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Abstract

“Optimal Nonlinear Taxation of Income and Savings in a Two Class Economy”

by

Craig Brett and John A. Weymark

Optimal nonlinear taxation of income and savings is considered in a two-period model
with two individuals who have additively separable preferences and who only differ in
their skill levels. When the government can commit to its second period policy, taxes on
savings do not form part of the optimal tax mix. When commitment is not possible, the
optimal tax scheme distorts private savings behavior. If the types are separated in period
one, it is optimal to subsidize the savings of both types of individual at the margin. If the
types are pooled in period one, it is optimal for the low-skilled (high-skilled) individual
to face a marginal savings tax (subsidy). In both cases, the subsidy to the high-skilled
individual helps offset his disincentive to save that arises because some of his savings
will be redistributed to the low-skilled individual in the second period. The savings of
the low-skilled individual in the separating case are taxed so as to relax an incentive
compatibility constraint.

Journal of Economic Literature classification numbers: D82, H21.

Keywords and phrases: asymmetric information, commitment, dynamic optimal taxa-
tion, optimal income taxation, savings taxation, time consistency.



1. Introduction

Ever since the pathbreaking work of Mirrlees (1971), a government’s lack of full informa-
tion on the tax-relevant characteristics of its citizens has been viewed as a fundamental
constraint on the design of nonlinear tax schedules. In the context of redistributive
income taxation, a taxation authority’s egalitarian intentions may be hampered by its
inability to identify the respective abilities to pay of different taxpayers.1 It is aware,
however, that at least some of the tax-relevant characteristics about which it would like
more information help to shape the observable behavior of citizens. For example, an indi-
vidual’s unobservable skill level is a determinant of his potentially observable before-tax
labor income. Thus, the observable choices that an individual makes convey informa-
tion to the government about that individual’s characteristics. Yet, this information is
available only after the tax system has been designed and implemented. Moreover, this
information is available at a cost in terms of distortions between consumer and producer
prices. Indeed, much of the literature on optimal nonlinear income taxation is devoted
to identifying, interpreting, and, more rarely, quantifying the distortions in labor sup-
ply behavior associated with information-constrained optimal tax systems. Examples
include Seade (1977), Guesnerie and Seade (1983), Stiglitz (1983), Tuomala (1990), and
Guesnerie (1995).

The information revelation approach to taxation was originally developed for atem-
poral environments. A major impediment to extending the Mirrlees model to dynamic
settings is that information revealed by taxpayers in one period can be used by the gov-
ernment in subsequent periods. Aware of this possibility, rational taxpayers may modify
their behavior in early periods in an attempt to better conceal their characteristics. In
particular, more able taxpayers might fear the Weitzman (1980) ratchet effect, whereby
the government may use its knowledge of ability to pay to extract more taxes from them
in the future. The ratchet effect would not arise if the government could commit to
forgetting any information it learns at the beginning of each new tax year. However,
such a commitment is not credible and, therefore, is not time consistent.

In this article, we investigate redistributive tax policy for a two class economy in which
individuals of two productivity types work and consume in each of two periods. These
individuals may also transfer resources forward in time through saving. For simplicity, we
assume that there is only one person of each type. A utilitarian government designs an
optimal nonlinear tax system for these individuals in each time period. It can condition
tax payments on both labor income and savings. We assume that the preferences of the
private individuals are additively separable both across time and between consumption
and leisure. These assumptions on preferences guarantee that the optimal marginal tax
rate on savings is zero for all individuals when the government can commit to ignore type
information revealed in the first period.

We assume that the government is unable to commit to its second period tax policy

1The only role of the government in this article is to redistribute income, so we speak interchangeably
of the “government” and the “taxation authority.”
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in advance, and so any information about individual types revealed in the first period
can be used when designing second period taxes. The dependence of second period taxes
on information revealed in the first period is rationally anticipated by the taxpayers. We
consider the two possible kinds of optimal tax regimes. In a separating tax regime, type
information is revealed in the first period, whereas in a pooling tax regime, type infor-
mation remains hidden after the first period. Whether the optimal regime is separating
or pooling depends on a discrete comparison between the best separating tax policy and
the best pooling tax policy. Such a comparison requires additional assumptions about
the functional form of the utility functions. We do not explore the issue of identifying
whether separating or pooling types is the global optimum.

A major focus of the literature on redistributive tax policy is the identification of
tax instruments to supplement income taxation that, by relaxing an incentive compat-
ibility constraint, are welfare enhancing. See Boadway and Keen (2000, Section 4.4).
When types are separated in the first period, we show that taxes on savings are such
an instrument. In this case, it is optimal to subsidize the savings of both individuals.
Furthermore, the marginal savings subsidy is greater for the less productive individual
than it is for the more productive individual. As in atemporal models, in the first pe-
riod, it is optimal for the high-skilled individual to face a zero marginal income tax rate,
whereas the low-skilled individual faces a positive marginal income tax rate. Because
there is complete revelation of types in the first period, personalized lump-sum taxes and
transfers are optimal in period two.

When types are pooled in period one, it is optimal for the low-skilled individual to
face a positive marginal rate of savings taxation, while the savings of the high-skilled
individual is subsidized. With pooling in the first period, the second period is a standard
one-period optimal income tax problem, and so it is optimal for the high-skilled individual
to face a zero marginal income tax rate and for this rate to be positive for the low-skilled
individual. In the first period, both individuals are distorted in the labor market, with
the low-skilled individual facing an implicit negative marginal income tax rate and the
high-skilled individual facing a positive marginal income tax rate.

Much of the early literature on the time consistency of savings taxation, such as
Fischer (1980), considered representative agent models with no asymmetric information,
thereby excluding distributional concerns from the outset. In contrast, the recent lit-
erature on dynamic optimal taxation has supposed that individuals are heterogeneous
and are subject to person-specific shocks that are unobservable to the government. Re-
distributive taxation in such settings provides social insurance. For the most part, the
contributions to this literature assume that the government can commit to its tax poli-
cies.2 A notable exception is the work of Bisin and Rampini (2006), who assume that
the government lacks such commitment. Bisin and Rampini consider a two-period model
with both income and savings taxation in which there are shocks that affect incomes
directly or indirectly through their effects on labor productivity. Their main finding is

2For overviews of this literature, see Kocherlakota (2006) and Golosov, Tsyvinski, and Werning
(2007). For an illuminating perspective on this literature, see Diamond (2007).
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that the power of the taxation authority to take advantage of information revealed in
the first period can be somewhat mitigated if individuals have access to capital markets
that prevent the government from observing their total savings. In other words, access
to anonymous markets can serve as a welfare-improving constraint on a government that
lacks commitment.

We do not consider shocks to the economy. In particular, we suppose that each
individual has the same labor productivity in every period. Roberts (1984), Berliant
and Ledyard (2005), and Apps and Rees (2006) have also employed a deterministic
framework to analyze dynamic optimal nonlinear income taxation when the government
cannot commit to ignore information gathered in earlier periods. None of these studies
considers savings taxation as a possible instrument.3 Berliant and Leydard have identified
sufficient conditions for type information to be revealed in the first period of a two-period
economy with a continuum of types, whereas Roberts has shown that types are never
separated in an infinite horizon economy with a finite number of types provided that the
government revenue requirement is not so large as to bankrupt any individual.4

The work closest to our own is that of Apps and Rees (2006).5 As is the case here,
Apps and Rees consider a two-type, two-period model. Their model differs from ours
in two important respects. First, they have a continuum of individuals of each type.
Second, they do not permit any intertemporal transfers of resources and, therefore, there
are no savings to tax. By allowing for more than one person of each type, Apps and Rees
are also able to consider a mixed case in which some, but not all, high-skilled individuals
are pooled with the low-skilled individuals in period one. Working with a continuum
of individuals simplifies their analysis when there is some separation in the first period
because when a high-skilled individual mimics a low-skilled individual, his behavior does
not change the distribution of types and, hence, does not change which regime applies
(pooling, separating, or mixed). Because we only have one person of each type, with
this kind of mimicking the regime switches from separating to pooling, and this must
be taken into account when formulating this person’s incentive compatibility constraint.
In spite of these differences, the qualitative properties of the tax distortions on labor
earnings that Apps and Rees identify are the same as those obtained here.

An important early contribution to redistributive tax policy in the presence of asym-
metric information in dynamic settings when the government lacks the ability to commit
to its tax policies is that of Ordover and Phelps (1979). They consider optimal nonlin-
ear taxation of income and savings in an overlapping generations environment. In their
model, individuals live for two periods, but work only when young. Because retirees make

3There is also an extensive literature on dynamic optimal taxation with fixed types in which the
government is assumed to be able to commit to its tax policy in period one. In an interesting contribution
to this literature, Gaube (2007) argues that basing taxes only on current values of the variables in the
tax base, in his case incomes, can serve as a partial commitment device.

4Dillén and Lundholm (1996) also analyze when it is optimal to separate or pool types in a two-period
model with variable consumption and labor supply, but restrict attention to linear income taxation.
They, too, do not consider savings taxation.

5The first version of our article was completed before we learned of their research.
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no labor-consumption tradeoffs, it is possible to treat taxes on second period consump-
tion as being paid at the end of the first period. In this way, information revealed to
the taxation authority by a young individual does not change the taxes that individual
faces when old, and the ratchet effect does not operate. Ordover and Phelps (1979) show
that it is optimal to tax the savings of most individuals (but not the savings of the most
skilled) whenever the marginal rate of substitution between consumption when young
and consumption when old depends on labor supply. On the other hand, savings should
remain untaxed at the margin whenever preferences are separable across time. Using
a similar generational structure and informational assumptions, Pirttilä and Tuomala
(2001) argue that distorting savings decisions can be optimal even when preferences are
separable across time when future relative wages are sensitive to current savings via their
effect on capital accumulation.

For Boadway, Marceau, and Marchand (1996), savings take the form of unobservable
investments in education. There are two types of individuals who consume in both
of two periods and supply labor at a common wage rate and invest in education in
the first period. Labor supply is fixed in the second period, but the wage received
depends on the returns to education, which are type specific. Because all individuals are
observationally equivalent in the first period, no private information is revealed until the
second period when the government observes incomes (the returns to education), at which
time nonlinear income taxation is used for redistributive purposes. As is the case here,
Boadway, Marceau, and Marchand identify a policy instrument (in their case, mandating
a minimum amount of time spent in publicly-observable education) that can help to
mitigate the distortions introduced because of the government’s lack of commitment.6

The rest of this article is organized as follows. Section 2 describes the economy. In
order to provide a benchmark for our analysis of optimal taxation without commitment,
in Section 3, we identify the qualitative properties of optimal taxes under the assumption
that the government can commit to a second period tax schedule before type information
is revealed. Section 4 contains our results on optimal taxation when the government
cannot commit. We offer concluding remarks in Section 5. Proofs are gathered in an
Appendix.

2. The Model

The economy lasts for two time periods. There are two individuals, i = 1, 2, with person
i suppling lti units of labor and consuming cti units of a single consumption good in period
t, t = 1, 2.7 Individual i transfers wealth from period one to period two by saving the
amount si of the consumption good. The individuals differ in labor productivity, with
the skill level of person i given by the parameter wi, with w1 < w2. In keeping with

6The literature on the taxation of savings also considers a range of normative issues that are not
discussed here. See Boadway and Wildasin (1994, Section VI) and Stiglitz (1987, Sections 12–15) for
introductions to these topics.

7Subscripts index individuals, while superscripts index time periods.
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the literature on optimal nonlinear income taxation, the skill level is interpreted as labor
productivity, so that person i’s effective labor in period t is yt

i = wil
t
i. The production

technology exhibits constant returns to scale. In each period, one unit of effective labor
is required to produce one unit of the consumption good. Each unit of the consumption
good stored in the first period produces 1+r units of the consumption good in the second
period, where r > 0. As in Boadway, Marceau, and Marchand (1996), individuals may
not borrow against future income. The labor market is perfectly competitive in each
period, so that an individual’s effective labor supply equals his labor income.

The government designs a tax system to redistribute income between the individuals.
It cannot observe an individual’s labor supply or skill level, but it can observe his income
from labor and knows that there is one person with each of the two possible skill levels.
Moreover, it has the ability to observe savings. The total tax paid by consumer i in
period t is T t

i . The value of T t
i can be made contingent on the amount saved and on the

current and past values of labor income. In period t, the difference between labor income
and the tax paid by consumer i is

xt
i = yt

i − T t
i , i, t = 1, 2. (2.1)

Individuals are free to divide this net-of-tax labor income in the first period between
consumption and savings. Each unit of savings provides an individual with an additional
1 + r units of consumption in the second period over and above his second period net-
of-tax labor income. Consumption in each period is, therefore, given by

c1i = x1
i − si, c2i = x2

i + (1 + r)si, i = 1, 2. (2.2)

Although strictly speaking, in period two, person i’s before-tax income is y2
i + rsi (the

sum of labor and interest income) and his after-tax income is y2
i + rsi − T 2

i , we shall
abuse terminology somewhat and henceforth refer to yt

i and xt
i as, respectively, person

i’s before-tax and after-tax incomes in period t.
The individuals have identical preferences over consumption and labor supply, addi-

tive in all goods and across time, and represented by the utility function

U(c1i , l
1
i , c

2
i , l

2
i ) = u(c1i ) − g(l1i ) + v(c2i ) − h(l2i ), i = 1, 2. (2.3)

The functional form of U(·) is known to the government. The functions u(·) and v(·) are
increasing, strictly concave, and twice continuously differentiable, while the functions g(·)
and h(·) are increasing, strictly convex, and twice continuously differentiable. Preferences
over the variables that the government can observe are given by

u(x1
i − si) − g

(
y1

i

wi

)
+ v(x2

i + (1 + r)si) − h

(
y2

i

wi

)
, i = 1, 2. (2.4)

Person i’s marginal rate of substitution between before-tax income and after-tax in-
come in the first period is

MRSy1
i ,x1

i
=
g′

(
y1

i

wi

)
wiu′(c1i )

, (2.5)
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while his marginal rate of substitution between before-tax income and after-tax income
in the second period is

MRSy2
i ,x2

i
=
h′

(
y2

i

wi

)
wiv′(c2i )

. (2.6)

Holding incomes and consumption levels constant, the marginal rates of substitution
between before-tax and after-tax income are decreasing in the skill level because the
more highly-skilled individual must work fewer additional hours for each additional unit
of before-tax income than does the lower-skilled individual. Thus, it takes a smaller
increase in after-tax income to compensate the higher-skilled individual for increases in
before-tax income than it does to compensate the lower-skilled individual.

Person i’s marginal rate of substitution between after-tax income in period one and
after-tax income in period two is

MRSx1
i ,x2

i
= −u

′(c1i )

v′(c2i )
. (2.7)

This intertemporal marginal rate of substitution does not depend explicitly upon the
skill level and, hence, is observable to the government. Because of their common prefer-
ences over consumption and labor supply, the two individuals have the same willingness
to trade consumption across time periods. The additive nature of preferences implies
that the marginal rate of substitution between period one consumption and period two
consumption does not depend on the amount of labor supplied in either period.

The government may also engage in saving by storing an amount sG of the consump-
tion good. The storage technology available to the government is exactly the same as
the storage technology for the private sector. Thus, the materials balance constraints for
the economy are

x1
1 + x1

2 + sG ≤ y1
1 + y1

2 (2.8)

and

x2
1 + x2

2 ≤ y2
1 + y2

2 + (1 + r)sG. (2.9)

Using (2.2), these constraints can be equivalently written as

c11 + c12 + s1 + s2 + sG ≤ y1
1 + y1

2 (2.10)

and

c21 + c22 ≤ y2
1 + y2

2 + (1 + r)(s1 + s2 + sG). (2.11)
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We assume that the government has a utilitarian objective function. Thus, it evaluates
outcomes using the social welfare function

W(x1
1, x

1
2, y

1
1, y

1
2, x

2
1, x

2
2, y

2
1, y

2
2, s1, s2) = u(x1

1 − s1) − g

(
y1

1

w1

)
+ v(x2

1 + (1 + r)s1)

− h

(
y2

1

w1

)
+ u(x1

2 − s2) − g

(
y1

2

w2

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w2

)
. (2.12)

Note that with this objective function, the government shares the intertemporal pref-
erence of the individuals. Browning and Burbidge (1990) have shown that when the
government has a different rate of time preference than does the private sector, there is
a case for distortionary taxation of savings.8 In order to focus on the redistributional
role of taxation, we do not consider differential time preferences as a rationale for savings
taxation.

3. Optimal Taxation with Commitment

First-best taxation is infeasible in this economy because the government cannot distin-
guish ex ante between the two individuals. Thus, only anonymous tax schedules are
feasible.9 Because individuals are free to select their optimal work-consumption-savings
combinations from the anonymous schedule that determines their tax payments in each
period, the resulting allocation must be incentive compatible; that is, each individual
must weakly prefer the allocation designed for him to the allocation designed for the
other individual. In order to provide a benchmark for our analysis of the tax design
problem without commitment, in this section, we assume that the government can com-
mit to a tax policy in period one. Specifically, the government is able to credibly commit
not to use information about the skill levels of the individuals revealed in the first period
to adjust taxes in the second period.

Given our information assumptions, we can equivalently think of the government
as choosing the allocation for this economy directly subject to incentive compatibility
and material balance constraints, rather than interacting indirectly with the individuals
through a tax schedule. When there is full commitment, incentive compatibility requires
that an individual weakly prefers the entire allocation, over both time periods, designed

8Browning and Burbidge only consider linear taxation, but their point also applies when taxes are
nonlinear.

9Because the economy has a finite number of individuals, the taxation authority can, by observing
aggregate outcomes, tell when an individual misreports his true type. Piketty (1993) and Hamilton
and Slutsky (2007) show how this knowledge can be used to implement first-best taxes in atemporal
settings. To achieve the first-best, the taxation authority must condition an individual’s tax payments
on the behavior of other taxpayers. We follow the tradition of the optimal tax literature by requiring
the government to set a tax schedule specifying an individual’s taxes as a function of only the values of
his own incomes and savings. This is a restriction, but a very natural one.
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for him to the allocation designed for the other individual. Formally,

u(x1
2 − s2) − g

(
y1

2

w2

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w2

)

≥ u(x1
1 − s1) − g

(
y1

1

w2

)
+ v(x2

1 + (1 + r)s1) − h

(
y2

1

w2

)
(3.1)

and

u(x1
1 − s1) − g

(
y1

1

w1

)
+ v(x2

1 + (1 + r)s1) − h

(
y2

1

w1

)

≥ u(x1
2 − s2) − g

(
y1

2

w1

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w1

)
. (3.2)

We assume that only the incentive compatibility condition (3.1) might potentially
bind. Given its utilitarian objective, the government wants to redistribute income from
the more highly-skilled individual to the less highly-skilled individual. The natural limit
on this redistribution is that, if taken too far, such redistribution might induce the higher-
skilled individual to pretend to be the lower-skilled individual. Imposing (3.1) prevents
this type of mimicking.10 Thus, the problem faced by the taxation authority can be
specified as follows:

The Second-Best Tax Design Problem with Commitment. The government choo-
ses an allocation (x1

1, x
1
2, y

1
1, y

1
2, x

2
1, x

2
2, y

2
1, y

2
2, s1, s2, sG) to maximize the social welfare func-

tion (2.12) subject to the materials balance constraints (2.8) and (2.9) and the two-period
incentive compatibility constraint (3.1).11

The second-best tax design problem with commitment is a standard one-dimensional
screening problem. Because there are five components to each individual’s allocation,
the taxation authority has more instruments than the minimum required to achieve sep-
aration.12 Given the adverse selection problem faced by the government, some distortion
to the behavior of at least one of the individuals is inevitable. Proposition 1 describes
the pattern of distortions at a solution to the government’s problem.

Proposition 1. At a solution to the second-best tax design problem with commitment:

(i) MRSy1
2 ,x1

2
= 1, MRSy2

2 ,x2
2

= 1, and MRSx1
2,x2

2
= −(1 + r).

(ii) MRSy1
1 ,x1

1
< 1, MRSy2

1 ,x2
1
< 1, and MRSx1

1,x2
1

= −(1 + r).

10Indeed, at a solution to the first-best taxation problem for this economy, the government wants
to equalize the consumption of both individuals in each time period and to require the more skilled
individual to work more. Thus, (3.1) is violated at the first-best allocation, while (3.2) is slack.

11In all of our tax design problems, we assume that the omitted nonnegativity constraints do not bind.
We also assume that each of these problems has a solution.

12Separation is possible in two-good worlds when there is asymmetric information in one dimension.
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Part (i) of Proposition 1 is a familiar no distortion result for the high-skilled individual.
In both periods, this individual faces a zero marginal income tax rate. Part (ii) of
Proposition 1 describes the distortions caused by the asymmetric information. Because
the first-best solution is not incentive compatible, constraint (3.1) must bind at a solution
to the second-best problem with commitment. It follows from Brito, Hamilton, Slutsky,
and Stiglitz (1990, Proposition 5) that the marginal rate of substitution for person 1
is distorted only for those pairs of goods for which the two individuals have a different
marginal rate of substitution at person 1’s allocation. Because the marginal rates of
substitution between before-tax income and after-tax income vary by skill level, the
effective labor-consumption margin is distorted in each period, and so person 1 faces a
positive implicit marginal income tax rate in both periods.13 On the other hand, the two
individuals have the same intertemporal preferences. In particular, person 2 considering
the opportunity to mimick person 1 is willing to trade consumption across time at the
same implicit prices as is person 1. Thus, there is no informational advantage to be had
by changing the intertemporal relative price of consumption. Therefore, savings decisions
are not distorted, and hence not taxed, at the margin.

4. Optimal Taxation without Commitment

The government’s ability to commit in the first period to the second period tax schedule
is not credible. The optimal two-period tax policy with commitment offers different
allocations to the two individuals in the first period. With full knowledge of the workings
of the economy, this allows the taxation authority to infer the identities of the individuals
at the end of the first period. The information asymmetry between the government and
the private sector disappears, and there is no need to distort behavior in the second
period. Because the optimal second-best scheme with commitment features a distortion
in the period two labor supply of individual 1, it would not be chosen by a taxation
authority with the ability to re-optimize after the first period. Furthermore, because
savings decisions have already been fixed in the first period, the government has an
incentive to increase the implicit tax on savings of the high-skilled individual beyond
what is optimal with commitment in order to further its redistributional goals. Hence,
the optimal scheme with commitment is time inconsistent.

The two individuals are aware that the government is able to use information gleaned
in the first period when setting second period taxes. In particular, the more highly-skilled
individual understands that if his type is revealed in the first period, then the taxation
authority will have an easier time redistributing income from him to the lower-skilled
individual in the second period because it no longer needs to worry about incentive
compatibility constraints. This redistribution can be accomplished by transferring more
of the high-skilled individual’s savings to the low-skilled individual and/or providing

13Optimal income tax schedules may be nondifferentiable. Person i’s implicit marginal income tax
rate in period t is 1 − MRSyt

i
,xt

i
. Because MRSyt

i
,xt

i
> 0, marginal income tax rates are bounded above

by one.
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an incentive for the high-skilled individual to work more so that there is more of this
person’s income available to redistribute. Thus, there is an increased incentive for the
more highly-skilled individual to conceal information in the first period.

For its part, the taxation authority is aware of the added incentive to hide information
in the first period. It realizes that the full-commitment tax schedule may need to be
modified in order to induce information revelation in the first period. As pointed out by
Freixas, Guesnerie, and Tirole (1985) in a planning context and by Dillén and Lundholm
(1996) for linear income taxes, such modifications may be sufficiently costly to lead the
government to prefer not to separate types in the first period. The taxation authority
must compare the gains accruing from the use of first-best taxation in the second period
to the costs incurred in the first period of extracting the information it needs to implement
the second period first-best allocation.

Type information remains hidden only if both individuals choose the same before-tax
income, after-tax income, and savings in the first period; i.e., there is pooling. If any
component of the first period allocation differs by type, information is revealed and the
types are separated. The tax schedule offered in the first period and the anticipated tax
schedule for the second period shape the choices of the two individuals and implicitly
determine whether there is pooling or separation in the first period. The first period rev-
elation outcome is discrete; either there is pooling or there is separation. Deciding which
of the two configurations is better requires a comparison between the maximized values
of the social welfare function in the two cases. In general, such a comparison depends
on the exact form of the utility function. Before making this comparison, the taxation
authority must first determine the solution to the optimal tax problem conditional on
there being (a) pooling and (b) separation in period one.

4.1. Pooling in the First Period

The only circumstance in which the taxation authority cannot infer the identities of the
two individuals after the first period is when they make identical choices in that period.
In particular, they choose a common level of savings s. The government can observe this
level of savings and its own savings. Social welfare in the second period is affected by
individual savings, and is given by

W2,pool(x2
1, x

2
2, y

2
1, y

2
2, s) = v(x2

1 + (1 + r)s) − h

(
y2

1

w1

)
+ v(x2

2 + (1 + r)s) − h

(
y2

2

w2

)
.

(4.1)

Because the government enters the second period without full knowledge of the individ-
uals’ types, its tax design problem is constrained by the incentive compatibility require-
ment

v(x2
2 + (1 + r)s) − h

(
y2

2

w2

)
≥ v(x2

1 + (1 + r)s) − h

(
y2

1

w2

)
. (4.2)
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The problem faced by the government in the second period is:

The Second Period Tax Design Problem with Pooling. Given s̃ = (s, sG), the
government chooses a second period allocation (x2

1, x
2
2, y

2
1, y

2
2) to maximize the objec-

tive function (4.1) subject to the second period materials balance constraint (2.9) and
the incentive compatibility constraint (4.2).

Apart from the dependence of the utility functions on the parameter s and the de-
pendence of the resource constraint on sG, the second period tax design problem with
pooling is a standard optimal nonlinear taxation problem. Given the utilitarian nature
of the objective function, the problem is strictly redistributive in the sense of Guesnerie
(1995, p. 224). Hence, the optimal second period allocation features the usual pattern of
distortions: individual 1 faces a positive implicit marginal income tax rate and individual
2 has a zero implicit marginal income tax rate. In other words, person 1’s marginal rate
of substitution between second period income and consumption is less than one, whereas
this marginal rate of substitution is equal to one for person 2. Moreover, individual 1 has
less of both second period consumption and income than does individual 2. This pattern
of distortions is summarized in Lemma 1.

Lemma 1. MRSy2
1 ,x2

1
< 1 and MRSy2

2 ,x2
2

= 1 at a solution to the second period no-
commitment tax design problem with pooling.

The taxation authority foresees the impact of second period decisions when solving for
the optimal first period allocation with pooling. Thus, given pooling in the first period,
its objective function is

Wpool(x1, y1, s, sG) = u(x1 − s) − g

(
y1

w1

)
+ v(x2

1(̃s) + (1 + r)s)

− h

(
y2

1 (̃s)

w1

)
+ u(x1 − s) − g

(
y1

w2

)
+ v(x2

2(̃s) + (1 + r)s) − h

(
y2

2 (̃s)

w2

)
, (4.3)

where variables without subscripts indicate values that are identical for the two individ-
uals. Because the objective function (4.3) incorporates the second period decisions of
the taxation authority, it takes account of the period two materials balance constraint
(2.9) and the incentive compatibility constraint (4.2). Because the two individuals have
identical observable allocations in period one, overall incentive compatibility is equivalent
to (4.2). Hence, the only constraint remaining for the first period tax design problem is
(2.8), the materials balance constraint for period one. When the individuals are pooled,
(2.8) reduces to

2x1 + sG ≤ 2y1. (4.4)

The government’s first period decision problem can, therefore, be described as follows:
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The First Period No-Commitment Tax Design Problem with Pooling. The gov-
ernment chooses a first period allocation (x1, y1, s, sG) to maximize the objective function
(4.3) subject to the first period materials balance constraint (4.4).

The objective function of the first period no-commitment tax design problem with
pooling depends on first period savings is two ways. There is a dependence due to the
direct effects of private savings on consumption in each period. There are also indirect
effects that depend on how the components of the optimal second period allocation
depend on savings. However, the exact comparative static responses of the optimal
second period allocations to savings are difficult to determine. This is hardly surprising,
for comparative static results for nonlinear income taxes have only been established
when utility functions are quasilinear.14 The following proposition demonstrates that,
even without general comparative static results concerning the second period problem,
it is possible to characterize the pattern of distortions in the first period.

Proposition 2. At a solution to the first period no-commitment tax design problem with
pooling:

(i) MRSy1
1 ,x1

1
> 1 > MRSy1

2 ,x1
2
.

(ii) MRSx1
1,x2

1
> −(1 + r) > MRSx1

2,x2
2
.15

With pooling and no commitment, person 2 faces a higher implicit marginal income
tax rate than person 1 in period one, which is the reverse of what occurs in the standard
nonlinear income tax problem and in the full commitment problem. Interestingly, person
1 faces a negative implicit marginal income tax rate (i.e., person 1’s labor supply is
subsidized) and person 2 faces a positive implicit marginal income tax rate.16 Both
individuals also have their savings decisions distorted, with person 1 (resp. person 2)
having his savings taxed (resp. subsidized) at the margin.

Because the utility function is additively separable in labor and consumption, equal
consumption in the first period implies equal marginal utility of consumption in that pe-
riod. Equal incomes in period one imply that person 2 has a smaller marginal disutility of
labor in period one than does person 1. The monotonicity of second period consumption
in type implies that individual 2 has a lower marginal utility of consumption in the sec-
ond period than does individual 1. The requirements that MRSy1

1 ,x1
1
> MRSy1

2 ,x1
2

in part

14In their comparative static analyses, Weymark (1987), Hamilton and Pestieau (2005), and Brett
and Weymark (2008) consider preferences that are quasilinear in labor supply, while Boadway and
Pestieau (2006) and Simula (2007) consider preferences that are quasilinear in consumption. Imposing
quasilinearity is inappropriate in our model because it renders the second period first-best outcome under
separation indeterminate.

15Recall that marginal rates of substitution between after-tax incomes in the two periods are negative,
so in absolute value, person 1 has the smaller intertemporal marginal rate of substitution.

16Dillén and Lundholm (1996) have found in their model of dynamic linear income taxation without
commitment that pooling with a negative first period marginal income tax rate may be optimal.
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(i) of Proposition 2 and MRSx1
1,x2

1
> MRSx1

2,x2
2

in part (ii) then follow from the definitions
of these marginal rates of substitution in (2.5) and (2.7).

At an optimal allocation with first-period pooling, it is possible to infinitesimally
decrease the common first period consumption and before-tax income by the same amount
holding savings fixed without violating the materials balance constraints (2.8) and (2.9).
Because savings are held constant, this change has no effect on the second period incentive
compatibility constraint (4.2). If MRSy1

2 ,x1
2
≥ 1 and, hence, MRSy1

1 ,x1
1
> 1, this change is

a Pareto improvement. Hence, it must be optimal to have MRSy1
2 ,x1

2
< 1.17 By reversing

the direction of change in first period consumption and before-tax income, it follows that
it is also optimal to have MRSy1

1 ,x1
1
> 1.

As we have seen, at an optimal allocation with first-period pooling, it is necessary for
person 1 to have the smaller intertemporal marginal rate of substitution in absolute value.
Suppose that MRSx1

1,x2
1
≤ −(1+r) and, hence, MRSx1

2,x2
2
< −(1+r). Consider modifying

the optimal allocation by having each individual transfer a common infinitesimally small
amount from savings into first period consumption and then decreasing second period
consumption by −MRSx1

1,x2
1

for person 1 and by −MRSx1
2,x2

2
for person 2. This composite

change has no effect on the variables that appear in the first period materials balance
constraint (2.8), but it relaxes the second-period materials balance constraint (2.9); i.e.,
it is resource saving. Furthermore, this reallocation is a matter of indifference for each
individual. From the definition of the intertemporal marginal rate of substitution (2.7),
we see that second period utility has decreased by u′(c12) for person 2 and by u′(c11) for
person 1. Note that u′(c11) is also the change in second period utility for person 2 if he
mimics person 1. Because there is pooling in the first period, c11 = c12. Hence, this com-
posite change does not violate the incentive compatibility constraint (4.2). The resource
savings can now be used to increase each person’s second period consumption without
violating any of the constraints, contradicting the optimality of the initial allocation.
Thus, it must be optimal to have MRSx1

1,x2
1
> −(1 + r). A similar argument can be

used to show that is also optimal to have MRSx1
2,x2

2
< −(1 + r), for otherwise it would

be possible to obtain a Pareto improvement by transferring consumption from the first
period to the second period.

In the absence of informational and commitment constraints, the government could
engineer an increase in social welfare by facilitating an intertemporal trade of consump-
tion between the two individuals. This trade can be accomplished by transferring a unit
of consumption from person 1 to person 2 in period one and reversing the transfer in
period two. Because the marginal utilities of consumption are equal in period one, there
is no change in overall welfare as a result of the period one transfer. The overall sum of
utilities increases when the second period transfers are taken into account because person
1’s marginal utility of consumption exceeds that of person 2 in period two. However, if
the individuals were to accept such a trade, the allocations of the two individuals would
differ in period one and, hence, their identities would be revealed. The government would

17Except in the borderline case in which MRSy1
2 ,x1

2
= 1, both people benefit from this change. In the

borderline case, this change is a matter of indifference to person 2, but strictly benefits person 1.
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use this information to completely redesign the second period taxation schedule, thereby
undermining its original intentions.

4.2. Separation in the First Period

If the two individuals make different choices in the first period, then the government has
sufficient information to carry out lump-sum taxation in the second period. The two
private individuals and the government enter the second period with an endowment of
the consumption good equal to the amount of their savings augmented by the factor
1+ r. The taxation authority may levy taxes on the savings of the private agents as well
as on their labor incomes. In this way, it determines the after-tax incomes of the two
individuals in period two, x2

1 and x2
2. Second period social welfare is given by the sum of

individual utilities, which, using (2.2) and (2.4), is

W2(x2
1, x

2
2, y

2
1, y

2
2, s1, s2) = v(x2

1 + (1 + r)s1) − h

(
y2

1

w1

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w2

)
.

(4.5)

The problem faced by the taxation authority in the second period is:

The Second Period First-Best Problem. Given s = (s1, s2, sG), the government choo-
ses an allocation (x2

1, x
2
2, y

2
1, y

2
2) to maximize the second period social welfare function (4.5)

subject to the materials balance constraint (2.9).

The second period first-best problem has a strictly concave objective function and
a single linear constraint, which can easily be shown to bind at the solution to this
problem. Each of the four components of the solution to the second period first-best
problem depends on the vector s = (s1, s2, sG) of predetermined savings levels. Because
the problem is so well-behaved, its comparative static properties with respect to each
component of the savings vector can be derived using standard methods from consumer
theory. Its value function, V2,sep(s), is also well-behaved. The properties of the solution
to the second period first-best problem most pertinent to a characterization of the dis-
tortions arising in our two-period optimal tax problem when there is separation in the
first period are collected in the following lemma.

Lemma 2. For a given savings vector s = (s1, s2, sG), the second period first-best problem
has a unique solution. Moreover, the solution functions x2

1(s), x
2
2(s), y

2
1(s), and y2

2(s) are
continuously differentiable and satisfy the following conditions:

(i) v′(x2
1(s) + (1 + r)s1) = v′(x2

2(s) + (1 + r)s2) =
1

w1

h′
(
y2

1(s)

w1

)
=

1

w2

h′
(
y2

2(s)

w2

)
.

(ii)
∂V2,sep(s)

∂si

= (1 + r)(v′(x2
i (s) + (1 + r)si)), i = 1, 2.
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(iii)
∂x2

1(s)

∂si

+
∂x2

2(s)

∂si

− ∂y2
1(s)

∂si

− ∂y2
2(s)

∂si

= 0, i = 1, 2.

(iv)
∂y2

2(s)

∂s2

− ∂x2
2(s)

∂s2

> 0.

With separation, we have a full information planning problem in the second period in
which the government has access to the interest-augmented savings from the first period
to distribute as it wishes. Part (i) of Lemma 2 summarizes the marginal conditions
for a first-best utilitarian optimum in the second period. The taxation authority wants
to equate the marginal utilities of consumption for the two individuals. Given identical
additively separable preferences, equality of the marginal utilities of consumption implies
equal consumption for the two individuals. This common marginal utility of consumption
is the rate at which social welfare increases in the second period if there is a marginal
increase in either individual’s consumption in this period. Therefore, as stated in part (ii),
the marginal value of savings, both private and public, is 1+ r times the marginal utility
of consumption in the second period. Furthermore, for each individual, the marginal
rate of substitution between labor and consumption equals his wage rate (i.e., his skill
level). Because person 2 has a higher wage rate, he also has a higher marginal disutility
of labor at the first-best optimum. Given identical preferences with increasing marginal
disutility of labor, person 2 must work more than does person 1. Because agreeing to
work more than someone else for equal consumption is not incentive compatible, the
taxation authority must make use of the skill information revealed in the first period in
order to implement this scheme using person-specific lump sum taxes and transfers.

Part (iii) of Lemma 2 follows directly from the second period materials balance con-
straint. This result does not imply that optimal second period before-tax and after-tax
incomes are insensitive to individual wealth holdings. Indeed, it is feasible for the tax-
ation authority to tax away all first period savings. Instead, part (iii) simply says that
changes in aggregate production are offset by changes in after-tax income. However, as
is apparent from (2.2), the effect of a one unit increase in individual savings on aggregate
second period consumption exceeds the effect of a one unit increase in individual savings
on aggregate after-tax income by the factor 1+r, the gross return on that unit of savings.

Part (iv) of Lemma 2 states that the total tax payment of person 2 is increasing in
his savings. Thus, time inconsistency is a real concern in this economy, rather than a
mere possibility. If person 2 does reveal his type and does save for the future, then the
taxation authority will take some of those resources away through taxation in the second
period. Given the purely redistributive nature of taxation, these resources are then given
to person 1.

All decision makers in the economy, both private and public, recognize that the gov-
ernment is unable to commit to any second period taxation scheme apart from the one
that is the second period optimum given the first period savings. The two private in-
dividuals take this into account when deciding on their first period courses of action,
notably when making their savings decisions. Moreover, the taxation authority must
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provide sufficient incentive for individual 2 to reveal his type in the first period. In order
to do this, the total utility experienced by person 2 across the two periods when there is
separation in the first period must exceed the total utility experienced by person 2 when
person 2 pretends to be person 1 in the first period. The potential gains to mimicking in
the first period are twofold. First, person 2 could directly benefit from a favorable first
period allocation offered to person 1. Second, mimicking in the first period is a way for
person 2 to keep his true type hidden until the second period. If person 2 does mimic
person 1 in the first period, then there is pooling. As a consequence, person 2 rationally
anticipates that the government will solve the second period tax design problem with
pooling with s1 and sG as the levels of private and public savings, respectively. In order
to provide person 2 with an incentive to report his true type, it must therefore be the
case that the following incentive compatibility constraint is satisfied:

u(x1
2 − s2) − g

(
y1

2

w2

)
+ v(x2

2(s) + (1 + r)s2) − h

(
y2

2(s)

w2

)

≥ u(x1
1 − s1) − g

(
y1

1

w2

)
+ v(x̂2

2(s1, sG) + (1 + r)s1) − h

(
ŷ2

2(s1, sG)

w2

)
, (4.6)

where (x̂2
2(·), ŷ2

2(·)) is the consumption-income pair received by person 2 in the second
period when there is pooling in the first period.

The government designs its first period tax system fully aware of how it will respond
in the second period to its own first period actions and to the savings decisions of the
private individuals. Its first period objective function, which includes the social welfare
accruing in the second period, is

Wsep(x1
1, x

1
2, y

1
1, y

1
2, s1, s2, sG)

= u(x1
1 − s1) − g

(
y1

1

w1

)
+ u(x1

2 − s2) − g

(
y1

2

w2

)
+ V2,sep(s1, s2, sG). (4.7)

Because both the incentive compatibility condition (4.6) and the objective function (4.7)
include the solution functions to the second period first-best problem, the materials
balance constraint in period two is accounted for. However, the taxation authority must
also take account of the first period materials balance constraint. Thus, the government
faces the following tax design problem in period one.

The First Period No-Commitment Tax Design Problem with Separation. The
government chooses a first period allocation (x1

1, x
1
2, y

1
1, y

1
2, s1, s2, sG) to maximize the ob-

jective function (4.7) subject to the first period materials balance constraint (2.8) and
the incentive compatibility constraint (4.6).

The pattern of of distortions to labor supply and savings behavior arising at a solution
to the first period no-commitment tax design problem with separation are given in the
following proposition.
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Proposition 3. At a solution to the first period no-commitment tax design problem with
separation:

(i) MRSy1
1 ,x1

1
< 1 and MRSy1

2 ,x1
2

= 1.

(ii) MRSx1
1,x2

1
< MRSx1

2,x2
2
< −(1 + r).

Part (i) of Proposition 3 indicates that, at a solution to the no-commitment tax design
problem with separation, person 1 faces a positive first period implicit marginal income
tax rate, while person 2 faces a zero first period implicit marginal income tax rate.
In this respect, the optimal tax policy shares the qualitative properties of an optimal
nonlinear income tax schedule for a one-period economy. Separability of preferences
across time implies that the marginal rate of substitution between first period before-tax
income and first period after-tax income is independent of the second period allocation.
Therefore, the existence of a future period has no effect on the type of labor supply
distortions needed to induce revelation. Hence, person 1 has less income before and
after tax than person 2. The magnitude of the implicit marginal tax rate on person
1’s income may, however, differ from the corresponding implicit marginal tax rate in a
one-period economy. Anticipated future events help to shape savings decisions, which
directly affect first period consumption and person 1’s marginal rate of substitution
between consumption and labor supply in the first period.

Part (ii) of Proposition 3 shows that the government’s lack of commitment to a second
period tax scheme results in a distortion to each individual’s savings decision, with both
persons’ savings implicitly subsidized at the margin. In particular, and in contrast with
many atemporal optimal income tax schedules, there is a distortion at the top. Indeed,
unlike the general atemporal optimal nonlinear tax problem described in Brito, Hamilton,
Slutsky, and Stiglitz (1990, Proposition 3), every person faces some marginal distortion
in the optimal two-period allocation when the type information is revealed in the first
period.

The optimality of an implicit subsidy on the savings of individual 2 is a result of the
time-consistency problem faced by the government. We know from part (iv) of Lemma
2 that if person 2 increases his savings, then he will face a higher tax payment in the
second period. He anticipates this outcome and so, in the absence of any countervailing
incentive, he rationally distorts his savings downward when he reveals his type. Because
the tax authority wants to encourage person 2 to save so as to use the proceeds to
redistribute income in the second period, it offers him a marginal savings subsidy to
offset this distortion.

Because the second period allocation is first best, it is optimal to equalize v′(c21) and
v′(c22). Thus, person 1 is provided with a larger marginal subsidy on savings than person
2 if (and only if) u′(c11) > u′(c12). If this were not the case, then a marginal transfer of
consumption in period one from person 1 to person 2 would increase (or at least not
decrease) the sum of utilities without violating the materials balance constraint. Fur-
thermore, this transfer would relax the incentive compatibility constraint because person
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one’s allocation is no longer as attractive to person 2 as it was. Because this incentive
constraint no longer binds, it is possible to make additional adjustments to the individual
allocations so as to further increase social welfare without violating any of the constraints.
Thus, providing person 1 with the larger savings subsidy is an effective way for the tax-
ation authority to screen the two individuals. We therefore have another instance of
the observation made by Boadway and Keen (2000, Section 4.4) that distortionary pol-
icy instruments that would not be used in the absence of asymmetric information are
valuable when there is private information if these instruments can relax an incentive
compatibility constraint.

5. Conclusion

It is sometimes argued that conditioning taxes on both current and past values of the
variables in the tax base, as is done here, has no real-world counterpart. As Kocherlakota
(2006, p. 269) notes, citing features of the U.S. tax code, this is not in fact the case. More
importantly, he argues that (see p. 296) such criticisms miss the point of a normative
analysis whose objective is to identify better tax policies than have been employed in the
past.

Our analysis suggests that the lack of government commitment in the design of an
intertemporal tax policy provides a rationale for distortions in savings behavior. Extend-
ing our analysis to many-person economies is not straightforward. It is easy to construct
models of static nonlinear income taxation that exhibit considerable bunching (see, for
example, Weymark, 1986). Dynamic extensions of such models would invariably uncover
cases of pooling, semi-pooling, and separation, each with its own distinct pattern of
savings distortions. Nevertheless, the fundamental insight of this article—that when a
government cannot commit to its tax policy, some form of savings distortions are neces-
sary to counteract the incentive the government has to exploit in subsequent periods any
type information revealed to it—is likely to carry over to economies with any number of
individuals.

Despite the simplifications inherent in our model, it is interesting to compare the
pattern of savings distortions to the pattern implicit in some forms of mandatory public
pension schemes. The Canada Pension Plan, for example, is a mandatory defined con-
tributions scheme that may act as a form of forced savings for low-income individuals.
These individuals, like the low-skilled individual in our model with separation, face an
implicit marginal subsidy to savings. Higher income Canadians are more likely to access
other forms of pensions. For these individuals, the Canada Pension Plan also provides
an inducement to save. While not intended as a model of public pensions, our analysis
does point to the potential role for the differential encouragement of savings as a way to
alleviate informational constraints in dynamic settings.
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Appendix

Proof of Proposition 1. The Lagrangian associated with the second-best tax design prob-
lem with commitment is

u(x1
1 − s1) − g

(
y1

1

w1

)
+ v(x2

1 + (1 + r)s1) − h

(
y2

1

w1

)

+ u(x1
2 − s2) − g

(
y1

2

w2

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w2

)

+ λ1
[
y1

1 + y1
2 − x1

1 − x1
2 − sG

]
+ λ2

[
y2

1 + y2
2 + (1 + r)sG − x2

1 − x2
2

]

+ µ

[
u(x1

2 − s2) − g

(
y1

2

w2

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w2

)

−u(x1
1 − s1) + g

(
y1

1

w2

)
− v(x2

1 + (1 + r)s1) + h

(
y2

1

w2

)]
. (A.1)

The associated first-order conditions for an interior solution are:

x1
1 : u′(c11) − λ1 − µu′(c11) = 0; (A.2)

x1
2 : u′(c12) − λ1 + µu′(c12) = 0; (A.3)

y1
1 : − 1

w1

g′
(
y1

1

w1

)
+ λ1 +

µ

w2

g′
(
y1

1

w2

)
= 0; (A.4)

y1
2 : − 1

w2

g′
(
y1

2

w2

)
+ λ1 − µ

w2

g′
(
y1

2

w2

)
= 0; (A.5)

x2
1 : v′(c21) − λ2 − µv′(c21) = 0; (A.6)

x2
2 : v′(c22) − λ2 + µv′(c22) = 0; (A.7)

y2
1 : − 1

w1

h′
(
y2

1

w1

)
+ λ2 +

µ

w2

h′
(
y2

1

w2

)
= 0; (A.8)

y2
2 : − 1

w2

h′
(
y2

2

w2

)
+ λ2 − µ

w2

h′
(
y2

2

w2

)
= 0; (A.9)

s1 : − u′(c11) + (1 + r)v′(c21) + µu′(c11) − (1 + r)µv′(c21) = 0; (A.10)

s2 : − u′(c12) + (1 + r)v′(c22) − µu′(c12) + (1 + r)µv′(c22) = 0; (A.11)

sG : − λ1 + (1 + r)λ2 = 0. (A.12)

The first equality of part (i) follows from solving each of (A.3) and (A.5) for λ1 and
rearranging the resulting equality. Similar algebra applied to (A.7) and (A.9) yields the
second equality. From (A.11),

(1 + µ)u′(c12) = (1 + µ)(1 + r)v′(c22), (A.13)

from which the final equality of part (i) follows.
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By (A.2) and (A.4),

(1 − µ)u′(c11) =
1

w1

g′
(
y1

1

w1

)
− µ

w2

g′
(
y1

1

w2

)
= λ1. (A.14)

Because w1 < w2 and g(·) is strictly convex,

1

w1

g′
(
y1

1

w1

)
− µ

w2

g′
(
y1

1

w2

)
>

(1 − µ)

w1

g′
(
y1

1

w1

)
. (A.15)

Combining (A.14) and (A.15) yields

(1 − µ)u′(c11) >
(1 − µ)

w1

g′
(
y1

1

w1

)
. (A.16)

Because the multiplier on the resource constraint, λ1, is positive, (A.14) implies that
(1 − µ)u′(c11) is positive. Dividing both sides of (A.16) by (1 − µ)u′(c11) and rearranging
yields the first inequality of part (ii). The second inequality follows from a similar
argument applied to (A.6) and (A.8). From (A.10),

(1 − µ)u′(c11) = (1 − µ)(1 + r)v′(c21), (A.17)

from which the final equality of part (ii) follows.

Proof of Proposition 2. The Lagrangian associated with the second period no-commitment
tax design problem with pooling is

v(x2
1 + (1 + r)s) − h

(
y2

1

w1

)
+ v(x2

2 + (1 + r)s) − h

(
y2

2

w2

)
+ ζ

[
y2

1 + y2
2 − x2

1 − x2
2

]

+ φ
[
v(x2

2 + (1 + r)s) − h

(
y2

2

w2

)
− v(x2

1 + (1 + r)s) + h

(
y2

1

w2

) ]
. (A.18)

Let V2,pool(s, sG) be the value function for the second period problem with pooling. The
associated first-order conditions include:

x2
1 : v′(c21) − ζ − φv′(c21) = 0; (A.19)

x2
2 : v′(c22) − ζ + φv′(c22) = 0. (A.20)

Rearranging (A.19) and (A.20) yields:

(1 − φ)v′(c21) = (1 + φ)v′(c22) = ζ. (A.21)

By the envelope theorem,

∂V2,pool

∂s
= (1 + r)v′(c21) + (1 + r)v′(c22) + φ(1 + r)v′(c22) − φ(1 + r)v′(c21). (A.22)
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Equations (A.21) and (A.22) imply

∂V2,pool

∂s
= 2(1 + r)ζ (A.23)

By (4.3) and (4.4), the Lagrangian associated with first period non-commitment prob-
lem with pooling can be written as

u(x1 − s) − g

(
y1

w1

)
+ u(x1 − s) − g

(
y1

w2

)
+ V2,pool(s, sg) + ξ

[
2y1 − 2x1 − sG

]
. (A.24)

The first-order condition associated with s is

−2u′(c1) +
∂V2,pool

∂s
= 0. (A.25)

By (A.23) and (A.25),

u′(c1) = (1 + r)ζ. (A.26)

Equations (A.21) and (A.26) imply:

−u
′(c1)

v′(c21)
= −(1 − φ)(1 + r) > −(1 + r), (A.27)

and

−u
′(c1)

v′(c22)
= −(1 + φ)(1 + r) < −(1 + r), (A.28)

which establishes part (ii).
The first-order conditions of (A.24) with respect to x1 and y1 are

2u′(c1) − 2ξ = 0 (A.29)

and

− 1

w1

g′
(
y1

w1

)
− 1

w2

g′
(
y1

w2

)
+ 2ξ = 0. (A.30)

It follows from (2.5), (A.29), and (A.30) that

MRSy1
1 ,x1

1
+ MRSy1

2 ,x1
2

= 2. (A.31)

Because both of these marginal rates of substitution are positive and that of person 1 is
larger than that of person 2, it must be the case that MRSy1

1 ,x1
1
> 1 and MRSy1

2 ,x1
2
< 1,

which establishes part (i).
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Proof of Lemma 2. The objective function of the second period first-best problem is
strictly concave and the constraint set is convex. Hence, by Sundaram (1996, Theo-
rem 7.14), the problem has a unique solution. The Lagrangian associated with this
optimization problem is

v(x2
1 + (1 + r)s1) − h

(
y2

1

w1

)
+ v(x2

2 + (1 + r)s2) − h

(
y2

2

w2

)

+ λ
[
y2

1 + y2
2 + (1 + r)sG − x2

1 − x2
2

]
. (A.32)

The first-order conditions for an optimum are:

x2
1 : v′(c21) − λ = 0; (A.33)

x2
2 : v′(c22) − λ = 0; (A.34)

y2
1 : − 1

w1

h′
(
y2

1

w1

)
+ λ = 0; (A.35)

y2
2 : − 1

w2

h′
(
y2

2

w2

)
+ λ = 0; (A.36)

λ : y2
1 + y2

2 + (1 + r)sG − x2
1 − x2

2 = 0. (A.37)

Part (i) of the lemma follows from solving each of (A.33)–(A.36) for λ.
The bordered Hessian matrix for this problem is

A =




v′′(c21) 0 0 0 −1
0 v′′(c22) 0 0 −1

0 0 −h′′(l21)

(w1)2
0 1

0 0 0 −h′′(l22)

(w2)2
1

−1 −1 1 1 0



. (A.38)

Its determinant is

|A| = v′′(c21)v
′′(c22)

[
h′′(l21)

(w1)2
+
h′′(l22)

(w2)2

]
− h′′(l21)

(w1)2

h′′(l22)

(w2)2

[
v′′(c21) + v′′(c22)

]
. (A.39)

By the strict concavity of v(·), the first two factors of the first term on the right-hand
side of (A.39) are negative. Strict convexity of h(·) implies that the term inside the first
square bracket in (A.39) is positive. On the other hand, the first two factors in the second
term are positive, while the term in square brackets is negative. Thus, (A.39) expresses
|A| as a positive quantity minus a negative quantity. Hence, |A| > 0 and A is invertible.
It then follows from the Implicit Function Theorem (see Sundaram, 1996, Theorem 1.77)
that the solution functions are continuously differentiable. Part (iii) of the lemma follows
directly from differentiating both sides of the materials balance condition, which is also
the first-order condition (A.37), with respect to each si, i = 1, 2, in turn. Part (ii) of the
lemma follows from the envelope theorem.
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After totally differentiating the first-order conditions, a routine application of Cramer’s
rule to the resulting linear system yields the following results:

|A|∂x
2
2

∂s2

= −(1 + r)v′′(c22)

{
v′′(c21)

[
h′′(l21)

(w1)2
+
h′′(l22)

(w2)2

]
− h′′(l21)h

′′(l22)

(w1)2(w2)2

}
; (A.40)

|A|∂y
2
2

∂s2

= −(1 + r)v′′(c22)v
′′(c21)

h′′(l21)

(w1)2
. (A.41)

Subtracting (A.40) from (A.41) and rearranging yields

|A|
[
∂y2

2

∂s2

− ∂x2
2

∂s2

]
= (1 + r)v′′(c22)

h′′(l22)

(w2)2

[
v′′(c21) −

h′′(l21)

(w1)2

]
. (A.42)

Because v(·) is strictly concave and h(·) is strictly convex, the second and fourth factors
on the right-hand side of (A.42) are negative, while the first and third factors are positive.
Thus, the entire right-hand side of (A.42) is positive. Because |A| > 0, part (iv) of the
lemma follows.

Proof of Proposition 3. The Lagrangian associated with the first period no-commitment
tax design problem with separation is

u(x1
1 − s1) − g

(
y1

1

w1

)
+ u(x1

2 − s2) − g

(
y1

2

w2

)
+ V2,sep(s1, s2, sG)

+ η
[
y1

1 + y1
2 − x1

1 − x1
2 − sG

]
+ ψ

[
u(x1

2 − s2) − g

(
y1

2

w2

)
+ v(x2

2(s) + (1 + r)s2)

−h
(
y2

2(s)

w2

)
− u(x1

1 − s1) + g

(
y1

1

w2

)
− v(x̂2

2(s1, sG) + (1 + r)s1) + h

(
ŷ2

2(s1, sG)

w2

)]
.

(A.43)

The associated first-order conditions include:

x1
1 : u′(c11) − η − ψu′(c11) = 0; (A.44)

x1
2 : u′(c12) − η + ψu′(c12) = 0; (A.45)

y1
1 : − 1

w1

g′
(
y1

1

w1

)
+ η +

ψ

w2

g′
(
y1

1

w2

)
= 0; (A.46)

y1
2 : − 1

w2

g′
(
y1

2

w2

)
+ η − ψ

w2

g′
(
y2

1

w2

)
= 0; (A.47)

s2 : − u′(c12) +
∂V2,sep

∂s2

+ ψ

{
−u′(c12) + (1 + r)v′(c22) + v′(c22)

∂x2
2

∂s2

− 1

w2

h′
(
y2

2

w2

)
∂y2

2

∂s2

}
= 0.

(A.48)

Equations (A.44)–(A.47) are identical to equations (A.2)–(A.5) except that λ1 is replaced
by η and µ is replaced by ψ. Thus, the arguments used in the proof of Proposition 1 may
be repeated to prove part (i) of the proposition.
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By parts (i) and (ii) of Lemma 2, (A.48) is equivalent to

−u′(c12) + (1 + r)v′(c22) − ψu′(c12) + ψ(1 + r)v′(c22) + ψv′(c22)
∂x2

2

∂s2

− ψv′(c22)
∂y2

2

∂s2

= 0.

(A.49)

Rearranging (A.49) yields

u′(c12)

v′(c22)
= (1 + r) − ψ

1 + ψ

[
∂y2

2

∂s2

− ∂x2
2

∂s2

]
. (A.50)

By part (iv) of Lemma 2, the term in square brackets in (A.50) is positive, so that

u′(c12)

v′(c22)
> (1 + r), (A.51)

and MRSx1
2,x2

2
< −(1 + r).

The first-order conditions (A.44) and (A.45) for x1
1 and x1

2 imply that

u′(c11)(1 − ψ) = u′(c12)(1 + ψ) = η. (A.52)

Because, ψ > 0, (A.52) implies that u′(c11) > u′(c12) and, hence, that c11 < c12 because u(·)
is strictly concave. By part (i) of Lemma 2, we have c21 = c22. Therefore, it follows from
(A.51) that

u′(c11)

v′(c21)
>
u′(c12)

v′(c21)
=
u′(c12)

v′(c22)
> (1 + r), (A.53)

which establishes part (ii) of the proposition.
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