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1. Introduction

In recent years, explicit inflation-forecast targeting, which takes the form of forward-looking interest

rate feedback rules that set a short-term nominal interest rate in response to the forecasted value of

future inflation, has become a popular framework for conducting monetary policy at central banks

around the world. This practice began in New Zealand in 1990 and, within a decade, spread to

other industrial countries.1 Since 1997, a number of emerging market and transition countries have

adopted such a policy.2 Many more are moving toward this direction.3 In a sense, forward-looking

inflation targeting has become a defining characteristic of monetary policymaking worldwide.

There are many reasons for adopting an inflation-targeting rule in monetary policymaking.4

That it is the expected future inflation that needs to be targeted has been emphasized by both

policymakers and researchers. Among other advantages, targeting the expected future inflation is

essential for tackling the observed delay in the response of inflation and output to monetary policy

actions, for anchoring private sector’s inflation expectations, and for incorporating a wide variety

of up-to-date information in policymaking. In this sense, forward-looking inflation targeting can be

justified on the ground of both policy effectiveness and central bank accountability and credibility.5

This is why many researchers recommend that central banks commit to forward-looking inflation

targeting rules and why many policymakers follow suit.6

There is yet a pitfall of forward-looking inflation targeting: it is prone to real indeterminacy

of equilibrium and therefore welfare-reducing fluctuations unrelated to economic fundamentals.7

1Among these countries are Canada, the United Kingdom, Australia, Finland, Sweden, Spain, Switzerland,
Iceland, and Norway, all of which publish their inflation forecasts (Finland and Spain adopted the euro in 1999). The
United States, the European Central Bank, and Japan are usually viewed as having followed some implicit inflation-
forecast targeting procedures, where more explicit targeting has also received consideration recently. Leiderman and
Svensson, eds. (1995), Bernanke and Mishkin (1997), and Bernanke, Laubach, Mishkin, and Posen (1999) provide
some background information and analysis.

2These include Israel (now an industrial country), the Czech Republic, Korea, Poland, Brazil, Chile, Colombia,
South Africa, Thailand, Mexico, Turkey, Hungary, Peru, and Philippines, all of which but Mexico publish their
inflation forecasts. See Schaechter, Stone, and Zelmer (2000), Roger and Stone (2005), and Jonas and Mishkin (2005)
for more details.

3Estimated forward-looking interest rate feedback rules explain well the behavior of interest rates in the United
States, Germany, and Japan in the 1980s and 1990s. See, among others, Chinn and Dooley (1997), Clarida and
Gertler (1997), Orphanides (1998), Clarida, Gaĺı, and Gertler (1998), Orphanides and Williams (2003), and Carare
and Stone (2005).

4See, among many others, Haldane, eds. (1995), Blinder, Goodhart, Hildebrand, Lipton, and Wyplosz (2001),
Svensson (2001), Fracasso, Genberg, and Wyplosz (2003), and Leeper (2003).

5See, among others, Svensson (1997), Bernanke and Woodford (1997), Batini and Haldane (1999), Levin, Wieland,
and Williams (2003), Orphanides and Williams (2003), and Bernanke and Woodford, eds. (2005).

6See, among others, Svensson (1997, 1999), Svensson and Woodford (1999), and Goodhart (2000).
7See, among others, Bernanke and Woodford (1997), Clarida et al. (1998, 2000), Woodford (2000, 2003), and
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Some researchers argue that inflation-forecast targeting central banks can avoid such policy-induced

instability by appealing to some flexible rules under which a nominal interest rate responds not only

to expected future inflation but also to other endogenous variables such as current output.8 Their

studies, however, have all abstracted from investment activity. Carlstrom and Fuerst (2005) argue

that the indeterminacy problem is more severe when investment activity is taken into account.9

They show that essentially all strict inflation-forecast targeting rules induce real indeterminacy of

equilibrium in a sticky price model with endogenous investment, and they suggest that letting the

interest rate respond also to output would not help much in avoiding such indeterminacy.

The present paper takes up this issue. We start by considering a standard model of sticky prices

with endogenous investment and show that virtually all monetary policy rules that set a nominal

interest rate in response solely to future inflation are subject to real indeterminacy of equilibrium.

We apply the celebrated Samuelson-Farebrother conditions for handling high order systems of linear

difference equations to obtain the necessary and sufficient condition for local real determinacy for

a baseline case of our model economy. This condition reveals that increasing the degree of price

stickiness or letting policy respond also to current output may help ensure a unique equilibrium.10

We find that the first channel in itself has a quantitatively negligible effect. Once again, almost

all strict forward-looking inflation-targeting rules that respond solely to future inflation lead to real

indeterminacy of equilibrium, whether with higher price stickiness, or with higher overall stickiness

through incorporating into the baseline model firm-specific capital, sticky wages, or both.

We find that the effect of the second avenue depends on the elasticity of labor supply and the

degree of stickiness in the model. With high labor supply elasticity and price stickiness, such as

those assumed in Carlstrom and Fuerst (2005), indeterminacy is much less likely to occur if policy

responds also to current output. With estimated labor supply elasticity or empirically reasonable

price stickiness, however, policy’s response to current output helps little in ensuring determinacy in

the baseline model. Even incorporating firm-specific capital can only make a marginal improvement.

Carlstrom and Fuerst (2000).
8See, for example, Clarida et al. (1998, 2000), Christiano and Gust (1999), Rotemberg and Woodford (1999),

Woodford (1999, 2003), and Levin et al. (2003). In practice, almost all inflation targeting central banks follow such
a flexible inflation-forecast targeting procedure.

9See Huang and Meng (2006) for a related study and Dupor (2001) for a continuous-time analysis.
10Under current-inflation targeting with endogenous capital accumulation, Sveen and Weinke (2005) find that

indeterminacy is more likely to occur with a greater degree of stickiness while Sveen and Weinke (2005) and Benhabib
and Eusepi (2005) show that letting policy respond also to current output can help avoid such indeterminacy.
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Incorporating sticky wages, on the other hand, significantly enhances the role of policy’s response to

current output in ensuring determinacy of equilibrium. When both sticky wages and firm-specific

capital are incorporated into the baseline model, even a tiny response of policy to current output

can render equilibrium determinate for a wide range of response of policy to future inflation. This

last result is important in light of the recent finding by Schmitt-Grohé and Uribe (2006) which

suggests that interest rate policy rules that feature a large response to output can be a potential

source of significant inefficiencies.

The remainder of the paper is organized as follows. Section 2 sets up a sticky price model with

endogenous investment and a capital rental market, presents a necessary and sufficient condition

for local real determinacy, describes model calibration and reports numerical results. Sections 3,

4, and 5 incorporate firm-specific capital, sticky wages, and both firm-specific capital and sticky

wages, respectively, into the baseline model and describes the results. Section 6 concludes. The

Appendix restates the Samuelson-Farebrother conditions and proves our proposition and corollary.

2. A baseline model with staggered prices

The model features a continuum of firms each of which produces a differentiated good indexed by

f ∈ [0, 1]. At each date t, a representative distributor combines all differentiated goods {Yt(f)}f∈[0,1]

into a composite good Yt =
[∫ 1

0 Yt(f)(εy−1)/εydf
]εy/(εy−1)

, where εy ∈ (1,∞) is the elasticity of

substitution between the individual goods. The distributor takes the prices {Pt(f)}f∈[0,1] of the

differentiated goods as given and chooses the bundle of the individual goods to minimize the cost of

fabricating a given quantity of the composite good, which it sells to a representative household at

the unit fabricating cost Pt =
[∫ 1

0 Pt(f)1−εydf
]1/(1−εy)

, which is also the price level. The resultant

demand for a type f good is

Yt(f) =
[
Pt(f)

Pt

]−εy

Yt. (1)

Quantity of the composite good purchased by the household (Yt), which corresponds to real

output or real GDP, can be either consumed (Ct) or invested (It) to accumulate capital stock that

the household rents to firms in a competitive capital market.
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The production of a type f good uses capital and labor and a constant-return-to-scale technology

Yt(f) = Kt(f)αNt(f)1−α. (2)

Firms are price takers in factor markets but monopolistic competitors in goods markets. With

markup pricing, factor payments are distorted and α and 1 − α determine respectively the share

of payments to capital and labor in value-added production cost rather than in gross output.

Specifically, cost minimization by firms implies that nominal wage rate Wt and nominal marginal

cost MCt are linked as follows:

Wt = (1− α)
(

Nt

Kt

)−α

MCt, (3)

and nominal capital rental rate is linked to nominal wage rate by Rk
t = [α/(1 − α)](Nt/Kt)Wt,

where Nt =
∫ 1
0 Nt(f)df and Kt =

∫ 1
0 Kt(f)df , and we have used the fact that labor to capital ratio

and marginal cost are identical across firms in equilibrium. We shall use lowercases wt and mct to

denote real wage and real marginal cost, respectively.

Firms set prices in a staggered fashion à là Calvo (1983). At each date, each firm receives a

random signal with a constant probability θp which forbids it to reset price. The random signal is

identically and independently distributed across firms and time. With the large number of firms

which validates the law of large numbers, at each point in time there is fraction (1−θp) of randomly

selected firms that can reset prices. At date t, if a firm f can reset its price, it chooses P ∗
t (f) to

maximize the expected present value of its profits

∞∑
s=t

θs−t
p R−1

t,s−1 [Pt(f)−MCs]
[
Pt(f)
Ps

]−εy

Ys,

where Rt,t−1 ≡ 1 and Rt,s−1 =
∏s−1

τ=t Rτ denotes a cumulative rate of return from rolling over a

position on the nominal bond from t to s > t. The optimal pricing decision is

P ∗
t (f) =

εy

εy − 1

∑∞
s=t θs−t

p R−1
t,s−1P

εy
s YsMCs∑∞

s=t θs−t
p R−1

t,s−1P
εy
s Ys

, (4)

The optimal price is a markup over a weighted average of marginal costs in the current and future
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periods during which the firm is expected not to have another chance to reset price.

The representative household’s lifetime utility is given by

∞∑

t=0

βt

(
C1−σ

t − 1
1− σ

− ψ
N1+η

t

1 + η

)
,

where β ∈ (0, 1) is a subjective discount factor, Nt denotes the household’s labor in period t,

and σ and η denote its relative risk aversion in consumption and in labor hours, respectively. The

household’s budget constraint in period t requires that its expenditures on consumption, investment,

and asset accumulation do not exceed its total income earned in the same period,

Pt(Ct + It) + Bt −Rt−1Bt−1 ≤ Rk
t Kt + WtNt + Πt,

where Bt−1 is the household’s holding of a one-period nominal bond acquired in period t−1, Rt−1 is

the gross nominal rate of return on holding the bond from t−1 to t, and Πt is the household’s claim

to firms’ profits in period t. The household maximizes its utility subject to the budget constraint,

a convex capital adjustment cost
It

Kt
= I

(
Kt+1

Kt

)
, (5)

where δ ≡ I(1) ∈ [0, 1] is the steady-state capital depreciation rate, I ′(1) = 1, and εq ≡ I ′′(1)

denotes the steady-state elasticity of investment to capital ratio with respect to Tobin’s q, and a

borrowing constraint Bt ≥ −B, for some large positive number B, which serves to prevent the

household from playing Ponzi schemes without bound. The household takes its initial capital stock

K0, bond holding B−1, and all prices, capital rental rate, and wage rate as given in solving the

utility-maximization problem.11 The optimality conditions include an intertemporal consumption

Euler equation
PtRt

Pt+1
=

1
β

(
Ct+1

Ct

)σ

, (6)

an intratemporal consumption-labor relation

wt = ψCσ
t Nη

t , (7)

11The assumption that at any date t the stock of capital Kt is predetermined implies that capital available for
firms to rent at any given date is accumulated by the household during the previous period. In other words, additional
capital resulting from the household’s investment decision becomes productive with a one-period lag.
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and a capital Euler equation

PtRt

Pt+1

∂It

∂Kt+1
=

α

1− α

Nt+1

Kt+1
wt+1 − ∂It+1

∂Kt+1
. (8)

A monetary authority is able to commit to a inflation-forecast targeting rule under which the

nominal interest rate responds to the inflation forecast and current output,

Rt = Rss

(
Pt+1

Pt

)τπ
(

Yt

Y ss

)τy

, (9)

where Rss and Y ss denote respectively the steady-state values of the nominal interest rate and real

output, and τπ ≥ 0 and τy ≥ 0 measure respectively the degree of responsiveness of the nominal

interest rate to the deviation of the expected future inflation from an inflation target (which is

set to zero) and output around the steady state. With a zero steady-state inflation rate, we have

Rss = 1/β, as implied by the steady-state version of (6).

Equations (1)-(9), and those defining the composite good and price level, together with fac-

tor market clearing conditions, Nt =
∫ 1
0 Nt(f)df and Kt =

∫ 1
0 Kt(f)df , and the market clearing

condition for the composite good, Yt = Ct + It, characterize an equilibrium.

2.1. Some log-linearized equilibrium conditions

For local determinacy analysis, we examine a log-linearized system of equilibrium conditions around

a steady state with zero inflation. Throughout the rest of the paper, a variable with a hat denotes

the percentage deviation of the variable in level from its steady-state value. Note that, with a

constant steady-state price level, π̂p,t ≡ log (Pt/Pt−1) is both the actual period-t price inflation and

the percentage deviation of the rate of price inflation in period t from its steady-state value.

The log-linearized versions of the consumption Euler equation (6), the policy rule (9), the

aggregated version of the production function (2), the good market clearing condition, the factor

market relation (3), and the capital Euler equation (8) are, respectively,

R̂t − π̂p,t+1 = σ
(
Ĉt+1 − Ĉt

)
, (10)

R̂t = τππ̂p,t+1 + τyŶt, (11)
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Ŷt = αK̂t + (1− α)N̂t, (12)

Ŷt = (1− δky)Ĉt + ky

[
K̂t+1 − (1− δ)K̂t

]
, (13)

ŵt = m̂ct − α
(
N̂t − K̂t

)
, (14)

δ̃
(
ŵt+1 + N̂t+1 − K̂t+1

)
− σ

(
Ĉt+1 − Ĉt

)
= εq

[(
K̂t+1 − K̂t

)
− β

(
K̂t+2 − K̂t+1

)]
, (15)

where δ̃ ≡ 1 − β(1 − δ) and ky ≡ [(εy − 1)αβ]/(εy δ̃), and we have used (10) in rewriting (15).

Conditions (10)-(14) will stay invariant to all modifications to the baseline model that we will

make in the subsequent sections. Note that in the case with no capital adjustment cost, the right-

hand-side of (15) reduces to 0.

The log-linearized version of (7) takes the following form:

ŵt = σĈt + ηN̂t. (16)

This condition will be replaced with a wage inflation equation in the subsequent sections where we

incorporate staggered wage-setting into the baseline model.

Approximating and combining the price-setting equation (4) and the equation defining the price

level, we can derive a log-linearized New Phillips curve

π̂p,t = βπ̂p,t+1 + λpm̂ct, (17)

where

λp ≡ (1− θp) (1− βθp)
θp

.

While the price inflation equation will all take the form in (17), the coefficient λp in front of real

marginal cost will need to be modified when we consider firm-specific capital.

2.2. An analytical result

We first consider a version of our model that is essentially the baseline model of Carlstrom and

Fuerst (2005). This is a case with labor indivisibility and no capital adjustment cost. We present

here a necessary and sufficient condition for local real determinacy for this version of the model with
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complete depreciation of capital. Our analytical result is summarized in the following proposition.

Proposition 1. The necessary and sufficient condition for local real determinacy for the case

with labor indivisibility and no capital adjustment cost and complete depreciation of capital is

− (1− β)Ty

(1− α)(b− 1)
< Tπ < min

{
(1 + β)Ty

(1 + α)(1 + b)
+

2(1 + 1
β )

1 + α
, U,

3Ty + 3b
β − 1

β − 1− b

3αb− 1

}
(18)

where

b ≡ εy

(εy − 1)αβ
, Ty ≡

(
1− α +

b− 1
σ

)
τy

β
, Tπ ≡ λp(τπ − 1)

β
,

∆ ≡
{
Ty −

[
α(b− 1)2 + (1− α)

(
1
β
− 1

)
b

]}2

+ 4Ty(1− βα)b
(

αb− 1 +
1− α

β

)
,

U ≡
(2αb− 1)Ty + α(b− 1)2 + ( 1

β − 1)b(2αb− 1− α)−√∆

2αb(αb− 1)
.

Otherwise, there is a continuum of equilibria.

Carlstrom and Fuerst (2005) show that a strict forward-looking inflation-targeting rule that

sets a nominal interest rate in response solely to expected future inflation, that is, setting τy = 0

in (9), renders equilibrium almost always indeterminate in their baseline model. Proposition 1

serves to illustrate two points among other things. First, an increase in the degree of price rigidity

tends to help remedy the indeterminacy problem. Second, an increase in the degree of policy’s

response to output can enlarge the determinacy region. The first point is rather transparent, as in

the determinacy condition characterized by (18), the price stickiness parameter θp affects only Tπ

and the relationship is negative — Tπ is proportional to λp which decreases with θp. The following

corollary helps make the second point more transparent.

Corollary 1. The lower bound in (18) is negative and strictly decreasing in τy and each of the

three upper bounds in (18) is strictly positive and strictly increasing in τy.

These implications serve as a guidance for our subsequent analysis. With these points in mind,

we turn now to derive numerical results for the calibrated model.
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2.3. Model calibration and numerical results

We can derive from the log-linearized equilibrium conditions (10)-(17) a self-closed system of four

first-order linear difference equations. To begin, first substitute (11) and (12) into (10) to obtain

σĈt+1 − (τπ − 1)π̂p,t+1 = σĈt + τy(1− α)N̂t + τyαK̂t. (19)

Second, substitute (12) into (13) to get

kyK̂t+1 = (δky − 1)Ĉt + (1− α)N̂t + [(1− δ)ky + α]K̂t. (20)

Next, substitute (14) and (16) into (17) to get

βπ̂p,t+1 = −λpσĈt + π̂p,t − λp(η + α)N̂t + λpαK̂t. (21)

Finally, rolling (16) and (20) one period forward and substituting both of them into (15), and

manipulating, we obtain

γcĈt+1 + γnN̂t+1 + γkK̂t+1 = −σĈt − εqK̂t, (22)

where

γc ≡ (δ̃ − 1)σ + εqβ

(
δ − 1

ky

)
,

γn ≡ δ̃(η + 1) + εqβ

(
1− α

ky

)
,

γk ≡ −δ̃ + εqβ

(
α

ky
− δ

)
− εq.

This is a system of four first-order linear difference equations in three jump variables, Ĉt, π̂p,t, and

N̂t, and one predetermined variable, K̂t. Thus determinacy requires three explosive roots and one

stable root.

For our baseline calibration, we set α to 0.33 so that the share of payment to capital in value-

added productive factors is equal to one third, as in the National Income and Product Account.

Given that one period in our model corresponds to one quarter of a year, we set β = 0.99 to be
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consistent with a steady-state annualized real interest rate of 4 percent, and we set δ to 0.02 to

match the steady-state annual capital depreciation rate of 8 percent. These are standard parameter

values used in the literature. While some studies in the literature suggest that σ can be as low

as 0 or as high as 30, the general consensus is that it lies between 1 and 10 (e.g., Kocherlakota,

1996; Vissing-Jorgensen, 2002). Our results are quantitatively invariant to the choice of σ in its

empirically reasonable range. We therefore fix the value of σ at 2.

Our baseline value of η is 10, corresponding to an intertemporal hours-worked elasticity of 10%,

which lies in the middle of the empirical estimates reported in Pencavel (1986), Altonji (1986),

Ball (1990), and Card (1994) based on micro data, while we examine the cases with η = 5 and 20

as well, which roughly covers both the range of these empirical estimates and the values used in

many studies (e.g., Ball and Romer, 1990; Reis, 2006). As for analytical convenience many papers

in determinacy analysis assumes η = 0 (e.g., Carlstrom and Fuerst, 2005; Benhabib and Eusepi,

2005), we also examine our results for the this case, as well as the case with η = 1, as a unitary

labor supply elasticity is sometimes assumed as well.

We set our baseline value of θp to 0.33, so that the duration of a newly set price for a given firm

(as well as the average frequency of price adjustment and the cross-sectional average age and average

lifetime of posted prices) is about four and half months, which lies somewhat near the upper end of

the recent empirical estimates by Bils, Klenow, and Kryvtsov (2003), Bils and Klenow (2004), and

Klenow and Krystov (2005) based on micro data. We also examine our results for the case with

θp = 0.25, which corresponds roughly to the lower end of these empirical estimates and is used in

some papers in determinacy analysis (e.g., Weder, 2006), as well as the case with θp = 0.57, which

is in line with the values used by Carlstrom and Fuerst (2005) and others.

We consider a value of εy equal to 11, as in many studies featuring monopolistic competition,

such as Chari, Kehoe, and McGrattan (2000) and Sveen and Weinke (2005, 2006). We also examine

our results for the case with εy = 4, which is in line with the values used by Erceg, Henderson,

and Levin (2000) and Benhabib and Eusepi (2005), among others. The values used in many other

papers fall in between these two cases (e.g., Ball and Romer, 1990; Reis, 2006). These values cover

the range of the empirical estimates reported in Domowitz, Hubbard, and Petersen (1986), Shapiro

(1987), Basu (1996), Basu and Kimball (1997), Basu and Fernald (1994, 1995, 1997), Rotemberg

and Woodford (1997), and Linnemann (1999).
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We consider εq = 3 for the case with capital adjustment cost, as in Woodford (2003) and Sveen

and Weinke (2005, 2006), as well as εq = 0 for the case that abstracts from capital adjustment cost,

as in many papers in determinacy analysis.

These calibrated parameter values are summarized in the upper panel of Table 1. With these

values of the fundamental parameters at hand, we can start to search for ranges of the two policy

parameters, τπ and τy, that ensure a unique equilibrium.

It turns out that the determinacy region is characterized by an upper bound and a lower bound

for policy’s response to future inflation τπ as a function of policy’s response to current output

τy, just as suggested by Proposition 1. Figures 1-15 display such upper and lower bounds—the

horizontal axis measures τy and the vertical axis measures τπ—for different models under the

various parameter values (the models incorporating firm-specific capital, sticky wages, and both

sticky wages and firm-specific capital, as well as the calibration of additional parameters for the

models incorporating sticky wages are to be described below in detail). As is clear from these

figures, if policy’s response to output is muted, then varying the degree of stickiness in the model

or other parameter values has a quantitatively negligible effect on the determinacy region. To be

specific, if τy = 0, then virtually no value of τπ can render equilibrium determinate. Whether with

higher price stickiness, or with higher overall stickiness through incorporating firm-specific capital,

sticky wages, or both into the baseline model, the upper bound and the lower always intercept the

vertical axis at essentially the same point.

While this robust failure highlights the potential importance of policy’s response to output, the

effect of this avenue depends on the elasticity of labor supply and the degree of price stickiness.

As is apparent from the figures, the tension in most cases is on the upper bound, so we will focus

our subsequent discussions on the upper bound as well. The first line (an infinite labor supply

elasticity) of Figure 1 (the price stickiness parameter θp = 0.57) corresponds to the labor supply

elasticity and price stickiness used in Carlstrom and Fuerst (2005): here, the upper bound for

τπ increases fairly rapidly with τy and thus indeterminacy is much less likely to occur as policy’s

response to current output increases. With the calibrated labor supply elasticity (the fourth line

in Figure 1), however, the upper bound for τπ increases very slowly with τy and thus increasing

policy’s response to current output increases the determinacy region only marginally. As Figure

2 illustrates, when the price stickiness parameter θp takes on its calibrated value of 0.33, the role
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of policy’s response to current output in helping ensure determinacy is much weakened even with

high labor supply elasticity (the first two lines in Figure 2). With the empirically estimated values

of labor supply elasticity (the last three lines in Figure 2), the upper bound for τπ is almost always

overlapped with the lower bound regardless of the value of τy and thus policy’s response to current

output helps very little in ensuring determinacy. With even lower but still empirically justifiable

price stickiness (Figure 3), the results are even more pessimistic.

We therefore conclude that letting policy respond to current output helps little in ensuring

determinacy in our calibrated baseline model with staggered prices and a capital rental market.

3. Incorporating firm-specific capital

This section abandons the assumption of a capital rental market made in the baseline model and

assumes instead firm-specific capital, as in Sveen and Weinke (2005).

At each date, the representative distributor sells the composite good that it fabricates from

the individually differentiated goods to the household and firms at the unit fabricating cost (which

equals the price level of the economy). Thus it is assumed that the distributor cannot discriminate

its selling price between the household and the firms, or across different firms. Quantity of the

composite good purchased by the household is consumed entirely in the same period and the

household faces a simple budget constraint

PtCt + Bt −Rt−1Bt−1 ≤ WtNt + Πt,

while its optimal choice of consumption, bond, and labor still implies (6) and (7).

Quantity of the composite good It(f) purchased by a firm f at date t is invested to accumulate

its own capital stock from Kt(f) at t to Kt+1(f) at t + 1 subject to a convex adjustment cost

It(f)
Kt(f)

= I

(
Kt+1(f)
Kt(f)

)
, (23)

where, as before, I(1) = δ, I ′(1) = 1, and I ′′(1) = εq. Thus, both the one period to build and the

convex adjustment cost for capital occur at the individual firm level. As a consequence, nominal

marginal cost and labor to capital ratio are firm-specific and are linked to the economy-wide nominal
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wage rate as follows:

Wt = (1− α)
[
Nt(f)
Kt(f)

]−α

MCt(f). (24)

At any date t, a firm f ’s capital stock Kt(f) is given. If the firm is a price adjuster at t, it chooses

the sequence {P ∗
s (f), Ks+1(f), Ns(f)}s≥t, taking the price level, wage index, and aggregate demand

for the composite good in all corresponding periods, {Ps,Ws, Ys}s≥t, as given, to maximize

∞∑
s=t

R−1
t,s−1 [Ps(f)Ys(f)−WsNs(f)− PsIs(f)]

subject to (1), (2), (23), and

Ps+1(f) =





P ∗
s+1(f) with probability 1− θp,

Ps(f) with probability θp.
(25)

If the firm cannot adjust its price at t, it solves the same problem while taking its own price at t,

Pt(f), as given as well. The resultant optimal pricing decision is

P ∗
t (f) =

εy

εy − 1

∑∞
s=t θs−t

p R−1
t,s−1P

εy
s YsMCs(f)∑∞

s=t θs−t
p R−1

t,s−1P
εy
s Ys

, (26)

Thus the optimal price is a markup over a weighted average of the firm-specific marginal costs in

the current and future periods in which the firm is expected not to have another chance to reset

its price. The firm-specific capital Euler equation is

PtRt

Pt+1

∂It(f)
∂Kt+1(f)

=
α

1− α

Nt+1(f)
Kt+1(f)

wt+1 − ∂It+1(f)
∂Kt+1(f)

. (27)

It can be shown through proper aggregation that equations (10)-(17) still approximates up to a

first order the true equilibrium conditions, with the only modification being that λp in (17) is now

approximated by

λp ≡ (1− θp) (1− βθp)
θp

1− α

1− α + αεy
.

For our local determinacy analysis, we can thus still analyze the system of the four first-order linear

difference equations (19)-(22) with λp modified as above.
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Figures 4-6 display the determinacy region for the model incorporating firm-specific capital

under the various parameter values. As a comparison between these figures and Figures 1-3 reveals,

although replacing a capital rental market with firm-specific capital enlarges the determinacy region

in every case, the improvement is only marginal, especially for the cases with empirically reasonable

price stickiness (Figures 5 and 6) and estimated labor supply elasticity (the last three lines in the

figures). We thus conclude that incorporating firm-specific capital enhances only marginally the

role of policy’s response to current output in helping avoid indeterminacy.

4. Incorporating staggered wages

This section abandons the assumption of a homogenous labor skill and a competitive labor market

made in the baseline model while maintaining that of a capital rental market. We assume there

is a continuum of households, each endowed with a differentiated labor skill indexed by h ∈ [0, 1],

who set nominal wages for their labor services in a staggered fashion.

At each date t, all differentiated skills {Nt(h)}h∈[0,1] are aggregated into a composite skill

Nt =
[∫ 1

0 Nt(h)(εn−1)/εndh
]εn/(εn−1)

, where εn ∈ (1,∞) is the elasticity of substitution between the

differentiated skills. The aggregation activity is assumed to be perfectly competitive. The resultant

demand for a type h skill is

Nt(h) =
[
Wt(h)

Wt

]−εn

Nt, (28)

where the wage rate Wt for the composite skill and the wage rates {Wt(h)}h∈[0,1] for the differen-

tiated skills are linked by Wt =
[∫ 1

0 Wt(h)1−εndh
]1/(1−εn)

.

For each firm f , the labor input in the production function (2) is in terms of the composite

labor, and (3) and (4) hold exactly as in the baseline model.

All households are price takers in good, bond, and capital rental markets and monopolistic

competitors in the labor market, where they set nominal wages for their differentiated labor skills

in a staggered fashion à là Calvo (1983). At each date, each household receives a random signal

with a constant probability θw which forbids it to reset its nominal wage. The random signal is

identically and independently distributed across households and time. With the large number of

households which validates the law of large numbers, at each point in time there is fraction (1−θw)

of randomly selected households that can reset wages.
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At any date t, a household h’s capital stock Kt(h) and bond holding Bt−1(h) are given. If the

household is a wage setter at t, it chooses the sequence {W ∗
s (h), Cs(h),Ks+1(h), Bs(h)}s≥t, taking

the price level, wage index, rate of return on capital and bond, and aggregate demand for the

composite good and labor in all corresponding periods,
{
Ps,Ws, R

k
s , Rs−1, Ys, Ns

}
s≥t

, as given, to

maximize
∞∑
s=t

βs−t

[
Cs(h)1−σ − 1

1− σ
− ψ

Ns(h)1+η

1 + η

]
,

subject to

Ps [Cs(h) + Is(h)] + Bs(h)−Rs−1Bs−1(h) ≤ Rk
sKs(h) + Ws(h)Ns(h) + Πs(h),

Is(h)
Ks(h)

= I

(
Ks+1(h)
Ks(h)

)
, (29)

a borrowing constraint Bs(h) ≥ −B, for some large positive number B, the demand schedule for

its labor skill (28), and

Ws+1(h) =





W ∗
s+1(h) with probability 1− θw,

Ws(h) with probability θw.
(30)

If the household cannot adjust its wage at t, it solves the same problem while taking its own wage

at t, Wt(h), as given as well.

As is standard in the literature on staggered wage-setting, we suppose that there are (implicit)

financial arrangements that make it possible to insure each household against any idiosyncratic

income risk that may arise from the asynchronized wage adjustments so that equilibrium consump-

tion and investment are identical across households, although nominal wages and hours worked

may differ (e.g., Rotemberg and Woodford, 1997; Erceg et al., 2000; Christiano, Eichenbaum, and

Evans, 2005).12 As such, (6) and (8) continue to hold for aggregate consumption and capital, just

as in the baseline model with a homogenous labor skill and a competitive labor market, while (7)
12As Huang, Liu, and Phaneuf (2004) show, this assumption is made mainly for analytical convenience and an

alternative interpretation of the model can produce identical equilibrium dynamics without requiring such implicit
financial arrangements for the purpose of aggregation.
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is replaced with the following optimal wage-setting decision

W ∗
t (h) =

[
ψεn

εn − 1

∑∞
s=t θs−t

w R−1
t,s−1W

(η+1)εn
s Nη+1

s PsC
σ
s∑∞

s=t θs−t
w R−1

t,s−1W
εn
s Ns

] 1
1+ηεn

. (31)

The log-linearized equilibrium conditions are given by (10)-(15) and (17), along with a wage

inflation equation,

π̂w,t = βπ̂w,t+1 + λw

(
σĈt + ηN̂t − ŵt

)
, (32)

which is obtained by approximating and combining the wage-setting equation (31) and the equation

defining the wage index, where

λw ≡ (1− θw) (1− βθw)
θw

1
1 + ηεn

.

Note that π̂w,t ≡ log (Wt/Wt−1) is both the actual period-t wage inflation and the percentage

deviation of the rate of wage inflation in period t from its steady-state value.

For our local determinacy analysis, we can derive from these log-linearized equilibrium condi-

tions a self-closed system of six first-order linear difference equations. The first two are the same

as (19) and (20). The next two are modified versions of (21) and (22), given by

βπ̂p,t+1 = π̂p,t − λpαN̂t + λpαK̂t − λpŵt, (33)

(γc − δ̃σ)Ĉt+1 + (γn − δ̃η)N̂t+1 + γkK̂t+1 + δ̃ŵt+1 = −σĈt − εqK̂t. (34)

The last two are obtained by using the identity ŵt = ŵt−1 + π̂w,t − π̂p,t to rewrite (32) as

βπ̂p,t+1 + βŵt+1 = −λwσĈt + π̂p,t − λwηN̂t + (1 + λw + β)ŵt − ẑt, (35)

ẑt+1 = ŵt, (36)

where this last one is a definition equation. This is a system of six first-order linear difference

equations in four jump variables, Ĉt, π̂p,t, N̂t, and ŵt, and two predetermined variable, K̂t and

ẑt. Thus determinacy requires four explosive roots and two stable root. Note that λp here is as
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specified in Section 2.

With staggered wages, we need to assign values for the two additional parameters, the elasticity

of substitution of differentiated skills, εn, and the probability of non-adjustment in wage, θw. We set

εn to 4, the mid point of the empirical estimates by Griffin (1992, 1996) based on micro data, which

is from 2 to 6. Our results are in fact quantitatively invariant to the choice of εn in its empirically

reasonable range. We set θw to 0.75, in the light of the empirical evidence in Taylor (1999), Smets

and Wouters (2003), Levin, Onatski, Williams, and Williams (2005), and Christiano et al. (2005).

These values are roughly in line with those used in the literature on staggered wage-setting (e.g.,

Erceg et al., 2000; Sveen and Weinke, 2006). These two parameter values are reported in the lower

panel of Table 1.

Figures 7-9 display the determinacy region for the model incorporating sticky wages under the

various parameter values. Notice the contrast between these figures and Figures 1-3, especially

for the cases with a less than unit η (the last four lines in the figures), where the role of policy’s

response to current output in ensuring determinacy of equilibrium is significantly enhanced by the

presence of sticky wages. In almost all cases, the upper bound for τπ increases fairly quickly with τy

and thus indeterminacy is much less likely to occur as policy’s response to current output increases.

For moderate values of τy, the lower bound for τπ can go much below 1, especially for the cases

with the estimated values of η (the last three lines in the figures), implying that even very passive

response of policy to future inflation can render equilibrium determinate.

It is also worth noting that, with sticky wages incorporated, the determinacy region is much

less sensitive to the magnitude of η. Nevertheless, for empirically reasonable θp (Figures 8 and 9),

it calls for a moderately large response of policy to current output in order to ensure determinacy

for a large range of response of policy to future inflation.

5. Incorporating both staggered wages and firm-specific capital

This section abandons both the assumption of a capital rental market and the assumption of a

homogenous labor skill with a competitive labor market, and incorporates firm-specific capital and

staggered wage-setting into the baseline model. The details are already spelled out in Sections

3 and 4 above. Local determinacy analysis involves examining the system of (19) and (20), and
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(33)-(36), while λp here is as specified in Section 3.

Figures 10-12 display the determinacy region for the model incorporating both sticky wages and

firm-specific capital under the various parameter values. Notice the sharp contrast of these figures

with Figures 1-3, Figures 4-6, and even Figures 7-9. In all cases incorporating both sticky wages

and firm-specific capital enlarges the determinacy region drastically and even a tiny response of

policy to current output can render equilibrium determinate for a wide range of response of policy

to future inflation even under the baseline calibration.

To help make that contrast and this last point more transparent, we plot the determinacy

regions for the four models with baseline calibration in the same figure, with a finer scale across

a smaller horizon for the horizontal axis that measures policy’s response to current output τy. As

Figures 13-15 illustrate, the determinacy region for the model featuring sticky prices (SP), sticky

wages (SW), and firm-specific capital (FSC) is significantly wider than the determinacy region for

any of the other three models and for all the three values of the price stickiness parameter θp.

For θp = 0.57 (Figure 13), most values of τπ that satisfy the Taylor principle (i.e., τπ > 1) can

ensure determinacy in the SP&SW&FSC model even for τy as small as 0.05, while any τπ greater

than 5 would induce indeterminacy in the SP&SW model if τy is no greater than 0.05, and virtually

no value of τπ can ensure determinacy in the SP or the SP&FSC model even for τy as big as 0.4.

When θp takes on its baseline value of 0.33 (Figure 14), all τπ between 0.98 and 13.8 still ensure

determinacy for τy as small as 0.1, while any τπ greater than 3.4 would lead to indeterminacy in

the SP&SW model if τy is no greater than 0.1. Even for θp as small as 0.25 (Figure 15), all τπ

between 0.99 and 9 would ensure determinacy for τy as small as 0.1, while any τπ greater than 2.4

would lead to indeterminacy in the SP&SW model if τy is no greater than 0.1.

The contrasts among the four different models illustrated by Figures 13-15, and as we discussed

above, reveal a nontrivial interaction between sticky wages and firm-specific capital that is crucial

for enhancing the role of policy’s response to current output in helping avoid indeterminacy that

could potentially be caused by forward-looking inflation targeting. The joint presence of sticky

wages and firm-specific capital in the sticky price model with endogenous investment empower a

tiny response of policy to output to ensure determinacy for a wide range of the policy’s response

to inflation. This is important given the recent finding by Schmitt-Grohé and Uribe (2006) which

suggests that interest rate policy rules that feature a large response to output can lead to significant
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welfare losses.

6. Conclusion

We have explored the role of policy’s response to current output activity in maintaining macroe-

conomic stability in a sticky price model with endogenous investment in which a central bank

systematically adjusts a short-term nominal interest rate to changes in expected future inflation.

We found that virtually all interest rate policy rules that feature a muted response to output

would lead to real indeterminacy of equilibrium, regardless of price stickiness or overall stickiness

embodied in the model by incorporating firm-specific capital, sticky wages, or both.

This reveals the potential importance of policy’s response to current output in helping avoid

macroeconomic instability that could be caused by forward-looking inflation targeting. We have

found, however, letting policy respond to output would help little in our calibrated model with

sticky prices and a capital rental market while incorporating firm-specific capital would only make

a marginal improvement; in either case, only a narrow range of response of policy to future inflation

could ensure determinacy even with a moderately large response of the policy to current output.

We have shown that incorporating sticky wages could make a significant improvement; nevertheless,

it could still call for a moderately large response of policy to output in order to ensure determinacy

for a large range of the policy’s response to inflation.

We have illustrated a nontrivial interaction between sticky wages and firm-specific capital that

is crucial for enhancing the role of policy’s response to output in helping avoid indeterminacy. We

showed that in our full-blown model with endogenous investment that features sticky prices, sticky

wages, and firm-specific capital, a tiny response of policy to current output is sufficient to ensure

macroeconomic stability for a wide range of the policy’s response to future inflation. The fact that

the required output response is tiny is important in light of the recent finding by Schmitt-Grohé

and Uribe (2006) which suggests that a large response of policy to output can be a potential source

of significant inefficiencies.
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Appendix

To prove Proposition 1, we use the celebrated Samuelson-Farebrother conditions for handling high

order polynomial equations. We restate these conditions here for convenience.

Theorem A [Samuelson (1947)–Farebrother (1973)]. A cubic equation,

λ3 + a1λ
2 + a2λ + a3 = 0,

where a1, a2, and a3 are real numbers, has three stable roots if and only if

1 + a1 + a2 + a3 > 0,

1− a1 + a2 − a3 > 0,

1− a2 + a1a3 − a2
3 > 0,

a2 < 3.

These results can be found in Samuelson (1947, p. 436) and Farebrother (1973).

Proof of Proposition 1: The log-linearized equilibrium conditions (10)-(15) for the case stated

in the proposition can be combined into a system of four first-order linear difference equations,




Ĉt+1

m̂ct+1

π̂t+1

K̂t+1




=




1− (1−α)τy

α
1
σ

[
(1−α)τy

α − λp(τπ−1)
β

]
τπ−1
σβ

τy

σ

(1− α)σ
(
1− τy

α

) (1−α)τy

α − λp(τπ−1)
β

τπ−1
β τy

0 −λp

β
1
β 0

− (1−α)σ
α −

[
1 + (1−α)σ

α

]
(b− 1) (1−α)b

α 0 b







Ĉt

m̂ct

π̂t

K̂t




,

in three jump variables, C, mc, and π, and one predetermined variable, K. Therefore, determinacy

requires three explosive roots and one stable root. With some algebra, it can be shown that the

four eigenvalues of the above 4 × 4 matrix can be obtained by solving for the four roots of the
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following fourth-order polynomial equation in λ,

λ (λ3 + b1λ
2 + b2λ + b3) = 0,

where

b1 = −
(

1
β

+ 1 + b− Tπ

)
,

b2 =
1
β
− αTπ + b

(
1
β

+ 1− Tπ

)
+ βTy, (37)

b3 = −
[
b

(
1
β
− αTπ

)
+ Ty

]
.

Thus determinacy requires that the equation

λ3 + b1λ
2 + b2λ + b3 = 0, (38)

has three explosive roots. Clearly, a necessary condition for this to be the case is |b3| > 1. It follows

that (38) can be rewritten as

µ3 + (b2/b3)µ2 + (b1/b3)µ + (1/b3) = 0, (39)

where µ = 1/λ. Thus (38) has three explosive roots for λ if and only if (39) has three stable roots

for µ. Applying the Samuelson-Farebrother conditions presented in Theorem A, (39) has three

stable roots for µ if and only if
b3 + b2 + b1 + 1

b3
> 0,

b3 − b2 + b1 − 1
b3

> 0,

b2
3 − b1b3 + b2 − 1

b2
3

> 0,

b1

b3
< 3.

We claim that determinacy requires b3 < 0. To show this, we can substitute (37) into the
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numerator of the first two of the above inequalities to get

−(1− α)(b− 1)Tπ − (1− β)Ty

b3
> 0, (40)

(1 + α)(1 + b)Tπ − 2( 1
β + 1)(1 + b)− (1 + β)Ty

b3
> 0. (41)

If b3 > 0, then (40) requires Tπ < 0 while (41) requires Tπ > 0, a contradiction. This is to say, only

when b3 < 0 may (40) and (41) hold simultaneously. This proves our claim. Combining this with

the requirement |b3| > 1, we can summarize the necessary and sufficient condition for determinacy

by the following inequalities:

b3 < −1,

b3 + b2 + b1 + 1 < 0,

b3 − b2 + b1 − 1 < 0,

b2
3 − b1b3 + b2 − 1 > 0,

b1 > 3b3.

Using (37), we can prove that the above inequalities are equivalent to

Tπ <
Ty

αb
+

1
αβ

− 1
αb

≡ U1, (42)

Tπ > − (1− β)Ty

(1− α)(b− 1)
≡ L1, (43)

Tπ <
(1 + β)Ty

(1 + α)(1 + b)
+

2(1 + 1
β )

1 + α
≡ U2, (44)

Tπ <
(2αb− 1)Ty + α(b− 1)2 + ( 1

β − 1)b(2αb− 1− α)−√∆

2αb(αb− 1)
≡ U3

OR Tπ >
(2αb− 1)Ty + α(b− 1)2 + ( 1

β − 1)b(2αb− 1− α) +
√

∆

2αb(αb− 1)
≡ L2, (45)
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Tπ <
3Ty + 3b

β − 1
β − 1− b

3αb− 1
≡ U4. (46)

The proofs of (42)-(44) and (46) are straightforward, noting that αb > 1. To prove (45), we can

show, with some manipulations, that the original nonlinear inequality is equivalent to

G(Tπ) ≡ [αb(αb− 1)] T 2
π

−
[
(2αb− 1)Ty + α(b− 1)2 +

(
1
β
− 1

)
b(2αb− 1− α)

]
Tπ

+
[
T 2

y +
(

2b− 1
β

+ β − 1− b

)
Ty + (b− 1)

(
b

β2
− b + 1

β
+ 1

)]
> 0. (47)

It can be shown that the two roots to the equation G(Tπ) = 0 are given by U3 and L2. Since αb > 1

and Ty ≥ 0, we have ∆ > 0, and thus U3 and L2 are two distinct real roots, with U3 < L2. The fact

that αb > 1 also implies that G(Tπ) is a convex function of Tπ. This proves that (45) is equivalent

to the original nonlinear inequality.

To sum up inequalities (42)-(46), there is a determinant equilibrium if and only if

L1 < Tπ < min{U1, U2, U3, U4} OR max{L1, L2} < Tπ < min{U1, U2, U4}. (48)

Note that L1 < 0 < L2. In fact, with some manipulations, we can show that

L2 − U1 =

√
∆ + Ty − [α(b− 1)2 + ( 1

β − 1)b(1− α)] + 2( b
β − 1)(1− α)

2αb(αb− 1)
.

Denote

A1 ≡ Ty −
[
α(b− 1)2 +

(
1
β
− 1

)
b(1− α)

]
,

A2 ≡ 4Ty(1− βα)b
(

αb− 1 +
1− α

β

)
≥ 0,

then

∆ = A2
1 + A2.

It follows that

L2 − U1 =

√
A2

1 + A2 + A1 + 2( b
β − 1)(1− α)

2αb(αb− 1)
≥

2( b
β − 1)(1− α)

2αb(αb− 1)
> 0.
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Therefore, (48) reduces to

L1 < Tπ < min{U1, U2, U3, U4}. (49)

We claim that U3 < U1. To prove our claim, first note that

U3 − U1 =
−√∆ + Ty − [α(b− 1)2 + ( 1

β − 1)b(1− α)] + 2( b
β − 1)(1− α)

2αb(αb− 1)

=
−

√
A2

1 + A2 + A1 + 2( b
β − 1)(1− α)

2αb(αb− 1)
.

Thus, our claim holds true if and only if

A1 + 2
(

b

β
− 1

)
(1− α) <

√
A2

1 + A2.

Suppose that this is not the case and instead

A1 + 2
(

b

β
− 1

)
(1− α) ≥

√
A2

1 + A2.

Then

A2
1 + 4

(
b

β
− 1

)
(1− α)A1 + 4

(
b

β
− 1

)2

(1− α)2 ≥ A2
1 + A2,

(with a precondition that A1 + 2(b/β − 1)(1− α) ≥ 0), which leads to

[(1− α)− (1− βα)b]Ty ≥
(

b

β
− 1

)
(1− α)(b− 1),

which is impossible since the left-hand side is negative while the right-hand side is strictly positive.

Thus our claim holds true and (49) reduces to

L1 < Tπ < min{U2, U3, U4}. (50)

It is easy to construct examples to show that U2, U3, and U4 can alternate in the order of their

magnitudes, depending on the values of the fundamental parameters. Therefore, (50) is the most

compact necessary and sufficient condition for local real determinacy. Substituting into (50) the

values for L1, U2, U3, and U4 establishes the proposition. Q.E.D.
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Proof of Corollary 1: The only nontrivial proof is for the case of the second upper bound. To

prove that U is strictly increasing in τy, we rewrite ∆ as

∆ =
{
Ty +

[
α(b− 1)2 + (1− α)

(
1
β
− 1

)
b

]}2

− 4Tyα(αb− 1)(βb− 1) ≡ x2
1 − 2Tyx2,

and use it to show that ∂U/∂τy > 0 if and only if

2αb− 1 >
x1 − x2√

∆
.

A sufficient condition for the above inequality to hold is that

x2
1 − 2Tyx2 >

(
x1 − x2

2αb− 1

)2

,

which can be shown, using x2
1 − 2Tyx2 = (x1 − x2)2 − x2(x2 − 2x1 + 2Ty), to be equivalent to

(
x1 − x2

2αb− 1

)2

> −(βb− 1)(1− βα)
(

αb− 1 +
1− α

β

)
,

which clearly always holds. Thus U is strictly increasing in τy. This combined with the fact that

U simplifies to
1
α

(
1
β
− 1

)
> 0

when τy is 0 implies that U is strictly positive for all τy ≥ 0 (this can also be checked by verifying

that L2U3 > 0 and L2 > 0, where the notations are as defined in the proof of Proposition 1 above).

Q.E.D.
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TABLE 1—PARAMETER VALUES

Parameters for All Models Values

Share of payment to capital in total value added (α) 0.33

Subjective quarterly discount factor (β) 0.99

Quarterly depreciation rate of capital (δ) 0.02

Relative risk aversion in consumption (σ) 2

Relative risk aversion in labor hours (η) {0, 1, 5, 10∗, 20}
Probability of non-adjustment in price (θp) {0.25, 0.33∗, 0.57}
Elasticity of substitution of differentiated goods (εy) {4, 11∗}
Elasticity of investment to capital ratio w.r.t. Tobin’s q (εq) {0, 3∗}

Additional Parameters for Models with Staggered Wages Values

Elasticity of substitution of differentiated skills (εn) 4

Probability of non-adjustment in wage (θw) 0.75

Note: For multiple values the one with an asterion denotes the baseline calibration
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Fig. 1. Determinacy region with staggered prices and a capital rental market (θp = 0.57): Upper
bound (solid line) and lower bound (broken line) for policy’s response to future inflation τπ

(vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 2. Determinacy region with staggered prices and a capital rental market (θp = 0.33): Upper
bound (solid line) and lower bound (broken line) for policy’s response to future inflation τπ

(vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 3. Determinacy region with staggered prices and a capital rental market (θp = 0.25): Upper
bound (solid line) and lower bound (broken line) for policy’s response to future inflation τπ

(vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 4. Determinacy region with staggered prices and firm-specific capital (θp = 0.57): Upper
bound (solid line) and lower bound (broken line) for policy’s response to future inflation τπ

(vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 5. Determinacy region with staggered prices and firm-specific capital (θp = 0.33): Upper
bound (solid line) and lower bound (broken line) for policy’s response to future inflation τπ

(vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 6. Determinacy region with staggered prices and firm-specific capital (θp = 0.25): Upper
bound (solid line) and lower bound (broken line) for policy’s response to future inflation τπ

(vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 7. Determinacy region with staggered prices, staggered wages, and a capital rental market
(θp = 0.57): Upper bound (solid line) and lower bound (broken line) for policy’s response to future
inflation τπ (vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 8. Determinacy region with staggered prices, staggered wages, and a capital rental market
(θp = 0.33): Upper bound (solid line) and lower bound (broken line) for policy’s response to future
inflation τπ (vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 9. Determinacy region with staggered prices, staggered wages, and a capital rental market
(θp = 0.25): Upper bound (solid line) and lower bound (broken line) for policy’s response to future
inflation τπ (vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 10. Determinacy region with staggered prices, staggered wages, and firm-specific capital
(θp = 0.57): Upper bound (solid line) and lower bound (broken line) for policy’s response to future
inflation τπ (vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 11. Determinacy region with staggered prices, staggered wages, and firm-specific capital
(θp = 0.33): Upper bound (solid line) and lower bound (broken line) for policy’s response to future
inflation τπ (vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 12. Determinacy region with staggered prices, staggered wages, and firm-specific capital
(θp = 0.25): Upper bound (solid line) and lower bound (broken line) for policy’s response to future
inflation τπ (vertical axis) as a function of policy’s response to current output τy (horizontal axis)
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Fig. 13. Determinacy region for different models with baseline calibration
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Fig. 14. Determinacy region for different models with baseline calibration
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Fig. 15. Determinacy region for different models with baseline calibration
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