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1. Introduction

In this paper we establish that the bootstrap provides asymptotic refinements for

the two-step generalized method of moments (GMM) estimator of possibly overidenti-

fied linear models. Our analysis differs from earlier work by Hall and Horowitz (1996)

and Andrews (2002a) in that we allow correlation of moment functions beyond finitely

many lags. In typical empirical applications, the autocovariance structure of moment

functions is unknown and the inverse of the heteroskedasticity and autocorrelation con-

sistent (HAC) covariance matrix estimator is often used as a weighting matrix in GMM

estimation. In finite samples, however, it is well-known that coverage probabilities based

on the HAC covariance estimator are often too low, and that the t test tends to reject

too frequently (see Andrews, 1991). In this paper, we consider a bootstrap method for

the GMM estimator for the purpose of improving the finite sample performance of the

t test and the test of overidentifying restrictions (J test).

We use the block bootstrap originally proposed by Künsch (1989) for weakly de-

pendent data (see also Carlstein, 1986). When the block length increases at a suitable

rate with the sample size, such block bootstrap procedures eventually will capture the

unknown structure of dependence. The block bootstrap has been applied to the GMM

estimation by Hall and Horowitz (1996) and Andrews (2002a) and thus our analysis is

largely related to their work. Hall and Horowitz (1996) show that the nonoverlapping

block bootstrap provides asymptotic refinements for GMM for a certain class of depen-

dent data.1 To be more specific, for a series with the moment function that is uncorre-

lated after finitely many lags, errors in the symmetrical distribution function are o(T−1)
1For independent series, Hahn (1996) shows the first-order validity of the bootstrap for GMM. Brown and

Newey (1995) also propose an alternative efficient bootstrap method based on the empirical likelihood.
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and errors in the rejection probabilities (ERPs) of symmetrical tests are o(T−1). Thus,

when the moment function has such a dependence structure, asymptotic refinements

can be obtained with a parametric rate. Andrews (2002a) establishes the higher-order

equivalence of the k-step bootstrap, which is computationally attractive, and the stan-

dard bootstrap for statistics based on nonlinear extremum estimators including GMM.

While Andrews’ (2002a) results generalize those of Hall and Horowitz (1996) in the

sense that they cover both nonoverlapping and overlapping bootstraps, the series are

still required to be uncorrelated after some finite lags.

Economic theory often provides information about the specification of moment con-

ditions, but not necessarily about the dependence structure of the moment conditions.

Therefore, it is of practical interest to know whether the asymptotic refinement can be

provided with the bootstrap procedure based on the HAC covariance matrix estimator

designed for a series with more general forms of autocorrelation. To prove an asymp-

totic refinement, we follow a conventional approach and rely on Edgeworth expansions.

However, because the HAC covariance matrix estimator cannot be written as a function

of sample moments and converges at a nonparametric rate that is slower than T−1/2,

the widely used result of Götze and Hipp (1983) cannot be directly applied to establish

the existence of Edgeworth expansions.

Recent studies by Götze and Künsch (1996) and Lahiri (1996) contain some results

on Edgeworth expansions that can be applied to HAC covariance matrix estimation.

Using such Edgeworth expansions, Götze and Künsch (1996) and Lahiri (1996) show

that the block bootstrap can provide asymptotic refinements for a smooth function of

sample means and for estimators in a linear regression model, respectively. However,

their results can only cover the refinement in the coverage probabilities of the one-sided
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confidence intervals or the ERPs of the one-sided test.

Since typical analyses based on GMM estimator employ the two-sided confidence

intervals and the J test, we prove that the bootstrap provides asymptotic refinements for

these statistics in overidentified linear models estimated by GMM. To our knowledge, the

higher-order properties of the block bootstrap for GMM with unknown autocovariance

structures have not been formally investigated.2

We show that the order of both the first-order and bootstrap approximation error

depends on the asymptotic bias of the HAC covariance estimator. For the bootstrap

to provide asymptotic refinements for symmetric confidence intervals and for the J

test statistic, one must therefore use kernels, such as the truncated kernel (White,

1984), the trapezoidal kernel (Politis and Romano, 1995) and the Parzen (b) kernel,

of which the asymptotic bias vanishes quickly enough. Hall and Horowitz (1996) and

Andrews (2002a) consider the truncated kernel only. This is also in contrast to the

results of Götze and Künsch (1996) who show that, for all kernels but the Bartlett kernel,

the bootstrap provides asymptotic refinements for one-sided confidence intervals. For

the symmetric confidence interval and the J test statistic, O(T−1/2) terms do not exist in

the Edgeworth expansion because these terms are even functions and are cancelled out.

However, the asymptotic bias of the HAC covariance matrix estimator is deterministic

and is not an even function. Thus, the bias becomes important in our higher-order

asymptotics.

While we restrict our attention to linear models, they are of particular interest

in empirical macroeconomics. GMM estimation of linear models has been applied to
2Recent related studies include Hansen (2000) and Gonçalves and White (2001). Hansen (2000) considers

the Edgeworth expansion of test statistics for nonlinear restrictions in the GMM framework but rules out
the use of HAC covariance matrix estimators. Gonçalves and White (2001) establish the first-order validity
of the bootstrap for nonlinear dynamic models under very general conditions.
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the expectation hypothesis of the term structure (Campbell and Shiller, 1991), the

monetary policy reaction function (Clarida, Gaĺı, and Gertler, 2000), the permanent-

income hypothesis (Runkle, 1991), and the present value model of stock prices (West,

1988). To evaluate the performance of our bootstrap procedure in finite samples, we

conduct a small Monte Carlo experiment. As an empirical example, we apply our

bootstrap procedure to the monetary policy reaction function estimated by Clarida,

Gaĺı, and Gertler (2000). Since the GMM estimates often have policy implications

in structural econometric models, it is important for researchers to obtain accurate

confidence intervals.

The remainder of the paper is organized as follows. Section 2 introduces the model

and describes the proposed bootstrap procedure. Section 3 presents the assumptions

and theoretical results. Section 4 provides some Monte Carlo results. Section 5 presents

an empirical illustration. Section 6 concludes the analysis. Proofs of the theorems are

relegated to an appendix.

2. Model and Bootstrap Procedure

Consider a stationary time series (x′t, yt, z
′
t)
′ which satisfies

E[ztut] = 0, (2.1)

where ut = yt − β′0xt, β0 is a p-dimensional parameter, xt is a p-dimensional vector,

zt is a k-dimensional vector which may contain lagged values of yt, and p < k. Given

T0 observations {(x′t, yt, z
′
t)
′}T0

t=1, we are interested in two-step GMM estimation of β0

based on the moment condition (2.1). Let ` denote the lag truncation parameter used
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in HAC covariance matrix estimation and T = T0− `+1.3 We first obtain the first-step

GMM estimator β̃T by minimizing 1
T0

T0∑
t=1

zt(yt − β′xt)

′ VT

 1
T0

T0∑
t=1

zt(yt − β′xt)


with respect to β, where VT is some k× k positive semidefinite matrix. Then we obtain

the second-step GMM estimator β̂T by minimizing[
1
T

T∑
t=1

zt(yt − β′xt)

]′
Ŝ−1

T

[
1
T

T∑
t=1

zt(yt − β′xt)

]
,

where

ŜT =
1
T

T∑
t=1

ztû2
t z
′
t +

∑̀
j=1

ω

(
j

`

) (
zt+j ût+j ûtz

′
t + ztûtût+jz

′
t+j

)
=

`−1∑
j=−`+1

ω(j/`)Γ̂j

is the HAC covariance matrix estimator for the moment function (2.1), ût = yt − β̃′Txt,

and ω(·) is a kernel. Following Rothenberg (1984), we consider the distribution of the

studentized statistic of a linear combination of the parameter, T 1/2(c′Σ̂T c)−1/2c′(β̂T−β0)

where Σ̂T = ((1/T )
∑T

t=1 xtz
′
tŜ
−1
T (1/T )

∑T
t=1 ztx

′
t)
−1 and c is an arbitrary nonzero p-

dimensional vector. We also consider the distribution of the J test statistic

JT =

[
1√
T

T∑
t=1

zt(yt − β̂′Txt)

]′
Ŝ−1

T

[
1√
T

T∑
t=1

zt(yt − β̂′Txt)

]
.

We use the following overlapping block bootstrap procedure, which is originally at-

tributed to Künsch (1989). Suppose that T = b` for some integer b.

Step 1. Let N1, N2, ..., Nb be iid uniform random variables on {0, 1, ..., T − `} and let

(x∗′(j−1)`+i, y
∗
(j−1)`+i, z

∗′
(j−1)`+i)

′ = (x′Nj+i, yNj+i, z
′
Nj+i)

′,

3We use T observations and the modified HAC covariance matrix estimator ŜT to obtain asymptotic
refinements for symmetric confidence intervals and the J test statistic. This modification is not necessary
for obtaining asymptotic refinements of one-sided confidence intervals. See also Hall and Horowitz (1996, p.
895).
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for 1 ≤ i ≤ ` and 1 ≤ j ≤ b.

Step 2. Calculate the first-step bootstrap GMM estimator β̃∗T by minimizing

[
1
T

T∑
t=1

z∗t (y∗t − β′x∗t )− µ∗T

]′
VT

[
1
T

T∑
t=1

z∗t (y∗t − β′x∗t )− µ∗T

]

where

µ∗T =
1

T − `+ 1

T−∑̀
t=0

1
`

∑̀
i=1

zt+i(yt+i − β̂′Txt+i).

Step 3. Compute the second-step bootstrap GMM estimator β̂∗T by minimizing

[
1
T

T∑
t=1

z∗t (y∗t − β′x∗t )− µ∗T

]′
Ŝ∗−1

T

[
1
T

T∑
t=1

z∗t (y∗t − β′x∗t )− µ∗T

]
,

where

Ŝ∗T =
1
T

b∑
k=1

∑̀
i=1

∑̀
j=1

(zNk+iû
∗
Nk+i − µ∗T )(zNk+j û

∗
Nk+j − µ∗T )′,

û∗t = yt − β̃∗′T xt.

Step 4. Obtain the bootstrap version of the studentized statistic T 1/2(c′Σ̂∗T c)
−1/2c′(β̂∗T −

β̂T ) where Σ̂∗T = ((1/T )
∑T

t=1 x
∗
t z
∗′
t Ŝ

∗−1
T (1/T )

∑T
t=1 z

∗
t x

∗′
t )−1 and the J test statistic

J∗T =

{
1√
T

T∑
t=1

[z∗t (y∗t − β̂∗′T x
∗
t )− µ∗T ]

}′

Ŝ∗−1
T

{
1√
T

T∑
t=1

[z∗t (y∗t − β̂∗′T x
∗
t )− µ∗T ]

}
.

By repeating Steps 1–4 sufficiently many times, one can approximate the finite-

sample distributions of the studentized statistic and the J test statistic by the empirical

distributions of their bootstrap version.

Remarks:

1. Davison and Hall (1993) show that näıve applications of the block bootstrap do

not provide asymptotic refinements for studentized statistics involving the long-run

variance estimator. Specifically, they show that the error of the näıve bootstrap is

of order O(b−1) + O(`−1) and thus is greater than or equal to the error of the first
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order asymptotic approximation. We therefore modify the bootstrap version of the

HAC covariance matrix estimator in Step 3 (see Götze and Künsch, 1996, for the just-

identified case). Our treatment differs from that of Hall and Horowitz (1996) and

Andrews (2002a) who modify the test statistics instead of the GMM criterion function.

The expression Ŝ∗T given in Step 3 is a consistent estimator for the variance of the

bootstrapped moment function with the bootstrap probability measure.

2. One can consider choosing the HAC truncation parameter and the block length dif-

ferently. Let ` denote the HAC truncation parameter and `∗ denote the block length. If

`∗ = c` for some c > 0, our asymptotic refinement results will carry through. Otherwise,

the rate of the bootstrap approximation error will be dominated by the faster rate of `

and `∗, i.e., o(max(`, `∗)/T ), as implied by our theory in Section 3 when the truncated

kernel is used. In this case, it is thus optimal to set `∗ = c` for some c > 0 in terms of

asymptotic refinements.4 However, the optimal value of c is indeterminate because our

asymptotic refinement result is given only in terms of the rate. Following Götze and

Künsch (1996), we simply set the block length equal to the HAC truncation parameter.

3. Asymptotic Theory

In this section, we present our main theoretical results. Unless otherwise noted, we

shall denote the Euclidean norm of a vector x by ‖x‖. First, we provide the following

set of assumptions.

Assumption 1:

(a) {(x′t, yt, z
′
t)
′} is strictly stationary and strong mixing with mixing coefficients sat-

4Suppose `/`∗ →∞ [`∗/`→∞]. Then choosing a smaller divergence rate of `∗ [resp. `] will improve the
order of the approximation error.
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isfying αm ≤ (1/d) exp(−dm) for some d > 0.

(b) There is a unique β0 ∈ <p such that E[ztut] = E[zt(yt − β′0xt)] = 0.

(c) Let Rt = ((ztut)′, vec(ztx′t)
′)′. Then E‖Rt‖r+η <∞ for r ≥ 12 and some η > 0.

(d) Let Fb
a denote the sigma-algebra generated by Ra, Ra+1, ..., Rb. For all m, s, t =

1, 2, ... and A ∈ F t+s
t−s ,

E|P (A|F t−1
−∞ ∪ F∞

t+1)− P (A|F t−1
t−s−m ∪ F t+s+m

t+1 )| ≤ (1/d) exp(−dm).

(e) For all m, t = 1, 2, ... and θ ∈ <p+k+1 such that 1/d < m < t and |θ| ≥ d,

E

∣∣∣∣∣E
{

exp

[
iθ′

t+m∑
s=t−m

(Rs − E(Rs))

]∣∣∣∣∣F t−1
−∞ ∪ F∞

t+1

}∣∣∣∣∣ ≤ exp(−d).

(f) ω : < → [−1, 1] satisfies (i) ω(0) = 1, (ii) ω(x) = ω(−x) ∀x ∈ <, (iii) ω(x) = 0

∀|x| ≥ 1, (iv) ω(·) is continuous at 0 and at all but a finite number of other points.

(g) `T−2/r →∞ and ` = O(T 1/3) as T →∞.

(h) ŜT is a positive semidefinite matrix that converges in probability to a positive

definite matrix S0 ≡
∑∞

j=−∞E(z0u0ujz
′
j).

(i) The first-step estimator β̃T satisfies E|T 1/2(β̃T − β0)|r = O(1), and VT is a pos-

itive semidefinite matrix that converges to a positive definite matrix V at rate

O(`1/2T−1/2).

Remarks: Assumption 1(c) requires that at least the 12th moment of the moment func-

tion be finite, and we will later require that at least the 36th moment be finite. Although

this condition is strong, it is not atypical in the literature on higher-order asymptotic

theory. For example, a sufficient (but not necessary) condition for Assumptions 3(f)

and 4 of Hall and Horowitz (1996) is the finiteness of the 33rd moment of the mo-

ment functions and of their derivatives. Assumptions 1(d) and 1(e) are from Götze and
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Künsch (1996). Hall and Horowitz (1996, Assumptions 1 and 6) impose similar assump-

tions. Assumption 1(f) is a subset of Andrews’ (1991) class of kernels K1. For example,

the truncated kernel (White, 1984), Bartlett kernel (Newey and West, 1989), and Parzen

kernel (Gallant, 1987) satisfy Assumption 1(f).5 The range of divergence rates of ` al-

lowed in Assumption 1(g) is more restrictive than the one typically assumed in the

literature on HAC covariance matrix estimation (e.g., Theorem 1 of Andrews, 1991)

but is less restrictive than the one Hall and Horowitz (1996) assumed for the divergence

rate of the block length. The lower bound reflects the trade-off between dependence

and moment conditions. The weaker the moment conditions are, the more dependent

the process can be, and thus the block length must be larger. Andrews (2002a) does

not require such a lower bound because he assumes that all moments exist in his As-

sumption 2(b). For further comparison with Hall and Horowitz (1996), see Remark 3

following Corollary 1. While the
√
T -consistency of the first-step estimator is sufficient

for the first-order asymptotic theory (e.g., Assumption B(i) of Andrews, 1991), further

conditions provided in Assumption 1(i) are required for the higher order analysis.

We next present our main results. Let q denote the characteristic exponent of the

kernel ω. That is, q is the largest real number such that limx→0(1−ω(x))/|x|q ∈ [0,∞).

Theorem 1: Suppose that Assumption 1 holds. Let

ΨT (x) = Φ(x) + T−1/2p1(x)φ(x) + `T−1p2(x)φ(x)

ΨJ,T (x) = Fχ2
k−p

(x) + `T−1pJ(x)fχ2
k−p

(x)

5Our proofs depend on the assumption that the lag order greater than or equal to ` receive zero weight. We
do not know whether the bootstrap provides asymptotic refinements for one-sided confidence intervals when
the quadratic spectral kernel (Andrews, 1991) is used. The bootstrap does not provide asymptotic refine-
ments for symmetric confidence intervals and the J test statistic when this kernel is used as its characteristic
exponent is two.
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denote the Edgeworth expansions of P (T 1/2(c′Σ̂T c)−1/2c′(β̂T −β0) ≤ x) and P (JT ≤ x),

respectively, where Φ(x) and φ(x) denote the standard normal distribution and density

functions, Fχ2
k−p

and fχ2
k−p

are the distribution and density functions of a χ2 random

variable with degree of freedom k − p, p1 is even, and p2 and pJ are odd. Then

sup
x∈<

|P (T 1/2(c′Σ̂T c)−1/2c′(β̂T − β0) ≤ x)−ΨT (x)| = o(`T−1) +O(`−q), (3.2)

sup
x≥0

|P (JT ≤ x)−ΨJ,T (x)| = o(`T−1) +O(`−q). (3.3)

Theorem 2: Suppose that Assumption 1 holds with r ≥ 12 replaced by r ≥ 36.6 Let

Ψ∗
T (x) = Φ(x) + p∗1(x)φ(x) + `T−1p∗2(x)φ(x)

Ψ∗
J,T (x) = Fχ2

q−p
(x) + `T−1p∗J(x)fχ2

k−p
(x)

denote the Edgeworth expansions of P ∗(T 1/2(c′Σ̂T c)∗−1/2c′(β̂∗T − β̂T ) ≤ x) and P ∗(J∗T ≤

x), respectively, where p∗1 is even, and p∗2 and p∗J are odd. Then

sup
x∈<

|P ∗(T 1/2(c′Σ̂∗T c)
−1/2c′(β̂∗T − β̂T ) ≤ x)−Ψ∗

T (x)| = op(`T−1), (3.4)

sup
x≥0

|P ∗(J∗T ≤ x)−Ψ∗
J,T (x)| = op(`T−1) (3.5)

where P ∗ is the probability measure induced by the bootstrap conditional on the data.

Theorems 1 and 2 show that the distributions of the studentized statistic and the

J test statistic and their bootstrap versions can be approximated by their Edgeworth

expansions. The following corollary shows the order of the bootstrap approximation
6Theorem 2 requires strengthening the moment conditions in Theorem 1. To show that Assumption

1(c) is satisfied for the block bootstrap version of the data, we prove that the moments with respect to
the bootstrap probability measure and the corresponding population moments are “close,” using a moment
inequality that requires stronger moment conditions.
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error for the symmetric confidence interval and the J test statistic.

Corollary 1: Suppose that Assumption 1 holds with r ≥ 12 replaced by r ≥ 36. Then

sup
x
|P ∗(T 1/2(|(c′Σ̂∗T c)−1/2c′(β̂∗T − β̂T )| ≤ x)− P (T 1/2(|(c′Σ̂T c)−1/2c′(β̂T − β0)| ≤ x)|

= op(`T−1) +Op(`−q) (3.6)

sup
x
|P (J∗T > x)− P (JT > x)| = op(`T−1) +Op(`−q). (3.7)

Remarks: 1. For the symmetric confidence interval and the J test, the approximation

errors made by the first-order asymptotic theory are of order

O(`T−1) +O(`−q), (3.8)

whereas the bootstrap approximation errors are of order

op(`T−1) +Op(`−q). (3.9)

In (3.8) with q < ∞, the approximation error O(`−q) is due to the bias of HAC esti-

mation and is present not only for one-sided confidence intervals but also for two-sided

confidence intervals and the J test. This error will remain present even if the bias term

is included and higher-order terms are considered in asymptotic expansions.7

2. It follows from (3.8) and (3.9) that the bootstrap provides asymptotic refinements if

the bias of the HAC covariance matrix estimator vanishes quickly enough, i.e., O(`−q) =

o(`T−1). For the one-sided confidence interval, Götze and Künsch (1996) show that the

bootstrap does not provide asymptotic refinements for the Bartlett kernel but for kernels

of which the characteristic exponent equals two (see the last paragraph of pp.1920–1921).
7In the notation used in the appendix, the cumulants of gT do not converge at a rate necessary for

asymptotic refinements even if the bias term is considered in the Edgeworth expansion.
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However, because the O(T−1/2) term is even and is canceled out in the Edgeworth ex-

pansion for the symmetric confidence interval and the J test statistic, bias becomes im-

portant and our results differ from theirs. Specifically, the conditions O(`−q) = o(`T−1)

and ` = O(T 1/3) imply that the bootstrap can provide asymptotic refinements only for

kernels whose characteristic exponent is greater than two. For example, the truncated

kernel and the trapezoidal kernel (Politis and Romano, 1995) have no asymptotic bias,

and a class of kernels sometimes referred to as the Parzen (b) kernel can also satisfy

the condition on the characteristic exponent. Under the assumption of exponentially

decaying mixing coefficients, these kernels satisfy O(`−q) = o(`T−1).

3. If a kernel with a characteristic exponent q > 2 is used and if O(`−q) = o(`T−1)

is satisfied, the order of the bootstrap approximation error is o(`/T ). This outcome

is smaller than the order of the first-order asymptotic approximation error O(`/T ),

and thus the bootstrap provides asymptotic refinements. As the divergence rate of

` becomes slower, the orders of the asymptotic and bootstrap approximation errors

become smaller. However, because ` must diverge so that `/max(T 1/(q+1), T 2/r) →∞,

there is no optimal divergence rate of `. In an extreme case, if all the moments exist

(r → ∞) as in the case of bounded random variables and if a kernel with q = ∞

is used, the approximation error can be made arbitrarily close to those in Hall and

Horowitz (1996), i.e., o(T−1) for the bootstrap case and O(T−1) for the asymptotic

case.

4. The problem with these kernels is that the resulting HAC covariance matrix esti-

mator is not necessarily positive semidefinite. Although we use an empirical procedure

originally proposed by Andrews (2002b), this is a very troubling issue which is difficult

to resolve.
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4. Monte Carlo Results

In this section, we conduct a small simulation study to examine the accuracy of

the proposed bootstrap procedure. We consider the following stylized linear regression

model with an intercept and a regressor, xt:

yt = β1 + β2xt + ut, for t = 1, . . . , T. (4.10)

The disturbance and the regressors are generated from the following AR(1) processes

with common ρ,

ut = ρut−1 + ε1t, (4.11)

xt = ρxt−1 + ε2t, (4.12)

where εt = (ε1t, ε2t)′ ∼ N(0, I2). In the simulation, we use β = (β1, β2)′ = (0, 0)′ for the

regression parameter and ρ ∈ {0.5, 0.9, 0.95} for the AR parameters. For instruments,

we use xt, xt−1 and xt−2 in addition to an intercept. This choice of instruments implies

an over-identified model with 2 degrees of freedom for the J test.

The choice of the block length for the bootstrap is important in practice. Ideally,

one would choose a longer block length for more persistent processes and a shorter block

length for less persistent processes.

In the literature on HAC estimation, this is typically accomplished by selecting the

lag truncation parameter that minimizes the mean squared error of the HAC covariance

matrix estimator (see Andrews, 1991; and Newey and West, 1994).

Because the truncated kernel and trapezoidal kernel have no asymptotic bias, how-

ever, one cannot take advantage of the usual bias-variance trade-off and thus no optimal

block length can be defined for these kernels. Thus, we propose the following procedure,
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which is similar to the general-to-specific modelling strategy for selecting the lag order

of autoregressions in the literature on unit root testing (see Hall, 1994; Ng and Perron,

1995).

According to the Wold representation theorem, the moment function has a moving

average (MA) representation of possibly infinite order. The idea is to approximate this

MA representation by a sequence of finite-order MA processes. Because the block boot-

strap is originally designed to capture the dependence of m-dependent-type processes

when ` is fixed, it makes sense to approximate the process by an MA process that is

m-dependent.

The proposed procedure takes the following steps.

Step 1. Let `1 < `2 < · · · < `max be candidate block lengths and set k = max−1.

Step 2. Test the null that every element of the moment function is MA(`k) against the

alternative that at least one of the elements is MA(`k+1).

Step 3. If the null is not rejected and if k > 1, then let k = k − 1 and go to Step 2. If the

null is not rejected and if k = 1, then let ` = `1. If the null is rejected, then set

` = `k+1.

Because there is parameter uncertainty due to first-step estimation and because

we apply a univariate testing procedure to each element of the moment function, it is

difficult to control the size of this procedure. In this Monte Carlo experiment, therefore,

we use the 1% level critical value to be conservative.

Our primary interest is to evaluate the errors in the coverage probabilities of sym-

metric confidence intervals for the regression slope parameter β2 and the ERPs of the

J test for overidentification. The kernel function employed for the bootstrap is the

truncated kernel, the trapezoidal kernel with parameter 1/2 and the Parzen (b) kernel
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with q = 3. The block length is selected using the procedure described above.

When kernels of which the characteristic exponent is greater than two, the resulting

HAC covariance matrix estimator is not necessarily positive semidefinite although its

limit is positive definite. When it is not positive definite we replace the block length by

a smaller one for which the HAC covariance matrix estimator is positive definite.8

In addition to the results based on the bootstrap critical values, we report the asymp-

totic results based on the truncated, Bartlett, and QS kernels for the purpose of com-

parison. The bandwidth for the truncated kernel is selected based on the procedure

also used for the bootstrap. Andrews’ (1991) data-dependent bandwidth selection pro-

cedure is used for the Bartlett and QS kernels. Since Andrews and Monahan’s (1992)

prewhitening procedure based on VAR(1) model is frequently used in practice, we also

report the results based on Bartlett and QS kernels applied to the prewhitened series.

Table 1 summarizes the result of the simulation study using the 90% coverage prob-

ability and the 10% nominal significance level. Results for two sample sizes (T ), 64 and

128, are reported. Each bootstrap critical value is constructed from 499 replications of

the bootstrap sampling process. In all experiments, the number of Monte Carlo trials

is 5000.

For most cases, the coverage probabilities of the bootstrap confidence interval are

more accurate than those of the asymptotic confidence interval. The degree of the

reduction in the errors depends on the value of the AR parameters as well as the

sample size. The bootstrap works quite well with persistent processes. Indeed, the

empirical coverage probabilities of the bootstrap confidence intervals are much closer to

the nominal ones compared to the asymptotic confidence intervals when T is 128 and
8Andrews (2001, footnote 5) suggested the procedure for the extremum estimator to achieve higher-order

asymptotic efficiency.
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ρ is 0.95. Because the moment functions have an AR(1) autocovariance structure, the

prewhitening procedure has a considerable advantage in our simulation design. However,

the bootstrap performs as well as the conventional prewhitened HAC procedure with

asymptotic critical values. In contrast, the advantage of the bootstrap for the J test is

not clear because the J test performs quite well even with asymptotic critical values.

9 Judging from the results of this experiment, we recommend our bootstrap procedure

especially for the confidence interval of regression parameters and for persistent series.

5. Empirical Illustration

To illustrate the proposed bootstrap approach, we conduct bootstrap inference about

the parameters in the monetary policy reaction function estimated by Clarida, Gaĺı and

Gertler (2000, hereafter, CGG). In CGG, the target for the federal funds rate r∗t is given

by

r∗t = r∗ + β(E[πt+1|Ωt]− π∗) + γE[xt|Ωt] (5.13)

where πt is the inflation rate, π∗ is the target for inflation, Ωt is the information set at

time t, xt is the output gap, and r∗ is the target with zero inflation and output gap.

Policy rules (5.13) with β > 1 and γ > 0 are stabilizing and those with β ≤ 1 and

γ ≤ 0 are destabilizing. CGG obtain the GMM estimates of β and γ based on the set

of unconditional moment conditions

E{[rt − (1− ρ1 − ρ2)[rr∗ − (β − 1)π∗ + βπt+1 + γxt] + ρ1rt−1 + ρ2rt−2]zt} = 0, (5.14)

where rt is the actual federal fund rate, rr∗ is the equilibrium real rate, and zt is a

vector of instruments. They find that the GMM estimate of β is significantly less than

9See Tauchen (1986) and Hall and Horowitz (1996) for similar findings.
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unity during the pre-Volcker era, while the estimate is significantly greater than unity

during the Volcker-Greenspan era.

We reexamine these findings by applying our bootstrap procedure as well as the

bootstrap procedure of the standard HAC asymptotics. We obtain GMM estimates of

β and γ based on the linear moment conditions

E{[rt − c− θ1πt+1 − θ2xt − ρ1rt−1 − ρ2rt−2]zt} = 0, (5.15)

where c = (1 − ρ1 − ρ2)[rr∗ − (β − 1)π∗]. Then β̂T = θ̂1T /(1 − ρ̂1T − ρ̂2T ) and γ̂T =

θ̂2T /(1− ρ̂1T − ρ̂2T ), where θ̂1T , θ̂2T , ρ̂1T and ρ̂2T are the GMM estimates of θ1, θ2, ρ1 and

ρ2, respectively. We use CGG’s baseline dataset and two sample periods, the pre-Volcker

period (1960:1-1979:2) and the Volcker-Greenspan period (1979:3-1996:3) (see CGG for

the description of the data source). In addition to their baseline specification, we

construct the optimal weighting matrix using the inverse of the HAC covariance matrix

estimator to allow for more general dynamic specifications in the determination of the

actual funds rate. For the asymptotic confidence intervals, we use the conventional

prewhitened and recolored estimates based on the Bartlett and QS kernels with the

automatic bandwidth selection method (Andrews, 1991, Andrews and Monahan, 1992).

For the confidence intervals constructed from our bootstrap, we use the truncated,

trapezoidal, and Parzen (b) kernels. We use the data-dependent procedure described

in the previous section to select the block length for the bootstrap. The number of

bootstrap replications is set to 499.

Table 2 presents GMM estimates of these parameters. Asymptotic standard errors

are reported in parentheses. The first two rows of each of Tables 2(a) and (b) replicate

CGG’s results. These findings are robust to whether or not the HAC covariance matrix

estimator is used.
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Table 3 shows 90% two-sided confidence intervals of these parameters. Consistent

with CGG’s findings, the upper bound of the asymptotic confidence interval for β is

less than unity during the pre-Volcker period, and the lower bound is far greater than

unity during the Volcker-Greenspan period. Using these estimates, CGG suggest that

the Fed was accommodating inflation before 1979, but not after 1979. The bootstrap

confidence interval, however, indicates that β may be greater than unity even during the

pre-Volcker period, consistent with the view that the Fed has always been combating

inflation. Moreover, unlike the asymptotic confidence interval, the bootstrap confidence

interval does not rule out that γ is negative during the Volcker-Greenspan period.

6. Concluding Remarks

In this paper we establish that the bootstrap provides asymptotic refinements for

the GMM estimator of overidentified linear models when autocorrelation structures of

moment functions are unknown. Because of the nonparametric nature of the HAC

covariance matrix estimator, the order of the bootstrap approximation error is larger

than O(T−1), the typical order of the bootstrap approximation error for parametric

estimators.

By taking into account the HAC covariance matrix estimator in the Edgeworth

expansion, we find that kernels with a characteristic exponent strictly greater than two

are required for the refinement for the symmetric confidence intervals and the J test

statistic. This contrasts with the result for the one-sided confidence interval that can

be obtained for widely used kernels with a characteristic exponent equal to two. Our

finding shows the importance of the choice of kernels in the bootstrap compared to

the conventional first-order asymptotic theory. Nevertheless, the bootstrap provides
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improved approximations relative to the first-order approximation.

We note that an extension of the present results to nonlinear dynamic models as

well as further investigation of data-dependent methods for selecting the optimal block

length would be useful.
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Appendix

Notation

⊗ denotes the Kronecker product operator. If α is an n-dimensional nonnegative integral, |α| de-
notes its length, i.e., |α| =

∑n
i=1 |αi|. ‖ ·‖ denotes the Euclidean norm, i.e., ‖x‖ = (

∑n
i=1 x

2
i )

1/2,
where x is an n-dimensional vector. We will write ω(j/`) as ωj for notational simplicity. κj(x)
denotes the jth cumulant of a random variable x. vec(·) is the column-by-column vectorization
function. vech(·) denotes the column stacking operator that stacks the elements on and below
the leading diagonal. For a nonnegative integral vector α = (α1, α2, ..., αn), let

Dα =
∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n
.

` and l are treated differently: ` denotes the lag truncation parameter and l denotes an integer.
Let ut = yt − β′0xt, ût = yt − β̃′Txt, vt = ztut, v̂t = ztût, wt = ztx

′
t,

Γ̂j =

{
1
T

∑T
t=1 v̂t+j v̂

′
t j ≥ 0

1
T

∑T
t=1 v̂tv̂

′
t−j j < 0

, ∇Γ̃jδ =

{
1
T

∑T
t=1(vt+jz

′
tx
′
t + zt+jv

′
tx
′
t+j)δ j ≥ 0

1
T

∑T
t=1(vtz

′
t−jx

′
t−j + ztv

′
t−jx

′
t)δ j < 0

,

Γ̃j =

{
1
T

∑T
t=1 vt+jv

′
t j ≥ 0

1
T

∑T
t=1 vtv

′
t−j j < 0

, ∇Γjδ =
{
E(vt+jz

′
tx
′
t + zt+jv

′
tx
′
t+j)δ j ≥ 0

E(vtz
′
t−jx

′
t−j + ztv

′
t−jx

′
t)δ j < 0 ,

Γj =
{
E(vt+jv

′
t) j ≥ 0

E(vtv
′
t−j) j < 0 , δ′∇2Γjδ =

{
1
T

∑T
t=1 δ

′xt+jzt+jz
′
tx
′
tδ j ≥ 0

1
T

∑T
t=1 δ

′xtztz
′
t−jx

′
t−jδ j < 0

,

ŜT =
∑`

j=−` ωjΓ̂j , S̃T =
∑`

j=−` ωjΓ̃j , S̄T =
∑`

j=−` ωjΓj ,

ST =
∑T−1

j=−T+1(1−
|j|
T )Γj , ∇S̃T δ =

∑`
j=−` ωj∇Γ̃jδ, ∇S̄T δ =

∑`
j=−` ωj∇Γjδ,

∇Sδ =
∑∞

j=−∞∇Γjδ, δ′∇2S̃T δ =
∑`

j=−` ωjδ
′∇2Γ̃jδ, S0 =

∑∞
j=−∞ Γj ,

where δ is a p-dimensional vector. Let GT = (1/T )
∑T

t=1 ztx
′
t, G0 = E(ztxt), and mT =

T−1/2
∑T

t=1 vt. Then the studentized statistic can be written as

fT =
√
T (c′Σ̂c)−1/2c′(β̂T − β0) = (c′(G′T Ŝ

−1
T GT )−1c)−1/2c′(G′T Ŝ

−1
T GT )−1G′T Ŝ

−1
T mT .

We use the following notation for the bootstrap. Let

m∗
T =

1√
T

T∑
t=1

(z∗t u
∗
t − µ∗T ) =

1√
b

b∑
k=1

BNk
,

BNk
=

1√
`

∑̀
i=1

(zNk+iûNk+i − µ∗T ) =
1√
`

∑̀
i=1

(
v̂∗Nk+i − µ∗T

)
,

B̂Nk
=

1√
`

∑̀
i=1

(
zNk+iû

∗
Nk+i − µ∗T

)
, û∗i = yi − β̃∗′xi,

G∗T =
1
T

T∑
t=1

z∗t x
∗′
t =

1
b

b∑
k=1

FNk
,

FNk
=

1
`

∑̀
i=1

zNk+ix
′

Nk+i =
1
`

∑̀
i=1

wNk+i.

Ŝ∗T =
1
b

b∑
k=1

B̂Nk
B̂′Nk

, S̃∗T =
1
b

b∑
k=1

BNk
B′Nk

, S∗T = Var∗ (m∗
T ) .
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Then the bootstrap version of the first-step and the second-step GMM estimators can be written
as

β̃∗ = β̂ +

[
1
b

b∑
k=1

F ′Nk
VT

1
b

b∑
k=1

FNk

]−1

1
b

b∑
k=1

F ′Nk
VT

1√
Tb

b∑
k=1

BNk

= β̂ + [G∗′T VTG
∗
T ]−1

G∗′T VT
1√
T
m∗

T ,

β̂∗ = β̂ +

[
1
b

b∑
k=1

F ′Nk
Ŝ∗−1

T

1
b

b∑
k=1

FNk

]−1

1
b

b∑
k=1

F ′Nk
Ŝ∗−1

T

1√
Tb

b∑
k=1

BNk

= β̂ +
[
G∗′T Ŝ

∗−1
T G∗T

]−1

G∗′T Ŝ
∗−1
T

1√
T
m∗

T ,

respectively.

Next, we will present the lemmas used in the proofs of the theorems. The proof of the lemmas
are in the technical appendix which is available upon request from the authors. Lemma A.1
produces a Taylor series expansion of the studentized statistic fT . Lemma A.2 provides bounds
on the moments and will be used in the proofs of Lemmas A.3–A.6. Lemma A.3 shows the limits
and the convergence rates of the first three cumulants of gT in (A.1), that will be used to derive
the formal Edgeworth expansion. Lemmas A.5 and A.6 provide bounds on the approximation
error. For convenience, we present Lemma B.1 that will be used in the proofs of Lemmas B.2
and B.3. Lemma B.2 shows the consistency and convergence rate of the bootstrap version of the
moments. Lemma B.3 shows the limits and the convergence rates of the first three cumulants
of the bootstrap version.

Lemma A.1:

fT

= a′mT + b′[vec(GT −G0)⊗mT ] + c′[vech(ŜT − S0)⊗mT ]
+d′[vec(GT −G0)⊗ vech(ŜT − S0)⊗mT ] + e′[vech(ŜT − S0)⊗ vech(ŜT − S0)⊗mT ]
+Op((`/T )3/2)

= a′mT + b′[vec(GT −G0)⊗mT ] + c′[vech(ŜT − S̄T )⊗mT ] + c′[vech(S̄T − S0)⊗mT ]
+d′[vec(GT −G0)⊗ vech(ŜT − S̄T )⊗mT ] + e′[vech(ŜT − S̄T )⊗ vech(ŜT − S̄T )⊗mT ]
+d′[vec(GT −G0)⊗ vech(S̄T − S0)⊗mT ] + e′[vech(ŜT − S̄T )⊗ vech(S̄T − S0)⊗mT ]
+e′[vech(S̄T − S0)⊗ vech(ŜT − S̄T )⊗mT ] + e′[vech(S̄T − S0)⊗ vech(S̄T − S0)⊗mT ]
+Op((`/T )3/2)

≡ gT + c′[vech(S̄T − S0)⊗mT ] + d′[vec(GT −G0)⊗ vech(S̄T − S0)⊗mT ]
+e′[vech(ŜT − S̄T )⊗ vech(S̄T − S0)⊗mT ] + e′[vech(S̄T − S0)⊗ vech(ŜT − S̄T )⊗mT ]
+e′[vech(S̄T − S0)⊗ vech(S̄T − S0)⊗mT ] +Op((`/T )3/2), (A.1)

where a,b, c,d and e are k, k2p, k(k2 + k)/2, k2(k2 + k)p/2 and k((k2 + k)/2)2-dimensional
vectors of smooth functions of G0 and S0, respectively, and gT = a′mT .

Lemma A.2:

E‖mT ‖r+η = O(1), (A.2)
E‖T 1/2vec(GT −G0)‖r+η = O(1), (A.3)

E‖(T/`)1/2vech(S̃T − S̄T )‖r/2 = O(1), (A.4)
E‖(T/`)1/2vech(∇S̃T −∇S̄T )‖r/2 = O(1), (A.5)

E‖T 1/2vech(ŜT − S̃T )‖r/2 = O(1). (A.6)
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Lemma A.3:

T 1/2κ1(gT ) = α∞ +O(`−q) + o(`T−1/2), (A.7)
(T/`)(κ2(gT )− 1) = γ∞ +O(`−1/2), (A.8)

T 1/2κ3(gT ) = κ∞ − 3α∞ +O(`−q) + o(`T−1/2), (A.9)
(T/`)(κ4(gT )− 3) = ζ∞ +O(`−1/2), (A.10)

where

α∞ = b′
∞∑

i=−∞
E[w0 ⊗ vi] + c′

∞∑
i,j=−∞

E[vech(v0v′i)⊗ vj ]

+c′
∞∑

i=−∞
E{vech[∇S̄(E(w0)′V E(w0))−1E(w0)′V v0]⊗ vi}

γ∞ = 2 lim
T→∞

1
`

∑̀
j=−`

T∑
i,k=−T

E{a′v0c′[vech(viv
′
i−j − Γj)⊗ vk]}

+2 lim
T→∞

1
`T

∑̀
i,l=−`

T∑
i,k,m=−T

E{a′v0e′[vech(viv
′
i−j − Γj)⊗ vech(vkv

′
k−l − Γl)⊗ vm]}

+ lim
T→∞

1
`T

T∑
j,k,m=−T

∑̀
i,l=−`

E{c′[vech(v0v′−i − Γi)⊗ vj ]c′[vech(vkv
′
k−l − Γk)⊗ vm]},

κ∞ =
∞∑

i,j=−∞
E(a′v0a′via′vj) + 3 lim

T→∞

1
T

T−1∑
i,j,k=−T+1

E{a′v0a′vib′[vech(wj − E(wj))⊗ vk]}

+3 lim
T→∞

1
T

T∑
i,j,k,l=−T

E{a′v0a′vic′[vech(vjv
′
j−k − Γk)⊗ vl}

+3 lim
T→∞

1
T 2

T∑
i,j,k=−T

E{a′v0a′vic′vech[∇S̄(E(w0)′V E(w0))−1E(w0)′V vj ]⊗ vk},

ζ∞

=
4

`T

T∑
i,j,k,m=−T

`∑
l=−`

E{a′v0a
′via

′vjc
′[vech(vkv′k−l − Γl)⊗ vm]}

+ lim
4

`T 2

T∑
i,j,k,m,o=−T

`∑
l,n=−`

E{a′v0a
′via

′vje
′[vech(vkv′k−l − Γl)⊗ vech(vmv′m−n − Γn)⊗ vo]}

+ lim
6

`T 2

T∑
i,j,l,m,o=−T

`∑
k,n=−`

E{a′v0a
′vic

′[vech(vjv
′
j−k − Γk)⊗ vl]c

′[vech(vmv′m−n − Γn)⊗ vo]}

−12 lim
1

`

T∑
j,l=−T

`∑
k=−`

E{a′v0c
′[vech(vjv

′
j−k − Γk)⊗ vl]}

−12 lim
1

`T

T∑
j,l,n=−T

∑̀
k,m=−`

E{a′v0e
′[vech(vjv

′
j−k − Γk)⊗ (vlv

′
l−m − Γm)⊗ vn]}

−6 lim
1

`T 2

T∑
j,k,m=−T

`∑
i,l=−`

E{c′[(v0v
′
−i − Γi)⊗ vj ]c

′[(vkv′k−l − Γl)⊗ vm]}.
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Lemma A.4: Let ψg,T (θ) denote the characteristic function of gT . Then

ψg,T (θ)

= exp(−θ
2

2
)

×
[
1 + T−

1
2 (α∞(iθ)− iθ3

6
(κ∞ − 3α∞))− `

T
(
θ2

2
γ∞ − θ4

24
ζ∞) + o(

`

T
)
]
, (A.11)

P (gT ≤ x) = Ψ(x) + T−1/2p1(x) + (`/T )p2(x) + o(`/T ). (A.12)

Lemma A.5: Following Götze and Künsch (1996), define a truncation function by

τ(x) = T γxf(T−γ‖x‖)/‖x‖

where γ ∈ (2/r, 1/2) and f ∈ C∞(0,∞) satisfies (i) f(x) = x for x ≤ 1; (ii) f is increasing; and
(iii) f(x) = 2 for x ≥ 2. Let f†T denote fT with R̄t ≡ (v′t, ṽt, vec(wt)′) replaced by

R̄†t = (v†′t , ṽ
†′
t , vec(w†t )

′)′ = τ ((v′t, ṽ
′
t, vec(wt)′)′) .

Let Ψ†
T and Ψ†

g,T denote the Edgeworth expansions of f†T and g†T , respectively. Let ψ†g,T (x) and
ψ̃†g,T (x) denote the characteristic functions of g†T and Ψ†

g,T , respectively. Then

sup
x
|P (fT ≤ x)−ΨT (x)| ≤ C

∫
|θ|<T 1−2/r

|ψ†g,T (θ)− ψ̃†g,T (θ)||θ|−1dθ+O(`−q)+o(`T−1). (A.13)

Lemma A.6: For 0 < ε < 1/6,∫
|θ|≤T ε

|ψ†g,T (θ)− ψ̃†g,T (θ)||θ|−1dθ = o(`T−1). (A.14)

Lemma A.7: ∫
T ε<|θ|<T 1−2/r

|ψ†g,T (θ)− ψ̃†g,T (θ)||θ|−1dθ = o(`T−1). (A.15)

Lemma B.1: For 1 ≤ s ≤ r/2,

E∗[‖vec(FNj
)‖s]− E

{
E∗[‖vec(FNj

)‖s]
}

= Op(b−1/2), (A.16)

E∗[‖BNj
‖s]− E

{
E∗[‖BNj

‖s]]
}

= Op(b−1/2). (A.17)

Lemma B.2: Let G∗0 = E∗(G∗T ) and b∗T and c∗T denote the bootstrap version of b and c in
Lemma A.1 with S0 replaced by S∗T , respectively. Then

G∗0 = G0 +Op(T−1/2), (A.18)

S∗T = S +O(`−1) +Op(b−1/2). (A.19)

Lemma B.3: Let

α∗T = T 1/2κ∗1(g
∗
T ),

γ∗T = (T/`)(κ∗2(g
∗
T )− 1) = (T/`)(E∗(g∗2T )− [E∗(g∗T )]2 − 1),

κ∗T = T 1/2E∗(g∗3T ) = T 1/2{κ∗3(g∗T ) + 3E∗(g∗2T )E∗(g∗T )− 2[E∗(g∗T )]3},
ζ∗T = (T/`)(κ∗4(g

∗
T )− 3).
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Then

α∗T = α∞ + T 1/2b∗′E∗[vec(G∗T −G∗0)⊗m∗
T ] + T 1/2c∗′E∗[vech(S̃∗T − S∗T )⊗m∗

T ]

+T 1/2c∗
′
E∗[vech(Ŝ∗T − S̃∗T )⊗m∗

T ] + o∗p(`T
−1/2)

= α∞ +Op(`−1) +Op(b−1/2) + o∗p(`T
−1/2), (A.20)

γ∗T = γ∞ + 2(T/`)E∗{a∗′m∗
T b∗′[vec(G∗T −G∗0)⊗m∗

T ]}
+2(T/`)E∗{a∗′m∗

T c∗′[vech(S̃∗T − S∗T )⊗m∗
T ]}

+2(T/`)E∗{a∗′m∗
T e∗′[vech(S̃∗T − S∗T )⊗ vech(S̃∗T − S∗T )⊗m∗

T ]}
+(T/`)E∗{c∗′[vech(Ŝ∗T − S̃∗T )⊗m∗

T ]}2 + o∗p(1),
= γ∞ + op(1) + o∗p(1), (A.21)

κ∗T = κ∞ + T 1/2E∗[(a∗′m∗
T )3] + 3T 1/2E∗{(a∗′m∗

T )2b∗′[vec(GT −G0)′ ⊗mT ]}
+3T 1/2E∗{(a∗′m∗

T )2c∗′[vech(S̃∗T − S∗T )⊗m∗
T ]}

+3T 1/2E∗{(a∗′m∗
T )2c∗′[vech(Ŝ∗T − S̃∗T )⊗m∗

T ]}+ o∗p(`T
−1/2)

= κ∞ +Op(`−1/2) +Op(b−1/2) + o∗p(`T
−1/2), (A.22)

ζ∗T = ζ∞ + 4(T/`)E∗{(a∗′m∗
T )3c∗′[vech(Ŝ∗T − S̃∗T )⊗m∗

T ]}
+4(T/`)E∗{(a∗′m∗

T )3e′[vech(Ŝ∗T − S̃∗T )⊗ vech(Ŝ∗T − S̃∗T )⊗m∗
T ]}

+6(T/`)E∗
(
(a∗′m∗

T )2{c∗′[vech(Ŝ∗T − S̃∗T )⊗m∗
T ]}2

)
−12(T/`)E∗{a∗′m∗

T c∗′[vech(Ŝ∗T − S̃∗T )⊗m∗
T ]}

−12(T/`)E∗{a∗′m∗
T e∗′[vech(Ŝ∗T − S̃∗T )⊗ vech(Ŝ∗T − S̃∗T )⊗m∗

T ]}
−6(T/`)E∗{c∗′[vech(Ŝ∗T − S̃∗T )⊗m∗

T ]}2 + o∗p(1)
= ζ∞ + op(1) + o∗p(1), (A.23)

where α∞, γ∞, κ∞, and ζ∞ are defined in Lemma A.4.

Proofs of Main Theorems

Proof of Theorem 1: We have

sup
x
|P (fT ≤ x)−ΨT (x)|

≤ C

∫
|θ|<T 1−2/r

|ψ†g,T (θ)− ψ̃†g,T (θ)||θ|−1dθ +O(`−q) + o(`T−1)

= C

[∫
|θ|<T ε

|ψ†g,T (θ)− ψ̃†g,T (θ)||θ|−1dθ +
∫

T ε<|θ|<T 1−2/r

|ψ†g,T (θ)− ψ̃†g,T (θ)||θ|−1dθ

]
+O(`−q) + o(`T−1)

= o(`T−1) +O(`−q), (A.24)

where the first inequality follows from Lemma A.5 and the last equality follows from Lemmas
A.6 and A.7. Thus, the result for the studentized statistic (3.2). Let J1/2

T = Ŝ
−1/2
T

∑T
t=1 zt(yt−

β̂′Txt). Then it follows from the first-order condition that

J
1/2
T = (Ik −GT (G′TGT )−1G′T )S−1/2

T

T∑
t=1

zt(yt − β̂′Txt). (A.25)

By the singular value decomposition, there are k × k − q matrices A, B and (k − p) × (k − p)
diagonal matrix Λ with positive diagonal elements such that A′A = Ik−p, B′B = Ik−p and

Ik −GT (G′TGT )−1GT = AΛ1/2B′.
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Thus we can write

J
1/2
T = AΛ1/2B′S

−1/2
T

T∑
t=1

zt(yt − β̂′Txt) = AJ̃
1/2
T (A.26)

where J̃1/2
T = Λ1/2B′S

−1/2
T

∑T
t=1 zt(yt − β̂′Txt) is a (k − p)-dimensional vector. Note that

JT = J̃ ′TA
′AJ̃T = J̃ ′T J̃T . (A.27)

The rest of the proof takes the following steps. First, one can show that Lemmas A.1–A.7 hold for
c′J̃

1/2
T except that a,b, c,d and e now take different values. Second, because the characteristic

function of J̃1/2
T can be derived from an linear combination of J̃1/2

T , the distribution of J̃1/2
T

can be approximated by its Edgeworth expansion in a suitable sense. Lastly, a modification
of Theorem 1 of Chandra and Ghosh (1979) with s = 5 completes the proof of (3.3). We
make the following modifications: (i) the order of the third term of the Edgeworth expansion
ξs−1,n(z), i.e., 1/n, is replaced by `/n; (ii) the order of such approximation errors, o(n−(s−3)/2),
by o(`/n)+O(1/`q) where n = T ; (iii) the order of the second term of the Edgeworth expansion
ψm,n, 1/n, is replaced by `/n. These modifications do not change the parity of R(α) which
is the crucial element of their proof (see Remark 2.5 of Chandra and Ghosh, 1979, pp.27–28).
Thus their proof will carry through for our version of their theorem. Q.E.D.

Proof of Theorem 2: For iid observations, a modification of Theorem 1 with ` = 1 yields

sup
x∈<p

|P (T 1/2(c′Σ̂T c)−1/2c′(β̂T − β0) ≤ x)−ΨT (x)| = o(T−1), (A.28)

sup
x≥0

|P (JT ≤ x)−ΨJ,T (x)| = o(T−1). (A.29)

under Assumptions 1(b)(c)(d)(i), ` = 1 and Assumption 1(e) replaced by the standard Cramer
condition. It suffices to show that the conditions on Rt = (v′t,vec(wt)′)′ required for the Edge-
worth expansion of Theorem 1 are also satisfied for QNj

= (B′Nj
,vec(FNj

)′)′ for j = 1, . . . , b

conditionally on the sample χT = {(x′t, yt, z
′
t)}

T
t=1, uniformly for all χT in a set of which the

probability tends to 1 as T → ∞. Without a loss of generality, we check the conditions using
BNj

. For Assumption A1(b), we have

E∗[BNj ] = E∗[BN1 ] =
1√
`

∑̀
i=1

E∗ (zN1+iuN1+i − µ∗T ) = 0. (A.30)

For Assumption A1(c), it follows from Lemma A.2 that

E
[
E∗

∣∣BNj

∣∣r+η
]

=
1

T − `+ 1

T−∑̀
t=0

E

∣∣∣∣∣ 1√
`

∑̀
i=1

vt+i

∣∣∣∣∣
r+η

= E

∣∣∣∣∣ 1√
`

∑̀
i=1

vt+i

∣∣∣∣∣
r+η

<∞. (A.31)

From the proof of Theorem 4.2 of Götze and Künsch (1996),

E∗
∣∣BNj

∣∣r+η − E
[
E∗

∣∣BNj

∣∣r+η
]

= Op(b−1/2). (A.32)

Combining the two results implies that the probability of E∗
∣∣BNj

∣∣r+η
<∞ tends to unity.

By construction, the moving block bootstrap sample is based on the independent sampling of
BNj

. Therefore, Assumption A1(d) is trivially satisfied (with a probability one) using a sigma-
field defined by σ(Nj) for j = 1, . . . , b, conditionally on the sample χT . For the same reason,
we can replace Assumption A1(e) by the standard Cramér condition and we need only to show
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that the condition holds with probability tends to one. Using an argument that appeared in the
proof of Theorem 4.2 of Götze and Künsch (1996), we have that

P

{
sup

d<|t|<b1/2
|E∗ exp[itBN1 ]| ≤ 1− ζ

}
= 1− o(T−1) (A.33)

for some 0 < ζ < 1/2. Q.E.D.

Proof of Corollary 1: It follows from Lemmas A.3–A.5, Lemmas B.2-B.3 and Theorems 1 and
2. Q.E.D.
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TABLE 1
Coverage Probabilities of Confidence Intervals and Empirical Size of the J Test

Coverage Probabilities of Rejection Frequencies
90% Confidence Intervals of Nominal 10% J test

Kernel T0 + 1 ρ =0.5 ρ =0.9 ρ =0.95 ρ =0.5 ρ =0.9 ρ =0.95
(1) Bootstrap

Truncated 64 81.5 78.1 75.0 9.6 8.4 7.3
(2.99) (3.92) (4.01)
[6.4] [7.2] [6.2]

128 84.5 87.3 87.2 10.7 10.3 9.7
(4.32) (6.79) (7.51)
[5.1] [6.8] [5.4]

Trapezoidal 64 81.6 77.0 73.4 10.0 9.2 9.2
[5.0] [6.2] [6.1]

128 84.9 87.6 86.5 10.9 12.4 11.6
[1.8] [3.3] [4.4]

Parzen (b) 64 83.7 76.8 73.5 9.2 8.9 9.0
[3.0] [5.3] [5.5]

128 85.5 87.8 86.7 10.3 11.6 11.8
[1.1] [2.7] [4.1]
(2) First-Order Asymptotics

Truncated 64 73.0 55.7 51.0 11.2 10.9 10.7
128 78.0 63.1 57.8 10.8 11.4 11.3

Trapezoidal 64 73.1 54.6 48.7 11.2 13.2 13.2
128 78.4 62.6 55.2 10.6 13.7 14.5

Parzen (b) 64 75.3 54.2 48.6 10.2 12.9 13.8
128 79.1 62.8 55.5 9.5 13.1 14.7

Bartlett 64 78.4 56.0 49.5 8.0 4.3 3.5
(4.18) (11.22) (14.63)

128 83.1 66.0 57.5 7.8 5.2 3.9
(5.38) (15.29) (21.54)

QS 64 75.7 46.2 36.5 16.8 35.1 41.8
(4.22) (13.31) (18.32)

128 82.2 59.9 47.2 13.1 27.1 34.5
(4.96) (16.36) (25.17)

Bartlett 64 79.8 65.9 59.8 10.8 13.8 15.1
(Prewhitened) (1.02) (1.52) (1.58)

128 84.7 74.6 68.2 10.2 12.9 14.6
(1.02) (1.58) (1.65)

QS 64 79.9 65.3 59.1 11.4 15.1 16.9
(Prewhitened) (1.26) (1.63) (1.66)

128 84.6 74.2 67.7 10.3 13.7 15.2
(1.24) (1.63) (1.67)

Notes: Numbers in parenthesis are (average) block length and bandwidths selected using
automatic procedures. Numbers in brackets are the frequencies of psd corrections.
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Table 2
GMM Estimates of the Policy Rule Parameters

(a) Pre-Volcker Period: 1960:1-1972:2

Kernel β γ J
None 0.834 0.274 13.075

(0.067) (0.087) (0.126)
Bartlett 0.871 0.392 22.206

(0.030) (0.073) (0.671)
QS 0.871 0.388 22.242

(0.030) (0.073) (0.673)

(b) Volcker-Greenspan Period: 1979:3-1996:3

Kernel β γ J
None 2.153 0.933 21.376

(0.379) (0.454) (0.625)
Bartlett 2.258 0.854 23.314

(0.148) (0.224) (0.726)
QS 2.280 0.803 34.607

(0.148) (0.216) (0.978)

Notes: Asymptotic standard errors for the estimates of β and γ, and asymptotic p
values for the J statistics are in parentheses. For the asymptotic confidence interval
based on the Bartlett and QS kernels, the data-dependent bandwidth estimator of
Andrews (1991) and the prewhitening procedure of Andrews and Monahan (1992) are
used. The estimated bandwidths are reported in Table 3. “None” indicates that the
inverse of the variance-covariance matrix is used as the weighting matrix.
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Table 3
90% Confidence Intervals of the Policy Rule Parameters

(a) Pre-Volcker Period: 1960:1-1972:2

Kernel ` β γ
Asymptotic None 0 (0.724, 0.945) (0.131, 0.416)

Bartlett 0.640 (0.822, 0.921) (0.272, 0.512)
QS 0.944 (0.823, 0.920) (0.268, 0.507)

Bootstrap Truncated 4 (0.019, 4.199) (-0.901, 0.203)
Trapezoidal 3 (0.755, 1.075) (0.031, 0.145)
Parzen (b) 3 (0.797, 1.100) (0.096, 0.181)

(b) Volcker-Greenspan Period: 1979:3-1996:3

kernels ` β γ
Asymptotic None 0 (1.530, 2.776) (0.187, 1.680)

Bartlett 1.227 (2.015, 2.502) (0.485, 1.222)
QS 1.460 (2.038, 2.523) (0.449, 1.158)

Bootstrap Truncated 4 (0.842, 1.638) (-0.541, -0.301)
Trapezoidal 3 (0.177, 3.289) (-0.820, 0.719)
Parzen (b) 3 (0.230, 3.255) (-0.798, 0.782)

Notes: “None” indicates that the inverse of the variance-covariance matrix is used as the
weighting matrix. ` denotes the bandwidth for the asymptotic confidence interval and
the block length for the bootstrap confidence interval. For the asymptotic confidence
interval based on the Bartlett and QS kernels, the data-dependent bandwidth estimator
of Andrews (1991) and the prewhitening procedure of Andrews and Monahan (1992) are
used. For the bootstrap confidence interval, the data-dependent procedure described in
Section 4 is used to select the block length.

31


