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Christian R. Ahlin 

 

Optimal Pricing Under Stochastic Inflation:  

State-dependent (s,S) Policies 

 

I. Introduction 
 

Price stickiness at the firm level and its implications for aggregate behavior have 

been analyzed extensively.  For example, several macroeconomic studies have examined 

the relationship between money growth, inflation, and output by assuming an economy of 

firms following (s,S) pricing policies.  Caplin and Spulber find monetary neutrality in a 

simple (s,S) economy (1987), while Caplin and Leahy find that money can affect output 

or prices, depending on recent history (1991, 1997). 

These macro findings rely on the optimality at the firm level of the (s,S) policy, in 

which the firm allows its relative price1 to drift below the optimal price, to s, and then 

adjusts it above the optimal price, to S.  This type of policy has indeed been found 

optimal for a firm facing a constant, positive rate of inflation and a fixed cost of adjusting 

price, as shown by Sheshinski and Weiss (1977, hereafter SW77).   

The same authors have shown the (s,S) policy optimal when inflation is stochastic 

in the sense that the economy alternates between some positive rate of inflation and zero 
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inflation according to two stochastic duration times (1983, hereafter SW83).  However, 

the possibility of an error was acknowledged in this paper (1993).  The purpose of this 

note is to correct this error and to characterize the true solution.  We find that the (s,S) 

policy cannot be optimal under these circumstances of stochastic inflation.  Rather, there 

will be two different (s,S) bands, corresponding to the two different inflation regimes, 

with the zero-inflation band contained wholly within the positive-inflation band.  We then 

present a numerical example, showing that a higher variance of aggregate price changes 

increases price dispersion in states of high inflation and decreases it in states of low 

inflation. 

 

II.  The Model 
 

 Following SW83 we will assume that there are two states of the world.  In state 0, 

the aggregate price level remains unchanged.  In state 1, the aggregate price level is 

increasing at constant rate g.  The world alternates between the two states stochastically.  

The length of any sojourn in state 1 (state 0) is distributed exponentially with parameter 

λ1>0 (λ0>0). 

 Π(⋅) is the firm’s profit per unit of time as a function of the firm’s log relative 

price.  Π(⋅) is assumed to be continuously differentiable, strictly concave, and uniquely 

maximized at p*. 

 The firm discounts profits at rate r>0.  It is assumed to observe the aggregate price 

level and rate of change instantaneously.  (Thus it can condition its policy on the 

                                                                                                                                                                             
1 Its relative price can be written as pi/p, where p is some aggregate price index. 
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aggregate inflation rate.)  To change prices, the firm must pay a fixed cost of B>0.  The 

firm’s problem is then to pick optimal adjusting times and adjustment amounts for its 

price so as to maximize expected discounted profits net of adjustment costs from 0 to ∞, 

given its initial relative price.   

 SW83 incorrectly posits that a single (s,S) band will describe the optimal policy.  

In proving this, the option of changing price in state 0 is not taken into account.  It turns 

out, however, that there will always exist a range of log relative prices from which it will 

be optimal to adjust in state 0 but not in state 1.   

 To see why this is so, it is easiest to look at the extreme case in which λ1 and λ0 

approach zero and g is very high.  Thus the chances of leaving each state are 

infinitesimal, so the firm’s policy should look very much like that of a firm facing a 

constant rate of inflation forever (g or 0 in states 1 or 0, respectively.)  Given the results 

of SW77 that a higher rate of inflation is associated with a higher S and lower s, it seems 

obvious that there will be different bands for the two states, with the state 0 band being 

contained in the state 1 band. 

 This intuition carries over for any values for λ0, λ1, and g.  This can be proved2 by 

showing that it is always possible to find two new critical points within (s,S), say (s*,S*), 

such that on (s,s*) it is a strictly dominant strategy to change price to S* while still in 

state 0 rather than to leave price unchanged until state 1 obtains.  Thus we find that a 

single (s,S) band cannot be optimal for a firm facing stochastic inflation of this type. 

III.  THE SOLUTION 

                                                           
2 Proof available on request. 
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 The firm’s choice is the amount to adjust its price (including none) at all dates and 

histories, states, and relative prices.  Clearly the date and history will not affect the 

decision given the state and relative price, since the returns are not time-dependent and 

expectations over switching time to the next state are independent of history, due to the 

exponential distribution’s constant hazard rate.  The only information relevant to the 

firm’s decision is its own relative price and the inflationary state of the world (0 or 1.)   

It is also clear that the firm cannot adjust its price at every price and state of the 

world, since there exists a fixed cost of adjusting price.  Thus the firm’s problem can be 

stated as the choice of an inaction region for each state and prices to which to adjust when 

in each state’s action region. 

 Let Vi(⋅) ≡ the value of a firm in state i (i=0,1) that follows the optimal pricing 

policy, as a function of current log relative price.  At this point we will assume a bit more 

structure on the solution to the firm’s problem.  Specifically, we will assume that the 

value functions of both states solving the more generally posed sequence problem satisfy 

the following: 

A1  There exist numbers, si<Si<Ni , i=0,1, such that Vi(⋅) is strictly increasing on (si,Si), 

Vi(⋅) is strictly decreasing on (Si,Ni), and Vi(⋅) is continuous and differentiable on (si,Ni), 

for i=0,1, where (si,Ni) are the of the inaction regions for states i=0,1. 

(Note we are not imposing differentiability at the boundary points of the inaction region.) 

In short, our assumption posits an (s,S) band for each state, possibly different.  How 

reasonable is this assumption?  Differentiability seems very likely to exist, at least 

everywhere but the indifference points, since the profit function is twice differentiable.  
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Continuity must be true given that the profit function is continuous and thus value 

matching must hold at the borders of inaction and action.  And, given the strict concavity 

of the profit function, we should expect the value functions to be monotonic about a 

unique maximum and the inaction regions to be convex. 

 Note that the value of a firm must be the same everywhere in its action region, 

since the firm can adjust to any relative price for the same cost (B) and will thus choose 

the optimal one (Si).  This gives the following equation for the value of the firm in the 

action region: 

     Vi(x) = Vi(Si) − B, for x∉(si,Ni), i=1,2        (1)  

In the inaction region, the value of the firm must satisfy the following continuous time 

Bellman equations: 

rVi(x) = Π(x) + (1/dt)E[dVi], i=1,2 

Following Dixit & Pindyck (94) we can express the expected changes in value functions 

in this way: 

E[dV0] = λ0dt[V1(x)−V0(x)] + (1−λ0dt)⋅0 = λ0dt[V1(x)−V0(x)] 

and 

E[dV1] = λ1dt[V0(x)−V1(x)] + (1−λ1dt)(−gdtV1’(x)) 

= λ1dt[V0(x)−V1(x)] − gdtV1’(x) + λ1g(dt)2V1’(x) 

Dropping the (dt)2 term from E[dV1], we get the following value functions for the 

inaction regions of state 0 and state 1, respectively: 
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 We now have expressions for the value of the firm in each state in action and 

inaction regions.  The following key facts form the basis for our analysis of the solution. 

1) In the inaction region, the value functions satisfy (2) and (3), derived from the 

continuous time Bellman equations. 

2) In the action region, the value functions satisfy (1), since the price is switched to the 

optimal value.  In particular, the following value matching conditions hold: 

   Vi(si) = Vi(Si) −B = Vi(Ni), i=0,1          (5) 

3) In both regimes, the value-maximizing price must be at the peak of the value 

function, so: 

Vi’(Si) = 0, i=0,1          (6) 

4)  Smooth pasting holds at s1; ie V1’(s1) = 0.  (This is proved in lemma 1 below.) 

A.  Relative location of the parameters 
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 Given these restrictions imposed by optimality, value matching, and smooth 

pasting, we are able to establish almost completely the relative locations of the optimally-

chosen values (si,Si,Ni), i=0,1.  The one fact that depends on parameter values is whether 

S1 is greater or less than N0.  However, if we make the following assumption, we 

guarantee that S1<N0: 

A2        B ≥ Π(p*)(1/λ1 + 1/R0) 

We are now ready to state the main result: 

Theorem 1  Under the assumption A1, we have that s1<s0<p*<S0<S1,N0<N1.  Thus the 

inaction region of state 0 is fully contained in the inaction region of state 1.  Also, we 

have that Π(S1)>Π(s1)>Π(N1); Π(S0)>Π(s0)>Π(N0); and Π(S0)>Π(S1), Π(s0)>Π(s1), and 

Π(N0)>Π(N1).  Under the additional assumption A2, S1<N0. 

Proof.  By lemmas 1-7 below.   

Lemma 1  V1’(s1) = 0 = V1’(S1) = V0’(S0).  Thus V1(S1) = [Π(S1)−λ1V0(S1)]/R1, and 

V1(s1) = [Π(s1)−λ1V0(s1)]/R1.  S1 (S0) is the log relative price the firm will set whenever it 

changes price in state 1 (0). 

 Proof.  That V1’(S1) = V0’(S0) = 0 follows directly from A1.  The expression for 

V1(S1) then follows from equation 3.  Given A1, since Si is the price in the inaction 

region that maximizes the value function in state i, firms will change price to Si whenever 

they act in state i, i=1,2. 

We now show the results for s1.  The idea is to partially differentiate the value 

function we have for state 1 with respect to the parameter s1.  If the derivative is nonzero, 
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we can change the choice of s1 and increase the value for some x.  Let us define new 

functions vi, i=0,1, where vi(x;s1p,S1p,N1p,s0p,S0p,N0p) is the value to the firm of being at 

log relative price x in state i and following the double (s,S) policy defined by parameters 

(s1p,S1p,N1p,s0p,S0p,N0p).  These parameters need not be chosen optimally; however we do 

impose equations 1, 2, and 3 (giving the value in the action and inaction regions).  Thus, 

Vi(x) = vi(x;s1,S1,N1,s0,S0,N0).  Below we differentiate v1(⋅) with respect to the parameter 

s1p, using equation (4), and set the derivative to zero.  The derivatives are evaluated at the 

optimal parameter values.  
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If the second line of this equation is zero, then the first line gives us that and V1(s1) = 

[Π(s1)−λ1V0(s1)]/R1; and then from this and equation (3), V1’(s1) = 0.  Is the second line 

zero?  Yes, if ∂v1(s1;s1,S1,N1,s0,S0,N0)/∂s1p is zero and if ∂v0(z; s1,S1,N1,s0,S0,N0)/∂s1p is 

zero on (s1,x).  The former must hold at the optimum, since otherwise we would change 

our choice of s1.  For the latter, note that from (2), ∂v0(z)/∂s1p = (λ0/R0)∂v1(z)/∂s1p on 

(s0,N0) and ∂v0(z)/∂s1p = (λ0/R0)∂v1(S0)/∂s1p elsewhere.  Now at the optimum, ∂v1(z)/∂s1p 

must be zero everywhere, since otherwise we would change our choice of s1 at some 

values z, which contradicts the optimality.  Thus ∂v0(z)/∂s1p is zero on (s1,x), and we have 

the result.          ■ 

Lemma 2  s1<s0<p*. 
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 Proof.  For s1<s0, we first show that s1 is in the interior of the action region of 

state 0 if S0≠S1.  It is sufficient to show that the gain from switching price in state 0 from 

s1 to S0, is strictly positive, since only in the action region is the gain positive and only in 

the interior is it strictly positive, by A1.  At s1, the payoff for keeping the same price is: 

[Π(s1)+λ0(V1(s1))]/R0 = [Π(s1)+λ0(V1(S1)−B)]/R0 

and the payoff for switching to S1 (a payoff which is dominated by a switch to S0, since 

S0 is the optimal price for state 0) is: 

[Π(S1)+λ0V1(S1)]/R0 − B 

The gain can be calculated as Π(S1)−Π(s1)−rB.  Now using the expressions for V1(s1) and 

V1(S1) from lemma 1, and the fact that V1(S1)−V1(s1)=B, we get that  

   Π(S1)−Π(s1)−rB = λ1[V0(s1)−V0(S1)+B]        (7) 

Thus the gain from changing price to S1 is nonnegative, since V0(x)−V0(y)≤B, for all x,y.  

Since S0 is the unique maximizer of V0(⋅), S0≠S1 implies that V0(S0)>V0(S1), so that the 

gain from changing price to S0 is strictly positive.  So s1 is in the interior of the action 

region of state 0 if S0≠S1. 

 Next we show that S0≠S1.  Using the expressions for V1(s1) and V1(S1) from 

lemma 1, and equation (4), we can write: 
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Now if S0=S1, then p*<S0=S1, since otherwise the expression in the integral in (8) is 

always positive.  But then 

V0’(S0) = (1/R0)[Π’(S0) + λ0V1’(S0)] = (1/R0)Π’(S0) < 0, 

where the first equality is from equation (2), the second from the fact that S0=S1 and thus 

V1’(S0)=0, and the third since p*<S0.  V0’(S0)<0 contradicts the optimality of S0 for state 

0. Thus S0≠S1. 

 We have that s1 is in the interior of the action region of state 0.  Thus s1<s0 or 

s1>N0.  Now we will rule out the latter possibility.  By equation (8), if s1>N0, then 

p*>s1>N0(>S0), since otherwise the expression in the integral will be always negative.  

But then 

V0’(S0) = (1/R0)[Π’(S0) + λ0V1’(S0)] = (1/R0)Π’(S0) > 0 

where the first equality is from equation (2), the second from the fact that S0 is in the flat 

(action) region of V1(⋅), and the third since p*>S0.  V0’(S0)>0 contradicts the optimality 

of S0 for state 0. Thus s1>N0 is impossible, and we have s1<s0. 

Finally we show s0<p*.  Using (2) to evaluate V0(S0) and V0(s0), and combining 

the two equations using the fact that V0(S0)−V0(s0)=B, we see that 

Π(S0)−Π(s0) = rB + λ1[V0(s0)−V0(S0)+B]       (9) 
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The second term of the right hand side is nonnegative, since V0(x)−V0(y)≤B, all x,y, so 

Π(S0)>Π(s0).  Then since s0<S0 and Π(⋅) is strictly concave with p* its unique maximizer, 

the result follows.         ■ 

Lemma 3  S0<N0<N1 and Π(N1)<Π(s1). 

 Proof.  S0<N0 by A1. 

Since at both s0 and N0 the firm is indifferent (by value matching) between staying 

put and switching to price S0, from equation (2) it must be that: 

V0(s0) = (1/R0)[Π(s0)+λ0V1(s0)] =  (1/R0)[Π(N0)+λ0V1(N0)] = V0(N0) 

Thus  

       V1(s0)≥V1(N0) ⇔ Π(s0)≤Π(N0)        (10) 

Now assume N1≤N0.  First we will show that N1≤N0 � Π(N1)≥Π(s1).  Under this 

assumption, N0 is at least on the border of the action region of state 1, so 

V1(N0)=V1(N1)≤V1(s0), and thus Π(s0)≤Π(N0) by (10).  Further, we have that 

Π(s1)<Π(s0)≤Π(N0)≤Π(N1), where the first inequality is because s1<s0<p* (lemma 2), and 

the last is because p*≤N1≤N0.  (To show that p*≤N1, assume the opposite.  Then equation 

(7) implies that p*>N1>S1>S0.  But in this case, V0’(S0) = (1/R0)[Π’(S0) + λ0V1’(S0)] > 0, 

which contradicts optimality of S0.  So p*≤N1.)  Thus Π(N1)≥Π(s1).   

Now we will show that Π(N1)≥Π(s1) implies a contradiction.  Since s1 and N1 are 

points on the border of the action region, we know that V1(N1)=V1(s1).  Combining this 

with (5), we have: 
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Or, 

 

Since Π(⋅) is strictly concave and Π(N1)≥Π(s1), Π(x)>Π(s1) for x∈(s1,N1).  And since s1 

is in the inaction region of state 0, V0(x)≥V0(s1), for all x.  So we can replace the function 

in the integral with constants Π(s1)+λ1V0(s1) and change the equality to strict inequality: 

 

This gives that V1(s1)>[Π(s1)+λ1V0(s1)]/R1, which contradicts lemma 1.   

Since N1≤N0 � Π(N1)≥Π(s1) � a contradiction, we have that Π(N1)<Π(s1), and 

N1>N0.           ■ 

Lemma 4  p*<S0<S1<N1. 

 Proof.  N1>S1 by A1. 

 By equation (8), S1≤S0 � p*<S1≤S0.  But this contradicts optimality of S0, since 

then V0’(S0)<0.  So S1>S0. 

 Now V0’(S0)=0 � λ0V1’(S0) = −Π’(S0).  Since S0<S1, the left hand expression is 

positive, so Π’(S0) must be negative, that is S0>p*.     ■ 

Lemma 5  For x∈(s0,N0) (the common inaction region),  
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        rV1(x) = Π(x) − g1V1’(x), and              (11) 

        rV0(x) = Π(x) − g0V1’(x) = Π(x) + (g1/R0)Π’(x) −  g1V0’(x)   (12) 

where  

       g1 ≡ g(r+λ0)/(r+λ0+λ1), and     (13) 

  g0 ≡ gλ0/(r+λ0+λ1).     (14) 

 Proof.  By lemmas 2 and 3, inaction is strictly preferred in both states on (s0,N0).  

Thus, both equations (2) and (3) apply on this interval.  Combining the two and solving 

for rV1(x) and rV0(x) give equations (11) and (12).      ■ 

Lemma 6  Π(S1)>Π(s1)>Π(N1); Π(S0)>Π(s0)>Π(N0); and Π(S0)>Π(S1), Π(s0)>Π(s1), and 

Π(N0)>Π(N1). 

 Proof.  Π(s0)>Π(s1), Π(N0)>Π(N1), and Π(S0)>Π(S1) come from the facts that 

s1<s0<p* (lemma 2), p*<N0<N1 (lemmas 3 and 4), and p*<S0<S1 (lemma 4) and the fact 

the Π(⋅) is strictly concave with p* its maximizer. 

 Π(S1)>Π(s1) by equation (7), since the right hand side is nonnegative by 

arguments made in the proof of lemma 2.  Equation (9) shows that Π(S0)>Π(s0) by the 

same arguments.   

 Π(s1)>Π(N1) by lemma 3. It remains to show Π(s0)>Π(N0).  Two cases will be 

considered.  First, if N0<S1, then we have that V1(N0)>V1(s0) (by A1 and lemmas 1-4).  

From (10), V1(s0)<V1(N0) � Π(s0)>Π(N0).  Thus in this case, Π(s0)>Π(N0).  Second, 

consider S1≤N0.  In this case, from A1 and equation (11) of lemma 6, V1(N0)≥Π(N0)/r.  
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Also from A1 and lemmas 2 and 4 and equation (11), V1(s0)<Π(s0)/r.  So if Π(N0)≥Π(s0), 

we have that V1(N0) ≥ Π(N0)/r ≥ Π(s0)/r > V1(s0), that is V1(N0)>V1(s0).  But from (10), 

V1(N0)>V1(s0) � Π(N0)<Π(s0).  Thus we have a contradiction, and Π(s0)>Π(N0). ■ 

Lemma 7  A2 implies that S1<N0. 

 Proof.  If S1≥N0, then 

V0(S1) = V0(s0) = V0(S0)−B = [Π(S0)+λ0V1(S0)−R0B]/R0 

Using this and lemma 1, we obtain: 

V1(S1) = [Π(S1)+λ1V0(S1)]/R1 = [R0Π(S1)+λ1Π(S0)+λ0λ1V1(S0)−λ1R0B]/R0R1, or 

R0R1V1(S1)−λ0λ1V1(S0) = R0Π(S1)+λ1Π(S0)−λ1R0B. 

Since V1(S1)>V1(S0) and R0R1>λ0λ1, the left hand side is strictly positive. Thus the right 

hand side must also be.  This gives the following restriction on B: 

B < Π(S1)/λ1 + Π(S0)/R0, 

which is necessary for N0≤S1.  Since Π(S1)<Π(S0)<Π(p*), if we make the following 

assumption we are guaranteed that S1<N0: 

    B ≥ Π(p*)(1/R0 + 1/λ1)    ■ 

B. Finding the parameters 
 
 Using our theorem and the lemmas, we can now derive expressions for the value 

functions in both regions that depend only on border values and not on the value function 

for the other state.  In particular, equations (11) and (12) of lemma 5 enable us to do so. 
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 First we will comment on the certainty equivalence rate of inflation concept 

stressed in SW83.  There the authors make the point that the value of the firm in this 

setup with stochastic inflation is the same as that of a firm facing a constant rate of 

inflation, say geq, equal to some function of g, the λi’s, and r.  In fact, the equivalent 

constant rate of inflation they derive for our setup is exactly g1 (compare our equation 

(13) with SW83 equation 6).  The asymptotic average inflation rate can be calculated as 

gavg = gλ0/(λ0+λ1).  Note that g1>gavg.  This positive difference between the equivalent 

certainty rate of inflation and the average rate was interpreted in SW83 as a risk premium 

the firm was willing to pay in order to have a constant rate of inflation.  That is, the firm 

was allegedly willing to accept a higher constant rate of inflation than the average rate in 

the stochastic case, because uncertainty is costly. 

 However, the mistake in this risk premium interpretation is that the asymptotic 

average rate ignores the initial state, whereas g1 applies to a firm currently in state 1.  

Thus we would expect g1>gavg, since starting in state 1 increases the average inflation 

over any finite interval.  Further, this explains the effect of the interest rate on g1−gavg.  As 

r→0, so that there is no discounting and the initial state does not matter, then g1→gavg.  

On the other hand, as r→∞, g1→g, since all that matters in this case of extreme 

discounting is the current state.  Similarly, g0<gavg, g0→gavg as r→0, and g0→0 as r→∞.  

(The risk premium would actually be negative if the firm started in state 0.)  These all 

confirm the interpretation of the relative positions of g1, gavg, and g0 not as risk premia, 

but simply as accounting for the initial state of the world. 
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 We now derive expressions for the value function in the mutual inaction region, 

that is, on (s0,N0).  Equation (11) gives: 

And (12) yields: 

 We now turn to the regions that lead to action in state 0 but inaction in state 1: 

(s1,s0] and [N0,N1).  We will look only at V1(⋅), since V0(⋅) just equals V0(s0)=V0(S0)−B 

everywhere in this region.  Using this fact in (3), we get the following differential 

equation which describes (s1,s0] and [N0,N1): 

   R1V1(x) = Π(x) + λ1V0(s0) − gV1’(x)   (17) 

Using lemma 1 and the fact that V0(s1)=V0(s0), since s1<s0, we see that 

λ1V0(s0)=R1V1(s1)−Π(s1).  Thus we can rewrite (17): 

    R1[V1(x)−V1(s1)] = Π(x) − Π(s1) –g[V1(x)−V1(s1)]’  (18) 

where [V1(x)−V1(s)]’ ≡ ∂[V1(x)−V1(s)]/∂x = V1’(x).  This says that the difference in value 

as we move away from s1 (or N1) evolves in the same way as the value under a constant 

rate of inflation g and interest rate R1, but with instantaneous profit as the profits in 

excess over Π(s). 

 Equation (18) yields the following expression for V1(⋅) on (s1,s0]: 
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and since V1(N1)=V1(s1), on [N0,N1): 

 Equations (15), (16), (19), and (20) completely describe the value functions for 

both states in their respective inaction regions.  The value in action regions is given by 

equation (1).  Given a profit function satisfying the assumptions, we can solve for the four 

parameters (s0,s1,S0,S1) and boundary value V1(s0) (from which V0(s0) is known given 

equation (2)).  This is done using five conditions imposed on the equations above: 

Vi’(Si)=0, i=1,2, V1’(s1)=0, and Vi(Si)=Vi(si)+B, i=1,2.  (N0,N1) can then be found by 

imposing Vi(Ni)=Vi(si), i=1,2 on the above equations.  Thus the full solution is readily 

solved for. 

C. Numerical Example and Comparative Statics 
 

 Using the above techniques, we now solve for and graph the value functions for 

both states, given a quadratic profit function and equal hazard rates.  Figure 1 shows 

Vi(x), i=0,1, and for comparison, Π(x)/r, the value of staying at relative price x forever. 

 Figure 2 shows what happens to (si,Si,Ni), i=0,1, as we decrease the λi (thus 

prolonging expected stays in each state).  As SW83 shows, decreasing the λi’s by the 

same factor corresponds to a mean-preserving increase in variance.  The result of this 

experiment is clear – the state 0 bands tighten while the state 1 bands widen.  The testable 

implication for price dispersion is that an increase in inflation variance will increase price 
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dispersion in highly inflationary states and decrease it in low inflationary states of the 

world. 

IV. Conclusion 

 In this paper we have established that the optimal policy of the firm facing the 

proposed two states of inflation must be state-dependent, and we have characterized the 

solution that satisfies certain plausible assumptions.  This policy involves a different (s,S) 

policy for each state of the world, with the zero-inflation band being contained within the 

positive inflation band.  Increases in the variance of inflation lead the firm to keep its 

relative price within a narrower range in non-inflationary periods and to allow it to vary 

more widely during positive-inflation periods. 
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