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Abstract. James Buchanan (Economica, 1966) has argued that Alfred Mar-
shall’s theory of jointly-supplied goods can be extended to analyze the allo-
cation of impure public goods. This article introduces a way of modelling
sharing technologies for jointly-supplied goods that captures the essential
features of Buchanan’s proposal. Public and private goods are special cases
of shared goods obtained by appropriately specifying the sharing technol-
ogy. Necessary conditions for an allocation in a shared goods economy to
be Pareto optimal are identified and related to the optimality conditions for
public and private goods.

Keywords and Phrases: impure public goods, shared goods, Pareto opti-
mality.
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1. Introduction

Early critics of Samuelson’s (1954) model of pure public goods argued that it
is difficult to find examples of goods that exhibit the complete nonrivalness
in consumption that Samuelson’s definition requires. For example, Margolis
(1955) suggested that national defence and lighthouses exhibit this nonrival-
ness, but most other goods that are collectively consumed, such as highways
and the courts, are subject to congestion. Alternative models of impure pub-
lic goods abound, of which Tiebout’s (1956) theory of local public goods and
Buchanan’s (1965) theory of clubs have been the most influential.1 With
these kinds of goods, each member of the community or club consumes the
same quantity of the good, but individual utilities also depend on the number
of people that the good is being shared with.

For many publicly-provided goods, decisions about the location or other
characteristics of the good affect the distribution of benefits. For example,
consider a police force of a given size in a city with two geographically dis-
tinct precincts. More police allocated to one precinct will increase safety
there at the expense of the safety of those individuals in the second precinct.
Typically, the increase in safety of one group does not diminish the safety
of the other group by the same amount because the police can respond to
crime throughout the city. Similarly, shifting more police into the investi-
gation of burglary from the traffic enforcement unit will differentially affect
the benefits received from the police force by different residents. There are
many other examples of goods that are not completely rival in consumption
and for which the mix of benefits can be varied. For example, the benefits
an individual receives from a fire station depend on the distance from, and
hence the location of, a fire station, and the benefits of a mosquito eradication
programme depend on where the repellant is released.2

Buchanan (1966, 1967, 1968) has suggested that Marshall’s (1920) the-
ory of joint supply can be usefully extended to analyze these kinds of impure
public goods. With Marshallian joint supply, the produced good embodies
multiple final products. For example, wool and mutton are the final products
embodied in sheep. Buchanan extended this idea to impure public goods by
regarding the products of an impure public good as being the individual-

1See Cornes and Sandler (1996) for a discussion of the literature on club goods and
local public goods.

2The police example is adapted from Shoup (1964) and the other examples from
Buchanan (1968).
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specific consumptions obtained from this good. Because more than one in-
dividual can benefit from their provision, I refer to such goods as shared
goods.3 The feasible distributions of consumptions are described by a shar-
ing technology. A sharing technology is simply a production function that
specifies the distributions of consumption that are possible as a function of
the quantity of the shared good that is available.4

Buchanan distinguished between the units in which a shared good is mea-
sured (production units) and the units in which the consumption of the
services of this good are measured (consumption units). In the mosquito
eradication example, the quantity of the good is measured by the quantity
of repellant released and consumption is measured by the reduction in the
number of mosquitos in a particular locality. In the case of crime protection,
production of the good could be measured by the size of the police force,
while consumption could be measured in terms of an index of safety.

For Marshallian goods, as the scale of production is increased, the quan-
tities of the final products increase proportionally because no variability in
the product mix is possible. For many shared goods, it is possible to vary
both the scale of shared good provision and the mix of final consumptions.
For example, in the fire protection example, once the location of the fire hall
is fixed, while everyone can be better protected by hiring more firemen, the
relative proportions of fire protection to the residents of the area are fixed.
However, in contrast to Marshallian jointly-supplied goods, the proportions
in which benefits are received can also be varied by choosing a different lo-
cation for the fire hall.5

3I have borrowed this terminology from Inman (1971), who applies it to a particular
class of congestible goods.

4Production theory has also been used in a number of other ways to model impure
public goods. Oakland (1972, 1987) considered goods, such as highways, for which an
individual’s benefits depend on his usage and a measure of congestion, where congestion
is a function of capacity and the total usage by all individuals. See also the related model
in Cornes and Sandler (1996, Chapter 12). Inman (1971) proposed a model in which the
services from a public facility depend on the size of the facility and the number of users.
The properties of Inman’s model have been investigated in some detail by Hillman (1978).
Sandmo (1973) used a production function in which final consumption is a function of the
quantities of a private and public good, as is the case when a private car is needed to take
advantage of a publicly-provided highway. In Cornes and Sandler (1996, Chapter 8), an
impure public good is a Marshallian good with two final products, one private and one
public.

5A further contrast between shared goods and Marshallian goods is that the products of
a Marshallian good can be traded, whereas the consumptions associated with shared goods
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By appropriate specifications of the sharing technology, both private
goods and pure public goods are obtained as special cases. In view of this
fact and the fact that a wide range of examples of impure public goods can be
modelled as shared goods, it is somewhat surprising that shared goods à la
Buchanan have received virtually no attention in the subsequent literature.6

For example, Buchanan’s work on shared goods is not mentioned in Cornes
and Sandler’s (1996) monograph on externalities, public goods, and club
goods. Oakland (1972), in his survey of the theory of public goods, simply
dismissed Buchanan’s theory (see footnote 5), without describing the theory
in any detail. Plott and Meyer (1975) described what a sharing technology is
and showed how pure public goods and private goods are special cases, but
did little more than argue for the usefulness of this way of modelling impure
public goods.

The description and analysis of shared good provision in Buchanan’s work
is quite sketchy and somewhat informal. In this article, I propose a way of
modelling sharing technologies for jointly-supplied goods that captures the
essential features of Buchanan’s contribution. I use this model to identify the
necessary conditions for an allocation to be Pareto optimal in an economy
with shared goods. I also show how the shared goods optimality conditions
can be used to obtain the standard optimality conditions for private and
public goods. My analysis of these optimality conditions complements and
extends the corresponding analysis in Buchanan (1966, 1968).

My model of an economy with shared goods is described in Section 2.
Optimality conditions for this economy are derived and discussed in Section
3. In order to obtain the optimality conditions for the limiting case of a pure
public good, the model is reformulated in Section 4 in terms of consumption
shares. Some concluding remarks are presented in Section 5.

2. The Model

There are two types of good in the economy, private and shared. The set
of private goods is K = {1, . . . , K} and the set of shared goods is M =
{1, . . . ,M}. In order to distinguish between the consumption and production

cannot. Buchanan (1966, pp. 406–407) explicitly noted this point, which is something that
was overlooked when Oakland (1987, p. 490) criticized Buchanan and others for treating
public good provision as an instance of joint production.

6An exception is Weymark (1979), where Buchanan’s framework was used to explore
the relationship between the optimality conditions for public and private goods.
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of a shared good, the produced good is called a shared good facility. Shared
goods facilities are produced using private goods as inputs by firms. There is
no joint production of shared goods. The aggregate production possibilities
set for the mth shared good facility is Y m.7 It is assumed that Y m is a
closed convex set and that it is not possible to produce any output without
a positive amount of at least one private good. It is also assumed that the
output of this shared good facility is freely disposable. The set of feasible
production vectors in Y m can be described using a production function Y m(·).
A production vector (zm, ym) is feasible if

Y m(zm, ym) ≤ 0, (1)

where ym is the output of this shared good facility and zm = (zm1, . . . , zmK)
is the nonnegative vector of private goods used to produce this facility. The
production function Y m(·) is assumed to be continuously differentiable.

In addition to producing shared goods facilities, the firms in this economy
also produce private goods. An aggregate production set F is used to describe
this sector of the economy. F is assumed to be closed, convex, and to satisfy
free disposability. It is also assumed that no good can be produced without
the use of some of the other private goods as inputs. Letting F (·) denote
the corresponding production function, F is the set of net output vectors
w = (w1, . . . , wK) for which

F (w) ≤ 0, (2)

where for each good k ∈ K, wk is positive (resp. negative) if it is an output of
(resp. input to) this sector. F (·) is assumed to be continuously differentiable.

The producers of shared goods need not be the agents who make them
available to consumers. For example, roads and fire halls are typically built by
private firms, but are supplied to the public by governments. In order to allow
for a range of alternative provision arrangements, I refer to the intermediaries
between the producers and consumers of shared goods as groups. A group
could be a government, a club in the sense of Buchanan (1965), or even a
single individual. The latter case would apply if there is private provision
of a shared good. The set of groups is G = {1, . . . , G}. It is possible that
groups have overlapping memberships.

7Because the focus of the analysis is on the sharing technology, for simplicity, the
production sectors of the economy are only described in terms of aggregate production
technologies, not the technologies of individual firms.
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In terms of the allocation of shared goods facilities between groups, these
goods exhibit the rivalness of private goods. Hence, for each m ∈ M,

G∑
g=1

ygm ≤ ym, (3)

where ygm is the amount of the mth shared good facility owned by the gth
group.

In principle, any group could provide any of the M shared goods to con-
sumers. For simplicity, I assume that each group has a separate sharing
technology for each shared good and that each shared good facility only pro-
vides one kind of consumption benefit to consumers. The set of consumers is
I = {1, . . . , I} and the consumption by the ith consumer of the mth shared
good as a result of its provision by the gth group is sigm. As described in
Section 1, the quantities of these goods are measured in consumption units,
whereas the facilities themselves are measured in production units. The gth
group’s sharing technology for the mth shared good is Sgm. An element of
Sgm is a vector (sgm, ygm), where sgm = (s1gm, . . . , sIgm). Sgm is assumed
to be a closed convex set and the individual consumptions are assumed to
be freely disposable. If ygm = 0, then sigm = 0 for all i as well. Letting
Sgm(·) denote the corresponding sharing function, Sgm is the set of vectors
(sgm, ygm) for which

Sgm(sgm, ygm) ≤ 0. (4)

The free disposability assumption implies that if the distribution of con-
sumptions sgm is feasible with a facility of size ygm, then it is possible to
exclude the ith consumer from some or all of the units of consumption sigm

in this distribution. Whether or not such exclusion is feasible is of fundamen-
tal importance when considering the incentives a group or individual has for
providing a shared good. However, in this article, I am only concerned with
optimal provision of shared goods. Because it is never optimal to exclude an
individual from consuming a good with positive benefits if this can be done
without cost and without affecting the consumption of the other individuals,
the assumption that Sgm satisfies free disposal is innocuous here.8

A sharing technology is illustrated in Figure 1. The curve shows all
the efficient distributions of consumptions for two consumers from a shared

8If there is any rivalness in the consumption of a shared good, it may well be optimal
to exclude some individuals from consuming this good.
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good facility of fixed size.9 Increasing the size of the facility shifts this curve
outward. In this example, total consumption of the good increases as benefits
accrue more evenly, so the good is not completely rivalous in consumption.

Efficiency in distribution may be incompatible with excluding any con-
sumer from the benefits of a shared good. This possibility is illustrated in
Figure 2. In this example, the curve shows the upper boundary of all distri-
butions that are possible from a fixed-size facility, but only the distributions
between a and b are efficient. The example of allocating a police force be-
tween two precincts discussed in the preceding section is an example of this
kind of shared good. Even if the whole force is located in one precinct, the
presence of police in a nearby area will deter some criminal activity in the
other precinct.

With a pure public good, there is only one efficient distribution possible
from a given sized facility, as illustrated in Figure 3. In the theory of pure
public goods, the units in which public good production and consumption are
measured are the same. Thus, if group g supplies ygm units of the mth public
good, each consumer receives ygm units of consumption. This is indicated by
the point a in Figure 3. If exclusion is possible, as is assumed here, then any
distribution is possible in which no consumer obtains more than ygm units of
this good.

Private goods can also be modelled as a special kind of shared good. As
with public goods, units of private good consumption are the same as units
of production. Private goods exhibit complete rivalry in consumption. Thus,
as illustrated in Figure 4, the boundary of the sharing technology has slope
−1 for a fixed quantity of this good available for distribution. Most private
goods are supplied by firms. In terms of the model presented here, such a
firm has a dual role; it is both the producer of the good and the group that
makes it available to consumers. Not all goods that exhibit complete rivalry
in consumption are privately supplied. For example, a municipal parking
lot operating at full capacity exhibits complete rivalry in its usage.10 It is
natural to think of it as a shared good with private characteristics.

These examples demonstrate that by appropriate specification of the shar-
ing technology, my model of shared goods is general enough to include pure
public goods, private goods, and impure public goods that exhibit partial

9The efficient distributions for a given sized facility are those distributions that are not
weakly vector dominated by any other feasible distribution.

10See Holtermann (1972) for a discussion of this kind of publicly-provided good.
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rivalry in consumption as special cases. Musgrave’s (1969) model of impure
public goods is also a special case. In Musgrave’s model, individuals supply
public goods. The person who supplies a unit of a public good receives a unit
of consumption, but the other individuals only receive a fraction of a unit.
Using the terminology introduced here, the groups providing shared goods
facilities are individuals and the sharing technologies are linear. Many of the
standard examples of consumption externalities have this structure. To cite
but one example, the externality a gardener generates for his or her neigh-
bour is due to the fact that the neighbour can see the garden, not because
there is a concern for the gardener’s well-being.

However, in spite of its flexibility, there are important classes of impure
public goods that are not captured by my framework. For example, if private
goods are needed to enjoy the benefits of a public facility, as in Sandmo
(1973), the facility is not a shared good in the sense used here. By relaxing
some of my restrictive assumptions, other kinds of impure public goods can be
interpreted as being shared goods. The congestible public facilities considered
by Inman (1971) and Hillman (1978) provide the same consumption to all
users of the facility, but the amount of this consumption depends on the
number of individuals using the facility, not just its size. This pattern of
feasible consumptions can be modelled using a nonconvex sharing technology.

An individual may consume the same shared good from more than one
source. For example, mosquito eradication programmes run by neighbouring
jurisdictions benefit residents in both locations. For all i ∈ I, the total
consumption of the mth shared good is

sim =
G∑

g=1

sigm. (5)

Individuals consume both private goods and shared goods and only care
about their own consumption of these goods. A consumption bundle for
individual i is a vector (xi, si) = (xi1, . . . , xiK , si1, . . . , siM). Individual i’s
preferences are represented by the utility function U i : R

K+M
+ → R. U i is

assumed to be continuously differentiable, strictly quasiconcave, and strictly
increasing in each argument.

The aggregate endowment of the kth private good is ωk. There are no
endowments of shared goods.

The model of the economy is completed by specifying the materials bal-

7



ance constraints for the private goods. For each k ∈ K,

I∑
i=1

xik +
M∑

m=1

zmk ≤ wk + ωk. (6)

In other words, for the kth private good, the amount allocated to individuals
for consumption plus the amount allocated to firms as inputs for the produc-
tion of shared goods cannot exceed the sum of the quantity produced and
the endowment of this good.

An allocation for this economy consists of a consumption bundle (xi, si)
for all i ∈ I, a shared good production vector (zm, ym) for all m ∈ M, a
vector (sgm, ygm) for all g ∈ G and all m ∈ M describing the quantity of
the mth shared good facility owned by the gth group and how its benefits
are shared by consumers, and a private goods production vector w. An
allocation is feasible if the shared good production constraint (1) is satisfied
for all m ∈ M, the constraint on the production of private goods (2) is
satisfied, the sharing technology constraint (4) is satisfied for all g ∈ G and
all m ∈ M, the materials balance constraint for a shared good facility (3)
is satisfied for all m ∈ M, the materials balance constraint (5) for shared
goods consumption is satisfied for all i ∈ I and all m ∈ M, and the materials
balance constraint for private goods (6) is satisfied for all k ∈ K.11

In order to facilitate the comparison of the optimality conditions for
shared goods with those for public and private goods, various simplifying
assumptions have been made. A number of generalizations of the model are
possible. A shared good facility could produce more than one kind of con-
sumption benefit. For example, firemen are often trained to provide emer-
gency assistance to individuals who have suffered a heart attack in addition
to being trained to put out fires. In the model presented in this section, each
shared good has been identified with a single shared good facility. However,
many shared goods facilities are in fact multidimensional. A fire department
consists of various kinds of personnel, fire halls, fire trucks, etc. I have di-
chotomized the production of shared goods facilities from the sharing of the
corresponding consumption benefits. In a more general model, the individ-
ual consumptions of a shared good could be expressed as a direct function
of the private good inputs, without explicitly having a shared good facility
as an intermediate product. Shared goods could also be used as inputs in

11There are also nonnegativity constraints on the xi, si, zm, ym, sgm, and ygm. These
constraints are not explicitly considered in the subsequent discussion.
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the production of other goods or, as in Sandmo (1974), private goods could
appear as additional inputs in the sharing technology.

3. Pareto Optimality

In this section, I present and interpret the necessary conditions for Pareto
optimality for the economy described in the preceding section when complete
variability in the consumption shares is possible. That is, for all g ∈ G,
all m ∈ M, all positive ygm, and all strictly positive vectors sgm, there
is an efficient distribution s̄gm of this shared good that is proportional to
sgm. It is further assumed that the sharing function Sgm(·) is continuously
differentiable. These assumptions exclude public goods and shared goods
with limited variability in consumption shares, such as the good illustrated
in Figure 2, from consideration. Fixed consumption shares are considered
in the next section. For brevity, I only consider the necessary conditions for
an interior optimum as it is straightforward to modify the analysis to take
account of corner solutions.

Pareto optimal allocations are found by specifying target levels for utility
(compatible with feasibility) for all but consumer 1 and choosing a feasible al-
location to maximize consumer 1’s utility subject to these utility constraints.
For all i �= 1, let Ū i denote the target utility for consumer i. The utility con-
straint for consumer i is then

U i(xi, si) ≥ Ū i. (7)

Because the utility functions are increasing in all of their arguments, these
constraints and all of the inequality constraints that define a feasible alloca-
tion hold with equality at a Pareto optimal allocation.

The Lagrangian for this optimization problem is

L = U1(x1,
G∑

g=1

s1g1, . . . ,
G∑

g=1

s1gM)−
I∑

i=2

µi


Ū i − U i(xi,

G∑
g=1

sig1, . . . ,
G∑

g=1

sigM)




−
M∑

m=1

βmY m(zm,
G∑

g=1

ygm) −
G∑

g=1

M∑
m=1

ξgmSgm(sgm, ygm) − γF (w)

−
K∑

k=1

λk

[
I∑

i=1

xik +
M∑

m=1

zmk − wk − ωk

]
, (8)
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where (3) (with equality) and (5) have been substituted into the production
functions for shared goods facilities and into the utility functions so as to
eliminate the variables sim and ym.

In addition to the satisfaction of all of the constraints with equality, the
necessary conditions for an interior Pareto optimal allocation are:

∂U1

∂x1k

− λk = 0, ∀k ∈ K, (9)

µi
∂U i

∂xik

− λk = 0, ∀i ∈ I\{1}, ∀k ∈ K, (10)

∂U1

∂s1m

− ξgm
∂Sgm

∂s1gm

= 0, ∀g ∈ G, ∀m ∈ M, (11)

µi
∂U i

∂sim

− ξgm
∂Sgm

∂sigm

= 0, ∀i ∈ I\{1}, ∀g ∈ G, ∀m ∈ M, (12)

−βm
∂Y m

∂zmk

− λk = 0, ∀k ∈ K, ∀m ∈ M, (13)

−βm
∂Y m

∂ym

− ξgm
∂Sgm

∂ygm

= 0, ∀g ∈ G, ∀m ∈ M, (14)

−γ
∂F

∂wk

+ λk = 0, ∀k ∈ K, (15)

where, for compactness, the arguments of the functions that appear in (9)–
(15) have been suppressed.

From (9), (10), and (15), it follows that

−∂U i/∂xik′

∂U i/∂xik

= −∂F/∂wk′

∂F/∂wk

, ∀i ∈ I, ∀k, k′ ∈ K. (16)

This equation is the standard optimality condition for private goods. It says
that for all individuals and for any pair of private goods, the marginal rate
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of substitution should equal the marginal rate of transformation. Of course,
if the aggregate production set for private goods were disaggregated into
production sets for individual firms, optimality would also require setting
each firm’s marginal rate of transformation equal to the aggregate marginal
rate of transformation.

Private goods are also used in the production of shared goods facilities.
For each pair of private goods, (13) and (15) imply that the marginal rate of
transformation in the production of any shared good facility should be equal
to the marginal rate of transformation in (16). Formally,

−∂Y m/∂zmk′

∂Y m/∂zmk

= −∂F/∂wk′

∂F/∂wk

, ∀k, k′ ∈ K, ∀m ∈ M. (17)

Equations (9), (10), (11), and (12) imply that

− ∂U i′/∂si′m

∂U i′/∂xi′k
= −∂U i/∂sim

∂U i/∂xik

· ∂S
gm/∂si′gm

∂Sgm/∂sigm

,

∀i, i′ ∈ I, ∀g ∈ G, ∀k ∈ K, ∀m ∈ M. (18)

Before interpreting (18), it is useful to note that it implies that

−∂Sg′m/∂si′g′m

∂Sg′m/∂sig′m
= −∂Sgm/∂si′gm

∂Sgm/∂sigm

, ∀i, i′ ∈ I, ∀g, g′ ∈ G, ∀m ∈ M.

(19)

Equation (19) shows that the marginal rate at which one person’s consump-
tion of a shared good can be transformed into another person’s consumption
of the same good, holding the size of the shared good facility and the other
individuals’ consumptions fixed, must be the same for all providers of this
good. These marginal rates of transformation for the sharing technologies are
measures of the rivalness in consumption. For a private good, this condition
is automatically satisfied because the sharing technology’s marginal rate of
transformation is identically equal to −1 for any pair of consumers.

Equation (18) describes how the marginal rates of substitution between
a shared good and a private good are related for different individuals at
a Pareto optimal allocation. Specifically, for any pair of individuals, the
marginal rate of substitution for the first individual should be set equal to
the marginal rate of substitution for the second individual multiplied by
the absolute value of the marginal rate at which the consumption of this
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shared good can be traded off between these two individuals in any group’s
sharing technology.12 For example, if this marginal rate of transformation is
−3 (i.e., at the margin, it is optimal to substitute three units of the second
person’s consumption of this shared good for one unit of the first person’s
consumption), then the first person’s marginal rate of substitution should
be three times that of the second’s. If the shared good is in fact a private
good, because the sharing technology’s marginal rates of transformation are
then equal to −1, (18) simply says that the individuals’ marginal rates of
substitution should be set equal to one another, which is the standard private
goods optimality condition for consumption in (16).

It follows from (9)–(14) that

− ∂U i/∂sim

∂U i/∂xik

= −∂Sgm/∂sigm

∂Sgm/∂ygm

· ∂Y m/∂ym

∂Y m/∂zmk

,

∀i ∈ I, ∀g ∈ G, ∀k ∈ K, ∀m ∈ M. (20)

The reciprocal of the first term on the right-hand-side of (20) is the marginal
rate at which individual i’s consumption of the mth shared good can be
increased by increasing the size of the corresponding shared good facility by
the gth group, holding everybody’s else’s consumption of this good fixed. An
implication of (20) is that these marginal products must be the same for all
groups providing this shared good facility. That is,

− ∂Sgm/∂ygm

∂Sgm/∂sigm

= − ∂Sg′m/∂yg′m

∂Sg′m/∂sig′m
, ∀i ∈ I, ∀g, g′ ∈ G, ∀m ∈ M. (21)

The right-hand-side of (20) can be thought of as the marginal rate of
transformation between the kth private good and i’s consumption of the mth
shared good. In absolute value, this marginal rate of transformation is the
reciprocal of the product of (a) the marginal rate at which i’s consumption
of the mth shared good can be increased when the size of this shared good
facility is increased and (b) the marginal product of the kth private good in
the production of the mth shared good facility. For any individual i, (20)

12Buchanan (1966, p. 412) has an optimality condition for the special case in which
there are two individuals, one shared good, and one private good that is essentially the
same as (18). After stating this condition, Buchanan went on to say that extending the
analysis to more individuals and goods is ‘formidable’, but his argument as to why he
thinks this is so is not very clear. Nothing analogous to (18) appears in the discussion of
impure public goods in Buchanan (1968).
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says that the marginal rate of substitution between a shared good and a
private good should equal this marginal rate of transformation.

In the special case in which the shared good is a private good, no dis-
tinction is made between the size of the facility and the total consumption
of this good. Increasing the quantity of the shared good available increases
i’s consumption by the same amount when everybody else’s consumption is
unchanged, so the first term on the right-hand-side of (20) is equal to −1.
Equation (20) then says that the marginal rate of substitution between this
good and any other private good for any consumer should be equal to the
marginal rate of transformation.13 Hence, the standard optimality condition
for a pair of private goods given in (16) is implied by (18) and (20) when the
shared good exhibits complete rivalry in consumption.

4. Consumption Shares

In the preceding section, by reducing the consumption of a shared good by
one individual, it was possible to increase the consumption of this good for
any other individual. This is not feasible with a pure public good. For
this reason, the analysis in Section 3 is not able to shed light on how the
optimality conditions for shared goods are related to Samuelson’s (1954)
optimality condition for public goods. In this section, I reformulate the
model in terms of the fraction of the aggregate consumption of a shared
good allocated to each individual and use this alternative description of the
sharing technologies to derive necessary conditions for Pareto optimality for
a shared goods economy. These conditions provide an alternative perspective
on the properties of Pareto optimal allocations from that of the preceding
section. In particular, the consumption shares version of the model naturally
leads to a condition that characterizes the optimal scale of production of a
shared good facility for fixed consumption shares, from which the optimality
condition for public goods follows as a special case. I also show that the
optimality conditions for private goods are a special case of the optimality
conditions obtained using this version of the model.14 In order to focus on the
new insights provided by modelling sharing technologies using consumption

13When comparing (16) and (20), it should be borne in mind that input quantities are
negative in (16), but they are positive in (20).

14In Weymark (1979), I also modelled sharing technologies in terms of consumption
shares, but only considered the polar cases of public and private goods.
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shares, I simplify the description of the economy by assuming that each
shared good is only provided by one group. As in Section 3, I only consider
the necessary conditions for an interior optimum.

The total consumption of the mth shared good is

sm =
I∑

i=1

sim. (22)

Letting aim denote person i’s share of this total, sim can be written as

sim = aimsm. (23)

The vector of nonnegative consumption shares for the mth shared good is
am = (a1m, . . . , aIm), where

I∑
i=1

aim = 1. (24)

Using these shares, the sharing technology S̄m for this good is the set of
(sm, am, ym) for which

S̄m(sm, am, ym) ≤ 0, (25)

where S̄m(·) is the sharing function corresponding to S̄m. To be consistent
with the original formulation of the model, we must have

S̄m(sm, am, ym) = Sm(a1msm, . . . , aImsm, ym), (26)

where Sm(·) is the function that characterizes the sharing technology for
the mth shared good when the technology is expressed in terms of levels
of consumption. In addition to the properties that S̄m inherits from Sm

(i.e., the properties assumed for Sgm in Section 2), S̄m(·) is assumed to be
continuously differentiable. If the shares can’t be varied, as would be the
case with a pure public good, this differentiability assumption only applies
to sm and ym.

An allocation is defined as in Section 2 except that now there is only
one vector (sm, am, ym) describing the consumption of the mth shared good,
rather than a separate sharing vector (sgm, ygm) for each group. To define
the set of feasible allocations, (23)–(25) replace (4) and the materials balance
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constraints (3) and (5) are omitted because there is only one group for each
shared good.15

The Lagrangian used to find necessary conditions for Pareto optimality
for this version of the model is

L̄ = U1(x1, s1) −
I∑

i=2

µi

[
Ū i − U i(xi, si)

]
−

M∑
m=1

βmY m(zm, ym)

−
M∑

m=1

ξmS̄m(sm, am, ym) −
I∑

i=1

M∑
m=1

ρim [sim − aimsm]

−
M∑

m=1

φm

[
I∑

i=1

aim − 1

]
− γF (w)

−
K∑

k=1

λk

[
I∑

i=1

xik +
M∑

m=1

zmk − wk − ωk

]
. (27)

Pareto optimality requires that all of the constraints described above hold
with equality. In addition, when there are no constraints on the consumption
shares other than the adding-up constraint (24), the necessary conditions for
an interior Pareto optimum allocation are: (9), (10), (13), (15),

∂U1

∂s1m

− ρ1m = 0, ∀m ∈ M, (28)

µi
∂U i

∂sim

− ρim = 0, ∀i ∈ I\{1}, ∀m ∈ M, (29)

−βm
∂Y m

∂ym

− ξm
∂S̄m

∂ym

= 0, ∀m ∈ M, (30)

−ξm
∂S̄m

∂sm

+
I∑

i=1

ρimaim = 0, ∀m ∈ M, (31)

15Because the right-hand-side of (23) has a multiplicative form, the set of feasible alloca-
tions need not be convex. Hence, the necessary conditions for Pareto optimality obtained
using this model need not be sufficient. A similar problem arises in stock market economies.
See Drèze (1972, 1974).
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−ξm
∂S̄m

∂aim

+ ρimsm − φm = 0, ∀i ∈ I, ∀m ∈ M. (32)

The last equation does not apply to any shared good whose consumption
shares cannot be varied. Goods with fixed consumption shares are called
quasi-public goods in Mohring and Boyd (1971). A pure pure public good is
a quasi-public good whose consumption shares are all equal to 1/I.

As in the preceding section, the standard optimality conditions for private
goods, (16) and (17), follow from these first-order conditions. That is, for
any pair of private goods, there must be equality between the marginal rates
of substitution in consumption and the marginal rates of transformation in
production (of private goods and shared goods facilities).

In the Appendix, it is shown that the conditions that characterize the
optimal scale of production of the shared good facilities for given consumption
shares are given by

I∑
i=1

aim

[
−∂U i/∂sim

∂U i/∂xik

]
= −∂S̄m/∂sm

∂S̄m/∂ym

· ∂Y m/∂ym

∂Y m/∂zmk

, ∀k ∈ K, ∀m ∈ M.

(33)

The left-hand-side of (33) is the share-weighted sum of the marginal rates of
substitution between the mth shared good and the kth private good using the
vector am of consumption shares as weights. The reciprocal of the absolute
value of the right-hand-side of (33) is

∂S̄m/∂ym

∂S̄m/∂sm

· ∂Y
m/∂zmk

∂Y m/∂ym

, ∀k ∈ K, ∀m ∈ M. (34)

The absolute value of the first term in this expression is the rate at which
aggregate consumption of the mth shared good increases with an increase in
the size of the corresponding facility holding the consumption shares fixed at
am and the absolute value of the second term is the marginal product of the
kth private good in the production of this facility. Hence, the absolute value
of the right-hand-side of (33) is the reciprocal of the marginal rate at which
the kth private good can be transformed into aggregate consumption of the
mth shared good given the consumption shares am (i.e., the right-hand-side
of (33) is the marginal rate of transformation between the kth private good
and the aggregate consumption of the mth shared good). Note that while
the marginal rates of substitution in (33) are expressed in terms of individual
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consumptions, the marginal rate of transformation is expressed in terms of
aggregate consumption.16

With a pure public good, the consumption shares are all equal to 1/I.
Further, the units in which production and consumption are measured are
the same. Thus, increasing the size of a public good facility by one unit
increases total consumption by I units, which implies that the first term on
the right-hand-side of (33) is equal to 1/I. Hence, if the mth shared good is
a pure public good, then

I∑
i=1

[
−∂U i/∂sim

∂U i/∂xik

]
=

∂Y m/∂ym

∂Y m/∂zmk

. (35)

This equation is the optimality condition for public good provision due to
Samuelson (1954). In words, the sum of the marginal rates of substitution be-
tween a public good and a private good should be set equal to their marginal
rate of transformation in production.

When consumption shares are variable, the optimal consumptions of a
shared good can be determined by simultaneously solving (i) the condition for
the optimal facility size for fixed consumption shares and (ii) the conditions
that characterize the optimal consumptions for fixed facility size.17 These
conditions are given by (33) and (18), respectively.

Further insight into the properties of Pareto optimal allocations when
shares are variable can be obtained by considering the implications of the
first-order conditions in (32). In the Appendix, it is shown that if consump-
tion shares are chosen optimally, then

[
∂U i/∂sim

∂U i/∂xik

− ∂U i′/∂si′m

∂U i′/∂xi′k

]
=

[
∂Y m/∂ym

∂Y m/∂zmk

] [
∂Sm/∂sim

∂Sm/∂ym

− ∂Sm/∂si′m

∂Sm/∂ym

]
,

∀i, i′ ∈ I, ∀k ∈ K, ∀m ∈ M. (36)

Note that the sharing technologies have been expressed in terms of individual
levels of consumption in (36), as in Sections 2 and 3, rather than in terms of
consumption shares.

16The optimality condition for quasi-public goods in Breton (1974) is a special case of
(33).

17Buchanan (1966, 1968) has emphasized these two aspects of shared good provision.
Gevers’ (1974) optimality conditions for a stock market economy also include separate
conditions for optimality in scale and in distribution.
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The expression

∂Sm/∂ym

∂Sm/∂sim

· ∂Y
m/∂zmk

∂Y m/∂ym

(37)

is the marginal rate at which person i’s consumption of the mth shared
good can be increased by increasing the amount of the kth private good
used in the production of the mth shared good facility, holding everyone
else’s consumption of this good fixed. The reciprocal of (37) is thus the
rate at which the input of the kth private good must be increased in order
to increase i’s consumption of the mth shared good, holding the quantities
of the other inputs fixed (i.e., it is the absolute value of the marginal rate
of transformation between the kth private good and i’s consumption of the
mth shared good). For any pair of individuals, (36) shows that the difference
between their marginal rates of transformation must equal the difference
between these individuals’ marginal rates of substitution for these goods.

The standard optimality conditions for private goods follow from (33)
and (37). If the mth shared good is a private good, a one unit increase in the
facility size is needed in order to increase any individual’s consumption of this
good by one unit. Hence, the right-hand-side of (36) is 0, which implies that
the marginal rate of substitution between this good and any other private
good must be the same for all individuals. This, in turn, implies that the
left-hand-side of (33) is equal to this common marginal rate of substitution.
Because an additional unit of a shared good increases total consumption by
one unit when a shared good is a private good, the right-hand-side of (33) is
the marginal rate of transformation between the two private goods.

5. Concluding Remarks

In this article, I have used sharing technologies to model the kinds of impure
public goods considered by Buchanan (1966, 1967, 1968). One of the virtues
of the shared goods framework is that public and private goods are special
cases obtained by appropriately specifying the sharing technology. However,
there are important kinds of impure public goods that are not captured by my
model. By relaxing some of my restrictive assumptions, sharing technologies
can be used to describe other kinds of impure public goods. Some of the
possibilities for generalizing the model have been described in Section 2.

In deriving the optimality conditions, I have assumed that none of the
inequality constraints bind. An implication of this assumption is that it
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is never optimal to exclude any individual from the consumption of any
shared good. By taking into account the possibility that some nonnegativity
constraints on consumption may bind, the optimality conditions also identify
which individuals should consume each shared good.

Having identified necessary conditions for an allocation in a shared goods
economy to be Pareto optimal, it is natural to investigate whether there are
institutional arrangements that generate Pareto optimal outcomes. In Wey-
mark (1977), I considered two alternative mechanisms for the production
and distribution of shared goods whose equilibria are Pareto optimal. The
first of these mechanisms is a generalization of the Lindahl mechanism for
the allocation of public goods. In the second mechanism, the provision of
shared goods is determined cooperatively, with private goods allocated using
competitive markets. In this article, I have assumed that individuals can be
costlessly excluded from the consumption of any shared good. Whether or
not exclusion is possible has no bearing on the optimality conditions obtained
here. However, the possibility of exclusion is an important factor in deter-
mining which institutional arrangements, if any, can support Pareto optimal
outcomes.

Appendix

Let µ1 = 1. Multiplying (28) by a1m and (29) by aim and then summing the
resulting equations over i yields

I∑
i=1

aimµi
∂U i

∂sim

=
I∑

i=1

ρimaim, ∀m ∈ M. (A.1)

Substituting (31) into (A.1), we obtain

I∑
i=1

aimµi
∂U i

∂sim

= ξm
∂S̄m

∂sm

, ∀m ∈ M. (A.2)

From (9), (10), and (13), it follows that

µi
∂U i

∂xik

= −βm
∂Y m

∂zmk

, ∀i ∈ I, ∀k ∈ K, ∀m ∈ M. (A.3)

Solving (30) for −βm and substituting in (A.3) yields

µi
∂U i

∂xik

= ξm
∂S̄m

∂ym

[
∂Y m/∂zmk

∂Y m/∂ym

]
, ∀i ∈ I, ∀k ∈ K, ∀m ∈ M. (A.4)
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From (A.2) and (A.4), it then follows that

I∑
i=1

aim

[
µi∂U

i/∂sim

µj∂U j/∂xjk

]
=

∂S̄m/∂sm

∂S̄m/∂ym

· ∂Y m/∂ym

∂Y m/∂zmk

,

∀j ∈ I, ∀k ∈ K, ∀m ∈ M. (A.5)

From (9) and (10), we also have that

µi
∂U i

∂xik

= µj
∂U j

∂xjk

, ∀i, j ∈ I, ∀k ∈ K. (A.6)

Substituting (A.6) into (A.5) gives (33).
Equations (28), (29), and (32) imply that

− ξm
∂S̄m

∂aim

+ µism
∂U i

∂sim

= −ξm
∂S̄m

∂ajm

+ µjsm
∂U j

∂sjm

,

∀i, j ∈ I, ∀m ∈ M, (A.7)

or, equivalently,

sm

[
µi

∂U i

∂sim

− µj
∂U j

∂sjm

]
= ξm

[
∂S̄m

∂aim

− ∂S̄m

∂ajm

]
,

∀i, j ∈ I, ∀m ∈ M. (A.8)

From (9) and (10), it then follows that

λksm

[
∂U i/∂sim

∂U i/∂xik

− ∂U j/∂sjm

∂U j/∂xjk

]
= ξm

[
∂S̄m

∂aim

− ∂S̄m

∂ajm

]
,

∀i, j ∈ I, ∀k ∈ K, ∀m ∈ M. (A.9)

Using (13) and (30) to eliminate the multipliers from (A.9), we obtain

sm

[
∂U i/∂sim

∂U i/∂xik

− ∂U j/∂sjm

∂U j/∂xjk

]
=

[
1

∂S̄m/∂ym

] [
∂Y m/∂ym

∂Y m/∂zmk

] [
∂S̄m

∂aim

− ∂S̄m

∂ajm

]
,

∀i, j ∈ I, ∀k ∈ K, ∀m ∈ M. (A.10)

From (26), it follows that

∂S̄m

∂aim

= sm
∂Sm

∂sim

, ∀i ∈ I, ∀m ∈ M, (A.11)
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and

∂S̄m

∂ym

=
∂Sm

∂ym

, ∀m ∈ M. (A.12)

Substituting (A.11) and (A.12) into (A.10), we obtain (36).
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Drèze, J. H. (1972), A tâtonnement process for investment under uncer-
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