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ABSTRACT
Fundamentally, this paper is about the value of information.

Whenever a cost-benefit analysis has to be undertaken using benefits that are estimated from household survey
data the size of the survey sample must be specified. The most obvious case is the valuation of environmental
amenity improvements through contingent valuation (CV) surveys of willingness to pay. One of the first
questions that has to be answered in the survey design process is “How many subjects should be interviewed?”
The answer can have significant implications for the cost of project preparation.

Traditionally, the sample size question has been answered in an ad hoc way either by dividing an exogenously
fixed survey budget by the cost per interview or employing some variant of a standard statistical tolerance
interval formula. Neither of these approaches can balance the gains to additional sampling effort against the
extra mnterviewing costs.

A better answer is not to be found in the environmental economics literature, though it can be developed by
adapting a Bayesian decision analysis approach from business statistics. The paper explains and illustrates,
with a worked example. the rationale for and mechanics of a sequential Bayesian optimization technique, which
is applicable when there is some monetary payoff to alternative courses of action that can be linked to the
sample data. In this sense. unlike pure valuation studies that are unconnected to a policy decision, investigators
who use contingent valuation results directly in cost-benefit analysis have a hidden advantage that can be
exploited to optimize the sample size. The advantage lies in the link between willingness to pay and the decision
variable. the net present value of the prospective investment.

The core objective of the paper is practical. Readers without a statistical background can easily implement the
method. An Appendix shows how, with just six key pieces of information, anyone can solve the optimal sample
size problem in a spreadsheet. An automated spreadsheet algorithm is available from the authors on request.
To run the program all the user has to do is enter the key data and then activate a macro that automatically
computes the optimum number of additional observations needed to augment any initial “small” survey sample.



INTRODUCTION

The contingent valuation (CV) literature devotes a great deal of attention to a number of aspects of survey
design, but has had relatively little to say about sample size. For instance, Cooper’s (1993) algorithm for
deciding on the number of bid groups in a referendum CV survey and the number of interviews in each group
takes the total sample size as exogenously set by the deus ex machina of rescarch funding limits. When
attention has been paid to sample size, the issue has either been to choose the number of observations needed
to bring the sample mean of willingness to pay (WTP) sufficiently close to the (unknown) population mean,
or to confidently test hypotheses about the effects on mean WTP of two or more alternative “treatments” ina
survey instrument (such as question ordering or choice of payment vehicle). In their seminal book on CV,
Mitchell and Carson (1989) suggest that, based on a simple statistical tolerance formula, sample sizes between
200 and 2500 are probably appropriate.'

Outside the journals, however, CV has become an operational tool for the analysis of the benefits of
proposed investment projects and policies in the environmental and natural resource arenas. In this context,
there is no particular virtue in striving for some pre-ordained degree of closeness to the true population mean
of WTP. Rather, the point of the exercise ought to be defined in terms of the ultimate decision, determined, 1t
is assumed, by cost benefit (CB) analysis. For a reliable CB analysis, no single sample size can adequately fit
all investment decision settings, because reliability must relate to the possibility of making the wrong decision,
not to the possibility of being more or less wrong only on the side of benefits.

Intuitively, what is involved is that increasing the sample size reduces the spread of the distribution
of discounted net project benefits, thereby reducing the degree of overlap of that distribution and the point at
which discounted net benefits are zero. Thus, increasing the sample size can reduce the probability that a bad
(in the efficiency sense) project will be built or a good project turned down — but only at the cost of the
additional sampling. So, cet par. we would expect the optimal sample size to be large the closer the initial
estimates of discounted benefits and costs or the larger their absolute values.
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The formalization of this common sense idea has its originé in Schlaifer’s (1959, 1961) Bayesian
decision analysis approach, which is discussed in an accessible way by a number of standard texts on the use
of statistics in business decision making (Bonini ef al.1997; Jedamus and Frame 1969, Pfaffenberger and
Patterson 1987 Lapin 1994; Winkler 1972). The second and third sections of this paper deals with this formal
backgro;x'nd. We then turn to an illustrative application using data on costs and benefits of a water quality
improvement project in Brazil. That project is very briefly described and the basic WTP data set out. Then the
results are examined. This includes looking at the sensitivity of optimal sample size to the size of expected net
present value and contrasting the results with prescriptions from the standard methods referred to above. The
final section contains some observations about applying the technique in practice.

PROJECT RISK, THE VALUE OF INFORMATION AND LOSS-COST MINIMIZATION
The decision analysis approach to sample design in general (Schlaifer 1959, 1961) and to statistical quality
control applications in particular (Vaughan and Russell 1984, Russell, Harrington and Vaughan 1986) provide
the keys to unlocking the optimal CV sample size problem. Somewhat loosely stated, the core concept involves
finding the sample size that minimizes the sum of sampling costs and expected losses from making a mistaken
decision. It combines prior subjective characterizations of the probability distribution of mean willingness to
pay with data from an initial “small” CV sample of say, 250 cases, to decide whether an additional round of
sampling should be undertaken, and, if so, how many subjects should be interviewed in that second round.
Schlaifer (1961) calls this Bayesian “pre-posterior” decision making about the desirable sample size because
a decision can be reached on the basis of partial information before actually doing any additional sampling.”

- In the terminology of decision analysis, the CB decision is a two-action problem with infinite states
of nature. The investment proposal can either be accepted, if in expectation it will yield a positive discounted
net benefit, or rejected if it will not. Because many influences on NPV are random variables, so is NPV,
Conceptually there are an infinite number of possible net benefit values, with an underlying probability density
function: and in the probabilistic context of risk analysis, following this expected value decision rule has a
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quantifiable cost called the cost of uncertainty.

The cost of uncertainty is the expected opportunity loss of making the decision determined by the
decision rule. That is, if the expectation E(NPV) taken over the entire NPV distribution is non-negative, the
investment will be made. But if some portion of the NPV distribution falls below zero, actual losses are still
possible‘. The cost of uncertainty can therefore be measured as the mean of that portion of the NPV distribution
truncated from above at zero (the expected loss, given that a loss might indeed occur), multiplied by the
probability of a negative NPV occurring.

If the project is not undertaken because the expected value of NPV is negative, the investment will not
be made. thus foregoing any possibility of positive net returns. Symmetrically, the loss in this situation is the
mean of that portion of the NPV distribution truncated from below at zero (the expected net gain foregone,
given that a net gain might occur), multiplied by the probability of a positive NPV occurring.’ The two
opportunity loss situations are pictured below.}

If the project is economically feasible its global mean NPV will be non-negative. The project will be

undertaken so the region of possible opportunity loss is from negative infinity (or the minimum possible NPV)

to zero:
Case I: Project Feasible: Correct Decision is to Invest
rRegion of L°s|s°5’ NPV <0 —T——Region of Gaihs, NPV > 0 I ]
-~ orMin NPV E(NPV) INPV <D 0 E(NPV)  + = or MAX NPV

Ifthe mvestment’s expected NPV is negative it should not be undertaken, thus foregoing some possible

gains lying in the region of opportunity loss from zero to plus infinity (or the maximum possible positive NPV):




Case II: Project Infeasible: Correct Decisions is Not to invest

— Region of Loslses, NPV <0 I Region of Galins, NPV > 0 )
- = or Min NPV E{(NPV) 0 E(NPV) INPV = O + « of MAX NPV

;l'able 1 provides more formal definitions of the decision criterion, the probability of opportunity loss,
the truncated mean loss and the cost of uncertainty. The cost of uncertainty (E, . ; or E; . 7 in the table) is in
part a function of the amount of prior subjective and sample information size on hand when the options are
weighed to either invest immediately or wait and collect more information. At the point after a small initial
sample of size N, is taken (or even before, when a prior guess is formed without any sampling at all) it
represents the most the investor would be willing to pay to gather more information and eliminate all
uncertainty about the project. which is why it is also called the expected value of perfect information, EVPL.

Additional sampling can never eliminate all uncertainty. But changes in E ., ; (or E, , ;) with increases
in sample size beyond the original small sample N, provide a measure of the gross benefit of the second stage
of a sequential CV sampling scheme. Incremental CV samples with AN>0 reduce the standard error of the CV
mean estimate of project benefits (WTP), which transmits into a reduction in both the truncated mean loss in
project NPV and the cumulative probability of that loss.

Only information about the factors that can have a significant impact on the project outcome reduce
the cost of uncertainty in a meaningful way: and in most cases uncertainty about benefits will be a major
influence (Vaughan et al. 1999, 2000a, 2000b). The value of information is the change in the cost of
uncertainty occasioned by gathering additional information. The value of information must be compared with
the cost of information. If the value exceeds the cost, it is worth doing additional sampling to gather more
information; otherwise the project should be accepted or rejected on the basis of the information on hand.

THE BAYESIAN METHOD
Given the costs of sampling, the core of the problem is to find optimal reduction in the cost of uncertainty, and
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hence the optimal size of the number of cases AN to augment an initial small sample of size N, In words, the

steps required to find the optimal CV sample size via Bayesian decision analysis in a sequential approach are:*

0))

)

3)

)

3)

(6)

Postulate an a-priori guess about the expected value of WTP per household (or per person)
and a reasonable opinion about the range in the expected value.®

After the survey focus group sessions and the pre-test, draw a small initial referendum CV
sample (e.g.: N, of around 250 observations, say 50 in each of 5 bid groups) and administer
the final questionnaire. Calculate a sample mean WTP per household, the variance of the
sample mean, and the standard error of the sample mean.® Approximate the population
variance, 07, as the product of the initial sample size N, and the estimate of the variance of
the sample mean.

Do an initial economic project CB analysis to estimate the expected value of discounted net
benefits, E(NPV), at baseline conditions. Determine whether the opportunity loss follows Case
I (project acceptance) or Case II (project rejection) and locate the region of opportunity loss
for NPV Establish the parameters of a linear relationship between the expected value of NPV
and the expected value of WTP by linear regression or by a shortcut method suggested later
in this paper. The relation E(NPV) = -ct + 3 E(WTP) is a key element in the method.
Combine the prior guesses from Step | with the sample WTP information from Step 2.
following a Bayesian formula to develop posterior estimates of the mean and standard error
of WTP.”

Using the posterior estimates from Step 4 as prior estimates, hypothetically increase the
sample size from the base used in Step 2. Repeatedly compute the reduction in the variance
of mean WTP that would result from sample augmentation over a range of sample sizes AN
above the initial base N =N,

Assume the expected value of NPV is normally distributed. Using the linear relationship
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between NPV and WTP from Step 3, monetize the reduction in variance in the expected value
of NPV losses associated with different degrees of augmentation of the original sample. These
reductions in the expected cost of uncertainty (Ey; or Ey . p as the case may be), from a
second round of sampling represent the expected value of additional sample information,
EVSI, or the benefits of sample augmentation.

Over a range of hypothetical ANs above zero, numerically compare the expected marginal
value of information contributed by an additional sample observation (i.e. successive changes
in the cost of uncertainty obtained in Step 6) to the marginal cost of a sample interview. Find
the sample size where the marginal value of information is approximately equal to the cost of
an additional CV interview (for simplicity, assumed equal to the variable sampling cost and
hence constant). The result is the optimal (additional) sample size, AN*. The total sampling
effort N will thus equal N, + AN*. The original small sample will be adequate if AN* equals

ZET0.

To formally develop the objective function. suppose priors have been formed regarding the mean and

vaniance of WTP and an initial small sample has been taken (Steps 1 and 2 above). The “Conditional Value
of Perfect Information™ or CVPI function can be obtained from the linear relation in Step 3.* The horizontal
axis intercept of the CVPI function is the break-even value J,, given discounted costs equal to — .. It can be
found by setting E(NPV} to zero and solving the linear relation — o + 3¢ 1, = 0 for W, = o / 8. The slope, b,
measures the decrease below zero in NPV for any WTP below the break-even value. So, for WTP < H., the
CVPI function’s dependent variable equals 3 ® [, = E(WTP)] and for WTP> W, the CVPI function is zero.

Weare now ready to calculate the required loss integrals. Schlaifer (1959, 1961) normalizes the extent
of departure of the break even point from the sample mean WTP and computes a “unit loss integral” from the
standard normal distribution (Table IV in Schlaifer 1961). Multiplying the value of the unit loss integral by

P representing the marginal contribution of the sample measurement (WT P) to the outcome (NPV) yields the
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expected loss of an (optimal) terminal action, ELTA. As previously mentioned in Table 1, the ELTA is also

called the cost of uncertainty or the expected value of perfect information, EVPI, if the decision to invest is

made immediately after taking the first small sample without gathering any additional information. That is:

ELTA=EVPI = * 0,({1) * Ly(D)) (1)

where:

p
o,({)

DJ

E.()

Marginal contribution of WTP to NPV, in $ from Step 3..
Standard error of the mean WTP posterior to taking a first small sample. The posterior can either be
the standard error of the mean of that sample in the absence of a subjective prior (or under a very
diffuse prior) or the posterior combination of a prior guess and the sample standard error. Specifically
(Schlaifer, 1961, p.305; Paffenberger and Patterson, 1987, Ch. 23) the information contained in the
prior distribution, I, , is the reciprocal of the prior variance of the population mean, or 1/ 0,({l),
denoting the prior with a “0" subscript. The information in the first small sample, I is the reciprocal
of the variance of the sample mean, or 1/0%(x). The posterior variance of the mean, 1/1, is the sum 1/
(I, + Ig) and the posterior standard error is the square root of that sum, or;

0y([) = V1A, = [, + 1g)]'* = [1/ (1/aX({0) + 1/0*®) |'*

= [(0,%([T) * 07(%)) / (0,(T) + O*(R)}'?

The absolute value of the standardized difference between the break-even value of WTP, J,, and the
mean posterior to taking a first small sample, E, ({T). In Schlaifer’s notation |D|= |, - E,(j1))| /0, (i2).
For an expectationally profitable investment, D is negative, and represents, in effect, the “cushion”
implied for the project decision by the mean of WTP from the prior and the original small sample
estimate.
The mean posterior to taking a first small sample. It can either be the mean, %, of that sample in the
absence of a subjective prior or the posterior combination of a prior guess about the mean, E,(jT) and
the sample mean. Using I; and k5 from directly above as weights:
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E(@ = E@+gx]+[,+I].
Ly Unit loss integral, or the expected value of the difference between the normalized random variable of
interest, x, and D. For an expectationally profitable project, Ly =] (=D - x) f,(x) dx (Bonini e al.

1997) where x stands for all the possible negative values of WTP. Beyond - D the probability of an

6pportunity loss is zero, 50 Ly, is not the mean loss of the truncated distribution; rather it measures the

untruncated mean loss of the entire distribution (Jedamus and Frame 1969, p.97).

By taking a second sample and not acting immediately on the basis of the first small sample, it may
be possible to reduce expect;ed losses. The expected value of the new sample information, EVSI, is a function
of the monetary value of the reduction in variance due to the second sample, or the reduction in the ELTA. To
find the optimal size of a second sample. AN*, the function to be maximized includes the benefit of variance
reduction and the sampling costs. The benefits are measured as the expected value of information obtained from
a second sample of size AN >0, assuming the population variance of WTP is known or set equal to the
variance obtained from the first sample. Analogous to EVPI, the expected value of the sample information,
EVSL. is the value of the reduction in losses due to the reduction in variance brought about by taking more
obsefvations, AN:

EVSI = * 6(E,;) * L(ID; ) 2)
where:

O(El) Is the preposterior reduction in the standard error of the mean attributable to taking a second sample

of size AN. It is calculated as the square root of an information-weighted average of the posterior

- variance of the mean from above, 0,%({1), and the variance of the mean the new sample is presumed

to produce, 0/AN. To get 0°/AN, assume the population standard deviation (of individual

observations, not the mean) O, 1s approximately equal to the standard deviation from the first sample.

The value of 6% can then be obtained as the product of the size of the first sample, N, = 250, and the

variance of the mean WTP (see Table 3), or 6% = N, 0%(%). Then, the Bayesian preposterior reduction
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in the standard error of the mean (Schlaifer 1961, p. 324; Paffenberger and Patterson 1987, p. 1108;
Winkler 1972, p.364; Lapin 1994, p. 464) is just the square root of: °
- 2y
0*(E) = o) | —20@__]
0,X(l) + 0¥AN |
[Dgl  Isthe absolute value of the standardized difference between the break-even value of WTP, M., and the

ﬁean posterior to taking a first small sample, E,(jI), now using O(E,) as the preposterior estimate of
the decrease in the standard error of the mean WTP due to the new sample size AN. In Schlaifer’s
notation [Dg| = W, - E() / O(E,).
The costs of sampling are assumed to be a linear function of AN, with fixed costs K, and unit variable
costs k,. Then, the full loss-cost function to be minimized with respect to AN is:
£= l\gugl (EVPI-EVS) + (K, + k, AN) (3)
Once N, is chosen, EVPI and K are constants.'® Therefore minimization of £ is equivalent to
maximizing a concentrated net benefit function £’ where EVSI represents the benefits of taking an additional
sample of size AN and incurring total variable costs of k; AN. The expected net gain from (additional)
sampling. ENGS. becomes:
£ =MZ?;I: ENGS=EVSI-k,AN=f+0 (El) *L,(Dg)) - k, AN 4)
EVSl is a function of AN because 0 (E,) and Ly, (| D¢ |) are nonlinear functions of AN. The sample
size that maximizes £’ with respect to AN has to be found numerically. In some cases finding the optimum will
depend on making a good choice of the starting value for AN in the numerical search. Approximations to aid
the search are discussed in Appendix 1. The next two sections demonstrate the application of the method using
the concrete example of an investment project in Brazil.
BENEFITS OF A WATER QUALITY IMPROVEMENT PROJECT IN BRAZIL
The parts of the Tieté River and its tributaries that flow through the Sao Paulo Metropolitan Area (SPMA) in
Brazil are the most polluted bodies of water in the State. The Tieté enters the metropolitan area with acceptable
water characteristics, but soon becomes anaerobic. From this point downstream, almost to the limit of the area,
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the large volume of domestic (80% of total organic load) and industrial waste dumped into the relatively small
volume of river flow has made the river an open sewer canal for more than 80 kilometers. The water is too
contaminated even for industrial use.

A proposed investment project contemplates the construction of additional sewage treatment plants and
addition ‘of capacity at existing plants to reduce the amount of oxygen-demanding organic material reaching
the river.!" The water quality results expected from the project, as measured by dissolved oxygen (DO),
biochemical oxygen demand (BOD), and fecal coliform bacteria count, are modest, though at least anaerobic
conditions will be eliminated under all but unusually low flows. The achievement of these improvements will
be expensive. Estimated total discounted capital and operating costs over a thirty year project life are about
594.6 million Brazilian Reals (R$ of 1998).'?

The major benefits of the project arise through the reduction of odors from the river as it becomes
aerobic and the introduction of the possibility of enjoying some non-contact recreation (boating) on the cleaner
river. The questionnaire to probe for WTP for these changes was designed, tested in focus groups, and refined
under the direction of Robert Mitchell, co-author of a seminal book on CV (Mitchell and Carson, 1989). The
kev WTP question was of the referendum type and asked whether the responding household would be WTP
one of the amounts 0.5, 2.0, 5.0, 12.0, or 20.0 (1998 Brazilian Reals) per month to have the projected water
quality improvements. These payments would continue over 10 years.

For this illustration, a balanced random sub-sample of 250 observations was drawn from the actual
600 observation sample of Tieté CV survey interviews. Unlike the full sample, the small sub-sample was
deliberately drawn to be representative of the spatial distribution of the respondents.!> A size of 250 was chosen
in order to have a reasonabie minimum number of observations in each of the five bid groups in the referendum.

With referendum data. there are several competing alternative measures of the mean and its variance
(Vaughan er al. 1999). A convenient way to bound the possibilities for our sample size problem is to choose
a nonparametric mean that lies somewhere in between the upper and lower limits proposed by Boman ef al.
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(1999). Table 2 presents our preferred measure for the small sample, an unequally weighted average of the
Boman et al. upper(25% weight) and lower (75% weight) bounds, along with other candidate nonparametric
means and their variances.'

The product of average benefits per household per month, twelve months per year and the number of
beneficiary households (4.06 million in the initial year) produces a total annual gross benefit. Because of the
way the CV question was asked, the benefits can only be counted over 10 years. Taking this timing into account
and allowing for population growth, the present value of total benefits is functionally equivalent to the present
value of total population times twelve months per year multiplied by monthly benefits per household.'* Using
the unequally weighted lower bound (75% weight) and upper bound (25% weight) mean of R$ 7.47 yields a
present value of total CV-based benefits of R$ 101 million in shadow-priced terms.

FINDING THE OPTIMAL CV SAMPLE SIZE FOR THE EXAMPLE PROJECT

Using actual data and the full Bayesian method invoives forming a prior guesstimate about the mean WTP and
the population variance, drawing an initial “small” sample, combining the sample estimates of mean and
variance with the prior estimates to arrive at posterior estimates, and using those estimates to monetize the
potential reduction in expected opportunity loss that might be gained by gathering more data an‘d hence decide
whether a larger sample would be optimal. The case study demonstration follows the structure of the
spreadsheet algorithm for finding the optimal sample size provided in Appendix 2, which documents all of the
calculation steps.'®

Priors for the Parameters of the WTP Distribution

First, assume that the population mean of WTP, |, is a random variable with a normal density function and

~ choose a prior mean'” Specifically, let the prior mean E(ff) = i be 1% of the population's average income

(Ardila ef al. 1998, Choe ef al. 1996), or R$ 8.28. To guesstimate the variability in mean WTP in advance of
taking any measurements at all, Schlaifer’s technique (1961, p. 301) asks the decision maker to speculate about
what interval around the prior mean would give the guess an even (50 — 50) chance of being correct. Somewhat
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arbitrarily choosing an error of R$4.00 on either side of the prior says the true mean is as likely as not to fall
between R$4.28 and R$12.28. From the standard normal distribution, the standardized value of [L-E (D))
/ 0,({T) that demarcates 25% of the distribution’s area is 0.67 so, solving 0.67 = 4.00/0(j2), the prior for the
populatipn standard deviation of |4 is 4.00/0.67 = R$5.97. This represents a weak or diffuse prior because the
guess about the mean WTP has a relatively broad band of uncertainty and therefore Ey(jT) has very little
mnformation content.
Initial Sample Estimates of the Parameters of the WTP Distribution
Table 2 gives the means and standard deviations for monthly household WTP estimated by four different non-
parametric methods, using the special 250-houschold balanced subsample of the original Ticte project data.
In this example we use the 75/25 Turnbull/ Paasche numbers (mean R$7.47 and population standard deviation
R$13.23).18
The Payoff Function
The first key to implementing Schiaifer’s approximation is the linear payoff function. It describes the
relationship between the quantity measured by the sample and the payoff decision variable that depends on the
sample information, which in this case are mean monthly household WTP and the expected value of NPV,
respectively. This function is a compact summary of the CB analysis. Net present value is written as the linear
relation E(NPV) = — ¢ + B-E(WTP). If the expected value of WTP from a CV survey is the only source of
benefit. the intercept, - o, represents the sum of discounted capital and operating costs of the investment. If
there are any other sources of benefit that have not been estimated by CV they can be netted out of the
discounted costs to get the intercept. The slope, P, is the marginal contribution to discounted net benefits of
an increase in average WTP per household. For the case study E(NPV in R$) = - 594,653,964 + 100,988 487
*E(WTP) *

Given this linear relationship between discounted profits and household WTP, if the sample mean WTP
is normally distributed. the outcome variable, E(NPV) will also be normally distributed with mean E(NPV)
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= - + [ * E(WTP) and variance VAR(NPV) = B2 » VAR[E(WTP)].2° The break-even value that sets
E(NPV) to zerois lb, = a/B, = 594,653,964/100,988,487, or R$5.89. For any expectation of WTP less than
H,, opportunity losses in NPV will be incurred.

From Table 2 above it is clear that all of the nonparametric sample means other than the Tumbull
lower b(;und mean WTP are above the break-even value, so for any of these estimates the correct decision is
to invest. But, the sample mean is a random variable so there is some non-zero probability that it could be
below the break even value. For example, the preferred measure, a 75-25 weighted combination of the lower
and upper bound means from Table 2, is R$7.47, and its standard error is 0.84, putting the sample mean 1.88
standard errors above the break even value. The Kristrém and Paasche means are even more distant from the
break even value (R$3.31 and R$6.80 respectively in absolute terms and 3.28 and 4.96 standard errors
respectively). Under these means the cumulative probability of a loss is clearly lower than it would be using
the 75-25 weighted average to measure WTP and predict NPV.*!

The Distribution of Net Present Value

This leads to the second key to Schlaifer’s approach. It is that, given a successful project on average. each
possible NPV loss has a probability associated with it. Centering the net benefits distribution on the most likely
value of WTP. the observed sample mean, the loss probabilities are defined by the tail portion of a normal
density function lying below W, The sum of the products of all the possible expected losses and their associated
probabilities reveals the cost of uncertainty. Figure 1 illustrates the superimposition of the linear relation
representing the opportunity loss function (also called the conditional value of perfect information or CVPI
function) on the normal E(WTP) distribution whose standard error is assumed known from the first small
sample.

The distribution of gains and losses in Figure 1 is centered on the sample mean WTP of R$7.47, with
an initial spread given by the mean standard error of the small sample, 0.84. Increasing the sample size
decreases the amount of spread in the (assumed) normal density, thus decreasing the expected value of a loss,
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as demonstrated by the probability density function generated by a larger sample and a smaller standard error
(the lightly shaded line in Figure 1). Unlike the the small sample’s density, it has an infinitesimal amount of
its area to the left of the break — even point of R$5.89.

Losses in NPV are shown as positive in the figure. The horizontal axis intercept of the CVPI function
is the breék-even value |, given discounted costs equal to - &. It can be found by setting E(NPV) to zero and
solving the linear function - & + e p, = 0 for B, = & / B. The slope of the CVPI function, 3, measures the
decrease below zero in NPV for any WTP below the break-even value. So, for WTP < W, the CVPI function’s
dependent variable equals f3 * [4, - E(WTP)] and for WTP> p, the CVPI function is zero.

Al else equal, higher discounted costs (a larger negative ¢) shift the CVPI function to the right, raise
the requisite break-even value, and, given the sample mean WTP, put more mass of the tail of the normal
probability density under the non-zero part of the CVPI loss line. The expected opportunity loss or cost of
uncertainty is the sum of the products of the normal density function to the left of the break-cven value and the
conditional value of perfect information to the left of the break-even value. Therefore, higher costs raise the
cost of uncertainty, given the sample mean estimate of willingness to pay.

Linedr Sampling Cost Function

The sampling cost function is linear, with a marginal (equals variable) cost per observation taken here to be
R$89 in shadow-priced terms (Powers, 1981). Zero fixed costs for the second round of sampling are assumed.

RESULTS

Under baseline initial conditions, including project costs and the diffuse prior, it is optimal to augment the
initial sample size beyond 250 cases. The logit probability formula from Appendix 1 indicates that additional
sampling should be done, and brute force exploration reveals that additional sampling can produce positive
values for EVSI net of variable sampling cost. Numerical optimization using Excel’s Solver routine from
Appendix 2 returns a solution of 2243 cases for AN*. Adding in the initial sample of 250, the optimal sample
size needed en toto is 2,493 cases.
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Comparing Optimal Sample Size with Some Standard Prescriptions

The standard formula for the sample size required to have a (1-0)% chance of obtaining sample mean that is
within E of the population mean, given the sample standard deviation, 0, is: N = [(Z ., * O)/E]?, where Z,, is
the (1-¢)% confidence interval statistic; and E is the acceptable size of the error in the sample mean
(Pﬁ'aﬂ'er'\berger and Patterson 1987, p. 389). Mitchell and Carson (1989) replace 0/E by 0/(j4*p) = V/p where
V (=8/p) is the coefficient of variation, which they guess to around 2 and p is the desired maximum fractional
error in the mean.

The original project work from which much of our data is drawn began with a required sample size
estimate based on a 95 percent confidence interval and an allowable 10 percent sampling error for the sample
average of household income — not the unknown household WTP. Using census data to estimate the desired
mean and its standard deviation produced a required sample of 276 households

Another approach might be to construct a triangular distribution for WTP based loosely on information
from Ardila er al. (1998) about estimated household WTP for sewer connections and water quality
improvements. Suppose this distribution is anchored on the left at zero (the project is assumed to do no harm)
and on the right at 3 percent of maximum income in the affected area, with the modal value of WTP taken to
be one percent of mean income. Then, from the triangular distribution formulas, again requiring 95 percent
confidence and allowing 10 percent error, the required same size would be 175.%

Quite a different estimate would be produced by using the Mitchell-Carson formula mentioned earlier,
with the (guessed) coefficient of variation set to 2. For the same confidence interval and acceptable error
percentage, the estimated required N is 1537. Even if we had the information from the initial sample to plug
into the formuta. it does not come close to the optimum. That is, using the sample mean of $R 7.47 and a
population standard deviation of 13.25 from Table 2, and employing the same confidence level and allowable
error, a total sample size of 1205 results.*

Thus, in this example, several variants of the standard method produce sample sizes from 175 to 1537.
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These sample sizes are all inadequate. The optimization method based on the value of additional information
recommends a total sample size of 2493, which is almost 1000 cases greater than the highest result from the
standard tolerance method.

What Happens As Project Economics Change?

As the mean of WTP moves to the right, the overlap of the loss function and the distribution of NPV shrinks,
and the value of additional information falls. In the example, if we had started with the Kristrém intermediate
estimate of per household WTP, the algorithm would have told us that no additional sampling was necessary.?

For contrast with improving on the baseline case via increases in mean WTP, consider, consider raising
discounted costs by 25% (i.¢. shifting the intercept of the linear net profit function from -$R 595 million to -$R
753 million). Analogous to a decreases in mean WTP, this brings the expected value of NPV very close to zero
and puts half of the distribution of expected net returns into the negative region. Here, the optimal size of AN
will be at a maximum. Table 3 shows the elements of a trial and error search for an optimum, assuming a
diffuse prior for WTP, and Figure 2 shows the; optimum graphically.

The table and figure show that the response surface is very flat. The approximate optimum AN is 6750
cases, but the gains to additional sampling diminish quickly after about 2000 cases. By inspection of the figure,
the net gains from an additional sample of 4000 cases ($R 30,303,436) or even less are fairly close to the net
gains at the optimum (3R 30,460,065). This is consistent with Schlaifer’s (1961, Figure 21.5) numerical
investigations which showed that moderate departures from the optimum number of cases (+ 20% or even £
30%) are likely to be inconsequential.

Similar exercises to shift the CVPI function less drastically to the left were conducted to see what
general effect the location of the E(NPV) distribution relative to ENPV) = 0 has on the optimal AN. The mean
of total discounted costs (- &) was raised above the baseline by 5%, 10%, 15% and 20%, holding mean WTP
constant at R$7.49.% Table 4 shows the effect that the standardized distance of E(NPV) away from zero has
on the optimal incremental sample size¢ AN* under diffuse priors, tight priors and total ignorance. One
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fundamental lesson that can be drawn from the table is that the optimal sample size is sensitive to the
economics of the situation; the standard method, at best, comes within 60% of the optimum under the baseline
conditions (i.e 1537 cases versus the optimum of 2493), but never does any better than this across a gamut of
circumstances.

The results in Table 4 and other calculations not reported here suggest that, in this case, small samples
suffice when sampling costs are high and the mean of the NPV distribution is over about 2.4 standard errors
away from the break-even point of E(NPV)=0 because the decision has little downside risk. Then, there is no
payoff in taking larger samples to shrink that risk by reducing the variance and further compressing the portion
of the NPV distribution lying below zero. However substantial gains to increasing the sample size begin to
emerge after the expected value of NPV falls below about 2.4 standard errors from zero. Although the
algorithm does not explicitly incorporate Type II error, the fact that the required sample size increases as the
gap between E(NPV) and the break-even point narrows provides protection against false acceptance of a mean
WTP that justifies the project when in fact the true mean WTP would lead to the opposite conclusion.

Table 4 also shows that good prior estimates of the mean WTP and its spread can significantly reduce
the amount of sampling effort needed to reach an optimum CV survey sample size for invesm"xent decisions.
Unfortunately, given the state of the art, good prior estimates are probably unattainable, especially in
developing countries.

CONCLUDING OBSERVATIONS
Small CV survey samples are probably adequate for CB analysis when the fixed and variable costs of sampling
are relatively high and the investment is extremely robust. If the investment has a probability of failure of less
than one percent, it is not necessary to take large samples. In this sense the common perception that small CV
samples will suffice is correct. If investment proposals are carefully screened and only the very best of them
become candidates for final project analysis, massive CV sampling efforts to measure WTP more preciscly are
not worthwhile. However, investments with infinitesimal risks are rare.
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At the other more common extreme, when the investment is borderline because nearly half of the NPV
distribution falls in the negative quadrant, even though its mean NPV is barely positive, small (e.g. 250
observations) samples will always be inadequate. In this situation, which can be easily identified a priori, a
search for the optimum number of additional cases needed to augment the small sample is recommended.

Like our worked example, many prospective investments fall somewhere in the middle ground between
can’t miss and borderline proposals. The existence of this grey area makes it risky to rely exclusively on any
particular rule of thumb, be it for small, medium or large samples. But, in general, given an initial expectation
for WTP and a service flow outcome so the time pattern and magnitude of gross benefits is held constant, the
more costly the project the larger the sample that will be needed to justify it. This paper has shown how to make
that general rule operational.

In many situations it will be a stretch to specify a prior guess as to mean WTP and its variance. Thus,
while many CV studies have been done in developing country settings, to date they defy easy summarization
(Ardila et al. 1998), and forming reasonable prior beliefs on the basis of fragmented and inconsistent past
experience is difficult indeed. In fact, unless priors are reasonably accurate they will not contribute much
information on WTP location and spread beyond what an initial survey sample contains, so the influence of
relatively diffuse priors on the optimal decision will be trivial. Said another way, little will be gained from
formulating wildlv inaccurate or imprecise prior estimates; all the information content will be in the first small
sample, N,. The simplified sequential approach suggested in Appendix 2 mirrors those realities. So even
without forming priors, it is possible to determine an optimal sample size.?’

The Bayesian approach to optimal sample-size determination is relevant to benefits transfer and meta
analysis efforts. The literature has been skeptical about the value of these uses of accumulated past experience
to estimate the benefits of new projects (Brouwer and Spaninks 1999). The potential value of this kind of
information has largely been ignored because researchers have focused mainly on the degree of correspondence

between predictions of WTP generated from past studies and the actual mean WTP results from field work,
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working under the as if presumption that prior information would be used to replace new sampling.

This focus might be misplaced. Prior information need not be regarded purely as a substitute for new
in situ CV survey sampling. The two are complementary because combining good prior predictions of WTP
with actual survey samples can save a good deal of new sampling effort and money. The synthesis of past CV
results tc; make accumulated contingent valuation WTP information transportable to new situations might pay
off, if project analysis were commonly to involve the systematic use of an optimal Bayesian sample size
protocol that currently must work under the handicap of total ignorance or diffuse priors.

To date. intenational lending institutions have not systematically followed reliable protocols for
selecting CV survey sample sizes in their appraisal of prospective investments, and they are not alone. In this
operating environment, new information has little value beyond its immediate contribution to the specific
decision at hand, which is to economically justify a given investment project. The WTP data is used once and
then forgotten. But this information could become more valuable if sample sizes were chosen in the future that
take account of the expected opportunity loss the actual investor might incur. Then, there would be a good

reason to take a longer range view about the value of information.




APPENDIX 1

APPROXIMATIONS TO INDICATE WHETHER MORE
SAMPLING IS NEEDED AND THE SIZE OF AN

Schiaifer (1961) relates the need for more sampling to the values of his essential parameters of the problem
of sample size, labeled Z, and the previously defined Dy, and provides a nomogram (Figure 21.4, p. 332) that
indicates whether it is worth taking a second sample, depending on the values of these parameters. The essential
parameter Z, is a function of the marginal contribution to NPV of a change in WTP (i.e. f3), the marginal costs
of sampling (i.e. k;) the population standard deviation of WTP (i.e. G, approximated by the standard deviation,
s, from the first sample) and the standard error of the mean WTP posterior to taking a first small sample (i.e.
a,([ ):

Z,=[o\(@)/ 0] [Po/k]”

Since many readers may not have easy access to Schlaifer’s book and the decision nomogram, we fit
a logit probability model with a second-order index function to 197 pairs of D, and Z, points read from his
Figure 21 4, coding the dependent variable as 1 if the nomogram recommended “Sample before Acting”, and
as 0 if it recommended “Act without Sampling”. The model fit was reasonably good (pseudo R? of 0.80) with
182 correct predictions and 15 false predictions. As a substitute for the Schlaifer’s figure, a decision to take
an additional sample should be made if the predicted probability from the model is equal to or greater than 0.5:

Prob. sume = 1/[1 + exp [2.2061 — 1.1255 Z, - 4.6102 D, + 0. 0066 (Z)* + 4.8539 (D,)*] 2 0.5 ?

If the answer from evaluating the probability model (or Schiaifer’s Figure 21.4) is “Sample before
Acting” it will be necessary to search for the optimum, AN*. A good starting value for the grid search over
AN can be found from a rough approximation to the optimum, AN Approx- USIng another simplification from
(Schiaifer 1961, pp. 334-335):

AN* = AN gprex = [(BO/k)'P)' ¢ [%2 Z, / Py (Dy)]

where Py, (Dy) is the probability density of the standard Normal density function evaluated at D,. The optimum
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size AN* of the addition to the original small sample (N, = 250) either be found through trial and error by
constructing crude fixed-step size grid search in the neighborhood of the initial guess, AN, .or by calling

an optimization routine like Excel’s Solver after specifying AN porox- as the starting value.

(38
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APPENDIX 2

A SPREADSHEET PROGRAM FOR SAMPLE SIZE DETERMINATION
Anyone can implement the method developed in this paper using a spreadsheet algorithm in Quattro Pro that
is available from the authors on request.”® The optimization routine presumes that an initial small survey
sample has already been taken, and asks whether it would be optimal to add to it in a second round of sampling,
assuming no prior information is available. To run the program all the user has to do is click on an "Optimizer
Macro" button to compute the optimum number of additional observations needed to augment an initial “small"
survey, if any. The data entry and output results forms under the special case of totally diffuse priors are shown
in Table 2-1 below. The full set of spreadsheet instructions under the more general Bayesian structure appear
in Table 2-2 .

Under the assumption of no prior knowledge of Table 2-1, only six pieces of input information are
needed: (1) the size of the initial small CV survey sample, (2) the expected value (mean) of willingness to pay
(WTP) extracted from that sample, (3) the variance of mean WTP, (4) the average (equals marginal) cost of
collecting a single survey observation, (5) the intercept of the linear CVPI function relating NPV to WTP and

(6) the slope of the linear function, as explained in the body of the paper.




TABLE 2-1. QUATTRO PRO MACRO: DATA INPUT FORM AND OPTIMAL RESULTS

SUMMARY OUTPUT
DATA ENTRY
STEP 1. ENTER THE INITIAL SMALL SAMPLE Units Data Entry
DATA
Size of Initial "Small" Sample? # of Cases 250
Sample Mean Willingness to Pay? $/Household/Unit Time $7.47
Variance of Sample Mean? $/Household/Unit Time 0.7
Sampling Cost per Household Interview? $/Case $£89.00

STEP 11. SPECIFY THE LINEAR CVPI FUNCTION RELATING NPV TO WTP
(NPV =& + p *MEAN WTP)
$ Total Discounted Costs
[Enter as Negative #}
# of Beneficiaries

Intercept (&t) ? -$594,653,984.00

Slope () ? [Total Discounted] 100.988.487
RESULTS
STANDARD ERRORS OF NPV AWAY FROM NPV = @ 1.89
SHOULD A SECOND SAMPLE BE TAKEN TO AUGMENT THE INITIAL Probably Yes

SAMPLE?

F "Yes" CLICK ON THE BUTTON AT THE RIGHT TO RUN THE OPTIMIZER
1ACRO

2,793

Approximate Sample Size (Used as a Starting Value for Optimization)

EXACT OPTIMUM 2378

Note: This routine assumes the analyst has no prior knowledge about average WTP or its variance
beyond what the initial "small" sample reveals. Neither the authors nor the Inter-American Development
Bank warranty this program or the methods it employs.

INSTRUCTIONS:

ENTER DATA IN
BOX AT LEFT

AND THEN

HIT THE
OPTIMIZER
BUTTON

PROGRAM
RETURNS THE
» OPTIMUM




Row #

(2]

COLUMN A:
Labels

I. Form Priors

TABLE 2-2.
SPREADSHEET FORMULA LAYOUT FOR THE OPTIMUM SAMPLE SIZE CALCULATION
(Tieté Project Case at Baseline Costs Under Diffuse Prior Information, 1998 Brazilian Reals)

COLUMN B:
Labels

Prior Mean and Standard Deviation of WTP

Prior Mean

Prior error @50%

Prior error UL@50%

Prior error LL @50%

Prior Upper Alt. U @+25%
o

Prior Standard Deviation of Population

10]|Mean

11

12-13

1418

Prior Variance of Population Mean

Eo(M)=f

Pee
b-e
[U‘Eo(rj)lloo@

O 1)

Sy (1)

COLUMN C:
Formulas

0.01°828
4

C5+C86
C5-C6

NORMINV(0.75,0,1)

(C7-Cc5)yCo

C10%2

RESULT

$8.28
$4.00

$12.28
$4.28

0.6745

$5.9304

$35.1697

COMMENT

Guess the mean WTP.

Guess the variation in the mean
covering a +50% interval.

Find the upper limit of the interval.
Find the lower limit of the interval

Find the Standard Normal 2 statistic
value for each tail outside the
interval (i.e. each contains 25%)

Find the standard deviation of
population mean WTP implied by
the prior, based on the error limits, e.

Find the variance of mean WTP
implied by the prior.

!i. Get Posterior Distribution from Normal Prior and Sampling Distributions, Sampling Variance Known

Sample Data

16

Initial (or First) Sample Size

Expecied Value of Sampie Mean

17

18|

18

20

21

22

23

24

25

Sample Variance

Sample Standard Deviation

Variance of Sample Mean
Standard Error of Sample Mean
Posterior Calculation

Posterior Mean

Posterior Standard Error of Mean

Posterior Variance of Mean

NO
E(X)=p

32

C%) =82/ N,

oX)=s/N, "

E(T)

oW

oXm

250

747

c1972

C1670.5*C21

0.670

(C5*1/C114C1771/C20) /

(1/C11+1/C20)

AIC11+1C20) 5

C24%2

250

$747

$174.40

$13.21

$0.70

$0.84

$7.49

$0.83

$0.68

Input vaiue. Number of cases in
initial smail sample.

input value. Calculate
(Nonparametric) Mean WTP

Calculate variance of WTP from
sample estimate of standard
deviation of WTP immediately
below.

Calculate sample estimate of
standard deviation of WTP using
standard error and square root of
sample size, 250.

Input value. Calculate variance of
sample Mean WTP.

Input value. Calculate standard eror
of sampleMean WTP as square root
of variance of mean WTP.

Compute posterior mean as a
weighted average of prior and
sample means based on quantity of
information provided by each. See
Rows 27 through 29 below.

Compute posterior standard error of
mean as @ weighted average of
prior and sample standard emors
based on quantity of information
provided by each. See Rows 27
through 29 below.

Compute as square of posterior
standard error.



Row#

26

27

28

29

30

31-32

33

35

36

37

39

40-41

42

43-45

46

P

S

o

COLUMN A: COLUMN B:

Labels Labels
Quantity of Information
in Sample Mean ')-(
In Prior Mean ly
In Posterior Mean I
Check h=h+k

COLUMN C:

Formulas RESULT COMMENT
1/C20 143 Relative Information content.
1/c11 0.03 Relative Information content.
1/C2472 1.46 Pooled information content
C27 +C28 146

lil. Expected Profit After First Small Sample (i.e. Based on Posterior from Il Above)

Linear Profit Function Intercept o

Linear Profit Function Slope B

Expected Profit (NPV) a+BeE({I)

Break Even Vaiue of WTP a+-B

Standardized Loss D] = |, - E,(’D)I Io,(il).
Unit Normal Loss Integra! LD} .

Expecied Loss of Optimal Terminal ELTA=EVPI=
Action Beo, ()« LD

-584653984 ~$594,653,884 Input data for intercept of linear
relation between NPV and WTP, i.e.
NPV=a+B*WTP. Calculate outside
from data generated by deterministic
cost-benefit analysis model.

100,988 487 $100,988,487 Input data for siope of linear relation
between NPV and WTP. Calcutate
outside from dala penerated by
deterministic cosi-benefit analysis
model.

C33+C34°C23 $161,738,697 Expected NPV at posterior baseline
mean WTP of $5.83.

C33/-C34 $5.89 Valuve of WTP that sets expected
NPV to zero, given posterior mean
WTP.

ABS(C36-C23)/C24 1.94 Standardized distance between
break-even WTP and postesior
baseline mean.

NORMDIST(C37,0,1,0) -C37* 0.010051 Unil Normal Loss Integral Factor
(1-NORMDIST(C37,0,1,1)) (Schiaifer, 1961, Table IV, p. 370)

C34*C24°C38 $6839,505 Expected toss of making an optimal
“go” or “no-go” investment decision
at this point without any additional
sampling (i.e. based only on the
initial priors and the original small
sample N=250 cases).

V. Optimal New Sample Size (Depends on Data in Rows 46 to 64)

Optimal New Sample Size AN

insert Approximate Trial Size 2243 Size of a hypothetical second
{o Initialize Optimization from : sample to augment the initial

€83 (2683) and then Optimize . .. . sample of N=250. To find an
I [ optimum, iterate over aiternative
values of AN to find the sample
size that maximizes the Expected
Net Gain from a second sample
{ENGS(AN) in Row 64 balow.

V. Expected Value of Information from a New Sample vs. Cost of Sampling

Current Prior Set Former PosteriorsNew Prior

Current Prior for Mean=Posterior From E,(Tl)

]

Current Prior for Standard Error of 01(TJ)
Mean

Current Prior for Variance of Mean ao2(W)

Variance of (Population) Mean at New 07 () = 6°/ AN?
Sample Size, Given Population Sigma
Assumed Known and - s

ca3 $7.49 Repeat of previously computed
posterior value for new set of
calculations. i now becomes a prior
value in this step.

C24 $0.83 Repeat. Former posterior in il now a
prior.

C25 $0.68 Repeat. Former posterior in lll now a
prior.

C1972/C42 $0.08 Key step. Standard error of the mean

of the new sample. Used below to
get revised posteriors in Rows 52
and 53.




Row #

51

52

5

(4]

55

57

58

59

60

61

62

63

COLUMN A:
Labels

New Posteriors

COLUMN B:
Labels

Preposterior Reduction in Variance of o7 (E )
1

Mean from AN

Preposterior Reduction in Std Errorof o ( E, )oro*

Maan from AN

[[»]] Absolute Value of Prior
Standardized Loss from above

|D¢l Absolute Value of Change in
Standardized Loss due to AN

Unit Normal Loss Integral

IDI= w, - E(iB)I / 0, [

IDct = 1, - E( [ /6 (E )

L(Dp

Expected Value of Sample Information  EVSI (AN)

Unconditional Expected TerminaiLoss UETeL(N)

Sampling Costs
Fixed Cost

Marginal=Variable Cost

Total Sample Cost

Expected Net Gain from a Second Sample

Expected Net Gain from & Second

Sample of Size AN

ENGS(AN)

COLUMN C:
Formulas

C49" (C49 / (C49+C50))

C5240.5
c37

ABS(C36-C47)/C53

NORMDIST(CS5,0,1,0) -
€s5°(1-
NORMDIST(C55,0,1,1))
C34°C53°C56

C39-C57

Ce0+CE1°C42

C57-C62

27

RESULT

$0.61

$0.78
1.84

204

0.00755

$557,647

$241,859

$89

$199,680

$397,967

COMMENT

Calculate updated change in
variance due to a second sample of
size AN using posterior from first
sample as a prior and the new
sample estimate from Row 50.

Square root of change in variance in
Row 52

Repeat from above. Uses posterior 1
as new prior with 0 subseript

Uses New Posterior Standard Emror
of Mean to calculate standardized
difference between break-even WTP
and mean posterior to first sample of
N=250.

Unit Normal Loss Integral Factorfor
D; (Schiaifer, 1961, Table IV, p. 370)

Expected value of information in new
optimal sampie of AN* = 2243

Terminal Loss afler a new sample of
AN=2243 is taken. Equal to ELTA
before an additional sample Ge. at
AN=0) minus the EVSI(AN)

Set to zero to simplify. include actual
value here.

Input data. Example estimate Is in
1998 Brazilian Reais( R$)

Multiply marginal sampie cost by AN
and add to fixed cost.

 EVSI((AN) minus the total cost of

taking an additional sampie of

. size (AN). This s the Objective to

optimize over aiternative values
of {AN). Use a grid search (see
text) or, more efficiently, SOLVER
in EXCEL, setting the TARGET

' CELL as C64, equal to MAX; by

changing the (AN) cell, T42,
subject to the constraint that C42
is > a small positive number (e.g.
0.001)




Row # COLUMN A: COLUMN B:
Labels Labels
8567 Starting Value (See Appendix 1)
68 D Value Standardized Loss D

69 Intermediate Components for Calculating Z,

70] Eirst Component

7 0.( 1) From Small Sample N,
72 © guess from sample data= s
73 o(f)/o

74 Second Component

79 k

76} k.

77 ka/k)”

78]2 vaive z

79 "

80 (o /"™y
Probability an Additional Sample Logit Probability Model

81 Should be Taken Approximation

82 Take an Additional Sample Before Acting?

Quick Approximate Optimal AN (ignore if Answer to “Sample Before
B3| Acting?” is “NO”

COLUMN C:
Formulas

cs4 194
c48 $0.83
c19 $13.21
CT1/CT2 0.06
c34 $100,988,487
ce1 $89
((+CT5"CT2)ICT6)"0.33 245.19
cTT°CTS 15.38
((1/c78°0.5)" 0.0446

(NORMDIST(C68.0,1,0)))0.5

C7772 60,116
+1/(1+exp(2.206+C78"- 0.9
1.1255+C68"-

4.6102+C78"2"0.006596+C68

~2*4.8539)

IF(C81>0.5,“YES","NO") Probably Yes
C79°C80 2683

RESULT
VI. Addendum: Decide if Additional Sample is Necessary and Compute Approximate AN for Optimization

COMMENT

The First Essential parameter.
From Above

From Above

From Above

From Above

From Above

The Second Essential Parameter

Crude approximation of the optimal
ratio of:
n/((k.c / k)™?) from Schiaifer

Denominator in ratio of n = AN/ ((k,
o/k)") See Row 83.

Logil function fit 1o data from
Schiaifer's Sample Decision Figure
214

Result from evaluating Lopgit
model

Approximate solution for AN. Use
in C42 above to initialize grid
search or SOLVER optimization.




TABLES AND FIGURES
TABLE 1. FUNDAMENTAL DEFINITIONS

Case I CaseIl
Correct Decision: Invest Correct Decision: Don’t Invest
E(NPV)> 0 E(NPV) <0
Decision Criterion: Global it
Mean NPV E(NPV) = [ NPV, ¢ p, d NPV
00
Probability of Opportunity 0 © <o or Max
Loss Flow1= [ pid NPV Frosn = | pdNPV
-0 or Min 0
Truncated Mean Loss E;; = ENPV | NPV< 0) E:; = ENPV | NPV>0)
0 +o0 or Max
={[ NPV, *p,dNPV}/Foy  ={] NPV;*p,dNPV}/Fiop
-co or Min 0
Cost of Uncertainty or Epess1 = Erp * Frow Eiosn = Ern ¢ Frosn

Expected Value of Perfect
Information or Expected Loss
of a Terminal Action”

a These terms all appear in the literature and they all mean essentially the same thing. It may seem unnecessarily
roundabout to express the cost of uncertainty as the product of a truncated mean and the fraction of the total probability
distribution lying in the region of opportunity loss. However, this is necessary given the way the information is produced
by the Crystal Ball Monte-Carlo simulation routine we used to verify the approximate solutions in the worked examples.

b The probability of occurrence of the i NPV is represented as p; in the table, -
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TABLE 2. SMALL SAMPLE NONPARAMETRIC MEANS
(1998 R8 per Household per Month)

Standard Population
Estimator Variance Error Standard
Mean of Mean of Mean  Deviation®

Lower Bound™®  5.75 0.45 0.67 10.61

Weighted Lower (0.75) and Upper (0.25) Bound ¢ 7.47 0.70 0.84 13.23
Intermediate Lower (0.50) and Upper (0.50) Bound ¢ 9.20 1.02 1.01 15.97
UpperBound® 12.66 1.88 1.37 21.68

Notes:

a
b

Approximation from the square root of the product of the variance of the mean and the sample size of 250 cases.
Tumbull estimator originally proposed by Timothy C. Haab and Kenneth E. McConnell, 1997. “Referendum Models and
Negative Willingness to Pay: Alternative Solutions,” Journal of Environmental Economics and Management, 32; pp. 251-
270.

Proposed by William J. Vaughan and Diego J. Rodriguez, 2000. ”A Note on Obtaining Welfare Bounds in Referendum
Contingent Valuation Studies,” Unpublished IDB Working Paper. March.

Onginally proposed by Bengt Kristrom, 1990. “A Non-Parametric Approach to the Estimation of Welfare Measures in
Discrete Response Valuation Studies,” Land Economics, 66, 2; May, pp. 135-39.

Proposed by Mattras Bowman, Goran Bostedt and Bengt Kristrom, 1999. “Obtaining Welfare Bounds on Discrete-Response
Valuation Studies: A Non-Parametric Approach, Land Economics; 75, 2; May, pp. 284-94.

TABLE 3. CRUDE STEP SEARCH FOR N* WITH E(NPV) NEAR ZERO

Trial Value for AN: 5750 6750 ~ Optimum 7750

Change in SE of Mean o@E,) 0.809321811  0.811879233  0.81379242

Standardized Distance Dg 0.0410 0.0409 0.0408

Unit Normal Loss Integral Ly@p) 0.378772051 0.378834534 0.378881025
Value of Sample Information EVSI $30,957,867 $31,060,815 $31,137,831
Total Sample Cost Ks+k,AN $511,750 $600,750 $689,750

Net Gain ENGS $30,446,117 $30,460,065 $30,448,081

Marginal Gain AEVSY AN $120 $88 $67

Marginal Cost k, $89 $89 $89
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TABLE 4. OPTIMAL INCREMENTAL SAMPLE SIZES, AN*, DEPENDING ON

PRIORS AND INITIAL EVPI
Costs Relative to Baseline 1.0 1.05 1.10 1.15 120 1.25
Small Sample Standard Errors
0(%) of ENPV) from Zero*  1.90 152 1.15 0.77 0.40 0.02
High Sampling Cost of R$89 Per Interview °
Tight Prior¢ 0 0 0 1996 4393 6530
Diffuse Prior © 2243 3411 4600 5657 6409 6715¢
Total Ignorance 2351 3507 4673 5697 6413 6687
Low Sampling Cost of R$30 Per Interview °
Tight Prior® 0 0 0 3994 7458 10729
Diffuse Prior ° 3866 5656 7506 9160 10340 10821
Total Ignorance 4022 5799 7615 9219 10343 10774
Notes:

a. Does not reflect prior information.

b. Al optima found using Microsoft Excel. Values differ slightly from optima found with Quattro Pro in Appendix 2, Table 2-1.
¢. Prior guess of E(WTP) of R$8.28 with a prior +50% error of R$0.50 for the tight prior and R$4.00 for the diffuse prior.

d. Exact optimum corresponding to the approximate optimum in Table 3 and Figure 2.
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FIGURE 1. Losses and Loss Probabilities for WTP Below Break-Even
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Figure 2 The Expected Net Gain from Additional Sampling
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ENDNOTES

1. Mitchell and Carson (1989 Chapter 10, footnote 13, p. 225) assume a best guess of 2.0 for the
coefficient of variation which drives the calculation.

2. In Winkler’s (1972, p. 297) words, “This type of decision is called a pre-posterior decision because it
involves the potential posterior distributions following the proposed sample.” Winkler notes that pre-
posterior analysis can be carried out repeatedly in sequential decision making. Our proposal involves a two-
step sequence of taking an initial “small” sample and then doing a pre-posterior analysis that looks for the
optimal number of surveys to add to the initial sample, which can either turn out to be zero or some
positive number. Of course, in some circumstances the initial sample size itself may be suboptimal (too

large), but then there will be no need to add to it.

3. Only if the probability distribution of NPV lies entirely in cither the positive or negative domains will
there be no cost of uncertainty, because you literally can’t go wrong. In either of these extreme situations,
case-specific sample estimates of willingness to pay may not even be necessary. If extreme upper and lower
limits for willingness to pay can be posited a-priori, via benefits transfer or other past experience, and the
investment either fails the CB test using the highest conceivableWTP or passes it using the lowest
conceivable non-negative WTP value the investment decision might well be made without incurring
sampling costs.

4. The focus here is on the choice of a sample for referendum CV, because this method seems to be used
most often in practical, CB-related contexts. Of course, the same approach could be applied to CV data
gathered using a direct revelation question format.

5. This is optional. See Appendix 2.

6. See Vaughan ef al. 1999, for a discussion of the several methods available to produce estimates of mean
WTP from referendum CV data. One of the nonparametric methods is most likely to be useful in this
context.

7.If no prior is specified, only step 2 will be done at this point.

8. Opportunity losses are conditional because, after the first sample has been taken and the optimal act is
chosen (in the case llustrated, invest because E(NPV)>0) they are conditional on that act. See Paffenberger
and Patterson, p. 1069. For a full discussion that may be more accessible than Schlaifer’s original book,
see Winkler 1972.

9. The posterior formed by combining the prior with the small sample data takes on the role of the prior in
this next step. The amount of revision in the variance is between the variance of the mean from the prior at
this juncture, 0,%(f1), and the preposterior variance after taking a second sample of size AN. The latter is
[(0,3GT) * 0¥AN) { (0 (f1) + 0%/AN)]. Writing the difference and simplifying, the variance reduction is:

- N 2077) ® 0/AN - 2007
o) = o - | LD TEE ]= oﬁ(u)[ o’@ __|
g f) + 0¥AN 0,X(fi) + 6YAN |
The bracketed term on the right in the last expression can be viewed as a variance shrinkage factor (Lapin

1994, p. 1032). It approaches 1.0 as AN increases. In the limit increasing AN brings EVSI equal to ELTA
through an equalization of [D| and |Dg), thus eliminating all uncertainty.
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10. Throughout we assume the fixed costs of taking a second sample, K, are zero, because most of these
costs (for consulting services, focus groups, questionnaire pretesting and design) would be incurred to
obtain the initial sample of 250 cases.

11. A previous project, considered completed in 1998, resulted in a small improvement in river quality.
This analysis takes 1998 quality as the base and treats the pre-1998 investment costs as sunk, but operation
and maintenance costs as avoidable (i.e. the “without project” counter factual is to cease operation of the
plants that are already in place because their benefits are negligible).

12. These are the shadow priced costs, discounted at an opportunity cost of capital of 12% (see Vaughan ef
al. 2000(a.b). The rate of exchange in 1998 was 1.14 Reals per U.S. dollar. The cost figure is net of other
benefits attributable to the project because by cleaning the river it will allow an intrabasin transfer of water
that will generate electrical energy.

13. The actual 600 observation referendum CV sample from our case study was unbalanced because it
undersampled households living in districts that are contiguous to the river (31 percent in the sample, 61
percent from the metropolitan area census). Since households living in districts bordering the river are
willing to pay significantly more on average for improved water quality than households in non-contiguous
districts (R$6.07 per household per month versus R$4.51) the mean from the grand sample is a biased
estimate of the population’s average willingness to pay. We corrected for this by randomly drawing 250
observations from the grand sample using the constraint of the Census proportions, which meant that 152
of the available 184 available households living close to the river were included in the small sample, along
with 98 of the 416 families living in more distant districts.

14. Vaughan and Rodriguez (2000) modify the nonparametric mean and variance formulas in Boman et al.
(1999) by generalizing the lower bound variance formula from Haab and McConnell (1997). They
demonstrate that there are legitimate intermediate measures lying in between the upper and lower bounds
other than Kristrém’s intermediate mean which gives equal weight to each limit. The choice is a matter of
subjective judgement; we prefer to weight the lower bound more heavily than Kristrém’s intermediate mean
does. For the balance of the discussion, the approximately equal allocation of cases across bid levels is
taken as given, ignoring the possibilities for variance reduction at any given total sample size that might be
achieved by concentrating the bulk of the sample in the region of bid levels where F;. = 0.5.

15. Total benefits are the product of the present value of the total number of households in the metropolitan
area over the 7 years of payment, POP, multiplied by the shadow price factor (spf = 0.78) and the resulting
discounted sum multiplied by average houschold willingness to pay (WTP) per month because we assume
the latter is constant over time. Leaving the spf inside the summation so we can work directly with an
average WTP that is not shadow priced:

10 10

Y [POP, *12 monthsfyear *sp{ eWTP}/(1+1Y = WIP » ¥ [POP, 12 months/year »spf] / (1+1)".
t=1 t=1

16. The spreadsheet was successfully benchmarked using the example data in Schlaifer 1961. It was also
independently replicated by a colleague to verify the cell formulas. The interested reader can safely

duplicate the structure and insert his/her project data to compute an optimal sample size using the Bayesian
approach. To get results under total ignorance, a scparate spreadsheet is not needed; simply insert a very
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Jarge number in Row # 10 for the prior standard error of the mean. This will wash out the influence of the
prior in all subsequent calculations.

17. In the treatment of the standard method, we had to form guesses about the mean WTP and the standard
deviation of individual observations in the population. Here, we are speculating about the mean of all
possible prior means and the spread in that (normal) prior distribution of hypothetical means. This explains
the use of the notation Oy({F) rather than G,

18. Similar calculations using any of the other means (e.g. the Tumbull, Kristrém or Paasche means) can
easily be done by following the same structure.

19. The intercept for costs was shadow priced. The slope also incorporates a shadow price factor to allow
the WTP to be expressed in terms of the original survey responses, without shadow pricing. Because WTP
per household is on a monthly basis, population in every year has to be multiplied by a factor of 12 in
addition to the shadow price factor. See note 14 above.

20. From the properties of the expectation and variance operators E(¢ + PX)y=oa+ PE(X). For example,
see Paaffenberger and Patterson 1987, p. 208 and Little 1978, Chapter 10 on strictly linear relationships
between random variables versus error propagation formulas.

21. The optimal augment to the initial small sample, AN, depends on the initial loss probability, so using
either of these higher mean WTPs would reduce AN compared to the recommendation based on the
weighted 75— 25 mean.

22 For details on this and the subsequent approximate, sub-optimal calculations, see Vaughan and
Darling. 2000.

23. The formulas for a triangular distribution from a (the minimum) to ¢ (the maximum) via b (the modg)
are:
Mean = (a + b + c)/3: Variance = (a* + b*+ ¢ — ab — ac - bc)/18.

24. The standard formula, with the same confidence limit but a 6.9 percent error allowable would imply a
sample size in the neighborhood of 2500.

25. The uncertainty about project desirability traceable to choice of econometric technique for dealing with
referendum CV data is dealt with more fully in Vaughan et al., 1999. '

26. Increasing project costs can be thought of as a proxy for decreasing E(WTP) or reducing the
standardized distance between E(NPV) and zero at the initial sample size of N, = 250 cases.

27. Mechanically, all one does is insert a very large number for the prior variance and proceed with the
optimization as usual. For a proof, sce Vaughan and Darling (2000).

28. Contact William J. Vaughan by e-mail at williamvi@iadb.org and ask for the “Sample Size Template.”

Indicate whether you will be using Quattro Pro versions 6, 7 & 8 or Quattro Pro Version 9. The template is
not available in Microsoft Excel.
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