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Abstract

Jacobs (1969) argues that uncompensated knowledge spillovers have played a crucial role in
population agglomeration and thus in the generation of cities.  We explore this idea formally by
extending the Romer (1986) model of (inter-firm) externalities in production to an explicit spatial
context.  We postulate that knowledge spillovers between firms decrease with the distance between the
firms.  A general equilibrium model with households and firms residing in a linear or long, narrow city
is constructed.  The allocation of goods and factors, the locational choice of firm sites and household
residences, as well as factor prices and land rents are all endogenously determined.  The equilibrium
urban configuration may be concentrated (with monocentric firm locations), dispersed (with completely
mixed firm and household locations) or a combination (with incompletely mixed firm and household
locations), depending on the population of firms as well as the transportation and firm-interaction
parameters.  Due to the distance-dependent production externalities, firms will be clustered together in
any equilibrium.  As a consequence, the duo-centric or any multi-centric urban configuration is never
an equilibrium configuration.  Moreover, except for a set of parameters of measure zero, the
equilibrium urban configuration is unique. 
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1.  Introduction

What are the driving forces behind the formation of cities?  What are the roles of internal and

external returns to scale in agglomerative activities?  Since the second half of the 1980s, the

Marshallian externality has been commonly used as the primary driving force for city formation.  While

the development of a spatial model with internal scale economies has reached a mature stage, previous

studies of external returns either lack an explicit spatial structure or rely exclusively on numerical

computation.  Construction of a general-equilibrium spatial model elaborating analytically on the role

of external scale economies in spatial agglomeration remains largely unexplored.

Almost three decades ago, Jacobs (1969) argued that uncompensated knowledge spillovers

have played a central role in population agglomeration and thus in the generation of cities.  Not until the

mid-1980s did Romer (1986) and Lucas (1988) formalize this idea to create a revolution in their

attempts to elaborate on the determinants of the endogenous rate of economic growth, giving birth to

the so-called new growth theory .  In their studies, an individual’s knowledge or human capital

generates a positive external effect on society’s aggregate stock of knowledge or human capital, which

in turns enhances each individual’s production.  Such a framework has fostered numerous research

projects in the area of economic growth and development.  In our paper, we explore this rich idea

formally by extending the Romer (1986) model of positive externalities in production to an explicit

spatial context.  

Just how important are positive knowledge spillovers to spatial agglomeration?  Abundant

empirical evidence has lent strong support.  For example, Glaeser et al (1992) and Henderson et al 

(1995) find significant knowledge spillovers both within and between industries, which are important to

city employment growth and to the location decisions of industries.  Using patent data, Jaffe et al

(1993) conclude that knowledge spillovers are geographically concentrated in the sense that patents are

more likely to cite previous patents from the same area.  Yet more evidence is the formation of



1 Inelastic firm demand for land is a common simplifying assumption adopted in the literature.
For example, see Ogawa and Fujita (1980), Fujita and Ogawa (1982) and Fujita and Thisse (1986).
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research parks, such as Boston’s Route 128 and California’s  Silicon Valley [e.g., see a discussion by

Saxenian (1996) with respect to the importance of knowledge spillovers between (vertically) integrated

firms and by Krugman (1991) with respect to the external flows of technologies].  Moreover, in Rauch

(1993) and Ciccone and Hall (1996), geographical concentration is shown to improve productivity

significantly.

Despite its important implications for regional development and city growth, uncompensated

knowledge spillovers have not been modeled formally in a general-equilibrium framework with

location.  This paper therefore provides, to our knowledge, the first attempt at such an endeavor. 

Specifically, we extend the Romer (1986) model of positive production externalities to allow for the

inter-firm knowledge spillovers that decrease with distance between the firms.  This geographically

diminishing effect is measured by both Euclidean distance to the mean of the distribution of firms and

an overall firm dispersion index.  There are two important features of the Romer production externality:

(i) it is of the external Marshallian type among firms; and (ii) its magnitude is based on the average or

aggregation of the capital stocks of individual firms.  We construct a general equilibrium model with

households and firms residing in a linear or long, narrow city.  We assume for tractability that each

household or firm is required to occupy a fixed density of land.1  In addition to using land, firms

employ labor and capital to produce a single homogenous good, maximizing profits.  Households

choose workplaces and residences to maximize utility.  In competitive equilibrium, the allocation of

goods and factors, the locational choice of firm sites and household residences, and factor prices and

land rents are all endogenously determined.  

We consider the endogenous formation of urban configurations.  The equilibrium configuration

may be concentrated (with monocentric firm locations), dispersed (with completely mixed firm and
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household locations) or a combination (with incompletely mixed firm and household locations).  The

crucial determinants of the underlying urban configuration are:  (i) the consumer commuting cost per

unit distance to the firms, (ii) the degree to which knowledge spillovers become less effective as a result

of overall firm dispersion, and (iii) the population of firms.  Due to the distance-dependent production

externalities, firms will be clustered together in any equilibrium.  As a consequence, the duo-centric or

any multi-centric urban configuration is never an equilibrium outcome.  Moreover, except for a set of

parameters of measure zero, the equilibrium urban configuration is unique. 

Two closely related papers are Ogawa and Fujita (1980) and Fujita and Ogawa (1982).  In their

pivotal work, Ogawa and Fujita (1980) incorporate a (strictly) convex inter-firm transactions cost

schedule into a linear city model to generate the urban land use patterns.  Under a Leontief production

technology in labor and land (with no capital), firms minimize the real resource costs of transactions,

thus determining the types of urban configuration.  In this framework, multi-centric urban

configurations cannot arise in equilibrium.  Fujita and Ogawa (1982) extend their previous study by

considering a “locational potential function” in which a weighted average of pairwise Euclidean

distances between firms has a negative effect on firms’ profit.  In contrast to the transactions cost

arguments, this paper focuses on the externality of business agglomeration.  Regardless of the various

types of urban configurations, the locational potential function is always (strictly) concave in distance

over business areas, thus implying a (strictly) convex penalty cost for firm dispersion.  Using numerical

analysis, they find that multi-centric urban structures are possible and multiple equilibria are present.  

Our paper differs significantly from both papers: (i) we formalize the knowledge spillover idea

a la Romer in which knowledge spillovers are regarded as uncompensated factor inputs in firms’

production (rather than via transactions cost or firm profit independent of aggregate capital usage); (ii)

we follow closely the Romer convention to allow both Euclidean distance to the mean of the

distribution of firms and an overall firm dispersion index to affect the productivity of inter-firm



2 As argued in Section 4.4 below, multi-centric equilibria can never be generated in models like
ours, independent of the convexity or concavity properties of the penalty or transactions cost schedule. 
The key to the generation of multi-centric equilibria in Fujita and Ogawa (1982) is the fixed factor
proportions and the separability of the locational potential function that compares firm locations
pairwise to obtain the overall penalty for a firm by integration.  In contrast, our penalty functions are
explicitly non-separable into a pairwise form and the external factor is allowed to affect the factor
proportions.

3 In contrast to our perfect competition framework, Fujita and Krugman (1997) consider
monopolistic competition whereas Fujita and Thisse (1986) employ a Nash equilibrium concept with
oligopoly.  Neither incorporates Romer externalities nor allows firms to compete for land use.  
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knowledge spillovers (rather than an integral of pairwise distance between firms); and, (iii) we permit

factor substitution (rather than using a Leontief production function).  Notably, by developing a

generalized Romer framework of knowledge spillovers rather than the locational potential function, we

can conduct the analysis analytically to obtain the general equilibrium urban configuration without

relying on numerical examples.  Since we consider externalities of firm agglomeration with a strictly

convex penalty for firm dispersion, our model structure in this regard is relatively closer to Fujita and

Ogawa (1982).  Yet, a multi-centric urban configuration cannot arise in equilibrium.2  Our results

regarding the absence of a multi-centric city and the uniqueness of spatial equilibrium are obviously in

contrast with findings in Fujita and Ogawa (1982), in the more recent sequels using models of product

differentiation [e.g., see Fujita and Krugman (1997)], and in the spatial competition models with an

active land market [e.g., see Fujita and Thisse (1986)].3 

Another related paper is Palivos and Wang (1996), who consider knowledge spillovers in a

monocentric city setting with endogenous growth.  Their paper focuses on determining the optimal

paths for output and population growth and the contrast between decentralized and socially optimal

outcomes.  They treat the monocentric urban configuration as exogenously given and assume unified

household-firm units.  In contrast, our paper examines the economic and geographical interplay

between households and firms and, as a consequence, determines the equilibrium urban configuration
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endogenously.

It is useful to summarize and highlight the main contributions of our paper relative to the

existing literature.  First, we model precisely the source of external returns to scale via Jacobs-Romer

knowledge spillovers between firms.  Second, we consider an explicitly spatial structure with locational

choice of residence, job site and production site within a perfectly competitive, general-equilibrium

framework with capital, labor and land as production inputs.  Third, we allow both distance to the

mean and the overall dispersion of firms to affect the degree of knowledge spillovers and formally

model it by applying index number theory.  Finally, our analytical results provide testable implications

for rent gradients and spatial configuration with respect to commuting, population size and spillover

parameters, which may be useful for empirically distinguishing this theory from others.

The organization of the remainder of the paper is as follows.  In Section 2, we present the basic

environment and the model structure.  We then describe the equilibrium concept in Section 3.  Section

4 studies the formation of completely mixed, monocentric and incompletely mixed urban

configurations and establishes the parameter values for which these various configurations are

equilibria.  We also show that no multi-centric configuration can emerge in equilibrium.  In Section 5,

we prove the existence and the uniqueness (almost everywhere) of spatial equilibrium and characterize

the relationships between commuting and dispersion parameters and the resulting urban configurations. 

We conclude the paper in Section 6.  An appendix contains all proofs.

2.  The Model

Consider a linear city spread over a featureless “long-narrow” line represented by ,S / [&1,1]

with uniformly distributed land.  There is a continuum of firms of mass M and a continuum of

households of mass N (with N + M = 2, N > 0, M > 0).  Each household occupies a unit density of

land.  For simplicity, we assume that there is an absentee landlord, who owns all the land (of measure

two) and consumes no land.  In addition to using land, firms hire capital and labor to undertake the



4  For a comprehensive discussion and mathematical characterization of the decomposability
property (of poverty indices), the reader is referred to Foster and Shorrocks (1991).  Of course, in the
context of urban economics considered herein, decomposability is defined in terms of firm clusters
rather than income groups.
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production of a single homogeneous composite consumption good.  While the absentee landlord

spends the entirety of the rental income from firms and households for composite good consumption,

each household chooses workplace and residence to maximize utility - which will turn out to be the

same as maximizing net income for consumption.  Both factor and goods markets are perfectly

competitive.  Both factors are fully employed in equilibrium. 

The central feature of the model is the influence of the uncompensated inter-firm knowledge

spillovers in production.  An individual firm employs capital (K), labor (L) and land to produce goods

using a constant returns to scale technology which exhibits a Cobb-Douglas form.  Due to the presence

of uncompensated knowledge spillovers a la Romer (1986), the aggregate capital stock (of all firms

located in the city, denoted ) has a positive effect on the individual production of each firm.  InK

contrast with Romer (1986), we allow the magnitude of this positive externality to diminish with

distance.  Thus, in addition to a relative distance measure, we incorporate a dispersion measure - the

more concentrated firms are, the more effective knowledge spillovers will be.  

Let z be the location index, z 0 .  Denote the density of firms at location z under aS / [&1,1]

particular urban configuration J (to be determined in equilibrium) by mJ(z).  We then denote the mean

location of firm sites as µ = Iz0S z·mJ(z)dz and the overall dispersion of firm sites as FJ , to be defined

next.  To suit our needs, we require this overall dispersion index to be (i) absolute (invariant to adding a

constant to every firm’s location), (ii) decomposable (into subgroups with subgroup consistency),4 and

(iii) symmetric (to the mean location).  The measures in the Kolm-Pollak class satisfy these properties

[see Kolm (1976) and Pollak (1979)].  The simplest among these is an absolute deviation measure:



5 We could use the variance measure or any other measure in the Kolm-Pollak class, but choose
the absolute deviation measure for its analytical simplicity.  For symmetry, we focus primarily on the
case when µ = 0 and thus .FJ ' (4/M)m

1

0
mJ(z) zdz

6 More specifically, 2-Q may be regarded comparable to the transactions cost JT(x) in Ogawa
and Fujita (1980), whereas Q is similar to the locational potential function F(x) in Fujita and Ogawa
(1982).  Under Leontief production, the locational potential function setting in Fujita and Ogawa
(1982) can be rewritten in a functionally equivalent form as a transactions cost depending on an
exponential measure of distance between firms, which can be compared directly with that in Ogawa
and Fujita (1980) using a linear measure of distance.  Yet, such an equivalence cannot be established
with more general production functions such as the Cobb-Douglas form.
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FJ ' (2/M)mz0S
mJ(z) |z&µ |dz (1)

where the constant multiplier 2 is incorporated so that the maximum overall dispersion is normalized to

unity.5  For example, this overall dispersion index is simply measured by the ratio of the area of firm

sites to the total area of the linear city if firms form a connected set in S and are uniformly distributed

within that connected set.  When firms locate in every location, ; when firms are cluster within anFJ ' 1

interval  [-q, q],  .  FJ ' 2q/2 ' q < 1

Now let  measure the degree of effectiveness of interactionsQ(z) ' 2&(z&µ)2&gF2
J > 0

between a particular firm z and the others in the linear city given a configuration of type J, where

 indicates the degree of penalty on overall dispersion of firms and the second term specifies ag 0 (0,1)

quadratic cost function in terms of the distance between a particular firm site and the mean site.  Thus,

one may regard our Q function as a proxy (with the first and second moments) for the (locational)

distribution of firms.  More importantly, it captures the Romer convention in which externalities enter

the system based on an average or aggregation of individual measures.  Further, its simplicity enables

us to obtain analytical results without relying on numerical examples.  Since Q is (strictly) concave in z,

the penalty for firm dispersion is (strictly) convex in z.  This property is analogous to the transactions

cost setup in Ogawa and Fujita (1980) and the locational potential function setup in Fujita and Ogawa

(1982).6 



7 Thus, it is important to have the power associated with unit land input be 1-"-$ in the
production function specified in (2).
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Y(z) ' AK "L $[Q(z)K]1&"&$D(z)1&"&$ (2)

Therefore, with a density s(z) of land, a firm located at z 0  is able to produce goodsS / [&1,1]

under the following production technology:

where ,  and D(z) is the effective land input given by D(z) = min {1, S(z)} with", $ 0 (0,1) "%$ 0 (0,1)

 and   Thus, the efficient use of land is at s(z) = 1, whichS(z)' s(z) œ s(z)$1 S(z)'0 œ s(z)< 1 .

simplifies the analysis greatly - the model is not tractable otherwise.  The production technology is

constant returns to scale with respect to all private factor inputs {K, L, D}, which is important in

justifying zero profit and computing the land rent in a way consistent with the existing literature (see the

discussion of the bid rent function below).  

Both the locational potential function approach in Fujita and Ogawa (1982) and our

consideration of the Q function regard firm agglomeration as an external economy.  However, it is

important to note that not only the form of this external factor but also its interaction with the

production factor inputs differ sharply between the two papers.  In particular, in our framework, Q is

nonseparable from K and L and can affect the factor proportion K/L in equilibrium. 

Take output as the numéraire.  Let R(z) denote the land rent at location z and let  r and w

denote the rental cost of capital and the wage rate, respectively.  Each firm seeks to maximize its profit

under the production technology specified in (1): 

 (PF)max{ K,L,z} B ' AK "L $[Q(z)K]1&"&$ & rK & w(z)L & R(z)

Given constant returns to scale in private factors, and thus zero profit in equilibrium, the conventionally

defined bid rent function of firm is: .7   Under perfectRF(z)'maxK,L AK "L $[Q(z)K]1&"&$ & rK & w(z)L

competition, the land rent facing each firm will be equal to the bid rent in equilibrium.  Free mobility



8 This is parallel to the Muth (1969) condition in the conventional urban economics framework.
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implies that capital rental is constant across locations; however, wages may vary with different

locations.  Taking the constant capital rental r and the labor wage schedule {w(z)} as given, firms make

locational choice of the production site facing the trade off between the land rent and labor costs and

the external benefit from knowledge.

The first-order conditions with respect to K, L and location z are, respectively,

(3)" Y
K
'r

(4)$ Y
L
'w(z)

(5)&2(1&"&$) Y
Q(z)

(z&µ) ' R )

F(z)%w )(z)L

 
where “primes” represent derivatives of functions.  Obviously, (3) and (4) equate the marginal products

of capital and labor with the corresponding factor prices.  Equation (5) is a locational equilibrium

condition for firms, stating that the knowledge-spillover gain from moving marginally closer to a central

location is exactly offset by the increased land rent and labor cost.8  

All households are identical in every respect.  Each is endowed with one unit of labor and

receives no disutility from work (and thus supplies one unit of labor inelastically).  Each household has

a utility where c is composite good consumption and h is residential land consumption.  AssumeÛ (c,h)

and   where U(c) is strictly increasing and concave in c withÛ (c,h) ' U(c) œ h $ 1 Û(c,h) ' 0 œ h < 1

U(0) = 0; this implies each optimizing household will consume exactly one unit of land.  Denote by

I(x,z) the net income of a household residing in x while working at z.  This household earns a wage of

w(z), incurs a linear commuting cost of  t|x-z| and pays land rent R(x) on its one unit of land

consumption.  Given the assumptions on utility, its object is to maximize consumption (that is equal to



10

Y '
1

1&"&$
RF(z) (7)

RF(z)'
2&(z&µ)2&gFJ

2

w(z)$/(1&"&$)
7J(zJ) (8)

the net income):

 (PC)max{ x,z} I(x,z) ' w(z) & t |x&z| & R(x)

Locational no-arbitrage requires that each household must reach a constant net income for any

pair of work and residential locations, , under which a household’s bid rent is defined as:I(x,z) ' I0

.  Hence, from (PC) under perfect competition, this means: RC(x)'maxz { w(z) & t |x&z| s.t. I(x,z) ' I0 }

(6)Rc(x) ' w(z) & t |x&z| & I0

for all x where consumers live.  Under this condition, a representative household (x,z) has no incentive

to change either employment or residential location, due to the fact that the incremental benefit from

changing location exactly offsets the incremental cost.  Should this condition fail to hold, there will be a

positive measure of land unoccupied in equilibrium.

3. Equilibrium

We are now prepared to define the concept of equilibrium with location.  Under perfect

competition with constant returns, each firm earns zero profit in equilibrium.  Combining with (3) and

(4), we have:

Substituting (7) into (5) to eliminate Y and applying the definition of Q yield an ordinary first-order

differential equation for RF with respect to z.  By integration, one can express firm's bid rent as a

function of the wage rate, the location index, and other exogenous parameters:
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R(z) ' Max 6 RF(z) , RC(z) , 1 >

R(z) ' RF(z) if M(z) > 0

R(z) ' RC (z) if N(z) > 0

R(&1) ' R(1) ' 1

M(z) % N(z) ' 1, œ z 0 S

mz0S
L(z)M(z)dz ' N

mz0S
M(z)dz ' M

where depending on a reference point (zJ) and the7J(zJ)'RF(zJ)w(zJ)
$/(1&"&$) / [2&(zJ&µ)2&gFJ

2] ,

endogenous urban configuration (J) to be determined.  

An explanation of each of the equilibrium conditions follows the definition.

 
Definition 1:  A competitive spatial equilibrium is a list of quantities for each location z {K(z), L(z),

Y(z)}, prices {r(z), w(z), R(z)} and population densities {M(z), N(z)} for z 0  such that theS / [&1,1]

following conditions are satisfied:

(i) profit maximization: (3) and (4);

(ii) land rent:

where households’ and firms’ bid rent functions are given by (6) and (8);

(iii) zero profit: (7);

(iv) land market clearance:

(v) labor market equilibrium:

(vi) population balance:



9 The job-selection function is parallel to the “commuting pattern” function in Fujita and Ogawa
(1982).  It is written over intervals since a single point has zero measure.  As we will see in Section 4
below, the symmetric nature of the model implies it is not necessary to solve the job selection function
in characterizing the equilibrium.
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mz0S
N(z)dz ' N

Part (i) is a firm’s optimization conditions given perfect competition.  Part (ii) defines the

equilibrium land rent as the upper envelope of the two bid rent functions RF and RC. Since both the

demand for and the supply of land at the boundary are completely inelastic, the equilibrium land rent is

indeterminate.  Thus, we normalize the boundary land rent to unity in order to obtain a unique

equilibrium rent schedule.  Part (iii) specifies zero profit under perfect competition, and (iv) implies no

vacant land in the city.  Part (v) equates aggregate labor demand with labor supply.  It may be more

fully spelled out by “local labor market equilibrium” conditions:

where B is a measurable subset of S, N(x) is the populationmz0 B
[N(J &1(z)) & L(z)M(z) ]dz ' 0 ,

density of consumer residing at x, and the job-selection function J(x) is defined such that the net wage,

w(z) - t |x - z|, for a consumer residing at x is maximized with respect to job site z.9  Part (vi) ensures

that firms and households are all located.  We focus on the case of symmetric urban configurations, as

in all previous studies.  Thus, it suffices to examine the equilibrium conditions on the right half of the

city where z, .x $ 0

4. Endogenous Determination of Urban Configuration

In this section, we determine the endogenous formation of urban configurations.  The

equilibrium configuration may be concentrated (with monocentric firm locations), dispersed (with

completely mixed firm and household locations), a combination (with incompletely mixed firm and

household locations) or multi-centric (with more than one firm cluster).  While the first three cases are

all possible, we will show that the latter configuration cannot be an equilibrium outcome.



10 In this case, m(z) = M/2 for all z and straightforward integration of (1) gives the overall
dispersion measure.
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RF (z) ' RC (z)
R )

F (z) ' R )

C (z)
R ))

F (z) ' R ))

C (z)
z 0 S (9)

4.1. The Completely Mixed Urban Configuration

A completely mixed urban configuration (denoted J = C) is one in which firms and workers

occupy every location along the linear city (see Figure 1).

Figure 1:  Completely Mixed Urban Configuration

     
In this case, the mean location for firms is at the center, µ = 0, and the measure of firm dispersion

attains its maximum, FC = 1.10  Thus, the degree of effectiveness of interactions is: . Q(z) ' 2& z 2&g

Moreover, every consumer works where they live.  As a consequence, there is no need to differentiate

households’ from firms’ locations, so x and z can be interchanged, and labor market equilibrium

implies M(z)L(z) = N(z) for all z 0 S.  The bid rent functions, RF and RC, must be identical and thus,

Under the properties associated with the completely mixed urban configuration, consider the

following condition on exogenous parameters where  and I0B1(g,N) '
2

1&g
1% $

1&"&$
1

1%I0(g,N)

&1

will be specified below with  and 
MI0

Mg
> 0

MI0

MN
< 0 ,

Condition C: (completely mixed urban configuration) .B1(g,N) # t

This condition requires that the unit commuting cost be sufficiently large while the penalty for firm
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R (z) '
2&z 2&g

1&g
1%I0(g,N)

R(z)%I0(g,N)

$
1&"&$ (10)

I0(g,N) ' 1& 1&"&$
$

N
2

w(0;g,N) (11)

n0(g,N)w(0;g,N)
1&"
$ '1%w(0;g,N) (1& 1&"&$

2
N
2

) (12)

dispersion due to less effective knowledge spillovers be sufficiently low.

 
Proposition 1: Under Condition C and  there is a competitive spatial equilibrium1&"&$

$
N
2

< 1 ,

with a completely mixed symmetric urban configuration in which firms and households occupy every

location in the linear city and equilibrium land rent, net income and wage (at z = 0) are given by the

following:

where  with  andn0(g,N)' [ 1&"&$
$

1&g
2&g

N
2

]
1&"&$

$ ,
Mn0

Mg
< 0

Mn0

MN
> 0 .

 

Proof:  See the Appendix. ||

 Equations (10)-(12) jointly determine equilibrium land rent, wage at z = 0 and the endogenous

net income earned by each household, I0 .  The values of the other endogenous variables follow from

(3), (4), (7) and (8) accordingly.  In  Figure 2, we graph the equilibrium land rent and wage schedules

in the linear city.   In particular, we illustrate that firms near the city edge are penalized for locating far

from the mean location (zero), but pay lower rent and wages.
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Figure 2:  Equilibrium Wage and Land rent Schedules - Completely Mixed  

 
Importantly, under this urban configuration, the righthand side of Condition C measures the slope of the

wage schedule at z = 1 and thus it implies:  .  Therefore, given Conditionmaxz*w
)(z)* ' *w )(z)*z'1 # t

C, no household has incentive to work away from home - by working for a firm closer to the city

center, the incremental gain from a higher wage is dominated by the induced cost of commuting.  This

together with (6) ensures that for each household, its equilibrium choice of residence is the same as its

workplace, resulting in an urban configuration in which firms and households are mixed in every

location and equilibrium commuting costs are minimized at zero.  

Proposition 1 indicates that this completely mixed urban configuration emerges when

commuting is sufficiently costly and the penalty for firm dispersion is sufficiently low (Condition C). 

While the intuition behind costly commuting is straightforward, that regarding the firm dispersion

penalty deserves further comment.  When this penalty is high, it is more likely that a firm may reside in

a small cluster, rather than spreading over the entire linear city.  As a consequence, firms are more

willing to pay higher wages to attract workers residing in the outskirts to commute to work.  We

relegate more complete discussion of this possibility to the next subsection.

Straightforward comparative statics show that a greater penalty for firm dispersion due to less

effective knowledge spillovers (a larger g) results in an increase in the equilibrium bid rent, equilibrium



11 Under the monocentric configuration, m(z) = M/(2q) for all z , [-q, q] (and zero otherwise). 
Thus, utilizing (1), the overall dispersion measure becomes q.

16

wage and equilibrium net income.  Intuitively, when there is a greater penalty for firm dispersion, the

relative disadvantage for outlier firms becomes less severe (since this penalty is imposed uniformly). 

Thus, outlier firms invest more and, by factor complementarity (in the Pareto or Edgeworth sense),

both land rent and wage increase.  Since labor supply is fixed, the resultant increase in labor demand

must then be offset by a further increase in the unit cost of labor, implying a higher net income for

households. 

Notably, due to the linear commuting cost schedule, the wage function and the household’s bid

rent function always maintain a fixed relationship as depicted in Figure 2 or equation (6).  Thus, in the

rest of the paper, we will restrict our attention to the analysis of the equilibrium land rent, leaving the

equilibrium wage aside for the sake of brevity.

4.2. The Monocentric Urban Configuration

We turn next to examine the case of a monocentric urban configuration (denoted J = M) in

which all firms locate toward the city center within an interval [-q, q]  (0 < q < 1) while households

reside in the outskirts [-1, -q] and [q, 1] (see Figure 3).

 
Figure 3:  Monocentric Urban Configuration

 
      

In this case, M = 2q, µ = 0 and FM = 2q/2 = q.11  Thus, we can express q in terms of N: q ' 1& 1
2

N

and the degree of effectiveness of interactions can be computed as:  Q(z) = 2 - z2 - gq2 .  Moreover, at q

(and by symmetry at -q), the firm and consumer bid rent functions must be identical: .  RF (q) ' RC (q)
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RF(z) '
(2&z 2&gq 2) [1% t (1&q)]

[2&(1%g)q 2 ] 1% t (q&z) / [ 1%I0% t (1&q) ] $/(1&"&$) (13)

Define  where B2 is strictly increasing in g. B2(g,N) '
(1&N/2)2 [2%(3%g) tN/2 ]& tN

[2&(1%g) (1&N/2)2 ] (1&N/2)
,

Consider the following condition,

Condition M: (monocentric urban configuration) .B2(g,N) $ t

This condition requires that the unit commuting cost is sufficiently small while the penalty for firm

dispersion is sufficiently high.

 
Proposition 2: Under Condition M and  there is a competitive spatial2$

1&"
< N # 2 1& 2

3%g
,

equilibrium with a monocentric symmetric urban configuration in which all firms are clustered toward

the city center [-q, q] while households reside in the outskirts of the linear city, where  , theq ' 1& 1
2

N

bid rent schedule for households in the outskirts is  and the bid rent schedule forRC(x) ' 1 % t (1& |x |)

firms within the cluster [-q, q] is given by:

where  is increasing in t and decreasing in N.1%I0%t (1&q) ' $
1&"&$

(1%tN/2) (1&N/2)
N/2

Proof:  See the Appendix. ||

It is clear from (6) and (13) that both firm and consumer bid rent functions decrease in the

distance of the plant/housing site from the city center, the origin (see Figure 4).
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Figure 4:  Equilibrium Land rent Schedules - Monocentric

  

Notably, the firm bid rent function is concave and maximized at RF(0), whereas the consumer bid rent

function is linear with a slope of an absolute value of t and its values range from 1 to 1+t.  The two bid

rent schedules intersect at locations q and -q, i.e., RF(q) = RC(q) = RF(-q) = RC(-q) = .  As shown1% t
2

N

in the Appendix, Condition M implies that RF(0) $ RC(0) = 1+t  and  *RNF(z)*z = q $*RNC(z)*z = q .  These

properties together guarantee that RF(z) $ RC(z) for all z 0 [-q, q], which ensure that households have

no incentive to move to any location within the firm cluster.  Moreover, since |RNC(x)| = t for all x 0 [-1,

-q] c [q, 1], the utility gain from moving toward the center to save commuting costs is exactly offset by

the loss due to a higher rent; households are indifferent about residing at any location in the outskirts. 

Therefore, a spatial equilibrium with the monocentric urban configuration is obtained.

Proposition 2 suggests that when commuting cost is very low, firms are concentrated to take

advantage of knowledge spillovers and households commute and receive a high wage to offset the

travel costs.  Notice that it can be shown that B2(g, N) > B1(g, N) for all g 0 (0,1) and N , (0, 2).  Thus,

for various values of the unit commuting cost, t, we can determine the associated equilibrium urban

configuration as illustrated in Figure 5.
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 Figure 5:  Determination of Equilibrium Urban Configuration

 
Intuitively, when the unit commuting cost is sufficiently high, the completely mixed urban configuration

emerges as the unique equilibrium outcome; when the unit commuting cost is sufficiently low, the

unique equilibrium urban configuration turns out to be monocentric.  A question remains is what urban

configuration arises in equilibrium and whether the equilibrium urban configuration is unique if the unit

commuting cost is moderate [i.e., ] .B2(g,N) < t < B1(g,N)

4.3.  The Incompletely Mixed Urban Configuration

We next illustrate the possibility that the urban configuration is incompletely mixed (denoted 

J = I) in the sense that firms locate over the area [-f2 , f2] while households reside both toward the city

center [-f1 , f1] and in the outskirts [-1, -f2] and [f2 , 1], where 0 < f1 < f2 <1 (see Figure 6). 

 Figure 6:  Incompletely Mixed Urban Configuration

Thus, firms and households are completely mixed only in the area around the city center.  While

households reside in disconnected regions, all firms locate in a connected region around the city center. 



12 The calculation of the overall dispersion measure is similar to that under the monocentric
configuration except that in this case, m(z) = M/(2f2) for all z , [-f2 , f2 ].
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R(z) ' RF (z) ' RC (z) œ z 0 [&f1 , f1]

R(z) ' RF (z) > RC (z) œ z 0 ( &f2 , &f1 ) c ( f1 , f2 ) (14)

R(z) ' RC (z) > RF (z) œ z 0 [&1 , &f2 ) c ( f2 , 1 ]

RF(z) [RF(z)% I0 ]
$

1&"&$ ' (2& z 2&g f 2
2 ) 7I (f2)

(15)

In this case, µ = 0 and FI = 2f2/2 = f2 .12  Also, we have:  Q(z) = 2 - z2 - f2
2 .

The equilibrium land rent function is such that

 

 
and RF(-f2) = RC(-f2) = RF(f2) = RC(f2).  Now consider the following condition on exogenous parameters,

       
Condition I: (incompletely mixed urban configuration) .B2(g,N) # t # B1(g,N)

  
This condition requires a moderate unit commuting cost and a moderate penalty for firm dispersion.

 
Proposition 3: Under Condition I, there is a competitive spatial equilibrium with an incompletely mixed

symmetric urban configuration in that firms locate over the area [-f2 , f2] while households reside both

toward the city center [-f1 , f1] and in the outskirts [-1, -f2] and [f2 , 1] for 0 < f1 < f2 <1.  The land rent

schedule in the outskirts [-1, -f2] and [f2 , 1] is  and  the land rent scheduleR(z) ' RC(z) ' 1 % t (1& |z |)

over the area [-f2 , f2 ] is R(z) = RF(z) with RF(z) solving:
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$
1&"&$ m

f2

f1

RF (z)
1%I0%t (1&z)

dz '
1
2

N (1&f2) (16)

$
1&"&$ m

f1

0

RF(z)
I0%RF(z)

dz '
1
2

N f2
(17)

where  and  f1 , f2 and I0 solve jointly and7I (f2) '
1%t(1&f2)

2&(1%g) f 2
2

[1%I0% t (1&f2) ]
$

1&"&$
F (f1) ' 1% t (1&f1)

Proof:  See the Appendix. ||

 
Recall that locational equilibrium requires the equilibrium land rent schedules to satisfy (14). 

In analogy to the monocentric case, the household bid rent function in the outskirts [-1, -f2 ] and [f2 , 1]

is characterized by a linear function with a slope of t in absolute value.  Since firms and households are

completely mixed in the central cluster [-f1 , f1 ], their bid rent must be identical, as given by (15).  As

shown in the Appendix, locational equilibrium implies: (i)  andmaxz0[&f1, f1]
*w )(z)*'*w )(z)*z'f1

# t

(ii)  The former is similar to the completely mixed case, guaranteeing no*R )

F(f2)* $ *R )

C (f2)* ' t .

household in the central cluster desires to work away from home.  The latter is parallel to the

monocentric case, ensuring no firm has an incentive to locate in the outskirts and no households wants

to reside in [-f2 , -f1]  c [f1 , f2 ].  From  (15) and the fact that   conditions (i) and (ii)*R ) (z)* ' *w ) (z)*,

can be combined into:  which holds under Condition I.    Of course, from*R )

F (f1)* # t # *R )

F (f2)* ,

the household bid rent, we have  so households are indifferent about residing at any*R )

C (x)* ' t ,

location x 0 [-1 , -f2] c [f2 , 1].  Figure 7 plots the land rent schedules in the incompletely mixed city and

illustrates the above arguments.
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This proposition states that when the unit commuting cost and the penalty for firm dispersion

are moderate, the urban configuration is incompletely mixed - it is neither completely dispersed (as in

the completely mixed case) nor completely concentrated (as in the monocentric case). 

4.4. Can the Duocentric Urban Configuration be an Equilibrium Outcome?

In the end, we would like to ask if there exists any multi-centric urban configuration, such as

the duocentric city (denoted J = D) in which firms are divided into two disconnected clusters [-qD, -

2qD] and [2qD, qD] while households reside either around the center [-2qD, 2qD] or in the outskirts [-1, -

qD] and [qD, 1], where 0 < 2 <1 and 0 < qD < 1 (see Figure 8). 

Figure 8:  Duocentric Urban Configuration

Under the duocentric urban configuration, there are two subgroups of firms - the left cluster and the



13 We would like to point out that this is a new application of index numbers to the urban
economic context.  Specifically, we regard firm clusters as subgroups and define decomposability
according.
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QD ' 2& z 2&g (2v)2 (18)

R(z) ' RC (z) > RF (z) œ z 0 (&2qD , 2qD )

R(z) ' RF (z) > RC (z) œ z 0 ( &qD , &2qD ) c ( 2qD , qD ) (19)

R(z) ' RC (z) > RF (z) œ z 0 [&1 , &qD ) c ( qD , 1 ]

right cluster.  Our overall dispersion index is decomposable in firm clusters and hence still appropriate

in this case.13  Straightforward calculation shows that m(z) = M/[2(1-2)qD] for all z 0 [-qD, -2qD] c

[2qD, qD] and thus FD = (1+2)qD.  We can therefore measure the degree of effectiveness of interactions,

QD, as:

 

where v = [(1+2)qD]/2 represents the distance of the within-the-cluster mean location from the global

mean location (0).  

In spatial equilibrium, we have:

 

and  RF(-qD) = RC(-qD) = RF(qD) = RC(qD)  and  RF(-2qD) = RC(-2qD) = RF(2qD) = RC(2qD).  Thus, there

is a crucial difference between the incompletely mixed and the duocentric urban configurations:  in the

latter case, the bid rent for firms in (-2qD , 2qD) is strictly less than that for households and hence the

equilibrium land rent equals the household bid rent within this central cluster where no firm locates.

 
Proposition 4: In competitive spatial equilibrium, the duocentric symmetric urban configuration cannot

emerge.



14 When Q is linear, wN(2qD) > 0 implies RNF (2qD) < 0; when Q is strictly convex (when the
penalty is strictly concave), wN(qD) < 0 implies RNF (qD) > 0.  Either case leads to a contradiction.
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Proof:  See the Appendix. ||

  
Importantly, under our knowledge spillover setup, a firm’s production penalty for distance

from the average location of firms is strictly increasing and strictly convex, implying that it is

disadvantageous for firms to be separated spatially into different clusters.  Given such a duocentric

configuration, a firm will always move to the average location of firms; the penalty, land rents, and

wages are all lower there.  As a consequence, a duocentric city in which firms are grouped into two

disconnected clusters cannot be an equilibrium outcome.  By similar arguments, any multi-centric

urban configuration can be ruled out as a spatial equilibrium configuration.  It is important to note that

the proof (by contradiction) of Proposition 4 relies on mutually contradictory slope conditions.  This

argument remains valid with a linear or strictly concave penalty.  Thus, multi-centric urban

configurations can never arise in equilibrium in a model with Jacobs-Romer production externalities,

regardless of the concavity/convexity property of the Q function.14  The multi-centric equilibrium

configurations generated by Fujita and Ogawa (1982) appear to be a consequence of the separable

form of the spatial interaction function rather than its convexity/concavity properties.  Specifically, the

properties of the function that compares firm locations pairwise rather than its integral seem important. 

Here we have explicitly assumed a non-separable form of penalty. 

5.  Further Discussion

In the previous section, we determine endogenously the underlying urban configuration,

depending crucially on the spatial primitives of the model.  Utilizing Propositions 1-3, we obtain:
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Theorem 1: (Existence) For any commuting cost and dispersion penalty parameters, there is a

competitive spatial equilibrium.

  
Then, the result in Proposition 4, in conjunction with Propositions 1-3, enables us to conclude:

  
Theorem 2: (Uniqueness) Almost surely in commuting cost and dispersion penalty parameters, there is

a unique competitive spatial equilibrium associated with a symmetric urban configuration which is

completely mixed, monocentric or incompletely mixed.

 
Proposition 5: (Characterization of the Urban Configuration) The almost surely unique competitive

spatial equilibrium possesses the following properties:

(i) a completely mixed symmetric urban configuration emerges when the unit commuting cost is

sufficiently high, whereas a monocentric urban configuration arises when such a cost is

sufficiently low;

(ii) a sufficiently large knowledge-spillover penalty on the overall dispersion of firms causes the

formation of a monocentric symmetric urban configuration, but a completely mixed symmetric

configuration disappears;

(iii) a sufficiently large population mass of firms induces a completely mixed symmetric urban

configuration.  

 
The uniqueness of spatial equilibrium and the fact that no multi-centric urban configuration is

an equilibrium contrast with the existing literature, such as the locational potential function framework

of Fujita and Ogawa (1982), the more recent sequels using models of product differentiation [e.g., see

Fujita and Krugman (1997) ] and spatial competition models [e.g., see Fujita and Thisse (1986)].  Our

uniqueness property is primarily due to the strong agglomerative force from knowledge spillovers

among firms.  Of course, if   the completely mixed and the incompletely mixed urbant ' B1(g,N) ,



15 Of course, by incorporating matching externalities [e.g., see Abdel-Rahman and Wang
(1997)], it is possible to generate a multi-centric urban structure.

16 This is by treating our penalty parameter g the same as the transactions cost parameter J in
Ogawa and Fujita (1980).
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configurations can co-exist;  if  the monocentric and the incompletely mixed urbant ' B2(g,N) ,

configurations can co-exist.  These knife-edge cases, however, require specific combinations of some

exogenous parameters, which have zero measure in the entire parameter space.  Therefore, our

uniqueness property holds almost surely.   This sharp contrast with Fujita and Ogawa (1982) is mainly

due to the nonseparability of our Q function and the fact that the external factor is allowed to affect the

factor proportion under our framework.  

Interestingly, we show that the Romer-type production externalities with a strictly convex

penalty for firm dispersion and distance from the average firm location are sufficient to lead to the

formation of a city in which firms are always clustered together in any spatial equilibrium.  This

eliminates the possibility of any multi-centric urban configuration, suggesting that when positive

knowledge spillovers are the primary agglomerative forces, multi-centric cities cannot emerge under

perfect competition.15 

Parts (i) and (ii) of Proposition 5 are straightforward (as discussed in Section 4 above),

corroborating with findings in Ogawa and Fujita (1980).16  Part (iii) of Proposition 5 deserves further

comment.  Notice that each household or firm occupies a unity density of land and the masses of

households and firms (N and M, respectively) sum to two.  Thus, the result is derived via the effect of

N on B1(g, N) specified in Condition C.  For a sufficiently large mass of firms, the relative commuting

costs are low even if all households reside in the outskirts of the city.  Hence, commuting is likely to

occur in equilibrium and the completely mixed urban configuration is unlikely to arise as an equilibrium

outcome. 
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 6.  Concluding Remarks

Based on the Romer-type production externality, our paper has developed a general

equilibrium framework under which the unique equilibrium urban configuration (completely mixed,

monocentric or incompletely mixed) is determined analytically, depending on the population of firms,

the commuting cost and the firms’ knowledge spillover parameters.  We show that the incorporation of

distance-dependent production externalities is sufficient to ensure that firms are always clustered

together in any competitive spatial equilibrium, ruling out the possibility of multi-centric urban

configurations, in contrast with findings in Fujita and Ogawa (1982) and in more recent sequels

employing models of product differentiation or spatial competition.

Along these lines, there are a few straightforward extensions. First, one may relax the

assumptions of a fixed supply of labor and fixed demands for land.  Second, one can investigate the

usefulness of index number theory for measuring dispersedness of firms and quantifying the externality. 

 Third, one may revisit our work using a discrete population model á la Berliant and Fujita (1992).  The

main purpose of these exercises is to check the robustness of the absence of multi-centric urban

configuration and the uniqueness of competitive spatial equilibrium.  Of course, they are accomplished

at the expense of increased complexity, making analytical results less likely.  

Moreover, it may be of interest to examine the welfare properties of competitive spatial

equilibrium.  In particular, the presence of uncompensated knowledge spillovers may lead to a sub-

optimal equilibrium - in equilibrium firms fail to account for the positive production externality and

thus under-invest compared to the optimum.  An intriguing question is whether such inefficiencies are

lower under one urban configuration relative to others.   Furthermore, one may add an externality to the

consumer utility via local congestion or neighborhood effects.  In the former case, a more dense

population has a negative influence on household utility, which serves as an additional force for

dispersion.  In the latter case, the distance-dependent positive externality makes the incompletely mixed
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urban configuration (in which households are not clustered together) less likely to emerge.  Finally, our

findings provide empirically testable hypotheses regarding  (i) the shape of the rent density,  (ii) the

locations of firms and consumers, and  (iii) comparative statics describing the dependence of the urban

configuration (measured as a discrete variable) on commuting, population and production-spillover

parameters.  Those regarding production spillovers may also be compared with the empirical

localization externality measured by Rosenthal and Strange (1998).  These extensions are left to future

work. 



29

R(z)'RF(z)' 2&z 2&g
1&g

[ w(1)
w(z)

]
$

1&"&$ (A1)

RF(0)
RF(1)

'R(0)' 2&g
1&g

[ w(1)
w(0)

]
$

1&"&$ (A2)

w(1) ' 1%I0 (A3)

R(0)'w(0)&I0 (A4)

N
2
'

$
1&"&$

R(0)
w(0) (A5)

w(0)'
I0

1& 1&"&$
$

N
2

(A6)

Appendix

Proof of Proposition 1:

Recall that µ = 0 and FC = 1.  Since RF(1) = RC(1) = 1, pick zC = 1 as the reference point.  From (8), we

have , which can be substituted back into (8) and (9) to yield:7C(1) ' w(1)$/(1&"&$) / (1&g)

Since x = z under this configuration, (6) implies and thus,R(1) ' w(1)& I0 ' 1

Similarly, we have: 

Substitution of (6) with x = z into (A1) yields (10).  Next, labor market clearance under the completely

mixed urban configuration implies: L = N/2, which can be combined with (4), (7) and (9) to generate:

Substituting (A4) into (A5) gives:

or, equivalently, (11).  In order for w(0) > 0, we need:
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1&"&$
$

N
2

< 1 (A7)

dR
dz

'

&2z
1&g

(1%I0)
$

1&"&$ [R(z)% I0 ]
1& $

1&"&$

{ 1&"
1&"&$

R(z)%I0}

*w )(z)*'*R )(z)*#*R )(z)*z'1'
2

1&g
1

$
1&"&$

1
1%I0(g,N)

%1
# t

(A6) together with (A2)-(A4) can be used to solve for w(0), w(1), R(0) and I0.  By tedious

manipulation, the system reduces to a single equation in w(0), (12).  The solution exists under the

condition specified in (A7) and is unique.  Once the solution of w(0) is obtained, one can get w(1),

R(0) and I0, and, from  and (A1), the equilibrium wage and land rent schedulesR(z) ' w(z)& I0

{w(z)} and {R(z)} are pinned down.  Straightforward comparative statics show that an increase in g or

a decrease in N rasies both w(0) and I0(g, N).  Also from   and henceR(z) ' w(z)& I0 , R )(z) ' w )(z)

the equilibrium wage and rent schedules have identical slope at every point z with w(z) uniformly

above R(z) by a constant I0.  Tedious but straightforward differentiation implies:

In order to support the completely mixed urban configuration, it is required that no household has

incentive to work away from home because by working for a firm closer to the city center, the

incremental gain from a higher wage is dominated by the induced cost of commuting.  This is

guaranteed by: 

The above arguments together with (6) ensure a locational equilibrium choice of workplace and

residence under the completely mixed urban configuration. Q.E.D.
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w(q) ' 1% I0% t(1&q); w(0) ' 1% I0% t (A8)

RC (q) ' RC (1) % t(1&q) ' 1 % t(1&q) (A9)

RF(z)' 2& z 2&gq 2

[1% I0% t (1&z) ]
$

1&"&$

7M(q)
(A10)

N/2
1&N/2

'
$

1&"&$
RF(0)
1%I0%t

'
$

1&"&$
1%t(1&q)

1%I0%t(1&q) (A11)

RF(0) ' 1% 1
2

tN% 1&"&$
$

N
2

t (A12)

Proof of Proposition 2:

Given the properties of the monocentric urban configuration, we can follow arguments similar to those

in the Proof of Proposition 1 to use (6) and (8) to obtain:

where  and (A8) is derived from equating the net income of7M(q) ' 1%t(1&q)
2&(1%g)q 2

[1%I0% t (1&q) ]
$

1&"&$

households residing at x = q or 0 and x = 1 (the urban fringe).  Differentiating (A10) at z = q implies

that if (but not only if)   Labor market clearance implies:R )

F (q) < 0 N # 2 1& 2
3%g

.

 and for the case of L(z) = L, we have L = (N/2)/(1-N/2).  This can be substitutedm
q

0
L(z)dz ' N/2

into (4) and (7) (at locations 0 and q), in conjunction with  and (A9) to generate:RF (q) ' RC (q)

Substituting (A11) into (A10) gives (13).  Utilizing q = 1-N/2 and manipulating (A11) to eliminate I0,

we obtain: 
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w(z) ' 1% I0% t(1&z) œ z 0 [f1, f2] (A13)

RF(z)'
2& z 2&g f 2

2

[1% I0% t (1&z) ]
$

1&"&$

7I (f2) œ z 0 [f1, f2] (A15)

RC (z) ' 1 % t (1&z) œ z 0 [f1, 1] (A14)

R )
F(z) ' &RF(z) [ 2z

2&z 2&g f2
2
&

$
1&"&$

t
1%I0% t (1&z)

] (A16)

In order for , we need:   Condition M impliesRF(0) > RC(0) ' 1% t 2$
1&"

< N .

 These together guarantee that  RF(z) $ RC(z)  œ z 0 [-q, q]  and  I(x,z) = I0|R )

F(z)|z'q $ |R )

C(x)|x'q ' t .

 and  which ensure locational equilibrium in this urbanœ x0 [&1,&q]c [q, 1] z0 [&q,q] ,

configuration. Q.E.D.

Proof of Proposition 3:

Following arguments similar to those in the Proof of Proposition 2, we manipulate (6) and (8) using the

properties of this urban configuration to obtain:

and (15) œ z , [0, f2], where  Differentiating (A15) gives:7I (f2) '
1%t(1&f2)

2&(1%g) f 2
2

[1%I0% t (1&f2) ]
$

1&"&$ .

 

Since all households residing at x , [f2 , 1] commute to work with firms at z  , [f1 , f2 ], labor market

clearance implies:  thus,  Substituting (4), (6), (7), (14)m
f2

f1

L(z)dz ' (1&f2)N/2 ; m
f1

0
L(z)dz ' f2 N/2 .

and (A13) into these market clearing conditions, we obtain (16) and (17).  Utilizing (A15), we can
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maxz0[&f1, f1]
*w )(z)* ' *w )(z)*z'f1

# t (A17)   

*R )

F(f2)* $ *R )

C (f2)* ' t (A18)

*R )

F (f1)* # t # *R )

F (f2)* (A19)

G (f1 ; •) # t # G (f2 ; •) (A20)

RF(z)' 2& z 2&g (2<)2

w(z)$/(1&"&$)
7D (A21)

combine (16) and (17) with  to solve for the equilibrium values of f1 , f2RF (f1) ' RC (f1) ' 1% t (1&f1)

and I0 .  In order to support this urban configuration, it is required that in spatial equilibrium, (i) no

household in the central cluster desires to work away from home (a condition similar to that in the

completely mixed case) - 

 
and (ii) no firm has incentive to locate in the outskirts and no household wants to reside in [-f2, -f1] c [f1,

f2 ] (a condition that appeared in the monocentric case) -

Utilizing (14) and the fact that  we can combine (A17) and (A18) into: *R ) (z)* ' *w ) (z)*,

Substitution of (A16) into (A19) yields:

where  As both f1 and f2 approach unity,G(fi ; •) ' [1% t (1&fi)]
2fi

2& f 2
i &gf

2
2

&
$

1&"&$
t

1%I0%t (1&fi)
.

G(f1) = B1 and (A20) reduces to Condition C; when f1 approaches zero, G(f2) = B2 and (A20) reduces

to Condition M where we set f2 = q.  Under Condition I, (A20) holds for any , thus0 < f1 < f2 < 1

ensuring the incompletely mixed urban configuration in spatial equilibrium.  Q.E.D.

Proof of Proposition 4:

Equations (6), (8) and (18), together with the boundary condition, yield the bid rent functions for firms:
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R )
F(z)'&

7D

w(z)(1&")/(1&"&$)
2zw(z)% $

1&"&$
w )(z)[2& z 2&g (2<)2 ] (A22)

R )
F(2qD)> R )

C(2qD)'w )(2qD)> 0 (A23)

R )
F(qD)< R )

C(qD)'w )(qD)< 0 (A24)

where   Differentiating (A21) leads to:7D(qD)' 1% t [1&2</(1%2)]
2&[1&2</(1%2)]2&g (2<)2

1% t (1& 2<
1%2

)%I0

$
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Suppose that equilibrium with the duocentric urban configuration exists.  Then, the land rent schedules

satisfying the properties in (19) can be characterized by the diagram below:

That is, the following slope conditions must be satisfied:

However, (A22) and the last inequality of (A23) together imply:  contradicting to the firstRF (2qD) < 0 ,

inequality of (A23).  Thus, the duocentric urban configuration cannot emerge in equilibrium. Q.E.D.
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