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Abstract: We explore the potential for correlated equilibrium to express con-
formity to norms and the coordination of behavior within social groups. Given
a social group structure — a partition of players into social groups —we propose
three properties that one may expect of a correlated equilibrium consistent
with social group structures satisfying social stability. These are within-group
anonymity (conformity of behavior within groups), group independence (no con-
formity between groups), and predictable social group behavior (stability). As
an expression of bounded rationality in the presence of social group structures
we also consider stereotyped beliefs — beliefs that all (other) players in a social
group can be expected to behave in the same way. We demonstrate that (a) cor-
related equilibrium required only to satisfy the two properties of within-group
anonymity and group independence exists. If, in addition, there are many play-
ers then (b) a correlated equilibrium satisfying all three of the above properties
exists and, with probability one, is ex-post stable (c) a player who stereotypes
other players cannot do better with correct beliefs and thus stereotyping is not
costly to the player who stereotypes.



1 Introduction

Individuals belonging to the same society or social group typically share and con-
form to common social and behavioral norms and customs. This motivates the
question of whether behavioral conformity can be consistent with self-interested
behavior. In Wooders, Cartwright and Selten (2006), henceforth WCS, we ar-
gued that this consistency requires the existence of an approximate Nash equi-
librium that induces a partition of players into ‘relatively few’ societies, where
individuals within the same society are similar and play the same or similar
strategies. The Nash equilibrium captures a notion of self interested behavior
while the limit on the number of societies captures behavioral conformity by
forcing large groups of players to conform. WCS provide a family of games
where the desired equilibrium exists. In this paper we follow the approach of
WCS but with a different notion of ‘play the same or similar strategies’ and
hence a different notion of behavioral conformity. In doing so we provide results
complementary to those of WCS and, in particular, demonstrate that behavioral
conformity can be consistent with Nash equilibrium for a wider class of games
than suggested by WCS.

But what does it mean to ‘play the same strategy’? WCS equate playing
the same strategy with taking the same action. Often, however, we may think
of individuals as conforming to the same norm of behavior even if they perform
different actions. For example, if a husband has a paid job and a wife does
housework then, while they perform different actions, we can think of them as
conforming to the same norm. Similarly, if two cars meet on a narrow road and
the first to arrive does not give way but the second to arrive does give way then
the two drivers perform different actions but may still be conforming to the same
norm of behavior. That individuals can coordinate their behavior to mutual
advantage even if doing so requires different individuals to perform different
actions and receive inequitable rewards is well documented (e.g. Schelling 1960,
Hayek 1982, Sugden 1989, Friedman 1996, Van Huyck et al. 1997, Rapaport,
Seale, and Winter 2001, Hargreaves-Heap and Varoufakis 2002). It has also
been long recognized that conformity, often subconscious, to established rules
and norms of behavior facilitates such coordination of behavior (Hayek 1960,
1982, Sherif 1966, Tajfel 1978, Johnson and Johnson 1987, Akerlof and Kranton
2000, Brown 2000).!

Our objective in this paper is to investigate a broader class of behavioral
properties of equilibrium and to allow players within social groups to conform
to social norms or standards of behavior but still take different actions. This
requires an appropriate conception of conformity. To capture those aspects of
conformity that we view as fundamental to conformity to social norms, we
use the concept of correlated equilibrium. In contrast to Nash equilibrium,
correlated equilibrium allows player actions to be statistically dependent on
some random event external to the model (Aumann 1974, 1987). This could
be, for example, whether the player is male or female, first to arrive or second

! The economic literature on conformity includes Akerlof (1980), Elster (1989) and Bern-
heim (1994).



to arrive at a road junction. More generally, we can imagine a mediator (or
some device) that instructs players to take actions according to some commonly
known probability distribution. In this paper we think of the mediator as
distributing roles. If it is in the interests of each player to assume the role
assigned to him by the mediator, then the probability distribution over roles
is a correlated equilibrium (Aumann 1987, Forges 1986, Dhillon and Mertens
1996).2

An appealing interpretation of the concept of correlated equilibrium is that
every player is using the strategy “if told to play action x then play action z”.
Thus, a correlated equilibrium can capture the idea that players use the same
strategy but potentially perform different actions. Because actions are condi-
tioned on signals or roles, correlated equilibrium also recognizes how conformity
can lead to coordinated actions within social groups (Johnson and Johnson 1977,
Selten 1980, Sugden 1989, Hogg et al. 1995). For example, it is no accident that
one car will give way and one will not if both drivers follow a ‘second to arrive
gives way norm’. Care is needed, however, in modelling behavioral conformity
with correlated equilibrium. This is evident by the fact that merely using the
concept of correlated equilibrium has created a setting where every player can
use the same strategy. We need, therefore, to be sure that ‘play the same strat-
egy’ equates with ‘behaves in the same way’ or ‘conforms’. To do this we need
to impose conditions on how the mediator distributes roles in order to guarantee
that a correlated equilibrium can be interpreted as consistent with behavioral
conformity. We shall consider three conditions: within group anonymity, group
independence and predictable group behavior.

Informally, within-group anonymity (WGA) requires that any two individ-
uals within the same group have the same probability of being allocated each
role. Thus, not only will individuals in the same group use the strategy “if told
to play action x then play z”, they will also have the same chance of being
told to play action x. This means that, ex-ante, before, they know their roles,
any two individuals in the same group are expected to behave in the same way.
For example, as two cars drive along the road it may be a 50-50 chance which
arrives at a narrow section of road first and will thus is assigned the role “do
not give way.” This results in equity of opportunity, whereby the distribution of
roles within a group can be seen as fair, and equity of expected payoff, whereby
outcomes can be seen as fair.> Group independence (GI) requires that the dis-
tribution of roles is statistically independent between different groups and thus
rules out any correlation of actions across groups. Correlation between social
groups is typically unlikely (Tajfel 1978, Hogg and Vaughan 2005).* It seems

2Given that roles may be correlated across individuals, the set of correlated equilibria
is generally larger than the set of Nash equilibria. This is partly responsible for the set of
correlated equilibria having many appealing properties; for example, it is nonempty, compact,
convex and easy to describe (Aumann 1974, 1987). See also Hart (2005) for a discussion of
recent work (in collaboration with Mas-Colell) on how adaptive learning leads to correlated
equilibrium play.

3The importance of fairness and within group equity is well known (Johnson and Johnson
1987, Tajfel 1978, Rabin 1993, Fehr and Schmidt 1999 and Brown 2000).

4Ruling out correlation between groups does not rule out coordination between groups.



therefore important to rule this out. WGA and GI combined mean that we can
think of individuals within the same group as behaving in the same way while
individuals in different groups may behave in different ways. This seems to take
us some way to capturing behavioral conformity.

Our first main result (Theorem 1), similar to Theorem 2 of WCS, provides a
family of games for which there exists a correlated equilibrium satisfying WGA
and GI and which induces a partition of the player set into a relatively small
number of social groups. Asin WCS we require continuity with respect to player
attributes. We do not however, unlike WCS, require continuity with respect to
aggregate actions or, for this first Theorem, require there to be many players.
This means that our result holds in contexts where one individual player can
have a big influence on others and significantly generalizes the set of games for
which our result applies. Behavioral conformity can, therefore, be consistent
with Nash equilibrium much more generally when we use a notion of behavioral
conformity that allows different actions within social groups.

The correlated equilibrium obtained in Theorem 1 need not be ex-post stable
in the sense that once an individual knows the roles of others he may wish to
change his action (see, for example, Kalai 2004). There is nothing necessarily
wrong with this and it is a property typical of games of incomplete information.
If, however, we see a social group as conforming to a norm then we may expect
that the aggregate behavior of that group should be ‘predictable’ in some way.
Also, if the ex-post outcome of conformity is to be seen as fair (and consistent
with members of a social group not deviating once their assigned roles are
known) then we may expect that no individual should wish they had chosen
some other action. Ex-post stability gives both of these properties. We therefore
introduce a third property called predictable group behavior property (PGB)
which dictates that the number of players in each social group who will play
each action be known ex-ante. This property guarantees ex-post stability. Our
second main result (Theorem 2), demonstrates that, with a Lipschitz continuity
condition on utility functions, for games with sufficiently many players there is
a correlated equilibrium that satisfies PGB, WGA and GI and which induces
a partition of the player set into a relatively small number of social groups. In
interpretation, this implies that when there are many players it is possible for
correlated equilibrium to be consistent with a relative small number of social
norms (possibly different in different social groups) satisfying fairness within
social groups, no correlation between social groups, and ex-post stability.

A further consideration is that perceptions, and not necessarily reality, may
matter in terms of whether individuals think of outcomes as fair and are there-
fore willing to conform etc. (Hogg and Vaughan 2005). For example, if an
outcome is perceived as equitable, it may not matter whether it is in fact eq-
uitable. It also may be the case that individual players perceive all members
of a social group as similar or ‘the same’ and thus stereotype others accord-
ing to their social group memberships. To take these two considerations into
account we consider subjective correlated equilibrium. A subjective correlated
equilibrium extends the notion of correlated equilibrium by allowing players to
have differing beliefs about the probability with which roles are distributed. We



say that beliefs are stereotyped if each player expects players in the same social
group to behave in the same way. As we have previously noted, stereotyping
may be a form of bounded rationality and allow for ‘simpler’ correlation devices.
We demonstrate (Theorem 3) that stereotyping can be consistent with corre-
lated equilibria. We also demonstrate that a player who stereotypes (perhaps
incorrectly) could not do better by having non-stereotyped beliefs. Thus, there
is no incentive for players who stereotype to revise or correct their beliefs.?

We proceed as follows: Section 2 introduces the model and properties of
social groups, Section 3 provides the main results and Section 4 concludes.

2 Model and notation

A game T is given by a triple (N, A, {u;};en) consisting of a finite player set
N = {1,..,n}, a finite set of K actions A = {1,..., K}, and a set of payoff
functions {u;}ien. An action profile consists of a vector @ = (@y, ..., @) where
@; € A denotes the action of player i. The set of action profiles is given by AN.
For each i € N the payoff function u; maps A" into the real line R.

A strategy in game I'(N, ) is given by a randomization o over the set of
actions where o (k) denotes the probability that the player will play action k € A.
Let ¥ = A(A) denote the set of strategies. A strategy profile consists of a vector
o = (01, ...,0,) where 7; € ¥ denotes the strategy of player i. We assume von-
Neumann Morgenstern expected utility functions and with, a slight abuse of
notation, denote by u;(@) the expected payoff to player ¢ given strategy profile
0. Strategy profile 7 is a Nash e-equilibrium for some real number ¢ > 0 if

ui () > ui(0,7-;) — ¢

forallie N and o € X.

2.1 Pregames

Following WCS we make use of a non-cooperative pregame, which allows us
to consider families of games derived from a common underlying structure.’
Informally, a non-cooperative pregame consists of a set of player attributes or
characteristics, a set of actions, and a preference function. Given a finite set
N of players, a game is induced by ascribing a point in attribute space to each

SEarlier versions of our results on stereotyping were presented at the 2004 Stony Brook
International Conference on Game Theory and at Hebrew University in March 2006. We
thank participants for their comments, especially Francois Forges, Peyton Young and Sergiu
Hart.

6Similar sorts of concepts have a long history in economics and game theory. For example,
in the context of an exchange economies, a ‘pre-economy’ is a space of preferences and a set
of possible endowments. An economy is then determined by a set of economic agents and
a function ascribing a preference relation and an endowment to each player. In cooperative
games, a pregame is a set of player attributes and a function defining a payoff possibilities set
for all possible finite sets of players described by their attributes.



player. The preference function is used to ascribe utility functions to players in
any induced game.

A non-cooperative pregame is a triple G = (2, A, h) consisting of a compact
metric space (2, called an attribute space, a set of actions A and a preference
function h. In order to explain the preference function h we must first define
the notion of a weight function. Let W be the set of all mappings from 2 x A
into R} with finite support. A member of W is a weight function. A preference
function h is a mapping from  x A x W into the set of non-negative real
numbers R;. As we formalize below, in interpretation h(w,k,w) is the payoff
to a player of attribute w if he plays action k and the actions of other players
are summarized by weight function w.

Given a pregame G = (2, 4,h), let N = {1,...,n} be a finite set and let
a be a mapping from N to §, called an attribute function. The pair (N, «)
is a population. In interpretation, N will be a set of players and « provides a
description of the players in terms of their attributes. Given a population (N, «)
and an action profile @ € AN we say that weight function waz € W is relative
to @ if,

Wag(w, k) ={i € N:a(i) =w and @; = k}|
for all k € A and all w € Q. Thus, wyz(w, k) denotes the number of players
with attribute w who play action k in the strategy a. An induced game T'(N, «)
can now be defined:

(N, «a) = (N, S, {ud : AN — R—l—}ieN)

where

_\ def _
ud (@) = hw, @i, Wa.g)

for all w € a(N). We note that players who are ascribed the same attribute
have the same payoff function.

As discussed by WCS a pregame need not imply any assumptions on the
induced games. A pregame does provide, however, a useful framework in which
to treat a family of games all induced from a common strategic setting, and
to be able, relatively simply, to impose assumptions on that family of games
through assumptions on the function h.

2.2 The mediator

Given an induced game I'(N, ) we think of a mediator who signals a suggested
action to each player. The mediator is represented by a correlating device p.
Once a player observes his own signal, without observing the signals sent to oth-
ers, he chooses an action. To distinguish suggested action from actual behavior
we equate a signal with an assignment to a role. Thus, the correlating device p
assigns each player a role from set A and the player then chooses an action from
set A that may or may be consistent with his assigned role. In interpretation
we shall equate the mediator with ‘society’ that prescribes actions to players
according to societal norms.



Given that the correlating device assigns a role to each player we can formally
think of the correlating device as being given by a probability distribution p
over action profiles where p(a) denotes the probability that players will be
assigned roles consistent with action profile @. We shall denote by p(a_;|a;) the
probability of role assignments being consistent with @, conditional on player i
having role @;. We shall denote by p; the marginal distribution of p, where p; (k)
denotes the probability that player i is assigned role k.” Let P denote the set
of possible correlating devices.

The mediator and correlating device p transform game I'(V, ) into what we
call a game with roles, denoted by I'?(N, «). In game I'?(N, o), action choice can
be made conditional on assigned role. A behavioral rule in game I'P(N, «) is a
function b mapping the set of signals A to the set of actions A. In interpretation,
bi(k) is the action performed by player ¢ if he is assigned role k. Of primary
interest is the conformist behavioral profile b~ where by (k) = k for all k and 1,
that is, the behavioral profile where each player plays the action consistent with
his assigned role. Note that, although his payoff may indirectly depend on roles
through the choice of action that a distribution of roles induce, a player’s payoff
does not directly depend on his role or the roles of other players.

We shall assume for the present that correlating device p is common knowl-
edge and players have consistent beliefs with respect to p. We relax this as-
sumption in Section 3.2. Given correlating device p, we can now define a payoff
function U : P — R for each player : € N, where

Uf(p) = Y p@u (@)
acAN

denotes the expected payoff of player 4 if roles are assigned according to distri-
bution p and players follow the conformist behavioral profile b8 Let

US(plas) = Y pla-fa)u (@)
acAN

denote the expected payoff of player ¢ conditional on being assigned role @;.

2.3 Correlated equilibrium

A correlating device p is a correlated equilibrium if no player can do better by
deviating from his assigned role. That is, knowing p and knowing his assigned
role (and expecting all other players to conform to their assigned roles) each
player does best by conforming to his assigned role. We shall be interested in
an approximate correlated equilibrium where no player can gain more than some

"Formally, p;(k) = >aa;—k P(@)

8 In other words,
Uf(p) = Y p@uf (@), ..., b, (@)).
acAN




€ by not conforming. Formally, for any € > 0 we say that correlating device p is
a correlated e-equilibrium of game T'(N, «) if and only if

U (pla) > Y p@fa)u (k@) —e (1)

acAN

for all i € N, any action k and any @;.” We refer to a correlated 0-equilibrium
as a correlated equilibrium. Note that a correlated equilibrium thus defined is
consistent with the standard definition of correlated equilibrium.'® If 7 is a
Nash e-equilibrium of game T'(N, «) then there exists a correlated e-equilibrium
in which the mediator independently assigns player ¢ action (or role) k with
probability 7; (k).

2.4 Social group structures

Given a game I'(N,«) a social group structure is given by a partition II =
{N1,...,Ng} of the player set into G subsets. We refer to each N, as a so-
cial group. As discussed in the introduction, to make correlated equilibrium an
expression of social conformity it is necessary to impose conditions on the prob-
ability distribution over roles. In order to define our first property we need one
additional definition. We say that action profile @ is a permutation of another
action profile @ if the number of players in each social group playing each strat-
egy (or assigned each role) is the same.!! Let P™(a@) denote the set of action
profiles that are permutations of @.

Within-group anonymity: Given population (NN, «), social group structure IT
and correlating device p we say that correlating device p satisfies within-group
anonymity (WGA) if p treats players from the same social group identically.
Formally, given any two action profiles @ and @ € A, if @’ € P'(a) then:

p(@) = p@).

WGA captures two important aspects of group behavior that we wish to model:
equity and conformity. A probability distribution satisfying WGA provides
equality of opportunity within groups because any two players belonging to the
same social group have the same probability of being allocated each role within
the group.'? This can be seen as fair. Indeed, as we shall see below this equality

9Formally, we only require (1) to hold for actions @; that player i can be assigned with
positive probability.

10The definition of approximate correlated equilibrium equates to a natural approximation
to the standard definition of correlated equilibrium, although ‘role’ is often termed ‘signal’
(Fudenberg and Tirole 1998). Note, however, that the use of the term e-correlated equilibrium
by Myerson (1986) has a different meaning to the one here.

' More precisely, if #(a, k, g) = |{i € Ny : @; = k}| denotes the number of players in group
Ny who play action k then action profile @’ is a permutation of @ if #'(a, k, g) = # (@, k, g)
for all k and Ny.

12For instance, if 4,7 € Ny, then p;(k) = p;(k) for all k € A.



of opportunity also results in an equality of expected payoff. WGA also implies
that conformity within social groups is observed in a conformist equilibrium
satisfying WGA because any two players belonging to the same social group
are, ex-ante, expected to behave identically. This is because they have the
same probability of being allocated each role and behave in identical ways once
allocated a role. Furthermore, it is individually rational for players to conform
to the behaviors expected of their assigned roles.
We now turn to the group independence property.

Group independence: Given population (N, «), social group structure II
and correlating device p, let 4 and j be any two players belonging to different
social groups. Also, let p;(k|a;) denote the probability that player ¢ has role
k condition on player j having role a;. Correlating device p satisfies group
independence (GI) if there is no correlation of roles between groups. Formally,
it requires that p;(k) = p;(k|a;) for all k and a;.

If social groups are distinct then correlation of actions between groups may be
unlikely. This reflects how correlating actions between groups may be difficult
because players in different social groups do not as easily identify or communi-
cate with each other as those in the same social group. (Note, however, that
a lack of correlation does not imply a lack of coordination between groups as
induced by an equilibrium).

Individuals within the same group are likely to have similar attributes (Ak-
erlof and Kranton 2000, Brown 2000, Hogg and Vaughan 2005, Currarini, Jack-
son and Pin 2008). This motivates a further property of social group structures.

Homophily: Given population (N, @) a social group structure Il = { Ny, ..., Ng}
satisfies homophily (H) if the attribute space € can be partitioned into G convex
subsets 1, ..., Q¢ such that, for any i € N, if i € N, then a(i) € §,.

Informally, homophily requires that any player whose attribute is ‘intermediate’
between two members of a particular social group should also belong to that
same social group. Note this does not necessarily imply that two players with
similar attributes belong to the same social group. It does, however, suggest
that any two players within a social group do have some similarity in attributes.
If a social group structure II and correlating device p satisfy H and WGA then
we can think of p as inducing a partition of the population (N, a) into a set of
societies in the sense of WCS.

Besides satisfying WGA, GI, and H, there are a number of motivations to
bound the number of societies required. These are discussed at some length in
Wooders, Cartwright and Selten (2006). We note here that the notion of a social
group may already suggest that the group contains many members (in fact,
bounding the number of social groups only implies that some groups contain
many members — there may be some ‘extraordinary’ players). In addition, in
games with many players it is desirable to have a relatively small number of

10



social groups. This will allow ‘simpler’ correlation devices and also gives more
meaning and power to stereotyping and to social norms generally.

A related and interesting side issue is that of ‘optimal social group size’.
WGA requires that players in the same social group behave identically and
WGA therefore suggests that small, homogenous, social groups are advanta-
geous. In our framework, correlation of actions allows, however, as we shall see
in Section 3.3, increased payoffs.'® In order to realize these gains and main-
tain GI it would seem that larger social groups are advantageous. This creates
countervailing gains and losses to larger social groups that suggest an optimal
group size determined by the heterogeneity of players and the potential gains
from correlating actions.!*

3 The existence of correlated equilibrium con-
sistent with social group structures

In this Section we present our main results demonstrating the existence of an
approximate correlated equilibrium consistent with WGA, GI, H and a bounded
number of societies. One would expect that we need to impose some assumptions
in order to obtain existence of such equilibria. The following example shows that
this is the case.!® In this example H can be consistent with an equilibrium that
satisfies WGA only if the number of social groups is as large as the number of
players.

Example 1: Players choose between locations B and C. The attribute space is
[0,1]. Consider populations (N, &) where, without loss of generality, players are
ordered so that «(i) < a(i+1) for all 4. Player 1 (the player with the ‘smallest’
attribute) gets a payoff 1 if he chooses location B and 0 if he chooses location
C. Any other player ¢ > 2 gets payoff 1 if he chooses a different location to
player ¢ — 1 and payoff 0 if he chooses the same location as ¢ — 1. Clearly, the
unique Nash equilibrium is one in which player 1 chooses B, player 2 chooses
C, player 3 chooses B, and so on. From this it is simple to argue that, for
small, there exists no correlated e-equilibrium that satisfies WGA and H unless
the number of social groups is as large as the number of players.

To see why, consider players 1 and 2. To obtain an approximate Nash equi-
librium, player 1 must choose B with high probability and, given this, player 2
must choose C' with high probability. If players 1 and 2 are in the same social
group and WGA is imposed then either player 1 will not follow the conformist

13This has already been observed by Aumann (1974,1987) for correlated equilibrium for an
arbitrary game (without the restrictions imposed in this paper).

14Related is the issue of the number of nations as modeled, for example, by Alesina and
Spolaore (1997); larger countries imply benefits from greater internal efficiencies, security and
ability to cope with external shocks but also imply greater heterogeneity and thus a problem
of ‘keeping everyone happy’. Similar conditions arise in economies with clubs and/or local
public goods; see, for example, the survey articles Conley and Smith (2005), Demange (2005)
and Le Breton and Weber (2005).

15Gee also Example 2 of WCS (2006).
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behavioral rule because he is not playing B ‘often enough’ or player 2 will not
follow the rule because he is matching player 1’s choice of B ‘too often’. If we
‘leave’ player 1 in a social group of his own to play B then we can then repeat
the argument with players 2 and 3, and so on. One partial solution is to put all
odd numbered players in a ‘play B’ social group and all even numbered players
in a ‘play C” social group but this clearly does not satisfy H.4¢

This Example illustrates that some continuity assumption is required on the
space of attributes. Following WCS we shall introduce a Lipschitz continuity
assumption as follows:

Continuity in attributes: The pregame G = (€, .5, h) satisfies continuity in
attributes if for any € > 0 and any two games I'(N, ) and T'(V, @), if for all
i € N it holds that dist(a(i),a(i)) < € then for any j € N and for any action
profile @, \u?‘ (@) — u?‘ (@)| <e.

Continuity in attributes dictates that, given action choices, if the attribute func-
tion changes only slightly, then payoffs change only slightly. Note that Example
1 does not satisfy continuity in attributes because a slight change in attributes
can alter the ordering of players by attribute and therefore significantly effect
payoffs. Our first result demonstrates that with continuity in attributes an
upper bound, independent of population size, can be put on the number of so-
cial groups necessary for the existence of an approximate correlated equilibrium
satisfying WGA, GI and H.

Theorem 1: Consider a pregame G = (€, S5, h) that satisfies continuity in
attributes. For any real number € > 0 there is an integer G(e) such that for any
population (N, «) there exists a social group structure IT, with no more than
G(e) groups, and a correlated e-equilibrium p of induced game I'(N,«) that
satisfy WGA, GI and H. Further, |Uf(p) — Uf(p)| < ¢ for any i,j € Ny, and
any Ng.

This result can be seen as the analogue of Theorem 2 in WCS. It shows that a
bound can be placed on the number of social groups required for existence of an
approximate correlated equilibrium that satisfies WGA, GI and H. In comparing
our result to Theorem 2 of WCS note that we do not require there to be a large
number of players nor do we require a ‘global interaction’ property, ensuring
that small changes in strategies of others can have only small changes on the
utility of a player (see the next Section for a precise definition).

In Section 3.3 where Theorem 1 is proved we provide a more general result
showing that near to any Nash equilibrium is a correlated equilibrium and so-
cial group structure satisfying the desired properties. In Section 3.3 we shall
also discuss the nature of correlation in more detail. At this stage we note
that Theorem 1 only demonstrates the existence of an approximate correlated
equilibrium. To see why we provide a second example

12



Example 2: Players choose between locations B and C. The attribute space
is [0,1]. Again, without loss of generality, consider populations (N, a) where
players are ordered so that a(i) < «(i + 1) for all i. If a player of attribute
w chooses B (or C) then his payoff is |w — w’| where ' is the attribute of the
‘nearest’ player who chooses C (or B). Furthermore, player 1 (with the ‘smallest’
attribute) gets an extra 2|w — w’| from choosing B where «’ is the attribute of
player 2 (with the second ‘smallest’ attribute). Consider populations where
player ¢ — 1 has the attribute nearest to that of player ¢ for all 7 > 2.

It can easily be checked that in the unique Nash equilibrium player 1 chooses
B, player 2 chooses C, player 3 chooses B and so on. Following the same
reasoning as used in Example 1 it can then be checked that, unless the number
of social groups is the same as the number of players, there exists no correlated
equilibrium satisfying WGA and H.

Example 2, however, does satisfy continuity in attributes and so Theorem 1
can be applied to show the existence of an approximate correlated equilibrium
satisfying WGA and GI. To do so the attribute space can be partitioned into
convex subsets [0, ], (g, 2¢], (2¢, 3¢] and so on. Equating subsets of { with social
groups, so that ¢ € Ny if and only if a(i) € ((9 — 1)e, ge), it is apparent that H
is satisfied. Consider a correlating device p such that in any social group with
at least two players there will always be at least one player who plays C and
one player who plays B. This can be done in such a way as to satisfy WGA and
GI. If we let a player in a one-member social group choose an optimal strategy
then we have a correlated e-equilibrium as desired. 4

3.1 Ex-post stability

While Theorem 1 requires WGA, GI and H one may wish to impose even more
conditions on the correlating device. One particular issue on which we shall
focus on is that of ex-post stability (as formulated in Kalai 2004, for example).
A correlated equilibrium requires each player to follow the behavioral conformist
rule and therefore follow the role assigned them by the mediator. Ex-post,
however, once a player has observed the roles assigned to others he may have
an incentive to change his action.!® The following example illustrates such a
situation.

Example 3: Players have to choose between two locations B and C. The
attribute space is given by {X, R} where a player with crowding type X is a
celebrity and a player with crowding type R an ‘ordinary’ member of the public.
We suppose that there is only one celebrity. Members of the public like living
in the same location as the celebrity. Thus, the payoff of a player with attribute

16Ty use a Rawlsian thought experiment one can see that WG A results in players in the same
group expecting to get the same payoff. This would be an acceptable social contract under
Rawls’s reasoning (Rawls 1972). The criticism often made, however, of the Rawls notion
of social contract (e.g. Binmore 1989) is that ex-post outcomes need be neither fair nor
individually rational, leading to questions of whether such a notion represents an appropriate
form of social contract.
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R is equal to 1 if he matches the choice of the celebrity and 0 otherwise. The
celebrity, by contrast, prefers to avoid the public and thus his payoff is equal to
the proportion of members of the public whose choice of location he mismatches.
Theorem 1 applies and so we can construct a correlated equilibrium. But any
correlated equilibrium of this game has the celebrity mixing between B and C'
and ordinary members of the population ‘in aggregate’ mixing between B and
C. Ex-post, once every player has chosen a location there must be at least one
player who would wish to change his location.4

In many contexts, ex-post instability is an unavoidable property of Nash
and correlated equilibrium. If we wish, however, to interpret the mediator as
reflecting societal norms then there is something slightly worrying about ex-
post instability. First, if the norm is to be followed (over time) then we would
prefer that players have an incentive to conform both ex-post as well as ex-ante
to the allocation of roles. Second, a notion of a norm suggests that in some
sense the behavior of a social group should be predictable. In Example 3, while
there is nothing wrong in one player constituting a social group, it is difficult
to interpret the actions of the celebrity in terms of behavioral conformity. We
feel that this is primarily because behavioral conformity suggests ‘predictability
in aggregate behavior’ which does not hold for Example 3. This motivates a
further property in which we do require predictable behavior within groups.

Predictable group behavior (PGB): Let I'’(N, ) be a game with roles and
let II be a social group structure. Correlative device p satisfies predictable group
behavior if, for each group N, € 11, the number of players in the group who will
play each action is known for sure ex-ante. Formally, for any action profiles @
and @, if p(@),p (a’) > 0 then @’ € P(a).

Note that PGB implies ex-post stability because, ex-ante, ex-post outcomes
are predictable. PGB (and Theorem 2 to follow) could be extended by relaxing
PGB to require only that aggregate behavior be approximately predictable. To
do so would require cumbersome notation and further approximation arguments
so we prefer the current PGB condition. Example 3 makes clear that additional
restrictions are required to obtain PGB. We impose the following property from
WCS and our prior papers.

Global Interaction: The pregame G = (2,5, h) satisfies global interaction
when, for any ¢ > 0, any game I'(N, ) and any two action profiles @ and m, if

1
™ Z Z |Wag(w, k) — wem(w, k)| < e
k wea(N)
then |u;"(6) —uf (m)| < ¢ for any j € N where @; =m;.
Global interaction implies that no one individual can have a significant effect

on the payoff of any other player in large games. It rules out, for instance,
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Example 3. When global interaction is satisfied we obtain PGB in games with
sufficiently many players.

Theorem 2: Consider a pregame G = (€, S, h) that satisfies continuity in
attributes and global interaction. For any real number € > 0 there is a real
number 7(¢) and an integer G(¢) such that, for any population (N, «a) where
|N| > n(e), there exists a social group structure II, with no more than G(¢)
social groups, and a correlated e-equilibrium p of induced game I'(N, «) that
satisfy WGA, GI, H and PGB.

Thus, in sufficiently large games there exists a correlated equilibrium in
which aggregate behavior can be known ex-ante even if individual actions are
not known. Many papers have considered the properties of equilibrium in large
games (Khan and Sun 2002). The paper most relevant for our purposes is Kalai
(2004). Using the law of large numbers, Kalai demonstrates that in large games
all Nash equilibria are highly likely to be (approximately) ex-post stable because
ex-post outcomes are likely to be similar to what was expected ex-ante. This
happens despite all players choosing their actions independently. In Theorem
2 we obtain an equilibrium in which ex-post outcomes are exactly what was
expected ex-ante; this is possible because of the correlation of actions. The
correlating of actions thus eliminates any uncertainty over aggregate actions.
Example 4 illustrates the Theorem.

Example 4: Players have to choose between two locations B and C'. There is
a unique attribute. Given game I'(N, @) let b denote the proportion who choose
location B and let ¢ denote the proportion who choose C. A player’s payoff
is given by —b if he chooses B and — if he chooses C. For simplicity assume
an even number of players. There exists a pure strategy Nash equilibrium in
which half of the players choose B and the other half C. There also exists a
mixed strategy Nash equilibrium in which all players randomly choose between
B and C with equal probability. The first equilibrium does satisfy PGB but not
WGA. The second equilibrium satisfies WGA but not PGB. There is no Nash
equilibrium that satisfies both WGA and PGB.

Kalai (2004) demonstrates that in games with many players a mixed strategy
Nash equilibrium is approximately ex-post stable. This means that aggregate
behavior can be predicted ex-ante with some precision. But, because choices
are made independently, it is possible that realized aggregate behavior is not
as predicted. For example, all players could randomly choose location B (no
matter how unlikely this is). This means that ex-ante expected payoffs are
lower with the mixed strategy Nash equilibrium than with any pure strategy
Nash equilibria.

There exists, however, a correlated equilibrium that satisfies both WGA and
PGB. The device randomly picks amongst the action profiles in which half of the
players play B and the other half of the players play C. Ex-ante no player knows
whether he will get role B or C but they do know that, if everyone conforms, an
equal number will end up choosing locations B and C'. This means that payoffs

15



are the same as in the pure strategy Nash equilibrium (and therefore higher
than in the mixed strategy Nash equilibrium).4

One point to highlight from this example is the necessity of correlation of
actions in order to obtain an equilibrium that satisfies both WGA and PGB.
While both WGA and PGB can be achieved on their own through uncorrelated
actions they are only simultaneously possible with correlation. If players have
desires for WGA (because of fairness) and PGB (because of ex-post stability)
then this suggests that they may want to be able to correlate their actions. Of
course, one may question whether correlation is possible, and we shall discuss
this in more detail in the Conclusion. But, a mixed strategy equilibrium where
all players randomize can be seen as one extreme with no correlation, while a
device that guarantees exactly half will choose B and half will choose C' can be
seen as another extreme of perfect correlation. One may expect reality to lie
somewhere between these two extremes.

3.2 Subjective beliefs and stereotyping

The assumption that players know the correlating device p shall now be relaxed.
Instead, players are modelled as having subjective beliefs about the device.
Specifically, there is a given set of beliefs {53;}icn, where [3; denotes the beliefs
of player 7 and is given by a probability distribution over the set of action profiles.
Thus, §,(@) denotes the probability that player ¢ puts on players having being
assigned roles according to action profile @ and 3,(@_;|a;) denotes the probability
that player ¢ puts on roles being assigned according to action profile @ given that
he is assigned role @;. Note that this definition of beliefs can be given a more
general interpretation than beliefs about the correlating device. Beliefs basically
capture what players expect other players to do.

We say that the set of beliefs {,};en constitutes a subjective correlated
e-equilibrium if

> Bi@ @)@ > > Bi@f@)ui(ka ) —e

acAN acAN

for each 7« € N and @;,k € A. This revises the definition of a correlated equilib-
rium (as given by (1)) in the natural way by requiring no individual i to expect
a payoff gain from changing strategy given his beliefs j3;.

It is well known that once subjective beliefs are allowed it becomes difficult
to tie down the set of correlated equilibria (Aumann 1974, 1987, Brandenburger
and Dekel 1987). A framework of social identity, however, suggests certain
properties, including stereotyping, that one might expect beliefs to satisfy. We
propose a definition of stereotyped beliefs in which a player expects players in
the same social group to behave identically. That is, the player expects WGA
to hold. We do assume, however, that a player does not ‘stereotype’ himself and
this requires a slight reformulation of WGA.'7

17In earlier versions of this work we referred to this as “other-stereotyping.”

16



Consider permutations of an action profile @ for which player i’s action does
not change. More precisely, given game I'( N, a), social group structure II, action
profile @ and player i (and the set P (@) of action profiles that are permutations
of @) let PH(a) denote the subset of PY(a@) where @, = @;. We can now define
stereotyped beliefs.

Stereotyping: Given population (NN, a), social group structure II, player i and
beliefs 8; we say that beliefs 3; are stereotyped if 3;(a) = B,;(@’) for any two
action profiles @ and @ where @ € P (a).

It is a simple extension of Theorem 1 to show that a subjective correlated
e-equilibrium exists. More interesting is whether stereotyping involves ‘costs’ to
players. In order to judge this we need to know the actual device used by the
mediator. In other words, suppose that there is a mediator that distributes roles
using device p and furthermore suppose that this device is a Nash equilibrium.
This device may or may not satisfy WGA but suppose, however, that a player
has stereotyped beliefs. The following result shows that in games with suffi-
ciently many players a player’s payoff will be approximately the same whether
or not he stereotypes and stereotyping is consistent with equilibrium. Note that
this is conditional on the actual device being a Nash equilibrium but clearly if
the device is not an equilibrium there is no reason to expect that stereotyping
would be consistent with equilibrium.

Theorem 3: Consider a pregame G = (2, S,h) that satisfies continuity in
attributes and global interaction. For any real number € > 0 there are integers
n(e) and G(e) with the properties that for any population (N, ) with |N| > n(¢)
there is a social group structure II, of no more that G(g) groups, such that,
for any Nash equilibrium p, there exists a subjective e-correlated equilibrium
{B;}icn where each (3, is stereotyped and |Uf(pla;) — Uf*(B;la;)| < e for all
1€ N.

Stereotyping can therefore be consistent with equilibrium and not change the
expected payoff of the player who is stereotyping. It is worth noting, however,
that stereotyping can influence behavior and thus influence the payoffs of other
players. An example illustrates.

Example 5: Players have to choose between locations B and C. The attribute
space is [0,1] x {X, R} where, as before, X denotes ‘celebrity’ and R denotes
‘ordinary member of the public’. We suppose that there is only one celebrity.
Every member of the public gets payoff 1 if the celebrity chooses location B
(which may afford the celebrity less privacy, for example) and 0 if the celebrity
chooses location C. Clearly members of the public want the celebrity to choose
B. Member i of the public has attribute a(i) = (w, R) where w € [0,1] is a
measure of his charmingness. Let W and We denote the average charmingness
of players in locations B and C. The celebrity likes to have charming neighbors

17



but has a slight preference for C' over B; his payoff is Wp if he chooses location
B and @ + 6 for some small ¢ if he chooses location C.

The Nash equilibria of most interest are those where the most charming
members of the public choose location B in order that the celebrity will choose
location B. In this case all members of the public get payoff 1. If, however, the
celebrity stereotypes then it may be that she would choose location C' and all
members of the public get payoff 0. To provide a specific example, suppose that
player 1 is the celebrity, player 2 has charm 0.5, players 3, ..., n have charm 0.49
and § = 0.005. There exists a Nash equilibrium where players 1 and 2 choose
location B and all others choose location C'. Suppose, however, that player 1
has stereotyped beliefs. This would mean that player 1 expects one member of
the public to choose location B but each member of the public is considered
equally probable to be this player. The expected average charm of players in
location B and C is 0.49 4+ 285 and so player 1 should choose location C.4

n—1

In this example the celebrity is not significantly affected by the fact that she
stereotypes. This is because she stereotypes players that are actually similar.
That the celebrity stereotypes can, however, result in a change in incentives that
may lead her to change her action. In the example, for instance, the celebrity is
basically indifferent between the locations but this means her actual choice could
be sensitive to stereotyping. If she changes her action this may not significantly
affect her payoff but may dramatically affect the payoffs of others.

3.3 Permutation and payoffs

The proofs of all the Theorems follow from the same simple arguments. In this
section we shall talk through these arguments and provide all proofs. Through-
out the following we take as given a pregame G = (2,5, h) that satisfies continu-
ity in attributes. Until otherwise stated we shall also take as given a population
(N, @) and social group structure II = {Ny, .., Ng}.

A function v mapping from N to N is said to be a permutation of players
if v is one-to-one and 7(i) € N, whenever i € Ny for all i € N. Given a
permutation of players v and action profile @ we denote by @” the action profile
where @] =@, (;) for all i € N. With this we can make the following observation
which should require no proof.

Lemma 1: Consider any action profile @. If @ € P'(@) then there exists a (not
necessarily unique) permutation of players v such that @ = @”.'® Furthermore,
if v is a permutation of players then @¥ € P (a).

Thus, if action profile @ is a permutation of @ then for every player ¢ there
exists some player (i), who belongs to the same social group as i, such that
i, according to @', plays the same action that ~(:) plays, according to action
profile a.

18That is, @} =a] for all i € N.
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The following result, which is an application of continuity in attributes,
shows an approximate equivalence between a permutation of actions and a per-
mutation of utilities. Let

D := iglea]z[(g {dist(a(i),x(4))} -

A simple example is provided after the proof.

Lemma 2: Consider any action profile @ and permutation of players . If
D < § then

for any k € A.

Proof: Given the population (N,«) let (N, &) be the population in which
a(v(i)) = a(i). That is, attribute function & assigns to player (i) the same
attribute as « assigns to ¢. By continuity in attributes

(o) (B, Ty (i) — U5y (ks Tyiy) | <O (3)

for all i € N and any @ € AN. We know that @] = @, ;) for all i € N. The
inequality (2) now follows.H

We illustrate Lemma 2 with an example: Consider a population (N, «) with
four players, N = {1,2,3,4} and a social group structure II consisting of N; =
{1,2,3} and Ny = {4}. Consider the permutation of players v(1) = 2, v(2) =
3, 7(3) = 1 and v(4) = 4. Given action profile @ = (@1, a2, a3, a@4) we obtain that
a'’ = (52,53,51,54). Observe that 5’11 = (53,51,54) and 677(1) = (51,63,54).
Lemma 2 implies that

uf (37,) — 0 (5, 70) | < _max {dist{a(i).a()}

Lemma 2 concerns a permutation of actions. The next step is to take this to
a permutation of strategies and permuted correlating device. Given a correlating
device p and permutation of players v we denote by p” the correlating device
where p?(@”) = p(@) for all @ € AY. One way to interpret the device p” is that
it randomly determines allocated roles @ according to the correlating device p
but then allocates player i the role of player v(i) — that is, it gives player i role
@,(;) instead of player y(i). This is a generalization of permuting strategies.
The following result follows easily from Lemma 2 and shows that a permutation
of roles leads to an approximate permutation of expected payoffs.'?

Lemma 3: Let p be any correlating device, v any permutation of players and
¢ any player. If D < § then

v @@ (kas) — > pafa)ule(kam)| <s (4

acAN ac AN

9For example, Lemma 3 implies that ‘Uf‘ (pla)) — Ug‘(i)(pﬁﬂ,(i)) <.
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for any action k € A.

Proof: Instead of Y —p”(a@_;|a;)ud(k,a—;) we can write Y —, p7(a’,[a] )ud(k,a’;)
which equals ) —p(@_;[a;)us (k, aﬂ). Equation (4) can therefore be restated

<0

> pl@-ifa) [us (k) - ul (ha )]

acAN

and so applying Lemma 2 gives the desired result.ll

Now consider a correlated equilibrium p* of game T'(N, &) and suppose that
we permute the strategies of players. Specifically, let v be a permutation of
players and consider correlating device p*”. Lemma 3 implies that if player ~(4)
had no incentive to deviate from his allocated role given correlating device p*
then player 4 could gain at most 20 from deviating from his allocated role given
correlating device p*”. This leads to the following result.

Lemma 4: Let p* be any correlated e-equilibrium of game T'(NV, «) and let y be
any permutation of players. If D < § then correlating device p*” is a correlated
20 + e-equilibrium of game I'(N, «) .

Proof: If p* is a correlated e-equilibrium then

> pr@ifausey @ > Y pr@ila)ul (ka—ym) — €

acAN acAN

for all i € N and any k € A. Applying Lemma 3 implies that

N p T @ofaut@ > Y v @fa)ud (kas) — 25 — e

acAN aeAN

for all i € N and k € A as desired.H

Thus, given a correlated equilibrium (or Nash equilibrium) we can permute
players and obtain an approximate correlated (or Nash) equilibrium. With this
we are basically done.

Proof of Theorem 1: First, from standard theorems, a Nash equilibrium
exists. This implies the existence of a correlated equilibrium p* in which roles
are distributed independently across players. Given £ > 0 partition €2 into G
convex sets 1, ..., Qg where max,, ./en, dist (w,w’) < 5. Let Il = {Ny,..., Ng}
denote the social group structure where i € Ny if a(i) E Qg4. Let A denote the
set of permutations of players (consistent Wlth IT). By Lemma 4 we know that
PRl el e . . . ;.
each p* is a correlated e-equilibrium. Consider correlating device p’ given by

(@) |A|2p (@). (5)

yEA
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It is well known that the set of correlated equilibria is convex. Extending such
results to approximate correlated equilibria is simple. It follows that p’ is a
correlated e-equilibrium. Also, p’ satisfies WGA by construction. Finally, roles
are distributed independently across players by device p* and in every p*’ which
means that p’ must satisfy GI.H

Proof of Theorem 2: For any € > 0, Theorem 1 of WCS demonstrates that in
games with sufficiently many players there exists a Nash §-equilibrium in pure
strategies p*. That p* is an equilibrium in pure strategies implies p(a*) = 1 for
some action profile @*. Clearly p* satisfies PGB. Partition 2 into G convex sets
M, ..., Q¢ where maxy, en, dist (w,w') < 5. Let Il = {Ny, ..., Ng} denote the
social group structure where i € N, if a(i) € Q4. As in the proof of Theorem 1
let A denote the set of permutations of players (consistent with II) and let p’ be
defined as in (5). We can use the same arguments as in the proof of Theorem 1
to see that p’ is a correlated e-equilibrium satisfying WGA, GI and H. It should
be clear that the device p’ also satisfies PGB.H

Proof of Theorem 3: Given any € > 0 in games with sufficiently many players,
for any Nash equilibrium p there exists a Nash §-equilibrium in pure strategies
p* where |U (pl@;) — U (p*[a;)| < § (Kalai 2004 and WCS). Partition Q into G
convex sets 1, ..., Qg where max,, . en, dist (w,w’) < . Let Il = {Ny,..., Ng}
denote the social group structure where ¢ € N, then (i) € Q. Fix a player
i € N. Let A; denote the set of permutations of players in which 4 is not
permuted, that is, y(¢) = . Define beliefs 5, where

S v (@) (6)

YEA;

_ 1
Bi(a) = |T

il

Beliefs 3; are stereotyped and following the logic of the proofs of Theorems 1
and 2 |U(p*|a;) — U (B;]a;)| < §. Further, constructing 3, for each i € N we
obtain a subjective e-correlated equilibrium {3;},., B

4 Concluding remarks

This paper models conformity and social norms in settings where different people
can perform different actions but can still be seen as conforming to the same
norm. We argued that correlated equilibrium is an appealing way to model such
conformity. In doing so we proposed conditions one would want to impose on
the nature of correlation such as WGA, GI and PGB and have demonstrated
the existence of a correlated equilibria satisfying these properties. One way to
interpret this is to argue that social interaction acts as a form of equilibrium-
selection device that selects correlated equilibria satisfying certain properties.
One obvious question is ‘where does the correlation come from if we recognize
that there is no formal device telling people what to do?’ It was not our intention
in this paper to answer that question and so we have been quiet on this issue
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but now we will make a few remarks. First, in some social contexts there may
be someone who indeed does tell people what to do and can directly correlate
actions. Second, it has been observed that, in the absence of a formal device,
correlation of actions can emerge spontaneously within groups (e.g. Schelling
1960, Hayek 1982, Sugden 1989, Van Huyck et al. 1997, Hargreaves-Heap and
Varoufakis 2002). This can be achieved through conditioning actions on random
‘signals’ such as gender, age, exam results etc. On a more theoretical level, Hart
and Mas-Colell have shown how naive learning heuristics such as regret matching
can lead to aggregate play corresponding to a correlated equilibrium (see Hart
2005). The approach of Hart and Mas-Colell is framed in a myopic setting
in which correlation arises without any social context or social influence. It
may be interesting to ask how learning dynamics would change if an element of
social context, such as desires for within-group fairness, exists. This all suggests
that correlation of actions within social groups is not unrealistic. In particular,
while the ‘perfect’ correlation required of PGB or WGA may be asking too
much it may be possible for social groups to obtain correlated equilibrium that
approximates PGB and WGA. Example 4, stylized as it is, suggests why people
would want to correlate actions, namely, that in doing so preferable outcomes
can be obtained.

The possibility of subjective beliefs and stereotyping suggests an alternative
interpretation of our results. If beliefs are subjective and stereotyped then there
need not be any correlation of actions but just a belief that there is correlation.
The focus, therefore, shifts from how actions could be correlated to whether it
can be consistent with equilibrium for players to expect correlation even if there
is none. We demonstrated that stereotyping, even if it causes erroneous beliefs,
can be consistent with equilibrium. Furthermore, a player’s payoff is largely
invariant to whether he stereotypes. Stereotyping can, however, influence the
payoffs of those being stereotyped. It should be emphasized that we obtain this
result because a player only stereotypes those that are ‘similar’. This raises the
question of how a player would form his beliefs about the actions expected of
others.

One way to address some of these issues would be to make the role-allocation
device endogenous, that is, to model how players can endogenously develop a
coordinated way of recognizing and interpreting random signals from nature or
pre-play communication. An endogenous role-allocation device would enable
one to determine from the model whether correlation and WGA and GI can be
expected to emerge as properties. In doing so one would also like social groups
to be endogenous. It may be possible to address this as a coalition-formation
problem either in a noncooperative/cooperative framework such as in Perry
and Reny (1996), or more recent work on economies with local public goods or
many-to-any matching problems, such as Konishi and Unver (2006), or through
a network approach similar to those described in Jackson (2005). Alternatively,
evolutionary arguments as in Robson and Wooders (1997) may lead to the selec-
tion of social norms based on population growth. A related issue is to consider
communication equilibrium as opposed to correlated equilibrium (Forges 1987).
Communication equilibrium is the extension of correlated equilibrium to games
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in extensive form where communication and signals are possible, not only prior
to play but also during play of the game. In endogenizing the allocating device
and social group membership, it would be natural to model more explicitly the
process of communication between players, not only before the game but during
the play of the game (or, if thinking of repeated plays of a stage game, between
plays of the stage game).

Finally, we conclude by relating this paper to our prior working papers,
especially those dealing with conformity and stereotyping. In Cartwright and
Wooders (2003) we raised the question of whether we could meaningfully extend
the results of WCS to situations where individuals in the same society could
undertake different actions. In that paper, we treated these questions in the
context of games with many players, as (in part) in this paper (in particular,
the Lipshitz continuity condition and global interaction were both used). In
an effort to simplify the results and bring into sharp focus the effects of most
players having many close substitutes we took a different tack in Cartwright
and Wooders (2005). In that paper we also introduced stereotyping and the
question of whether stereotyping of others was harmful to an individual player
(in other words, consistent with bounded rationality). These papers were widely
presented and we have benefited from comments of participants in numerous
conferences and seminars. The clarity and simplicity of our current paper is
largely due to our prior work taking different approaches to make the same
points. In the current paper, besides sharpening some of the prior results, we
return to games with many players and, for the first time, introduce the property
of predictable group behavior. What other natural behavioral properties of
strategic games with many players can be obtained is an open question.
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