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Abstract: Treating games of incomplete information with countable sets

of actions and types and finite but large player sets we demonstrate that

for every mixed strategy profile there is a pure strategy profile that is ‘ε-

equivalent’. Our framework introduces and exploits a distinction between

crowding attributes of players (their external effects on others) and their

taste attributes (their payoff functions and any other attributes that are not

directly relevant to other players). The main assumption is a ‘large game’

property,’ dictating that the actions of relatively small subsets of players

cannot have large effects on the payoffs of others Since it is well known

that, even allowing mixed strategies, with a countable set of actions a Nash

equilibrium may not exist, we provide an existence of equilibrium theorem.

The proof of existence relies on a relationship between the ‘better reply

security’ property of Reny (1999) and a stronger version of the large game

property. Our purification theorem are based on a new mathematical result,

of independent interest, applicable to countable strategy spaces.

1 Motivation for the study of purification

The concept of a Nash equilibrium is at the heart of much of economics

and game theory. It is thus fundamental to question when Nash equilibrium

provides a good description of human behavior. A number of challenges

are posed by the evidence. Experimental evidence, for example, supports

the view that individuals typically do not play mixed strategies (cf., Fried-

man 1996) and if they do, there may be serial correlation.1 Challenges are

1This has been demonstrated in a number of papers; see Walker and Wooders (2001)

for a recent contribution and references therein.
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also posed by the observed imitative nature of human behavior (cf., Offer-

man, Potters and Sonnemans 2002). The importance of equilibrium in pure

strategies is evidenced by numerous papers in the literatures of game theory

and economics (from, for example, Rosenthal 1973 to Cripps, Keller and

Rady 2002).

In this paper we demonstrate that strategy profiles can be ‘purified’

in a wide class of games with a large but finite player set. Informally,

a (mixed) strategy profile can be purified if there exists a pure strategy

profile that yields approximately the same payoffs to all players. The main

assumption required is a ‘large game’ property,’ dictating that the actions of

relatively small subsets of players cannot have large effects on the payoffs of

others. As a corollary of our purification results we obtain that, for the class

of games considered, ‘close’ to any Bayesian (Bayesian-Nash) equilibrium

in mixed strategies is an approximate equilibrium in pure strategies. Our

purification results are obtained in a setting where the existence of Bayesian

equilibrium, even in mixed strategies, is not immediate from existing results;

this motivates introduction of a stronger version of the large game property

under which we demonstrate the existence of an exact equilibrium in mixed

strategies. Our proof of existence relies on a relationship between the ‘better

reply security’ property of Reny (1999) and the large game property.

Within our framework a player is characterized by his attribute, a point

in a given set of attributes. An important feature incorporated into our

model is a distinction between the crowding attribute of a player and his

taste attribute.2 A player’s crowding attribute reflects those characteristics

of the player that directly affect other players — for example, whether one

2This terminology is taken from Conley and Wooders (2001) and their earlier papers.
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chooses to go to a particular club may depend on the gender and composi-

tion of the membership and how attractive one finds a particular economics

department may depend on the numbers of faculty engaged in various areas

of research. We assume, in this paper, that the space of crowding attributes

is a compact metric space but no assumptions are made on the space of taste

attributes.

We treat games of imperfect information. Thus, as well as having a

certain attribute, ‘nature’ randomly assigns each player a (Harsanyi) type,

as in a standard game of incomplete information. We allow a countable

set of pure actions and a countable number of types. A new mathematical

result, allowing us to approximate a mixed strategy profile by a pure strategy

profile in which each player plays a pure strategy in the support of his mixed

strategy, underlies our purification results and allows the non-finiteness of

strategy and type sets.

In prior research we addressed the question of whether social confor-

mity — that is, roughly, situations where most individuals imitate similar

individuals — can be consistent with approximate Nash equilibrium.3 It was

assumed, throughout this research, that social conformity requires the use of

pure strategies. In this paper, we treat in isolation the most basic question

— the existence of an approximate equilibrium pure strategies. The frame-

work of the current paper is, in important respects, more general than that

treated in our prior research. In particular, our earlier work treated finite

action and finite type sets and a compact set of attributes. As discussed

in Section 5, with finite action and type sets (and at most a finite number

of attributes), purification results have already been obtained. But a finite

3Wooders, Cartwright and Selten (2001).
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number of types, especially of taste types, may be a strong restriction. It is

therefore crucial to consider, as we do in this paper, a framework where the

set of taste attributes need not be compact and the set of strategies need

not be finite nor compact.

It is especially noteworthy that to the best of our knowledge the first

results relating to purification of Bayesian equilibrium are provided in Kalai

(2004). In particular, Kalai shows that for games with many players, with

high probability the play of a Bayesian equilibrium will yield, ex-post, an

approximate Nash equilibrium of the game of complete information that re-

sults after player types are revealed. We compare our purification results

to Kalai’s ‘ex-post’ results in our discussion of the literature in Section 5.

We comment here on a related literature concerning purification of Bayesian

equilibria in finite games with imperfect information. This literature demon-

strates that if there sufficient uncertainty over the signals (or types) that

players receive then any mixed strategy can be purified (e.g. Radner and

Rosenthal 1982, Aumann et. al. 1983). Given that we model games of

imperfect information it is important to emphasize that we do not treat this

form of purification and our results also hold for games of perfect informa-

tion.

We proceed as follows: Section 2 introduces definitions and notation. In

Section 3 we treat purification, providing a simple example before defining

the large game property and providing our main results. In Section 4 we

provide a brief discussion of the literature and Section 5 concludes the paper.

Additional proofs are provided in an Appendix.
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2 Bayesian games and noncooperative pregames

We begin this section by defining a Bayesian game and its components. The

pregame framework is then introduced and we demonstrate how Bayesian

games can be induced from a pregame. Next, we consider the strategies

available to players in a Bayesian game and discuss expected payoffs. We

finish by defining Nash equilibrium and purification.

2.1 A Bayesian game

A Bayesian game Γ is given by a tuple (N,A, T, g, u) where N is a finite

player set, A is a set of action profiles, T is a set of type profiles, g is a

probability distribution over type profiles and u is a set of utility functions.

We define these components in turn.

Let N = {1, ..., n} be a finite player set, let A denote a countable set

of actions and let T denote a countable set of types.4 ‘Nature’ assigns each

player a type. Informed of his own type but not the types of his opponents,

each player chooses an action. Let A ≡ AN be the set of action profiles

and let T ≡ T N be the set of type profiles. Given action profile a and type

profile t we interpret ai and ti as respectively the action and type of player

i ∈ N .

A player’s payoff depends on the actions and types of players. Formally,

in game Γ, for each player i ∈ N there is given a utility function ui : A×T →

R. In interpretation ui(a, t) denotes the payoff of player i if the action profile

is a and the type profile t. Let u denote the set of utility functions.

4 In fact, we could allow the sets of actions and types to each consist of a countable

collection of compact sets. This, however, would increase complexity of proofs without

substantial gain in understanding of the fundamental problems.
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When taking an action, a player does not know the types of other players.

Thus, once informed of his own type he selects an action based on his beliefs

about the types of the other players. These beliefs are represented by a

function pi where pi(t−i|ti) denotes the probability that player i assigns

to type profile (ti, t−i) given that he is of type ti. Throughout we will

assume consistent beliefs. Formally, for some probability distribution over

type profiles g, we assume:

pi(t−i|ti) =
g(ti, t−i)P

t
0
−i∈T−i

g(ti, t0−i)
(1)

for all i ∈ N and ti ∈ T .5 We denote by Ti the set of types ti ∈ T such thatP
t
0
−i∈T−i

g(ti, t
0
−i) > 0.

2.2 Noncooperative pregames

To treat a family of games all induced from a common strategic situation we

make use of a pregame. A pregame is given by a tuple G = (Ω,A, T , b, h),

consisting of an attribute space Ω, countable sets of actions and types A

and T , a universal beliefs function b and a universal payoff function h. We

introduce and define in turn the components Ω, b and h.

A space of player attributes is denoted by Ω. An attribute ω ∈ Ω is

composed of two elements - a taste attribute and a crowding attribute. In

interpretation, the crowding attribute of a player describes those character-

istics that might affect other players, for example, gender, ability to do the

salsa, educational level, and so on. A taste attribute describes that players

preferences. Let P denote a set of taste attributes and let C denote a set of
5We do not require (1) to hold if

t
0
−i∈T−i

g(ti, t
0
−i) = 0; i.e. if there is no probability

that player i is type ti.
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crowding attributes. We assume that P×C = Ω. We will assume throughout

that C is a compact metric space (while no assumptions are made on P).

We next introduce the concepts of universal beliefs and a universal payoff

function, which together induce a set of beliefs and a payoff function for each

player in any game induced from the pregame. Denote by D the set of all

mappings from C × T into Z+ (the non-negative integers). A member of

D is called a type function. A type function d ∈ D will be interpreted as

listing the number of players of crowding type c ∈ C with type t ∈ T in

some induced game. A universal beliefs function b maps D into [0, 1] where

b(d) gives the probability of type profile d in some induced game.

We denote by W the set of all mappings from C × A × T into Z+. A

member of W is called a weight function. A weight function w ∈W will be

interpreted as listing the number of players of crowding type c ∈ C and type

t ∈ T who are playing action a ∈ A in some induced game. A universal

payoff function h maps Ω × A × T ×W into R+. In interpretation h will

give the payoff to a player where his payoff depends on his attribute, his

action choice, his type and the action choices, types and attributes of the

complementary player set as described by a weight function.

2.3 Populations and induced games

Let N be a finite player set. A function α mapping from N to Ω is called

an attribute function. The pair (N,α) is a population. While an attribute

consists of a taste attribute/crowding attribute pair, crowding attributes

play a special role and require separate notation. Thus, given an attribute

function α we denote by κ the projection of α onto C. Given population

(N,α) the attribute of player i is therefore α(i) and the crowding attribute
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of player i is κ(i) satisfying α(i) = (π, κ(i)) for some π ∈ P.

A population (N,α) induces (through the pregame) a Bayesian game

Γ(N,α) ≡ (N,A, T, gα, uα) as we now formalize. Given the population

(N,α) we say that weight function wα,a,t ∈W is relative to action profile a

and type profile t if,

wα,a,t(c, a
l, tz) =

¯̄̄n
i ∈ N : κ(i) = c, ai = al and ti = tz

o¯̄̄
for each (c, al, tz) ∈ C×A×T .Thus, w(c, al, tz) denotes the number of play-

ers with crowding attribute c and type tz who play action al. The function

h determines the payoff function uαi of each player i ∈ N ; formally, given

action profile a ∈ A and type profile t ∈ T ,

uαi (a, t) = h(α(i), ai, ti, wα,a,t).

We say that type function dα,t ∈ D is relative to type profile t if,

dα,t(c, t
z) = |{i ∈ N : κ(i) = c and ti = tz}| .

Thus, dα,t(c, t) denotes the number of players with crowding attribute c and

type tz.6 The function b determines the beliefs of players; formally, players

are assumed to have consistent beliefs with respect to function gα where,

gα(t) = b(dα,t)

for any type profile t ∈ T .7
6Note that dα,t is a projection of wα,a,t onto Ω× T .
7Note the differences between functions gα and b. Function gα is defined relative to a

population (N,α) and its domain is T N . Function b, however, is defined independently

of any specific game and has domain D. Thus, summing gα over its domain gives a value

of one - because it describes a unique population - while the sum of b over its domain is

non-finite - because it describes beliefs for any population.
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2.4 Strategies and expected payoffs

Take as given a population (N,α) and induced Bayesian game (N,A, T, gα, uα).

Knowing his own type but not those of his opponents, a player chooses an

action. A pure strategy details the action a player will take for each type

tz ∈ T and is given by a function sk : T → A where sk(tz) is the action

played by the player if he is of type tz. Let S denote the set of strategies.

A (mixed) strategy is given by a probability distribution over the set of

pure strategies. The set of strategies is thus ∆(S). Given a strategy x we

denote by x(k) the probability that a player chooses pure strategy k ∈ S and

we denote by x(al|tz) the probability that a player chooses action al given

that he is of type tz. Let Σ = ∆(S)N denote the set of strategy profiles. We

refer to a strategy profile m as degenerate if for all i ∈ N and tz ∈ T there

exists some al such that mi(a
l|tz) = 1.

We assume that players are motivated by expected payoffs.8 Given a

strategy profile σ, a type tz ∈ Ti and beliefs about the type profile pαi

the probability that player i puts on the action profile-type profile pair

a = (a1, ..., an) and t = (t1, ..., ti−1, tz, ti+i, ..., tn) is given by:

Pr(a, t−i|tz) def= pαi (t−i|tz)σ1(a1|t1)...σi(ai|tz)...σn(an|tn).

Thus, given any strategy profile σ, for any type tz ∈ T and any player i

of type tz, the expected payoff of player i can be calculated. Let Uα
i (·|tz) :

Σ → R denote the expected utility function of player i conditional on his
8We use the vNM assumption for convenience but our results do not depend on it:

The large game property is sufficiently strong to obtain our results but does not imply the

vNM assumption.
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type being tz where:

Uα
i (σ|tz)

def
=
X
a∈A

X
t−i∈T−i

Pr(a, t−i|tz)uαi (a, tz, t−i).

2.5 Purification and Bayesian equilibrium

Given a game Γ(N,α) we say that two strategy profiles σ and m are ε-

equivalent if, for all i ∈ N , x ∈ ∆(S) and tz ∈ Ti :

|Uα
i (x,m−i|tz)− Uα

i (x, σ−i|tz)| ≤ ε.

We say that a strategy profile σ can be ε-purified if there exists a strategy

profilem that is degenerate, ε-equivalent to σ and satisfies support(mi) ⊂support(σi)

for all i ∈ N .9

The standard definition of a Bayesian equilibrium applies. A strategy

profile σ is a Bayesian ε-equilibrium (or informally an approximate Bayesian

equilibrium) if and only if:

Uα
i (σi, σ−i|tz) ≥ Uα

i (x, σ−i|tz)− ε

for all x ∈ ∆(S), all tz ∈ Ti and for all i ∈ N . We say that a Bayesian ε

equilibrium m is a Bayesian Nash ε-equilibrium in pure strategies if m is

degenerate.

9A related notion of ε-purification was introduced by Aumann et. al. (1983). There,

the notion of ε-purification is relative to strategies and not strategy vectors. Thus, two

strategies p and t are ε-equivalent for player i if |Uα
i (p, σ−i)− Uα

i (t, σ−i)| < ε for any

σ−i ∈ ΣN\{i}. This definition proves useful in considering games of incomplete information

but is too restrictive to be of use in considering games of complete information.
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3 Purification

Before providing our main results it may be useful to provide a simple ex-

ample:

Example 1: There are two crowding attributes - rich and poor. Players

must choose one of two pure strategies or locations A and B. A poor player

prefers living with rich players and thus his payoff is equal to the proportion

of rich players whose choice of location he matches. A rich player prefers to

not live with poor players and thus his payoff is equal to the proportion of

poor players whose choice of location he does not match.

Any game induced from this pregame has a Nash equilibrium. It is simple

to see, however, that if there exists an odd number of either rich or poor

players then there does not exist a Nash equilibrium in pure strategies.

Also, if either the number of rich players or the number of poor players is

small then there need not exist an approximate Nash equilibrium in pure

strategies, no matter how large the total population.

Theorem 2 demonstrates that if a pregame satisfies a large game prop-

erty then, in any induced game with sufficiently many players, any Nash

equilibrium can be approximately purified. The pregame of Example 1 does

not satisfy the large game property; the large game property requires that

any small group of players have diminishing influence in populations with a

larger player set.
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3.1 Approximating mixed strategy profiles by pure strategy

profiles

Our first result, Theorem 1, shows that given any strategy profile σ, there

exists a degenerate strategy profile m such that (i) each player i is assigned

a pure strategy k in the support of σi, and (ii) the number of players who

play each pure strategy k is ‘close’ to the expected number who would have

played k given strategy profile σ. With this result in hand our main results

can be easily proved. We note now that, in the application of Theorem 1 in

the proof of Theorem 2, the strategy profile σ is not (necessarily) thought

of as ‘the strategy profile of the population’ but more as the strategy profile

restricted to those players who have the same crowding attribute.

Theorem 1: For any strategy profile σ = (σ1, ..., σn) there exists a degen-

erate strategy profile m = (m1, ...,mn) such that:

support(mi) ⊂ support(σi) (2)

for all i and:

¯̄̄̄
¯
nX
i=1

mi(k)−
nX
i=1

σi(k)

¯̄̄̄
¯ ≤ 1 (3)

for all k ∈ S.

Observe that if σ, in Theorem 1, were a Bayesian equilibrium, then

Theorem 1 states that there is an approximating pure strategy profile m

where every player plays a pure strategy in his best response set for σ.

This is crucial in proving our subsequent theorems in that it allows us to

‘aggregate’ the strategies of players who have the same crowding attribute

yet potentially different taste attributes. We highlight that the related but
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distinct Shapley-Folkman Theorem will not suffice for our purposes in that

it does not allow us to treat non-finite strategy sets.10

3.2 Continuity in crowding attributes

To derive our purification results we make use of a natural and mild continu-

ity assumption on crowding attributes, introduced in Wooders, Cartwright

and Selten (2001), that will be assumed throughout. Given the strategy

choices of other players, it is assumed that each player is nearly indifferent

to a minor perturbation of the crowding attributes of other players (pro-

vided his own crowding attribute and the strategy choices of players are

unchanged). Formally:

Continuity in crowding attributes: We say that a pregame G satisfies

continuity in crowding attributes if: for any ε > 0, any two populations

(N,α) and (N,α) and any strategy profile σ ∈ ΣN if:

max
j∈N

dist(κ(j), κ(j)) < ε

then for any i ∈ N where α(i) = α(i):

¯̄
Uα
i (σi, σ−i|tz)−Uα

i (σi, σ−i|tz)
¯̄
< ε

all tz ∈ Ti. Where ‘dist’ is the metric on the space of crowding attributes C.

Note that it is not essential to have the same bound of ε in both the above

expressions, but it does simplify notation. The definition of continuity in

crowding attributes takes the strategy profile as held constant. Thus, the

attributes of players may change but their strategies do not. For example,
10As discussed in Section 4, Rashid (1983) does make use of the Shapley-Folkman The-

orem in proving a special case of our Theorem 2 in which the strategy set is finite.
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the wealths of other players may change by some small amounts while their

strategic choices, such as location of residence, are held constant. Continuity

in crowding attributes appears to be a mild assumption.

3.3 Large game property

To define the large game property, some additional notation and definitions

are required. Denote by EW the set of functions mapping C × A × T into

R+, the set of non-negative reals. We refer to ew ∈ EW as an expected

weight function. Given a population (N,α) we say that an expected weight

function ewα,σ is relative to strategy profile σ if and only if:

ewα,σ(c, a
l, tz) =

X
a∈A

X
t∈T

wα,a,t(c, a
l, tz)Pr(a, t)

for all ω, al and tz. Thus, ewα,σ(ω, a
l, tz) denotes the expected number of

players of crowding-attribute c who will have type tz and play action al.

Note that this expectation is taken before any player is aware of his type.

Fix a population (N,α). Let EWα denote the set of expected weight

functions that may be realized given population (N,α). We define a metric

on the space EWα:

dist(ew, eg) =
1

|N |
X
al∈A

X
tz∈T

X
c∈C

¯̄̄
ew(c, al, tz)− eg(c, al, tz)

¯̄̄
for any ew, eg ∈ EWα. Thus, two expected weight functions are ‘close’ if

the expected proportion of players with each crowding attribute and each

type playing each action are close. We can now state our main assumption:

Large game property: We say that a pregame G satisfies the large game

property if: for any ε > 0, any population (N,α) and any two strategy
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profiles σ, σ ∈ ΣN with expected weight functions ewα,σ, egα,σ satisfying:

dist(ewα,σ, egα,σ) < ε

if σi = σi then:

|Uα
i (σi, σ−i|tz)−Uα

i (σi, σ−i|tz)| < ε

for all tz ∈ Ti.

If a pregame satisfies the large game property then we can think of games

induced from the pregame as satisfying two conditions on payoff functions:

1. A player is nearly indifferent to a change in the proportion of players of

each attribute playing each pure strategy (provided his own strategy

is unchanged); thus, any one individual has near-negligible influence

over the payoffs of other players.

2. A player is ‘risk neutral’ in the sense that the expected weight function

largely determines his payoff; thus two strategy profiles that induce the

same expected weight function give a similar payoff.

The first condition is reflective of the type of game under consideration and

is crucial to obtaining our main result; Example 1, for instance, does not

satisfy the large game property in this respect. The second condition is

relatively mild given that we consider games with many players; it follows,

for example, from the law of large numbers that in the case of a finite strategy

set, with high probability, in a game with many players the realized weight

function will be close to the expected weight function.11

11Thus, it is not so much that players are risk neutral but rather that there is little risk.
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Note that the large game property relates to changes in the strategies of

players while their attributes do not change; this contrasts with the assump-

tion of continuity in crowding attributes that relates to changes in attributes

while strategies do not change. As a consequence a pregame may satisfy the

large game property and yet there need not be continuity in attributes and

vice-versa.

3.4 Approximate purification

Our central result demonstrates that in sufficiently large games any strategy

profile can be approximately purified.

Theorem 2: Consider a pregame G = (Ω,A, T , b, h) satisfying continuity

in crowding attributes and the large game property. Given any real number

ε > 0 there is an integer η(ε) with the property that in any induced game

Γ(N,α) satisfying |N | > η(ε) any strategy profile can be ε-purified.

Proof: Suppose not. Then there is some ε > 0 such that for each integer ν

there is an induced game Γ(Nν , αν) with |Nν | > ν and strategy profile σv

that cannot be ε-purified.

Use compactness of C to write C as the disjoint union of a finite number

of non-empty subsets C1, ..., CQ, each of diameter less than 1
3ε. For each

q = 1, ...,Q, choose and fix a point cq ∈ Cq. For each ν, without changing

taste attributes of players, we define the crowding attribute function κν by

its coordinates κν(·) as follows:

for each j ∈ N , κν(j) = cq if and only if κ(j) ∈ Cq.

Define new attribute functions αν by αν(j) = (π(j), κν(j)) when αν(j) =

(π(j), κν(j)) for each j ∈ Nν . By applying Theorem 1 to each c ∈ κν(N), i.e.
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c1, ..., cQ it follows that there exists a sequence {mν} of degenerate strategy

profiles such that:

1. for all c ∈ C, al ∈ A and tz ∈ T

lim
ν→∞

egναν ,mν (c, al, tz)

|Nν | = lim
ν→∞

ewν
αν ,σν (c, a

l, tz)

|Nν | , and (4)

2. for all ν and i ∈ Nν ,

support(mν
i ) ⊂ support(σνi ). (5)

Pick an arbitrary ν and player i ∈ Nν . Consider the attribute function

α
ν where αν(i) = αν(i) and α

ν
(j) = αν(j) for all j /∈ i. By continuity in

crowding attributes:¯̄̄
Uαν

i (x, σν−i|tz)− Uα
ν

i (x, σν−i|tz)
¯̄̄
<

ε

3

for all tz ∈ Ti and x ∈ ∆(S), and:¯̄̄
Uαν
i (x,mν

−i|tz)− Uα
ν

i (x,mν
−i|tz)

¯̄̄
<

ε

3

for any tz ∈ Ti and x ∈ ∆(S). In view of (4) and the large game property it

is clear if ν was sufficiently large:¯̄̄
Uα

ν

i (x, σν−i|tz)− Uα
ν

i (x,mν
−i|tz)

¯̄̄
<

ε

3

for any tz ∈ Ti and x ∈ ∆(S). Thus, for ν sufficiently large and for any

i ∈ Nν : ¯̄
Uαν
i (x,mν

−i|tz)− Uαν
i (x, σν−i|tz)

¯̄
< ε

for any tz ∈ Ti and x ∈ ∆(S). This gives the desired contradiction.¥
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An immediate application of Theorem 2 is the following result showing that

in sufficiently large games (approximate) Bayesian equilibrium can be ap-

proximately purified.

Corollary 1: Consider a pregame G = (Ω,A, T , b, h) satisfying continuity

in crowding attributes and the large game property. Given any real numbers

ε and λ where ε > λ > 0 there is an integer η(ε, λ) with the property that,

for any induced game Γ(N,α) where |N | > η(ε, λ) and for any Bayesian

λ-equilibrium σ of game Γ(N,α), there exists a Bayesian ε-equilibrium in

pure strategies m that is an ε-purification of σ.

Proof: Let θ = 1
2(ε − λ). By Theorem 2 there exists integer η(θ) such

that in any induced game Γ(N,α) where |N | > η(θ) any strategy profile can

be θ-purified. Consider a game Γ(N,α) where |N | > η(θ) and let σ be a

Bayesian λ-equilibrium of that game. Thus,

Uα
i (mi, σ−i|tz) ≥ Uα

i (x, σ−i|tz)− λ

for all i ∈ N, x ∈ ∆(S) and mi ∈ ∆(S) where support(mi) ⊂ support(σi).

Given that σ can be θ-purified let m be a strategy profile that is degenerate

and θ-equivalent to σ. Thus,

|Uα
i (x, σ−i|tz)− Uα

i (x,m−i|tz)| < θ

for all i ∈ N and x ∈ ∆(S). This implies,

Uα
i (mi,m−i|tz) ≥ Uα

i (x,m−i|tz)− λ− 2θ

for all i ∈ N and x ∈ ∆(S).¥
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3.5 The existence of a Bayesian equilibrium

With a countable set of strategies, a Bayesian (or simply a Nash) equilib-

rium, even one in mixed strategies, may not exist. This is easy to see;

consider, for example, a game of choosing integers where the prize goes to

the player who announces the highest integer. Notice, however, that to ap-

ply Corollary 1 all we require is the existence of an approximate Bayesian

equilibrium (in mixed strategies). Also, we only require the existence of

an equilibrium in games satisfying the large game property; observe, for

instance, that the large game property is not satisfied in games where the

prize goes to the player announcing the highest integer.

We will restrict attention to games of complete information. Note that

this implies the sets A and S are equivalent. For our existence result we need

some assumption to ensure that the set of mixed strategies is compact. For

specificity, let us assume that if a ∈ A then a = 1
c for some positive integer

c or a = 0. Note that with the Euclidean topology, A is a closed set. A

mixed strategy can be written as a sequence (x1, x2, x3, ...) where xc ∈ [0, 1]

is the probability of playing ac :=
1
c
and 1 −

P∞
c=1 xc is the probability of

playing a = 0. Note that 1 ≥
P∞

c=1 xc ≥ 0. We use the following metric on

the space of mixed strategies:

ρ(x, y) =
∞X
c=1

1

2i
|xc − yc|

1 + |xc − yc|
for any x, y ∈ ∆(S).

Note that metric ρ makes ∆(S) a metric space furnished with the product

topology. It follows that, with metric ρ, the set of mixed strategies ∆(S) is

a compact metric space.

We make a form of continuity assumption on payoffs that strengthens
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the large game property. We define a metric on the space EWα:12

dist∗(ew, eg) =
1

|N |
X
c∈C

X
l∈A

1

2j
|ew(c, l)− eg(c, l)|

1 + |ew(c, l)− eg(c, l)|

for any ew, eg ∈ EWα. We say that a pregame G satisfies the strong large

game property if: for any ε > 0, any population (N,α) and any two strategy

profiles σ, σ ∈ ΣN with expected weight functions ewα,σ, egα,σ satisfying:

dist∗(ewα,σ, egα,σ) < ε

if σi = σi then:

|Uα
i (σi, σ−i)− Uα

i (σi, σ−i)| < ε.

We now make use of a result due to Reny (1999) to provide a Nash equilib-

rium existence result.

Theorem 3: Consider a pregame G = (Ω,A, T , b, h) satisfying the strong

large game property and where |T | = 1 and A = Q1. Any induced game

Γ(N,α) has a Nash 0-equilibrium (in mixed strategies).

Proof: We introduce some definitions from by Reny (1999). A player

i can secure a payoff of α ∈ R at σ if there exists strategy x such that

Ui(x, σ
0
−i) ≥ α for all σ0−i in some open neighborhood of σ−i. A game

Γ(N,α) is better reply secure if whenever (σ∗, U∗) is in the closure of the

graph of its vector payoff function and σ∗ is not a Nash equilibrium, some

player i can secure a payoff strictly above U∗i at σ
∗. From Theorem 3.1

of Reny (1999) we obtain that there exists a (mixed strategy) Nash 0-

equilibrium in any game Γ(N,α) that has a compact set of mixed strategies

and is better reply secure. [The Theorem also requires quasi-concavity of

12Given we are treating games of complete information we drop the tz notation.
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payoffs in own strategy but this trivially holds here given we are assuming

mixed strategies and von-Neumann Morgenstern payoff functions.]

It remains to show that game Γ(N,α) is better reply secure. This, how-

ever, follows from the strong large game property. Let σ∗ be a non Nash

equilibrium strategy profile with (σ∗, U∗) in the closure of the graph of the

vector payoff function. There must exist some player i ∈ N , strategy x and

real number ε > 0 such that,

Uα
i (x, σ

∗
−i) > U∗i + ε. (6)

By varying the the strategy profile σ∗ by no more than a sufficiently small

amount we obtain a set of strategy profiles Σ
0
with the property that,X

l∈A

¯̄
ewα,σ∗(c, l)− egα,σ0(c, l)

¯̄
<

ε

|N | (7)

for all σ0 ∈ Σ0. Note that (7) implies that dist∗(ewα,σ∗ , egα,σ0) < ε for all

σ ∈ Σ0. We then have, from the strong large game property and (6) that

Uα
i (x, σ

0
−i) > U∗i (8)

for all σ0 ∈ Σ0. It follows that player i can secure a payoff greater than U∗i

in game Γ(N,α).¥

4 Some relationships to the literature

Two authors that provide related results on purification with large but fi-

nite player sets are Rashid (1983) and Kalai (2004). Kalai provides sufficient

conditions for the existence of an approximate ex-post Nash equilibrium. An

ex-post Nash equilibrium is a strategy vector that results, with high prob-

ability in a Nash equilibrium of the induced game of complete information
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that is determined by the revelation of player types. In Cartwright and

Wooders (2004) we demonstrate that if any realization of a strategy vector

for a Bayesian game is, with high probability (ρ) an ε-Nash equilibrium of

the induced game of complete information, then there is a purification of

that strategy that is an approximate (α) equilibrium of the original game,

where α = (1 + ρ)ε + ρD and D is an upper bound on payoffs. Thus,

Kalai’s result, in combination with that of Cartwright and Wooders (2004)

implies approximate purification in the sense defined in the current paper.

In contrast to this paper and Wooders, Cartwright and Selten (2001), Kalai

requires both a finite number of actions and a finite number of crowding

types.13 See also Blonski (2004).

With a finite set of pure strategies and games of complete information,

Rashid (1983) makes use of the Shapley-Folkman Theorem to prove his result

on existence of approximate equilibrium in pure strategies. By assuming a

linearity of payoff functions Rashid demonstrates that ‘near’ to any Nash

equilibrium there is an approximate Nash equilibrium in which |N | − K

players use pure strategies (where K is the number of strategies) and K

players may play mixed strategies. (See also Carmona 2004 who argues that

an additional condition, equicontinuity of payoff functions for example, is

13Mas-Colell (1984) remarks that strategy sets can encode for a player’s attribute. For

example, the payoff function may be set up in such a way that a male would never

rationally choose from a particular subset of strategies while a female may only rationally

choose from that subset. Similarly, in games of incomplete information (as in Kalai 2004)

a player’s type may encode his attribute. If, however, the set of strategies and the set of

types are finite, as in Mas-Colell and in Kalai, then at most a finite number of crowding

attributes can be encoded. We remark that, in contrast to our research in this paper

and also in Wooders, Cartwright and Selten (2001), these authors make no further use of

dependence of payoffs on crowding attributes.
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required). We reiterate that the Shapley-Folkman Theorem is not sufficient

for our purposes in treating a non-finite set of pure strategies.

Many authors have contributed to the literature on the existence of a

pure strategy non-cooperative equilibria in games with a continuum of play-

ers (including Schmeidler 1973, Mas-Colell 1984, Khan 1989, 1998, Khan et

al. 1997, Pascoa 1993a, 1998 and Khan and Sun 1999).14 This literature,

given various assumptions on the strategy space, has demonstrated the exis-

tence of a non-cooperative equilibrium when payoffs depend on opponent’s

strategies through the induced distribution over pure strategies. Our Theo-

rem 2 can be seen as providing a finite analogue to some of these continuum

results.

Within the literature on non-atomic games, the approach of Pascoa

(1993a) appears most similar to our own. Pascoa (1993a) deals with non-

anonymous games as introduced by Green (1984). A player in a non-

anonymous game has a type (which could be thought as an attribute in

our framework) and a player’s payoff depends on his opponent’s strategies

through the distribution over types and pure strategies. More formally, let

T denote a set of types and D the set of Borel probability measures over

T × S.15 The payoff to a player of type t from playing strategy s when the

strategies of opponents is µ ∈ D is given by v(t, s, µ). To obtain his re-

sults Pascoa assumes that v(t, ·, ·) is jointly continuous, with respect to the

weak* topology on D.16 This corresponds to our assumption of a pregame

that satisfies the large game property and continuity in crowding attributes.

14Note that these authors consider games of complete information with a continuum

player set.
15Where S denotes as previously the set of strategies.
16Pascoa (1993a) assumes a compact metric space of strategies.
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5 Conclusions

This paper introduces a framework for studying properties of strategic games

with large but finite numbers of players. Our framework extends those

already in the literature in a number of respects. The major innovations

of the fraemwork itself are our mathematical result (Theorem 1), allowing

countable sets of actions and types, and the formalization of the separation

of crowding and taste attributes of players. This separation plays a role in

other research on noncooperative games, particularly on games with many

players where similar players conform (see Wooders, Cartwright and Selten

2001 and Cartwright and Wooders 2003). Our purification result is the first

to demonstrate approximate purification of Bayesian equilibrium in games

with many players. Our existence of equilibrium result is, to the best of our

knowledge, the first result allowing a countable strategy set.

6 Appendix

We introduce some additional notation. Let a = (a1, ..., an), b = (b1, ..., bn) ∈

Rn. We write a ≥ b if and only if ai ≥ bi for all i = 1, ..., n. Given any strat-

egy profile σ letM(σ) denote the set of strategy profiles such thatm ∈M(σ)

if and only if (1) m is degenerate and (2) support(mi) ⊆support(σi) for all

i ∈ N . It is immediate that M(σ) is non-empty for any σ.

Lemma 2: Let N = {1, ..., n} be a finite set. For any strategy profile

σ = (σ1, ..., σn) and for any function g : S → Z+ such that
P

i σi ≥ g, there

exists m ∈M(σ) such that X
i

mi ≥ g.
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Proof: Suppose the statement of the lemma is false. Then there exists a

strategy profile σ = (σ1, ..., σn) and a function g where
P

i∈N σi ≥ g, such

that, for any vector m = (m1, ...,mn) ∈M(σ) there must exist at least onebk where bk ∈ S and
P

imi(bk) < g(bk). For each vector m ∈ M(σ) let L be

defined as follows:

L(m) =
X

k∈S: imi(k)<gk

Ã
g(k)−

X
i

mi(k)

!

We note that L(m)must be finite and positive for allm.17 Selectm0 ∈M(σ)

for which L(m) attains its minimum value over all m ∈ M(σ). Intuitively

the vector m0 is ‘as close’ as we can get to satisfying the lemma. We remark

that the method of proof will be one of ‘shuffling’ the pure strategies that

players use so as to demonstrate the existence of a strategy profile m∗ where

L(m∗) = L(m0)− 1. Providing the desired contradiction.

Pick a strategy bk such that g(bk)−Pim
0
i (
bk) > 0. For any subset I of N

let the set S(I) ⊂ S be such that:

S(I) =
nbko ∪ ©k ∈ S : m0

i (k) = 1 for some i ∈ I
ª

We can now define sets N t for t = 0, 1, ... as follows:

N0 =
n
i ∈ N : m0

i (
bk) = 1o and for all t > 0

N t = N t−1 ∪

⎧⎨⎩ j ∈ N : σj(k) > 0 and m0
j(k) = 0

for some k ∈ S
¡
N t−1¢

⎫⎬⎭
Ultimately, for some t∗ ≥ 1 we must have that N t∗+1 = N t∗ ≡ N . This is

an immediate consequence of the finiteness of the player set. Let S(N) ≡ S.

17Note that the set of k such that imi(k) < gk need not be finite. Given, however,

that k i σi(k) = |N | it must be that k g(k) ≤ |N | and thus L(m) is finite.
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Consider any pure strategy k∗ ∈ S. The construction of N and S imply

that there must exist a chain of players {i1, ..., it} ⊂ N where (1)m0
it
(kt) = 1

for t = 1, ..., t− 1, (2) mit(k
∗) = 1, (3) σit(kt−1) > 0 for t = 2, ..., t and (4)

σi1(
bk) > 0. Thus, there exists a vector m∗ ∈M(σ) such that:

m∗i1(k1) = 0 and m∗i1(
bk) = 1,

m∗it(k
∗) = 0 and m∗it(kt−1) = 1

m∗it(kt) = 0 and m∗it(kt−1) = 1, for all t = 2, ..., t− 1,and

m∗i (k) = m0
i (k) for all other i and k.

Suppose that: X
i∈N

m0
i (k

∗) > g(k∗).

This implies that: X
i∈N

m0
i (k

∗) ≥ g(k∗) + 1

and thus L(m∗) = L(m0)− 1.

To avoid a contradiction we need:X
i∈N

m0
i (k) ≤ g(k). (9)

for all k ∈ S. Using the definition of S there can exist no player j ∈ N\N

such that σj(k) > 0 for some k ∈ S unless m0
j(k) = 1. This implies that:X

i∈N\N

m0
i (k) ≥

X
i∈N\N

σi(k) (10)

for all k ∈ S. Using the definition of S we have that:X
k∈S

X
i∈N

m0
i (k) ≥

X
k∈S

X
i∈N

σi(k). (11)

Combining (10) and (11) and using the statement of the lemma, we see that:X
k∈S

X
i∈N

m0
i (k) ≥

X
k∈S

X
i∈N

σi(k) ≥
X
k∈S

g(k)
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However, by assumption:

g(bk) >X
i∈N

m0
i (
bk)

and also by assumption, bk ∈ S. Thus, there must exist at least one k ∈ S

such that:

g(k) <
X
i∈N

m0
i (k).

This contradicts (9) and completes the proof.¥

We introduce some additional notation. Given real number h let bhc

denote the nearest integer less than or equal to h and dhe the nearest integer

greater than h (i.e. b9.5c = 9 and d9.5e = 10. Also note that b9c = 9 and

d9e = 10).

Theorem 1: For any strategy profile σ = (σ1, ..., σn) there exists a a de-

generate strategy profile m = (m1, ...,mn) such that:

support(mi) ⊂ support(σi) (12)

for all i and:

&
nX
i=1

σi(k)

'
≥

nX
i=1

mi(k) ≥
$

nX
i=1

σi(k)

%
for all k ∈ S.

Proof: Denote by M∗(σ) the set of vectors m = (m1, ...,mn) ∈M(σ) such

that
P

imi(k) ≥ b
P

i σi(k)c for all k. By Lemma 2 this set is non-empty.

Proving the Lemma thus amounts to showing that there exists a vector

m ∈ M∗(σ) such that d
P

i σi(k)e ≥
P

imi(k) for all sk ∈ S. Suppose not.

Then, for every vector m ∈ M∗(σ) there exists some strategy k ∈ S such
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that
P

imi(k) > d
P

i σi(k)e. For any strategy profile m ∈ M∗(σ) define

L(m) by:

L(m) ≡
X

k: imi(k)>d i σi(k)e

Ã
nX
i=1

mi(k)−
&

nX
i=1

σi(k)

'!
.

We note that L(m) is always positive and finite. Pick strategy profile m0 ∈

M∗(σ) where the value of L(m) is minimized. We note that m0 comes as

close as any profile to satisfying the statement of the Lemma.

Denote by bk a pure strategy such that:
nX
i=1

m0
i (
bk) > & nX

i=1

σi(bk)' .
We introduce sets St and N t, t = 0, 1, 2, ..., where:

N0 = {i : m0
i (
bk) = 1} and for t > 0

and for t > 0,

St = {k : σi(k) > 0 for some i ∈ N t−1}

N t = {i : m0
i (k) = 1 for some k ∈ St}.

For some t∗, N t∗ = N t∗+1 ≡ N and St∗ = St∗+1 ≡ S. The construction

of St and N t imply that for any k∗ ∈ S there must exist a set of players

{i0, i1, ..., it} ∈ N such that:

m0
i0(
bk) = 1 and σi0(k1) > 0,

m0
ir(kr) = 1 and σir(kr+1) > 0 for all r = 1, .., t− 1,

m0
it
(kt) = 1 and σit(k

∗) > 0,

Suppose there exists k∗ ∈ S such that:
nX
i=1

m0
i (k

∗) ≤
nX
i=1

σi(k
∗).
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Given the chain of players {i0, i1, ..., it} ∈ N as introduced above, consider

the vector m∗ constructed as follows:

m∗i0(
bk) = 0 and m∗i0(k1) = 1,

m∗ir(kr) = 0 and m∗ir(kr+1) = 1 for all r = 1, ..., t− 1,

m∗it(kt) = 0 and m∗it(k
∗) = 1,

m∗i (k) = m0
i (k) for all other k ∈ S and i ∈ N .

It is easily checked that the vector m∗ ∈M(σ) leads to the desired contra-

diction given that L(M∗) = L(m0)− 1. We note, however, that:
nX
i=1

X
k∈S

m0
i (k) =

¯̄
N
¯̄
=
X
i∈N

X
k∈S

σi(k).

Thus, if:
nX
i=1

m0
i (
bk) > nX

i=1

σi(bk) ≥X
i∈N

σi(bk)
there must exist some k∗ ∈ S such that:

nX
i=1

mi(k
∗) ≤

X
i∈N

σi(k
∗) ≤

nX
i=1

σi(k
∗)

giving the desired contradiction.¥

References

[1] Aumann, R.J., Y. Katznelson, R. Radner, R.W. Rosenthal, and B.

Weiss (1983) “Approximate purification of mixed strategies,” Mathe-

matics of Operations Research 8, 327-341.

[2] Blonski, M. (2004) “Games in aggregated form,” typescript.

30



[3] Carmona, G. (2004) “On the purification of Nash equilibria of large

games,” Economics Letters 85: 215-219.

[4] Cartwright, E. and M. Wooders (2004) “On purification of equilibrium

in Bayesian games and ex-post Nash equilibrium,” University of War-

wick Department of Economics Working Paper no. 701.

[5] Cartwright, E. and M. Wooders (2002) “Social conformity in arbitrary

games with incomplete information,” University of Warwick Working

Paper no. 672.

[6] Conley, J. and M.H. Wooders (2001) “Tiebout economics with differen-

tial genetic types and endogenously chosen crowding characteristics,”

Journal of Economic Theory 98: 261-294.

[7] Cripps, M.W, G. Keller, and S. Rady (2002) “Strategic experimenta-

tion: The case of Poisson bandits,” May 2002 CES Working Paper

#737.X

[8] Friedman, D. (1996) “Equilibrium in evolutionary games: Some exper-

imental results,” The Economic Journal 106: 1-25.

[9] Green, E.J. (1984) “Continuum and finite-player noncooperative mod-

els of competition,” Econometrica vol.52, no. 4: 975-993.

[10] Gross, R. (1996) Psychology. The Science of Mind and Behaviour, Hod-

der and Stoughton.

[11] Harsanyi, J.C. (1973) “Games with randomly disturbed payoffs: a new

rationale for mixed strategy equilibrium points,” International Journal

of Game Theory 2: 1-23.

31



[12] Kalai, E. (2004) “Large robust games,” Econometrica 72, 1631-1665.

[13] Khan, A. (1989) “On Cournot-Nash equilibrium distributions for games

with a nonmetrizable action space and upper semi continuous payoffs,”

Transactions of the American Mathematical society 293: 737-749.

[14] Khan, A. and Y. Sun (2002) “Noncooperative games with many play-

ers,” Handbook of Game Theory, R. Auman and S. Hart, eds. North

Holland.

[15] Khan, A. and Y. Sun (1999) “Non-cooperative games on hyperfinite

Loeb spaces,” Journal of Mathematical Economics 31, 455-492.

[16] Khan, A., K.P. Rath and Y.N. Sun (1997) “On the existence of pure

strategy equilibria with a continuum of players,” Journal of Economic

Theory 76:13-46.

[17] Mas-Colell, A. (1984) “On a theorem of Schmeidler,” Journal of Math-

ematical Economics 13: 206-210.

[18] Offerman, T., J. Potters and J. Sonnemans (2002) “Imitation and belief

learning in an oligopoly experiment,” Review of Economic Studies, 69:

973-997.

[19] Pascoa, M. (1998) “Nash equilibrium and the law of large numbers,”

International Journal of Game Theory 27: 83-92.

[20] Pascoa, M. (1993a) “Approximate equlibrium in pure strategies for

nonatomic games,” Journal of Mathematical Economics 22: 223-241.

[21] Pascoa, M. (1993b) “Noncooperative equilibrium and Chamberlinian

monopolistic competition,” Journal of Economic Theory, 69: 335-353.

32



[22] Radner, R and R.W. Rosenthal (1982) “Private information and pure-

strategy equilibria,” Mathematics of Operations Research 7: 401-409

[23] Rashid, S. (1983) “Equilibrium points of nonatomic games; Asymptotic

results,” Economics Letters 12: 7-10.

[24] Rath, K.P., Y. Sun, S. Yamashige (1995) “The nonexistence of sym-

metric equilibria in anonymous games with compact action spaces,”

Journal of Mathematical Economics 24: 331-346.

[25] Reny, P.J. (1999) “On the existence of pure and mixed strategy Nash

equilibria in discontinuous games,” Econometrica 67: 1029-1056.

[26] Rosenthal, R.W (1973) “A class of games possessing pure-strategy Nash

equilibria,” International Journal of Game Theory, 2:65—67, 1973.

[27] Schmeidler, D. (1973) “Equilibrium points of nonatomic games,” Jour-

nal of Statistical Physics 7: 295-300.

[28] Wooders, M., E. Cartwright and R. Selten (2001) “Social conformity

and equilibrium in pure strategies in games with many players,” Univer-

sity of Warwick Department of Economics Working Paper 589 (revised

as 636).

33


