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The standard power utility function is widely used to explain asset prices. It assumes that 
the coefficient of relative risk aversion is the inverse of the elasticity of substitution. Here 
I use the Kihlstrom and Mirman (1974) expected utility approach to relax this 
assumption. I use time consistent preferences that lead to time consistent plans. In our 
examples, the past does not matter much for current portfolio decisions. The risk aversion 
parameter can be inferred from experiments and introspections about bets in terms of 
permanent consumption (wealth). Evidence about the change in the attitude towards bets 
over the life cycle may also restrict the value of the risk aversion parameter. Monotonic 
transformations of the standard power utility function do not change the predictions about 
asset prices by much. Both the elasticity of substitution and risk aversion play a role in 
determining the equity premium.  
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1. INTRODUCTION 

 

 Since the discovery of the risk premium puzzle by Mehra and Prescott (1985) there has 

been a debate about the choice of the representative agent's utility function. In his 

presidential address Lucas (2003) followed Mehra and Prescott in using the standard 
power utility function: β tu(Ct )t∑  where u(C) = ( 1

ρ)Cρ  for ρ ≠ 0 and u(C) = ln(C) for 

ρ = 0. On the basis of evidence from interest rates across countries, he argues for a 

coefficient of ρ = 0: The logarithmic function.  

 The inter-temporal log utility function implies a relative risk aversion of 1 and an 

elasticity of substitution of 1. In general, the power utility function imposes a relationship 

between the inter-temporal elasticity of substitution and relative risk aversion: The 

coefficient of relative risk aversion is 1− ρ  and the inter-temporal elasticity of 

substitution is: IES  = 1
1−ρ .  

 To appreciate the difficulty we may consider the following two thought 

experiments.  

Thought experiment a : We consider the following two alternatives.  

(1 a) Consuming in the next year 99,500 dollar worth with probability 1; (2 a) An equal 

chance of consuming in the next year 110,000 dollars worth or 90,000 dollars worth.  

Thought experiment b: There is no uncertainty. Consumption in the current year is 

100,000 dollars and consumption in the next year is expected to be 110,000 dollars (with 

probability 1). The consumer can lend and borrow at the real interest rate of 14.6%. His 

choices are: (1 b) be a borrower; (2b) be a lender and (3b) neither a borrower nor a 

lender be.  

 Under the log utility function with β = 0.96, the agent is indifferent between (1a)  

and (2a)  and between (1b) and (2b). Under the more general class of the power utility 

function, a strict preference for the risk-free alternative (1a)  implies a strict preference 
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for the borrowing alternative (1b). There are many people who will choose (1a)  in the 

first thought experiments and choose to lend (at 14.6%) in the second.  

This problem led to the generalization of the expected utility function by Selden 

(1978), Epstein and Zin (1989, 1991) and Weil (1989, 1990). I will refer to the approach 

taken by this literature as the "certainty equivalent approach".  

 Here I follow the expected utility approach used by Kihlstrom and Mirman 

(1974). By applying monotonic transformations to the utility function, this approach 

allows for changes in risk aversion that do not affect the ordinal properties of the utility 

function.2  I use simple examples to understand the role of risk aversion and the 

Intertemporal Elasticity of Substitution ( IES ) in determining asset prices. Another 

objective is to understand the difference between the "certainty equivalence approach" 

and the expected utility approach. I do not attempt to solve the equity premium puzzle.  

It is shown that under the expected utility approach there is still a connection 

between risk aversion and the Intertemporal Elasticity of Substitution ( IES ) but this 

connection is much less restrictive than under the standard power utility function. I thus 

relax the assumption that risk aversion is the reciprocal of IES  rather than achieve a 

complete separation between the two as in the certainty equivalent approach.   

 A related difference is in the role of the IES  in determining the equity premium. 

Under the expected utility approach taken here both risk aversion and IES  play a role in 

determining the equity premium: A higher risk aversion and a lower IES  lead to a higher 

equity premium. Roughly speaking if the representative agent has a lower IES  he is 

willing to pay more for consumption smoothing and therefore will have a stronger 

demand for the risk-free asset that is a better smoothing tool. I shall elaborate on this 

point shortly.  

                         

2 It can be shown that the expected utility function considered here and the Epstein-Zin function, are both 

special cases of Kreps and Porteus (1978). 
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 This is different from the implications of the certainty equivalent approach. In the 

two-periods numerical examples that I have worked out there is almost no effect of IES  

on the equity premium when using that approach. 

 Another and not less important difference is in the ease in which we can use 

experimental evidence and introspection to make direct "observations" about the risk 

aversion parameter. In their original paper Mehra and Prescott limit the risk aversion 

parameter to magnitudes between 0 and 10. They used an additive expected utility and in 

this case there is no difference between the attitude towards bets in terms of permanent 

consumption (wealth) and the attitude towards bets in terms of dated consumption. 

However a difference between the two emerges once we allow for non-additive expected 

utility functions.  

 Under the expected utility approach, the risk aversion parameter requires 

"observations" about the attitude towards bets in terms of permanent consumption or 

wealth. This is relatively easy and therefore most experiments ask questions about bets in 

terms of money (wealth) and not in terms of dated consumption. See Kahneman and 

Tversky (1979) for example.  

 The certainty equivalent approach requires introspection about bets in terms of 

dated consumption. This is much more difficult. To appreciate the difficulty, consider for 

example, a choice problem that has three possible outcomes: (a) dinner at McDonalds, 

(b) dinner at the best restaurant in town and (c) no dinner at all. When one faces the 

choice between (a) with probability 1 or an actuarially fair lottery with possible outcomes 

(b) and (c), he may choose to go to McDonalds if he did not have lunch and he is hungry 

and he may choose the bet if he is not so hungry. Similarly, we may consider a choice 

problem with the following possible outcomes: (a) vacation at home; (b) vacation in 

Hawaii and (c) no vacation at all. I may choose (a) with probability 1 if I did not have a 

vacation for a long time and I may choose a bet between (b) and (c) if I just came back 

from a vacation in Atlanta.  
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 This difficulty emerges because dated consumption may not be well defined. 

Friedman (1969, in the Appendix) has argued for the role of memories. We go on 

vacation and then enjoy pictures and memories about it. He suggests to model 

consumption as the services provided by stocks, including the stocks of memories. (Once 

the stock of memories depreciates you rebuild it by taking another vacation). Indeed 

question about bets in terms of consumption become easier as we increase the length of 

the "period". It is much easier to answer a question about consumption in the next year 

than about consumption in the next month. And introspections about bets in terms of 

permanent consumption (wealth) are the easiest because they can be stated in money or 

wealth terms.  

 As was said before, unlike the certainty equivalent approach, the expected utility 

approach does not achieve a complete separation between the cardinal and the ordinal 

properties of the utility function. The separation is complete only at the beginning of the 

planning horizon. After that the ordinal properties start to play an increasing role in 

determining risk aversion. I show that if risk aversion to bets in terms of permanent 

consumption increases with age then risk aversion at age zero must be less than 1
IES . This 

suggests to me fairly low values of the risk aversion parameter.  

 The Epstein-Zin approach is by now the standard approach to the problem of 

disentangling risk aversion from the elasticity of substitution. Comments that I got on 

earlier drafts suggest to me that many specialists in the field feel that "bad" things will 

happen if we use the expected utility approach: Plans may be time inconsistent or the past 

may play an important role in current choices. I try to address these issues in the simplest 

possible environment.  

A key distinction is between time consistent preferences and time consistent 

plans. Recent work by Kihlstrom (2007) and Van den Heuvel (2007) illustrate the 

difference between the two. Both papers use the Kihlstrom-Mirman approach. Kihlstrom 

assumes that the consumer ignores past consumption in his current decisions while Van 
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den Heuvel assumes time consistent preferences that allow for the effect of past choices 

on current choices.  

Time consistent preferences assume that the agent uses the same function each 

period and as he gets older choices that were made in the past become irreversible but are 

not forgotten and are still present in the objective function. Under the expected utility 

hypothesis time consistent preferences leads to plans that will be followed in the future. 

Thus time consistent preferences lead to time consistent plans. But time-consistent 

preferences may imply that past consumption matters for current decisions. If one tries to 

eliminate past consumption from the current utility, as Kihlstrom does, he may get plans 

that are not time consistent. Kihlstrom follows the "consistent planning" approach of 

Strotz (1956) and assumes that when making the current choice the consumer takes into 

account future "disobedience".  

Here I consider an overlapping generations economy with consistent preferences 

finitely lived agents. The overlapping generation structure is used to deliver stationary 

asset prices when decision makers have finite lives. The finite life assumption matters 

and some of the results here are therefore different from the results obtained by Van den 

Heuven who considered the infinite horizon case. 

As was said before, in the finite horizon case the attitude towards bets in terms of 

permanent consumption (wealth) changes with age. Over the life cycle the weight of the 

ordinal properties in determining the attitude towards such bets increases so that in the 

limit when age goes to infinity the attitude towards such bets depends on the ordinal 

properties only. The finite horizon case gives us therefore a richer theory in which both 

the cardinal and the ordinal properties of the utility function play a role in determining 

the attitude towards bets in terms of permanent consumption.   

Another advantage of the overlapping generations economy is that past choices 

play a smaller role relative to the role they play in an infinite horizon model: A new 

generations does not take the consumption of older generations into account when 
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making current choices. This argument sounds like the most compelling reason for 

studying the overlapping generations alternative because the effect of past consumption 

on current choices has played a major part in discarding the expected utility approach. 

But in the body of the paper I argue that in the Intertemporal utility functions we use the 

past is not important for current portfolio choices. A more compelling reason for studying 

the finite horizon alternative is that it is different from the infinite horizon case and actual 

choices are made by finitely lived individuals. 

 I start with a monotonic transformation of the inter-temporal log ( IL ) utility 

function: The inter-temporal Cobb-Douglas ( ICD). The ICD function allows for changes 

in risk aversion while holding constant the elasticity of substitution at the level of unity. 

It is shown that changes in risk aversion do not affect the expected rate of return on the 

market portfolio and have only a small effect on the risk free return and equity premium.   

I then consider monotonic transformations of the standard power utility function: 

The constant elasticity ( ICE ) function. It is shown that also in this case asset prices do 

not change much under monotonic transformations but changes in the elasticity of 

substitution have a large effect on asset prices. In all the examples I worked out the 

equity premium is small and, as was said before, depends on both the elasticity of 

substitution and risk aversion.  

The ICE  utility function is time-non-separable. The habit persistent function used 

by Constantinides (1990) is another example of an expected utility time-non-separable 

function. Here I use the ICE  utility function because it allows for a clean separation 

between the elasticity of substitution and risk aversion. 

At the core of the Kihlstrom-Mirman approach is the distinction between the 

ordinal and the cardinal properties of the utility function. To appreciate the difference 

between the two, I now turn to distinguish between aversion to fluctuations and aversion 

to risk.  
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2. FLUCTUATIONS AVERSION, RISK AVERSION AND THE EQUITY PREMIUM 

 

 To understand the role of IES  in determining the equity premium when using the 

expected utility approach I consider a consumer who lives for T +1 periods and faces a 

choice problem with the following possible outcomes: {Ct = 3}t= 0
T  corresponding to the 

smooth consumption path a  in Figure 1; {Ct = 2}t= 0
T  corresponding to path e  in Figure 1;  

{Ct =1}t= 0
T  (path b); Ct = 3.5 in even periods and Ct = 2.5  in odd periods (path d).  

 

d

a

e

b1

2

3

Age

Consumption

 

Figure 1 

 

 A consumer that prefers path a  with probability 1 to path d  with probability 1 

has aversion to fluctuations or preference for smoothing. A consumer who prefers path e  

with probability 1 to an actuarially fair bet with paths a  and b as possible outcomes, 

exhibits risk aversion to bets in terms of permanent consumption.  
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 I consider now the case in which the representative agent is risk neutral to bets in 

terms of permanent consumption but show aversion to fluctuations (preference for 

smoothing). The representative agent gets an endowment of two trees. Both trees promise 

on average the same amount of fruits each period but one tree promises a random amount 

and the other is risk-free. The price of the risk-free tree must be lower because otherwise 

the representative agent will choose to hold only risk-free trees that allow for better 

smoothing. This is why we get an equity premium even in an economy that is populated 

by risk neutral agents.3  

 An agent with low IES  has a greater demand for smoothing consumption and 

exhibits high aversion to fluctuations. Since the risk-free asset has an advantage in 

smoothing consumption, low IES  contributes to high equity premium.  

 This is different from the certainty equivalent approach. To illustrate, consider an 

agent who lives for two periods and his utility function is: U C0,E(C1)( ), where E(C1) is 

the expected second period consumption. This risk-neutral consumer is willing to hold 

both trees at the same price regardless of the ordinal properties of the "aggregator 

function" U . Thus we will not get an equity premium in an economy that is populated by 

consumers who maximize U C0,E(C1)( ).  

 Note that aversion to fluctuations need not imply aversion to bets in terms of 

permanent consumption. It is possible that a consumer does not like fluctuations because 

they require changes in durables. To implement the path d  one needs to change his house 

every period or to suffer from a mismatch between his house size and other components 

                         

3 A similar argument is used in Eden (1977) to show that insurance does not require risk aversion.  
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of consumption. On the other hand if after a lottery between a  and b he gets to know his 

permanent consumption early on he will make the optimal housing choice.4  

I now turn to a related distinction.  

 

3. BETS IN TERMS OF WEALTH (PERMANENT CONSUMPTION) AND BETS IN 

TERMS OF DATED CONSUMPTION 

 

Bets in terms of wealth allow the agent to spread the gain or losses over time by 

lending and borrowing. In what follows I assume that perfect smoothing is desirable and 

therefore bets in terms of wealth are bets on permanent consumption. In terms of Figure 

1, a bet with the outcomes the smooth path a  or the smooth path b is a bet in terms of 

wealth. I use the terms wealth, permanent consumption and money synonymously and 

will often refer to bets in terms of wealth as money bets.   

 Bets in terms of dated consumption require a different thought experiment. We 

start from a non-random consumption path and then consider a bet that makes date t  

consumption a random variable holding consumption at all dates other than t  constant.  

 The distinction between the two types of bets can be illustrated with the help of 

Figure 2 that assumes a two-period horizon ( t  = 0,1) and a zero interest rate. The 

maximum utility that the consumer can get when having the wealth 3, 4 or 5 is a , e  and 

b, respectively. From observing the indifference map we know that: a  < e  < b. But we 

do not know by how much. The consumer will prefer a wealth of 4 with certainty to a 

random wealth {3 or 5 with equal probabilities} if e > (a + b) /2. This will occur for 

                         

4 A related argument is in Postlewaite, Samuelson and Silverman (2004). They show that 

consumption commitments can cause risk neutral agents to care about risk, creating incentives to both 

insure risks and bunch uninsured risks together.  
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example, if a  = 2, e  = 9 and b = 10. Otherwise, he will prefer the bet (if for example, a  

= 8.5, e  = 9 and b = 10).  

 This is different from a bet in terms of second period consumption that holds first 

period consumption constant. For example, a bet in terms of future consumption that 

holds current consumption at the level C0 = 2 and is of the same relative size as the 

money bet just described has the outcomes: C1 = {1.5 or 2.5}. In terms of Figure 2, the 

money bet has the possible outcomes point A  or point B. The consumption bet has the 

possible outcomes: point G or point F .   

4

5

1.5

2.5

3

A G J

H
F

B

E

V(5)=b

V(4)=e

V(3)=a

C
0

C
1

  

Figure 2 
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 There is a connection between fluctuation aversion and risk aversion in terms of 

dated consumption. Someone who exhibits strong preference for smoothing should also 

exhibit risk aversion to bets in terms of dated consumption. For example, assume that the 

consumer has rectangular indifference curves that can be described by min(C0,C1)  or any 

monotonic function of it. In this case the information about the shape of the indifference 

curves is enough to tell us that the consumer will be averse to bets in terms of second 

period consumption. As we shall see the ordinal properties of the utility function play a 

role also in the aversion to money bets but this connection is not immediate.  

 

4. MEASURES OF RISK AVERSION AS A FUNCTION OF AGE  

 

 I now compare the relative risk aversion measures to money bets and 

consumption bets under the assumption that the market interest rate is equal to the 

subjective interest rate and therefore under certainty, the consumer wants to smooth 

consumption. To define the attitude towards money bet I consider the problem of a 

consumer who plans his consumption for T +1 periods under conditions of certainty.  

 

(1)  V (w)  = maxCt
 U(C0,...,CT ) s.t. R−tCt

t= 0

T

∑  = w . 

 

Here U(C0,...,CT ) is the utility function, R is the gross real interest rate and w  is wealth. 

The attitude towards bets in terms of money is determined by the property of the value 

function V (w) . 

 I start from the time separable case: U(C0,...,CT )= β tu(Ct )t∑ , where u(C) is strictly 

concave and 0 < β <1 is the discount factor. I assume R = 1
β . Under this assumption, the 

solution to (1) is the smooth path: Ct = kw , for all t  where k  = R− t

t= 0

T

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

. Therefore: 
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(2)  V (w)  = β tu(kw)
t= 0

T

∑  = u(kw) β t

t= 0

T

∑ = u(kw)
k

 

 

This leads to:  

 

(3)  −
V ' '(w)w
V '(w)

= −
u' '(kw)kw

u'(kw)
= −

u' '(C)C
u'(C)

 

 

Thus under the time separable utility function, the relative risk aversion for bets in terms 

of money is the same as the relative risk aversion to bets in terms of consumption (at any 

date). An immediate implication is that relative risk aversion to money bets does not 

depend on age: When the individual advances with age, the horizon, T+1, gets shorter but 

consumption per period does not change and therefore relative risk aversion does not 

change.   

 I now turn to show that (3) is special to the time-separable case.  

 

4.1    THE COBB-DOUGLAS CASE  

 

I consider the following utility function:  

  

  (4)  U(C0,...,CT ;α) = 1
α

(Ct
t= 0

T

∏ )αβ t

, α ≠ 0, α <1 ( ICD) 

 

 U(C0,...,CT ;α) = β t ln(Ct
t= 0

T

∑ ), α = 0  ( IL ) 
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where α  is a parameter. As we shall see, the assumption α <1 implies risk aversion to 

consumption bets. As before I assume R = 1
β  and therefore the solution to the consumer's 

maximization problem (1) is Ct = kw  and the values functions are: 

 

(5)  V (w)  = ( 1
α)(kw)

α β t
t=0

T∑  for ICD; V (w)  = ln(kw) β t

t= 0

T

∑  for IL  

 

 The coefficient of relative risk aversion to bets in terms of money ( RAM ) is:  

 

(6) RAM  = −V ' '(w)w
V '(w)

 = 1 - α β t
t = 0
T∑   

 

 The coefficient of relative risk aversion to bets in terms of consumption ( RAC ) is: 

 

(7) RAC  = −
UttCt

Ut

 = 1 - αβ t  

 

 Note that RAM  is different from RAC  and the assumption α <1 insures  

RAC  > 0. 

 The difference between RAM  and RAC  can be illustrated in the two periods case 

with β =1. In this case, RAC =1−α  and RAM =1− 2α . When α= 2
3, RAM <0 and the 

consumer is willing to accept any actuarially fair money bet. But since RAC>0 he will 

buy any actuarially fair insurance to eliminate risk about future consumption. This is the 

argument used in Eden (1979) to account for the behavior of the insurance-buying 

gambler.  

 Note also that RAM  changes with age. At age t , RAMt =1−α β j
j= t

T∑ . When α > 0, 

RAM  increases with age reaching a maximum of 1−αβT  in the last period of one's life. 
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When α < 0, RAM  decreases with age reaching a minimum of 1−αβT  in the last period 

of one's life. When α  approaches zero RAM  approaches 1 (the log utility case).  

 Figure 3 illustrates the evolution of RAM  and RAC  as a function of age for two 

cases: α = 0.1 and α = −0.1. In both cases the consumer is averse to bets in terms of 

consumption and RAC is close to unity. It increases with age when α = 0.1 and decreases 

with age when α = −0.1. The RAM  coefficient is more sensitive to age. When α = 0.1 

the consumer starts with preference to bets in terms of money ( RAM = −1) and become 

risk averse at age 15. When α = −0.1 he starts his life with relatively strong risk aversion 

to money bets RAM = 3. Note that at the end of his life RAM = RAC ≈1 regardless of the 

choice of α .  We will see the same thing happening in the constant elasticity function.      

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

AGE

RAM;alpha=0.1
RAM; alpha=-0.1
RAC;alpha=0.1
RAC; alpha=-0.1

 

Figure 3: The evolution of RAM  and RAC  over the life cycle; ICD utility function; 

β = 0.96; α = 0.1 or α = −0.1 
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4.2 THE INTERTEMPORAL CONSTANT ELASTICITY ( ICE ) FUNCTION 

 

 I now consider the following function:  

 

 (8)  U(C0,...,CT ) = 1
ψ

β t (
t= 0

T

∑ Ct )
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ψ
ρ

;  ρ ≠ 0 and ψ ≠ 0 ( ICE )  

 

where IES =
1

1− ρ
 is the intertemporal elasticity of substitution and ψ  is a risk aversion 

parameter. As before I assume that R = 1
β  and the optimal consumption under certainty 

is: Ct = kw . The value function is:  

 

 (9)  V (w)  = (1/ψ)(kw)ψ β t

t=1

T

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ψ / ρ

 

 

 The coefficient of relative risk aversion to bets in terms of money ( RAM ) is:  

 

(10) RAM = −
V ' '(w)w
V '(w)

 = 1−ψ   

 

 Thus at age 0, RAM does not depend on the ordinal properties of the utility 

function which are captured by the parameter ρ . This is not the case when the consumer 

advances in age. At age t  the consumer has already chosen (C0,...,Ct−1)  and his utility 

function is therefore: 

  

(11)  U(C0,...,Ct−1,Ct ,...CT ) = (1/ψ) zt + β j (
j= t

T

∑ C j )
ρ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

ψ / ρ

, 
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where zt = β j (
j= 0

t−1

∑ C j )
ρ . Assuming C j = kw  the value function at age t  is: 

 

(12)  V (w, t) = (1/ψ) zt + yt (w)ρ( )ψ / ρ
 

 

where yt = kρ β j

j= t

T

∑ . The coefficient of relative risk aversion at age t  is therefore: 

 

(13)  RAMt = −
V ' '(w, t)w
V '(w, t)

=1− (1−ω t )ρ + ω tψ( ), 

 

where ω t =
yt (w)ρ

zt + yt (w)ρ . Along a smooth path when C j = kw ,  

 

(14)  ω t =
β t − βT +1

1− βT +1  and limT →∞ ω t = β t .  

 

  Note that at age t = 0,ω t =1 and RAM0 =1−ψ  as in (10). Note also that ω t  is 

decreasing in t . As a result the importance of the parameter ρ  increases with age and the 

importance of the parameter ψ declines with age. In an infinite horizon model ω t  is close 

to zero when t  is large and the parameter ψ is no longer relevant. This suggests that in an 

infinite horizon model we can no longer separate between the elasticity of substitution 

and risk aversion and we are back to a single parameter model. Here I focus on the finite 

horizon case that allows for both parameters to play a role.  

 To separate the elasticity of substitution from risk aversion we write (13) as: 

 

(15)  RAMt = ω tRAM0 + (1−ω t )( 1
IES)  
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Since RAM0 =1−ψ  we can increase RAMt  for all t  by reducing ψ without changing 

IES . The relationship (15) is also useful for determining changes in risk aversion over 

the life cycle. It implies: 

 

(16)  RAMt > RAMt−1 if RAM0 ≤ 1
IES  and RAMt ≤ RAMt−1 otherwise.  

 

Thus we need to assume that risk aversion is less than the inverse of the elasticity of 

substitution to get risk aversion that increases with age.  

 Figure 4 computes RAMt  under the assumption that IES = 0.5 using (15). This is 

done for two cases RAM0 = 0.5 and RAM0 = 3. In the first case, RAM  increases with 

age. In the second it decreases with age. In both cases, it reaches approximately the same 

level of RAM = 2 at the end of life because at this point only the elasticity of substitution 

matters. Figure 4 suggests that the agent converges to a behavior that can be described by 

a standard power utility function that imposes the restriction: RAM = 1
IES . 

 

0

0.5

1

1.5

2

2.5

3

3.5
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Age

RAM(0)=0.5
RAM(0)=3

 

Figure 4: IES = 0.5,β = 0.96 
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  The relationship (15) may be useful for restricting the parameter RAM0 . For this 

purpose we must form an opinion, by introspection or by empirical evidence, about IES  

and the direction in which RAMt  evolves with age. Introspection about the evolution of 

risk aversion can be done as follows. We imagine that we consume along a smooth 

consumption path e  in Figure 5. At age t  we are offered a bet in terms of permanent 

consumption with possible outcomes a  or b. How will our attitudes towards this bet 

change with t ?  

 

e

b

a

Age
t   

Figure 5: Introspection exercise about the relationship between RAM  and age.  

 

 It seems that young people are more willing to take bets in terms of permanent 

consumption. For example, a war may be viewed as a bet on permanent consumption: 

There may be a draft but still some people volunteer and many who are drafted volunteer 
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to serve in special units. If you participate in a war that you believe in its cause you feel 

good about yourself for a long time (and you may tell stories about it). Of course the 

downward risk is that you get killed or wounded. If you get a desk job during the war 

there is no risk but you may feel bad for a long time. It seems that 18 years old are more 

willing to volunteer than 30 years old and the propensity to volunteer diminishes 

drastically after having kids. (Here we may view kids as irreversible consumption 

choices). In any event it seems that older people are more set in their ways and will 

therefore exhibit more aversion to bets in terms of permanent consumption. This suggests 

that RAM  is increasing with age and therefore RAM0 ≤ 1
IES . 

 The literature provides various estimates of the IES . For example, Hansen and 

Singleton (1982) and Vissing-Jorgensen and Attanasio (2003) estimate IES >1. Hall 

(1988), Campbell and Mankiw (1989) and Beaudry and Wincoop (1996) estimate 

IES <1. Introspection of the type described by thought experiment b in the introduction, 

suggests to me IES ≥1. Under the assumption that IES ≥1 and RAM  increases with age, 

(15) implies RAM0 ≤1, but I do not impose this prior.    

 

The importance of the past for current portfolio choices: In the ICD case RAM  and the 

marginal rates of substitutions do not depend on past consumption. In the ICE  case they 

do.  

 Epstein and Zin (1989) criticized the ICE  function on the grounds that when β <1, 

changes in C0 have a larger effect on risk aversion at age t >1 than changes in C1. They 

consider the measure of RAC . But this is also true for our measure of RAM  as is implied 

by (15) and the definitions: zt = β t (
j= 0

t−1

∑ C j )
ρ  and ω t =

yt (w)ρ

zt + yt (w)ρ .  

A different way of looking at the importance of the past is to ask what happens to the 

effect of a given shock over time. It is possible that the effect of a shock to C0 is larger 

than the effect of a shock to C1 but both becomes insignificant over time. Indeed this is 
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the case in the ICE  utility function: Equation (15) implies that the effect of a given shock 

to C0 on RAMt  declines with t .  

 A third way is to look at the effect of a shock to permanent income. The effect of 

a permanent shock to consumption is different from the effect of a transitory shock. To 

see this point, we assume that the consumer learns that his permanent income has 

changed from kw  to λkw , where λ > 0. We consider two alternatives. In the first the 

new information arrived at t = 0 and as a result C0 was changed as well as consumption 

in all other dates. In the second case the information arrived at t =1 and C0 was not 

changed. In the first case, ω t  will not change and as a result RAMt  will not change. In 

the second case both will change. Thus information that arrives later has a larger effect 

on risk aversion. 

 We may therefore summarize the relative importance of shocks to past 

consumption on RAMt  in the following way. 

1. At a given age t >1 a transitory shock to C0 has a larger effect on RAMt  than a 

transitory shock to C1.  

2. The effect of a transitory shock declines with age. 

3. A shock to permanent income at age 0 has no effect on RAMt  but a shock to 

permanent income at age 0 < j < t  does affect RAMt . 

 More important for our purpose is the effect of past consumption on the marginal 

rate of substitution (or the pricing kernel) that determines asset prices. This is discussed 

in detail in Appendix B where it is shown that (a) on average past consumption does not 

matter for current portfolio choices; (b) permanent shocks at t = 0 do not affect current 

portfolio choices. Our examples suggest that transitory shocks to past consumption have 

very little (negligible) effect on asset prices while shocks to current consumption have 

large effect on asset prices.  
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Temporal risk aversion: Richard (1975) considers a bet between point 

J = (C0 = 2.5,C1 =1.5) and point H= (C0 =1.5,C1 = 2.5) in Figure 2 and defines termporal 

risk aversion as follows. A consumer who prefers the bet b1={ J  or H  with equal 

probabilities} to the money bet b2 ={ A  or B with equal probabilities} has temporal risk 

aversion. Temporal risk neutrality and temporal risk preference are defined by 

indifference to the two bets and by strict preference of b1 over b2 . 

 Roughly speaking the preference between b1 and b2  depends on the relative importance 

of the ordinal properties of preferences (the desire to smooth consumption). I now show 

the following Claim:  (a) A consumer with an additive utility function has temporal risk 

neutrality; (b) A consumer who is risk neutral to money bets and has strictly convex 

indifference curves, has temporal risk preference and (c) Under the ICE  function risk 

aversion to money bets increases with age if the consumer has temporal risk preference 

and decreases with age otherwise.  

 To show part (a) note that: 

( 1
2)[u(x) + βu(y)] + ( 1

2)[u(y) + βu(x)] = ( 1
2)[u(x) + βu(x)] + ( 1

2)[u(y) + βu(y)] for all 

x,y ≥ 0.  

  I now use Figure 2 to show part (b). Point E  with certainty is better than each of 

the two alternatives J  and H . Therefore the consumer prefers the certainty point E  to 

the bet b1. Since a risk neutral to money bet is indifferent between b2  and the point E  

with certainty, it follows that the consumer prefers b2  to b1. Thus, risk neutrality to 

money bets implies temporal risk preference. 

 Van den Heuven (2007) shows that in the ICE  function the choice between b2  

and b1 depends on the parameters ψ  and ρ . When ρ >ψ  the consumer exhibits temporal 

risk aversion. Using (13), ρ >ψ  implies that RAM  decreases with age. Since I do not 
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want to exclude the case in which RAM  increases with age, I allow temporal risk 

preference.5   

 I now turn to the asset pricing implications of the above expected utility 

functions. 

 

5. A TWO PERIODS SINGLE TREE ECONOMY 

  

I now turn to assess the importance of the RAM  and the IES  for understanding 

asset prices. I start with a single-asset version of Lucas (1978) tree economy.  

It is assumed that each period a new generation is born. Agents are identical and 

live for two periods. The representative agent gets an endowment of a tree in the first 

period of his life. The tree lives for two periods. It yields y  units of consumption in the 

first period and ds  units in the second period, state s. There is a market for trees after the 

distribution of dividends. Note that only the young agents participate in the market for 

trees. The old agents have no trees after the distribution of dividends and have no reason 

to buy trees. Therefore, the overlapping generations structure is not important here. Its 

only role is to yield stationary asset pricing implications in a world with finitely lived 

agents.     

 The price of a tree is p  and the representative consumer chooses (in the first 

period of his life) present consumption ( C0) and the amount of trees ( A) subject to the 

budget constraint:   

 

(17)  C0 + pA = y + p 

 

                         

5 Introspection about temporal risk aversion seems to depend on the length of the period. I may not care 

about a series of uncorrelated small consumption bets but I may care about a mismatch between 

consumption in the first half and the second half of my life. 
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Consumption in the second period in state s is given by: 

 

(18)  C1s = Ads  

 

The consumer chooses A  and C0 to solve: 

  

(19)  maxA ,C0
 ΠsU(C0

s=1

S

∑ ,C1s) s.t. (17) and (18), 

 

where Π s is the probability of state s. The first order conditions require:  

 

(20)  Πs U0s −
U1sds

p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

s=1

S

∑ = 0  

 

where U0s = ∂U(C0,C1s) /∂C0 and U1s = ∂U(C0,C1s) /∂C1s.  

 

The ICD-IL case:  I now assume the Cobb-Douglas case:  

U(C0,C1) = (1/α)(C0)α (C1)
δ , where δ = αβ . In this case:  

 

(21)  U0s −
U1sds

p
 = 1

α
α
C0

−
δ

y + p − C0

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ (C0)α (y + p − C0)ds

p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δ

 

 

Therefore the first order condition (20) requires   
α
C0

−
δ

y + p − C0

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ = 0 and C0 =

α(y + p)
α + δ

.  

 To solve for p  we substitute the market clearing condition C0 = y  in C0 =
α(y + p)

α + δ
. This 

leads to:  
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(22)  p = (δ
α)y = βy .   

 

 The asset pricing formula (22) can also be obtained for the IL  case. The rate of 

return on the asset is:  

 

(23)  D
p

=
D
βy

=
G
β

, 

 
where D = Πss=1

S∑ ds is expected dividends and G =1+ g = D
y  is the expected rate of 

consumption growth. Given the overlapping generations interpretation of the model, the 

aggregate consumption per period is constant and G is the rate of consumption growth 

over the lifecycle of the representative agent.  

 Since (6) implies RAM =1−α(1+ β) , varying α  will change it without affecting the 

expected returns on the asset. We have thus shown,  

 

Claim 1: When the representative agent's utility function is ICD − IL , the expected rate of 

return on the asset does not depend on the RAM  measure of relative risk aversion and 

does not depend on the variance of the return. It depends only on the expected rate of 

consumption growth ( G) and the time preference parameter β . 

 

Claim 1 is generalized in the Appendix to the more general finite horizon case. It 

follows directly from Kihlstrom and Mirman (1974) who show that in the ICD case 

uncertainty does not affect savings.  

 

6. A TWO PERIODS MANY ASSETS ECONOMY 

 

I now turn to the many assets case. I endow the representative agent with n trees 

that yield a total of y  units of consumption (fruits) in the first period. Tree i  yields dis  
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units in the second period in state s. The budget constraint of the representative agent is 

now: 

 
(24)  C0 + pii=1

n∑ Ai = y  + pii=1

n∑  

 
(25)  C1s  = disi=1

n∑ Ai  

 

The agent problem is: 

 
(26)  maxAi

 Πss=1

S∑ U(C0,C1s) s.t. (24) and (25).  

 

The first order conditions for this problem are: 

 
(27)  Πs(−U0s pi + U1sdiss=1

S∑ ) = 0 

 

I use Ds  = disi=1

n∑  for aggregate dividends in state s. I also assume that we can write the 

dividends of asset i  in state s as a linear function of Ds: 

 

(28)  dis = ai + biDs + eis ,  

 

where eisi=1

n∑ = 0 for all s; bii=1

n∑ =1 and aii=1

n∑ = 0. The error terms eis are determined 

by a zero sum purely distributive lottery, have zero mean and are independent of Ds . 

Thus, Πseiss=1

S∑ = 0 for all i. A risk free asset is an asset with non-random dividends 

dis =1 (and ai = 1,bi = 0,eis = 0 for all s). The market portfolio is an asset for which 

dis = Ds (and ai = 0,bi =1,eis = 0 for all s).  
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The ICD case: Using  the first order conditions (27), the market clearing conditions 

C0 = y , C1s = Ds and (28) we arrive at the equilibrium condition: 

 

 (29)  pi = βy
Πss=1

S∑ dis(Ds)
αβ −1

Πss=1

S∑ (Ds)
αβ

= βy
Πss=1

S∑ (ai + biDs)(Ds)
αβ −1

Πss=1

S∑ (Ds)
αβ

 

 

When ai = 0, pi = βbiy , and dis

pi

=
biDs + eis

βbiy
. Taking expectations leads to the following 

Claim.  

 

Claim 2: The expected gross rate of return on an asset with ai = 0 and bi > 0  is G
β .   

 

 Thus the expected rate of return on all assets with ai = 0 and bi > 0  is equal to the 

expected rate of return on the market portfolio.  

I now turn to show that risk premium does not require risk aversion.   

 

Claim 3: When δ <1, the rate of return on the risk free asset is less than G
β .   

  

 The proof of Claim 3 is in Appendix C. The intuition is as follows. When δ <1, 

RAC =1−δ > 0  and the representative consumer is averse to uncertainty about future 

consumption. He will therefore hold the market portfolio rather than the risk free asset 

only if there is a risk premium. Note that when δ = αβ <1 the coefficient of risk aversion 

RAM =1−α(1+ β)  may be positive or negative. For example, RAM = 0 when β =1 and 

α = 0.5. Therefore, risk premium does not require risk aversion to money bets.  

 I now turn to a numerical example that uses the following notation:  

Rb  = the return on the risk-free asset (with ai =1 and bi = 0); 

R1 = the return on the market portfolio (with ai = 0 and bi = 1). 
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 It is assumed that the rate of growth in aggregate dividends (consumption) is 1 or 

1.04 with equal probabilities and β = 1. As we can see from Table 1 the rate of return on 

the market portfolio R1 does not depend on the RAM  coefficient and is equal to  

G
β =1.02  in our example. The rate of return on the risk free asset is lower and decreases 

with our measure of risk aversion. The net rate of return on the risk free asset is 1.98% 

when RAM = 0 and 1.92% when RAM = 3. The risk premium is accordingly, 0.02% 

when RAM = 0 and 0.08% when RAM = 3.  

 

Table 1: Expected gross rates of Returns under the ICD − IL  utility function ( β =1)  

RAM =1− 2α  R1;di = {1,1.04} Rb;di = {1,1} 100(R1 − Rb )  

0 1.02 1.0198 0.02%

1 1.02 1.0196 0.04%

3 1.02 1.0192 0.08%

10 1.02 1.0179 0.21%

 

We may conclude that the RAM  coefficient has very little effect on asset prices 

but has a considerable effect on risk premium: a change in RAM  from 0 to 3 increases 

risk premium by 300%. 

 I now turn to the ICE  utility function case.    

 

7. THE CONSTANT ELASTICITY FUNCTION 

 

 I now consider the inter-temporal constant elasticity ( ICE ) utility function:  

 

(30)  U(C0,C1) = ( 1
ψ) (C0)ρ + β(C1)

ρ( )
ψ

ρ  ; ρ ≠ 0,ψ ≠ 0 
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 Note that the ICE  function is a monotonic transformation of the standard power 

utility function that assumes: ψ = ρ . Recall that under the ICE  function RAM =1−ψ  

and IES = 1
(1−ρ ). 

The asset pricing formula (26) is now:  

 

(31)  pi = βy1−ρ
Πs[(y)ρ + β(Ds)

ρ ]
ψ
ρ −1(Ds)

ρ−1diss=1

S∑
Πs[(y)ρ + β(Ds)

ρ ]
ψ
ρ −1

s=1

S∑
 

 

 I now turn to apply this formula for our example. As before, I assume that β =1 

and consumption growth is: 1 and 1.04 with equal probabilities. Table 2 calculates the 

gross expected rate of return on the market portfolio for alternative values of 

RAM =1−ψ  and IES = 1
(1−ρ ). In this example, changes in the elasticity of substitution 

have a large effect on the gross expected interest rate while changes in risk aversion have 

a relatively small effect.   

 

Table 2: Expected gross rates of returns on the market portfolio ( D
p ) under the ICE  

utility function ( β =1) 

 RAM  = 0  RAM  = 1  RAM  = 3 RAM  = 10 

IES =1.5 1.0133 1.0134 1.0135 1.0139 

IES =0.99 1.0202 1.0202 1.0202 1.0202 

IES =0.5 1.0404 1.0402 1.0398 1.0384 

IES =0.333 1.0612 1.0608 1.0600 1.0573 

 

Table 3 computes the price of the risk-free asset (by substituting dis =1 in [31]). 

The results support the claim that changes in IES  are relatively more important also for 

the risk free return.  
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Table 3: The risk free return ( Rb ) under the ICE  utility function  

(β = 1) 

 RAM  = 0  RAM  = 1  RAM  = 3 RAM  = 10 

IES =1.5 1.0132 1.0130 1.0128 1.0119 

IES =0.99 1.0200 1.0198 1.0194 1.0180 

IES =0.5 1.0400 1.0396 1.0388 1.0361 

IES =0.333 1.0606 1.0600 1.0588 1.0547 

 

Table 4 subtracts Table 3 from Table 2 to get the risk premium. The risk 

premiums are small and depend on both the IES  and the RAM  coefficients. As 

suggested by the discussion in section 2, risk premium is positively related to RAM  and 

negatively related to IES . Risk premium is positively related to RAM  because an 

increase in RAM  implies more demand for the elimination of risk. Risk premium is 

negatively related to IES  because an increase in the elasticity implies less demand for 

smoothing. 

 

Table 4: Risk premium in percentage terms (100[R1 - Rb]) under the ICE  utility function 

(β  = 1) 

 RAM  = 0  RAM  = 1  RAM  = 3 RAM  = 10 

IES =1.5 0.013 0.032 0.072 0.208 

IES =0.99 0.020 0.039 0.079 0.215 

IES =0.5 0.040 0.060 0.100 0.237 

IES =0.333 0.062 0.082 0.122 0.260 
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Quantitatively the two effects are of equal importance in our example. A change 

in the RAM  coefficient from 1 to 3 leads to a change in the risk premium from 0.04% to 

0.08%. A "comparable" change in IES  from 1 to 0.333 leads to roughly the same change 

in risk premium.  

In previous drafts of this paper, I compared the implications of the ICD and ICE  

expected utility functions (Tables 1 - 4) with the implications of the  generalized 

expected utility approach taken by Selden (1978) and Epstein and Zin (1991). The main 

difference is that in the Selden-Epstein-Zin approach, risk premium depends only on the 

risk aversion parameter.  

 

9. CONCLUDING REMARKS 

  

This paper studies the asset pricing implications of monotonic transformations of 

the standard power utility function. These monotonic transformations yield time-non-

separable expected utility functions that allow for clear separation between IES  and 

RAM  at the beginning of the planning horizon. Then as the individual advances in age 

the IES plays an increasing role in determining RAM . We can still choose two 

parameters: One that determines IES and one that determines the path of RAM  over the 

lifecycle. An assumption about the way RAM  changes over the lifecycle imposes a 

restriction on RAM  at age zero. If RAM  increases with age then it must be the case that 

RAM0 ≤ 1
IES . This suggests low values of RAM0 .   

In our examples, the expected rate of return on the market portfolio depends 

mostly on the IES  and not on the RAM  coefficient. Using the log utility as our bench-

mark (with IES = RAM =1), we reduce IES  from 1 to 0.333. This leads to an increase in 

the net rate of return on the market portfolio by about 200%. When we increase RAM  

from 1 to 3 the rate of return on the market portfolio does not change at all.  



                                    32 

Similar results are obtained with respect to the risk free return. When IES  

changes from 1 to 0.333, the risk free rate goes up by about 200%. When RAM  changes 

from 1 to 3 the net risk free rate goes down by about 2%. The risk free rate is close to the 

rate of return on the market portfolio and therefore the risk premium is small.  

The equity premium depends on both the IES  and the RAM  coefficients in a 

more or less symmetric way. A reduction in the IES  from 1 to 0.333 leads to the 

doubling of the equity premium from 0.04% to 0.08%. An increase in the RAM  

coefficient from 1 to 3 yields similar change in the equity premium.  

 The Epstein-Zin approach yields different results. In the two periods examples 

that I worked out there was almost no effect of IES  on the equity premium when using 

the Epstein-Zin approach.  

 The standard power (SP) utility function yields the same predictions as the ICE  

utility function if we impose RAM = 1
IES . Since asset prices are not sensitive to changes in 

RAM  this supports the interpretation that changes in the parameter of the SP utility 

function have large effect on asset prices because of the implied changes in IES  and not 

because of the implied changes in RAM . 

 Our main results assume a RAM  coefficient in the range 0 - 10. This is the range 

assumed originally by Mehara and Prescott (1985). It is possible that by allowing much 

higher RAM  coefficients one can "solve" the original equity premium puzzle. Under the 

ICD function higher RAM  coefficients will not change the rate of return on the market 

portfolio but will lower the risk-free rate. Therefore, very high RAM  coefficients can 

lead to a large risk premium. This "solution" is possible because unlike the standard 

power utility function, the ICD function allows risk aversion and IES  to be high 

simultaneously. See Kocherlakota (1996). However, there is a problem in assuming very 

high RAM  coefficients because it implies that risk aversion may decrease sharply with 

age. There are other solutions to the puzzle that focus on taxes, liquidity and other 

frictions. See McGrattan and Prescott (2003).   
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 Bansal and Yaron (2004) explain the equity premium puzzle by allowing for 

small persistent shocks to consumption growth and for changes in volatility. They use the 

Epstein-Zin approach and find a large effect of IES  on the equity premium. But in their 

case a lower IES  leads to a lower equity premium while under the expected utility 

approach used here it leads to a higher equity premium. It would be interesting to apply 

the expected utility approach to the consumption process assumed by Bansal and Yaron. I 

leave this to another paper.   

 

APPENDIX A: TIME CONSISTENT PREFERENCES AND TIME CONSISTENT 

PLANS 

 

 Some have argued that extending the analysis to many periods, must run into time 

inconsistency problems. Here I argue against this apparently widely held perception. I 

assume expected utility and time consistent preferences. An agent with time consistent 

preferences will treat past choices as irreversible and will continuously update the list of 

choice variables. He will also use Bayes' rule to update the probabilities of the states of 

nature. But the preference themselves do not change over time.  

 To illustrate, I assume a 3 periods horizon and a utility function: U(C0,C1,C2) . 

Note that the discounting is implicit in this utility function and need not be exponential. It 

is assumed that only the list of choice variables changes over time. At t = 0, the consumer 

chooses (C0,C1,C2)  to maximize U(C0,C1,C2) . At t = 1 he chooses (C1,C2) to maximize 

U(C0,C1,C2) , treating his first period choice, C0 , as given. 

 I follow the interpretation in Peleg and Yaari (1973) and argue that expected 

utility with time consistent preferences lead to plans that will be followed in future dates 

and are thus time consistent. 

 I start by visiting Strotz (1956) original article.     
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Age and distance from present discounting: Strotz (1956) assumes a time separable utility 

function. At time τ  the consumer discounts the instantaneous utility at time t  by the 

discount function λ(t − τ). The discount function thus depends on the time-distance from 

the present. Strotz also allows for the effect of calendar time (or age) on the 

"instantaneous utility function".  

 In our three periods formulation Strotz's specification may be written as follows. 

At τ = 0 the utility is given by:   

U 0(C0,C1,C2) = λ(0)u(C0,0) + λ(1)u(C1,1) + λ(2)u(C2,2)   

At τ =1 it is given by: 

U1(C0,C1,C2) = λ(−1)u(C0,0) + λ(0)u(C1,1) + λ(1)u(C2,2)   

Strotz argues that in general, U 0(C0,C1,C2)  is different from U1(C0,C1,C2) and therefore 

it will lead to time consistency problems unless λ(t − τ) = β t -τ . In this exponential 

discounting case U 0(C0,C1,C2) = βU1(C0,C1,C2) and therefore the change in the utility 

function does not change behavior. In our terminology, preferences are time-consistent 

only in the exponential discounting case.  

 Modern analysis typically uses u(Ct )  instead of u(Ct , t). In this case one must 

choose between age discounting and distant from present discounting. An age 

discounting specification is:  

 

(A1)  U 0(C0,C1,C2) = λ(0)u(C0) + λ(1)u(C1) + λ(2)u(C2)  

(A2)  U1(C0,C1,C2) = λ(0)u(C0) + λ(1)u(C1) + λ(2)u(C2) 

 

A distance from the present discounting is (A1) and 

 

(A3)  U1(C0,C1,C2) = λ(−1)u(C0) + λ(0)u(C1) + λ(1)u(C2) . 
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 Note that the preferences (A1) and (A2) are time-consistent. These preferences 

will lead to time-consistent plans because the marginal rate of substitution between C1 

and C2 does not change when the consumer gets to t =1. That is under (A2) we have:   

 

(A4)  
∂U 0

∂C1

∂U 0

∂C2

=
∂U1

∂C1

∂U1

∂C2

 

 

This does not hold under (A3) unless λ(t − τ)= β t -τ . Thus the specification (A3) will lead 

to time consistent plans only in the special case of exponential discounting.  

 

Uncertainty: In the case of uncertainty, the general formulation by Arrow (1964) may 

lead to a problem of time consistency because new information will typically lead to the 

updating of probabilities. But under the expected utility hypothesis the utility is linear in 

the probabilities and therefore updating the probabilities does not lead to time 

inconsistency problems.   

 To show this well-known claim, I assume a three periods horizon:  

t = 0, 1, 2.  Events at each date may take S possible realizations. The probability that 

"state of nature" k will occur at t = 0 is denoted by π k . The probability that "state of 

nature" i will occur at date 1 given that "state of nature" k has occurred at t = 0 is denoted 

by π ki  and the probability that "state of nature" j will occur at date 2 given that "state of 

nature" k has occurred at t = 0 and "state of nature" i has occurred at t = 1 is denoted by 

π kij . Similarly, C0k  denotes consumption at t = 0 state k, C1ki denotes consumption at  

t = 1 state (k,i) and C2kij  denotes consumption at t = 2 state (k,i,j). The most general 

formulation used in Arrow (1964) assumes that the consumer evaluates consumption 

plans by the utility function: 
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(A4)  Z(C01,...,C0S;C111,...,C1SS;C2111,...,C2SSS ) . 

 

At t = -1 the consumer faces the budget constraint: 

 

(A5)  P0kC0k
k=1

S

∑ + P1kiC1ki
i=1

S

∑
k=1

S

∑ + P2kijC2kij
j=1

S

∑
i=1

S

∑
k=1

S

∑  = w , 

where P  are the prices of the contingent commodities. He maximizes (A4) subject to 

(A5). The first order conditions for this problem require: 

 

(A6)   Z2msr

Z1ms

=
P2msr

P1ms

, 

 

where Zi = ∂Z
∂Ci

. In this general formulation an agent that learns about the state at t = 0 

will update the probabilities and as a result the utility function Z will change. He will 

therefore want to change his plans.   

I now turn to the expected utility case assuming that there exists a function U 

such that:  

 
(A7)  Z = π k

k
∑ π ki

i
∑ π kij

j
∑ U(C0k,C1ki,C2kij )   

 

 In this case, the marginal utilities are:  

 
(A8) Z1ms = π mπ ms π msj

j
∑ U1ms(C0m,C1ms,C2msj ) , Z2msr = π mπ msπ msrU2msr (C0m,C1ms,C2msr ) 

The marginal rate of substitution (MRS) is: 

   

(A9)  Z2msr

Z1ms

=
π msrU2msr(C0m ,C1ms,C2msr )
π msrU2msr(C0m ,C1ms,C2msr )
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Suppose now that at t = 0 the consumer learns that k = m . Then his utility function will 

become:  

 

(A10)  Z1 = 1
π m

π mi
i

∑ π mij
j

∑ U(C0m,C1mi,C2mij )   

 

Along the optimal plan when C0m = C0m , the MRS, Z2msr
1

Z1ms
1 , is the same as (A9). Thus 

the MRS does not change when at t = 0 the consumer learns that state m has occurred. In 

this sense the expected utility assumption is sufficient for guaranteeing time consistency. 

 

APPENDIX B: THE IMPORTANCE OF PAST CONSUMPTION FOR CURRENT 

DECISIONS UNDER THE ICE  UTILITY FUNCTION 

 

 I now assume the special case: 

 
(B1)  Z  = π k

k
∑ π ki

i
∑ π kij

j
∑ U(C0k,C1ki,C2kij )     

 = (1/ψ) π k
k

∑ π ki
i

∑ π kij
j

∑ {(C0k )ρ + β(C1ki)
ρ + β 2(C2kij )

ρ}ψ / ρ  

 

The marginal rates of substitution are now:  

 

(B2) MRSmsr  =  Z2msr

Z1ms

 = π msrβ(C2msr )
ρ−1{(C0m )ρ + β(C1ms)

ρ + β 2(C2msr)
ρ}

ψ
ρ −1

(C1ms)
ρ−1 π msj

j
∑ {(C0m )ρ + β(C1ms)

ρ + β 2(C2msj )
ρ }

ψ
ρ −1

. 

It is useful to express (B2) as a multiplication of two terms: 

 

(B3)  A  = βπ msr
C2msr

C1ms

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ−1

;  Bmsr =
{(C0m )ρ + β(C1ms)

ρ + β 2(C2msr)
ρ}

ψ
ρ −1

π msj
j

∑ {(C0m )ρ + β(C1ms)
ρ + β 2(C2msj )

ρ}
ψ
ρ −1
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The term A  does not depend on C0m . The term B is equal to unity on average (regardless 

of the magnitude of C0m ):  

 
(B4)  π msjBmsj =1

j
∑  

 

 To evaluate the relative importance of consumption in various dates I assume that 

consumption at date 1 and 2 are given by:  

 

(B5) C1 ={C0 or (1+ g)C0  with equal probabilities},  

 C2 = { (1+ g)C0  or (1+ g)2C0  with equal probabilities}, 

 

where g  is a parameter. I use Ri, j = 2
AB  to denote the price of current (date 1) 

consumption when the current state is i, in terms of next period consumption that will be 

delivered if the state in the next period is j. The variable Ri, j  is thus the price divided by 

the probability of the date 2 state and is comparable to an interest rate. We may therefore 

think of Ri, j  as an implicit gross interest rate. 

 Table B1 provides the relevant calculations. The first column in the Table is the 

implicit interest rate when the current state is low and the contingent claim is on the low 

state in the next period. The second column is the implicit interest rate when the current 

state is high and the contingent claim is on the high state and so on. The first row is the 

choice of IES . The second is the base line case when C0 =1. The third row consider an 

increase in C0 to C0 =1.1 and increasing all other consumption by the same percentage 

according to (B5). I refer to it as a permanent shock to C0. The third row is a transitory 

shock to C0 that does not affect future consumption. (This is done by increasing C0 to 

1.1 without implementing [B5]).  
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 As we can see, the realization of C1 plays the major role in the determination of 

the implicit interest rate. When IES = 0.5 (the first three rows), the implicit interest when 

buying a claim on the low state is 12% when the current state is low and 3.5% when the 

current state is high. But changes in C0 have almost no effect: A permanent change has 

no effect and a transitory change only a small effect.   

 

Table B1: Prices (Implicit interest rates) of contingent claims at date 1 

( g = 0.04 ; β = 0.96) 

 Rlow,low  Rlow,high  Rhigh,low  Rhigh,high  

IES = 0.5  

 C0 = 1 1.119632035 1.226307539 1.035077176 1.133885187

Permanent  

shock: C0 =1.1 1.119632035 1.226307539 1.035077176 1.133885187

Transitory  

shock: C0 = 1.1 1.119409257 1.226554727 1.034865662 1.134119958

IES =1.5  

 C0 =1 1.052992328 1.114814742 1.025884141 1.085969373

Permanent  

shock: C0 = 1.1 1.052992328 1.114814742 1.025884141 1.085969373

Transitory  

shock: C0 =1.1 1.05316179 1.11462976 1.026047829 1.085790741

 

 Table B1 suggests that the effect of the past on the implicit interest rate is 

negligible relative to the effect of current consumption. To examine whether the distant 

past plays a larger role than the more recent past I now consider the more general case in 

which the horizon is T +1 periods. The history from time 0 to time T − 2 is denoted by 
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the index k . The history up to time T −1 is denoted by the indices (k,i) and the history 

up to time T  is denoted by the indices (k,i, j). We can now replace (B1) by:   

 
(B6) Z = π k

k
∑ π ki

i
∑ π kij

j
∑ U(C0k,...,CT −2k ,CT −1ki,CTkij )  

 = (1/ψ) π k
k

∑ π ki
i

∑ π kij
j

∑ β j

t= 0

T −2

∑ (Ctk )ρ + βT −1(CT −1ki)
ρ + βT (CTkij )

ρ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
ψ / ρ

 

 

The marginal rate of substitution between consumption at time T  and time T −1 is:  

 

(B7) MRSmsr = ZTmsr

ZT −1ms

=
π msrβ(CTmsr )

ρ−1 z + βT −1(CT −1ms)
ρ + βT (CTmsr)

ρ[ ]
ψ
ρ −1

(CT −1ms)
ρ−1 π msj z + βT −1(CT −1ms)

ρ + βT (CTmsj )
ρ[ ]

ψ
ρ −1

j
∑

, 

where z = β t

t= 0

T −2

∑ (Ctm )ρ . Also in this case MRSmsr = AB , where 

 

(B8)  A = π msrβ
CTmsr

CT −1ms

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ρ−1

; Bmsr =
z + βT −1(CT −1ms)

ρ + βT (CTmsr )
ρ[ ]

ψ
ρ −1

π msj z + βT −1(CT −1ms)
ρ + βT (CTmsj )

ρ[ ]
ψ
ρ −1

j
∑

 

 
Note that also here: π msjBmsr =1

j
∑ .  

 I now assume that consumption at time T  and T −1 depends on consumption at 

time T − 2 according to: 

 

(B9)  Ct = Ct−1 if t ≤ τ  and Ct =1.02Ct−1 otherwise.  

 

 The parameter τ  determines the date at which we start growing. Figure B1 

assumes T = 52 and τ = 0,10,40. We see that changes in τ  produce large changes in the 
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path of past consumption relative to changes in CT −1 and CT . (The Figure draws the two 

possible realizations of CT −1 and CT ).  

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

Time

tow=0
tow=10
tow = 40

 

Figure B1: Growth starts at date τ = 0,10,40. A shock to consumption occurs at t = 51 

and t = 52   

 

 Figure B2 draws the implicit interest rates as a function of τ  assuming RAM = 3 

and IES =1.5. The implicit interest rates are not sensitive to changes in τ  but are highly 

sensitive to changes in current consumption (the state at T −1). When IES =1.5 and 

consumption at T −1 is low the implicit gross interest rate for a claim on next period 

consumption in the low state is 1.05535. The implicit interest rate for the same contingent 

claim is 1.0416 when consumption at T −1 is high. Thus the change in the time T −1 

state leads to a change in the net interest rate of about 33%. When we change τ  between 

0 and 49 (which represents a huge change in past consumption) we get a change in the 



                                    42 

implicit net interest rate of about 0.06%. This suggests that the state of past consumption 

is unimportant relative to the state of current consumption.    
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Figure B2: Implicit interest rates as a function of τ  ( IES =1.5,RAM = 3) 

  

 APPENDIX C: A FINITE HORIZON SINGLE ASSET ICD ECONOMY 

 

I now consider an economy in which the representative agent lives for T periods. 

At t = 0 he gets endowment of one tree that provides fruits for T  periods and then dies 

(together with the agent).    

 I allow a general dividend (income) process. It is assumed that the representative 

agent at t = 0 assigns positive probabilities, π s, to all states s =1,...,S . Over time he 

updates these probabilities when he learns that some states did not occur. The set of 

possible states at time t  (the information available at time t ) is denoted by It . The 
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updated probability of state s is denoted by (π s | It ) . Note that (π s | It )=0 if s ∉ It . The 

agent also knows the information that he will have at time j > t  if state s occurred. This 

information is denoted by I js. At time t  the choices of (A0,..., At−1)  was already made. 

Since there is one tree per agent we assume A j =1 for j < t . The agent chooses At  and 

makes a contingent plan that specifies the amount of trees he will own at future dates: 

(At +1s,..., AT −1s) . The agent has to choose A js = A js'  if at time j  he cannot distinguish 

between the two states s and s'. Thus, he faces the informational constraint: A js = A js'  if 

s,s'∈ I js . Assuming an ICD utility function we can state the time t  problem as follows.  

 

(C1) V (kt−1,It ) = maxAt ,At +1s ,...,AT −1s
 

 

 kt−1 (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It ) [At (dt +1s + pt +1s) − At +1s pt +1s]

αβ t

kt +1s 

 s.t.  

 kt−1 = 
j= 0

t−1

∏ (d j )
αβ j

 ;  kt +1s = 
j= t +2

T

∏ [A j−1s(d js + p js) − A js p js]
αβ j

 

 A js = A js'  if s,s'∈ I js  

 

 I now define equilibrium as follows.  

  

Equilibrium at time t  is a vector 

(At , At +11,..., AT −11,..., At +1S ,..., AT −1S ; pt , pt +11,..., pT −11,..., pt +1S,..., pT −1S ) such that 

(a) given prices (pt , pt +11,..., pT −11,..., pt +1S ,..., pT −1S ), the quantity vector 

(At , At +11,..., AT −11,..., At +1S ,..., AT −1S ) solves (C1) and  

(b) market clearing: At =1 and A js=1 for all j > t  and all s.  

 

 I now generalize the asset pricing formula (21) to the finite horizon case.  
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Claim C1: Equilibrium prices at time t are given by:  

 

(C2)  pt = (β + β 2 + ...+ βT − t )dt  and p js = (β + β 2 + ...+ βT − t )d js for all t < j < T  

  

 Note that when T = ∞  (C2) implies pt =
dt

rs , where the subjective interest rate is defined 

by: 1+ rs = 1
β . This formula is in the logarithmic preference example in Ljungqvist and 

Sargent (2000, page 239).  

 

Proof: When T =1, there is trade in the asset only in period  

t = T −1= 0 and (C2) coincides with (21). We now proceed by induction. We assume that 

equilibrium prices when the horizon is T − t −1 (at time t +1) satisfy (C2) and show that 

equilibrium prices when the horizon is T − t  (at time t ) satisfy (C2). 

 Given our induction hypothesis we can write the problem (C1) as:   

 

(C3) V (kt−1;It ) = maxAt
kt−1 (dt + pt − At pt )

αβ t

(π ss=1
S∑ | It ) [At (dt +1s + pt +1s) − pt +1s]

αβ t +1

kt +1s  

 

Now kt +1s = 
j= t +2

T

∏ (d js)
αβ j

 is a constant and pt +1s = (β + β 2 + ...+ βT − t−1)dt +1s. Note that the 

assumption At +1s =1 follows from the induction hypothesis.  

 The first order conditions for the problem (C3) require:  

 

(C4)  −αβ t pt (dt + pt − At pt )
αβ t −1 (π ss=1

S∑ | It ) [At (dt +1s + pt +1s) − pt +1s]
αβ t +1

kt +1s  

 + (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It ) αβ t +1(dt +1s + pt +1s)[At (dt +1s + pt +1s) − pt +1s]

αβ t+1 −1 kt +1s=0 

 

Substituting At =1 and pt +1s = (β + β 2 + ...+ βT − t−1)dt +1s in (C4) leads to:  

 

(C5)  pt = (β + β 2 + ...+ βT − t )dt  
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This completes the proof. � 

 

 We can now use Claim C1 to compute the rate of return on the asset as follows.  

  

(C6)  dt +1s + pt +1s

pt

=
(1+ β + β 2 + ...+ βT − t−1)dt +1s

(β + β 2 + ...+ βT − t )dt

=
dt +1s

βdt

 

 

Using Gt = (π ss=1
S∑ | It )

dt +1s

dt

 to denote the expected consumption growth we can write the 

expected rate of return at time t as:  

 

(C7)  Gt

β
= Gt (1+ rs)  

 

This is exactly the formula (22) that we got in the two periods horizon. 

 

APPENDIX D: PROOF OF CLAIM 3 

  

The rate of return on asset i  is:   

 

(D1)  (ai + biDs + eis) / pi = (1/βy)(ai + biDs + eis) F(ai,bi), 

 

where F(ai,bi) =
1

bi + ai Πss=1

S∑ (Ds)
δ −1 / Πss=1

S∑ (Ds)
δ

 is a non linear term. Since we 

assume δ <1, the covariance between D and Dδ −1 is negative and  
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(D2)  F(1,0) = 
Πss=1

S∑ (Ds)
δ

Πss=1

S∑ (Ds)
δ −1

=
Πss=1

S∑ (Ds)
δ −1Ds

Πss=1

S∑ (Ds)
δ −1

=
Cov(Dδ −1,D)

Πss=1

S∑ (Ds)
δ −1

+ Πss=1

S∑ Ds  

  
 < Πss=1

S∑ Ds . 

Substituting this in (D1) and taking expectations leads to the conclusion that the expected 

rate of return on any asset with bi = 0 is less than G
β . � 
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