) = v̄. Since every (a(xn), v(xn)) satisfies (3) for all n ≥ 1, so does (ā, v̄) due to
the continuity of d(·). As n→∞, the two inequalities in (9) yield

(1− δi)di(ā) + δiv̄i ≤ v∗i and 1− v∗i ≤ (1− δj)dj(ā) + δj v̄j.

The last two inequalities imply that

v∗i ≥ max
½
(1− δi)di(ā) + δiv̄i,
1− (1− δj)dj(ā)− δj v̄j,

which is bounded from below by the right-hand side of (4). Let (â, v̂) be a solution to the

optimization problem in (4). Consider the following strategy profile σ̂:

– player i proposes x̂ where x̂i = max
½
(1− δi)di(â) + δiv̂i,
1− (1− δj)dj(â)− δj v̂j,

– player j accepts x if and only if xj ≥ (1− δj)dj(â) + δj v̂j, and

– the continuation SPE is (a(x), v(x)) = (â, v̂) after player j rejects x for all x ∈ ∆.

Strategy profile σ̂ constitutes a SPE, from which player i receives exactly (4). Hence, (4)

characterizes player i’s lowest SPE payoff mi
i.

Second, accepting x̂ is a best response for player j if and only if x̂j ≥ (1− δj)dj(a(x̂)) +

δjvj(x̂). Together with (8), we have

v∗i ≤
½
(1− δi)di(a(x̂)) + δivi(x̂), if player j rejects x̂,
1− (1− δj)dj(a(x̂))− δjvj(x̂), if player j accepts x̂,

which is bounded from above by the right-hand side of (5). The strategy profile σ̂ above

with (â, v̂) being a solution to the optimization problem in (5) supports player i’s highest

SPE payoff M i
i .

Third, player j certainly rejects any x ∈ ∆ such that xj is less than the right-hand side

of (6) because player i cannot receive less than his lowest continuation payoff after rejecting

any proposal. Therefore, player j’s SPE payoffs are bounded from below by the right-hand
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side of (6). Furthermore, player j receives exactly the right-hand side of (6) in the SPE σ̂

above with (â, v̂) being a solution to the optimization problem in (6).

Lastly, since player j certainly accepts any x ∈ ∆ such that xj is greater than the right-

hand side of (7), player i will never propose x ∈ ∆ such that xj is more than player j’s highest

continuation payoff. In other words, x̂j must be less than or equal to the right-hand side of

(7). Whether player j accepts x̂ or not, player j cannot obtain more than the right-hand

side of (7). Again, player j receives exactly the right-hand side of (7) in the SPE σ̂ above

with (â, v̂) being a solution to the optimization problem in (7).

Although the objective functions in the optimization problems of Proposition 3 are well-

defined and continuous, A is given and compact, we know nothing about Ej at this stage

other than its non-emptiness, compactness, and convexity. In order to fully understand the

issues involved, we have to discuss effective continuation SPE payoffs in solving for these

extreme SPE payoffs. We next show that the most effective continuation SPE payoffs to

(4)–(7) are those that are on the Pareto frontier of Ej. Accordingly, denote the Pareto

frontier of Ej as

ϕj(vi) = max
v0∈Ej

v0j s.t. v0i ≥ vi and ϕi(vj) = max
v0∈Ej

v0i s.t. v0j ≥ vj. (10)

Since Ej is a non-empty, compact, and convex subset of R2+, both ϕi(·) and ϕj(·) are contin-
uous and non-increasing. Given Proposition 3, the following conditions on the responding

player j’s extreme SPE payoffs are immediate:

Proposition 4 For all (δi, δj) ∈ (0, 1)2, we have

mi
j ≥ δjm

j
j, (11)

M i
j ≤ max

a∈A

·
(1− δj)dj(a) + δjϕ

j

µ
1− δi
δi

[gi(a)− di(a)] + δim
i
i

¶¸
. (12)

Proof. Substituting (3) into (6), we have

mi
j ≥ min

a∈A
£
(1− δj)gj(a) + δjm

j
j

¤
= (1− δj)min

a∈A
gj(a) + δjm

j
j = δjm

j
j,
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which is (11). Notice that player j’s minimax value mina gj(a) = 0 by assumption. For l = j,

(3) and (10) imply that

vj ≤ ϕj(vi) ≤ ϕj

µ
1− δi
δi

[gi(a)− di(a)] +mj
i

¶
. (13)

Substituting (13) into (7), we obtain (12).

For sufficiently large (δi, δj) ∈ (0, 1)2, Proposition 4 implicitly specifies how the players
behave in the responding player’s worst and best SPE. In player j’s worst SPE, if player j

rejects any proposal, he will receive his minimax value of 0 during the current disagreement

period followed by his lowest SPE payoff mj
j in the following period. In player j’s best SPE,

on the other hand, if player j rejects any proposal, he will receive his highest continuation

payoff, provided that player i will be compensated in the following period. In fact, when the

players are sufficiently patient, (11) and (12) hold with equalities for the responding player’s

lowest and highest SPE payoffs. These results are similar to those of Busch and Wen (1995),

where the players have the same discount factor.

We now turn to the proposing player’s extreme SPE payoffs.

Proposition 5 For all (δi, δj) ∈ (0, 1)2, we have

mi
i ≥ min

a∈A
max

(
(1− δi)gi(a) + δ2im

i
i,

1− (1− δj)dj(a)− δjϕ
j
³
1−δi
δi
[gi(a)− di(a)] + δim

i
i

´
,

(14)

M i
i ≤ max

(
maxa∈A

h
(1− δi)di(a) + δiϕ

i
³
1−δj
δj
[gj(a)− dj(a)] +mj

j

´i
,

1− δjm
j
j.

(15)

Proof. With Proposition 4, substituting (3) and (13) into (4) yields (14);

mi
i ≥ min

a∈A
max

(
(1− δi)gi(a) + δim

j
i ,

1− (1− δj)dj(a)− δjϕ
j
³
1−δi
δi
[gi(a)− di(a)] +mj

i

´
,

≥ min
a∈A

max

(
(1− δi)gi(a) + δ2im

i
i,

1− (1− δj)dj(a)− δjϕ
j
³
1−δi
δi
[gi(a)− di(a)] + δim

i
i

´
.

For l = i, (3) and (10) imply that

vi ≤ ϕi (vj) ≤ ϕi

µ
1− δj
δj

[gj(a)− dj(a)] +mj
j

¶
.
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Substituting the last inequality and (3) into (7) yields (4);

M i
i ≤ max

(
maxa

h
(1− δi)di(a) + δiϕ

i
³
1−δj
δj
[gj(a)− dj(a)] +mj

j

´i
maxa

£
1− (1− δj)gj(a)− δjm

j
j

¤
= max

(
maxa

h
(1− δi)di(a) + δiϕ

i
³
1−δj
δj
[gj(a)− dj(a)] +mj

j

´i
1− δjm

j
j

,

where the last equation is due to the assumption that mina gj(a) = 0.

Given the Pareto frontier of Ej, Propositions 4 and 5 imply thatmi
i andm

j
j are essential to

determine the other extreme SPE payoffs. For the benchmark δi = δj = δ, the Pareto frontier

of SPE payoffs coincides with the bargaining frontier, i.e., ϕj(vi) = 1 − vi. Consequently,

(14) simplifies to

mi
i ≥ min

a∈A
max

½
(1− δ)gi(a) + δ2mi

i,
1− (1− δ)dj(a)− δ

¡
1− 1−δ

δ
[gi(a)− di(a)] + δmi

i

¢
,

= min
a∈A

max

½
(1− δ)gi(a)
(1− δ) [1− di(a)− dj(a) + gi(a)]

+ δ2mi
i,

= (1− δ)min
a∈A

[1− di(a)− dj(a) + gi(a)] + δ2mi
i, (16)

due to 1− di(a)− dj(a) ≥ 0 for all a ∈ A. From (16), we have

mi
i ≥

1

1 + δ

·
1−max

a∈A
[di(a)− dj(a) + gi(a)]

¸
,

which is the key step to establish Proposition 2. When δi 6= δj, we need to discuss the Pareto

frontier of Ej, i.e., effective continuation payoff in order to solve mi
i from (14).

3.2 Effective Continuation SPE Payoffs

In order to solve mi
i from Proposition 3, we need to discuss first how Ej is determined by the

players’ lowest SPE payoffs. Whenever player j proposes, outcome path π =
¡
a1, a2, · · · , aT , x¢

can be supported as a SPE outcome path if and only if for all t ≤ T + 1,

(1− δl)
TX
s=t

δs−tl dl(a
s) + δT+1−tl xl ≥

½
mi

l, if t is even,
mj

l , if t is odd,
for l = i and j, (17)

and for all t ≤ T ,

(1− δl)
TX
s=t

δs−tl dl(a
s) + δT+1−tl xl ≥ (1− δl)gl(a

t) +

½
δlm

j
l , if t is even,

δlm
i
l, if t is odd.

(18)

13



For t = T + 1, (17) implies that no matter who proposes the final agreement x ∈ ∆, it

needs to be a SPE agreement in period T + 1. (18) states that if player l deviates from

at in period t ≤ T , then player l will be punished by his lowest SPE payoff, either mi
l or

mj
l , in the following period. With publicly correlated strategies, E

j is the convex hull of

{v(π) : (17) and (18)}. Note that with T = 0, (17) and (18) imply that any immediate

agreement (xi, 1− xi) for xi ∈
£
mj

i , 1−mj
j

¤
belongs Ej.8 Hence, ϕj(vi) ≥ 1 − vi for all

(δi, δj) ∈ (0, 1)2 and vi ∈
£
mj

i , 1−mj
j

¤
.

Due to Proposition 4, when the discount factors are sufficiently large, we can rewrite

(17) and (18) in terms of mi
i and mj

j only. Consequently, the set E
j depends on mi

i and

mj
j only. For i = 1 and 2, substituting E

j (j 6= i) in terms of mi
i and mj

j into (4) provides

two equations, one for m1
1 and one for m

2
2. The solution mi

i from such an implicit equation

system can be supported as player i’s (lowest) SPE payoff for i = 1 and 2 when the discount

factors are sufficiently large.

In Proposition 5, we show that only the Pareto frontier of Ej is effective in solving mi
i

from (14). In the rest of this subsection, we provide specific structures on the continuation

paths that achieve the Pareto frontier of Ej. When δi = δj, the Pareto frontier of Ej is a

connected segment of the unit simplex. When δi 6= δj, as in a repeated game with different

time preferences, many SPE payoffs in a negotiation game can be above the bargaining

frontier. Lehrer and Pauzner (1999) investigate in great detail the Pareto frontier of SPE

payoffs in a repeated game under different time preferences. There are many obstacles in

directly applying their results to a negotiation game. SPE payoffs in a repeated game are

bounded from below by players’ stage-game minimax payoffs that are invariant with respect

to the discount factors and time periods. In a negotiation game, however, players’ lowest

SPE payoffs depend on the discount factors and also who proposes. A typical outcome path

in a negotiation game ends with an agreement that ceases any future payoff variation. In

a repeated game, it may not possible to have a SPE in which a player receives exactly his

minimax payoff, so it is often sufficient to provide a SPE where a player’s payoff is sufficiently

8This is the range of SPE payoffs with immediate agreement in Haller and Holden (1990).
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close to his minimax value. In a negotiation game, however, we need the SPE where a player

receives exactly his lowest SPE payoff. In order to derive the Pareto frontier of Ej, we have

to modify Lehrer and Pauzner’s technique for these differences between a repeated game and

a negotiation game.

According to Lehrer and Pauzner (1999), in order to characterize the Pareto frontier of

Ej in the direction of λ = (λi, λj) ∈ ∆, we need to solve the following optimization problem:

max
π

λ · v(π), subject to (17) and (18). (19)

In other words, (19) provides the payoff vectors on the Pareto frontier Ej in the direction of

λ ∈ ∆. When G is a finite game, Ej is a polygon in R2+ and (19) provides us all the vertices

in the direction of λ ∈ ∆. Note that under (17) and (18), we can write (19) as

max
T≥0

∞X
t=1

max
yt

£
λi(1− δi)δ

t−1
i yi + λj(1− δj)δ

t−1
j yj

¤
,

where yt = d(at) ∈ d(A) for all t ≤ T and yt = x ∈ ∆ for all t > T . In the rest of this

subsection, we will solely focus on the case δi < δj, while similar arguments apply when

δi > δj. When δi < δj, for all λ = (λi, λj) ∈ ∆, the weight ratio

λj(1− δj)δ
t−1
j

λi(1− δi)δ
t−1
i

is monotonically increasing with respect to t ≥ 0. Therefore, in any potential solution to
(19) with T > 0, we must have

di(a
t) ≥ di(a

t+1) > xi and dj(a
t) ≤ dj

¡
at+1

¢
< xj = 1− xi, (20)

whenever it is possible under (17) and (18). Given δi < δj, the weight ratio will be greater

than one for sufficiently large t. This implies that two player must reach an agreement

within finite periods in any potential solution to (19). These arguments narrow down the

potential solutions to (19). Given (20), sequential rationality (17) simplifies to xi ≥ mi
i if T

is even, and xi ≥ mj
i if T is odd. For all t ≤ T , d(at) should be as close as possible to the

Pareto frontier of d(A), provided that (17) and (18) hold. As in a repeated game, player j’s

15
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Figure 1: The curve of payoff vectors vλ for all λ ∈ ∆.

per-period payoff during the early phase of such an outcome path could be lower than his

minimax value. Since player j’s payoff increases over time, his average payoff from the entire

path will not be less than his lowest SPE payoffs. Let vλ, for all λ ∈ ∆, denote the payoff

vector resulting from a solution to (19) under (20). Figure 1 illustrates the curve of payoff

vectors vλ for all λ ∈ ∆. Similar as in Lehrer and Pauzner (1999), this curve is continuous

in λ and all payoff vectors (mi
i, 1−mi

i) and d (at).

Figure 1 does not fully specify the Pareto frontier ofEj, because the outcome path π = (x̃)

with an immediate agreement x̃j = mj
j (with T = 0) may also solve (19), in particular when

λj/λi is sufficiently close to 0. With publicly correlated strategies, the Pareto frontier of

Ej is completely characterized by x̃ and vλ for all λ ∈ ∆. Figure 2 illustrates the two

possible cases. Given mj
j, E

j (as a correspondence of mi
i) is convex-valued and continuous

with respect to mi
i.

To summarize, whenever time preferences are sufficiently different, the Pareto frontier

of Ej is generally above the bargaining frontier. This will affect how mi
i is determined. As

we have shown above, the Pareto frontier of Ej is rather complicated, which prevents us

from obtaining a closed-form solution for mi
i. Nevertheless, our analysis provides a general

technique on how to solve the players’ lowest SPE payoffs, and, hence, how to characterize

16
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Figure 2: The Pareto frontier of Ej where x̃ = (1−mj
j,m

j
j).

the set of SPE payoffs in a negotiation game when δi 6= δj. In the next section, we will

demonstrate how this technique works for common interest disagreement games.

3.3 Proposing Player’s Lowest SPE Payoff

In the previous subsections, we established that mi
i and m

j
j are the key in characterizing the

other extreme SPE payoffs. Note that condition (14) depends on mi
i directly and on m

i
i and

mj
j indirectly. In this subsection, we will show how to solve m

i
i as the least fixed point to

(14). Figure 2 indicates that we need to analyze the following two distinct cases:

Case 1: δi < δj

Instead of solving mi
i and mj

j simultaneously from the implicit equation system implied

by (14), we can first find mi
i independently of m

j
j when δi and δj are sufficiently large.

Condition (14) can be rewritten as mi
i ≥ Λ(mi

i), where

Λ(mi
i) = min

a∈A
max

(
(1− δi)gi(a) + δ2im

i
i,

1− (1− δj)dj(a)− δjϕ
j
³
δim

i
i +

1−δi
δi
[gi(a)− di(a)]

´
.

(21)

Since ϕj
³
δim

i
i +

1−δi
δi
[gi(a)− di(a)]

´
is continuous with respect to a ∈ A,mi

i and (indirectly)

mj
j, (21) is a well-defined minimax problem because the right-hand side is continuous in mi

i

and (indirectly) mj
j. To solve (21) when δi is sufficiently close to 1, we only need to know

17



ϕj (vi) for vi sufficiently close to δimi
i, i.e.,

vi ∈
·
δim

i
i, δim

i
i +

1− δi
δi

max
a∈A

[gi(a)− di(a)]

¸
.

As we have shown in Section 3.2 for the case of δi < δj, ϕj(·) in this part of its domain will
be independent of mj

j for sufficiently large (δi, δj).
9 Consequently, we have

Proposition 6 For sufficiently large (δi, δj) ∈ (0, 1)2 and δi < δj, mi
i is bounded from below

by the least fixed point of Λ(·) in (21) and Λ(·) admits a fixed point in [0, m̂i
i], where

m̂i
i = min

a∈A
max

(
gi(a)
1+δi

,
1−δj
1−δiδj

h
1− dj (a) +

δj
δi

1−δi
1−δj [gi (a)− di (a)]

i
.

(22)

Proof. Since ϕj(·) is continuous and monotonically decreasing in mi
i (both directly

and indirectly), and independent of mj
j, Λ(·) is a well-defined, continuous and monotonically

increasing function ofmi
i only. Note that from (21), we have Λ(0) ≥ (1−δi)mina∈A gi(a) = 0.

Let â be a solution to (22). Evaluating the right-hand side of (21) at m̂i
i and â, we have

Λ(m̂i
i) ≤ max

(
(1− δi)gi(â) + δ2i m̂

i
i

1− (1− δj)dj(â)− δjϕ
j
³
δim

i
i +

1−δi
δi
[gi(â)− di(â)]

´
≤ max

(
(1− δi)gi(â) + δ2i m̂

i
i

(1− δj)
h
1− dj(â)− δj

δi

1−δi
1−δj [gi(â)− di(â)]

i
− δiδjm̂

i
i

. (23)

Notice that

m̂i
i ≥

1

1 + δi
gi(â)⇔ (1− δi)gi(â) + δ2i m̂

i
i ≤ m̂i

i,

m̂i
i ≥

1− δj
1− δiδj

·
1− dj(â)− δj

δi

1− δi
1− δj

[gi(â)− di(â)]

¸
⇔ (1− δj)

·
1− dj(â)− δj

δi

1− δi
1− δj

[gi(â)− di(â)]

¸
− δiδjm̂

i
i ≤ m̂i

i.

Substituting the last two inequalities into (23) yields that Λ(m̂i
i) ≤ m̂i

i. Due to its monotonic-

ity, Λ(·) maps from [0, m̂i
i] into itself. By Brouwer’s fixed point theorem, Λ(·) has at least one

fixed point in [0, m̂i
i]. Since Λ(·) is monotonically increasing, any value of mi

i that is strictly

less than the least fixed point of Λ(·) certainly violates (14). This concludes the proof of the
proposition.

9In fact, this part of ϕj(·) is the curve of vectors vλ in Figure 1, which is independent of mj
j .

18



The value of m̂i
i can be tied to the existing literature: It is the maximum of the no-

concession payoff in Bolt (1995) and the bound in Muthoo (1999) under the restriction that

all continuation payoffs are bounded by the bargaining frontier. In Section 4, we show that

mi
i < m̂i

i for a robust subclass of negotiation games.

Our next proposition asserts that when the discount factors are sufficiently large, the

least fixed point of Λ(·) can be supported as player i’s SPE payoff. Therefore, mi
i is indeed

the least fixed point of Λ(·) when the discount factors are sufficiently large. Since the proof
is rather long, we defer it to the appendix.

Proposition 7 There exists a δ̂ ∈ (0, 1) such that for all δj > δi ≥ δ̂, there is a SPE in

which player i receives the least fixed point of Λ(·).

Case 2: δi > δj

First, we solve mj
j independently as we described in Case 1 by switching i and j. Once

the value of mj
j is given, ϕ

j
³
δim

i
i +

1−δi
δi
[gi(a)− di(a)]

´
is a continuous function of a ∈ A

and mi
i only. This allows us to establish similar results for m

i
i as in Proposition 6 and 7 for

this case, which we omit. The proofs of Propositions 6 and 7 do not rely on the fact that

δi < δj, except by requiring that mi
i be the only unknown variable in the part of ϕ

j(·) we
need. Similar to the case of δi < δj, mi

i is the least fixed point of (21) for large enough

(δi, δj) ∈ (0, 1)2. This ends our discussion on Case 2.

To conclude this section, we have provided a complete procedure to derive the proposing

player’s lowest SPE payoff for sufficiently large discount factors. We are then able to charac-

terize other extreme SPE payoffs and, hence, the set of SPE payoffs in the negotiation model,

as characterized in (17) and (18), when the discount factors are sufficiently large. Unlike the

case of common time preferences, the Pareto frontier of SPE payoffs is rather complicated

under different time preferences, which makes it impossible to obtain a closed-form solution

to the proposing player’s lowest SPE payoff.
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4 Common Interest Disagreement Games

In this section, we focus on an important class of negotiation games that contains the mod-

els studied in Fernandez and Glazer (1991), Haller and Holden (1990), Bolt (1995), and

Slantchev (2003). In this case, the disagreement game is a common interest game where

there exists a unique Pareto dominant disagreement outcome. Formally, there is an a∗ ∈ A

such that d(a∗) ≥ d(a) for all a ∈ A. Without loss of too much generality, we assume that

d(a∗) is on the bargaining frontier ∆, i.e., d1(a∗) + d2(a
∗) = 1. Obviously, a∗ ∈ A is a Nash

equilibrium in G. When the players have a common discount factor δ ∈ (0, 1), Proposition
2 asserts that for sufficiently large δ, player i’s lowest SPE payoff is equal to

1

1 + δ
[1− dj(a

∗)] =
di(a

∗)
1 + δ

when player i proposes and

δ

1 + δ
[1− dj(a

∗)] =
δdi(a

∗)
1 + δ

when player j proposes.

Similar to player i’s worst SPE in the case of common time preferences, it is not difficult to

establish the following result:

Proposition 8 For sufficiently large (δi, δj) ∈ (0, 1)2, in the negotiation model with common
interest disagreement games, there exists a SPE where player i receives

max

½
1

1 + δi
di (a

∗) ,
1− δj
1− δiδj

[1− dj (a
∗)]
¾

when i proposes and,

max

½
δi

1 + δi
di (a

∗) ,
δi (1− δj)

1− δiδj
[1− dj (a

∗)]
¾

when j proposes.

The SPE strategy profile specifies a∗ after player i’s proposal is rejected and player i’s

minimax outcome in G after player i rejects any proposal by player j. In this SPE, player

i makes unacceptable proposals if and only if δi < δj. Despite the resemblance between

Proposition 8 and Proposition 2, the SPE in Proposition 8 is generally not player i’s worst

SPE when δi and δj are significantly different. In order to characterize a player’s worst SPE,

we need to apply the analysis in Section 3 to this important class of negotiation games.
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With common interest disagreement games, most results in Section 3 can be further

refined and simplified. First, (7) implies that for all (δi, δj) ∈ (0, 1)2,

M i
j ≤ (1− δj)max

a∈A
dj(a) + δj max

v∈Ej
vj = (1− δj)dj(a

∗) + δjM
j
j . (24)

For sufficiently large (δi, δj) ∈ (0, 1)2, (24) implies that in player j’s best SPE, if player
j rejects any proposal, player j will receive his highest disagreement payoff dj(a

∗) in the

current period followed by his highest SPE payoff M j
j in the following period. Likewise, for

sufficiently large (δi, δj) ∈ (0, 1)2, we have

M i
i ≤ 1−mi

j. (25)

From (5), we obtain

M i
i = max

½
maxa,v [(1− δi)di(a) + δivi] , s.t. (3),
maxa,v [1− (1− δj)dj(a)− δjvj] , s.t. (3),

≤ max

½
(1− δi)maxa∈A di(a) + δimaxv∈Ej vi,
1−mina,v [(1− δj)dj(a)− δjvj] , s.t. (3),

= max

½
(1− δi)di(a

∗) + δiM
j
i ,

1−mi
j.

For sufficiently large (δi, δj) ∈ (0, 1)2, however, it cannot be the case that

1−mi
j ≤ (1− δi)di(a

∗) + δiM
j
i .

Suppose not, thenM i
i ≤ (1−δi)di(a∗)+δiM

j
i and (24) would imply thatM

i
i ≤ di(a

∗), which

contradicts the fact that

M i
i ≥ 1−max

½
1

1 + δj
dj (a

∗) ,
1− δi
1− δiδj

[1− di (a
∗)]
¾
> di(a

∗)

implied by Proposition 8. Consequently, (25) must prevail. To summarize, inequalities (11),

(24), and (25) provide us three of the four conditions to solve the extreme SPE payoffs. With

common interest disagreement games, these three inequalities are relatively simple because

they are not affected by the complications of the Pareto frontier of SPE payoffs. Condition

(25) shows that Case (b) in Figure 2 is impossible when the disagreement is a common

interest game.
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Condition (14) for mi
i, which turns out to be the most important and most complicated

piece of the puzzle, generally depends on the Pareto frontier of Ej. With common interest

disagreement games, our next proposition provides a lower bound for mi
i.

Proposition 9 For all (δi, δj) ∈ (0, 1)2, we have

mi
i ≥

1− δj
1− δiδj

[1− dj (a
∗)] .

Proof. Since dj(a) ≤ dj(a
∗) for all a ∈ A and vj ≤ M j

j for all v ∈ Ej, (25) and (11)

imply that M j
j ≤ 1− δim

i
i. From (4), we have

mi
i ≥ min

a∈A,v∈Ej
1− (1− δj)dj(a)− δjvj, s.t. (3),

≥ 1− (1− δj)dj(a
∗)− δjM

j
j

≥ 1− (1− δj)dj(a
∗)− δj(1− δim

i
i)

= (1− δj) [1− dj(a
∗)] + δjδim

i
i,

which leads to the stated result.

Propositions 9 is rather important; it implies that for δi ≥ δj, the SPE of Proposition 8

is indeed player i’s worst SPE in this class of negotiation games. It extends player i’s worst

SPE in the case of common time preferences.

In the rest of this section, we will focus on the case that player i is less patient than

player j; δi < δj. With common interest disagreement games, any effective continuation

path that solves (19) must be generated from the following type of paths:

πT = (a∗, . . . , a∗| {z }
T

, x∗), for all T ≥ 0, (26)

where x∗i = mj
i for even T and x∗i = mi

i for odd T . In fact, the part of ϕj(·) we need is fully
characterized by vi(πT ) for all even T due to the following lemma:

Lemma 10 For any even T ≥ 0, we have

vi(π
T ) < vi(π

T+1) ≤ vi(π
T+2) < di(a

∗), (27)

vj(π
T ) > vj(π

T+2) < vj(π
T+1) < dj(a

∗). (28)
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Figure 3: The payoff vectors v(πT ) for T ≤ 8.

The proof of Lemma 10 is given in the Appendix. (27) and (28) can be best illustrated

by Figure 3, where v(πT ) is represented by solid dots for even T ≤ 8 and open dots for

odd T < 8. It implies that for any even T ≥ 0, v(πT+1) is dominated by some convex

combinations of v(πT ) and v(πT+2). Intuitively, if the continuation path were associated

with an odd T , then player i would make a proposal along such a continuation, from which

player i could exploit his first-mover advantage. Consequently, such a continuation can never

be effective in solving (4). For all even T , any convex combination of v(πT ) and v(πT+2) can

be achieved by a publicly correlated strategy between πT and πT+2. For sufficiently large

(δi, δj) ∈ (0, 1)2 and δi < δj, we have the following form of ϕj(vi) for vi sufficiently close to

δim
i
i:

ϕj(vi) = min
T∈2N

½
vj(π

T ) +
vj(π

T+2)− vj(π
T )

vi(πT+2)− vi(πT )

£
vi − vi(π

T )
¤¾

. (29)

For every even T ≥ 0, each function under the minimum in (29) can be written as

1 +
δTj (1− δ2j)(1− δTi )− δTi (1− δ2i )(1− δTj )

δTi (1− δ2i )
di(a

∗)− δTj (δ
2
j − δ2i )

(1− δ2i )
mi

i −
δTj (1− δ2j)

δTi (1− δ2i )
vi.
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This last formula is a linear and decreasing function of mi
i and vi. Substituting (29) into

(14), one can solve mi
i for the case of δi < δj.

We now present an example to demonstrate how to solve mi
i. Consider a negotiation

problem with the following 2× 2 disagreement game for ε ≥ 0:

Player 1 \ Player 2 L R
U 0.5, 0.5 −ε, 0.5
D 0.5, 0 0, −1

where a∗ = (U,L). For simplicity, we consider pure actions only.

To support the SPE of Proposition 8 for i = 1, two players would play (U,L) in any

odd period and (D,R) in any even period. When δ1 ≥ δ2, both players behave as if in

the alternating offer model with disagreement point (0, 0.5), from which player 1 receives

1−δ2
1−δ1δ2 · 0.5 in any odd period. By the one-stage deviation principle, see e.g., Fudenberg and
Tirole (1991), player 1 prefers to make such a proposal if and only if

1− δ2
1− δ1δ2

· 0.5 ≥ (1− δ1) · 0.5 + δ1 · 1− δ2
1− δ1δ2

· 0.5 ⇔ δ1 ≥ δ2. (30)

For δ1 < δ2, the SPE of Proposition 8 requires that only player 2 makes the least acceptable

proposal to player 1. Consequently, player 1 receives 1
1+δ1

· 0.5 in any odd period, which
is equal to player 1’s present value from the infinite sequence of alternating disagreement

outcomes. This SPE has been misidentified as player i’s worst SPE when δ1 < δ2. In what

follows, we modify this SPE by replacing (U,L) by (U,R) in every odd period after player

1’s rejection. Clearly, player 1 gains ε in the disagreement game by deviating from U to D.

As we have argued, player 1 can be induced to play U by a continuation SPE that is 1−δi
δi

ε

better than his worst SPE in the following period. We now derive player 1’s worst SPE

for the case of δ1 < δ2 where the continuation involves T = 2 periods delay in reaching an

agreement. Consider the following strategy profile:

• In an odd period, player 1 demands

x∗1 =
1− δ2
1− δ1δ2

·
1

2
+

δ2
δ1

1 + δ2
1 + δ1

ε

¸
(31)
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and player 2 will reject if and only if player 1 demands more than x∗1.

If player 1 demands more than x∗1 and player 2 rejects, then (U,R) will be played.

• In an even period, if player 1 deviates from U in the last (odd) period, player 2 will

offer δ1x∗1 and player 1 will accept.

• Otherwise, with probability 1 − p, player 2 will offer δ1x∗1 in the current even period,

and with probability p, (U,L) will be played for two periods, followed by player 2’s

offer δ1x∗1. Player 1 accepts in both cases. In this equilibrium,

p =
1

δ1(1− δ1)
· ε

0.5− δ1x∗1
. (32)

• In an even period, if player 1 rejects δ1x∗1 (that should be accepted), then (D,R) will

be played once followed by player 1’s demand x∗1.

• If player 2 deviates from the strategies described above, then continuation will switch

immediately to the stationary SPE of Proposition 1 from which player 1 receives 0.5.

To verify that the above strategy profile constitutes a SPE, first note that player 1 has

no incentive to deviate from (U,R) if his payoff from deviation is the same as what player 1

receives if he does not:

δ21x
∗
1 = (1− δ1) · (−ε) + δ1

£
(1− p)δ1x

∗
1 + p

¡
0.5(1− δ21) + δ31x

∗
1

¢¤
. (33)

One can show that (33) holds for p as given by (32). Next, player 1 should demand x∗1 rather

than making an unacceptable proposal,

x∗1 ≥ (1− δ1) · (−ε) + δ1
£
(1− p)δ1x

∗
1 + p

¡
0.5(1− δ21) + δ31x

∗
1

¢¤
= δ21x

∗
1,

which follows from (33). Lastly, player 1 cannot demand more than x∗1 since 1−x∗1 is exactly
equal to player 2’s continuation payoff after rejecting any demand higher than x∗1:

1− x∗1 = 0.5(1− δ2) + δ2[(1− p)(1− δ1x
∗
1) + p

£
0.5(1− δ22) + δ22(1− δ1x

∗
1)
¤
]. (34)
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Figure 4: Plot of x∗1 with respect to δ2 ∈ (δ1, 1) for δ1 = 0.8 and ε = 0.15.

In fact, (33) and (34) yield x∗1 and p as given by (31) and (32), respectively.

For δ1 = 0.8 and ε = 0.15, Figure 4 shows x∗1 is less than
d1(a∗)
1+δ

= 0.278 for all δ2 ∈
(0.877, 1). When the difference between the players’ time preferences is not significant enough

such as δ2 ∈ (0.8, 0.877), it would not be optimal to have delay in the continuation while
compensating player 1. In such a case, the non-stationary SPE of Proposition 8 is likely

to be player 1’s worst SPE. However, such incidence diminishes as the value of ε decreases.

Figure 4 also illustrates

m̂1
1 = min

½
1

1 + δ1

1

2
,
1− δ2
1− δ1δ2

·
1

2
+

δ2
δ1

1− δ1
1− δ2

ε

¸¾
as defined by (22). In this example, (U,R) supports m̂1

1 for δ1 = 0.8 and δ2 ≥ 0.925. Figure
4 shows that m1

1 < m̂1
1 for δ1 = 0.8 and δ2 > 0.877.

To conclude, the results obtained in this section will not be qualitatively affected if d (a∗)

is below the bargaining frontier since ϕj(·) by (29) will remain the same. If d (a∗) is strictly
below the bargaining frontier, however, it will enlarge the set of discount factors for which

delay does not occur in supporting the less patient players’ worst SPE. For those discount

factors, Proposition 9 prevails. At the extreme when d (a∗) = 0, the negotiation model is
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equivalent to the alternating-offer model in Rubinstein (1982), and all continuation payoffs

are bounded by the bargaining frontier for all discount factors.

5 Concluding Remarks

In this paper, we pin down what has been overlooked in previous studies: Players may

trade their difference in time preferences to become better off than what is attainable from

immediate agreements. Such a trade is possible only if they disagree for some periods.

Therefore, disagreement is not necessarily inefficient. We show that this matters in a player’s

worst equilibrium and we incorporate this line of argument in our analysis.

In this paper, we did not allow for nonstationary contracts due to a number of consid-

erations. First, allowing for nonstationary contracts would make it impossible to tie our

results to the existing literature where only stationary contracts are permitted. Second, in

this model it is unclear what to allow if the restriction on stationary contracts is relaxed.

When the unit simplex is the set of all permissible per-period contracts, the bargaining fron-

tier resulting from nonstationary contracts merely consists of the most extreme per-period

contracts, namely (0, 1) and (1, 0). When only stationary contracts are allowed, it is without

loss of any generality to restrict contracts on the unit simplex since all the other contracts

are not individually rational with respect to the minimax value in the disagreement game

(normalized to 0). If the restriction on stationary contracts were relaxed, there would be

no reason why players should negotiate only nonstationary contracts resulted from the unit

simplex. In other words, there is no obvious and sensible bounded set of per-period con-

tracts that is consistent with the notion of unrestricted nonstationary contracts. The lack

of such a bounded set of per-period contracts implies that there is no well-defined and finite

bargaining frontier, i.e., the Pareto frontier of all possible contracts. Third, even if there is

a bounded set of per-period contracts that nonstationary contracts can be based on, such

as the unit simplex in wage negotiations, any Pareto efficient contract requires that the firm

receive nothing after some finite periods when the firm is less patient than the union. Such

contracts may not be practical or legal in reality. Therefore, real-life negotiation problems
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may impose a more restricted contract space than what is mathematically needed. Fourth,

for any bounded set of nonstationary contracts, there are always disagreement games such

that the phenomena we study in this paper occur.

In the negotiation model, restrictions on the contract space matter in the equilibrium

analysis, because they prevent players from trading their difference in time preferences.

Therefore, the bargaining frontier associated with any restricted contract space can be ineffi-

cient. Our analysis is robust to bargaining frontiers other than the unit simplex and must be

applied whenever some trade of the difference in time preferences makes the players better

off than from reaching an immediate agreement. Therefore, one should not put too much

emphasis on the numerical values we get, but what is rather important is how players behave

in those extreme situations.

6 Appendix: Proofs

Proof of Proposition 7: The proof is constructive. Without loss of generality, assume that

when δi ≥ δ0 and δj ≥ δ0 for some δ0 ∈ (0, 1), there exists a SPE from which player j’s payoff
is less than 1−m̂i

i−ε for some ε > 0, i.e., mj
j ≤ 1−m̂i

i−ε. Let mi
i be the least fixed point of

Λ(·), which generally depends on (δi, δj) ∈ (0, 1)2. For sufficiently large δ00 and δj > δi ≥ δ00,

we have ϕj(vi) depends only on mi
i for all vi ∈

h
δim

i
i, δim

i
i +

1−δi
δi
maxa∈A [gi(a)− di(a)]

i
and

ϕj

µ
δim

i
i +

1− δi
δi

max
a∈A

[gi(a)− di(a)]

¶
≥ mj

j +
ε

2
. (35)

From the definition of ϕj(·), (vi, ϕj(vi)) is a SPE payoff vector for all

vi ∈
·
δim

i
i, δim

i
i +

1− δi
δi

max
a∈A

[gi(a)− di(a)]

¸
as long as δj > δi ≥ max{δ0, δ00} and mi

i can be supported as player i’s SPE payoff. Choose

δ̂ ≥ max{δ0, δ00} sufficiently large so that 1−δ̂
δ̂
maxa∈A [gj(a)− dj(a)] ≤ ε

2
. In other words, if

δj ≥ δ̂ then player j will not deviate in the disagreement game as long as player j’s average

loss in the continuation payoffs is no less than ε
2
.

28



For all δj > δi ≥ δ̂, let mi
i be the least fixed point of Λ(·) and â ∈ A be the corresponding

solution to (21). We have the following two cases to examine:

Case 1: mi
i = (1− δi)gi(â) + δ2im

i
i.

Consider the following strategy profile: Player i makes an unacceptable offer (such as de-

mands mi
i or more). Player j rejects if and only if player i offers less than

(1− δj)dj(â) + δjϕ
j

µ
δim

i
i +

1− δi
δi

[gi(â)− di(â)]

¶
≥ 1−mi

i,

followed by â once. If player i deviates from â, player j will offer δimi
i and player i will accept

in the following period. Otherwise, the continuation SPE in the following period will be on

the Pareto frontier of Ej from which player i will receive δimi
i+

1−δi
δi
[gi(â)− di(â)]. If player

j deviates from what is described above, player j will be punished by the SPE provided at

the beginning of this proof from which his payoff will not be higher than 1− m̂i
i − ε.

We now verify sequential rationality. It is clear from the construction that no one deviates

in the proposing and responding stages. For example, player i has to offer at least

(1− δj)dj(â) + δjϕ
j

µ
δim

i
i +

1− δi
δi

[gi(â)− di(â)]

¶
in order to induce player j to accept, from which player i receives less than mi

i. Player i will

not deviate from â because

(1− δi)gi(â) + δi
¡
δim

i
i

¢
= (1− δi)di(â) + δi

µ
δim

i
i +

1− δi
δi

[gi(â)− di(â)]

¶
.

Case 2: mi
i = 1− (1− δj)dj(â)− δjϕ

j
³
δim

i
i +

1−δi
δi
[gi(â)− di(â)]

´
.

Consider the following strategy profile: Player i demands mi
i. Player j rejects if and only if

player i demands more than mi
i. If player i demands more and player j rejects (which should

not occur), two players will play â, and the continuations will the same as those in Case 1

for the corresponding histories.

Similar to Case 1, no one will deviate after player i demands moremi
i and player j rejects.

If player i demands more than mi
i at the beginning, player j will reject, and player i will

receive

(1− δi)di(â) + δi

·
δim

i
i +

1− δi
δi

[gi(â)− di(â)]

¸
≤ mi

i.
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Therefore, player i will demand mi
i, which will be accepted by player j. In summary, no one

has incentive to deviate when player i is supposed to demand mi
i.

We have shown that in either case, there is an equilibrium where player i receives mi
i,

the least fixed point of Λ(·), when making a proposal. ¥

Proof of Lemma 10: For any even T ≥ 0, we have vi(πT ) < vi(π
T+1) ≤ vi(π

T+2);

(1− δTi )di(a
∗) + δT+1i mi

i < (1− δT+1i )di(a
∗) + δT+1i mi

i,

(1− δT+1i )di(a
∗) + δT+1i mi

i ≤ (1− δT+2i )di(a
∗) + δT+3i mi

i,

where the first inequality is trivial, and the second inequality is due to mi
i ≤ 1

1+δi
di(a

∗) by

Proposition 8. Comparing player j’s payoffs, we have vj(πT ) > vj(π
T+2) ≥ vi(π

T+1);

(1− δTj )dj(a
∗) + δTj (1− δim

i
i) > (1− δT+2j )dj(a

∗) + δT+2j (1− δim
i
i),

(1− δT+2j )dj(a
∗) + δT+2j (1− δim

i
i) ≥ (1− δT+1j )dj(a

∗) + δT+1j (1−mi
i),

where the first inequality is trivial, and second inequality is due to 1−δj
1−δiδj [1− dj(a

∗)] ≤ mi
i

by Proposition 9. ¥
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