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LEARNING, ADAPTIVE EXPECTATIONS,
AND TECHNOLOGY SHOCKS

KEVIN X.D. HUANG, ZHENG LIU, AND TAO ZHA

Abstract. This study explores theoretical and macroeconomic implications of the

self-confirming equilibrium in a standard growth model. When rational expectations

are replaced by adaptive expectations, we prove that the self-confirming equilibrium

is the same as the steady state rational expectations equilibrium, but that dynamics

around the steady state are substantially different between the two equilibria. We

show that, in contrast to Williams (2003), the differences are driven mainly by the

lack of the wealth effect and the strengthening of the intertemporal substitution

effect, not by escapes. As a result, adaptive expectations substantially alter the

amplification and propagation mechanisms and allow technology shocks to exert

much more impact on macroeconomic variables than do rational expectations.

I. Introduction

Adaptive learning models in macroeconomics have been used for many applications

(Sargent, 2007).1 We focus, in this paper, on yet another application in the context

of a standard growth model in which rational expectations are replaced by adaptive

expectations. The stability of rational expectations under learning in real business

cycle (RBC) models has been studied in the literature (Evans and Honkapohja, 2001;
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comments. The views expressed herein are those of the authors and do not necessarily reflect the

views of the Federal Reserve Bank of Atlanta or the Federal Reserve System.
1To give a few examples, Lucas (1986), Marcet and Sargent (1989), and Evans and Honkapohja

(2001) recommend selecting rational expectations equilibria that are stable under least squares

learning; Primiceri (2006), Sargent, Williams, and Zha (2006b), and Carboni and Ellison (2008) use

learning mechanisms to explain the rise and fall of American inflation; Adam, Marcet, and Nicolini

(2008) show how learning helps improve the fit of the model of asset pricing.
1
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Bullard and Duffy, 2004). In a closely related paper, Williams (2003) considers a

variety of standard learning rules in a RBC model and finds that learning dynamics

differ very little from rational expectations dynamics. As noted by Williams (2003),

those learning rules do not separate agents’ beliefs and their decision making. The

only role for agents is forecasting by using a reduced-form model. Consequently, one

would conclude that learning dynamics do not teach us anything new, as compared

to the rational expectations version of the RBC model.

In this paper, we reexamine this conclusion in the standard growth model with both

neutral and investment specific technologies. Following the commonly-used learning

mechanism studied by Marcet and Nicolini (2003) and Sargent, Williams, and Zha

(2006a), we examine the implications of misspecified learning by separating agents’

beliefs and their decision rules.2 Rational expectations are simply replaced by adap-

tive expectations, while all decision equations under rational expectations remain

intact. We show that this slight departure from rational expectations has important

ramifications by answering the following questions:

• Does there exist a self-confirming equilibrium (SCE) in our learning environ-

ment? Is it unique?

• Are there strong escape dynamics away from the domain of attraction of the

SCE?

• How does learning amplify the effects of technology shocks, in contrast to

rational expectations?

• How does learning affect the relative importance of investment-specific to neu-

tral technology shocks?

To answer these questions, we obtain the closed-form solutions for both rational

expectations and learning models. These analytical solutions enable us to prove

the existence and uniqueness of the SCE under all admissible parameterizations in

our learning model. We further prove that the SCE coincides with the steady state

2Williams (2003) studies a different kind of misspecified learning in which agents do not know

the true parameters of the production function. By assuming full depreciation of the capital stock,

an i.i.d. technology process, and inelastic labor, he shows that learning leads to occasional, but

recurrent, large deviations away from an SCE, called “escape dynamics.” For other studies of escape

dynamics, see Sargent (1999), Cho, Williams, and Sargent (2002), Kasa (2004), and Adam, Evans,

and Honkapohja (2006).
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rational expectations equilibrium (REE), but that learning dynamics are substantially

different from rational expectations dynamics. Unlike Marcet and Nicolini (2003),

Williams (2003), and Sargent, Williams, and Zha (2006a), however, we show that

learning dynamics are stationary and that the differences between learning dynamics

and rational-expectations dynamics are not driven by escape dynamics.

These theoretical results enable one to draw macroeconomic implications from our

learning model. The dynamic responses of output, consumption, investment, and la-

bor hours, following a neutral technology shock, are substantially larger in the adap-

tive expectations model than in the rational expectations model. Because agents

under adaptive expectations form expectations of future income based on the past

observations, introducing learning turns off the channel of the wealth effect and rein-

forces the intertemporal substitution effect. Consequently, it helps amplify the effects

of the neutral shock on many aggregate variables and improve the model’s predictions

on the labor market dynamics. In the rational expectations model, equilibrium hours

change too little and the equilibrium real wage fluctuates too much. In contrast,

learning amplifies the response of labor and at the same time dampens the response

of the real wage.

As for responses to a positive biased technology shock, the muted wealth effect

under adaptive learning, in combination with the strong intertemporal substitution

effect, helps amplify the responses of all macroeconomic variables, including the real

wage, as compared to the rational expectations model. In terms of contributions to

fluctuations in output, consumption, and investment, the relative importance of the

biased technology shock to the neutral technology shock under learning is much larger

than that under rational expectations.

In contrast to the rational expectations model, the dynamic responses of hours

to both technology shocks can be negative after initial periods. The less persistent

these shocks are, the more pronounced such negative responses of hours can become.

The negative responses are a result of hump-shaped responses. The learning model

is more likely to generate hump-shaped responses of consumption, investment, real

wage, and hours, the less persistent technology shocks are.
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Overall, our results indicate that the growth model with adaptive expectations is

capable of giving technology shocks a much more important role in causing fluctua-

tions of key macroeconomic variables than is the rational expectations model.

II. The Model

In this section, we describe the standard growth model with both neutral and

biased technologies. The economy is populated by a continuum of infinitely lived and

identical households. The representative household is endowed with a unit of time.

The household derives utility from consumption and leisure, with the utility function

E0

∞∑
t=0

βt

{
ln Ct − ξ

L1+η
t

1 + η

}
, (1)

where Ct denotes consumption, Lt denotes labor hours, β ∈ (0, 1) denotes the sub-

jective discount factor, and E0 denotes an expectation at the initial time 0.

The economy is also populated by a continuum of identical, perfectly competitive

firms. The representative firm has access to a constant returns to scale technology

represented by the production function

Yt = K1−α
t−1 (ZtLt)

α , (2)

where Yt denotes output, Kt−1 denotes capital input, and Lt denotes labor input. The

term Zt denotes the neutral technological change and follows the stochastic process

Zt = λt
zνt, (3)

where λz is the trend component and νt is the stationary component that follows the

AR(1) process

ln νt = ρν ln νt−1 + ενt. (4)

The persistence parameter ρν ∈ (0, 1] and the shock ενt is a white noise process with

mean zero and variance σ2
ν . The shock process specified in (3)-(4) implies that, if

0 < ρν < 1, then the neutral technology follows a stationary stochastic process with

a deterministic trend; if ρν = 1, then the neutral technology follows a random walk

process with a drift.3

3In the case with ρν = 1, we have Zt = λt
zνt and νt = νt−1exp(ενt), or equivalently, Zt =

Zt−1λzexp(ενt).
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The economy has an initial stock of capital denoted by K−1. Capital stock evolves

over time according to the law of motion

Kt = (1− δ)Kt−1 + QtIt, (5)

where Kt denotes the period-t capital stock, It denotes investment, Qt denotes the

relative price of investment goods, and the parameter δ ∈ (0, 1) denotes the capital

depreciation rate. Following Greenwood, Hercowitz, and Krusell (1997), we assume

that Qt represents the (inverse of) investment specific technological change. Similar

to the neutral technology, we assume that the investment-specific technology shock

Qt follows the stochastic process

Qt = λt
qµt, (6)

where λq is the trend component and µt is the stationary component that follows the

AR(1) process

ln µt = ρµ ln µt−1 + εµt. (7)

The persistence parameter ρµ ∈ (0, 1) and the innovation term εµt is white-noise

process with mean zero and variance σ2
µ. Again, our specification of the Qt process

here nests the random-walk process as a special case with ρµ = 1.

The aggregate resource constraint is given by

Ct + It = Yt. (8)

III. Equilibrium Allocation and Balanced Growth

Since the model economy has perfect competition and no externality, the First

Welfare Theorem applies. Thus, the equilibrium allocations are Pareto efficient and

can be found by solving a social planner’s problem.

The social planner maximizes the representative household’s utility (1) subject

to the resource constraint (8) and the capital law of motion (5). The first order

conditions imply that

ξL1+η
t = αYt/Ct, (9)

1 = βEt

{
Qt

Qt+1

Ct

Ct+1

[
1− δ + Qt+1(1− α)

Yt+1

Kt

]}
. (10)
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On the balanced growth path, Ct, It, and Yt grow at the same rate of λzλ
(1−α)/α
q

while the capital stock Kt grows at a faster rate of λzλ
1/α
q . We define the following

stationary variables4

Ỹt =
Yt

ZtQ
(1−α)/α
t

, C̃t =
Ct

ZtQ
(1−α)/α
t

, Ĩt =
It

ZtQ
(1−α)/α
t

, K̃t =
Kt

ZtQ
1/α
t

.

Given these stationary variables, we can rewrite the equilibrium conditions (2), (5),

(8), (9), and (10) as

Ỹt

(
Zt

Zt−1

)1−α (
Qt

Qt−1

)(1−α)/α

= K̃1−α
t−1 Lα

t , (11)

K̃t
Zt

Zt−1

(
Qt

Qt−1

)1/α

= (1− δ)K̃t−1 + Ĩt
Zt

Zt−1

(
Qt

Qt−1

)1/α

, (12)

C̃t + Ĩt = Ỹt, (13)

ξL1+η
t = αỸt/C̃t, (14)

1 = βEt

[
(1− δ)

C̃t

C̃t+1

Zt

Zt+1

(
Qt

Qt+1

)1/α

+ (1− α)
C̃t

C̃t+1

Ỹt+1

K̃t

]
. (15)

Denote λk ≡ λzλ
1/α
q . It follows from the above conditions that the steady state

equilibrium can be described by the following equations

λ1−α
k Ỹ = K̃1−αLα, (16)

ik =
Ĩ

K̃
= 1− 1− δ

λk

, (17)

C̃ + Ĩ = Ỹ , (18)

ξL1+η = αỸ /C̃, (19)

yk =
Ỹ

K̃
=

1

β(1− α)

[
1− β(1− δ)

λk

]
. (20)

4An alternative approach to induce stationarity in the model is to detrend the variable by its

deterministic trend. For instance, one can define X̃t = Xt

λt
x
, where Xt ∈ {Yt, Ct, It,Kt} and λx is a

function of λz and λq. Our approach has an advantage in that it nests the model with stochastic

trends (e.g., random walk processes) as a special case while the other approach does not.
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The consumption-output and investment-output ratios can derived from the above

steady state conditions:

iy =
Ĩ

Ỹ
= β(1− α)

λk − (1− δ)

λk − β(1− δ)
, (21)

cy =
C̃

Ỹ
= 1− iy. (22)

Log-linearizing the equilibrium conditions (11), (12), (13), (14), and (15) and rear-

ranging the terms, we obtain the following five equations describing the production

function, the law of motion for capital accumulation, the resource constraint, the

optimal consumption-labor-supply decision, and the optimal investment decision:

ŷt − αl̂t + (1− α)

(
1

α
∆µ̂t + ∆ν̂t

)
= (1− α)k̂t−1, (23)

k̂t − ik ît + (1− ik)
(
α−1∆µ̂t + ∆ν̂t

)
= (1− ik)k̂t−1, (24)

cy ĉt + iy ît = ŷt, (25)

ŷt = ĉt + (1 + η)l̂t, (26)

β(1− α)ykk̂t − ĉt + [1− β(1− α)yk]

(
ρµ − 1

α
µ̂t + (ρν − 1)ν̂t

)
=

[β(1− α)ck − 1]Etĉt+1 + β(1− α)ikEtît+1,

(27)

where ∆ is the first difference operator (e.g., ∆zt = zt−zt−1), the notation x̂t denotes

ln X̃t − ln X̃ for X = C, I, Y, K or ln Xt − ln X for X = L, ik, cy, iy, and yk are

steady-state ratios defined in (17), (22), (21), (20), and ck = C̃
K̃

is derived as

β(1− α)(ck + 1) = 1− αβ(1− δ)

λk

. (28)

Definition 1. Admissible values of the deep parameters are β ∈ (0, 1), η ≥ 0, α ∈
(0, 1), δ ∈ [0, 1], λz ≥ 1, and λq ≥ 1.

In the literature, dynamics are often simulated for a particular set of admissible

values of the deep parameters by numerically solving the rational-expectations equi-

librium system given by the above conditions. We shall show, however, that the

equilibrium characterized by (23)-(27) can be solved analytically for all admissible

values of the deep parameters. The crucial step is to derive a stochastic process for

capital, as stated in the following proposition.
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Proposition 1. The equilibrium solution for capital satisfies the following second-order

stochastic difference equation:

k̂t = γ1Etk̂t+1 + γ2k̂t−1 + γµ1µ̂t + γν1ν̂t + γµ2µ̂t−1 + γν2ν̂t−1, (29)

where the coefficients γ1, γ2, γµ1, γν1, γµ2, and γν2 are reported in Appendix A.

Proof. See Appendix B. ¤

Proposition 1 is the key to obtaining all of our theoretical results, as is shown in

the next section.

IV. REE vs. SCE: Analytical Results

In this section, we derive the closed-form solutions for both the REE and the SCE.

The key is to solve (29); the solution depends on how agents form expectations of

the endogenous accumulation process of capital. Once this solution is obtained, it is

relatively straightforward to derive the closed-form solutions for the other variables,

which are reported in Appendix A.

For the REE solution, we have the following result.

Proposition 2. The solution to the second-order differential equation (29) under the

rational expectations assumption is

k̂t = ak̂t−1 + bν̂t + cµ̂t + dν̂t−1 + eµ̂t−1, (30)

where

a =
1−√1− 4γ1γ2

2γ1

, b =
γ1d + γν1

1− (ρν + a)γ1

, c =
γ1e + γµ1

1− (ρµ + a)γ1

,

d =
γν2

1− γ1a
, e =

γµ2

1− γ1a
.

Furthermore, this solution is stationary and unique.

Proof. See Appendix C. ¤

Given the shock processes and an initial condition for capital, (30) gives the dy-

namic solution for capital. For a comparison with the SCE solution, this dynamic

solution can be expressed as
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k̂t = bεν,t + cεµ,t +
∞∑
i=1

(bbi + dbi−1) εν,t−i +
∞∑
i=1

(cci + eci−1) εµ,t−i, (31)

where for all i ≥ 0,

bi =
i∑

j=0

ai−jρj
ν , while if ρν 6= a then bi =

ai+1 − ρi+1
ν

a− ρν

;

ci =
i∑

j=0

ai−jρj
µ, while if ρµ 6= a then ci =

ai+1 − ρi+1
µ

a− ρµ

;

We now assume that agents have adaptive expectations. We follow Marcet and

Nicolini (2003) and Sargent, Williams, and Zha (2006a) to replace Etk̂t+1 by Êtk̂t+1

such that

Êtk̂t+1 = β̂t.

Agents update their beliefs β̂t using the following constant-gain learning (CGL) algo-

rithm:

β̂t = β̂t−1 + g(k̂t−1 − β̂t−1), (32)

where 0 < g << 1 is a gain representing how fast past observations are discounted in

the learning regression.

The dynamics of k̂t produced by (29) under the above learning algorithm (32) follow

the process

k̂t = γ1β̂t + γ2k̂t−1 + γν1ν̂t + γµ1µ̂t + γν2ν̂t−1 + γµ2µ̂t−1. (33)

In self-confirming equilibrium, beliefs are not contradicted by observations along

the equilibrium path (Sargent, 1999). To find an SCE is to solve a fixed-point problem.

For our model, the solution to the SCE is to find the fixed point β̂ that solves the

orthogonality condition

E
[
k̂t(β̂)− β̂

]
= 0, (34)

where E( ) is a mathematical unconditional expectation operator and k̂t itself is a

function of the belief β̂ in self-confirming equilibrium such that

k̂t(β̂) = γ1β̂ + γ2k̂t−1(β̂) + γν1ν̂t + γµ1µ̂t + γν2ν̂t−1 + γµ2µ̂t−1.
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Proposition 3. As g → 0, the belief sequence {β̂t} in (32) converges weakly to the

unique and stationary SCE given by β̂ = 0 for all admissible values of the deep

parameters.

Proof. From (33) one can see that k̂t is a function of current and past beliefs and

fundamental shocks. We denote this function as κ( ) such that

k̂t = κ(β̂t, β̂t−1, . . . , νt, νt−1, . . . , µt, µt−1, . . . ).

Denote

κ̃(β̂t, β̂t−1, . . . ,νt, νt−1, . . . , µt, µt−1, . . . )

= κ(β̂t, β̂t−1, . . . , νt, νt−1, . . . , µt, µt−1, . . . )− β̂t.

We can then rewrite the CGL algorithm (32) as

β̂t = β̂t−1 + gκ̃(β̂t, β̂t−1, . . . , νt, νt−1, . . . , µt, µt−1, . . . ). (35)

To prove that (34) holds at β̂ = 0 and the fixed point β̂ = 0 is unique, we denote the

left-hand-side term in (34) by

G(β̂) = Eκ̃(β̂, β̂, . . . , νt, νt−1, . . . , µt, µt−1, . . . ).

Under our assumptions, it follows from Kushner and Yin (1997) that as g → 0, the

beliefs β̂t in (35) converge weakly to the solution of the ordinary differential equation

(ODE)
˙̂
β = G(β̂).

One can further show that

G(β̂) =

(
γ2 + γ1 − 1

1− γ2

)
β̂.

Since γ1 > 0, γ2 > 0, and γ2 + γ1 < 1, the ODE has a unique fixed point at β̂ = 0.

The ODE is stable since (γ2 + γ1 − 1)/(1− γ2) < 0. ¤

As one can see from Proposition 3, the SCE is exactly the same as the rational

expectations steady state. Since an SCE is a limit of adaptive (learning) dynamics,

it is important to characterize these dynamics and to study whether they are signifi-

cantly different from dynamics under rational expectations. We rewrite the stochastic

processes (32) and (33) as
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[
β̂t

k̂t

]
=

[
1− g g

(1− g)γ1 γ2 + gγ1

][
β̂t−1

k̂t−1

]
+

[
0 0

γν1 γµ1

][
ν̂t

µ̂t

]
+

[
0 0

γν2 γµ2

] [
ν̂t−1

µ̂t−1

]
. (36)

Given the initial belief β̂−1, the initial capital stock k̂−1, and the shock processes,

the bivariate autoregressive process (36) determines the belief and capital dynamics

jointly; then, (23)-(26) in Section III, or (A1)-(A4) in Appendix A, determine the

dynamics of investment, labor, output, and consumption.

Proposition 4. The learning dynamics, described by (23)-(26) and (36) for g ∈ (0, 1),

are stationary for all admissible values of the deep parameters.

Proof. Given (A1)-(A4) in Appendix A that characterize the dynamics of investment,

labor, output, and consumption as a function of k̂t, it suffices to show that (36) is a

stationary process. The two characteristic roots of the 2×2 coefficient matrix of β̂t−1

and k̂t−1 on the right-hand side of (36) are

λ1 =
(1− g + γ2 + gγ1)−

√
(1− g + γ2 + gγ1)2 − 4(1− g)γ2

2
,

λ2 =
(1− g + γ2 + gγ1)+

√
(1− g + γ2 + gγ1)2 − 4(1− g)γ2

2
.

Since γ1 > 0, γ2 > 0, and γ1+γ2 < 1 for all admissible values of the deep parameters,

it follows that both λ1 and λ2 are real numbers and for any g ∈ (0, 1), 0 < λ1 < λ2 < 1.

Hence, the adaptive process for {β̂t, k̂t}, given by (36), is stationary. ¤

Proposition 4 implies that the learning dynamics studied in this paper remain in

the domain of attraction of the SCE (the rational expectations steady state) and thus

the probability of escapes from the SCE is very small.

To assess how different the learning dynamics differ from dynamics under rational

expectations, we derive the belief and capital dynamics under the CGL as

(1− λ1L) (1− λ2L) β̂t = g (γν1ν̂t−1 + γµ1µ̂t−1 + γν2ν̂t−2 + γµ2µ̂t−2) , (37)

(1− λ1L) (1− λ2L) k̂t = [1− (1− g) L] (γν1ν̂t + γµ1µ̂t + γν2ν̂t−1 + γµ2µ̂t−1) , (38)

where L is the lag operator. It follows from (37) that
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β̂t = g

∞∑
i=1

i∑
j=1

λj
1 − λj

2

λ1 − λ2

(
γν1ρ

i−j
ν εν,t−i + γµ1ρ

i−j
µ εµ,t−i

+γν2ρ
i−j
ν εν,t−1−i + γµ2ρ

i−j
µ εµ,t−1−i

)
.

(39)

This can be simplified to

β̂t = gγν1εν,t−1 + g

∞∑
i=2

[
γν1

λi
1 − λi

2

λ1 − λ2

+
(
γν1 + γν2ρ

−1
ν

) i−1∑
j=1

λj
1 − λj

2

λ1 − λ2

ρi−j
ν

]
εν,t−i

+ gγµ1εµ,t−1 + g

∞∑
i=2

[
γµ1

λi
1 − λi

2

λ1 − λ2

+
(
γµ1 + γµ2ρ

−1
µ

) i−1∑
j=1

λj
1 − λj

2

λ1 − λ2

ρi−j
µ

]
εµ,t−i.

If ρν 6= λ1 or λ2, and ρµ 6= λ1 or λ2, then it simplifies further to

β̂t = gγν1εν,t−1 + g

∞∑
i=1

[
γν1

λi+1
1 − λi+1

2

λ1 − λ2

+ (ρνγν1 + γν2)

(
λ1

λ1 − λ2

λi
1 − ρi

ν

λ1 − ρν

− λ2

λ1 − λ2

λi
2 − ρi

ν

λ2 − ρν

)]
εν,t−1−i

+ gγµ1εµ,t−1 + g

∞∑
i=1

[
γµ1

λi+1
1 − λi+1

2

λ1 − λ2

+ (ρµγµ1 + γµ2)

(
λ1

λ1 − λ2

λi
1 − ρi

µ

λ1 − ρµ

− λ2

λ1 − λ2

λi
2 − ρi

µ

λ2 − ρµ

)]
εµ,t−1−i. (40)

On the other hand, we can compute the rational expectations from (31) as

Etk̂t+1 = [b (a + ρν) + d] εν,t + [c (a + ρµ) + e] εµ,t

+
∞∑
i=1

(bbi+1 + dbi) εν,t−i +
∞∑
i=1

(cci+1 + eci) εµ,t−i.
(41)

A comparison of (40) and (41) shows that, although the SCE is the same as the steady

state REE, the dynamics of beliefs β̂t are both qualitatively and quantitatively differ-

ent from those of expectations Etk̂t+1. These differences lead to important differences

in dynamics of other macroeconomic variables, as shown in the next section.
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V. REE vs. SCE: Transmission of Technology Shocks

We now analyze the transmission mechanisms of the model under both rational and

adaptive expectations. We simulate the model using a few sets of parameter values,

but the quantitative differences between learning and rational expectations dynamics

exist for a wide range of values. The model parameters include β, the subjective

discount factor; α, the labor share of income; δ, the capital depreciation rate; η, the

inverse Frisch elasticity of labor supply; λz and λq, the average growth rate of the

neutral and biased technologies; ξ, the weight parameter in the preferences for leisure;

ρν , ρµ, σν , and σµ, the parameters controlling the shock processes, and g, the constant

gain in the learning process.

V.1. Benchmark parameterization. The benchmark parameter values we use for

simulations, summarized in Table 1, are based on quarterly frequency. We set α =

0.7, corresponding to a labor income share of 70%. We set λq = 1.008 such that

the investment-specific technology grows at an annual rate of 3.2%, as suggested by

Greenwood, Hercowitz, and Krusell (1997). We set λz = 1.0016 such that, given our

value of λq and α, real per capita GDP grows at an annual rate of 2% on the path

of balanced growth.5 We set δ = 0.03 (corresponding to an annual depreciation rate

of 12%), a value used in business cycle studies. We set β = 0.99. We set η = 2,

corresponding to a Frisch elasticity of 0.5(Pencavel, 1986). We set ξ = 34.22 so

that, given the values of other parameters, the steady-state hours worked are 30%

of the time endowment (which is normalized to 1). For the parameters in the shock

processes, we set ρν = ρµ = 0.95 and normalize the standard deviations such that

σν = σµ = 1. Finally, we set the gain g = 0.05 in the learning process.

V.2. Amplification effects. To understand the role of adaptive expectations in

transmitting the two types of technology shocks, we compute impulse responses to

both shocks.

V.2.1. Neutral technology shock. Figure 1 displays the impulse responses of aggre-

gate variables to a neutral technology shock (normalized by one standard deviation)

with our benchmark parameterization. The solid line represents the responses under

5The average growth rate for output in the model is given by λzλ
(1−α)/α
q .
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rational expectations and the dashed line represents the responses under adaptive

expectations.

The responses of aggregate variables to a positive neutral technology shock in the

rational expectations model should be familiar to a student of real business cycle

studies. As the solid line in the figure shows, output rises on impact and declines

gradually. Consumption, investment, hours, the real wage, and the real interest rate

all co-move with output. In the impact period, consumption responds less and in-

vestment responds more than does output. These patterns of responses are consistent

with the stylized facts about business cycles.

A well documented difficulty facing the standard RBC model with rational expec-

tations lies in the labor market dynamics (Christiano and Eichenbaum, 1992). The

RBC model typically fails to generate the observed large responses of labor hours and

small responses of the real wage following a neutral technology shock. To understand

this feature of the model, note that the shock raises the demand for labor at any given

real wage, shifts the labor demand schedule out and creating a substitution effect.

Thus, holding the labor supply schedule unchanged, the substitution effect drives up

both hours and the real wage. In the mean time, since the shock is persistent and

therefore raises future productivity, the associated wealth effect raises current con-

sumption, which shifts the labor supply curve up. The wealth effect partially cancels

out the substitution effect on hours, rendering the responses of equilibrium hours

small; meanwhile, the wealth effect reinforces the substitution effect on the real wage,

pushing up the equilibrium wage sharply. The lower the Frisch elasticity of labor

supply, the greater the rise in the real wage.6 As is evident in the two lower panels of

Figure 1 and the top panel in Table 2, the model with rational expectations implies

that the initial response of hours is about 20% of that of output, while the magnitude

of the real wage response about 80% of that of output response. Indeed, as shown

in Table 2, in the rational expectations model, the cumulative responses of hours at

all forecasting horizons (from 1 quarter through 24 quarters) are less than 20% and

those of the real wages are more than 80% relative to the output responses.

Introducing learning helps alleviate some of the problems for the RBC model,

especially for the labor market variables. The dashed lines in Figure 1 display the
6Even under the assumption of indivisible labor such that the aggregate labor supply elasticity is

arbitrarily large (Hansen, 1985; Rogerson, 1988), the real wage still rises sharply.
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dynamic responses of the aggregate variables in the model with adaptive expectations

following a positive neutral technology shock. We first note that the shock raises the

demand for labor and, as in the rational expectations model, the substitution effect

leads to a rise in both hours and the real wage. Unlike the rational expectations

model, however, the wealth effect is muted because agents form expectations of the

future productivity and income based on past observations. Since the wealth effect is

muted, the initial rise in the real interest rate leads to an initial decline in consumption

because of the intertemporal substitution effect. The decline in consumption in the

impact period shifts the labor supply curve downward. Consequently, equilibrium

hours rise sharply and the equilibrium real wage rises only modestly. The sharp rise

in hours, along with the positive productivity shock, leads to a sharp rise in output;

as consumption declines initially, the sharp rise in output leads to a sharp increase

in investment. As shown in the lower panel of Table 2, the model with adaptive

expectations implies that, at least in the short run, the cumulative responses of hours

relative to output are much larger than those in the rational expectations model while

the cumulative responses of the real wage relative to output are much smaller. In

Section V.4,we will discuss the fluctuations of consumption relative to those of output.

In summary, following a neutral technology shock, introducing learning amplifies

the response of hours and dampens the responses of the real wage. Furthermore,

learning helps amplify the responses of other aggregate variables, including output,

consumption, investment, and the real interest rate.

V.2.2. Biased technology shock. Although the effects of neutral technology shocks

are well studied, the literature on the effects of investment-specific shocks is scarce,

with the notable exceptions of Greenwood, Hercowitz, and Krusell (2000), Krusell,

Ohanian, Ríos-Rull, and Violante (2000), Fisher (2006), and He and Liu (2008). To

our best knowledge, there has been no published study that examines the effects of

biased technology shocks (such as the investment-specific shocks) in the context of

adaptive expectations.

In Figure 2, we plot the impulse responses following a positive biased technology

shock for both the rational expectations and adaptive expectations models. In both

models, the shock leads to a rise in output, investment, hours, and the real interest

rate, but a short-run decline in consumption and the real wage.
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For the rational expectations model, as the biased shock raises the efficiency of

investment, investment goods today become cheaper and current consumption be-

comes more expensive. This type of shock, unlike the neutral technology shock, shifts

resources from consumption to investment. Consequently, investment rises and con-

sumption declines for several periods. The decline in consumption shifts the labor

supply curve down so much that the real wage declines somewhat while hours rise.

The rise in labor hours helps produce more output. Meanwhile, as capital becomes

more productive following the shock, the real interest rate increases.

In the learning model, because agents do not (rationally) foresee the increase in the

future level of investment technology, they respond to the positive shock as though

it had only a temporary effect. The muted channel of the wealth effect makes the

intertemporal substitution effect stronger under learning than that under rational

expectations. Consequently, the demand for current investment rises sharply, leading

to a rise in investment and a fall in consumption in a magnitude more than that in the

rational expectations model. The sharp decline in consumption amplifies the decline

in the real wage and the rise in hours. The amplified increase in hours in turn leads

to a sharp rise in output and thus in the real interest rate.

In summary, following a positive biased technology shock, the responses of all the

aggregate variables are substantially amplified in the learning model, as compared

to those under rational expectations. Overall, relaxing the assumption of perfect

rationality helps give a larger role to both neutral and biased technology shocks in

shaping business cycles.

Table 3 reports the cumulative responses of some macroeconomic variables relative

to output responses at various forecasting horizons. Unlike the results for the neutral

technology shock (Table 2), introducing learning does not change, at least in the

short run (up to 4 quarters from the impact period), the relative fluctuations of

consumption, investment, hours, and the real wage from the results implied by the

rational expectations model. In longer horizons (8 quarters and beyond), however,

the fluctuations of consumption, investment, hours, and the real wage, relative to

those of output, are larger under learning than those under rational expectations.

V.2.3. An alternative learning rule. One important question is whether our main

findings hinge on the particular learning rule (32). To address this issue, we consider
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a sophisticated learning rule that resembles the rational expectations solution (30).

Specifically, we replace Etk̂t+1 by Êtk̂t+1 such that

Êtk̂t+1 = x′tαt+1|t,

where

xt =




k̂t

ν̂t

µ̂t


 .

Agents update their beliefs αt+1|t using the following adaptive learning algorithm:

αt+1|t = αt|t−1 + gHtxt−1

(
k̂t − x′t−1αt|t−1

)
,

H−1
t+1 = H−1

t + g
(
xtx

′
t −H−1

t

)
.

This alternative learning mechanism ensures that the equilibrium under adaptive

learning is E-stable in the sense of Evans and Honkapohja (2001). Because our alter-

native learning rule is separate from agents’ decision making, the dynamic responses

of aggregate variables under this new rule (not reported) are very similar to those un-

der our benchmark learning rule in Sections V.2.1 and V.2.2. Such a similarity holds

for a wide range of parameter values (including those studied later in this paper).

We have also experimented with other learning rules and the main results are

insensitive to different learning mechanisms.

V.3. Relative importance of biased vs. neutral technology shocks. We have

shown that learning amplifies the effects of both neutral and biased technology shocks.

We now examine whether learning changes the relative importance of the two shocks.

In Table 4, we report these results for our benchmark model. For each variable, we

first compute the contribution of the biased technology shock, relative to the neutral

technology shock, in forecasting variances for both rational and adaptive expectations

models. We then compute the ratio of such a contribution for the learning model to

that for the rational expectations model. This ratio is reported in Table 4. If the ratio

is larger than one, it means that the relative contribution of the biased technology

shock is more important under learning than under rational expectations. At the

4-quarter forecasting horizon, for instance, the biased technology shock accounts for

only 6.06% of the output variance in the rational expectations model, while it accounts

for 27.19% in the learning model (these values are not reported in the table). Thus,
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the contribution of the biased technology shock for the one-quarter ahead output

variance in the learning model is 4.49 times that in the rational expectations model

(this ratio is reported in the table).

As one can see from the table, introducing learning substantially amplifies the

contribution of the biased technology shock relative to the neutral technology shock

for output, consumption, and investment. Interestingly, the relative contribution of

the biased technology shock for hours is the same across the two models.

V.4. Indivisible labor. In Table 2, we have seen that learning makes consumption

fluctuate more than output. In this section, we show that this result is sensitive

to parameter values and, in particular, to the value of the Frisch elasticity of labor

supply.

Consider the case where all the benchmark parameter values are the same except

for the inverse Frisch elasticity parameter η, which we set to zero. The zero value of

η corresponds to indivisible labor in the sense of Hansen (1985) and Rogerson (1988)

and implies an infinite labor supply elasticity at the aggregate level.

Tables 5 and 6 display the cumulative responses of several macroeconomic variables

relative to those of output for η = 0, with all the other parameters the same as their

benchmark values. Table 5 shows that, following the neutral technology shock, the

model with rational expectations (with η = 0) generates larger responses of hours and

smaller responses of the real wage than those in the benchmark model, at least in the

short run. Since consumption is proportional to the real wage (labor productivity)

when η = 0 (see (9)), the responses of consumption are smaller than those in the

benchmark model (compared to Table 2). In the learning model, the responses of

consumption relative to those of output become much smaller with indivisible labor

(Table 5) than those with the benchmark value of labor elasticity (Table 2), while the

relative fluctuations of hours are larger and the relative fluctuations of the real wage

are smaller when compared to the benchmark case.

Table 6 reports the cumulative responses of consumption, investment, hours, and

the real wage relative to those of output for η = 0, following a positive biased tech-

nology shock. The table shows that learning does not change the relative fluctuations

of these variables in the short run, but amplifies the fluctuations of these variables at

the longer horizon (8 quarters and beyond).
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Table 7 reports the relative contribution of the biased technology shock. As in

the benchmark case, the biased technology becomes more important under learning

than under rational expectations, but the magnitude of the relative importance of the

biased technology shock becomes smaller than that in the benchmark model where

the the Frisch elasticity of labor is smaller.

V.5. Less persistent shocks. Since the transmission of the shocks in the model

with adaptive expectations works through the muted wealth effect, the quantitative

importance of learning should depend on the persistence of the shock. To understand

to what extent the propagation mechanism in the learning model depends on the per-

sistence of the shocks, we consider the case with less persistent shocks. In particular,

we set ρν = ρµ = 0.7 (instead of 0.95) and report the impulse responses following

each type of technology shocks for the two alternative models.

Figure 3 displays the impulse responses to a positive neutral technology shocks

under rational expectations (the solid lines) and under adaptive expectations (the

dashed lines). Since the shock is less persistent, the wealth effect is weaker so that,

in the rational expectations model, the rise in consumption is smaller and the rise in

hours is larger than that under the benchmark parameterization (in comparison with

Figure 1). For the same reason (i.e., the wealth effect is weaker with less persistent

shocks), introducing adaptive learning dampens the response of the real wage and

amplifies the responses of other aggregate variables, but to a lesser extent than in

the benchmark case shown in Figure 1. Moreover, the responses of both consumption

and the real wage display a clear hump shape; the responses of investment, hours,

and the real interest rate all display an inverted hump shape; and output rises in the

impact period and declines monotonically thereafter. Under adaptive expectations,

the representative agent is backward looking when forming expectations. In the

impact period, the wealth effect of the shock is muted; the intertemporal substitution

effect induced by the rise in the real interest rate makes consumption more expensive

and saving more attractive. Thus, in the short run, consumption falls and investment

rises. Overtime, however, the agent learns about the wealth effect of the positive

technology shock while the intertemporal substitution effect becomes weaker as the

real interest rate goes back to its steady state. Thus, consumption rises above the

steady state and keeps rising before it begins to decline back to the steady state.
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The rise in consumption shifts the labor supply curve up and thus lowers labor hours

and raises the real wage. As consumption climbs to its peak over time, hours and

investment fall to the trough and the real wage rises to the peak. Since output

falls back to the steady state over time, consumption, investment, and hours return

gradually to the steady state.

Figure 4 displays the impulse responses to a positive biased technology shock in

both the rational expectations model (the solid lines) and the adaptive expectations

model (the dashed lines). As in the benchmark case (Figure 2), the responses in

the adaptive expectations model are more pronounced than those in the rational

expectations model, but the amplification effects of learning are smaller here with

the less persistent shock. Similar to the case with neutral technology shock (Figure

3), the responses of consumption and the real wage both display a hump shape; the

responses of investment, labor hours, and the real interest rate all display an inverted

hump shape; and the response of output does not have a hump.

In summary, with less persistent shocks, the wealth effect in the rational expec-

tations model becomes weaker and accordingly the amplification effect of adaptive

expectations become weaker as well. The adaptive expectations model generates

more pronounced hump-shaped responses while the rational expectations model does

not.

V.6. Procyclical consumption responses. In Figure 1 (the benchmark case), we

have seen that learning implies negative short-run responses of consumption following

a positive neutral technology shock. For less persistent neutral shocks, the short-run

responses of consumption remain negative, although to a lesser extent, as shown in

Figure 3. We now show that this problem can be alleviated when we combine less

persistent shocks with indivisible labor.

Figures 5 and 6 display the impulse responses with indivisible labor (η = 0) and

with low persistence in the shocks (ρν = ρµ = 0.7), while all other parameters are

kept at their benchmark values. As we have discussed in Sections V.4 and V.5,

these parameter values imply a smaller wealth effect under rational expectations

than that in the benchmark model. As in the benchmark model, learning here still

mitigates the wealth effect, but to a lesser extent. Indeed, under this new parameter

configuration, learning no longer produces a sharp short-run decline in consumption
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following the positive neutral technology shock. Figure 5 shows that, in contrast to

the benchmark results reported in Figure 1, the impact effect of the neutral shock on

consumption becomes slightly positive and the subsequent responses of consumption

are procyclical.

As can be seen in Figures 5 and 6, our general conclusion remains the same under

this new parameter configuration: learning amplifies the dynamic responses of all

aggregate variables to both technology shocks and improves the model’s predictions

on the labor market dynamics.

VI. Conclusion

We have studied a standard growth model with adaptive expectations in which

beliefs are decoupled from decision rules. We have proven that there exists a unique,

stable SCE in our learning model and that the SCE is the same as the steady state

REE. In contrast to the existing literature, however, we have shown that the learning

model can generate substantially different dynamics from those implied by the rational

expectations model. These differences are not driven by escape dynamics.

It is known that technology shocks in the standard growth model do not gener-

ate enough fluctuations in key macroeconomic variables such as hours and output.

Introducing misspecified learning in the growth model dampens the wealth effect.

This muted wealth effect, coupled with the strong intertemporal substitution effect,

amplifies the responses of macroeconomic variables and can make dynamic responses

hump-shaped. In summary, the learning model gives technology shocks a much more

prominent role in causing fluctuations of macroeconomic variables than does the ra-

tional expectations model.
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Appendix A. Analytical Solution

The coefficients in (29) in Proposition 1 are defined as:

γ1,com = β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η),

γ2,com = [β(1− α)(ck + 1)− 1] [(1 + η)ck + 1] + (1 + η)(1− αik),

γ1 =
β(1− α)(ck + 1) + η

γ1,com
,

γ2 =
(1− α)(1 + η)yk + (1− α + η)(1− ik)

γ1,com
,

γν1 =
(ρν − 1) γ2,com + αηyk − (1− α + η)(ck + 1)

γ1,com
,

γµ1 =
(ρµ − 1) γ2,com + αηyk − (1− α + η)(ck + 1)

αγ1,com
,

γν2 =
(1− α + η)(ck + 1)− αηyk

γ1,com
,

γµ2 =
(1− α + η)(ck + 1)− αηyk

αγ1,com
.

The steady state ratios such as ck and ik have been derived in Section III. One

can verify that, for all admissible values of the deep parameters, that is, for any

β ∈ (0, 1), η ≥ 0, α ∈ (0, 1), δ ∈ [0, 1], λz ≥ 1, and λq ≥ 1, all the steady-state ratios

are well-defined and positive, and so are γ1 and γ2.

The closed-form solutions for investment, hours, output, and consumption are de-

rived as the the following system of equations under either rational or adaptive ex-

pectations:

ît = kik̂t + (1− ki)k̂t−1 + (ki − 1)∆ν̂t +

(
ki − 1

α

)
∆µ̂t, (A1)

l̂t =
1

[(1 + η)ck + αik]
k̂t − [1− αik]

[(1 + η)ck + αik]
k̂t−1

+
(1− αik)

[(1 + η)ck + αik]
∆ν̂t +

(α−1 − ik)

[(1 + η)ck + αik]
∆µ̂t,

(A2)
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ŷt =
α

[(1 + η)ck + αik]
k̂t +

[(1− α)(1 + η)ck − α(1− ik)]

[(1 + η)ck + αik]
k̂t−1

+
α (1− ik)− (1− α)(1 + η)ck

[(1 + η)ck + αik]
∆ν̂t

+
(1− ik)− α−1(1− α)(1 + η)ck

[(1 + η)ck + αik]
∆µ̂t,

(A3)

ĉt =
α− 1− η

[(1 + η)ck + αik]
k̂t +

[(1− α)(1 + η)yk + (1 + η − α)(1− ik)]

[(1 + η)ck + αik]
k̂t−1

+
α (1 + ηik)− (1 + η) [1 + (1− α)ck]

[(1 + η)ck + αik]
∆ν̂t

+
(1 + ηik)− α−1(1 + η) [1 + (1− α)ck]

[(1 + η)ck + αik]
∆µ̂t.

(A4)

It is clear how the equilibrium can be solved. Once the solution for capital is

obtained, as shown in Section IV, Equation (A1) can be used to solve for investment,

(A2) for labor, (A3) for output, and (A4) for consumption.

Appendix B. Proof of Proposition 1

By successive substitutions in (23)-(27), one can derive (29). Specific steps are

described below.

We begin by first deriving the following two relations from (25) and (26):

ŷt = ît − (1 + η)cil̂t, (A5)

ĉt = ît − (1 + η)yil̂t. (A6)

Substituting (A5) into (23), we get:

ît = [(1 + η)ci + α] l̂t + (1− α)k̂t−1 − (1− α)∆ν̂t −
(

1− α

α

)
∆µ̂t. (A7)

Substituting (A7) into (24) yields

k̂t = [(1 + η)ck + αik] l̂t + (1− αik)k̂t−1 − (1− αik)∆ν̂t −
(

1− αik
α

)
∆µ̂t. (A8)
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Substituting (A6) and (A7) into (27) yields
[
1− αβ(1− δ)

λzλ
1/α
q

+ η

]
Etl̂t+1 −

[
1− αβ(1− δ)

λzλ
1/α
q

]
k̂t

= (1− α + η)l̂t − (1− α)k̂t−1

+ (1− α)∆ν̂t +
αβ(1− δ)

λzλ
1/α
q

Et∆ν̂t+1

+
1− α

α
∆µ̂t +

β(1− δ)

λzλ
1/α
q

Et∆µ̂t+1.

(A9)

Rewrite (A8) as

l̂t =
1

(1 + η)ck + αik
k̂t

− 1− αik
(1 + η)ck + αik

k̂t−1

+
1− αik

(1 + η)ck + αik
∆ν̂t

+
{1− αik}

(
1
α

)

(1 + η)ck + αik
∆µ̂t.

(A10)

It follows that

[
1− αβ(1− δ)

λzλ
1/α
q

+ η

]
Etl̂t+1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

]Etk̂t+1

−

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]
{1− αik}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] k̂t

+

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] Et∆ν̂t+1

+

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

} (
1
α

)
(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] Et∆µ̂t+1. (A11)

Substituting (A10) and (A11) into (A9), and rearranging, we get

χk,1Etk̂t+1 + χk,0k̂t + χk,−1k̂t−1 + χν,1Et∆ν̂t+1

+ χν,0∆ν̂t + χµ,1Et∆µ̂t+1 + χµ,0∆µ̂t = 0,
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where

χk,1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

]

χk,0 = −

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]
{1− αik}+ (1− α + η)

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] −
[
1− αβ(1− δ)

λzλ
1/α
q

]

χk,−1 =
(1− α + η) {1− αik}(

1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] + (1− α)

χν,1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − αβ(1− δ)

λzλ
1/α
q

χν,0 = −
(1− α + η)

{(
1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − (1− α)

χµ,1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

} (
1
α

)
(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − β(1− δ)

λzλ
1/α
q

χµ,0 = −
(1− α + η)

{(
1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

} (
1
α

)
(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − 1− α

α
.

Further simplifying, we get

k̂t = χk
k,1Etk̂t+1 + χk

k,−1k̂t−1 + χk
ν,1Et∆ν̂t+1 + χk

ν,0∆ν̂t + χk
µ,1Et∆µ̂t+1 + χk

µ,0∆µ̂t,

where

χk
k,1 =

β(1− α)(ck + 1) + η

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
k,−1 =

(1− α)(1 + η)yk + (1− α + η)(1− ik)

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
ν,1 =

[β(1− α)(ck + 1)− 1] [(1 + η)ck + 1] + (1 + η)(1− αik)

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
ν,0 = − (1− α + η)(ck + 1)− αηyk

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
µ,1 =

[β(1− α)(ck + 1)− 1] [(1 + η)ck + 1] + (1 + η)(1− αik)

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

(
1

α

)
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χk
µ,0 = − (1− α + η)(ck + 1)− αηyk

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

(
1

α

)
.

Simplifying further, we have

k̂t = χk
k,1Etk̂t+1 + χk

k,−1k̂t−1 − χk
ν,0ν̂t−1 +

[
(ρν − 1) χk

ν,1 + χk
ν,0

]
ν̂t

− χk
µ,0µ̂t−1 +

[
(ρµ − 1) χk

µ,1 + χk
µ,0

]
µ̂t,

which gives the results in Appendix A.

Appendix C. Proof of Proposition 2

Because (29) is a second-order differential equation, there are only two solutions.

We will show, next, that one solution is stationary and the other explosive. Thus,

there is a unique stationary solution.

The coefficient a in (30) takes on one of the following two values:

a1 =
1−√1− 4γ1γ2

2γ1

, a2 =
1 +

√
1− 4γ1γ2

2γ1

.

We can verify that γ1 > 0 and γ2 > 0 for all admissible values of the deep parameters.

We can further show that γ1 + γ2 < 1 if and only if β(1 − δ) < λzλ
1/α
q , which holds

too for all admissible values of the deep parameters.

Since γ1 > 0, γ2 > 0, γ1 + γ2 < 1, we have γ1 ∈ (0, 1), γ2 ∈ (0, 1), and 4γ1γ2 < 1. It

follows that a1 and a2 are real numbers. Knowing the above ranges for γ1 and γ2, we

can in fact show that a1 ∈ (0, 1) and a2 > 1. We can then verify that (ρν + a1)γ1 < 1

and (ρµ + a1)γ1 < 1, which imply that γ1a1 < 1, and so the solution prescribed by

a = a1 above corresponds to a (unique) stationary rational expectations equilibrium.7

Given the initial condition k̂−1 and the driving processes, (30) completely pins down

capital, and then (A1), (A2), (A3), and (A4) determine investment, labor, output,

and consumption, respectively. From now on, whenever we mention REE, we refer to

this stationary REE, where we also write a1 simply as a.

7We can also show that, provided ρν 6= a1 and ρµ 6= a1, the solution prescribed by a = a2 above

corresponds to an explosive path.
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Table 1. Parameter values

Preference β = 0.99 η = 2.0 ξ adjusted

Labor share α = 0.7

Capital Depreciation δ = 0.03

Neutral Technology λz = 1.0016 ρν = 0.95 σν = 1

Biased Technology λq = 1.008 ρµ = 0.95 σµ = 1

Learning Gain g = 0.05

Table 2. Cumulative responses relative to output following the neutral

technology shock: benchmark parameters

Rational expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 0.39 2.89 0.20 0.80

4 quarters 0.47 2.66 0.18 0.82

8 quarters 0.55 2.40 0.15 0.85

16 quarters 0.67 2.03 0.11 0.89

24 quarters 0.75 1.78 0.09 0.92

Adaptive expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 1.19 7.85 0.73 0.27

4 quarters 0.73 4.60 0.38 0.62

8 quarters 0.95 2.88 0.27 0.80

16 quarters 1.11 1.93 0.22 0.92

24 quarters 1.17 1.63 0.21 0.97
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Table 3. Cumulative responses relative to output following the biased

technology shock: benchmark parameters

Rational expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 3.29 14.39 1.43 0.43

4 quarters 2.01 10.39 1.00 0.23

8 quarters 1.09 7.53 0.70 0.40

16 quarters 0.75 4.81 0.41 0.64

24 quarters 0.83 3.54 0.28 0.76

Adaptive expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 3.29 14.39 1.43 0.43

4 quarters 2.07 9.97 0.96 0.40

8 quarters 2.09 7.85 0.79 0.68

16 quarters 2.28 6.93 0.74 0.93

24 quarters 2.38 6.66 0.72 1.04

Table 4. Relative contribution of biased technology shocks with

benchmark parameters: ratio of learning to RE

Forecast Horizon Output Consumption Investment Hours

1 quarter 8.87 1.08 1.28 1.00

4 quarters 4.49 1.42 1.28 1.00

8 quarters 2.65 1.95 1.31 1.00

16 quarters 1.57 2.72 1.36 1.00

24 quarters 1.24 2.46 1.38 1.00
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Table 5. Cumulative responses relative to output following the neutral

technology shock: indivisible labor (η = 0)

Rational expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 0.33 3.10 0.67 0.33

4 quarters 0.42 2.83 0.58 0.42

8 quarters 0.51 2.52 0.49 0.51

16 quarters 0.65 2.08 0.35 0.65

24 quarters 0.74 1.80 0.30 0.74

Adaptive expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 0.05 4.29 1.05 0.05

4 quarters 0.34 3.21 0.71 0.34

8 quarters 0.61 2.36 0.58 0.61

16 quarters 0.83 1.78 0.53 0.83

24 quarters 0.93 1.56 0.52 0.93
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Table 6. Cumulative responses relative to output following the biased

technology shock: indivisible labor (η = 0)

Rational expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 0.43 5.46 1.43 0.43

4 quarters 0.25 4.91 1.25 0.25

8 quarters 0.23 4.29 1.05 0.23

16 quarters 0.42 3.37 0.76 0.42

24 quarters 0.57 2.78 0.65 0.57

Adaptive expectations model

Forecast Horizon Consumption Investment Hours Real wage

1 quarter 0.43 5.46 1.43 0.43

4 quarters 0.36 4.76 1.20 0.36

8 quarters 0.59 4.71 1.25 0.59

16 quarters 0.95 5.28 1.48 0.95

24 quarters 1.16 5.69 1.63 1.16

Table 7. Relative contribution of biased technology shocks with indi-

visible labor (η = 0): ratio of learning to RE

Forecast Horizon Output Consumption Investment Hours

1 quarter 1.69 2.26 1.10 1.00

4 quarters 1.52 2.96 1.10 1.00

8 quarters 1.44 3.32 1.12 1.00

16 quarters 1.38 1.78 1.15 1.00

24 quarters 1.35 1.32 1.16 1.00
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Figure 1. Impulse responses to a neutral technology shock in the

benchmark model. The solid line represents the responses from the

model with rational expectations. The dashed line represents the re-

sponses from the model with adaptive expectations.
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Figure 2. Impulse responses to a biased technology shock in the

benchmark model. The solid line represents the responses from the

model with rational expectations. The dashed line represents the re-

sponses from the model with adaptive expectations.
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Figure 3. Impulse responses to a neutral technology shock with low

persistence of the shock. The solid line represents the responses from

the model with rational expectations. The dashed line represents the

responses from the model with adaptive expectations.
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Figure 4. Impulse responses to a biased technology shock with low

persistence of the shock. The solid line represents the responses from

the model with rational expectations. The dashed line represents the

responses from the model with adaptive expectations.



LEARNING AND TECHNOLOGY SHOCKS 35

4 8 16 25

0

0.5

1

1.5

2

Output

4 8 16 25
0

0.1

0.2

0.3

0.4

0.5

Consumption

4 8 16 25

0

2

4

6

8

Investment

4 8 16 25

0

0.5

1

1.5

2

Real interest rate

4 8 16 25
−0.5

0

0.5

1

1.5

2

Hours

4 8 16 25
0

0.1

0.2

0.3

0.4

0.5

Real wage

Responses to a Neutral Technology Shock: RE vs. Learning

Figure 5. Impulse responses to a neutral technology shock with low

persistence in the model with indivisible labor. The solid line represents

the responses from the model with rational expectations. The dashed

line represents the responses from the model with adaptive expecta-

tions.
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