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This paper uses a recursive time-non-separable expected utility function

to separate between the intertemporal elasticity of substitution (IES)

and a measure of relative risk aversion to bets in terms of money (RAM).

Risk premium does not require risk aversion. Changes in IES have large

effects on asset prices but changes in risk aversion have only a small

effect on asset prices. Assuming IES = 1 and allowing a wide range for

the RAM coefficient (say between 0 and 10) is consistent with the cross-

countries observation made by Lucas (2003) and the net of taxes and net

of frictions rates of return estimated by McGrattan and Prescott (2003).   

                        

1 I would like to thank Jeff Campbell and Greg Huffman for useful

comments on an earlier draft.

2 Vanderbilt University and the University of Haifa. E-mail:

ben.eden@vanderbilt.edu



                                    2

1. INTRODUCTION

Aversion to risk and aversion to fluctuations are two distinct

attributes of taste. Yet, in the standard time separable expected

utility specification there is a single parameter that determines both

the relative risk aversion (RA) and the intertemporal elasticity of

substitution (IES). To separate between the two attributes researchers

have stepped outside of the expected utility framework. See the well-

known work of Selden (1978), Kreps and Porteus (1978), Epstein and Zin

(1989) and Weil (1990). Here I attempt the separation between RA and IES

within the expected utility framework.3

                        

3 One of the advantages of using an expected utility function is that

only an expected utility maximizer is not subject to the so-called Dutch

book outcomes. To illustrate I consider the case in which a consumer

prefers lottery a to lottery b (La f Lb) and lottery a to lottery c

(  La f Lc) but in contradiction to the independence axiom he also prefers

the compound lottery in which the prices are lottery b and lottery c to

lottery a: Ld = {Lb or Lc}   f La.

Assume now that the consumer's initial endowment is lottery a. We offer

to exchange lottery a for the compound lottery d for a small fee (1

dollar). Since Ld f La he accepts it. We then execute lottery d. If

the outcome is lottery b we offer to exchange lottery b for lottery a

for a fee of 1 dollar. Since   La f Lb he accepts. If the outcome is

lottery c we offer to exchange lottery c for lottery a for a fee of 1

dollar. Since   La f Lc he accepts. Thus regardless of the outcome of

lottery d we can get an additional dollar. The consumer has now his

initial endowment minus 2 dollars. For more on this see, Yaari (1985)

and Gollier (2001). For a useful survey on non-expected utility
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I distinguish between measures of risk aversion to bets in terms

of dated consumption and measures of risk aversion to bets in terms of

money. Bets in terms of money (wealth) are resolved immediately before

any irreversible consumption choice is made. Introspections about money

bets require an assumption about borrowing and lending opportunities.

Bets in terms of dated consumption require a different thought

experiments. We start from a non-random consumption path and then

consider a bet that makes date t consumption a random variable holding

consumption at all dates other than t constant. The attitude towards

this type of bets does not require any assumption about the asset

market. But introspection seems more difficult.

Here I separate the attitude towards money bets from IES using the

recursive time non-separable (TNS) utility function4:

 (1) U(C1,...,CT; α, ρ) = (1/α) β t (
t= 0

T

∑ Ct )
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α /ρ

 ρ ≠ 0 and α ≠ 0 (ICES)

U(C1,...,CT; α, ρ) = (1/α) (Ct

t= 0

T

∏ )αβ t

, ρ = 0 and α ≠ 0 (ICD)

U(C1,...,CT; α, ρ) = β t ln(Ct

t= 0

T

∑ ),  ρ = 0 and α = 0  (IL)

where T+1 is the horizon, 0 < β < 1 is the discount factor,

                                                                        

functions and other "exotic" utility functions, see Backus, Routledge

and Zin [2004].

4 The utility function (1) satisfies Koopmans (1960) axioms and is hence

recursive. See Becker and Boyd (1997) for a comprehensive discussion.
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IES = 1/(1-ρ) is the intertemporal elasticity of substitution and α is a

parameter that determines the relative risk aversion to money bets

(RAM). Although all of the functions in (1) exhibit constant elasticity

of substitution, I refer to the first as the intertemporal CES (ICES). I

also use ICD for intertemporal Cobb-Douglas and IL for intertemporal

log.

The intertemporal log utility function (IL) with IES = RAM = 1 is

widely used because it is consistent with cross-countries observations

about the average rate of return of assets: It predicts an average

interest rate equal to the subjective interest rate plus the expected

rate of growth in consumption (see Lucas [2003]). Here I show that the

ICD function preserves this prediction regardless of the RAM

coefficient. This allow us to revisit Lucas' welfare calculations and

examine whether the welfare cost of business cycles is sensitive to

changes in the RAM coefficient (keeping IES = 1).

It is also shown that the ICES utility function with RAM = 1 is

observationally equivalent to the standard power utility function: Both

yield the same predictions about asset prices. The TNS utility function

may therefore be used to generalize the intertemporal log (IL) utility

function in various ways. We can keep RAM = 1 and change only the IES by

working with the standard power utility function. We can keep IES = 1

and change RAM by working with the ICD utility function. We can change

both by working with the ICES utility function.

Most of the analysis assumes a two periods horizon. A

generalization to any finite horizon is available in the Appendix for

the ICD-IL single asset case. This paper should therefore be read as a

first step that focuses on conceptual issues.
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I also worked out examples that use NIPA data. I find that:

(a) Risk premium does not require risk aversion; (b) Changes in the

intertemporal elasticity of substitution (IES) parameter seem to have a

large effect on asset prices and (c) Changes in the risk aversion

parameter seem to have only a tiny effect on asset prices.

I start with a discussion of the qualitative results (a).

2. FLUCTUATIONS AVERSION AND RISK AVERSION

Introspection may help in making the distinction between

fluctuations aversion and risk aversion  . Would you prefer a smooth

consumption path to a path that fluctuates around the same mean? In

terms of Figure 1 the smooth consumption path a promises 3 units of

consumption in every period. The fluctuating consumption path d starts

from 3.5 units and then fluctuates between 3.5 and 2.5. If you prefer

the path a then a time separable utility function predicts that you will

also prefer a smooth consumption path of 2 (e in Figure 1) to a bet

between a smooth consumption path of 3 and a smooth consumption path of

1 (a and b in Figure 1). In the time separable utility function aversion

to fluctuations implies aversion to risk.
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Figure 1

But aversion to fluctuations may have nothing to do with aversion

to risk. It is possible that a consumer does not like fluctuations

because they require changes in durables. To implement the path d one

needs to change his house every period or to suffer from a mismatch

between his house size and other components of consumption. In addition

there are some irreversible choices (like the number of children) that

have to be made early on (in most cases). For example, when facing a

smooth consumption path one may choose to have 1 child if his permanent

consumption is 1, 2 children if his permanent consumption is 2 and 3

children if his permanent consumption is 3. When facing the fluctuating

consumption path d he may choose to have 3 children but may not enjoy

them as much because they will complain whenever his consumption level

drops to 2.5 and he has to cut on say the number of movies that they go

to.

On the other hand if after a lottery between a and b he gets to

know his permanent consumption early on he will make the optimal choice
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of the number of children: He will choose one child if his permanent

consumption turns out to be 1 and 3 children if it turns out to be 3.

Under the TNS utility function the consumer may show aversion to

fluctuations but not aversion to risk. This leads to the result that

risk premium does not require risk aversion. A consumer who does not

like fluctuations does not like uncertainty about his future income and

the return on assets. But nevertheless he may be willing to accept bets

that are resolved before any irreversible consumption choices are made.

This argument is similar to the argument I used earlier, in Eden (1977,

1979), to account for the behavior of a gambler who buys insurance (the

Friedman-Savage paradox).

3. BETS IN TERMS OF MONEY AND BETS IN TERMS OF CONSUMPTION

To compare the TNS utility function with other utility functions

that have been used, it is useful to distinguish between bets in terms

of money and bets in terms of dated consumption. As was said in the

introduction, a bet in terms of money is a casino type bets that is

resolved immediately. A bet in terms of date t consumption assumes that

consumption at all dates other than t is given and we may evaluate it

without any assumption about borrowing and lending opportunities.

The distinction between the two types of bets can be illustrated

with the help of Figure 2 that assumes a two-period horizon (t = 0,1)

and a zero interest rate. The maximum utility that the consumer can get

when having the wealth 9, 10 or 11 is a, e and b respectively, where I

use these letters to denote numbers (the level of cardinal

satisfaction). From observing the indifference map we know that:
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a < e < b. But we do not know by how much. The consumer will prefer a

wealth of 10 with certainty to a random wealth {9 or 11 with equal

probabilities} if e > (1/2)a + (1/2)b. This will occur for example, if

a = 2, e = 9 and b = 10. Otherwise, he will prefer the bet (if for

example, a = 8.5, e = 9 and b = 10).

A bet in terms of second period consumption assumes that the level

of first period consumption is fixed. For example, in Figure 2 a bet in

terms of future consumption (that is of the same size as the money bet

just described) has the outcomes {4 or 6}.

Figure 2

It is clear that the consumer will prefer the money bet {9, 11} to

the future consumption bet {4, 6}. But the two bets are of different
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relative size. The money bet is on 10% of wealth. The consumption bet is

on 20% of consumption. The question is whether the consumer will prefer

a money bet on x% of wealth to a consumption bet on x% of consumption.

To answer this question I compare the relative risk aversion measures to

the two kinds of bets. I start by showing that in the time separable

case the coefficient of relative risk aversion is the same for the two

kinds of bets.

I assume a T+1 periods horizon. The consumer single period

strictly concave utility function is U(C) and the discount factor is

0 < β < 1. The consumer can lend and borrow at the gross interest rate

R = 1/β. The consumer's problem when starting with the wealth w is:

(2) V(w) = maxCt
 β tU(Ct

t= 0

T

∑ ) s.t. RtCt

t= 0

T

∑  = w.

The attitude towards bets in terms of money is determined by the

property of the value function V(w). Since, R = 1/β the solution to (2)

is: Ct = w/(T+1) for all t and

(3) V(w) = β tU[w /(T +1)] = (T +1)U[w /(T +1)]
t= 0

T

∑

Taking derivatives leads to:

(4) V''(w)w/V'(w) = U''[w/(T+1)][w/(T+1)]/U'[w/(T+1)] = U''(c)c/U'(c)

Thus under the time separable utility function, the relative risk

aversion for bets in terms of money is the same as the relative risk
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aversion to bets in terms of consumption (at any date). An immediate

implication is that relative risk aversion to money bets does not depend

on age: When the individual advances with age, the horizon, T+1, gets

shorter but consumption per period, w/(T+1), does not change and

therefore relative risk aversion does not change with age.

I now turn to show that the above result is special to the time-

separable case.

4. THE ATTITUDE TOWARDS RISK UNDER THE TIME-NON-SEPARABLE FUNCTION

To study the attitude towards risk of the TNS utility function (1)

I define the value function:

(5) V(w) = max U(C1,...,CT; α, ρ) s.t. RtCt

t= 0

T

∑  = w.

As before I assume R = 1/β and therefore the solution to the

maximization problem in (5) is Ct = w/(T+1) and the value function is:

(6) V(w) = (1/α)[w /(T +1)]α β t

t= 0

T

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α /ρ

, (ICES)

V(w) = (1/α)[w /(T +1)]
α β t

t=0

T

∑
, (ICD)

V(w) = ln[w /(T +1)] β t

t= 0

T

∑ ,  (IL)
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The coefficient of relative risk aversion to bets in terms of

money (RAM) is:

 (7)  - V''(w)w/V'(w) = 1 - α  ,     (ICES)

- V''(w)w/V'(w) = 1 - α β t
t= 0
T∑ ,     (ICD)

- V''(w)w/V'(w) = 1,   (IL)

The coefficient of relative risk aversion to bets in terms of

consumption (RAC) is:

(8) -UttCt/Ut = 

αρ /(ρ −1) β t (
t= 0

T

∑ Ct )
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α /ρ−2

(Ct )
ρ +1−1/ρ

β t (
t= 0

T

∑ Ct )
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α /ρ−1  ,   (ICES)

-UttCt/Ut = 1 - α β t
,  (ICD)

-UttCt/Ut = 1,  (IL).

Comparing (7) to (8) we see that when the utility is not time

separable the measure of risk aversion to proportional bets in terms of

money is different from the measure of risk aversion to proportional

bets in terms of consumption.

Note that the TNS utility function (1) achieves a separation

between the attitude towards money bets and the ordinal properties of

the utility function: The RAM coefficient does not depend on the



                                    12

elasticity of substitution parameter ρ. But it does not separate between

the attitude towards consumption bets and the ordinal properties: The

RAC coefficient does depend on ρ.

Can we achieve a complete separation between the attitude towards

both types of bets and the ordinal properties? The answer is in the

negative. I now show this claim with the help of Figure 2. Assume for

example, that RAM = 0 and the consumer is indifferent between w = 10 and

the bet {9, 11}. Assume further that we know the indifference map. Then

we can infer that the consumer is indifferent between the certain future

consumption of 5 and a bet that promises 4.2 or 7 units of future

consumption with equal probabilities. Thus once we know the attitude

towards money bets and the indifference map we can infer the attitude

towards consumption bets.

We therefore must make a choice: either separate between IES and

RAC or between IES and RAM. The literature has chosen the first. Here I

choose the latter because most introspections and experiments are done

in terms of money bets.

Restrictions on the parameters:   I assume risk aversion to bets in terms

of consumption. To get RAC > 0, I assume ρ < 0 and α > 0 for the ICES

case, and I assume α < 1 for the ICD case.

The assumption ρ ≤ 0 implies 0 < IES ≤ 1. This is consistent with

the findings in Hall (1988), Campbell and Mankiw (1989) and Beaudry and

Wincoop (1996) who estimated IES between zero and one.

The restrictions on the parameters imply restrictions on the

combination of IES and risk aversion measures that we can entertain.

When IES = 1 we can have RAM > 1 - β t
t= 0
T∑  and RAC > 1 - β t

. When
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IES < 1, we can have RAM < 1 and RAC > 0. Note that we can have RAM ≤ 0

and RAC > 0. This implies that a consumer may have preference to bets in

terms of money but aversion to bets in terms of consumption.

In what follows I focus on bets in terms of money. Note that we

can change the RAM coefficient by varying α. But varying α will not

change the ordinal properties of the utility function. Therefore

aversion to fluctuations is separated from aversion to risk.

RAM and age:   Some people have priors about the way the RAM coefficient

changes with age. In our TNS function only the ICD case implies that RAM

changes with age. At age τ, RAM = 1 - α β t
t=τ
T∑ . When α > 0, RAM

increases with age reaching a maximum of 1 - αβT in the last period of

one's life. When α  < 0, RAM decreases with age reaching a minimum of

1 - αβT in the last period of one's life. When α approaches zero RAM

approaches 1 (the log utility case). Figure 3 illustrates the changes in

risk aversion to proportional money bets over the life-cycle.
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Figure 3: RAM and age for the ICD case

Thus, a prior about the way the RAM coefficient changes with age

may help us in choosing the parameters of the TNS function.

5. A TWO PERIODS SINGLE TREE ECONOMY

I now turn to assess the importance of the RAM coefficient for

understanding asset prices - the question in the title. I start with a

simple version of Lucas (1978) tree economy. There is a representative

consumer who lives for two periods. He is born with an endowment of a

tree that yields y units of consumption in the first period of his life

and ds units in the second period state s. After the first period

dividends are distributed there is a market for trees. The price of a
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tree is p and the representative consumer chooses (in the first period

of his life) present consumption (C0) and the amount of trees (A)

subject to the budget constraint:

(9) C0 + pA = y + p

Consumption in the second period in state s is given by:

(10) C1s = Ads

Substituting (9) into (10) leads to: C1 = d(y + p - C0)/p. The consumer

chooses C0 to solve:

(11) maxC0  Πss=1

S

∑ U[C0, ds(y + p - C0)/p],

where Πs is the probability of state s. The first order condition to

(11) is:

(12) Πss=1

S

∑ (U0s - U1sds/p) = 0

where U0s = ∂U(C0, C1s)/∂C0 and U1s = ∂U(C0, C1s)/∂C1s.

The ICD-IL case:

We now assume the Cobb-Douglas case: U(C0, C1) = (1/α)(C0)
α (C1)

δ
, where

δ = αβ. In this case:
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(13) U0s - dsU1s/p = (1/α)
α
C0

−
δ

y + p −C0

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ (C0)

α (y + p −C0)ds
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δ

Therefore the first order condition (12) requires

α
C0

−
δ

y + p −C0

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜  = 0 and C0 = α(y+p)/(α+δ).

To solve for p we substitute the market clearing condition C0 = y

in C0 = α(y+p)/(α+δ). This leads to:

(14) p = (δ/α)y = βy.

The asset pricing formula (14) can also be obtained for the IL

case. The rate of return on the asset is:

(15)  D/p = D/βy = G/β,

where D = Πss=1

S

∑ ds is expected dividends and G = 1 + g = D/y is the

expected gross rate of growth of consumption. Since (7) implies

RAM = 1 - α(1 + β), varying α will change it without affecting the

expected returns on the asset. We have thus shown,

Claim 1  : When the representative agent's utility function is ICD-IL, the

expected rate of return on the asset does not depend on the RAM measure

of relative risk aversion and does not depend on the variance of the

return. It depends only on the expected rate of growth in consumption

(G) and the time preference parameter β.
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Claim 1 is generalized in the Appendix to the finite horizon case

and to any monotonic transformation of the ICD utility function. Since a

monotonic transformation does not change IES we conclude that IES = 1

leads to (14).

The ICES case:

I now consider the case in which the elasticity of substitution is less

than unity (ρ  < 0) and U(C0, C1) = (1/α)[(C0)
ρ + β(C1)

ρ ]α /ρ . In this case the

first order condition (12) implies:

(16) p = βy1−ρ
Πss=1

S

∑ [y ρ + β(ds)
ρ ]α /ρ−1(ds)

ρ

Πss=1

S

∑ [y ρ + β(ds)
ρ ]α /ρ−1

Thus when the elasticity of substitution is different from unity

the price does depend on the RAM parameter α.

Note that when ρ is small (16) is close to (14). Thus,

Claim 2:   The ICES predicted asset price (16) is approximately equal to

the ICD-IL predicted price (14) when ρ is close to zero (and IES is

close to 1).

This says that under the TNS utility function (1) the asset price

does not jump when we move from IES = 1 (ICD-IL function) to IES close

to one (ICES function). This can be used to show that under (1) the

asset price is a continuous function of ρ.
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The standard power utility function:

I now assume the standard power (SP) utility function:

(17) U(C0, C1) = (1/ρ)[(C0)
ρ + β(C1)

ρ ] , ρ < 0.

 

Also here IES = 1/(1 - ρ). I restrict ρ < 0 to facilitate the

comparison with the ICES function.

The first order condition (12) implies in this case:

(18) p = Πss=1

S

∑ U1sds/U0 = βy1−ρ Πss=1

S

∑ (ds)
ρ

Comparing (18) to (16) leads to the following Claim.

Claim 3:   The ICES utility function with α close to zero (RAM close to

unity) yields approximately the same predicted asset price as the

standard power utility function with the same ρ (IES) parameter.

This Claim says that if we accept RAM = 1, we may work with

standard power utility function to study the effect of variations in IES

on the asset's price. I now turn to an example.

Example:   In the ICES case the asset price (16) will in general depend on

the amount of aggregate risk in the economy. To illustrate I now

consider two hypothetical economies. In both economies the expected

gross rate of change in income (consumption) is 1.02. In one economy
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G = 1.02 with probability 1. In the other economy G is a random variable

that can take two possible realizations: 1 and 1.04 with equal

probabilities. Table 1 calculates the gross rate of return (D/p) for

alternative values of the elasticity of substitution parameter and the

risk aversion parameter. The elasticity of substitution varies from 1

(the ICD case) to 0.333 and the coefficient of relative risk aversion

varies from 1 to 0. In this example, changes in the elasticity of

substitution have a large effect on gross returns while changes in risk

aversion have a relatively small effect. We also note that when the

elasticity of substitution is less than one, the expected rate of return

on the asset in the risky economy is lower than the rate of return on

the asset in the risk free economy.5 The predictions of the standard

power utility function are in the columns with RAM = 1.

Table 1*: The TNS utility function with β = 1: (D/p) as a function of IES and RAM

G = 1.02 G = {1 or 1.04}

IES\RAM RAM=1 (SP) RAM=0 RAM=1 (SP) RAM=0

IES=1 1.02 1.02 1.02 1.02

IES=0.5 1.0404 1.0404 1.0400 1.0401

IES=0.333 1.0612 1.0612 1.0600 1.0603
* The first column is the IES. The second column is D/p for the case

G = 1.02. The third column assumes G = {1 or 1.04}. Each column is

divided into two: One for RAM = 1 and one for RAM = 0. The predictions

of the standard power (SP) utility function are the same as in the

columns with RAM = 1.

                        

5 Levhari and Srinivasan (1969) have shown that uncertainty may increase

savings and may therefore lead to lower equilibrium interest rates.
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I now turn to the case for IES = 1.

Lucas' case for IES = 1:  

In his presidential address Lucas (2003) uses the standard power

utility function and argues for a relative risk aversion coefficient of

unity. Lucas' uses a well-known formula for an economy average return on

capital under the power utility function preferences. Using our notation

this formula (Equation [6] in Lucas [2003]) is:

(19)  r = (1/β - 1) + γg,

where r is the interest rate, g = G - 1, is the growth rate of

consumption, 1/β - 1 is the subjective interest rate (ρ in Lucas'

notations) and γ = 1 - ρ is the power coefficient. Lucas argues that

"...this formula makes it clear why fairly low γ values must be used.

Per capita consumption growth in the United States is about 0.02 and the

after-tax return on capital is around 0.05, so the fact that the

subjective interest rate must be positive requires that γ be at most

2.5. Moreover, a value as high as 2.5 would imply much larger interest

rate differential than those we see between fast-growing economies like

Taiwan and mature economies like the United States. This is the kind of

evidence that leads to the use of γ values at or near 1 in

applications."6

                        

6 Pages 6 and 7 in Lucas [2003] with some modifications due to

difference in notation.
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Under the TNS utility function (1) Claims 1 and 3 allow us to

interpret Lucas' argument as an argument for IES = 1 and for the ICD-IL

utility function. In particular, when γ = 1 the formula (19) is an

approximation of (15). In what follows I will therefore devote special

attention to the ICD-IL utility function.

6. A TWO PERIODS MANY ASSETS ECONOMY

I now turn to the many assets economy. I endow the representative

agent with n trees. These n trees yield a total of y units of

consumption (fruits) in the first period. Tree i yields dis units in the

second period in state s. The budget constraint of the representative

agent is now:

(20) C0 + pii=1

n

∑ Ai = y + pii=1

n

∑

(21) C1s = disi=1

n

∑ Ai

The agent problem is:

(22) maxAi  E{U(C0, C1)} s.t. (20) and (21).

Substituting the constraints in the objective function we can write (22)

as:

(23) maxAi ΠsU(y + pii=1

n

∑ − pii=1

n

∑ Ais=1

S

∑ , disi=1

n

∑ Ai)
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The first order condition for this problem is:

(24)  Πs(−U0spi +U1sdiss=1

S

∑ ) = 0

I use Ds = disi=1

n

∑  for the aggregate dividends. I also assume that we can

write the dividends of asset i in state s as a linear function of Ds:

(25)  dis = ai + biDs + eis,

where eisi=1

n

∑  = 0 for all s; bii=1

n

∑  = 1 and aii=1

n

∑ = 0. We assume that the

error terms eis is determined by a zero sum purely distributive lottery,

has zero mean and is independent of Ds. A riskless asset is an asset

with non-random dividends. The market portfolio is an asset for which

dis = Ds. The assumption about the error terms insures that the expected

return on an asset with bi = 0 is the same as the return on a riskless

asset and the expected return on an asset with ai = 0 is the same as the

expected returns on the market portfolio. I now show this for the ICD

case.

The ICD case:

We now turn to the ICD case: U(C0, C1) = (1/α)(C0)
α(C1)

δ. Using  the

first order condition (24) and the market clearing conditions C0 = y and

C1s = Ds, we arrive at the equilibrium condition:

(26) Πs{−pis=1

S

∑ ( disi=1

n

∑ )δ αyα−1 + disδ( disi=1

n

∑ )δ −1yα} = 0
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Substituting (25) into (26), rearranging and using the assumption that

ei does not depend on D, leads to:

 (27) pi = βy
Πss=1

S

∑ dis(Ds)
αβ −1

Πss=1

S

∑ (Ds)
αβ

= βy
Πss=1

S

∑ (ai + biDs)(Ds)
αβ −1

Πss=1

S

∑ (Ds)
αβ

When ai = 0, pi = βbiy. For this asset, dis/pi = (biDs + eis)/βbiy. Taking

expectations leads to the following Claim.

Claim 4:   The rate of return on an asset that its dividends are

proportional to the aggregate dividends (ai = 0) is G/β.

I now turn to show that risk premium does not require risk

aversion.

Claim 5:   When δ < 1, the rates of return on all assets with bi = 0 is

the same and is less than G/β.

Note that when δ = αβ < 1 the coefficient of risk aversion

RAM = 1 - α(1 + β) may be positive or negative. For example if β = 1 and

α = 0.5 then RAM = 0.

Proof:   The rate of return on asset i is:

(28) (ai + biDs + eis) / pi = (1/βy)(ai + biDs + eis)G(ai,bi),

where G(ai,bi) =
1

bi + ai Πss=1

S

∑ (Ds)
δ −1 / Πss=1

S

∑ (Ds)
δ
 is a non linear term. Since

we assume δ < 1, the covariance between D and Dδ −1
 is negative and
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(29) G(1, 0) = 
Πss=1

S

∑ (Ds)
δ

Πss=1

S

∑ (Ds)
δ −1

=
Πss=1

S

∑ (Ds)
δ −1Ds

Πss=1

S

∑ (Ds)
δ −1

=
Cov(Dδ −1,D)

Πss=1

S

∑ (Ds)
δ −1

+ Πss=1

S

∑ Ds

< Πss=1

S

∑ Ds.

Substituting this in (28) and taking expectations leads to the

conclusion that the expected rate of return on any asset with bi = 0 is

less than G/β. �

 The intuition is in the observation that when δ < 1,

RAC = 1 - δ > 0 and the representative consumer is averse to uncertainty

about future consumption. He will therefore hold the market portfolio

rather than the risk free asset only if there is a risk premium.

I now turn to a numerical example. As in the example of Table 1

the rate of growth in aggregate dividends (consumption) is 1 or 1.04

with equal probabilities and β = 1. I consider three assets and use the

following notation:

Rb = the return on an asset with ai = 1 and bi = 0 (the risk free

return);

R1 = the return on an asset with ai = 0 and bi  = 1;

R2 = the return on an asset with ai = - 2 and bi  = 3.

As we can see from Table 2 the rate of return on the market

portfolio R1 does not depend on the RAM coefficient and is equal to

G/β = 1.02 in our example. The rate of return on the risk free asset is

lower and the difference (the risk premium) increases with RAM. The risk

premium under risk neutrality is less than one tenth of a percent. When

RAM is close to 1 (the log utility case) the risk premium is a little
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over one tenth of a percent. When RAM is 3, the risk premium is about

two tenth of a percent.

Table 2: Rates of Returns under the TNS utility function with IES = 1

(ICD-IL; β = 1)

RAM

= 1−2α

R1

ai = 0; bi = 1

di={1,1.04}

R2

ai=-2;bi=3

di={1,1.12}

Rb

ai=1; bi=0

di={1,1}

R1 - Rb R2 - Rb

0 1.02 1.0204 1.0198 0.0002 0.0006

1 1.02 1.0207 1.0196 0.0004 0.0011

2 1.02 1.0211 1.0194 0.0006 0.0017

3 1.02 1.0215 1.0192 0.0008 0.0023

10 1.02 1.0241 1.0179 0.0021 0.0062

The IL case:  

For the log case the asset pricing formula is given by:

(30) pi = βy Πss=1

S

∑ dis /Ds

and can be obtained as the limit of (27).

The ICES case:  

I now turn to the case in which the elasticity of substitution is less

than unity (ρ < 0) and the utility function is:
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U(C0, C1) = (1/α)[(C0)
ρ + β(C1)

ρ ]α /ρ . In this case, the first order

condition (24) is:

(31) pi = βy1−ρ
Πs[(y)

ρ + β(Ds)
ρ ]α /ρ−1(Ds)

ρ−1diss=1

S

∑
Πs[(y)

ρ + β(Ds)
ρ ]α /ρ−1

s=1

S

∑

In Table 3 I use (31) to calculate the rates of returns under the

assumption that α is close to zero and RAM = 1 - α is close to unity.

We see that changes in the elasticity of substitution make a big

difference both to the levels of the rates of return and to the risk

premia.

Table 3: Rates of Returns under the TNS utility function with RAM = 1

(SP; β = 1)

IES =

1/(1- ρ)

R1

ai=0; bi=1

di={1,1.04}

R2

ai=-2; bi=3

Rb R1 - Rb R2 - Rb

1 1.02 1.0207 1.0196 0.0004 0.0011

0.5 1.04 1.0415 1.0392 0.0008 0.0023

0.333 1.0600 1.0623 1.0588 0.0012 0.0035

0.1 1.1982 1.2069 1.1936 0.0045 0.0132

0.01 1.9988 2.0740 1.9612 0.0377 0.1128

Since Claim 3 holds for this many assets case, the rates of return

in Table 3 are the same as the rates of return under the standard power

(SP) utility function that impose RAM = 1/IES. Comparing Tables 2 and 3

reveal the importance of the RAM coefficient under the ICD-IL function
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relative to the SP function. The results for RAM = IES = 1 are the same

in both Tables because both share the IL utility function. The relevant

comparison for RAM = 2 in Table 2 is with IES = 0.5 in Table 3. Both the

rates of returns and the risk premiums are larger under the SP utility

function. The difference in the response to the change in the RAM

coefficient may be explained by the fact that in the SP utility function

we are changing both RAM and IES and therefore the effect is stronger.

I now turn to modify Claim 2 for the many assets case and to

promote the view that the TNS utility function is an extension of the IL

function.

Claim 6:   When ρ and α are close to zero (IES and RAM are close to

unity), the ICES predicted asset prices (31), the ICD predicted prices

(27) and the IL predicted prices (30) are approximately the same.

Claim 6 says that small variation from the log utility function

will lead to small variations in asset prices. As was said in the

introduction the TNS utility function allows for the extension of the IL

function (with IES = RAM = 1) in various directions. We can keep RAM = 1

and change only the IES by working with the standard power utility

function. We can keep IES = 1 and change RAM by working with the ICD

utility function. We can change both by working with the ICES utility

function.
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"Ordinal certainty equivalent preferences":

As was said in the introduction, Selden (1978) has proposed a non-

expected utility function that separates between the elasticity of

substitution and risk aversion. Kreps and Porteus (1978) and Epstein and

Zin (1989) have extended Selden's analysis to the multi-period case in a

time-consistent manner. I now show that when IES = 1, Selden's procedure

may be observationally equivalent to the ICD-IL utility function.

Selden evaluates consumption paths in two stages. He first uses a

"certainty equivalence function" to substitute a certainty equivalent

for the random future consumption and then an "aggregator function" to

evaluate current consumption and the certainty equivalence of future

consumption.

To illustrate, let C denotes current consumption and x denotes a

random future consumption. The consumer first uses the certainty

equivalence function µ to convert x to a scalar: Z = µ(x). He then uses

the aggregator function G(C, Z) to evaluate the consumption path. In

this formulation IES is determined by the properties of the aggregator

function G while RAC is determined by the properties of the certainty

equivalence function µ.

I now turn to the special case:

(32) G(C, Z) = log(C) + log(Z);  Z = (Exσ )1/σ  where 0 ≠ σ < 1.

In (32) the aggregator function is logarithmic and as in Epstein

and Zin (1991), the certainty equivalence function is of the CES type.

For the single asset case, the consumer's problem is:
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(33)  maxA log(y + p - pA) + β log{[ Πss=1

S

∑ (DsA)
σ ]1/σ }

The first order condition for this problem is (14). Thus as in the log

expected utility case the price of the asset depends only on current

dividends (p = βy) and not on the certainty equivalent of future

consumption. Therefore risk aversion and aggregate risk do not affect

the price of the asset and the expected return.

For the many asset case, the consumer problem under Selden's

utility function is:

(34)  maxAi log[y + pii=1

n

∑ − pii=1

n

∑ Ai] + β log{[ Πss=1

S

∑ ( disi=1

n

∑ Ai)
σ ]1/σ }

The equilibrium prices (which we obtain after substituting Ai = 1 and in

the first order conditions) are:

(35) pi = βy
Πsdiss=1

S

∑ (Ds)
σ −1

Πss=1

S

∑ (Ds)
σ

This is exactly the formula (27). We have thus shown the following

Claim.

Claim 7:   The Selden-Epstein-Zin utility function (32) and the ICD

utility function are observationally equivalent (in the sense that they

both yield the same asset prices) when σ = αβ.
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Under the ICD utility function the relative risk aversion measure

for bets in terms of second period consumption is: RAC = 1 - αβ. Thus we

may interpret the coefficient σ in (32) as a measure of RAC. We may also

use Table 2 to get the predictions of (32) about asset returns.

Note that RAC = 1 - βα = (RAM + 1/β)/(1/β + 1). Therefore a unit

change in RAC is equivalent to roughly 2 units change in RAM and this

will make the RAC measure of risk aversion look more important than our

RAM measure. For example, in Table 2 with β = 1, RAM varies from 0 to 10

while RAC varies from 0.5 to 5.5.

7. INCOMPLETE MARKETS

The examples in Table 1-3 suggest that asset prices are not

sensitive to changes in the RAM coefficient but are sensitive to changes

in IES. I now turn to examine this conclusion for the case in which

there is idiosyncratic risk that cannot be insured.

I assume N households indexed h. There are n+N types of trees: n

types (of physical capital) are traded and N types (of human capital)

are not traded. Each household starts with a portfolio of n+1 trees one

tree from each of the traded-physical-capital type and human capital.

The aggregate per capita amount of fruit (income) in state s is Ds.

The amount of dividends from trees of type 1,...,n is given by

(25) and is repeated here for convenience.

(36) dis = ai + biDs + eis
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where eisi=1

n

∑ = 0 and eis are independent of Ds. The amount of dividends

from human capital Hs
h
 is given by:

(37) Hs
h
 = ah + bhDs + us

h

where us
h

h=1

N

∑ = 0 and the us
h
 are independent of Ds. Per capita income is

given by:

(38) Ds = disi=1

n

∑ + (1/N) Hs
h

h=1

N

∑

We may think in terms of three independent lotteries that occur at

the beginning of period 1. The first lottery determines the aggregate

per capita magnitude D. The second is a zero sum lottery that determines

e and the third is a zero sum lottery that determines u. A state of

nature s is a description of the outcome of all three lotteries.7 I

assume ah = 0 and bh = 0.7 for all h. It is also assumed that bii=1

n

∑  = 0.3

and aii=1

n

∑  = 0.

Household h consumption is:

(39) C0
h
 + pii=1

n

∑ Ai
h
 = y + pii=1

n

∑

(40) C1s
h
 = disi=1

n

∑ Ai
h
 + Hs

h

                        

7 Since the lotteries are independent the number of states of nature is:

S = L1× L2× L3 where Li is the number of possible realizations of

lottery i.
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where Ai
h
 is household h choice of the quantity of asset i (i=1,...,n).

Since labor share is 0.7, the typical agent problem can now be

written as:

(41) maxAi ΠsU(y + pii=1

n

∑ (1− Ais=1

S

∑ ), disi=1

n

∑ Ai + 0.7Ds + us),

where the superscript h is suppressed. The first order condition for

this problem is still given by (24).

Using symmetry all consumers will make the same first period

consumption choice and therefore the clearing of the first period

consumption market requires: C0 = y. Symmetry also implies that

consumption of household h in the second period is given by Cs
h = Ds + us

h
.

The first order condition (24) should hold for all h and therefore I

suppress the superscript h and write C1s = Ds + us for the representative

consumer. Substituting this in the first order condition (24) leads to

the following pricing formula:

 (42) pi = βy
Πss=1

S

∑ (ai + biDs)(Ds + us)
αβ −1

Πss=1

S

∑ (Ds + us)
αβ

I now turn to a numerical example in which aggregate consumption

may take the realizations 1 and 1.04. For each realization of the

aggregate consumption we add a bet in which the typical household can

win or lose 0.08 units. This is consistent with the standard deviations
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of aggregate consumption in the data (0.02) and the Deaton-Paxon

estimate of the standard deviation of individual consumption (0.08).8

Table 4 presents the results of the numerical example. The risk

premia in Table 4 are almost identical to the risk premia in Table 2.

The rates of return themselves are not. The rate of return on the market

portfolio is now declining in the RAM coefficient.

It thus seems that allowing for incomplete markets will affect our

estimate of β but will have little or no effect on our estimate of the

risk premia.

Table 4: Predicted Rates of Returns when markets are incomplete

(IES = 1; β = 1 and C1 = {1 ± 0.08 , 1.04 ± 0.08})

RAM

= 1−2α

R1

ai = 0; bi = 1

di={1,1.04}

R2

ai=-2;bi=3

di={1,1.12}

Rb

ai=1; bi=0

di={1,1}

R1 - Rb R2 - Rb

0 1.017 1.017 1.017 0.0002 0.0006

1 1.014 1.014 1.013 0.0004 0.0011

2 1.011 1.012 1.010 0.0006 0.0017

3 1.008 1.009 1.007 0.0008 0.0023

10 0.987 0.991 0.985 0.0022 0.0063

                        

8 Deaton and Paxson (1994) finds that the variance of log consumption

within each age cohort increases by 0.07 every decade in the US (page

446). Their random walk assumption in equations (1) - (3) imply a

variance in consumption of 0.007 per year which is roughly equal to a

standard deviation of 0.08.
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I now turn to the effect of changes in RAM on welfare

calculations.

8. WELFARE CALCULATIONS

In his presidential address Lucas (2003) attempt to assess the

gains from stabilization policy. His argument for choosing a relative

risk aversion of unity used equation (19) and was interpret here under

the TNS utility function as an argument for IES = 1 and for the ICD-IL

utility function. This interpretation allow us to vary the RAM measure

without violating the implication about the average rate of return in

the economy which will remain G/β regardless of the choice of RAM.

To examine the effect of RAM on welfare (holding constant IES = 1)

I start with a consumption path of C0 = 1 and C1 = {1 or 1.04}.

Following Lucas I calculate the required compensation (λ) for the

consumption risk, where λ  solves:

(43) ( 1
2)U(1 + λ, 1 + λ) + ( 1

2)U[1 + λ, 1.04(1 + λ)] = U(1, 1.02)

Thus the consumer is fully compensated for the risk if his

consumption in all periods and states of nature is increased by a

fraction of λ.

Assuming the ICD utility function with β = 1 leads to:

(44) λ = [2(1.02)α /(1.04α +1.00α )]1/ 2α −1.
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The second column of Table 5 reports the required compensation in

percentage terms (100λ) for various levels of RAM. Not surprising, risk

aversion matters. For example, going from RAM = 0 to RAM = 1 doubles the

required compensation. But as in Lucas (2003) all the magnitudes are a

small fraction of a percent.

Table 5: Required compensations in percentage terms (100λ);

 C1 = {1 or 1.04}

Ram 2 periods,

1 shock

2 periods,

2 shocks

3 periods,

3 shocks

2 periods,

1 shock

SD = 0.08

0 0.005 0.005 0.009 0.077

1 0.010 0.029 0.038 0.154

2 0.014 0.053 0.068 0.232

3 0.019 0.077 0.098 0.309

10 0.053 0.245 0.307 0.839

To check for robustness I also considered cases in which

consumption follows a random walk. The third column in Table 5 reports

the required compensation when both current and future consumption are

random: C0 = {1 or 1.04} and C1 = {C0 or 1.04C0}. In this case the

required compensation are substantially higher relative to the single

shock case but are still a fraction of a percent. The three periods

random walk case, reported in the fourth column assumes:

C0 = {1 or 1.04}, C1 = {C0 or 1.04C0} and C2 = {C1 or 1.04C2}. In this

case the welfare cost is larger than in the previous case. This suggests
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that adding shocks whose effect are being eliminated by "good policy"

increases the welfare gain. Note also that the required compensation is

almost  proportional to the RAM coefficient.

Allowing for incomplete markets may increase the welfare gain. If

by "good policy" we eliminate aggregate risk we may also greatly reduce

the number of markets required for completeness. This may therefore

improve the allocation of diversifiable risk in the economy. In the last

column of Table 5 I assume that the "good policy" eliminates all risk in

a two periods one shock economy assuming: C1 = {0.94 or 1.1} initially

and then by "good policy" is converted to C1 = 1.02. The assumed

standard deviation of consumption is thus 0.08 and is consistent with

the Deaton-Paxson estimate discussed above. Note that if RAM = 10 the

welfare gain is 0.8%. This starts to look like real money.9

9. RATES OF RETURN FOR HYPOTHETICAL CLAIMS UNDER THE ICD-IL FUNCTION

Under the ICD-IL function the expected return on the market

portfolio does not depend on the RAM coefficient. But the RAM

coefficient does affect the expected rates of return on claims on parts

of GDP that are not proportional to consumption. To get a sense of the

                        

9 It has also been argued that a good policy may improve production

efficiency. For example, it is possible that the consumer is not

averse to fluctuations in consumption but is averse to fluctuations in

labor supply. It is also possible that average capacity utilization

will improve as a result of policy. For a recent survey of the

literature see Barlevy (n.d.).
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importance of the RAM coefficient, I consider now hypothetical claims on

(a) GDP, (b) the wage bill, (c) non-wage income (profits) and

(d) corporate profits, all in real per-capita terms.

Our first task is to express equation (25) in terms of rates of

change. Equation (25) is conditional on all the information available at

time t and we may therefore write:

(45) dit+1 = ait+1 + bit+1Dt+1 + eit+1,

where the coefficients are time dependent. I normalize y = 1 and assume:

ait+1 = aidit and bit+1 = bidit. This means that the predicted share in the

pie is proportional to the time t share. Dividing (45) by dit yields:

(46) Git+1 = ai + biGt+1 + εit+1,

where Git+1 = dit+1/dit is the gross rate of growth in asset i dividends,

Gt+1 = Dt+1 is the gross rate of growth in consumption and εit+1 = eit+1/dit

is an error term. I also assume that εit+1 has a zero mean and is not

correlated with Gt+1. The time invariant coefficients ai and bi can

therefore be estimated from running the regression (46).

Note that multiplying the coefficients ai and bi by the same

constant does not change the expected rate of return (28). Therefore

after estimating the regression coefficients in (46) we can plug the

coefficients directly (without multiplying it by dti) in (28) to compute

the predicted gross rate of return on asset i.

Equation (46) requires data on the gross rates of change of flows

(fruits) and these data are easier to get than data on prices. For
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example there is no market for slaves and therefore no data on the price

of human capital defined as body plus the knowledge embodied in it. But

we can predict the gross rate of return on human capital even without

observing its price. Similarly and maybe more relevant, we do not

observe the price of unincorporated equity. But nevertheless we can

predict the rate of return on it if we observe the flow of profits it

yields.

I use NIPA US post war data (from January 1948 to January 2004)

taken from the Saint Louis Fed web page to compute the gross rate of

growth in real per capita terms of the following variables: consumption

(c), wage earnings (w), corporate profits (pr), GDP (y) and non-wage

income (y-w). The detail of the calculations of these variables and the

description of the data are in Appendix c.

Table 6 provides summary statistics for the annual data. All rates

of change are close to 2%. The smallest rate is for the wage bill (1.6%)

and the highest is for corporate profits (2.2%). The standard deviation

is in the range 0.02 - 0.04 except for corporate profits where it is

much higher (0.16).
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Table 6: Summary Statistics about Annual Per Capita Gross Rates of

Change

Average Standard deviation

Consumption (c) 1.019 0.02

GDP (y) 1.018 0.03

Wage earnings (w) 1.016 0.03

Profits (y-w) 1.020 0.04

Corporate Profits (pr) 1.022 0.16

Table 7 provides the regression results from running (46). Most

intercepts are small and barely significant. The intercept on corporate

profits is an exception.

Table 7*: Regressions of the rate of change of asset i on the rate of

change in consumption

Dependent var. Intercept Slope Rsquare

y -0.19

 (0.10)

1.18

(0.10)

0.73

w 0.07

 (0.14)

0.93

(0.14)

0.46

y-w -0.45

(0.14)

1.44

(0.14)

0.67

pr -2.06

(0.93)

3.03

(0.91)

0.17

* Standard errors in parentheses.



                                    40

Table 2 may therefore provide a good approximation for the rates

of return on the four hypothetical claims when β = 1. The expected

return on the market portfolio (R1) is a good approximation for the

returns on claims on the wage bill, non-wage income and GDP. The

expected return on the more risky portfolio (R2) is an estimate of the

return on a claim on corporate profits.

The prediction of the model for various β can be approximated by

multiplying Table 2 by β. This is done in Table 8 for β = 1.025.

Table 8: Predicted Rates of Returns (IES = 1; β = 1.025)

RAM

= 1−2α

R1

ai = 0; bi = 1

di={1,1.04}

R2

ai=-2;bi=3

Rb

ai=1; bi=0

R1 - Rb R2 - Rb

0 1.0455 1.0459 1.0453 0.0002 0.0006

1 1.0455 1.0463 1.0451 0.0004 0.0012

2 1.0455 1.0466 1.0449 0.0006 0.0017

3 1.0455 1.0470 1.0447 0.0008 0.0023

10 1.0455 1.0497 1.0433 0.0022 0.0064

The expected rates of returns in Table 8 are consistent with the

estimates in McGrattan and Prescott (2003) who took an explicit account

of taxes and frictions and found average returns in the 4-5 percent

range. The expected rate of return on the market portfolio is 1.0455.

The expected rate of return on a claim on corporate profits is 1.0459

when RAM = 0 and 1.05 when RAM = 10. The corresponding risk premia on
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the more risky portfolio (corporate profits) are 0.05% and 0.6%

respectively.

10. CONCLUDING REMARKS

I used a time-non-separable (TNS) recursive expected utility

function to separate between the intertemporal elasticity of

substitution (IES) and the measure of relative risk aversion to bets in

terms of money (RAM). In the examples I worked out, variations in the

RAM coefficient have a small effect on asset prices relative to

variations in the IES coefficient. When IES changes from 1 to 0.5 the

rate on the market portfolio doubles in our example (Table 1) almost

regardless of whether the RAM coefficient is 1 or 0.

In some cases the TNS utility function leads to predictions about

asset prices that are the same as the predictions of other functions

that have been used. The standard power (SP) utility function is

observationally equivalent to TNS with RAM = 1. Selden's certainty

equivalent approach is observationally equivalent to our approach when

IES = 1 and the certainty equivalent function is the CES like function

used by Epstein and Zin (1991). It may be useful to view the TNS utility

function as an extension of the intertemporal log (IL). Starting from

IES = RAM = 1, we can keep RAM = 1 and change the IES by working with

the standard power utility function. We can keep IES = 1 and change RAM

by working with the ICD utility function. We can change both by working

with the ICES utility function. Small variations from the log utility

function will lead to small variations in asset prices.
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Lucas' observations about cross-countries average interest rates

are consistent with the prediction of the ICD-IL utility function with

IES = 1. Under the ICD-IL utility function, the expected rate of return

on the market portfolio is G/β regardless of the RAM coefficient and of

the amount of aggregate risk.

Risk premia under the ICD-IL utility function are less sensitive

to changes in the RAM coefficient than risk premia under the SP

function. Risk premia are larger under the ICD function when RAM = 0 and

are smaller when RAM > 1 (Tables 2 and 3). This may be explained by the

fact that when we change the parameter in the SP function we are

changing both the IES and the RAM and their combined effect is about

twice as much as the effect of just changing the RAM coefficient. This

may be a reason why risk aversion looks more important when using the

standard power utility function.

Allowing for incomplete markets does not change risk-premia in the

ICD example we worked out. But it does affect the rates of returns on

the assets and introduces a negative relationship between the rates of

return and the RAM coefficient. This may be the result of a

precautionary savings type behavior.

Not surprisingly changes in the RAM coefficient affect the

calculation of the welfare gains from eliminating business cycle risks.

This point is well recognized by Lucas (2003) and other authors on this

subject. Lucas objects to a power parameter of the SP function that

deviates substantially from unity on the ground that it violates the

above mentioned cross-countries observation. The ICD utility function

allows for variations in the RAM coefficient that do not violate the

cross-countries observations.
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Data on flows can be used to compute the rates of returns on

various claims. I used post war US NIPA data and found that claims on

the wage bill and on total profits are close to a claim on the market

portfolio (aggregate consumption). But a claim on corporate profits is

more risky than a claim on the market portfolio. The predictions of the

ICD-IL utility function are consistent with the findings in McGrattan

and Prescott (2003) but cannot account for the original Mehra and

Prescott (1985) puzzle.

APPENDIX A: A FINITE HORIZON SINGLE ASSET ICD ECONOMY

I now consider an economy in which the representative agent lives

for T periods. At t = 0 he gets endowment of one tree that provides

fruits for T periods and then dies (together with the agent).

I allow a general dividend (income) process. It is assumed that

the representative agent at t = 0 assigns positive probabilities, πs, to

all states s = 1,...,S. Over time he updates this probabilities when he

learns that some states did not occur. The set of possible states at

time t (the information available at time t) is denoted by It. The

updated probability of state s is denoted by (πs|It). Note that

(πs|It) = 0 if s ∉ It. The agent also knows the information that he will

have at time j > t if state s occurred. This information is denoted by

Ijs. At time t the choices of (A0,...,Αt−1) was already made. Since there

is one tree per agent we assume Aj = 1 for j < t. The agent chooses At

and makes a contingent plan that specifies the amount of trees he will

own at future dates: (At+1s,...,AT-1s). The agent has to choose Ajs = Ajs'

if at time j he cannot distinguish between the two states. Thus, he
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faces the informational constraint: Ajs = Ajs' if s,s'∈ Ijs. Assuming an

ICD utility function we can state the time t problem as follows.

  (A1) Vt(kt-1,It) = maxAt ,At+1s ,...,AT−1s

kt-1 (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It ) [At (dt+1s + pt+1s) − At+1spt+1s]

αβ t

kt+1s

s.t.

kt-1 = 
j= 0

t−1

∏ (d j )
αβ j

kt+1s = 
j= t+2

T

∏ [A j−1s(d js + p js) − A jsp js]
αβ j

A js = A js' if s,s'∈ Ijs

I now define equilibrium as follows.

Equilibrium at time t is a vector (At, At+11,...,AT-11,...,At+1S,...,AT-1S;

pt, pt+11,...,pT-11,...,pt+1S,...,pT-1S) such that

(a) given prices (pt, pt+1s,...,pT-1s), the quantity vector

(At ,At+1s,...,AT-1s) solves (A1) and

(b) market clearing: At = 1 and Ajs = 1 for all j > t and all s.

I now generalize the asset pricing formula (10) to the finite

horizon case.
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Claim A:   Equilibrium prices at time t are given by:

(A2) pt = (β + β2 + ...+ βT-t)dt and

pjs = (β + β2 + ...+ βT-j)djs for all t < j < T

Note that when T = ∞ (A2) implies pt = dt/ρ, where the subjective

interest rate 1 + ρ = 1/β. This formula is in the logarithmic preference

example in Ljungqvist and Sargent (2000, page 239).

Proof:   When T = 1, there is trade in the asset only in period

t = T - 1 = 0 and (A2) coincides with (17). We now proceed by induction.

We assume that equilibrium prices when the horizon is T-t-1 (at time

t+1) satisfy (A2) and show that equilibrium prices when the horizon is

T-t (at time t) satisfy (A2).

Given our induction hypothesis we can write the problem (A1) as:

(A3) V(kt−1; It) =

maxAt kt-1 (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It ) [At (dt+1s + pt+1s) − pt+1s]

αβ t+1

kt+1s

Now kt+1s = 
j= t+2

T

∏ (d js)
αβ j

 is a constant and pt+1s = (β + β 2 + ...+ βT− t−1)dt+1s. Note

that the assumption At+1s = 1 follows from the induction hypothesis.

The first order condition for the problem (A3) is:

(A4) −αβ t pt (dt + pt − At pt )
αβ t −1 (π ss=1

S∑ | It ) [At (dt+1s + pt+1s) − pt+1s]
αβ t+1

kt+1s

+ (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It )αβ t+1(dt+1s + pt+1s)[At (dt+1s + pt+1s) − pt+1s]

αβ t+1−1
kt+1s = 0
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Substituting At = 1 and pt+1s = (β + β 2 + ...+ βT− t−1)dt+1s in (A4) leads to:

(A5)  pt = (β + β 2 + ...+ βT− t )dt

This completes the proof. �

We can now use Claim A to compute the rate of return on the asset

as follows.

(A6) (dt+1s + pt+1s)/pt =

= (1+ β + β 2 + ...+ βT− t−1)dt+1s/ (β + β 2 + ...+ βT− t )dt = dt+1s/βdt

Using Gt = (π ss=1
S∑ | It )(dt+1s/dt) to denote the expected consumption growth

we can write the expected rate of return at time t as:

(A7)  Gt/β = Gt(1 + ρ),

where ρ is the subjective rate of interest. This is exactly the formula

(15) that we got in the two periods horizon.

APPENDIX B: MONOTONIC TRANSFORMATION OF THE COBB-DOUGLAS UTILITY

FUNCTION

In Table 1 we have seen that the prediction of the log utility

function about the average return in the economy is the same as the

prediction of the Cobb-Douglas functions. We now show that this is also
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the case for other monotonic transformation of the Cobb-Douglas

function.

We assume a utility function F(U), where F' > 0. The problem (14)

is now:

(B1) maxC0  Πss=1

S

∑ F{U[C0, ds(y + p - C0)/p]}

The first order condition for this problem is:

(B2) Πss=1

S

∑ Fs
'
(U0s - dsU1s/p) = 0

where Fs
'
 = F'{U[C0, ds(y + p - C0)/p]}. In general a monotonic

transformation will change the price of a tree. In the Cobb-Douglas case

C0 = α(y+p)/(α+δ) and

(B3) U0s - dsU1s/p = 0 for all s.

It follows that a monotonic transformation that changes the derivatives

Fs
'
 will not change p.

We may now consider the family of utility functions that are

monotonic transformation of the log utility function. This is a much

larger family than the Cobb-Douglas utility function. It includes for

example, [ln(C0) + ln(C1)]
γ
. We can now generalize Claim 1 as follows.

Claim B:   If the utility function of the representative agent is a

monotonic transformation of the log utility function, then the expected

rate of return in a single asset economy is G/β.
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APPENDIX C: DATA

I took the following series from the St. Louis Fed web site.

Population (POP): Civilian Labor Force (M, SA),

Wage bill (NW): Compensation of Employees: Wages and Salary Accruals (Q,

SAAR),

Consumption (NC): Personal Consumption Expenditures (Q, SAAR)

Price level (P): Gross Domestic Product Chain-type Price Index

Corporate Profits (NPR): Corporate Profits After Tax with Inventory

Valuation Adjustment (IVA) and Capital Consumption Adjustment (CCADi)

Nominal GDP (NGDP): Gross Domestic Product, 1 Decimal

These data are available from January 1948 until January 2004. The

data are available on a quarterly basis (except for population which is

given on a monthly basis and was converted to a quarterly series). The

data are in billions of current dollars and were divided by the price

level and by population to obtain real per capita magnitudes:

W = NW/P(POP) real per capita wage earnings

C = NC/P(POP) real per capita consumption

PR = NPR/P(POP) real per capita Corporate Profits

Y = NGDP/P(POP) real per capita GDP

Y-W = (NGDP-NW)/P(POP) real per capita non wage income

I computed the following gross rates of change: ct = Ct/Ct-1,

wt = Wt/Wt-1, prt = PRt/PRt-1, yt = GDPt/GDPt-1,(y-w)t = (Y-W)t/(Y-W)t-1.
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