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Abstract

A positive Lyapunov exponent is one practical deÞnition of chaos. We develop a formal test for chaos

in a noisy system based on the consistent standard errors of the nonparametric Lyapunov exponent

estimators. When our procedures are applied to international real output series, the hypothesis of the

positive Lyapunov exponent is signiÞcantly rejected in many cases. One possible interpretation of this

result is that the traditional exogenous models are better able to explain business cycle ßuctuations

than is the chaotic endogenous approach. However, our results are subject to a number of caveats,

in particular our results could have been inßuenced by small sample bias, high noise level, incorrect

Þltering, and long memory of the data.
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1 Introduction

How to interpret business cycle ßuctuations has been one of the most important issues in economics. The

standard way of incorporating business cycles into macroeconomic models is to treat cycles as a temporary

divergence from the steady state (or steady growth path) caused by exogenous shocks such as policy

shifts and technological change. The idea of duplicating the actual business cycle ßuctuations by using

impulse responses of uncorrelated random shocks originates with Slutzky�s (1927) work; this approach

was popularized by Sims (1980), who put more emphasis on identifying shocks in a multivariate system.

Impulse response analysis has now become a basic tool for evaluating the shock propagation mechanism of

the dynamic stochastic general equilibrium (DSGE) models [which include the stochastic growth model/real

business cycle model], using the linear approximation method based on the assumption of the economy

being close to a unique and globally stable steady state. (See Campbell (1994) and Cooley (1995), for

example.)

Alternatively, macroeconomists have long realized that a certain class of deterministic nonlinear sys-

tems was capable of producing a self-sustained ßuctuation without any shocks from outside of the model.

The limit cycle model once attracted researchers, including Kaldor (1940) and Hicks (1950), but such an

approach was confronted by the simple fact that the actual ßuctuation of real data was apparently not

exactly periodic. In the early 1980s, the discovery of chaotic dynamics in the Þeld of natural science helped

to prompt a revival of endogenous business cycle modeling. A group of researchers, including Benhabib and

Nishimura (1979), Day (1982) and Grandmont (1985), developed many examples of deterministic economic

models that could generate nonperiodic ßuctuations. Indeed, recent studies (Brock and Hommes (1997),

(1998)) have shown that routes to chaos can arise in the traditional expectation models such as the cobweb

model and the asset pricing model by the introduction of heterogeneous beliefs. These theoretical devel-

opments revealed that, depending on the choice of parameter values, most economic models can produce

either stable solutions or complex solutions including chaos. For this reason, the theoretical analyses have
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been followed by an active research program to Þnd empirical evidence of chaos as a source of the business

cycles. However, it seems fair to say that the currently available evidence on chaos in the macroeconomic

time series is rather ambiguous. For example, with the correlation dimension, little evidence consistent

with low-dimensional chaos in real output series was found by Brock (1986) and Brock and Sayers (1988)

for the U.S., Frank and Stengos (1988) for Canada, and Frank, Gençay and Stengos (1988) for Germany,

Italy, Japan and the United Kingdom. On the other hand, based on the correlation dimension, Barnett and

Chen (1988) and DeCoster and Mitchell (1991) detected evidence of chaos in U.S. monetary aggregates.

The purpose of this paper is to reinvestigate these alternative views of business cycles by employing

the recently developed test for chaos based on nonparametric regression techniques. To be more speciÞc,

we focus on the real output series from various countries examined by Brock (1986), Frank and Stengos

(1988) and Frank, Gençay and Stengos (1988). We estimate the largest Lyapunov exponents of these series

and investigate the statistical signiÞcance of the sign of the exponents using the consistent standard errors.

Since the positivity of the Lyapunov exponent in a bounded dissipative nonlinear system is a widely used

formal deÞnition of chaos, this approach can be interpreted as a direct test for chaos.1

Most of the previous empirical analyses have employed either the correlation dimension or the Lyapunov

exponent as a quantity of interest. One problem with the correlation dimension measure, however, is that

its sampling properties for chaotic series are unknown, especially when a stochastic term is present in the

system (see Barnett et al. (1995, p.306)). Therefore, a formal test cannot be conducted with the correlation

dimension. It should also be noted that the well-known BDS test (Brock et al. (1996)) was constructed

using the correlation function (which has a direct connection with the correlation dimension). However,

the BDS test should be viewed as a test for i.i.d. null against general dependence rather than a direct test

for chaos. Our approach involves a type of Lyapunov exponent calculation method called the Jacobian

method, which was Þrst proposed by Eckmann and Ruelle (1985). A notable advantage of the Jacobian

1This deÞnition is introduced by Eckmann and Ruelle (1985).
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method over another available method, the direct method developed by Wolf et al. (1985), is its robustness

to the presence of (small) stochastic components in the system.2 Such a generalization of the notion of

chaos is sometimes referred to as noisy chaos as opposed to deterministic chaos. Under this stochastic

time series framework, the statistical properties of the Lyapunov exponent estimator can be established by

looking at the properties of the nonparametric estimator of the nonlinear autoregressive model. McCaffrey

et al. (1992) showed the consistency of a neural networks Lyapunov exponent estimator and Whang and

Linton (1999) provided conditions that are sufficient for a kernel estimator to be asymptotically normal at

a certain rate.

In principle, any nonparametric derivative estimator can be used for the Jacobian method. However, the

neural networks (or neural nets) estimator of the Lyapunov exponent, which was Þrst proposed by Nychka

et al. (1992) and Gençay and Dechert (1992), is the most popular method in economics applications.3

Theoretically, neural nets are expected to perform better than other approximation methods, especially

with high-dimensional models, since the approximation form is not so sensitive to the increasing dimension,

at least within the conÞnes of the particular class of functions considered. The reliability of using neural

nets in practice was also affirmed in a single-blind controlled competition conducted by Barnett et al.

(1997). While the former empirical studies with the neural network estimation only reported the point

estimate of the Lyapunov exponent, it is possible to derive the asymptotic distribution of the estimator by

employing Whang and Linton�s (1999) argument, which was originally used for the Nadaraya-Watson type

kernel regression method. In this paper, we test the null hypothesis of the positive Lyapunov exponent, or

chaotic hypothesis, using the theoretical asymptotic distribution of the neural net estimator.

In addition to neural networks, we also employ a class of kernel-type regression estimators called local

2Another advantage of the Jacobian method is that it requires a smaller sample relative to the direct method. These
advantages are conÞrmed by the direct comparison of the two methods in the experiment conducted by Kaashoek and van
Dijk (1994).

3The examples of economic applications are Dechert and Gençay�s (1992) analysis using exchange rates, studies on monetary
aggregates by Serletis (1995) and Barnett et al. (1995) and the analysis of stock return series by Abhyankar, Copeland and
Wong (1996).
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polynomial regression estimators as a nonparametric estimation for the Jacobian method. In fact, the

signiÞcant advantages of local polynomial regression over the Nadaraya-Watson regression estimator was

recently made clear by Fan (1992), Fan and Gijbels (1992) and Ruppert and Wand (1994). First, it reduces

the bias of the Nadaraya-Watson estimator. Second, it adapts automatically to the boundary of design

points and therefore no boundary modiÞcation is needed. Third, it is superior to the Nadaraya-Watson

estimator in the context of derivative estimation. As explained in Fan and Gijbels (1996, p.77), the local

polynomial of order two, or local quadratic smoother, is preferable over the local linear estimator for Þrst

derivative estimation for the same reasons. Therefore, we modify the asymptotic result of Whang and

Linton (1999) to establish the asymptotics for the local quadratic estimator of the Lyapunov exponent.

We believe reporting the results based on both neural nets and local quadratic smoother is informative

since the former is a global nonparametric method while the latter is a local nonparametric method.

The remainder of the paper is organized as follows: An overview of the Lyapunov exponent estimation

method and its limit distribution based on the neural networks and the local polynomial regression are

provided in Section 2. Section 3 reports the Lyapunov exponent estimates and interprets the results.

Section 4 provides the argument on the relation between stochastic trend and chaos. Section 5 discusses

possible limitations of our approach with respect to the power of the test. Concluding remarks are made

in Section 6. All technical assumptions and proofs are given in the Appendix.

2 Lyapunov exponent test

2.1 Lyapunov exponent of stochastic time series

In this section, we introduce the method to be used in the empirical analysis. Let {Yt}Tt=1 be a random

scalar sequence generated by the following non-linear autoregressive model

Yt = m(Yt−1, . . . , Yt−d) + ut, (1)
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where m: Rd →R is a non-linear dynamic map and {ut}Tt=1 is a sequence of martingale differences with

E(ut|F t−1−∞) = 0 and E(u2t ) = σ2t < ∞ where F ts is the σ-Þeld generated by (Xs, . . . , Xt) and Xt =

(Yt, . . . , Yt−d+1)0 ∈Rd. We also assume m to satisfy a certain smoothness condition and Xt to be strictly

stationary and to satisfy a class of mixing conditions.4 The advantage of this formulation is that we can

include both the traditional exogenous business cycle model and the chaotic endogenous business cycle

model within the same framework. As mentioned in the introduction, the traditional approach stresses the

role of exogenous shocks as a source of aggregate ßuctuation with the assumption of a stable steady state.

With such a modeling strategy, the stochastic term ut in (1) plays an important role in tracking the business

cycle relative to the deterministic part m. Furthermore, a stable system with �well-behaved� function m

ensures that the impulse response function using linearization around the steady state is a meaningful tool

for policy analysis. In contrast, the same system (1) can be noisy chaos if the deterministic system obtained

by σ2t = 0 is deterministic chaos, that is, the largest Lyapunov exponent (deÞned below) computed from

the map m is positive.

Let us express the model (1) in terms of a map F (Xt−1) = (m(Xt−1), Yt−1, . . . , Yt−d+1)0 with Ut =

(ut, 0, . . . , 0)
0 such that

Xt = F (Xt−1) + Ut, (2)

and let Jt be the Jacobian of the map F in (2) evaluated at Xt. In this paper, we assume the system (1)

has the largest Lyapunov exponent deÞned by

λ ≡ lim
M→∞

1

2M
ln ν1

¡
T0MTM

¢
, TM =

MY
t=1

JM−t = JM−1 · JM−2 · · · · · J0, (3)

where ν1 (A) is the largest eigenvalue of a matrix A. Necessary conditions for the existence of the Lyapunov

exponent have been discussed in the literature. (For example, see Nychka et al. (1992, p.406)). It is known

4See our Appendix, and Whang and Linton (1999) and Shintani and Linton (2000) for the conditions in detail.
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that, if max {ln ν1 (J 0tJt) , 0} has a Þnite Þrst moment with respect to the distribution of Xt, then the limit

in (3) almost surely exists and will be a constant, irrespective of the initial condition.

To obtain the Lyapunov exponent from observational data, Eckmann and Ruelle (1985) and Eckmann

et al. (1986) proposed a method, known as the Jacobian method, which is based on nonparametric

regression. The basic idea of the Jacobian method is to substitute m in the Jacobian formula by its

nonparametric estimator bm. In other words, it is the sample analogue estimator of (3). It should be noted
that we distinguish between the �sample size� T used for estimating Jacobian bJt and the �block length�M,
which is the number of evaluation points used for estimating Lyapunov exponent. Formally, the Lyapunov

exponent estimator of λ can be obtained by

bλM =
1

2M
ln ν1

³bT0M bTM´ , bTM =
MY
t=1

bJM−t = bJM−1 · bJM−2 · · · · · bJ0, (4)

where

bJt−1 =



∆bm1(Xt−1) ∆bm2(Xt−1) · · · ∆bmd−1(Xt−1) ∆bmd(Xt−1)
1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


, (5)

for t = 0, 1, . . . ,M − 1, where ∆bmj(x) is nonparametric estimator of ∆mj(x) = ∂m
∂Yt−j (x) for j = 1, . . . , d.
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2.2 Neural networks

The neural network estimator bm can be obtained by minimizing the least square criterion
PT
t=1(Yt −

mT (Xt−1))2, where the neural network sieve mT : Rd → R is an approximation function deÞned by

mT (x) = β0 +

qTX
j=1

βjψ(a
0
jx+ bj),

where ψ is an activation function and qT is the number of hidden units.

Using the arguments of Whang and Linton (1999), Shintani and Linton (2000) established the as-

ymptotic normality of the neural network estimator bλM and provided a consistent standard error
qbΦ/M

where

bΦ = M−1X
j=−M+1

w(j/SM)bγ(j) with bγ(j) = 1

M

MX
t=|j|+1

bηtbηt−|j|, (6)

bηt = bξt − bλM with bξt = 1

2
ln

 ν1

³bT0tbTt´
ν1

³bT0t−1 bTt−1´
 for t ≥ 2 and bξ1 = 1

2
ln ν1

³bT01 bT1´ ,
where w(·) and SM denote a kernel function and a lag truncation parameter, respectively.

For the neural network estimator bm in the empirical analysis, we use the FUNFITS program developed

by Nychka et al. (1996). As an activation function ψ, this program uses a type of sigmoid function

ψ(u) =
u(1 + |u/2|)
2 + |u|+ u2/2 ,

which was also employed by Nychka et al. (1992). The number of hidden units (qT ) in the neural network

sieve is selected by minimizing the BIC deÞned by

BIC = ln bσ2 + lnT
T
[1 + qT (d+ 2)] , (7)
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where bσ2 = T−1PT
t=1 (Yt − bm(Xt−1))2.

For the consistent variance estimator bΦ, we employ the QS kernel for w(·) with SM selected by optimal

bandwidth selection method developed in Andrews (1991). We report the standard error of the Lyapunov

exponent estimate bλM and conduct a hypothesis test regarding the sign of bλM .
2.3 Local quadratic regression

The local quadratic estimator at a point x can be obtained by minimizing the weighted least squares crite-

rion
PT
t=1

¡
Yt − β0 − β01(Xt−1 − x)− β02vech {(Xt−1 − x)(Xt−1 − x)0}

¢2
KH(Xt−1−x), whereH is the d×d

bandwidth matrix,K is d-variate kernel function such that
R
K(u)du = 1, andKH(u) = |H|−1/2K(H−1/2u).

For simplicity, in this paper, we use H = h2T Id and a product kernel for K.
5 The solution is given by

bβ(x) = (X 0
xWxXx)

−1X 0
xWxY,

where

Xx =


1 (X0 − x)0 vech0 {(X0 − x)(X0 − x)0}
...

...
...

1 (XT − x)0 vech0 {(XT−1 − x)(XT−1 − x)0}

 ,

Y = (Y1, . . . , YT )
0 and Wx =diag{KH(X0 − x), . . . ,KH(XT−1 − x)}. The local quadratic estimator of Þrst

derivatives ∂m
∂Yt−j (x) for j = 1, . . . , d are given by

bβ1(x) =

bβ11(x)
...

bβ1d(x)

 =

∆bm1(x)

...

∆bmd(x)

 .

5A more realistic bandwidth matrix is data dependent, in particular H = h2T bΣ1/2, where bΣ is the sample covariance matrix.
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Using the arguments of Whang and Linton (1999), we obtain the limit distribution of local quadratic

estimator of the Lyapunov exponent.

Theorem 1. Suppose that assumptions A1 to A7, which are presented in the Appendix, hold. Then

√
M(bλM − λ) d→ N(0,Φ),

where

Φ ≡ lim
M→∞

var

"
1√
M

MX
t=1

ηt

#
,

where

ηt = ξt − λ with ξt =
1

2
ln

Ã
ν1 (T

0
tTt)

ν1
¡
T0t−1Tt−1

¢! for t ≥ 2 and ξ1 =
1

2
ln ν1

¡
T01T1

¢
.

Note that the limit distribution of the Lyapunov exponent is identical to the one derived in Whang and

Linton (1999) and Shintani and Linton (2000).6 Therefore, Theorem 1 implies that the estimator similar

to (6) in the previous subsection can be also used to calculate the standard error of the local quadratic

Lyapunov exponent estimator. For the local quadratic estimator bβ1(x) in the empirical analysis, we employ
the Gaussian kernel. The bandwidth (hT ) is selected by minimizing the residual squares criterion (RSC)

given in Fan and Gijbels (1996, p.118), which is known to be a consistent selection method for the local

polynomial regression. The kernel function and the method of selecting the lag truncation for the standard

error are identical to those used in the neural net case.

6This is due to the fact that the local Lyapunov exponent term, which does not depend on the estimation method, will be
dominant in the limit distribution. See the proof in the Appendix for detail.
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3 Main results

In this section we estimate the Lyapunov exponent of real output series from various countries. Six

industrial countries: Canada, Germany, Italy, Japan, the U.K. and the U.S., that were also examined by

Brock (1986), Frank and Stengos (1988) and Frank, Gençay and Stengos (1988), are selected. As real output

series, we use quarterly seasonally adjusted real GDP data. All data are taken from International Financial

Statistics except Japan where the data are obtained from the Economic Planning Agency�s Annual Report

on National Accounts. The sample period for each country differs depending on the availability of the

data. For Canada, the U.K. and the U.S., the data are available over the period 1957(1)-1999(3), while

the data of Germany and Italy were available over the period 1960(1)-1998(4), and the data of Japan are

available over the period 1955(2)-1999(1).

The theoretical result in the previous section requires the stationarity of the data. In the analysis, we

use the stationary cyclical component obtained by removing the deterministic trend from (the logarithms

of) the original series. In the modern business cycle literature, some forms of nonlinear trend are often

used instead of a simple linear trend. For this reason, we have employed a nonparametric nonlinear

detrending method known as the Hodrick-Prescott (HP) Þlter, in addition to a traditional linear detrending

method. Following the literature in the real business cycle analysis, we set the value of the Hodrick-Prescott

smoothing parameter to be 1600, which would eliminate the cycles of period longer than eight years (32

quarters) for quarterly series.7 Figure 1 shows the trend components of the U.S. real output series based

on both linear trend and nonlinear trend. It can be seen that the deviations from the growth path is

emphasized in the linearly detrended case. Another type of trend, known as a stochastic trend, will be

discussed in the next section.

Using the deviations from trend rather than using the original data in the analysis is also justiÞable from

the following argument based on the recent chaos literature. Using a simple asset pricing model, Brock and

7See Cooley (1995), for example, on the deÞnition of the Hodrick-Prescott Þlter and its smoothing parameter.
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Hommes (1998) showed that it is not the stock price itself but the deviation from a rational expectation

fundamental solution that has possibly chaotic dynamics derived from the heterogeneous beliefs of agents.

Using a similar argument, we can consider the deviation from the solution of the baseline DSGE model

as having resulted from the heterogeneity of the agents. In fact, Durlauf (1993) showed that it is possible

to construct a model of business cycles using complementarities among heterogenous industries. Since

aggregate output in our analysis can be viewed as a cross-sectional average across different sectors, such

an interaction among industries seems to be a possible source of complex dynamics.

To emphasize the possibility of complex behavior generated from a simple structure, the Þrst-order

nonlinear models are often used in the literature of chaos in economics. (See also Brock and Hommes

(1997, p.1061).) For example, the one lag dynamics can be seen in the overlapping generations model, the

neoclassical growth model and in the Euler equation of the intertemporal optimization model. Furthermore,

since the existence of chaos in the logistic map depends only on one parameter, the logistic map is one of

the most popular and convenient one-dimensional chaotic models used in economics. (See Day (1982), for

example.) Table 1 shows the estimated Lyapunov exponents of the output series from various countries

based on the assumption of the single-dimensional system. Both estimates based on linear detrended series

and HP detrended series are presented. The Þrst column of each detrended series shows the estimates

of Lyapunov exponents using the entire sample, which is sometimes referred to as the global Lyapunov

exponent estimates. The point estimates show that Lyapunov exponents are negative in many series

except for Italy where the local quadratic estimate is negative but the neural network estimate is positive.

Furthermore, based on the standard error, most of the negative estimates except for neural net estimates for

Germany and the U.K. are signiÞcant at the 1% level, which implies the rejection of the positive Lyapunov

exponent hypothesis.8 The choice of the detrending method has a greater effect on the estimate than the

8Our standard error can be also used to test the null hypothesis of negative Lyapunov exponent. For example, the local
quadratic estimate for Italy is signiÞcantly negative but the neural nets estimate is not signiÞcantly positive. However, since
the test with power against the chaotic alternative is already available in the literature (BDS test, for example), we focus on
the test for chaos using the positive Lyapunov exponent as the null hypothesis.
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choice of the nonparametric estimation method.9 The absolute values of the negative estimates are larger

for the HP detrended series than for the linearly detrended case. This result implies that the system is

more stable under a nonlinear trend assumption in the sense that the effect of the shock does not last for

a long time.

When the block length M is Þnite, the Lyapunov exponent is sometimes referred to as the local

Lyapunov exponent as opposed to the global Lyapunov exponent. (See Wolff (1992), for example.) As

argued by Bailey (1996) and Bailey, Ellner and Nychka (1997), the local Lyapunov exponents provide a

more detailed description of a system�s dynamics than the global Lyapunov exponent alone in the sense

that they can identify the difference in the short-term predictability within different regions of the state

space. Since the theoretical development in the previous section uses the fact that the block length M

grows at a rate slower than the sample size T , we can interpret such an estimate to be more closely related

to the local Lyapunov exponent rather than the global one. Following the terminology employed by the

former studies, when M is less than the entire sample size, we refer to the estimates as the local Lyapunov

exponent estimates. The second and third columns of each detrended series represents the local Lyapunov

exponent estimates based on the each blocks from two (non-overlapping) subsamples. On the whole, the

estimates do not differ much from the global estimates. However, for Japan, there is some difference in the

estimates based on the Þrst and second blocks. The absolute values of the negative estimates are larger

for the former half than for latter half period. One interpretation is that Japan is currently in a less stable

region than in the past.

The next consideration is to determine if these results remain with the choice of the higher dimension

or the higher lag order in the model. In general, it is not unusual for the economic model to have more

than one-dimensional (lag) structure. Even if there is only one lag, when the model consists of multivariate

simultaneous equations, it is known that the stability of the system can be examined through the Lyapunov

9In some case, the difference between the results from two nonparametric regression methods is larger in the standard error
rather than the Lyapunov exponent.
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exponent of one series if additional lags in the estimating equation (1) are introduced.10 However, there is

a technical difficulty in the nonparametric regression with too many lags when the available sample size is

limited. With respect to this �curse of dimensionality� problem, the neural nets are believed to give more

reliable results than the local quadratic method. On the other hand, it should be noted that it is the low

dimensional chaos that is emphasized in the chaos literature rather than the consideration of the system

with a very high dimension. Keeping these issues in mind, we examine the Lyapunov exponents based on

the system with moderate dimension d.

Table 2 shows the multidimensional result on the Lyapunov exponent estimates from the same series.

For the neural network estimates, which have some advantages over the local method, the dimension (d)

is selected from 2 to 4 using BIC deÞned in (7) as well as the number of hidden units (qT ). For the local

polynomial estimates, the same dimension is used with bandwidth (hT ) selected using RSC. Clearly, all

the point estimates of the global Lyapunov exponents are negative. The neural network estimates for

Italy based on HP detrended series is also negative where the opposite result is obtained from the single-

dimensional case. The local Lyapunov exponent estimates, except for the second half of Japan, are all

negative. Surprisingly, based on the standard error, the hypothesis of a positive Lyapunov exponent is

signiÞcantly rejected for all the local Lyapunov exponents of the HP detrended series. While there is a

theoretical advantage of the neural network method in the higher dimensional case, both nonparametric

methods provide similar results in terms of the sign of the Lyapunov exponents estimates.

The empirical results in this section provide little evidence to indicate the positivity of the Lyapunov

exponent in the international real output series. This conclusion is robust to the choice of nonparametric

method as well as to the choice of the dimension of the system. However, it should be noted that a system

with a periodic solution also has a negative Lyapunov exponent as well as the stable system. This implies

10This is justiÞed by the well-known theorem of Takens (1981). This type of lag length is sometimes called the embedding
dimension. If the original model consists of n equations, the embedding dimension d must be greater than or equal to 2n+ 1
in order to obtain reliable results.
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that the evidence against a positive Lyapunov exponent does not exclude all the class of endogeneity such

as the limit cycle case. Nevertheless, focusing on the test for chaos seems to be meaningful because it

is such a nonperiodic ßuctuation that swayed the theoretical interests of the recent researchers in favor

of the endogenous business cycle explanation.11 With respect to detrending method, the evidence of the

negative Lyapunov exponent is stronger for the HP detrended series where the positivity hypothesis of the

Lyapunov exponent is signiÞcantly rejected for all the series except for the one-dimensional neural nets

result of Italy. Yet, so far, we have not considered the possibility of stochastic trend in the analysis.

4 Unit roots and chaos

In the previous section, we have investigated time series properties of economic ßuctuation under the

assumption of the deterministic trend. If the stochastic trend or the unit root is present in the data,

the asymptotic results based on the stationarity assumption cannot be applied. Since the choice between

the trend stationarity and difference stationarity is still an unsettled question in macroeconomic time

series analysis, it is important to consider both possibilities.12 Therefore, in this section, we examine

the Lyapunov exponent of time series with a unit root, both theoretically and empirically. If the data is

difference stationary, estimation of the Lyapunov exponent deÞned for the Þrst differenced series may be a

reasonable approach to employ.

For theoretical simplicity, we conÞne our attention to the single dimensional case. For a single dimen-

sional model with a unit root, the system (1) reduces to

Yt = Yt−1 + ut. (8)

11For example, it has already been shown that the trade cycle model of Hicks (1950), which is well-known for its periodic
ßuctuation, can also produce chaotic ßuctuation (Hommes (1995)).
12 In general, the evidence is favorable to difference stationary if a simple linear trend is assumed in the alternative and is

favorable to trend stationarity with an assumption of nonlinear trend such as a structural shift.
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Let us assume ut ∼ iid(0,σ2); (8) is then a random walk process. Since ∆m(Yt−1) = 1 for all Yt−1,

the Lyapunov exponent for a unit root process (8) is zero by the deÞnition of the single dimensional

Lyapunov exponent, λ ≡ limM→∞M−1PM
t=1 ln |∆m(Yt−1)|. The Þrst three columns of Table 3 show the

empirical results of the Lyapunov exponents estimated from raw data without detrending. While most

of the estimates are negative, the sizes of the absolute values are much smaller than those obtained from

detrended data presented in Table 1 and 2. The fact that the Lyapunov exponents are close to zero can be

considered as an indication of the presence of a unit root. However, at the same time, the standard errors

are also very small so that the null hypothesis of zero Lyapunov exponent is rejected for many series. The

problem here lies in the fact that the theoretical results in Section 2 are derived under the assumption

of stationarity and these results cannot be applied to the nonstationary data such as the one generated

from (8). Therefore, in order to examine the subject more closely, we need to discuss the properties of

nonparametric regression for the unit root processes.

The analysis of nonparametric regression for the unit root process has not been available until the sem-

inal work of Phillips and Park (1998). Their analysis is built upon the theory for nonlinear transformations

of integrated processes developed by Park and Phillips (1999) and their related papers. According to this

theory, in the limit, the nonlinear functions of integrated process depend on the local time of a Brownian

motion B, denoted by LB(t, s), which can be interpreted as the time that B spends in the vicinity of s over

the time interval [0, t]. Let us denote scaled version local time by L(t, s) = σ−2LB(t, s) and the mixed nor-

mal distribution by MN(0, ·). By extending Phillips and Park�s (1998) analysis of the Nadaraya-Watson

estimator, we obtain the following limit distribution of local quadratic Þrst derivative estimator for the

process (8).13

Theorem 2. Suppose that assumptions B1 to B3, which are presented in the Appendix, hold. Then as

13To the best of the authors� knowledge, there is no unit root theory applicable to the analysis of neural network estimation.
For this reason, we focus in this section on the local quadratic estimation.
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T →∞,

T
1
4h

3
2
T {∆bm(y)− 1} d→


MN

µ
0, µ

½³
K1
µ2

´2¾
σ2L(1, 0)−1

¶
for y = Þxed

MN

µ
0, µ

½³
K1
µ2

´2¾
σ2L(1, x)−1

¶
for y =

√
Tx,

where µ(F ) =
R∞
−∞ F (u)du, K1 = uK(u), K2 = u

2K(u), µ2 = µ(K2) and x =constant.

Theorem 2 shows that the local quadratic estimator of the Þrst derivative is T
1
4h

3
2
T consistent and its

limit distribution is mixed normal with the mixture variate given by the reciprocal of the local time. Since

the parametric estimator of the unit root process is known to be T consistent, nonparametric estimation

of the Þrst derivative has slower rate of convergence, which is, in a sense, similar to the stationary case.

Using this result, we can derive the asymptotic properties of the Lyapunov exponent estimator and the

standard error deÞned in Section 2.

Corollary 1. Suppose that assumptions in Theorem 2 hold, and M = T . Then

(i)

bλM p→ 0

In addition, if SM = o(T
1
2
−3γ),

(ii)

bΦ p→ 0.

The Þrst part of Corollary 1 shows the consistency of the Lyapunov exponent estimator even in the

nonstationary case. The second part of Corollary 1 shows the variance estimator also converges to zero.

This explains the small standard errors obtained in Table 3 and implies that they do not exclude the

possibility of the unit root in the data.14

14 If we proceed further and derive the limit distribution of bλM , we may be able to construct a unit root test based on the
Lyapunov exponent. This line of approach is pursued by Park and Whang (1999) who have proposed a statistic for testing
the random walk hypothesis against the chaotic alternative.
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If the process is generated from a unit root process (1) with a stochastic error ut, such a process falls in

the class of exogenous business cycle models with persistent exogenous shocks.15 However, if we introduce

the nonlinear model with respect to the Þrst differenced series, similar ßuctuation can be produced from

chaotic endogenous models. To consider these possibilities, it is reasonable to conduct the analysis of

Lyapunov exponent based on the Þrst differenced series. Since the Þrst differenced series satisÞes the

stationarity assumption, the results in Section 2, are directly applicable. Figure 2 shows the difference

between the U.S. business cycle ßuctuations deÞned by the Þrst differenced series and the HP Þltered

series. It shows that there is more ßuctuation in the Þrst difference series than in the HP Þltered series.

The second three columns of Table 3 shows the Lyapunov exponents estimates based on the Þrst differenced

data (or the growth rate data). It is interesting to note that, for all cases, the negative Lyapunov exponent

is obtained and the hypothesis of a positive Lyapunov exponent is signiÞcantly rejected. The size of the

absolute values is much larger than detrended case reported in the previous section. In fact, the Lyapunov

exponents are signiÞcantly smaller than -ln 2(≈ −0.693), the value with the system where the difference

in the initial condition will be decreased by half in the next period on average.16 If the transformation by

the Þrst differencing is appropriate, our results seems to be in favor of an exogenous model with persistent

shocks rather than the chaotic model for the Þrst differenced series.

5 Truth in advertising

We have investigated the possibility of chaos in macroeconomic time series based on the nonparametric

Lyapunov exponent estimates. Since computing the standard error provides a direct way to test the

hypothesis that the Lyapunov exponent is positive or to construct the conÞdence intervals, our approach

has an advantage over the former empirical studies that only reported the point estimates of the Lyapunov

15 Indeed, assumption of persistency of the technological shocks is often employed in the real business cycle models.
16This particular number is closely related to the notion of half-life in the linear stable system. The half-life and the

Lyapunov exponent of a linear AR model with AR coefficient 0.5 are 1 and -ln2, respectively.
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exponents. In this respect, we may say that our empirical results has removed at least one obstacle toward

the consensus on whether there is chaos for macroeconomic time series.

However, at the same time, it is fair to mention that the several limitations of the analysis leave room

for a variety of interpretations of the results. In this section, we list up the several reasons why our results,

unfavorable to chaos or complex endogenous ßuctuation, can not be considered as a deÞnitive answer.

5.1 Small sample bias

The most palpable limitation of our analysis is the available sample size of aggregate economic time series

data. Despite the fact that the GDP is the most commonly used series as a measure of business cycles,

it is only available quarterly. Compared to the direct method (Wolf et al. (1985)), the Jacobian method,

or regression based method, is known to require less observations to obtain reliable Lyapunov exponent

estimates. However, since our procedure including the standard error is based on asymptotic theory, the

validity of the analysis with sample size less than two hundred observations is still open to question. In

contrast to the Þeld of natural science where large number of observation is available for the analysis of

chaos, the results based on economic data are likely to suffer more from small sample bias.17

We have calculated some formal higher order asymptotic expansions and have found a second order

degrees of freedom bias in the Lyapunov exponent estimator (see Linton (1995) for some discussion of second

order effects in semiparametric estimation), and this bias is always downward. In our case, the direction

of this bias is downward, roughly speaking because the second derivative of the function x 7→ log(x2) is

−1/x2 and is always negative. The standard errors can also be downward biased in small samples for

essentially the same reason. Numerical evidence also conÞrms this prediction of small sample bias in the

negative direction. In the simulation with a Gaussian AR(1) model (Tables 1 to 3 in Whang and Linton

(1999)), when sample sizes are as small as 100 and 200, there are clear downward biases. Such a bias in

17Such a small sample bias associated with economic data has also been a problem in the analysis of chaos based on the
correlation dimension. See Ramsey, Sayers and Rothman (1990) for example.
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the negative direction may be a reason of obtaining weak evidence of chaos in our paper.

5.2 Noise level in noisy chaos

The Jacobian method used to compute Lyapunov exponents allows stochastic terms to be present in the

system. In fact, the asymptotic properties are derived from the nonlinear autoregressive model of the form

(1) with an error term referred to as a system noise (or a dynamical noise). In addition, unlike the carefully

controlled physical experiment, measurement error and unobserved quantities are more likely to exist in

aggregate economic time series. By deÞnition, if the deterministic part of the system generates chaos, it is

noisy chaos irrespective of the size of the noise.

The problem here is that, in general, the error term should be extremely small for any procedure to

expect good performance on detecting chaos in the deterministic part of the system. The power of the

test quickly declines as the noise level increases. Regarding this problem, the simulation method shows

how fragile the result can be by changing the size of the stochastic term. In Brock and Sayers (1988,

p.84), they mentioned some power of the Lyapunov exponent estimates to detect noisy chaos generated

from a tent map with a small measurement noise. Whang and Linton (1999) used the logistic map with

a small system noise and obtained standard error for the Lyapunov exponent estimates close to its true

standard deviation. However, it should be noted that these results were based on simple one-dimensional

map and required extremely small noise. Regarding higher-dimensional maps, Dechert and Gençay (1992)

conducted simulations investigating the performance of the neural network Lyapunov exponent estimator

applied to the Hénon map with the presence of either system noise or measurement noise. By changing

the noise to signal ratio, they have investigated how the estimates deteriorate with noise. The results

shows that there is a considerable downward bias when the noise to signal ratio (deÞned with standard

deviations) become as large as 0.1. Furthermore, more realistic scenario can be considered by conducting

simulation with speciÞc economic model that can generate chaos. Indeed, the asset pricing model of Brock
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and Hommes (1998) shows a clear difference between the simulated data with and without the noise in the

fundamentals.

These simulation results together suggest that we have to admit that constructing reliable test for

general noisy chaos with large measurement noise using currently available techniques is extremely difficult

and quite challenging. In this sense, empirical Þndings of this paper could be considered as an evidence

against deterministic chaos or noisy chaos with small noise but should not to be considered as a evidence

against noisy chaos in general.

5.3 Seasonal adjustment and detrending

Another important issue that needs to be considered is the effect of Þltering on the result of our procedure.

We estimated Lyapunov exponent using seasonally adjusted real output series. However, judging from

the reported results from the former studies, the conclusion can be inßuenced by conducting a seasonal

adjustment. The similar problem also applies to the effect of HP Þlter we employed as a detrending method.

This fact can be seen by comparing the HP detrended results in Table 1 and the results in levels in Table

3 where the number and signiÞcance of Lyapunov exponents of the two series are very different. If the

certain Þltering method does not preserve chaotic property of the series, inappropriate Þltering results in

less informative estimates. The order of applying two Þlters may also provide different results. Indeed,

such a lack of robustness to the choice of Þltering in the analysis of chaos seems to be one of the main

reasons why there was little agreement about the existence of chaos in economic data (see Barnett et al.

(1995) on the related discussions on the robustness of the analysis).

Related to this issue of Þltering is the issue of stochastic trend and Þrst differencing discussed in

Section 4. Applying our procedure to the Þrst differenced series is justiÞable for the case when the data is

a cumulative sum of chaotic series or when the data is such a series plus a stochastic trend. However, it

does not work when it is applied to a chaotic series around a stochastic trend. For example, if there is a
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unit root in the �fundamental� part of the process (based on the models such as an asset pricing model or a

DSGE model), and if chaos arises in the deviation from such a �fundamental,� as in the Brock and Hommes

(1998) model, the procedure employed in Section 4 calculates the Lyapunov exponent of the noise and the

Þrst difference of a chaotic process. If we simply plot the typical over-differenced chaotic series (such as

logistic map) on a graph as one-dimensional map, the resulting nonlinear mapping is usually pathological

and cannot be estimated using nonparametric regression method. This implies that our procedure cannot

be used to detect chaos around the stochastic trend.

5.4 MisspeciÞed nonlinearity and dependence

The Þnal caveat is on the relation between the Lyapunov exponent and the class of nonlinear time series

that is not covered by our theory. For the purpose of deriving asymptotics, dependency of the time series

is controlled by a mixing coefficient that decreases at a certain rate (see Assumption A1 in the Appendix).

However, it is well-known that such a mixing condition crucially depends on the nonlinear functional

form (see Doukhan (1994) for the relation between mixing and nonlinear AR models). Therefore, if the

underlying chaotic process is not mixing, our procedure may not have power to detect the chaos. In

addition, recent studies have revealed that the data generated from the deterministic chaotic system, such

as the logistic map, can have long range dependence with a certain choice of parameter value (Hall and

Wolff (1995) and Guégan (2000)). However, our procedure is designed for the short-memory rather than

the long-memory time series.

In contrast to the no consensus of chaos in aggregate data, it is generally agreed that the nonlinearity

itself plays an important role in characterizing economics time series. Indeed several classes of nonlin-

ear models, including threshold autoregressive (TAR) models (Tong (1990), Potter (1995), and Hansen

(1996)), Markov-Switching models (Hamilton (1989)) and models with duration dependence (Diebold and

Rudebusch (1990)) have been very successful in the empirical analysis of business cycles. In order to eval-
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uate the validity of our Lyapunov exponent test for these classes of models, further analysis is required

since the interpretation of Lyapunov exponent for these models may be difficult. For example, as shown in

Pesaran and Potter (1997), the ßoor and ceiling structure of Hicks type trade cycle model can be estimated

using TAR model. In the analysis of business cycle duration dependence, Diebold and Rudebusch (1990)

have introduced the generalized notion of periodicity, including stochastic periodicity and stochastic weak

periodicity. Such properties cannot be covered by the system that generates simple periodic ßuctuation

where the Lyapunov exponent is negative.

6 Conclusion

In this paper, we have conducted a nonparametric analysis of the Lyapunov exponent for the purpose

of comparing two alternative views of the business cycle � the traditional exogenous and chaotic (or

complex) endogenous approaches. The procedure was applied to investigate the real output series from

various countries also examined by Brock (1986), Frank and Stengos (1988) and Frank, Gençay and Stengos

(1988). The value that we have provided is mostly in the standard error or the conÞdence intervals based

on our asymptotic distribution theory. In this sense, our approach provides a more scientiÞc way of

evaluating the data than simply reporting the point estimates. Surprisingly, in many cases, our Lyapunov

exponent estimates were negative, although frequently close to zero, and the positivity of the exponent was

signiÞcantly rejected in the statistical sense. This Þnding was robust to the choice of nonparametric method

as well as to the choice of the dimension of the system. Further theoretical and empirical analyses were

also conducted to consider the effect of unit root nonstationarity. The result based on the Þrst differenced

series rather than the detrended series again showed signiÞcant negative Lyapunov exponents.

A possible interpretation of this result is that the exogenous models are better able to explain business

cycle ßuctuations than is the chaotic endogenous approach. If this is the case, it supports former studies

that did not Þnd evidence of chaos in similar series. Most importantly, the results can be considered as
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an empirical justiÞcation of the impulse response analysis that is commonly used among macroeconomists

under the framework of the DSGE models.

An alternative interpretation is that we failed to detect chaos because of the limitations of our analysis.

As the source of difficulties, we have listed the issues of small sample bias, high noise level in noisy chaos,

Þltering and the class of nonlinearity of the system. If we consider these issues seriously, our Þndings

cannot exclude all the possibilities of chaos. In this sense, the results reported in this paper may be better

considered as one clue rather than a deÞnitive answer to our original question. One remedy to the problem

associated with the small sample is to apply our procedure to economic data available with larger number

of observations. Since Þnancial time series is usually available daily or even trade by trade, and since

a economic theory predicts chaos in the stock market (Brock and Hommes (1998)), analysis of Þnancial

market would be of great interest. In addition, many aggregate series other than real GDP series are

available monthly. The test based on monetary aggregates and aggregate price is also an important topic.

These analyses are currently being conducted by the authors.
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Appendix: Assumptions and proofs

Assumptions for Theorem 1.

Assumption A1 (mixing): (1) The process {Yt}Tt=1 is a strong mixing sequence satisfying
P∞
j=1 j

a {α(j)}1−2/v <
∞ for some v > 2, a ≥ 1− 2/v, where α(j) is the strong mixing coefficient deÞned by

α(j) = sup
A∈F0−∞,B∈F∞j

|P (AB)− P (A)P (B)| ,

where F ts is the σ-Þeld generated by (Ys, . . . , Yt).
(2) E |Yt|σ <∞ for some σ ≥ v.
(3) α(j) satisÞes

P∞
T=1 ψ(T ) <∞, where

ψ(T ) =
TΛT
rT

µ
T τT
hT lnT

¶1/4
α(rT ),

rT =

¡
ThdT/ lnT

¢1/2
τT

, ΛT =

Ã
T τ2T

hd+2T lnT

!d/2

and τT =
©
T lnT (ln lnT )1+δ

ª1/σ for some 0 < δ < 1.
Assumption A2 (density): (1) The probability density function f(x) is bounded and uniformly continu-
ous on Rd and f(x) ≤const< ∞. (2) The joint density function fXt,Xt−l(x, x0) of Xt and Xt−l sat-
isÞes fXt,Xt−l(x, x

0) ≤const< ∞ for all l ≥ 1.(3) The conditional density function of fXt−1|Yt(x|y) of
Xt−1 given Yt exists and is bounded, fXt−1|Yt(x|y) ≤const< ∞. (4) The conditional density function of
f(Xt,Xt−l)|(Yt,Yt−l)(x, x

0|y, y0) of (Xt,Xt−l) given (Yt, Yt−l) exists and is bounded, i.e.,
f(Xt,Xt−l)|(Yt,Yt−l)(x, x

0|y, y0) ≤const< ∞ for all l ≥ 1. (5) infx∈D f(x) =const< ∞, where D is a compact
subset of Rd.

Assumption A3 (regression function): (1) Dkm(x) is bounded and uniformly continuous on Rd for |k| = 3,
where

Dkm(x) =
∂|k|m(x)

∂Y k1t−1, . . . ,∂Y
kd
t−d
,

k = (k1, . . . , kd)
0 ∈Rd, and a vector norm deÞned by |k| ≡ Pd

i=1 |ki|. (2) supx∈Rd
¯̄
Dkm(x)

¯̄ ≤const< ∞
for |k| = 3. (3) ¯̄Dkm(x)−Dkm(z)¯̄ ≤const×kx− zk for |k| = 3.
Assumption A4 (kernel): (1)

R kuk4K(u)du < ∞. (2) K(u) is bounded with compact support. (3)¯̄
ujK(u)− vjK(v)¯̄ ≤const×ku− vk for all j with 0 ≤ j ≤ 2.
Assumption A5 (bandwidth):

hT = O

(µ
T

lnT

¶−1/(d+6))
.

Assumption A6 (extreme value theory): max1≤t≤M |Ft−1(JM−1, . . . , J0)| = Op(Mφ) for some φ ≥ 0, where

Ft−1(JM−1, . . . , J0) =
∂ ln ν1 (T

0
MTM)

∂∆m(Xt−1)
and ∆m(Xt−1) = (∆m1,t−1,∆m2,t−1, . . . ,∆md,t−1)0.
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Assumption A7 (block length): M →∞ and

M = O

(µ
T

lnT

¶4/{(d+6)(1+2φ)})
.

Proof of Theorem 1.

By Theorem 6 of Masry (1996), under assumptions A1-A5, we have the following uniform convergence
rate of the local quadratic Þrst derivative estimator,

sup
x∈D

|∆bm(x)−∆m(x)| = Oa.s.(µ T

lnT

¶−2/(d+6))
.

By rearranging terms,
√
M(bλM − λ) =

√
M(bλM − λM) +

√
M(λM − λ),

where λM is the local Lyapunov exponent deÞned by

λM =
1

2M
ln ν1

¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢
.

For the second term, we have

√
M(λM − λ) =

√
M

·
1

2M
ln ν1

¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢− λ¸

=
√
M

·
1

2M
ln ν1

¡
T0MTM

¢− λ¸
=

√
M

"
1

2M
ln

Ã
ν1 (T

0
MTM)

ν1
¡
T0M−1TM−1

¢!+ 1

2M
ln νi

¡
T0M−1TM−1

¢− λ#

=
√
M

"
M−1X
k=1

1

2M
ln

Ã
ν1
¡
T0M−k+1TM−k+1

¢
ν1
¡
T0M−kTM−k

¢ !
+

1

2M
ln ν1

¡
T01T1

¢− λ#

=
√
M

"
1

M

MX
k=1

ξM−k+1 − λ
#

=
1√
M

MX
t=1

[ξt − λ]⇒ N(0,Φ)

by the CLT of Herrndorf (1984, Corollary 1) and results of Furstenberg and Kesten (1960, Theorem 3).
For the Þrst term,¯̄̄√

M(bλ− λM)¯̄̄ =
1

2
√
M

¯̄̄
ln ν1

³
(ΠMt=1 bJM−t)0(ΠMt=1 bJM−t)´− ln ν1 ¡(ΠMt=1JM−t)0(ΠMt=1JM−t)¢¯̄̄

=

¯̄̄̄
¯ 1√
M

MX
t=1

Ft−1(J∗M−1, . . . , J
∗
0 )
0 [∆bm(Xt−1)−∆m(Xt−1)]

¯̄̄̄
¯
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≤ [T/ lnT ]−
2

6+dM
1
2
+φ

·
[T/ lnT ]

2
6+d sup

x∈D
|∆bm(x)−∆m(x)|¸

×M−φ max
1≤t≤M

¯̄
Ft−1(J∗M−1, . . . , J

∗
0 )
¯̄
= op(1),

where the second equality follows from a one-term Taylor expansion

ln ν1

³
(ΠMt=1

bJM−t)0(ΠMt=1 bJM−t)´
= ln ν1

¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢
+
∂ ln ν1

¡
(ΠMt=1J

∗
M−t)

0(ΠMt=1J∗M−t)
¢

∂∆m0(Xt−1)0
[∆bm(Xt−1)−∆m(Xt−1)]

= ln ν1
¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢
+ Ft−1(J∗M−1, . . . , J

∗
0 )
0 [∆bm(Xt−1)−∆m(Xt−1)] ,

where the elements of J∗t lie between those of bJt and Jt for t = 0, . . . ,M − 1. The convergence to zero
holds because of [T/ lnT ]−

2
6+dM

1
2
+φ = O(1) from assumption A7, uniform convergence rate of ∆bm(Xt−1)

and M−φmax1≤t≤M
¯̄
Ft−1(J∗M−1, . . . , J

∗
0 )
¯̄
= Op(1) from assumption A6, respectively. The latter can be

veriÞed by using the argument given in the proof of Theorem 1 in Whang and Linton (1999).

Assumptions for Theorem 2.

Assumption B1 (data): (1) y0 = Op(1) (2) {ut}∞j=0 is iid(0,σ2) with E (|ut|q) <∞, for some q > 4, and
has the distribution absolutely continuous with respect to the Lebesgue measure with characteristic function
φ(t) for which limt→∞ trφ(t) = 0 for some r > 0.

Assumption B2 (kernel): (1) µ(Ki) =
R
uiK(u)du <∞ and µ(K2

i ) =
R
u2iK(u)2du <∞ for 0 ≤ i ≤

4. (2) µ(K) =
R
uK(u)du = 1, µ(K2) =

R
u2K(u)du 6= 0, K(x) = K(−x) and supK(x) <∞.

Assumption B3 (bandwidth):

hT = O(T
−γ) for some 0 < γ <

1

10
.

Proof of Theorem 2.

The local quadratic estimator for the univariate case can be written as

bβ(y) =
 bβ0(y)bβ1(y)bβ2(y)

 =
 S0(y) S1(y) S2(y)
S1(y) S2(y) S3(y)
S2(y) S3(y) S4(y)

−1  T0(y)T1(y)
T2(y)

 ,
where Si(y) =

PT
t=1(Yt−1 − y)iKH(Yt−1 − y) and Ti(y) =

PT
t=1(Yt−1 − y)iKH(Yt−1 − y)Yt. Substituting

Yt = Yt−1 + ut in the formula of ∆bm(y) = bβ1(y) yields
T

1
4h

3
2
T {∆bm(y)− 1} = −A0(y) +A1(y)−A2(y)

B(y)
, (A.1)

where

A0(y) = {Q1(y)Q4(y)−Q2(y)Q3n(y)}P0(y),
A1(y) =

©
Q0(y)Q4(y)−Q2(y)2

ª
P1(y),

A2(y) = {Q0(y)Q3(y)−Q1(y)Q2(y)}P2(y),
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and

B(y) = Q0(y)Q2(y)Q4(y) + 2Q1(y)Q2(y)Q3(y)

−Q2(y)3 −Q0(y)Q3(y)2 −Q1(y)2Q4(y),

where

Qi(y) =
1

T 1/2hT

TX
t=1

µ
Yt−1 − y
hT

¶i
K

µ
Yt−1 − y
hT

¶
and

Pi(y) =
1

T 1/4h
1/2
T

TX
t=1

µ
Yt−1 − y
hT

¶i
K

µ
Yt−1 − y
hT

¶
ut.

Let y be a Þxed constant. Under assumptions B1-B3, by using the same argument as in Phillips and
Park (1998) or Park and Whang (1999), we have

Q0(y)
d→ µ(K)L(1, 0), Q1(y)

p→ 0,

Q2(y)
d→ µ(K2)L(1, 0), Q3(y)

p→ 0,

Q4(y)
d→ µ(K4)L(1, 0)

and
Pi(y)

d→ ©
µ(K2

i )σ
2L(1, 0)

ª1/2
V (1) for 0 ≤ j ≤ 2,

where V is a standard Brownian motion independent of B. Therefore, the Þrst and third elements of (9)
are negligible since

A0(y), A2(y)
p→ 0

and
B(y) = Q0(y)Q2(y)Q4(y)−Q2(y)3 + op(1) d→ µ(K2)

©
µ(K4)− µ(K2)2

ª
L(1, 0)3 > 0.

Finally,

A1(y)

B(y)
d→
©
µ(K4)− µ(K2)2

ª
L(1, 0)2

©
µ(K2

1)σ
2L(1, 0)

ª1/2
V (1)

µ(K2) {µ(K4)− µ(K2)2}L(1, 0)3 =

½
µ(K2

1)σ
2

µ(K2)2L(1, 0)

¾1/2
V (1),

which yields required result. The case with y =
√
Tx can be proved by using the same argument and

replacing L(1, 0) by L(1, x).

Proof of Corollary 1.

(i) From the deÞnition, the Lyapunov exponent estimator can be rewritten as

bλM =
1

T

TX
t=1

ln |∆bm(Yt−1)|
=

Z 1

0

n
ln
¯̄̄
∆bm(√TB(r))¯̄̄odr + op(1)

=

Z 1

0

n
ln
¯̄̄
1 +

³
∆bm(√TB(r))− 1´¯̄̄o dr + op(1),
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where the second equality holds by the strong approximation result. The required result follows from
∆bm(√Tx) p→ 1 from Theorem 2.

(ii) Using the result by Park and Whang (1999), bλM = Op(T
− 1
2h−3T ). In addition {∆bm(Yt−1)− 1} =

Op(T
− 1
4h
− 3
2

T ) from Theorem 2, which implies ln |∆bm(Yt−1)| = Op(T− 1
4h
− 3
2

T ).

bηt = ln |∆bm(Yt−1)|− bλM
= Op(T

− 1
4h
−3
2

T ) = Op(T
−1
4
+ 3
2
γ) and

bγ(j) = Op(T− 1
2
+3γ).

Therefore bΦ = O(SM)×Op(T− 1
2
+3γ) = o(T

1
2
−3γ)×Op(T− 1

2
+3γ) = op(1).
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Table 1
Lyapunov Exponent Estimates

(Univariate Results)

Country Method Linear Detrend HP Detrend
(Sample Size) Global Local Global Local
1. Canada NN -0.031 -0.030 -0.031 -0.213 -0.210 -0.216
(T=170) (0.002) (0.009) (0.008) (0.005) (0.005) (0.006)

LQ -0.055 -0.055 -0.056 -0.205 -0.207 -0.202
(0.018) (0.025) (0.013) (0.004) (0.004) (0.005)

2. Germany NN -0.092 -0.162 -0.023 -0.451 -0.482 -0.422
(T=155) (0.053) (0.048) (0.108) (0.096) (0.149) (0.131)

LQ -0.131 -0.133 -0.129 -0.363 -0.370 -0.356
(0.038) (0.057) (0.049) (0.019) (0.028) (0.027)

3. Italy NN -0.054 -0.058 -0.050 0.092 0.173 0.013
(T=155) (0.022) (0.021) (0.037) (0.077) (0.128) (0.081)

LQ -0.037 -0.045 -0.028 -0.220 -0.244 -0.197
(0.007) (0.010) (0.001) (0.020) (0.038) (0.003)

4. Japan NN -0.011 -0.020 -0.001 -0.356 -0.487 -0.215
(T=175) (0.003) (0.005) (0.006) (0.056) (0.070) (0.063)

LQ -0.008 -0.011 -0.004 -0.449 -0.594 -0.287
(0.001) (0.002) (0.002) (0.059) (0.091) (0.045)

5. U.K. NN -0.042 -0.039 -0.045 -0.272 -0.267 -0.277
(T=170) (0.047) (0.078) (0.051) (0.037) (0.045) (0.059)

LQ -0.089 -0.110 -0.067 -0.348 -0.363 -0.332
(0.016) (0.018) (0.017) (0.038) (0.059) (0.053)

6. U.S. NN -0.107 -0.155 -0.059 -0.193 -0.196 -0.190
(T=170) (0.037) (0.069) (0.019) (0.003) (0.004) (0.005)

LQ -0.048 -0.063 -0.033 -0.189 -0.191 -0.187
(0.008) (0.009) (0.005) (0.003) (0.005) (0.005)

Note: Standard errors (
qbΦ/M) are in the parentheses. Both estimates using neural networks (NN)

and local quadratic smoother (LQ) are presented. The global estimates are based on the entire sample,
while the local estimates are based on two (non-overlapping) blocks. QS kernel estimator with optimal
bandwidth (Andrews (1991)) is used for the standard errors. The 1% level critical value for the null

hypothesis of λ > 0 is −2.326, which should be compared with bλM/qbΦ/M . Bold font indicates that this
null hypothesis could not be rejected at the 1% level of signiÞcance.
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Table 2
Lyapunov Exponent Estimates
(Multidimensional Results)

Country Method Linear Detrend HP Detrend
(Dimension) Global Local Global Local
1. Canada NN -0.052 -0.047 -0.046 -0.364 -0.354 -0.361
(d=2) (0.021) (0.027) (0.020) (0.009) (0.014) (0.015)

LQ -0.037 -0.024 -0.041 -0.389 -0.375 -0.385
(0.008) (0.010) (0.012) (0.017) (0.024) (0.027)

2. Germany NN -0.114 -0.124 -0.099 -0.316 -0.315 -0.312
(d=2) (0.029) (0.039) (0.040) (0.018) (0.026) (0.031)

LQ -0.068 -0.065 -0.069 -0.272 -0.265 -0.276
(0.009) (0.011) (0.011) (0.012) (0.017) (0.016)

3. Italy NN -0.129 -0.188 -0.041 -0.254 -0.253 -0.245
(d=3) (0.051) (0.059) (0.036) (0.007) (0.016) (0.018)

LQ -0.133 -0.160 -0.079 -0.189 -0.171 -0.184
(0.033) (0.037) (0.040) (0.015) (0.035) (0.028)

4. Japan NN -0.013 -0.030 0.027 -0.184 -0.217 -0.147
(d=4) (0.021) (0.029) (0.019) (0.016) (0.021) (0.026)

LQ -0.034 -0.042 0.003 -0.171 -0.162 -0.168
(0.020) (0.030) (0.024) (0.025) (0.033) (0.040)

5. U.K. NN -0.160 -0.178 -0.108 -0.207 -0.196 -0.194
(d=4) (0.030) (0.041) (0.037) (0.021) (0.029) (0.035)

LQ -0.094 -0.085 -0.087 -0.220 -0.217 -0.208
(0.020) (0.033) (0.023) (0.031) (0.048) (0.044)

6. U.S. NN -0.089 -0.131 -0.036 -0.180 -0.175 -0.180
(d=2 for Linear, (0.022) (0.027) (0.011) (0.009) (0.018) (0.013)
d=3 for HP) LQ -0.100 -0.125 -0.067 -0.208 -0.201 -0.200

(0.013) (0.022) (0.009) (0.016) (0.026) (0.028)

Note: See note of Table 1.
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Table 3
Lyapunov Exponent Estimates Based on Levels

and First Differences SpeciÞcations

Country Method Levels First Differences
Global Local Global Local

1. Canada NN -0.013 -0.004 -0.022 -1.460 -1.555 -1.365
(0.004) (0.004) (0.003) (0.032) (0.042) (0.043)

LQ -0.002 0.002 -0.007 -1.344 -1.355 -1.332
(0.003) (0.002) (0.000) (0.028) (0.031) (0.049)

2. Germany NN -0.034 -0.027 -0.038 -4.121 -4.292 -3.949
(0.012) (0.016) (0.026) (0.127) (0.149) (0.164)

LQ -0.007 -0.012 -0.003 -2.450 -2.507 -2.393
(0.003) (0.002) (0.000) (0.122) (0.193) (0.146)

3. Italy NN -0.023 -0.013 -0.033 -1.370 -0.856 -1.884
(0.003) (0.010) (0.001) (0.158) (0.233) (0.171)

LQ -0.011 -0.009 -0.012 -0.985 -0.924 -1.046
(0.001) (0.002) (0.000) (0.073) (0.105) (0.098)

4. Japan NN -0.020 -0.009 -0.030 -1.324 -1.000 -1.647
(0.002) (0.004) (0.002) (0.118) (0.127) (0.172)

LQ -0.009 -0.004 -0.014 -1.283 -1.141 -1.426
(0.003) (0.003) (0.000) (0.082) (0.101) (0.142)

5. U.K. NN -0.010 -0.010 -0.010 -4.485 -4.378 -4.592
(0.002) (0.010) (0.007) (0.089) (0.136) (0.130)

LQ -0.001 -0.004 0.002 -2.227 -2.186 -2.270
(0.001) (0.000) (0.000) (0.061) (0.088) (0.087)

6. U.S. NN -0.004 -0.007 -0.002 -1.076 -1.098 -1.054
(0.002) (0.003) (0.002) (0.011) (0.018) (0.011)

LQ 0.000 -0.003 0.003 -1.106 -1.100 -1.114
(0.002) (0.001) (0.001) (0.020) (0.016) (0.038)

Note: See note of Table 1.
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