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Chapter I 
 

 
Introduction 

 
 
An intersection of poverty, HIV, metabolic disease, and immune 

inflammation: building knowledge of the immune system through the study 

of known perturbations 

Where the 19th century marked the advent of infection-centered immunology and 

the germ theory of disease1, the 20th and 21st centuries have ushered in an 

epidemiological transition coinciding with economic development. Chronic disease, 

lifestyle diseases, and diseases of aging such as cancer, diabetes, hypertension, and 

heart disease now account for approximately 70% of human disease.2 Changes in 

standards of living, availability of medical care, and poverty can directly explain this 

transition, as first posited by Abdel Omran in 1971.3,4 This transition has been so 

jarring that some diseases, such as beriberi (severe and chronic thiamine 

deficiency), were incorrectly assumed to be immune-mediated in response to a 

human pathogen for decades, hindering proper clinical and scientific investigation 

into treatments.5 Increases in lifespan and aging as a process of immune 

senescence (and hence, dysfunction) have certainly increased the prevalence of 

chronic disease. However, any model attributing this increase predominantly to 

aging is incomplete. More complete models have correctly incorporated genetic 
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heritability and “germinating” , chronic, systemic inflammation as central 

components to a unifying theory of the etiology of these diseases.6–12 Seminal 

publications at the turn of the 21st century directly implicated the immune system 

as an unexpectedly central player in many of these diseases.13–16  

From a historical and evolutionary perspective, the correlation between 

immune dysfunction and Omran’s epidemiologic transition makes perfect sense. 

Energy (nutrition) management and metabolic homeostasis are two of the most 

important functions that any living organism must maintain. Any organism that 

cannot endure starvation or the threat of severe infectious disease would be poorly 

adapted to the immense immunogenic burden that one encounters in daily life.  

 

Figure 1. Immune responses and energy conservation are inherently opposed functions whose 
relationship is contextualized by obesity and inflammation. Left panel: Mounting an immune response 
against a pathogen or immune stimulus requires expenditure of valuable cellular and systemic energy; building 
these reserves during nutritional surplus is important not only for surviving starvation but for maintaining 
immune function. Right panel: Obesity provides a man-made experiment where type 2 diabetes, hypertension, 
and other chronic “lifestyle” and diseases of civilization are induced by nutritional excess and subsequent 
immune activation that cannot occur in the setting of starvation.  
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This balance explains the stunning conservation and coordination of the immune 

system, immune organs, immune genes, and immune regulation from flies to man 

and how an adaptive mechanism of human evolution has become maladaptive in 

the present day and age (Figure 1).17–19 Religion provides an excellent experiment 

of man that supports this model; longitudinal prospective studies of individuals 

undergoing ascetic fasting and their non-fasting peers have revealed that caloric 

restriction leads to reduced circulatory inflammatory marker expression, improved 

cholesterol profiles, and caloric restriction has proven itself as a robust way of 

prolonging life in every major animal model studied.20–22 Similarly, cross-sectional 

cohort studies of Cretian farmers have documented a cultural shift away from a 

Mediterranean diet with concomitant increases in mean BMI, blood pressure, 

cholesterol, and cardiovascular disease (CVD) risk factors.23,24 

Given the impossibly long list of variables that could stimulate or repress the 

immune system—pathogens, symbionts, chemical and environmental agents, diet, 

stress, and more—it is clear that understanding the contributions of the immune 

system to these human diseases is only possible by studying 1) experiments of 

nature, and 2) experiments of man. Examples of the former include the study of 

individuals with severe combined immunodeficiency and variable 

immunodeficiency (in that specific immune lineages are dysfunctional or non-

functional) manifesting in susceptibility to select bacterial and viral infections.25–31 In 
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contrast, notable experiments of man include the adoptive transfer of lymphocytes 

and their progenitors from one human to another after myeloablative therapy,32,33 

bone marrow transplantation,34 and most uniquely, antiretroviral therapy (ART) for 

the treatment of human immunodeficiency virus (HIV) and reversal of the 

immunodepletion that occurs during natural HIV infection.35,36 Leveraging the 

contrast of these two types of experiments provides a framework for 

understanding the contributions of the immune system to human disease (Figure 

2, next page). This framework provides a way to design human immunological 

studies in a way that provides filters and internal validation of the data generated 

so that the assignment of a cellular population as causal of disease becomes more 

robust. 
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Figure 2. A hierarchy to understand immune-mediated disease. Understanding immune insult and injury is 
best achieved by building and collecting hierarchical knowledge of the immune system. This process begins by 
collecting well-curated, multi-modal/multi-omic data from genetically diverse and generally “healthy” individuals 
(I place “healthy” in quotation marks here to emphasize that the immune system is an exquisitely sensitive 
sensor that can respond quickly and forcefully to even minor insults in individuals with a perfectly clean bill of 
health and clinical history). In chapter 2, I apply this hierarchy in a large cohort of veterans living with and 
without HIV to learn immune features that are associated with mortality. As one moves from the bottom of the 
pyramid to the top, the number of individuals who can be studied shrinks. Similarly, collecting multi-modal data 
on a large number of individuals, and collecting a large number of measurements from multiple individuals 
(much less over time), becomes less and less practical. Accordingly, the generation of cohort and population-
level data and accounting for known immune perturbations such as cytomegalovirus (CMV) co-infection 
becomes essential to 1) reduce type I/discovery errors in small human studies and 2) reveal the true effects and 
causal diagram of the intervention, disease, or immune component being studied.  

 

Human immunodeficiency virus (HIV) establishes a permanent infection that 

depletes a specific subset of immune cells—primarily CD4+ T cells, with efficiency 

varying in different subsets of CD4+ T cells—over time if left untreated.37–39 While 

modern ART has made HIV a manageable chronic illness, chronic HIV infection is a 

condition marked by persistent, low-level inflammation originating from multiple 
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sources (Figure 3).40–45 

 

Figure 3. Overview of HIV mortality and mechanisms of immune activation in chronic HIV infection. Left 
panel: Kaplan-Meier hazard curves visualizing survival over time of three groups of veterans from the Veterans 
Aging Cohort Study Biomarker Cohort: HIV− (red), HIV+ with unsuppressed HIV (viremic, green), and HIV+ with 
suppressed HIV (suppressed, blue). The survival of PLWH with suppressed HIV is approximately equivalent to 
that of HIV− individuals, which has been shown elsewhere, as has the fact that PLWH with uncontrolled HIV 
infection are much more likely to die over time. Right panel: Common sources of and contributors to chronic 
inflammation in PLWH; notably, these responses can be exacerbated in specific ways depending on the 
composition of the CD4+ T cell compartment, which I provide evidence for in Chapter 2 below. 

 

The portmanteau “inflammaging” (inflammation + aging) has been used to describe 

this inflammatory state. Indeed, this accelerated “aging” of the immune system 
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clinical variables such as BMI, antiretroviral usage, age, sex, race, and drug use 

(reviewed in 41). 

 

Figure 4. Concurrent epidemics of obesity, cardiovascular disease, and poverty coincide with the HIV 
epidemic within the United States. Data are sourced from and visualized by AIDSVu (top panels) and the 
CDC’s Interactive Atlas of Heart Disease and Stroke (bottom panels) and reproduced under the Creative 
Commons CC-BY-NC-SA license. 

 

In addition to the immune alterations that natural HIV infection causes, HIV 

infection rates are highest where poverty, socioeconomic disparity, cardiovascular 

disease and obesity are found in the United States (Figure 4). This pattern holds 

true around the world, especially in poor and population-dense regions with limited 
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access to medical care (Figure 5). 

 

Figure 5. HIV infection is most common in countries where poverty and income inequality, restricted 
access to medical care, poverty, and high population density are also common. This chart is reproduced 
from Max Roser and Hannah Ritchie’s HIV/AIDS article in Our World in Data (https://ourworldindata.org/hiv-
aids) under the Creative Commons BY license. 

 

Indeed, the stigma associated with HIV infection amplifies these factors, with 

social isolation and exclusion from solidarity networks, which in turn leads to food 

and livelihood insecurity, failure to adhere to ART, and poor health in cyclical 

fashion.46,47 By performing research with PLWH and HIV-negative individuals and 

taking into account the compounding nature of these overlapping epidemics, it 
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becomes possible to understand the contribution of the immune system to specific 

immune-mediated disorders, such as hypertension, diabetes, and frailty. I describe 

below the genetic variation of this sensitive and specific adaptive immune system, 

several of its cellular and molecular constituents (namely, the T lymphocyte, who 

features prominently in this work), and some of the known immune perturbations 

that arise in chronic viral infection, inflammation, and related immune processes. 

Indeed, the T cell and B cell receptor (whose affinities in vivo range from nanomolar 

to sub-picomolar), when acting in conjunction with antigen-presenting cells (APCs), 

form arguably the most sensitive biological detector of non-normality and 

perturbation. 

 

Genetic variation and the human adaptive immune system 
 
Given this framework of leveraging known immune perturbations to understand 

the immune system, it becomes important to understand and account for inherent 

variation within the adaptive immune system itself as well. As a species, Homo 

sapiens is distributed across and throughout an incredibly diverse array of 

environments, each varying in its temperature, humidity, flora and fauna, sunlight, 

and other natural variables. This diversity is further amplified by cultural and 

socioeconomic factors such as population density, family relationships (e.g. do 

children and their parents live together for much of their lives), how children are 
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raised, the availability and quality of medical care and resources, and the social 

perceptions of human disease.  

Genetic variation amongst H. sapiens builds yet another layer of diversity. 

Each single haploid cell of the typical human contains approximately 3 billion base 

pairs of DNA. Of those 3 billion base pairs, approximately 3 million (0.1%) on 

average will differ between any two humans on the planet at any given time. This 

variation has enabled researchers to use Mendelian randomization (as genotypes 

are randomly assigned at birth) to identify causal genetic variants associated with 

human disease and variation in phenotypes, to approximate ancestry of individuals 

using single nucleotide polymorphisms (SNPs), to advance forensic science, and 

much more.48 However, of all the loci in the human genome, an astonishing 

amount of genetic diversity is located in genes encoding: 1) the human leukocyte 

antigen (HLA),49 2) the T cell receptor,50 and 3) the B cell receptor.51 The genetic 

variation of these loci alone and of the functional products they encode is one of 

the most important reasons cohorts focusing on questions relevant to adaptive 

immunity and its interacting cellular populations should be genotyped and why as 

many individuals as possible should be studied. Structural variation and 

polymorphism in these regions and their associations with disease will be likely 

captured using full allelic typing and whole-genome sequencing rather than SNP 

genotyping or GWAS given the inheritance patterns and diversity of these loci 
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(including KIR, HLA, TCR, and BCR genomic regions). Notably, the major 

experiments of nature and man I describe above have been predominantly 

agnostic of the critical allelic variation found in these immune receptors (including 

the killer-immunoglobulin-like receptor (KIR) family). 

 

Genetic diversity in relation to structure and function of HLA 
 
The major histocompatibility complex (MHC), known as human leukocyte antigen 

(HLA) in humans, is a genomic array found on chromosome 6. There are two main 

classes of HLA, class I and II, which differ in their expression on immune cell subsets 

and in human tissue despite their structural similarities. Both classes of HLA bear 

immunoglobulin-like domains near the membrane-inserting portion of the 

molecule, and their most distal domains from the membrane form a peptide-

binding groove (colloquially referred to as a “hot dog bun”). The HLA loci are in 

strong linkage disequilibrium and encode the majority of glycoproteins responsible 

for presenting foreign and self-peptides to T cells. Most polymorphic genes contain 

nucleotide sequences encoding differences of 1-3 amino acids between variants; 

the HLA loci encodes variation of a difference up to (and possibly beyond) 20 amino 

acid substitutions between allelic variants. These differences are predominantly 

located in the peptide-binding site (which displays antigens to T cells) and on 



 12 
 

exposed surface areas (which most mature T cells bind weakly, and which play a 

key role in T cell development and selection) (Figure 6). 

 

Figure 6. The majority of allelic variation in HLA is found in peptide-binding and surface exposed 
regions. Most inter-allelic variation in the HLA loci is found in two places: 1) the a1 and a2 domains of HLA class 
I and 2) the  b1 and b2 domains of HLA class II. These domains form the respective peptide grooves of both 
classes of HLA; the groove of class I HLA alleles accommodates shorter peptides while the groove of class II HLA 
alleles holds significantly longer peptides. The a chain of HLA class II is particularly invariant. This figure was 
modified from Janeway’s Immunobiology, 9th Edition by Kenneth Murphy and Casey Weaver (© 2017 by 
Garland Science, Taylor & Francis Group, LLC); it is modified and reproduced with permission of W.W. Norton & 
Company, Inc. 

 

The HLA genes arose and have maintained their diversity through gene 

duplication and subsequent divergence. Sequencing of these loci across multiple 

related and unrelated humans and other species indicate that gene conversion—a 

process by which segments of multiple genes interchange during meiotic 

apposition—has enabled HLA genes to accrue multiple mutations rapidly, especially 
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given that the HLA loci are tandemly arrayed (Figure 7). 

 

Figure 7. Chromosomal map of the HLA complex. The class I, class II, and class III regions of the HLA complex 
are shown here with genetic distances in thousands of base pairs. Genes such as HLA-E, HLA-F, and HLA-G shown 
in the class I region are class I-like genes encoding regulatory class Ib molecules. Genes shown in the class III 
segment encode complement proteins C4, C2, and factor B (shown as Bf), in addition to genes encoding tumor 
necrosis factor-α (TNF) and lymphotoxin (LTA, LTB). HLA class I genes are colored in red, except for the MIC 
genes, which are colored in blue; these are distinct from the other class I-like genes and are under different 
transcriptional control. HLA class II genes are shown in yellow. Genes unrelated to HLA class I and II in the HLA 
region with immune functions are colored in violet. Genes in dark gray are pseudogenes related to immune 
function genes. This figure was modified from Janeway’s Immunobiology, 9th Edition by Kenneth Murphy and 
Casey Weaver (© 2017 by Garland Science, Taylor & Francis Group, LLC); it is modified and reproduced with 
permission of W.W. Norton & Company, Inc. 

 

This polymorphism is accented by the polygenic nature of the HLA, in that 

each human on the planet carries multiple allelic variants, each of which are 

expressed in different combinations. Accordingly, most humans are heterozygous 
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diversity pose one of the greatest biological barriers to transplantation, as even 

siblings frequently carry and express different HLA haplotypes. However, this allelic 

and haplotypic diversity is, in the final analysis, of utmost importance to a properly 

coordinated immune response. The unique peptide-binding groove sequences of 

these allelic variants confers preferential binding specificity to select peptide motifs; 

carrying and expressing these diverse allelic variants permits the human immune 

system to present and respond to very broad peptide repertoires; recent analyses 

confirm that these loci are still under positive selection and diversification, and that 

class II alleles in particular develop “generalist” peptide-binding motifs in areas with 

diverse pathogens and high pathogen burden.52,53 Similar variation also exists in 

the KIR loci,54 who were co-discovered along with natural killer (NK) cells via the 

“missing-self hypothesis”55—where absence of the incredibly polymorphic HLA 

molecule leads to NK cell killing,56,57 which is turn partially controlled by KIR-HLA 

interactions that inhibit or activate cytolytic pathways.58,59 While the urgency of 

organ transplantation research naturally led to the development of full allelic typing 

for HLA, the KIR gene family is much newer—even though KIR family members have 

NK-activatory, NK-inhibitory, and HLA-binding activities. 
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Genetic diversity of the T cell receptor loci 
 
The T cell receptor (TCR) is a heterodimer comprised most commonly of an a:b or a 

g:d pair of receptor chains. These chains are assembled at the molecular level from 

up to three parts: a V gene, a D gene, and a J gene. All TCR chains are comprised of 

both a variable and a constant region. The variable region of the b and d chains is 

encoded in three parts—a V gene joined to a D gene, with random nucleotides 

inserted and deleted on either side, joined again to a J gene, forming a V(D)J 

junction—while the a and g chains are forming by the joining of a V gene and a J 

gene. The V(D)J and VJ junction are commonly (albeit incorrectly) referred to as the 

third complementarity-determining region (CDR3)—while incorrect from a 

taxonomic standpoint, this does accurately reflect that the majority of the variability 

inherent in the somatic combinatorial process that creates a TCR is found in the 

V(D)J and V-J junctions. While human TCRs do not further diversify through somatic 

hypermutation (SHM) like B cells, the TCRa chain of the nurse shark has recently 

been demonstrated to undergo extensive SHM,60 demonstrating another 

mechanism through which even more diversification of the TCR can be achieved. 

Like many genes, TCR genes are inherited in haplotypes—meaning that, for 

instance, while there are at least 52 commonly known TRBV genes, not all of these 

genes will be present in each individual or inherited. In addition to this heritable 

variability, at least two-thirds of these genes are known to contain silent,61,62 point,62 
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and premature termination/stop codon mutations or mutations that disrupt 

secondary and tertiary structure necessary for proper TCR pairing and function.63 

Consequently, polymorphism within the TCR loci means that some TCR repertoires 

contain “holes” in them where certain TCR genes are functionally useless in V(D)J 

recombination, in additional to “holes” where entire non-human antigens might not 

be recognized due to thymic exclusion of TCRs responding to them.64  

One particularly outstanding example of the functional impact of this 

polymorphism is found in the study of an HLA-B*35:01-restricted response 

targeting an epitope of Epstein-Barr virus (EBV). Gras and colleagues first identified 

a “public” TCR—a T cell receptor found in multiple HLA-B*35:01-carrying individuals 

with identical nucleotide and amino acid sequences—recognizing an epitope of 

EBV. In all of these individuals, the TRBV gene used in these TCRs was TRBV9*01; the 

TRBV9*02 allele was uniformly absent. By studying the same EBV-specific TCR with 

the TRBV9*02 allele—which contains a single amino acid point mutation in the first 

complementarity-determining region (CDR1)—and replacing its naturally selected 

TRBV9*01 allele, they showed conclusively that CDR1 and CDR2 polymorphism 

increase the affinity of the TCR for HLA. These results were later supported by 

findings from Robbins and colleagues, who demonstrated the same phenomenon 

in the setting of melanoma and HLA-A*02:01 natural and in vitro polymorphism.65,66 

Polymorphism of the TCR may also play a role in responding to antigenic 
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polymorphism; Geldmacher and colleagues showed that the TL9 epitope of HIV is 

recognized by a TRBV12-3 public TCR when present in HIV subtype C viruses, but 

that TL9 variant cross-reactive TCRs are only found in HLA-B81-carrying individuals 

and not HLA-B42-carrying individuals (a striking finding given that HLA-B81 and 

HLA-B42 differ by just six amino acids).67 

Recent findings of 37 novel TRBV genes in a sample of just 81 Caucasian 

individuals have renewed interest in the polymorphism of the TCR loci; in that 

study, 6 allelic profiles representing distinct haplotypes of the TRBV loci were clearly 

identifiable and revealed stark differences in both the number of uncommon TRBV 

alleles and the number of distinct TRBV alleles found in individuals of each 

haplotypic grouping.68 While the authors of that study speculated that these 

haplotypes could potentially identify individuals with different risks of immune-

related adverse events (irAEs, which I present work on in Chapter ), it is worth 

noting that TRBV polymorphism is associated with multiple autoimmune diseases, 

most notably narcolepsy,69–71 type I diabetes,72,73 and multiple sclerosis,74,75 among 

others.76,77 Indeed, multiple groups have recently reported extensive single-

nucleotide polymorphism, evidence of increased mutational rate, and population-

specific differences in the TCR loci.78,79 Extension of approaches developed by De 

Witt et al.80—who used TCRb CDR3 sequencing (Adaptive ImmunoSEQ) of 666 

unrelated individuals with metadata including age, sex, ethnicity, CMV serostatus, 
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and full class I and II HLA typing to identify TCRs strongly associated with specific 

HLA alleles and responses against common pathogens—to these diseases 

represents a promising avenue of research as well. 

 
 
The cellular origins of the immune system 
 
In many multicellular, eukaryotic organisms, the presence of diverse and adaptable 

pathogens has guided and selected for the evolution of a cellular defense response 

coordinated by incredibly specialized cells. These cells and the organs in which they 

live and circulate—collectively, the immune system—cooperate to recognize, 

prevent, respond to, eliminate, and remember disease. All immune cells arise from 

pluripotent hematopoietic stem cells, which differentiate into common lymphoid 

progenitor cells and common myeloid progenitor cells.81–85 These immune stem 

populations produce the antigen-specific lineages (B cells, T cells, natural killer (NK) 

cells, and T/B/NK-like innate lymphoid cells) and granulocytic/polymorphonuclear 

cell lineages, respectively. The bone marrow is home to these developing 

populations, though certain tissue-resident immune cells originate from the yolk 

sac or fetal liver (examples include microglial cells in the central nervous system, 

fetal gamma-delta T cells, and others)86,87. Below, I will briefly discuss the 

developmental origins of one of these adaptive immune lineages—the T 

lymphocyte, or T cell. 



 19 
 

 

Development of the T lymphocyte and rearrangement/recombination of the T cell 

receptor 

T lymphocytes (so named for their thymic origin) are antigen-specific, HLA-

restricted lymphocytes. This means that they recognize and respond to their targets 

by binding HLA-peptide complexes containing truncated and processed peptide 

fragments that are loaded into the central groove of a class I or class II HLA 

molecule. Before a T cell can recognize an HLA-restricted peptide, its hematopoietic 

progenitor cells and lymphoid precursors must first migrate to the thymus, where 

they attempt to rearrange a TCR, test the rearranged TCR against a variety of self-

antigens (positive and negative selection), and then leave the thymus to further 

differentiate and respond to antigens in the periphery (Figure 8, next page). 
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Figure 8. Graphical summary of the process of T lymphocyte development and the timing of TCR 
rearrangement. This figure is reproduced from Janeway’s Immunobiology, 9th Edition by Kenneth Murphy and 
Casey Weaver (© 2017 by Garland Science, Taylor & Francis Group, LLC) with permission of W.W. Norton & 
Company, Inc. 

 

Hematopoietic and common lymphoid progenitors that traffic to the thymus 

successfully commit to the T cell lineage after 1) receiving co-stimulatory Notch 

signaling from the thymic epithelium, 2) activation of the master T cell lineage 

GATA3 and TCF1 transcription factors, 3) TCF1-GATA3 co-induced expression of CD3 

and RAG1, and 4) inhibition of non-T-cell developmental trajectories by activation of 

the BCL11B transcription factor.88–91  

While many T cell progenitors successfully migrate to the thymus, murine 

studies indicate that only 2-4% of these cells exit the thymus as mature, selected T 
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cells.92 T progenitor cells undergo 4 distinct ‘double-negative’ stages—so named 

because these T progenitor cells are negative in their surface expression of both 

CD4 and CD8 (CD4−CD8−). Rearrangement of a TCRD segment to a TRBJ, followed by 

rearrangement of a TRBV segment to the putative TCRD-TRBJ fusion results in a 

“testable” TCRb that can pair with a pre-TCRa that can be expressed on the surface 

with CD3 isoforms and stimulated.93,94 If a gd TCR is successfully re-arranged and co-

stimulated with CD3, the T cell is directly exported from the thymus, and does not 

undergo further thymic selection.93,95–99 

Double-negative T cells bearing the precursor TCRb-pre-TCRa next undergo 

rearrangement and recombination of the TRAJ and TRAV loci and acquire the 

‘double-positive’ (CD4+CD8+) phenotype. CD4+CD8+ T cells can then move forward 

in development if 1) a putative TCRa is successfully rearranged and 2) can pair with 

the putative TCRb and be positively stimulated by binding HLA and HLA-self-peptide 

complexes with sufficient strength.100–104  

If the above conditions are met, the almost-mature T cell will transition from 

a CD3+CD4+CD8+ T cell to a ‘single-positive’ CD3+CD4+ T cell or a CD3+CD8+ T cell. 

While positive selection ensures that such cells can bind HLA with sufficient 

strength to surveil for non-self-peptides and leads to the single-positive 

developmental stage, negative selection removes those single-positive CD4 and 

CD8 T cells which react too strongly to self-antigens.105 This is achieved by thymic 
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expression of critical self-antigens from multiple tissues by the AIRE gene,106 which 

ensures these self-targets are shown to maturing T cells. Current evidence suggests 

that too much negative selection leads to automatic deletion of a given T cell both 

thymically and in the periphery, though a certain amount of negative selection is 

tolerable and leads to the lineage selection of CD4 and CD8 T regulatory cells.107,108 

 
 
The adaptive immune system as a sensor of immune perturbation 
 
The immune machinery I describe above comprise a sophisticated device that is 

capable of recognizing, responding to, and remembering foreign pathogens and 

immune insults. Chronic viral infections and select diseases of civilization are 

known to influence this machinery in specific ways (e.g. changing the frequency and 

phenotype of immune cell subsets, introducing low-grade systemic inflammation) 

that should be accounted for when designing immunologic studies in the 

framework I describe above. Below, I list severable notable examples of these 

immune perturbations, which are of utility to researchers studying the immune 

system “at scale” as inherent and common immune contrasts, and should be 

accounted for and used as matching criteria where possible prior to embarking on 

large-scale clinical immunological studies and single-cell RNA sequencing studies. 
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Cytomegalovirus and other herpesvirus infections 
 
Cytomegalovirus (CMV) is a ubiquitous human betaherpesvirus that infects 

approximately half of the population by age 40, and effectively 100% of the 

population by age 90. Infection with cytomegalovirus shifts the composition of the 

CD8 and CD4 T cell compartment to a dominantly effector memory (Tem) and 

effector memory revertant/re-expressing CD45RA (TemRA) phenotype—a finding 

that has been conclusively demonstrated in 1000 healthy individuals spanning 20-

70 years of age, matched by decade and by sex.109 In one study, CMV serostatus 

alone explained greater than 50% of variation in the immune responses of 

monozygotic twins.110 Responses to just one or two class I- and class II-restricted 

epitopes of CMV can occupy up to a quarter or more of the entire CD8 and CD4 T 

cell compartment as indicated by sequencing of the TCR repertoire and the antigen-

specific TCR repertoire in members of the general population and in people living 

with HIV (PLWH).111–116 This is partially due to an immunologic process known as 

memory inflation—thought to be unique to CMV—in which frequencies of CMV-

specific cells grow to high proportions of the T cell compartment over time 

(reviewed in 117,118 and recently studied in innovative fashion in murine CMV models 

in 119,120). CMV is also one of the first viruses for which antigen-specific natural killer 

cells—a newly identified phenomena and cellular population—have been described 

(with varicella zoster virus being the second).121,122 CMV is a curious virus in that 
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infection with CMV appears to significantly improve vaccination outcomes in 

children,123 while CMV co-infection in the setting of HIV and advanced aging is 

predictive of significant clinical co-morbidity,124 cardiovascular disease and 

mortality,125,126 frailty,127,128 and vaccine responsiveness.129 

 
HIV infection 
 
Chronic infection with HIV leads to profound and marked depletion of and selection 

for select T cell phenotypes, including checkpoint “high” cells expressing the co-

inhibitory molecules PD-1, LAG-3, TIGIT, and others130–134; depletion and infection of 

the CD4+ T follicular helper population135; selective and early depletion of T central 

memory (Tcm) cells136; expansion of CD4+ and CD8+ “activated” CD38+ HLA-DR+ T 

cells137–139. Evidence suggests that these alterations to the CD4+ T cell compartment 

also lead to preferential depletion of subsets of CD8+ T cells,140,141 NK cells,142 and B 

cells as well.143  

 
Hypertension 
 
Hypertension is an extremely common disease, with greater than 40% of adults 

over 25 years of age qualifying as hypertensive, another 30% as prehypertensive 

who will develop hypertension within 5 years, and more than 50% of adults given 

recent American Heart Association guidelines.144–146 Murine models of 

hypertension, including use of multiple immunodeficient mouse lineages and 



 25 
 

adoptive transfer, clearly demonstrate that hypertension is an immune-mediated 

disease driven by T lymphocytes and NK cells in a TH17 and TH1-dependent 

fashion.147,148 Corresponding genetic and cellular studies in humans have 

confirmed these results; multiple polymorphisms in CD3 and the HLA gene families 

are associated with elevations in blood pressure,149–151 and hypertensive humans 

have markedly higher circulating levels of CD4 and CD8 TH1, T effector memory 

(Tem), and T effector memory revertant/re-expressing CD45RA (TemRA) T cells.152–

155 

 
Dissecting the immune system using single-cell RNA sequencing, immune 

receptor sequencing, and computational analysis 

The advent of single-cell RNA sequencing (scRNA-seq) has opened new avenues of 

investigation of the immune system at high-resolution. scRNA-seq methods differ in 

their methods and performance, and an explosion of novel scRNA-seq 

computational methods for analysis has emerged in the past decade. This rapid-

moving area is characterized by wet-lab and dry-lab innovation and rapid turnover 

of conceptualization of even basic ideas as to how scRNA-seq data is best 

characterized and described. For example, Silverman et al. recently demonstrated 

that the abundant zeroes in scRNA-seq count data originate from distinct technical 

and biological processes and that description of scRNA-seq data as “zero-inflated” 
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and analyzing these data with a zero-inflated negative binomial statistical model is 

inappropriate.156 The significant wet-lab innovation in this area is best embodied by 

the innovation of multi-modal approaches (which I describe below) and best 

illustrated by the log10-scale increases over the past decade in the number of single 

cells that can be assayed at once (Figure 9). 

 

 
Figure 9. Increases in the throughput of scRNA-seq approaches over time. Since the invention of scRNA-
seq in 2009, significant advances in technology and molecular biology have made it possible to measure 
hundreds of thousands to millions of cells at once. This figure was inspired by Figure 1 of Svensson, Vento-
Tormo, and Teichmann157 but has been updated to reflect the addition of other recent scRNA-seq methods, 
such as Quartz-seq2, which did not exist at the time of publication of Svensson and colleagues’ work. 
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Existing single-cell RNA sequencing approaches: methods for cell capture and isolation 

Currently, there are four common approaches to isolating single cells for single-cell 

RNA sequencing (scRNAseq): flow cytometry, microfluidic encapsulation within 

droplets, combinatorial indexing (included here though technically it does not 

isolate single cells), and physical separation of cells using microfluidic chip 

technology. The 10X Chromium158 is the most popular microfluidic encapsulation 

platform, though the Fluidigm C1 microchip system159 remains popular for 

microfluidic capture of rare cell populations. Notable non-commercial approaches 

using a similar approach, but with distinct barcoding methods, include Drop-seq160 

and inDrop.161 However, the sensitivity of these methods is inferior to current 

commercial scRNAseq platforms.162 Well-based assays such as SMART-seq,163 

SMART-seq2,164,165 STRT-seq,166 and STRT-seq-2i167 rely on the sorting of individual 

cells, as do pooled amplification methods such as CEL-seq,168 CEL-seq2,169 MARS-

seq,170 SCRB-seq,171 and mcSCRB-seq.172 Finally, combinatorial methods such as 

SPLiT-seq173 and sci-RNA-seq174 rely on fixation, limiting dilution, and migration of 

cells between wells in a fashion that ensures that each cell will have received a 

unique combination of barcodes for reverse transcription—while the throughput of 

these methods is comparable to highly multiplexed microfluidic encapsulation, 

their sensitivity is poorest of all existing scRNAseq methods (approximately 200 

genes captured per cell).173,174  
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Existing single-cell RNA sequencing approaches: amplification methods 
 
Once individual cells are lysed, reverse transcription converts cellular RNA into 

cDNA that is amplified through pooled PCR (all microfluidic encapsulation methods, 

and non-SMART-seq and non-STRT-seq approaches) or through individual cell 

amplification (SMART-seq1/2, STRT-seq, and Fluidigm C1). The increase in cost is 

significant for individual cell amplification due to the linear increase in the number 

of PCR reactions required with the number of input cells. However, this increase in 

cost can be well worth the significantly higher sensitivity of these methods (5x103 – 

10x103 genes per cell).162,175,176 Both pooled-PCR and plate-based approaches 

benefit significantly from automation on liquid handling platforms, which reduce 

the labor needed to complete an experiment and reduce the technical variation 

introduced prior to sequencing, which can introduce a sizable batch effect. The 

throughput of the pooled-PCR approaches is due to the incorporation of a cell 

barcode (a nucleotide sequence corresponding to each cell and delivered by well or 

via a gel bead) attached to a longer sequence comprised of a sequencing adapter, a 

promoter sequence or template-switching oligonucleotide sequence, and a unique 

molecular identifier (UMIs, used to remove PCR duplicates and used to identify 

exactly unique transcripts of mRNA, first described in application to scRNA-seq by 

Islam et al.177). For phenotyping specific and more rare cellular populations, plate-

based methods are typically most appropriate, though the advent of initially 
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“proteogenomic” CITE-seq,178 REAP-seq,179 and ECCITE-seq180 has enabled elegant 

multi-modal phenotyping of individual cells in a fashion comparable to flow and 

mass cytometry. In these methods, oligonucleotide-conjugated CRISPR guides and 

antibodies are introduced to single cells, enabling the ‘indexing’ of surface protein 

and CRISPR interruption and knockdown data to single cell transcriptomes and to 

individual T and B cell receptors. The number of markers that can be measured in 

this fashion is theoretically limited only by 1) the edit distance/dissimilarity between 

the oligonucleotide sequences on the analytes and 2) sequencing depth, in contrast 

to flow and mass cytometry which are limited by spectral overlap of conjugated 

fluorophores and mass density of conjugated metals.  

 
Existing single-cell RNA sequencing approaches: sequencing methods 
 
There are two main approaches to sequencing scRNA-seq libraries: “prime” 

approaches and “full-length” sequencing, so named for their sequencing of the 5’ or 

3’ end of the cDNA or of the full-length cDNA. While Illumina short-read sequencing 

is the dominant and preferred approach in the literature, it is possible to sequence 

scRNA-seq libraries using the PacBio and Oxford Nanopore Technologies (ONT) 

platforms as well via the RAGE-seq and ScISOr-seq approaches,181,182 which allow 

for the direct analysis and identification of full-length transcripts by sequencing 10x 

Chromium-generated full-length cDNA on both long-read and short-read platforms. 
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Bioinformatic approaches can also enable analysis of isoform-level data with short-

read sequencing data,183–186 though the sequencing cost and throughput of the 

ONT platform only approaches that of Illumina instrumentation with the 

PromethION platform (personal communications, Drs. Mick Watson and Nick 

Loman). 

 
Existing single-cell RNA sequencing approaches: key limitations 
 
Current scRNA-seq approaches are unable to capture non-polyadenylated RNAs (i.e. 

many microRNAs, long non-coding RNAs, and circular RNAs). The capabilities to 

analyze DNA, protein, CRISPR perturbation, and chromatin accessibility in tandem 

with scRNA-seq data from the same cell are all relatively new innovations. 

Innovations in bioinformatic analysis using transfer learning,187,188 canonical 

correlation,189,190 and other machine learning approaches186,191–193 has made the 

integration of these data types possible even from distinct datasets. However, all 

scRNA-seq methods suffer from sensitivity that is lower than bulk RNA-seq, which is 

unlikely to improve given recent evidence suggesting that addressing this challenge 

by increased sequencing depth rapidly becomes cost-ineffective (and that detection 

of certain genes, such as CD4, requires saturating depth),194 although innovative 

‘targeting’ approaches using cell-barcode-specific locked nucleic acid arrays have 

demonstrated promise by showing that libraries of individual cells can be amplified 
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from library pools with greatly improved sensitivity.195 The cost of scRNA-seq 

experiments using droplet-based approaches can be significantly decreased by 

pooling multiple samples stained with unique oligo-tagged antibodies that are 

captured and reverse-transcribed,178,180 or by combining samples from donors of 

different genotypes. In the latter methods, genotype-aware approaches have 

demonstrated that it is possible to identify cell-type specific cis and trans-expression 

quantitative trait loci, and even to demultiplex cells pooled from different donors 

without any specific genotype information a priori due to differences in transcribed 

RNAs between the donors.196–198 

 
Existing single-cell RNA sequencing approaches: select methods to identify and 

characterize immune cell subsets 

Kacser and Waddington’s popular metaphor of cellular plasticity199 noted that cells 

fall along a continuous developmental landscape. This continuous landscape 

implies that there are few “specific” markers for a given cell type; this poses a 

philosophically and informatically difficult problem, especially given that 

clustering—a notoriously “slippery slope” approach for group identification200—is a 

dominant computational method used to identify distinct cellular groups in scRNA-

seq data. Given the size and shape of scRNA-seq data—which typically contains 

many more features detected than cells measured, a formulation of the n * p 
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problem—dimensional reduction using approaches such as principal component 

analysis (PCA) or independent component analysis (ICA) prior to identifying groups 

of single cells has become the recognized standard biostatistical approach in this 

field. Other popular methods for achieving this include probabilistic methods such 

as t-SNE and FIt-SNE201 and non-linear projection methods such as locally linear 

embedding (LLE),202 ISOMAP203, and diffusion mapping.204,205 All of these 

approaches are inherently reliant on distance metrics (which quantify how similar 

or dissimilar each cell in a dataset is to every other cell); only two studies to-date 

have performed comprehensive benchmarking of these metrics and the effect of 

metric choice on downstream analysis,206,207 indicating that treating scRNA-seq 

count data as compositional data offers strong analytical advantages. Few papers 

have compared the clustering performance of individual tools as well.193,208,209 

These reduced components, which explain most of the variation between 

individual cells and groups of cells, are used in multiple analytical approaches to 

identify clusters of cells, each of which represents a unique cell type or subtype. 

There are three main types of clustering analyses, namely: 

1. Hierarchical clustering: Hierarchical clustering is a simple and 

agglomerative (or “greedy”) clustering method that assumes clusters of 

single cells are robustly separated in multidimensional space in 

approximately equally size groups. While it has been applied in its most 
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generic form in several scRNA-seq papers,210–212 more robust approaches 

with more advanced feature selection and cross-validation methods that 

“specialize” hierarchical clustering for scRNA-seq data have been 

established.212–217 

2. Density-based clustering: Density-based clustering operates by 

partitioning cells into clusters based on the density of regions of 

multidimensional space; this is analogous to drawing “gates” in flow 

cytometry or identifying a breakpoint between two peaks in a one-

dimensional histogram. While DBSCAN is the most popular method,218 

there are other variations of density-based clustering that have been 

applied to scRNA-seq which are more innovative in their downstream 

feature selection steps.219,220 

3. Graph-based clustering: A key limitation of hierarchical and density-based 

clustering approaches is the choice of hyperparameters informing the 

estimated number of groups or downstream analytical choices where 

human decision (commonly referred to as “expert opinion”) is used to 

decide how many groups are represented in the data. Graph-based 

clustering approaches, which have become common place in social 

network and network analysis (with datasets of similar or larger size than 

scRNA-seq data), instead automatically detect the number of clusters 
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within a scRNA-seq dataset by analyzing a graph of the data—where each 

cell is a node connected to a number of its neighbors (other cells), k, in 

multidimensional space. Another advantage of graph-based approaches 

is their compatibility with statistical null hypotheses, such as a fully 

random graph of the same dataset, the overlap in nearest-neighbors 

between adjacent cells (i.e. how distinct is a cluster), and how likely a cell 

is to be randomly connected to its nearest neighbors and their nearest 

neighbors. Graphs easily represent non-linear structure, which also 

enables the identification of groups of cells with different density, ‘shapes’ 

of cells in multidimensional space (e.g. circular groups represented by the 

cell cycle stages, or differentiation trajectories) and scale easily across 

millions of cells.221,222 Seurat,223 PhenoGraph,224 SCANPY,225 PAGODA,226 

SC3,227 and other single-cell software suites all use graph-based clustering 

approaches given these significant advantages. 

 
Existing single-cell RNA sequencing approaches: case studies of the decomposition of 

heretofore homogeneous immune populations 

Application of the clustering approaches described above to populations thought to 

be relatively homogeneous in the peripheral blood has led to a Kuhnian revolution 
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in the re-definition of multiple immune cell types. Examples include but are not 

limited to: 

 

1. Naïve definition of major murine and human splenic and peripheral immune 

cell populations: Work by Jaitin et al. (the developers of MARS-seq)170 used 

simple hierarchical clustering as described above with “purification” of sub-

clusters via probabilistic mixture simulation to identify all of the major 

leukocyte (T, B, NK, dendritic cell, macrophage, and monocyte) populations 

within the spleens of mice. By stimulating dendritic cells of mice with the 

bacterial toxin lipopolysaccharide, they also identified type I interferon-

dependent and independent subsets of plasmacytoid dendritic cells in the 

spleen. This work was later validated in stunning detail in the peripheral 

blood of humans by Villani et al, who successfully revealed 6 human dendritic 

cell subsets and 4 monocyte subsets. Importantly, these works revealed that 

the major immune populations could be defined without any a priori 

knowledge of the surface markers of these immune cells. 

 

2. Redefinition of innate lymphoid cells (ILCs): Bjorklund and colleagues228 and 

Gury-BenAri et al.229 profiled human tonsil-derived ILCs and murine ILCs of 

the gastrointestinal tract and independently identified, in addition to the 
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known ILC-1/2/3 subsets, 2 new ILC subtypes. The first new ILC subtype 

expresses interferon gamma in a ROR-gamma-t-dependent fashion akin to 

TH17 cells, while the second expresses IL-2 and CCL22. The results of Gury-

BenAri et al.229 in particular are extremely valuable to the scientific 

community, as they show that the microbe-free gastrointestinal tract in drug-

treated and germ-free mice leads ILC-1, ILC-2, and ILC-3 cells to converge on 

a single phenotype—implying that these mice cannot ever be an appropriate 

choice of model organism for the study of ILC biology. 

 

3. Identification of fate bifurcation of malaria-specific T cells ex vivo: The work of 

Stubbington and colleagues183 represents some of the most innovative 

computational analysis in scRNA-seq to-date. By analyzing splenic CD4+ T 

cells longitudinally over the course of Salmonella typhimurium infection, they 

showed 1) that it is possible to reconstruct and quantify expression of the 

full-length T cell receptor of individual TCRs from SMART-seq2 data, 2) that S. 

typhimurium-reactive CD4+ T cells occupy a functional spectrum ranging from 

effector memory to TH1 and activated and proliferating cells, and 3) that 

individual clones of CD4+ T cells branch into and seed different functional 

compartments of the antigen-specific T cell response. Stubbington et al. later 

extended this approach to the analysis of single B cells;184 their method was 
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subsequently used by Croote et al. to study the somatic hypermutation 

lineage and transcriptomic trajectory of the human peanut-specific 

immunoglobulin E response.230  

   
Existing single-cell RNA sequencing approaches: select methods and case studies to 

identify topologies and trajectories of differentiation and their branch points 

As all cells in multicellular organisms arise from a limited number of progenitor and 

stem cell populations, all cells can be thought of as being positioned along a 

continuous, probabilistic, multi-branched developmental tree. This type of analysis 

is commonly referred to as a pseudotime analysis or a trajectory inference. The 

term ‘pseudotime’ emerged with the publication of Monocle by Trapnell et al.,231 

who demonstrated that latent temporal features can be extracted from cells 

sampled and sequenced at the same time (i.e. it is possible to identify 

differentiation processes at the single-cell level using cross-sectional data alone).  

Trajectory inference can be a misnomer in that some trajectory inference 

methods rely on user-specified “shape” of the scRNA-seq data, including how many 

branches the cells should divide into and whether the process is linear, branching, 

or shaped otherwise. In this sense, the “shape” of the data itself is not inferred in 

some methods. For this reason, I suggest that pseudotime analysis is the more 

appropriate term. This is partially because pseudotime tools can be coarsely 
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divided into sensible computational groupings based on whether or not they infer 

the topology of the data and which topologies they can successfully identify: 

 

1. Methods optimized for pre-specified trajectories: These methods were 

some of the first pseudotemporal algorithms developed for and applied 

to scRNA-seq, and typically assume linear/straight topologies or two-

branched/bifurcating topologies. Examples include NBOR (which was 

applied to identify lineage markers of pre-dendritic cell populations, the 

branching points of conventional mouse dendritic cell populations, and 

showed that dendritic cell lineage commitment occurs in the bone 

marrow),232 Waterfall,233 Monocle,231 diffusion pseudotime (which 

successfully gene signatures of multiple immune hematopoietic 

progenitor populations and their regulatory checkpoints, which was 

thought to be an intractable problem using scRNA-seq alone)234, and 

Wishbone (which successfully identified the checkpoints of murine T cell 

development within the thymus).235 Monocle, Waterfall, and NBOR are 

graph-based approaches, while diffusion pseudotime performs direct 

dimension reduction via diffusion mapping, and Wishbone uses 

supervised random walks along graphs and networks; this demonstrates 

that multiple mathematical models are appropriate for pseudotemporal 
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analysis of these shapes and types of data. More advanced forms of these 

algorithms such as FateID and RaceID3236 can use supervised learning to 

statistically identify branch points, cells that biased progenitor 

populations, and more. 

 

2. Methods that automatically detect both the shape and ordering of the 

trajectory: Recent innovations in graph theory have led to the 

development of scRNA-seq tools that significantly outperform the 

methods listed above. These graph-based methods do so for many 

reasons, but the chief reasons include 1) better modeling of the 

undersampling or absence of intermediary states in scRNA-seq data, 2) 

better representation of the disconnect between populations (i.e. not all 

trajectories should be connected), and 3) incorporation of probabilistic 

data that allows better modeling of the uncertainty of cells along a given 

trajectory. The most notable of these methods include partition-based 

graph abstraction (PAGA, which more accurately models topologies than 

any current method, a result independently validated by Saelens et 

al.237),238 and Monocle 2 (which uses reverse graph-embedding to identify 

the shape and disconnectedness of a scRNA-seq data and successfully 
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identified rare progenitor populations that differentiate into novel 

subtypes due to mutations in major transcription factors).239 

 

3. Next-generation trajectory inference methods (beyond pseudotime): Two 

highly innovative methods are worth describing in more detail on their 

own, as they utilize the unique features of two biological processes to 

reconstruct temporal lineages from cross-sectional data. The first of 

these, RNA velocity,240 utilizes the ratio of un-spliced to spliced RNA, which 

is easily detected in scRNA-seq data, to directly estimate the first 

derivative of gene expression (gene expression over time). As a result, 

RNA velocity can not only identify the temporal relationship between cells, 

but it can quantify how far apart in time cells are from each other and 

even forecast where a cell will be along a differentiation trajectory and in 

relation to other cells up to 8 hours ahead of time. The second of these 

methods uses the rapid accrual of heritable mutations in mitochondrial 

DNA (mtDNA) to show that highly accurate lineages are present in both 

scRNA-seq and scATAC-seq data. Indeed, these naturally-occurring 

endogenous barcodes can be used to reconstruct single-cell clonal 

histories in mixture experiments, previously published datasets of the 

immune system, human tumors, and more.241,242 These approaches 
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represent the future of lineage tracing in humans at single-cell resolution 

without the need for lentiviral barcoding or use of genetic data with lower 

signal to noise ratio such as single-nucleotide variation, copy number 

variation, or other methods. 

 

Conclusion 
 
The immune system and the methods I describe in this Chapter represent a highly 

configurable, customizable system with innumerable methods to study its 

composition, function, and states. The size and depth of immune datasets 

generated using these and other methods have begun to rapidly establish these 

approaches as gold standards. In the chapters below, I demonstrate application of 

several of these methods in the context of the immune perturbation framework I 

describe above to show the utility and value of studying immune-mediated human 

disease in this fashion. 
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Chapter II. 
 

Learning the immune parameters predictive of mortality in HIV+ and HIV− 
veterans 

 
N.B. This work comprises a manuscript in preparation. Here, we adapt and apply 
techniques originally intended for single-cell analysis to 80 immune cell 
measurements from 2,332 veterans living with and without HIV. Using these 
techniques, we build an integrated immune phenotype map that accounts for 
changes in these immune populations explained by HIV status, medication usage, 
cytomegalovirus serostatus, and other factors. Applying novel clustering 
approaches and statistical models to this map allowed us to identify distinct 
immune risk groups that differ significantly in their all-cause mortality over time 
and in common clinical parameters. These methods and preliminary results were 
submitted as an abstract to the 2019 Next-Generation Genomics conference. 
 
Abstract 
 
The number, distribution, and functional properties of immune cells change with 

aging. Absolute counts of adaptive immune cell subsets predict mortality and co-

morbidity in the settings of HIV infection and transplantation, where they are used 

in clinical care. However, the extent to which the overall profile and distribution of 

adaptive immune cells describe, predict, and co-vary with the risk and extent of 

chronic disease and all-cause mortality in the general population is unclear. Here, 

we apply dimensional reduction, trajectory, and consensus clustering methods—

originally designed for single-cell RNA-seq analysis—to flow cytometry 

measurements of 80 circulating immune cell subsets collected from 2005-2007 and 

relate these to subsequent mortality in 2,332 US Veterans with and without HIV in 

the Veterans Aging Cohort Study (VACS). 



 43 
 

We identify 7 distinct groupings of immune cell subsets which differ 

significantly in their accompanying risk of all-cause mortality over 20,000 years of 

follow-up (550 events) after adjusting for HIV status, hypertensive and statin 

medication, and CMV serostatus using Harmony, an algorithm designed to adjust 

data in multidimensional space for known effects.243 These groups also differed in 

their estimated glomerular filtration rates, CD4 nadir (for HIV+ veterans), and their 

anti-cytomegalovirus IgG titers. Higher mortality risk correlated with increased 

proportions of CD4 T effector memory and terminally differentiated cells and 

decreased CD4 T central memory and naïve cells. Using unsupervised trajectory 

inference through the dynverse workflow,237 we subsequently identified a CD4 T 

cell differentiation trajectory that also correlated with risk of mortality. Finally, 

further position along this trajectory and elevations in CD4 T effector memory 

populations significantly correlated with the VACS index, a previously validated 

independent predictor of all-cause mortality, cause-specific mortality, and other 

outcomes. These results comprise an age-independent immune mortality signature 

that generalizes from the HIV+ population to the general population. Collectively, 

they suggest that routine monitoring of adaptive immune cells such as subsets of 

CD4 T cells may have broad clinical utility. 
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Introduction 
 
Aging is associated with an apparent deterioration of the immune system and its 

ability to respond to threats and dampen chronic inflammation; it is unknown 

whether or not this state is reversible, and if so, to what extent.244 Cross-sectional 

cohort- and population-level studies have revealed that the composition and 

functional capacity of the innate and adaptive branches of the immune system 

change with age and that these changes correlate with the development of 

“inflammaging” (premature aging of the immune system due to low-grade 

circulating inflammation).245–247 Notably, the Newcastle octogenarian study—a 

prospective study of 751 individuals—identified cytomegalovirus (CMV) 

seropositivity and concomitant elevations in CD4 T effector memory RA+ (TemRA) 

cells as predictors of coronary heart disease, myocardial infarction, and stroke.125 

Some of these changes appear to be partially heritable,109,248,249 though an equal or 

larger number of these changes are associated with ecological stimuli such as 

smoking, CMV infection, and variation in exposure to circulating influenza viruses 

and vaccination.109,110 It is worth noting that a significant percent of variation in the 

serological response to common human pathogens can be explained by genetic 

associations and alterations in the human leukocyte antigen (HLA) and killer 

immunoglobulin-like receptor (KIR) genes.250–253 
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The current standard of clinical care in chronic HIV infection includes routine 

monitoring of CD4 cells. The frequency and phenotype of these CD4 cells is 

predictive of all-cause mortality, cause-specific mortality, frailty, and more. CD4 

count also predicts the extent of immunosuppression and durable loss of T cell 

functionality after transplantation,254–256 risk of post-transplantation complication 

by infection and cancer,254,257,258 loss of allograft function,254,259 and development of 

atherosclerosis after transplantation.260 Even in HIV-negative individuals, low levels 

of CD4 T cells lead to opportunistic infections and reduced levels of NK cells and B 

cells.261 Clinical administration of recombinant IL-7 can reverse this trajectory in 

individuals suffering from idiopathic CD4 lymphopenia,262 and also increases the 

frequency of CD4 T cells and memory in HIV+ individuals.263 However, the extent to 

which changes in the phenotype of the CD4 T cell population and other adaptive 

and innate immune subsets remains unclear. Recent work prospectively monitoring 

135 healthy individuals over 5 years also identified an age-associated signature of 

immune aging associated with mortality and cardiovascular mortality in the 

Framingham cohort, though it is not known if this signature will generalize to co-

morbid individuals and people living with HIV (PLWH).  

Here, we study 79 immune cell subsets, circulating inflammatory markers, 

and clinical variables of 2,332 American veterans, of whom 1,525 are PLWH. Using 

pseudotemporal embedding, we identify an age-independent signature of CD4 T 
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cell immune aging associated with all-cause mortality. We also identify 7 groups of 

veterans who are similar in their immune composition. All 7 groups differ from 

each other in their mortality, clinical parameters such as their contemporaneous 

estimated glomerular filtration rate, their liver function (FIB-4 score), and in their 

anti-CMV IgG titer. We also provide evidence supporting both beneficial and 

pathologic roles of CMV co-infection which reconciles disparate evidence the 

literature in relation to CMV.  

 

Methods 
 
Study participants 
 
The Veterans Aging Cohort Study Biomarker Cohort (VACS-BC) is a prospective 

cohort and subset of the larger VACS study comprised of 1525 HIV+ and 853 HIV− 

American veterans who provided blood samples and consented to DNA analysis 

between 2005 and 2007. More than 80% of the cohort are middle-aged (41-64 years 

of age), and the cohort is predominantly (95%) male and of African-American 

ancestry (68%). As part of this study, specimens from all individuals within VACS-BC 

have been assayed for genotype (Illumina HumanOmniExpress BeadChip 980K), 

circulating biomarkers of inflammation (IL-6, d-dimer, and soluble CD14), the 

alcohol consumption biomarker phosphatidylethanol/PEth, and immune cell 

subsets. These variables are linked to clinical phenotypes of cardiovascular disease, 
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cancer, liver and renal disease, frailty, metabolic disease, smoking, alcohol 

consumption, and opioid use that have been adjudicated by multiple physicians. 

 

Flow cytometry analyses 
 
6 flow cytometry panels were used to quantify and phenotype the presence of 79 

immune cell subsets spanning 1) CD4 and CD8 T cells and their memory subsets 

(naïve, Tcm, Tem, and TemRA), 2) gd T cells and NK cells, 3) Th1 and Th2 T cells, 4) T 

regulatory cells, and 5) monocyte and granulocyte subsets. These panels were 

comprised of the following markers: 

1. CD4 and CD8 memory T cell panel: PerCP-Vio700 CD4, PerCP-Vio700 CD8, 

APC-Vio CD45RA, VioBlue CD45RO, PE CD28, APC CD57, FITC CD27, and 

VioGreen live/dead.  

2. Secondary CD4 and CD8 memory T cell panel: APC-Vio CD4, PerCP-Vio CD8, 

PE CD279, FITC CD45RO, APC CD127, VioBlue CD197, PE-Vio CD27, and 

VioGreen live/dead.  

3. gd T cells and NK cell panel: VioBlue CD3, PE gd T cell receptor, PEVio770 

CD56, PerCPVio CD16, FITC CD27, APCVio770 CD19, APC CD5, and VioGreen 

live/dead. 

4. Th1 and Th2 cell panel: APC CD4, FITC CD8, PEVio770 IFN, PE IL-4, APC-Vio770 

IL-17, VioGreen CD45RA, PerCP-Vio700 CD45RO, VioBlue live/dead. 
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5. Regulatory T cell panel: PerCP-Vio700 CD4, FITC CD25, VioBlue CD6, PE FoxP3, 

PE-Vio770 CD127, APC CD73, APC-Vio770 CD39, VioGreen live/dead. 

6. Monocyte panel: PE-Vio CD14, PerCP-Vio CD16, FITC CD163, APC-Vio TIE2, PE 

CX3CR1, APC HLA-DR, VioBlue live/dead. 

 

Missing variable imputation 
 
We used multivariate imputation with chained equations (MICE) with fully 

conditional specifications and predictive mean matching to impute any missing flow 

cytometry measurements (absent due to insufficient sample remaining), and CD4 

count, CD8 count, viral load/HIV RNA, and CD4 nadir for HIV+ veterans. We used 5 

iterations to allow the algorithm sufficient time to converge and estimate an 

appropriate imputed value. This approach is ideal as it will not impute a value 

below or above the observed range, and it does not introduce further collinearity or 

correlation between variables. Imputations were performed separately for HIV+ 

and HIV− veterans to account for immune alterations introduced by chronic HIV 

infection. 

 

CMV serostatus assessment 
 
We used the Diamedix CMV IgG immunoassay to quantify the serological response 

against CMV in all veterans in the VACS-BC. We classified individuals with a 
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response greater than 8 EU/mL as CMV-seropositive based on the included internal 

controls and standards of this assay.  

 

Permutation and jackstraw analysis 
 
To reduce the resulting data to an appropriate number of dimensions, we used the 

jackstraw test implemented in R to identify which principal components (PCs) 

explain a significant amount of variance and which PCs represent noise. This test 

identified the first 6 PCs as meaningful. 

 

Dimensional reduction and UMAP embedding 
 
We used truncated singular value decomposition to calculate the first 6 PCs of the 

flow cytometry measurements using the irlba package in R.264 We then used these 

6 PCs as input to the uniform manifold approximation and projection (UMAP) 

algorithm to visualize in 2 dimensions where each veteran resides relative to the 

others in multidimensional space. We used a minimum distance of 10-3 and allowed 

the selection of 15 nearest-neighbors for each data point. UMAP demonstrates 

extremely accurate performance in representing similarly high-dimensional data 

such as mass cytometry and single-cell RNA sequencing data appropriately.265 
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Correction of immune PCs using Harmony 
 
We applied the Harmony algorithm243 to correct the 6 calculated PCs for variation 

explained by 1) HIV serostatus and viral suppression, 2) CMV serostatus, and 3) 

statin and antihypertensive medication usage (as our primary outcome was all-

cause mortality, we sought to compensate for cardiovascular disease co-morbidity).  

 

Immune trajectory analysis 
 
We used dynverse237 to automatically select the most appropriate pseudotemporal 

algorithm to embed the immune subset measurements. dynverse selected the 

SCORPIUS266 algorithm; we compared this trajectory to a trajectory we 

independently assembled using the destiny package205 with parameters described 

previously.267 

 

Consensus clustering 
 
We used an ensemble of clustering methods to perform consensus clustering on 

the Harmony-corrected and uncorrected principal components, thus identifying 

groups of veterans who are similar in their immune composition. We used the 

diceR package to do so,268 using the stochastic block model (which automatically 

identifies the appropriate number of communities), affinity propagation, and non-

negative matrix factorization. We used 10-fold resampling, holding out 20% of the 
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cohort at a time, to boost the stability of the identified clusters. We tested the 

statistical validity of these clusters using the sigclust package,269 which simulates 

data similarly distributed to the observed data and then calculates the probability 

that a given clustering solution exists given the same proportion of clusters existing 

in the randomly-generated data, where each cluster is a subset of a multivariate 

Gaussian distribution.  

 

Assignment of common clinical parameters 
 
We classified HIV+ veterans as viremic if their HIV RNA was higher than 500 

copies/mL as previously described in VACS analyses.270,271 We also stratified the 

HIV+ branch of the cohort by CD4 count lower than 50, between 50 and 200, 

between 201 and 400, and higher than 400 cells/mL. We stratified the entire cohort 

by HIV and CMV serostatus, and by quartiles of the anti-CMV titer (in addition to 

using CMV titer as a continuous measure and predictor of hazard). We calculated 

the VACS index as previously described. We also calculated a modified VACS using 

an approximation of CD4 count in HIV− veterans using the proportion of CD4 T cells 

as live lymphocytes (data shown below in Results) and excluding HIV RNA.  
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Additional statistical testing 
 
We used the log-rank test to test for significant between-cluster differences in 

survival over time. We also used the Cox method to estimate the effect sizes of 

cluster membership in relation to important clinical covariates including age, 

gender, BMI, smoking, hepatitis C co-infection, and self-reported alcohol 

consumption. We used Schoenfeld’s test to test proportionality of all predictors in 

the model in relation to transformed-time interactions. We used the smoothHR 

package to fit and visualize non-parametric splines of key variables in relation to 

hazard of mortality risk while adjusting for other immune subsets and the clinical 

variables listed above, to calculate the optimal degrees of freedom to include in our 

Cox models, and to calculate the confidence intervals of these hazard curves.272 We 

also use exact permutation as implemented in the lmPerm package to assess the fit 

of regression models using the immune subset in relationship to each other (linear 

regression), to HIV and CMV serostatus (logistic regression), and CD4 count (Poisson 

regression). 
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Results 
 
HIV+ veterans achieving viral suppression experience similar risk of mortality compared 

to HIV− veterans 

As previously reported, we observed similar survival between virally suppressed 

PLWH and HIV− veterans (Figure 10). Both viremic PLWH and PLWH with lower CD4 

counts experienced significantly higher risks of mortality over time (Figure 10).273–

276 
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Signatures of cytomegalovirus infection differ between HIV+ and HIV− individuals 
 
We observe significant increases (p < 0.0001, one-way ANOVA) in the CD8 TemRA 

population in CMV-seropositive individuals, as previously reported (Figure 11).  

 

 

 

 
 
 
 
 
 
 
 
 
 
We also confirm, as in previous reports, that HIV−CMV+ individuals have higher 

proportions of CD4 TemRA populations; however, we report for the first time that 

this population does not appear to distinguish between CMV+ and CMV− PLWH 

even when adjusting for CD4 count at baseline (Figure 12, see next page). This may 

be due to the presence of HIV-specific T cells with a TemRA phenotype, selective 

depletion of non-TemRA CD4 subsets in chronic HIV infection (as previously 

suggested),  or other reasons; however, this cannot be established without 

longitudinal studies of both PLWH and HIV− individuals, ideally capturing 

seroconversion of newly CMV-seropositive PLWH.  
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Figure 11. CMV+ individuals have higher levels of CD8 TemRA in peripheral blood. Using two definitions 
of terminally differentiated CD8+ T cells, we confirm that both HIV+CMV+ and HIV−CMV+ individuals carry 
higher proportions of CD8 TemRA cells.  
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Figure 12. Proportion of CD4 TemRA as % CD4 does not distinguish between CMV+ and CMV− PLWH. 

 

We also document evidence supporting a survival benefit of CMV seropositivity (OR 

0.82, CI 0.68-1.0, p = 0.054), in agreement with early-life literature suggesting that 

CMV+ individuals benefit from enhanced serologic immunity and murine literature 

that MCMV+ mice respond more robustly to heterologous infection (Figures 13 and 

14, see next page). 
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We further analyzed this potential benefit by subgroup analyses of CMV-
seropositive and CMV-seronegative PLWH with suppressed HIV or viremia. We 
observe evidence in support of a cumulative benefit of CMV seropositivity and viral 
suppression, with HIV+CMV+ suppressed individuals surviving as well as HIV−CMV+ 
individuals, equivalent survival of HIV−CMV− and HIV+CMV− suppressed PLWH, and 
poorest survival of HIV+CMV+ viremic and HIV+CMV−viremic individuals (Figure 14). 
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Figure 13. CMV-seropositive individuals in VACS-BC survive longer than CMV-seronegative individuals. Left: Kaplan-
Meier survival curve of CMV+ vs. CMV− individuals. Right: Cox model including CMV serostatus and common clinical 
parameters. 

+++
+ + + +++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++



p = 0.099

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Strata + +CMV seronegative CMV seropositive

0 38 83 121 140

0 100 198 303 351CMV seropositive

CMV seronegative

0 1000 2000 3000 4000
Time

St
ra

ta

Cumulative number of events



 57 
 

To better understand the potential benefit of CMV seropositivity in chronic HIV 

infection—which contradicts some reports in the literature of expanded HIV 

reservoirs, decreased survival, and enhanced cardiovascular disease in CMV+ 

individuals—we also examined the lowest CD4 count (CD4 nadir) in the clinical 

record of all PLWH in VACS BC, stratified by CMV serostatus. Indeed, HIV+CMV+ had 

higher CD4 nadirs than their HIV+CMV− counterparts, even when stratifying by their 

viral suppression status (Figure 15).  

 

Figure 15. CMV-seropositive PLWH in VACS BC had higher historic CD4 nadirs than their CMV-
seronegative counterparts. 
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However, given that previous reports have established CMV seropositivity as a 

predictor of both mortality and co-morbidity in both PLWH and the general 

population, we inspected the anti-CMV IgG response and the proportion of CD4 

TemRA cells as continuous predictors of mortality while adjusting for age, BMI, race, 

smoking, alcohol abuse, HIV status and viral suppression, and hepatitis C co-

infection. We found that increases in anti-CMV IgG titer and increases in the 

proportion of CD4 cells with the TemRA phenotype independently increased risk of 

hazard of death after adjusting for the variables listed above (Figure 14 and Figure 

16), which we also analyzed as quartiles (Figure 17).  
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Figure 16. Smoothed hazard ratio of death for CD4 TemRA proportion (top) and anti-CMV IgG titer 
(bottom) after adjusting for common clinical parameters. 
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Figure 17. Median survival decreases with concomitant increases in the anti-CMV IgG titer and CD4 
TemRA proportion. 

 

+++ +
+ + + + + + +++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+

+ + + +++ ++++ ++ + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +

+
+

+ ++ ++ ++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++

+ +
+ + +++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +

p = 0.044

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time (days)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Strata + + + +1st IgG quartile 2nd IgG quartile 3rd IgG quartile 4th IgG quartile

0 28 64 104 118
0 26 54 86 110
0 37 71 110 118
0 47 92 124 1454th IgG quartile

3rd IgG quartile
2nd IgG quartile
1st IgG quartile

0 1000 2000 3000 4000
Time (days)

St
ra

ta

Cumulative number of events

1st quartile of CD4 TemRA 

2nd quartile of CD4 TemRA 

3rd quartile of CD4 TemRA 

4th quartile of CD4 TemRA 

3rd quartile of CD4 TemRA 4th quartile of CD4 TemRA 2nd quartile of CD4 TemRA 1st quartile of CD4 TemRA 



 61 
 

We also assessed the relationship between these two variables (shown in Figure 
18), demonstrating, for the first time for our knowledge, the relationship between 
the anti-CMV IgG titer and CD4 TemRA cells in both PLWH and in HIV− persons. 
 

 
Figure 18. CD4 TemRA cells and anti-CMV IgG titer correlate in both HIV+ and HIV− veterans. 

 
Identifying an age-independent CD4-based trajectory of immune aging 
 
Given the association between elevations in CMV titer and CD4 TemRA cells and all-

cause mortality, we next performed unsupervised analyses using clustering and 

pseudotime trajectory inference approaches designed for single-cell analysis and 

visualized these clusters using the UMAP algorithm (see Methods). Briefly, we used 

statistical testing to identify an appropriate number of principal components (PCs) 
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to reduce the 2,332 by 79-dimensional data to via principal component analysis 

(PCA) and then embedded these PCs with UMAP for visualization purposes (Figure 

19). We then adjusted for HIV status, hypertensive and statin medication usage, and 

CMV serostatus using the Harmony algorithm, which uses local linear regression to 

adjust for categorical factors after dividing observations into biologically similar 

neighborhoods. Using the corrected PCs, we performed consensus clustering using 

automatic community detection to identify groups of both HIV+ and HIV− veterans 

who are similar in their immune profiles while accounting for distance in 

multidimensional space explained by the variables listed above.  

 

 

 

 

 

 

 

 

 

Figure 19. The uncorrected UMAP of the VACS-BC based on immune cell measurements. Left: UMAP 
visualization of the 2,332 veterans in VACS BC; distance between two points represents the similarity between two 
individuals based on their 79 immune cell subsets. Notably, HIV status is the dominant present effect in the 
uncorrected map, which is to be expected. Right: Though we do observe differences in select immune cell subsets by 
CMV serostatus, these differences do not significantly skew the topology of the data in multidimensional space.  
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We observed that location on the uncorrected UMAP not only separated veterans 

by HIV status, but that increases in cell populations historically associated with 

chronic HIV infection were strongly represented and also highest in individuals with 

high VACS index scores, which are independent predictors of mortality (Figure 20).  

 

Figure 20. UMAP analysis reveals correlations between VACS index and select CD4 T cell populations 
associated with HIV status and mortality in PLWH and an age-independent.The topology of the immune 
cell measurements is not predominantly explained by changes in age. B) HIV+ individuals have higher 
proportions of activated CD4+CD38+ T cells as previously reported, as well as C) higher proportions of 
terminally differentiated CD4 T cells. D) Elevations in activated and differentiated CD4 T cells correlate with 
higher VACS index scores, an independent predictor of mortality.  
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Our consensus clustering analysis revealed 7 groups of veterans with similar 

immune cell compositions, and that use of the Harmony algorithm successfully 

adjusted for HIV status (Figure 21). These groups of individuals different 

significantly in their survival over a decade later (over 20,000 years) and also in their 

median VACS index scores (Figure 22).  

 

Figure 21. Corrected consensus clusters of veterans based on their immune measurements. Left: The 7 
consensus clusters identified by community detection on the first 6 corrected principal components of VACS-BC 
and its 79 immune cell measurements. Right: The corrected principal components, as visualized with UMAP, are 
effectively adjusted for HIV serostatus and other clinical parameters using Harmony. 



 65 
 

 

Figure 22. Variation in immune composition is associated with differential risk of all-cause mortality 
and VACS index. Left: Differences in survival over time between the 7 consensus clusters identified in Figure. 
Right: The 7 consensus clusters differ in their position in pseudotime as calculated by SCORPIUS and destiny, 
and also in their VACS index scores, an all-cause and cause-specific predictor of mortality in both PLWH and in 
HIV-negative persons.  

 

We next embedded the corrected PCs in pseudotime using the destiny and 

SCORPIUS algorithms (see Methods) to test whether or not this immune signature 

correlated significantly with age. While pseudotime embedding clearly revealed an 

immune differentiation trajectory (Figure 23A), this signature weakly correlated 

with age (Figure 23B) and more strongly correlated with the VACS index (Figure 

23C). Deviation from the best-fit line in the age-pseudotime correlation was best 

explained by the second dimension of pseudotime (Figure 23B) and leftward 

position (further along pseudotime) independently captured the CMV titer-CD4 

TemRA mortality signature identified above (Figure 23D), in that the lowest-
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pseudotime consensus clusters are markedly higher in their anti-CMV titers than 

their high-pseudotime peers. This is remarkable given that these clusters are 

approximately balanced in their ratios of CMV+:CMV− individuals (Figure 24). When 

we decomposed this signature using jackstraw testing to identify immune cell 

subsets associated with the main PCs, and using PERMANOVA to identify immune 

cell subsets best associated with each cluster, we found that this signature was best 

described by progressive CD4 differentiation (Figure 25). Finally, in a Cox model 

comprised of position in pseudotime, baseline age, sex, race, body mass index, 

hepatitis C co-infection, smoking and alcohol consumption, kidney and liver 

function, CMV serostatus and CMV IgG titer, HIV status and viral suppression status, 

and cocaine and intravenous drug use, position in pseudotime was the dominant 

predictor of mortality (odds ratio 4705, 95% C.I. 4.32−5,129,000). This Cox model did 

not violate the proportional hazards assumption (global fit p = 0.5023; potentially 

violating variables HCV co-infection [p = 0.0334] and baseline age [p = 0.0537]).   
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Figure 23. Trajectory analysis reveals an age-independent immune trajectory associated with mortality. 
Extraction of latent temporal data from this cross-sectional cohort via the pseudotime algorithms destiny and 
SCORPIUS reveals a strong immune aging trajectory that is only weakly B) associated with age. Residual 
variance between age at enrollment in VACS-BC and pseudotime is best explained by the second dimension in 
pseudotime. C) This pseudotemporal immune aging signature correlates strongly with the VACS index, an all-
cause and cause-specific predictor of mortality in both HIV+ and HIV− individuals. D) Pseudotime also captures 
the increase in the anti-CMV IgG titer, which is independently associated with all-cause mortality as shown 
above. Clusters with the highest mortality (2, 4, and 7) are positioned farthest back in pseudotime and have 
significantly (p < 0.0001) higher anti-CMV titers than the lower-mortality clusters. 

  

A B

C D
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Figure 24. Compositional analysis of the consensus clusters by HIV status, CMV status, and suppression 
status. The consensus clusters we identified are approximately balanced by these three variables with the 
exception of CC 7, which is mostly comprised of viremic CMV+ PLWH.  
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Figure 25. The age-independent immune aging trajectory is defined by CD4 effector and regulatory 
populations. Using PERMANOVA and random-forest variable importance trees, we identified branching points 
(inter-cluster transition points) that corresponded significantly with multiple immune cell subsets, including A) 
CD4 Tcm cells expressing IFN-y, B) CD4+ Th1-cytokine producing cells, C) terminally differentiated CD4+ T cells, 
and D) T regulatory cells. All plots are faceted by CMV serostatus (CMV− = 0, CMV+ = 1).  

 
Discussion 
 
Most studies to-date studying aging and the immune system in relation to mortality 

are restricted by 1) their cross-sectional nature, 2) study of a small number of 

individuals, and 3) lack of relevant clinical data and sufficient follow-up time. Our 

study is limited with respect to its cross-sectional nature of the baseline immune 

measurements, though the size and complexity of the VACS-BC and the adjudicated 

longitudinal follow-up make this study one of the first to analyze adaptive cellular 
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immune cell subsets at this scale, with the added contrast of HIV and CMV infection, 

and carefully adjudicated clinical outcomes. Despite these limitations, we 

successfully extracted an age-independent immune aging signature characterized 

by alterations in the ratio of CD4 effector memory T cells in relation to the rest of 

the CD4 compartment. This signature was robust across both HIV+ and HIV− 

individuals, and correlated with the VACS index, a simple and robust measure that 

can be calculated from widely available clinical data. 

Our results demonstrate that simple measurements of the immune system, 

using widely-available flow cytometry (in comparison to more expensive and less 

widely available mass cytometry, single-cell RNA sequencing, and similar methods), 

can predict mortality years in advance. These measurements serve as guideposts 

along an immune trajectory of CD4 differentiation that is only weakly correlated 

with age—suggesting that there is clinical utility in studying the immune system 

directly to identify individuals at high risk of mortality. Our results are concordant 

with those recently reported by Alpert et al., in that the immune aging signature we 

identified is present and clearly separates groups of adults between the ages of 40 

and 60, despite the fact that the VACS-BC cohort is mostly male (95%) in contrast to 

the approximate balance by sex in the study design of Alpert et al. Our pseudotime 

analyses provide support for a continuous immune landscape that diverges at 

certain points, and that divergence at these points leads to “hills and valleys” with 



 71 
 

increased and decreased risks of mortality. More simply put, these results show 

that healthy immune aging is a significant, if not the dominant, component of 

healthy aging even in a highly co-morbid population. 

The relationship between CD4 nadir and the composition of the CD4 

compartment is interesting, and while the flow cytometry data we present here are 

cross-sectional we speculate that a higher proportion of T effector memory cells 

prior to HIV infection could potentially insulate newly-infected PLWH from more 

rapid CD4 depletion (as suggested by our CMV analyses). It also seems reasonable 

that as CD4 T cells are progressively depleted during chronic HIV infection that CD4 

Tem and similar cells would be dominant in the CD4 compartment as our data 

seem to suggest (Figure 26), or that CD4 Tem and TemRA cells are resistant to HIV 

infection as described previously in a limited study of elite controllers.277 This 

represents one possible explanation as to why individuals who reached low CD4 

nadirs historically suffered from immune reconstitution diseases, as restoration of 

a cytotoxic and cytolytic CD4 T cell population without a compensating CD4 Treg 

population could lead theoretically lead to immune dysregulation, morbidity, and 

mortality.  
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Figure 26. Data in support of a model of concomitant CD4 Tem and TemRA enrichment with progressive 
depletion of the CD4+ T cell compartment. These data show that key immunomodulatory T cells such as Th1 
and Treg subsets are positively correlated with CD4 nadir, while CD4 TemRA and pre-TemRA populations such 
as T transitional memory (Ttm) are negatively correlated with CD4 nadir. These data suggest a model where 
individuals suffering from lower CD4 counts and nadirs, and who experience elevated risk of mortality, acquire 
a CD4 compartment with functional gaps that can only be partially fulfilled by effector CD4+ T cells that are 
more resistant to HIV infection and therefore depletion by HIV.  

 
While we studied the relationship between all-cause mortality and 

differentiation of the CD4 T cell compartment as a primary outcome in this study, 

cause-specific mortality, which are included as part of the VACS-BC, are likely to 

reveal additional stratifications. Specifically, analysis of cardiovascular mortality and 
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cancer mortality may reveal differential risk of mortality in the 7 immune consensus 

groups that we identified—if so, decomposing the risk in these groups to univariate 

predictors (e.g. as with CD4 TemRA proportion as we demonstrate in this work) that 

are clinically translatable could provide easily deployable biomarkers of subclinical 

cardiovascular disease and could potentially identify individuals who should be 

monitored more carefully for development of cancer. There is limited evidence 

from clinical trials that immunotherapy and reduction in specific CD4 immune 

populations can improve cardiovascular outcomes, and application of these types 

of analyses to such trials could reveal mechanisms by which the immune system 

contributes or does not contribute to specific disease processes.  
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Chapter III 
 
High CD8 T-cell receptor clonality and altered CDR3 properties are associated 
with elevated isolevuglandins in adipose tissue during diet-induced obesity 

  
N.B. This work was published in its entirety as McDonnell et al. Diabetes 2018; 
67:2361-2376. doi: 10.2337/db18-0040. In this study, we successfully documented 
concomitant changes in the T cell receptor repertoire of adipose tissue T cells that 
accompanied a higher burden of isolevuglandin-bearing macrophages. This work 
identifies potential therapeutic targets of glucose intolerance.  
 
Abstract 
 
Adipose tissue (AT) CD4+ and CD8+ T cells contribute to obesity-associated insulin 

resistance. Prior studies identified conserved T-cell receptor (TCR) chain families in 

obese AT, but the presence and clonal expansion of specific TCR sequences in 

obesity has not been assessed. We characterized AT and liver CD8+ and CD4+ TCR 

repertoires of mice fed a low-fat diet (LFD) and high-fat diet (HFD) using deep 

sequencing of the TCRβ chain to quantify clonal expansion, gene usage, and CDR3 

sequence. In AT CD8+ T cells, HFD reduced TCR diversity, increased the prevalence 

of public TCR clonotypes, and selected for TCR CDR3 regions enriched in positively 

charged and less polarized amino acids. Although TCR repertoire alone could 

distinguish between LFD- and HFD-fed mice, these properties of the CDR3 region of 

AT CD8+ T cells from HFD-fed mice led us to examine the role of negatively charged 

and nonpolar isolevuglandin (isoLG) adduct-containing antigen-presenting cells 

within AT. IsoLG-adducted protein species were significantly higher in AT 
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macrophages of HFD-fed mice; isoLGs were elevated in M2-polarized macrophages, 

promoting CD8+ T-cell activation. Our findings demonstrate that clonal TCR 

expansion that favors positively charged CDR3s accompanies HFD-induced obesity, 

which may be an antigen-driven response to isoLG accumulation in macrophages. 

 

Introduction 
 
The stromal vascular fraction (SVF) of adipose tissue (AT) contains immune cells that 

contribute to the paracrine signaling milieu that modulates local inflammation and 

adipocyte function278. This has been posited to be the primary mechanism by which 

inflamed AT induces insulin resistance (IR) because inflammatory cytokines are 

known to interfere with insulin signaling. AT macrophages (ATMs) are believed to 

serve as the primary cell type responsible for inflammation-induced IR, with AT T 

cells serving as modulators of ATM activation. However, additional evidence 

suggests that adaptive immune responses, mediated by both B cells279,280 and T 

cells281–284, also contribute directly to adverse changes in adipocyte metabolic 

fitness in obesity. Regulatory T cells (Tregs) are reduced in obese AT compared with 

lean AT,283 are protective against AT inflammation and IR, and possess a distinctive 

gene repertoire.283 Experimental models using adoptive transfer of CD4+ T cells 

into lymphocyte-free Rag−/− mice reversed weight gain and IR, and depletion of 

CD8+ T cells in AT reduced ATM density and improved insulin sensitivity. These 



 76 
 

findings suggest that immunotherapy could represent a novel approach to 

treatment of metabolic disease.281,285 Although the etiology of T-cell expansion is 

unclear at present, in vitro studies have found that obese fat independently 

activates CD8+ T cells and induces proliferation, whereas lean fat has little effect.281 

Spectratyping analyses of AT CD8+ T cells in the setting of obesity also have 

described a narrowed repertoire of T-cell receptor (TCR) Vα and Vβ chain families 

compared with cells in lean tissue, suggesting that these CD8+ T cells may undergo 

oligoclonal expansion in AT.281,286 An important limitation of spectratyping is that it 

cannot detect individual TCRs, does not provide complementarity-determining 

region 3 (CDR3) sequences, and only describes deviations from the normally 

Gaussian distribution of amino acid or nucleotide length. Spectratyping also was 

used to demonstrate that proinflammatory CD4+ T helper 1 (TH1) cells with a 

biased TCR Vα repertoire expand in AT, but CD4+ TH17 cells do not.284 Furthermore, 

progressive reductions in CD4+ FoxP3+ anti-inflammatory T cells with increasing 

obesity were detected.284 Although spectratyping in these studies allowed the 

authors to suspect clonal expansion, it did not allow them to quantify TCR 

repertoire diversity, detect specific clones, examine CDR3 sequences and 

properties, or examine clonal overlap. Similarly, although analysis of CDR3⍺ 

sequences from 98 single AT Tregs showed that AT Tregs have a unique V gene 

repertoire,283 the diversity observed and its relation to the native repertoire were 
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less clear because the transgenic mice in this study only carried a single V⍺ gene, 

were designed to produce a distinctly narrowed TCR repertoire, and had a lower-

than-normal thymic output.287 Because prior studies demonstrated that obese mice 

have increased AT T-cell density and a shift toward a proinflammatory phenotype, 

we hypothesized that high-fat feeding would induce an increase in AT CD4+ and 

CD8+ T cells in conjunction with the clonal expansion of specific TCR clonotypes. We 

performed high-throughput TCR DNA sequencing of the AT and livers of mice fed 

either a high-fat diet (HFD) or a low-fat diet (LFD). The TCR repertoires of mice fed 

an HFD are markedly enriched for public clonotypes in the CD8 and CD4 TCR 

repertoires of the AT. This overlap in TCRs between HFD samples distinguished 

between lean and obese mice, suggesting selection both for more public 

clonotypes and for autoreactive T cells. We find that the CD8+ TCR repertoire of 

mice fed an HFD is more clonal and characterized by more charged and less polar 

CDR3s. These HFD-induced features of the T-cell response led us to examine 

possible sources of neoantigens within AT, specifically the immunogenic and well-

characterized isolevuglandin (isoLG) protein adducts, which are the sole lipid 

neoantigen species that induce a T-cell response in hypertension.288 We detected 

an increase in immunogenic isoLGs, a family of negatively charged protein adducts 

generated from reactive gamma-ketoaldehydes, in CD206-expressing macrophages 

isolated from AT of HFD-fed mice. Moreover, isoLGs were elevated in M2-polarized 
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macrophages in vitro, and cocultures of these macrophages with T cells promoted 

CD8+ T-cell activation. These observations demonstrate that dietary modifications 

affect the adaptive immune response in AT in a systemic fashion and provide novel 

insights into potential mechanisms by which HFD and obesity may lead to 

pathogenic T-cell responses directed toward modified self-peptides. 

 

Methods – Wet lab 
 
Mice and diets 
 
Male C57BL/6J mice were purchased from The Jackson Laboratory. Studies were 

divided into three cohorts. The first cohort was used for AT T-cell studies and TCR 

repertoire analysis, the second was used for isoLGs, and the third was used for 

measuring isoLGs in ATM subsets and coculture studies. At 8 weeks of age, mice 

were placed on a 10% LFD for 9 weeks. Subsequently, mice were randomized into 

either the LFD or the HFD group. Both diets were purchased from Research Diets 

(HFD: D12492, LFD: D12450B; New Brunswick, NJ). Mice were fed ad libitum and 

given free access to water. All animal procedures were performed with approval 

from the institutional animal care and use committee of Vanderbilt University. 
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Glucose tolerance testing 
 
Mice were fasted for 5 h, and basal blood glucose levels were measured (0 min) 

before intraperitoneal administration of 1.5 g dextrose/kg lean body mass. Blood 

glucose was assessed at 15, 30, 45, 60, 90, and 150 min after injection. 

 

AT SVF isolation 
 
The SVF was isolated from epididymal fat pads through collagenase digestion and 

differential centrifugation as previously described.289 

 

Liver nonparenchymal cell isolation 
 
Liver was excised and minced in 1 mg/mL collagenase in PBS. Minced liver was 

incubated on a shaker at 37°C for 30 min. The cell suspension was filtered and spun 

at 800g for 10 min at 4°C. The cell pellet was suspended in 33% Percoll. The Percoll 

gradient was centrifuged at 800g for 30 min at room temperature. Red blood cells 

were lysed using ammonium-chloride-potassium lysing buffer. Cells were 

centrifuged at 800g for 5 min at 4°C. The cells were suspended in FACS buffer and 

stained for flow cytometry. The following primary fluorophore-conjugated 

antibodies, along with isotype controls, were used to characterize AT and liver T-cell 

populations: PerCP-Cy5.5–conjugated anti-mouse CD45, antigen-presenting cell 

(APC)–conjugated anti-mouse TCRβ, Alexa Fluor 700–conjugated anti-mouse CD4, 
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and V500-conjugated anti-mouse CD8a (all from eBioscience). DAPI was added 

immediately before analysis to enable discrimination between live and dead cells. 

 

FACS analysis 
 
FACS was performed on a BD FACSAria III flow cytometer (BD Biosciences) at the 

Vanderbilt Medical Center Flow Cytometry Core shared resource, and data were 

analyzed using FlowJo software (Tree Star). The gating strategy is shown in Figure 

27. 

 

TCR sequencing 
 
Genomic DNA from sorted CD4+ and CD8+ T cells was isolated using the QIAamp 

DNA Blood Mini Kit (QIAGEN). DNA from AT CD4+ and CD8+ T cells and liver CD8+ T 

cells was used for bulk TCRb CDR3 region amplification and sequencing using the 

ImmunoSEQ assay (Adaptive Biotechnologies, Seattle, WA). In this method, bias-

controlled V and J gene primers are used to amplify rearranged V(D)J segments for 

sequencing.290 

 

IsoLG adduct quantification 
 
ATMs were analyzed by flow cytometry using the following antibodies: PerCP-Cy5.5–

conjugated anti-mouse CD64, PE-Cy7–conjugated anti-mouse CD86, Alexa Fluor 
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700– conjugated anti-mouse CD11c, PE-conjugated anti-mouse CD206, APC-

conjugated anti-mouse F4/80, and PECF594- conjugated anti-mouse CD45 (Becton 

Dickinson). We used intracellular staining with the single-chain antibody D-11 to 

detect isoLG protein adducts. The D-11 single-chain variable fragment antibody was 

labeled with Alexa Fluor 488 using the APEX Alexa Fluor 488 Antibody Labeling Kit 

(Invitrogen). Cells labeled with surface antibodies were fixed and permeabilized for 

intracellular detection of isoLGs using the FIX & PERM Cell Fixation and 

Permeabilization Kit (Invitrogen). Dead cells were excluded from analysis using a 

LIVE/DEAD Fixable Dead Cell Stain Kit (Invitrogen). For each experiment, we gated 

on single live cells and used fluorescence-minus-one controls for each fluorophore 

to establish the gates. Data were analyzed using FlowJo software. The gating 

strategy is shown in Figure 27. 

 

Bone Marrow–Derived Macrophage Polarization and T-Cell Coculture 
 
Bone marrow-derived macrophages (BMDMs) isolated from C57BL/6J mice were 

obtained as described by Trouplin et al.291 On day 6, fully differentiated BMDMs 

were split and loaded into 24-well plates at a density of 700,000 cells per well in 

L929-conditioned media. Cells were allowed to adhere overnight and then polarized 

as follows: For M1 polarization, BMDMs were stimulated for 24 h with interferon-g 

(100 ng/mL; R&D Systems) and lipopolysaccharide (10 ng/mL; Sigma). For M2 
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polarization, BMDMs were treated for 96 h with interleukin 4 (10 ng/mL; R&D 

Systems) and interleukin 13 (10 ng/mL; R&D Systems). For metabolic polarization 

(metabolically activated macrophages [MMes]), BMDMs were treated for 24 h with 

30 mmol/L glucose, 10 nmol/L insulin, and 0.4 mmol/L palmitic acid as described by 

Hill et al.292 For tert-butyl hydroperoxide (TBHP) treatment, BMDMs were treated 

with 1 mmol/L TBHP for 30 min, after which the TBHP media were replaced with 

fresh media. T cells were isolated from spleens of LFD- and HFD-fed mice using APC 

magnetic beads (Miltenyi) to isolate TCRb-APC–labeled cells. Polarized BMDMs were 

cocultured with isolated pan-T cells from LFD- and HFD-fed mice at a ratio of 1:2. 

BMDMs and T cells were collected. Immunostaining for flow cytometry was 

performed using the following antibodies: for macrophage panel, PE-conjugated 

anti-mouse CD45, APC-conjugated anti-mouse F4/80, and intracellular staining with 

the single-chain antibody D-11 to detect isoLG protein adducts, and for activated T-

cell panel, PerCP-Cy5.5–conjugated anti-mouse CD45, fluorescein isothiocyanate–

conjugated anti-mouse CD4, PECF594-conjugated anti-mouse CD69, and PE-Cy7–

conjugated anti-mouse CD8 (BD Biosciences) and DAPI. Gating strategies for 

BMDMs and activated T cells are shown in Figures 27, 38, 39, and 40. 
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Figure 27. Gating strategy for AT T cells. 

 
Methods – Dry lab 
 
Data import and preprocessing 
 
All TCR sequences, including nonproductive sequences, from immunoSEQ were 

processed and imported using VDJTools as previously described.293 Amino acid 

sequences were analyzed because the amino acid sequence of a TCR determines its 

structural properties. 
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Repertoire similarity 
 
VDJTools was used to calculate a pairwise distance matrix between samples using 

the geometric mean overlap 𝐹#$ = 	'𝑓#$𝑓$#, such that 𝑓#$ = 	∑ ∅#+,
+-.  sums to the 

frequencies of TCRs shared between two samples present in the first as the 

distance metric. This matrix was used to perform complete linkage hierarchical 

clustering through the hclust function in base R version 3.4.0 software. Permutation 

testing confirmed significant factors in clustering. Each sample was downsampled 

in a density-dependent fashion to 10,000 clonal sequences to confirm significant 

factors in clustering and significant structure. Mice with < 1,000 clonotypes detected 

in any sample were excluded from analysis. 

 

Repertoire overlap 
 
The VDJTools JoinSamples routine was used to detect clonotypes overlapping 

between samples with shared amino acid sequences. 

 

Clonal homeostasis 
 
The frequency of each clonotype within each sample was calculated using VDJTools. 

The clonal space, defined by the sum of frequencies, occupied by the top 1–3, 4–10, 

11–20, 21–50, 51–100, and bottom 101–n clonotypes was calculated per sample as 

described previously.294,295 These clonal bins were log-transformed and tested for 
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differences in the ratio of their geometric means between LFD and HFD. The CD4 

and CD8 clonal bins were then condensed per mouse and used as input for 

hierarchical clustering. Average linkage was used as the clustering method, and 

absolute correlation was used as the distance metric. For visualization, the 

geometric means for each set of samples was calculated per clonal bin and 

normalized to range from 0 to 1. 

 

t-Distributed Stochastic Neighbor Embedding 
 
Clonal homeostatic proportions were fed into the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm with principal component analysis (PCA) before 

projection. Perplexity was set at 2, q at 10−5 , learning rate at 1, and perplexity was 

exaggerated for the first 50 iterations to restrain the t-SNE algorithm in a size-

dependent fashion. Five thousand iterations were allowed. Calculations were 

performed using the Rtsne package. 

 

PCA 
 
Homeostatic proportions were centered and scaled before projection. Calculations 

were performed using the prcomp function in base R.  
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P value-validated clustering 
 
Clonal homeostatic proportions were clustered using complete linkage for 

clustering and absolute correlation for distance. Calculations were performed using 

the pvclust R package.296 

 

Multidimensional scaling 
 
The pairwise distance matrix using geometric mean overlap was used as input for 

nonmetric multidimensional scaling using VDJTools293 and the isoMDS function 

from the MASS R package (20). 

 

Repertoire publicity analysis 
 
Public clonotypes were defined as those shared among at least three mice to 

account for sampling depth. All public clonotypes were retrieved using VDJTools,293 

and the frequency within each mouse was converted to a binary value representing 

present (1) or absent (0). For each public clonotype, each dietary group was then 

assigned a binary value representing whether it was greater than (1), less than (0), 

or equally prevalent to (0) the other dietary group. These values were then used to 

construct a 2 ⨉ 2 contingency table representing the proportion of public TCRs for 

each dietary group, in similar fashion to analysis of concentration and 

association.297,298 
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Sequence logo plots 
 
Seq2Logo was used to generate three types of sequence logo plots. The median 

TCRβ length was calculated, and these sequences were used to generate logo plots 

using Shannon entropy (the probability of an amino acid appearing), the Kullback-

Leibler divergence (probability with enrichment and depletion), and the probability-

weighted Kullback-Leibler divergence (probability of each amino acid multiplied by 

its weight). Where indicated, Hobohm’s first algorithm (nearest-neighbor selection 

clustering) was used to bin TCRs with similar sequences, using a threshold of 20% 

to account for the diversity and divergence of the TCRβ chain. A weighted prior 

correction of 200 pseudocounts on the basis of the BLOSUM62 matrix was used to 

correct for amino acids detected at very low levels as previously described.299 

Where appropriate, each mouse’s TCR repertoire also was downsampled in density-

dependent fashion to 10,000 clonal sequences to draw comparisons between 

samples and to cross-validate the multidimensional structure and similarity of data. 

 

Statistics 
 
Significance was set a priori at P < 0.05.  

 

 

 



 88 
 

Weight and clonality 
 
Repeated-measures ANOVA with Bonferroni multiple comparisons testing was used 

to assess changes between diet groups using GraphPad Prism version 6.05 

software (GraphPad Software, La Jolla, CA) and R version 3.4.0 (RStudio version 

1.0.143). 

 

Glucose tolerance testing 
 
Two-way ANOVA with post-hoc Bonferroni-Šídák multiple comparisons testing was 

used to assess differences between dietary groups at each time point. 

 

Clonal homeostasis 
 
The Mann-Whitney U test was used to assess differences in the geometric mean 

ratios of clonal homeostasis bins using GraphPad Prism software. 

 

Factor analysis in clustering 
 
Significant factors in hierarchical clustering were assessed using permutation 

testing in VDJTools for repertoire similarity. 
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Cluster analysis in clonal homeostasis 
 
Cluster significance for clonal homeostatic signatures was assessed using 

multistep-multiscale bootstrap resampling in the pvclust R package.296 

 

CDR3 amino acid and nucleotide profiling 
 
CDR3 properties were calculated per sample and per dietary group using 

VDJTools.293 The Mann-Whitney U and Wilcoxon signed rank tests were used to 

assess differences in CDR3 properties using GraphPad Prism and R software. P 

values were corrected using the Benjamini-Hochberg false discovery rate 

correction. 

 

Repertoire publicity 
 
We tested the 2 ⨉ 2 contingency table computed as described above using 

Pearson’s c2 test. The P value for this test was calculating using Monte Carlo 

simulation with 1,000 bootstraps in R. P values were adjusted using the Bonferroni 

correction to control the family-wise error rate. 
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Results 
 
High-fat feeding reduces CD8+ T-cell diversity in AT 
 
An HFD increased body weight (Figure 28A), AT mass (Figure 28B), and liver mass 

Figure 28C). Although fasting blood glucose was similar among diet groups (Figure 

28D), plasma insulin was significantly higher in the HFD-fed mice (Figure 28E), and 

HFD-fed mice had impaired glucose tolerance (Figure 28F). 

 

Figure 28. Dietary and metabolic changes associated with LFD and HFD. Male C57BL/6J mice were placed 
on a 10% low-fat diet (LFD) or a 60% high-fat diet (HFD) as described in the Methods. (A) Mice on HFD 
demonstrated a significant increase in body weight, (B) epididymal AT weight, and (C) liver weight (one-way 
ANOVA with Bonferroni correction). (D) Fasting blood glucose did not differ between the groups (one-way 
ANOVA with Bonferroni correction). (E) Plasma insulin concentrations were elevated in the HFD mice (one-way 
ANOVA with Bonferroni correction). (F) Glucose tolerance testing revealed that the glucose tolerance of HFD-fed 
mice was significantly impaired (two-way ANOVA with post-hoc Bonferroni-Šídák multiple comparisons testing). 
Data are presented as mean ± SEM, n = 4-5 mice/group. 
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We next compared the T-cell density (cells/gram tissue) in AT and liver. Similar to 

previous studies,284 the density of AT CD8+ T cells was elevated by threefold in HFD-

fed mice compared with LFD-fed controls (Figure 29A). In contrast, AT CD4+ T-cell 

and liver CD8+ T-cell populations were not significantly different between groups 

(Figure 29B, Figure 29C).

 

Figure 29. HFD leads to increased T-cell number and clonality. A and B: AT CD8+ number was increased in 
HFD mice (two-tailed t test) (A), whereas CD4+ T cells were not significantly increased (B). C: There was no 
difference in the number of liver CD8+ T cells. D: The TCR repertoires of AT CD8+ T cells of HFD-fed mice are 
significantly more clonal than those of LFD-fed mice (P,0.05, two-tailed Student t test). E: AT CD4+ clonality did 
not differ between HFD and LFD (P = 0.18, two-tailed Student t test). F: Liver CD8+ T cells of HFD-fed mice are 
not significantly clonal compared with LFD-fed mice (P = 0.18, two-tailed Student t test). Data points represent 
the clonality of each mouse as calculated using normalized Shannon entropy. Data are mean 6 SEM (n = 4–5 
mice/group). *P ≤ 0.05. 
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TCRβ chain amplification and deep sequencing of AT CD8+ and CD4+ T cells 

as well as liver CD8+ T cells yielded three repertoires of V(D)J gene TCR sequences 

per mouse. These TCR sequences were used to calculate overall repertoire clonality 

as measured by Shannon entropy using the immunoSEQ Analyzer. AT CD8+ T cells 

from HFD-fed mice had a higher clonality score, indicating less diversity, compared 

with LFD-fed mice (Figure 29D). Although there was somewhat increased clonality 

in AT CD4+ T cells (Figure 29E) and liver CD8+ T cells (Figure 29F), this difference 

was not significant; because we did not detect differences in the liver CD4+ 

populations, we did not sequence these T cells. 

 

T-cell clonal distributions differ between mice fed an HFD or LFD 
 
Our observation of the marked clonality in the CD8+ T cells from AT of HFD-fed 

mice led us to ask whether diet-induced obesity (DIO) affected the relative 

contributions of the major and minor clonotypes within a given TCR repertoire. We 

first examined this clonal homeostatic space within each mouse using the Mann-

Whitney U test after downsampling to account for sampling depth. The top 

clonotypes of mice fed an HFD occupied significantly higher proportions of clonal 

space (P < 0.001) (Figure 30A), whereas the bottom clonotypes occupied 

significantly less clonal space (P < 0.001) in CD8+ T cells from AT and liver. The 

proportions of these TCRs from the AT and liver also distinguish between lean and 
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obese mice on the basis of t-SNE (Figure 30B), PCA (Figure 30C), and hierarchical 

clustering (P < 0.05) (Figure 30D). These multidimensional analyses demonstrate 

that HFD distorts the size of the largest and smallest clonotypes of the repertoire 

(Figure 30, see next page). 
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Figure 30. Clonal homeostatic space differs between dietary groups and is a distinctive signature in 
multidimensional space. A: The space within the repertoire occupied by the clonotypes within each clonal bin 
was calculated for eachmouse. The geometric mean for each of these proportions was calculated for each diet 
group, and the clonal homeostatic proportions occupied were tested using the two-tailed Mann-Whitney U test. 
The clonal proportions distinguish between dietary conditions using modern machine learning methods 
measuring several multidimensional distances. B: Two-dimensional t-SNE projection of clonal homeostatic 
proportions from the AT reveals that lean and obese mice differ in clonal homeostasis as measured in a two-
dimensional projection. PCA with centering and scaling was performed before t-SNE, and 15 dimensions were 
retained for embedding with the t-SNE algorithm. C: PCA projection of clonal homeostatic proportions reveals 
that the repertoire space occupied by both highly and lowly abundant clonotypes distinguishes between lean 
and obese mice. D: Hierarchical clustering using average linkage and absolute correlation reveals that clonal 
homeostatic proportions distinguish between lean and obese mice. Values shown at each node demonstrate 
the confidence that a cluster truly exists as measured using multiscale bootstrap resampling and traditional 
bootstrapping. Multiscale bootstrap resampling validates that these characteristic differences are not expected 
to distinguish between lean and obese mice by chance alone. *P ≤ 0.05. PC, principal component; var., variance. 
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Shared clonotypes and gene usage distinguish between TCR repertoires from mice fed 

LFD or HFD 

 
Figure 31. Dietary group is predictive of repertoire similarity and synchronously alters the TCR 
repertoire in AT. Geometric mean overlap was used to calculate pairwise distance matrices on the basis of 
shared clonotypes with identical CDR3 amino acid sequences. Labels on each dendrogram correspond to a 
specific mouse, tissue type, and cell type (4 or 8). A: AT CD8+ (upper) and CD4+ repertoires (lower) share more 
TCRs within diet groups than between diet groups (P < 0.0001 for CD8+ and CD4+, permutation of pairwise 
distance matrix). This suggests that sets of shared TCRs are enriched and depleted in a diet-dependent fashion. 
B: Diet significantly affects repertoire similarity across multiple cell types and within multiple tissues (P = 0.01, 
permutation of pairwise distance matrix). TCRs shared between mice within multiple tissue and T-cell types 
distinguish between lean and obese mice. Diet-dependent repertoire similarity is observed in liver in addition to 
AT. C: CD8+ T-cell repertoires from liver and AT reflect simultaneous clonal expansion and sharing within each 
mouse and show that diet significantly affects repertoire similarity within the CD8+ compartment (P < 0.05, 
permutation of pairwise distance matrix). A, AT; L, liver. 
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Hierarchical clustering on repertoire similarity of TCR clonotypes sharing the same 

amino acid sequence successfully distinguished between both AT CD8+ TCR (P < 

0.05) and AT CD4+ TCR repertoires of LFD- and HFD-fed mice (P < 0.001) (Figure 

31A, see previous page). The impact of dietary group on repertoire similarity held 

true when pooling TCR repertoires from AT and liver and from both CD8+ and CD4+ 

T cells (P = 0.01) (Figure 31B). Expansion of both major and minor clonotypes led to 

synchronous changes in CD8+ T cells between AT and liver repertoires within each 

mouse (Figure 31C) in a diet-dependent fashion (P < 0.05). Each mouse’s AT and 

liver repertoires were most similar to each other, demonstrating the reproducibility 

of repertoire changes that are tissue specific.  
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Figure 32. CD8+ TCR repertoires within AT are genetically distinct by dietary group. Z-score–normalized 
heat maps were built using VDJTools. Labels underneath the heat maps correspond to individual mice, and 
rows correspond to a given Vb (TRBV) gene. The heat map is colored on the basis of Z-score and how many SDs 
from the mean a given sample is in its expression of a given Vb gene family. A: Obesity leads AT CD8+ T cells to 
use distinct sets of V gene segments. These changes do not appear to distinguish between CD4+ T cells of lean 
and obese mice, although CD4+ T cells appear to use different sets of Vb genes than CD8+ T cells regardless of 
dietary condition. B: Obesity does not affect the J segments used within the CD8+ TCR repertoires of mice to the 
same extent that V segments do. This is unsurprising because there are fewer Jb (TRBJ) genes than Vb genes 
and because the Jb region frequently accounts for less nucleotide diversity than the Vb region. 

 
Our observation of the dissimilarity of the TCR repertoires between dietary 

groups led us to examine whether Vβ gene usage differed in AT between LFD- and 

HFD-fed mice. The AT CD8+ T-cell repertoires of each dietary group demonstrated 

differential usage of several Vβ genes (Figure 33A). Neither LFD nor HFD affected Jβ 

gene usage in the AT (Figure 33B). Similar to other groups, we observed differential 

Vβ gene usage between CD4+ and CD8+ T cells,300,301 which also distinguished 
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between CD4+ and CD8+ TCR repertoires (Figure 32, see previous page). 

 

Figure 33. Differential TRBV usage distinguishes between the CD4+ and CD8+ TCR repertoires. 
Hierarchical clustering using geometric mean overlap reveals that CD4+ and CD8+ repertoires possess 
characteristically unique sets of TCRs, and that these repertoires are distinct in multidimensional space. 

 
CD4+ TCRs expressed a decrease in charge and increase in polarity 

compared with CD8+ TCRs (P < 0.05) (Figure 34A, see next page). They also had 

characteristically shorter N-D gene-N regions (P < 0.05) (Figure 34B, see next 

page). 
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Figure 34. Physicochemical and genetic features distinguishing CD4+ repertoires from CD8+ repertoires 
in mice. CD4+ TCR repertoires utilize CDR3s with decreased charge and polarity in comparison to CD8+ TCR 
repertoires (P < 0.05, Wilcoxon signed-rank test). N(D)N length of CD8 and CD4 T cells (P < 0.05, Wilcoxon 
signed-rank test). 

 
HFD increases the prevalence of public T-cell clonotypes 
 
The observation that diet strongly influences TCR repertoire similarity led us to ask 

whether HFD-fed mice were more likely to share clonotypes than LFD-fed mice. To 

test this hypothesis, we used a specialized Monte Carlo–validated c2 test (Figure 

35). This test proved to be robust to both P value permutation and probability 

proportionate to size downsampling in addition to extremely conservative P value 

correction. HFD mice were more likely to have public clonotypes shared among at 
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least three mice in their CD8+ (P < 0.001) and CD4+ AT T-cell repertoires (P = 0.01). 

This difference was not observed in the liver CD8+ TCR repertoire.

 

Figure 35. Calculation of repertoire publicity measure. (A) Each TCR is counted as present or absent within a 
given sample. (B) A contingency table is built by counting whether a given TCR is predominantly present within a 
treatment group (1), equally present between treatment groups (0), or present within the other treatment 
group (0). (C) Contingency table testing is performed to evaluate the null hypothesis that public clonotypes are 
evenly distributed between treatment groups. Either Pearson’s χ2 test or the Barnard test are appropriate to 
implement, though Fisher’s exact test is not recommended due to its requirement that marginals of the 
contingency table remain equal. If Pearson’s χ2 test is used, Monte Carlo simulation should be used to ensure 
that the P-value observed would still be considered significant within the probability null distribution. 
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Regardless of dietary condition and tissue type, we identified 15,419 TCRs 

shared between any two samples, 9,034 TCRs shared between any two CD8+ liver 

samples, 1,126 TCRs shared between any two CD4+ AT samples, and 826 TCRs 

shared between any two CD8+ AT samples. We also detected previously reported 

clonotypes that have been associated with obesity and IR in mouse models in both 

LFD- and HFD-fed mice (Table 1). 

 

Table 1. Detection of previously reported T-cell clonotypes associated with pathogenesis in murine 
models of obesity and diabetes.  

 

HFD alters physicochemical properties of the TCR repertoire 

In addition to being more clonal, the TCR repertoire of mice fed an HFD 

demonstrated marked physicochemical differences from mice fed an LFD. To 

assess these differences, we systematically compared the CDR3 of every TCR 
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detected in LFD- and HFD-fed mice and CD4+ to CD8+ TCRs. Obesity resulted in an 

elevation in charge (P = 0.01) (Figure 36A) and a decrease in polarity in CD8+ TCRs 

from AT (P < 0.05) (Figure 36B). These repertoire-level changes do not appear to 

originate from germline selection and instead derive from the junctional regions of 

the CDR3, where TCR diversity is generated at the nucleotide level (Figure 36C,D).  
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Figure 36. CD8+ TCR repertoires of mice fed an HFD differ in physicochemical properties compared with 
those of mice fed an LFD. A: AT CD8+T-cell repertoires of obese mice are significantly higher in charge (P = 
0.01, Student t test). This elevation in charge is due to amino acids encoded in the junctional regions of the TCR, 
where diversity is generated. B: The CD8+ T-cell repertoire within AT also is markedly lower in polarity in obese 
mice (P < 0.01, Student t test). Unlike the changes observed in charge, the difference in polarity appears to arise 
from germline selection. C: Elevations in charge arise from the junctional regions of the TCR, where TCR 
diversity is generated at the nucleotide level. Repertoires were assessed using three scanning bins to account 
for variance along each region and to identify signal arising from each genetic region of the TCR. D: The 
increased polarity of AT CD8+ TCR repertoires from obese mice appears to be more closely related to changes 
selected at the germline level, unlike changes in charge. germ, germline; junc, junction. 
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Figure 37. Weighted and unweighted measures of entropy demonstrate selection for positively charged 
amino acids within the CDR3 of HFD TCR repertoires. The median CDR3 length was 14 amino acids, which 
we analyzed using several sequence entropy methods. A: Shannon entropy reveals enrichment of arginine and 
depletion of negatively charged amino acids in the CD8+ repertoires of HFD-fed mice. B: P-weighted Kullback-
Leibler divergence with Hobohm1 clustering reveals that other positively charged amino acids are enriched 
within HFD CD8+ TCR repertoires from AT and that negatively charged amino acids are correspondingly 
depleted. C and D: Unweighted analyses using Shannon entropy (C) and P-weighted Kullback-Leibler divergence 
(D) show that these amino acid enrichments are due to clonotypes present at higher frequencies, although 
there is still enrichment for arginine, lysine, and histidine, all of which carry a positive charge at physiological 
pH. This indicates that obesity-induced changes in charge and polarity at the repertoire level are driven not only 
by highly expanded clonotypes but also by clonotypes that are present at lower frequencies. 

 

To examine more closely the differences in charge and polarity, we used sequence 

entropy measurements to detect enriched and depleted amino acids in the CDR3s 

of CD8+. Weighted Shannon entropy (Figure 37A) and Kullback-Leibler divergence 

(Figure 37B) demonstrated that these changes are due to an enrichment of 
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arginine and depletion of negatively charged amino acids, with other positively 

charged amino acids selected for at positions 8, 9, and 11. Unweighted Shannon 

entropy (Figure 37C) and Kullback-Leibler divergence (Figure 37D), where each TCR 

is given equal weight, revealed that both lysine and histidine contribute strongly to 

the increase in charge observed. 

HFD leads to isoLG accumulation in ATMs 
 
The physicochemical alterations in the CD8+ TCR repertoires of HFD-fed mice led us 

to consider how the CDR3 of the TCRβ chain could interact with the local 

biochemical environment of AT. Because we observed an increased charge and 

decreased polarity, we chose to examine the isoLG content of APCs within AT 

because these highly reactive g-ketoaldehydes carry both negatively charged 

phospholipid content and nonpolar lipid content (Figure 38A). IsoLGs have been 

shown to rapidly adduct to lysines on self-proteins, forming isoLG protein adducts 

that are processed and presented as neoantigens, and induce an autoimmune-like 

state in hypertension.288 We isolated total leukocytes from AT and performed flow 

cytometry to identify isoLG protein adducts in ATMs (Figure 38A).  
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Figure 38. HFD induces formation of immunogenic isoLGs and expression of B7 ligand CD86 in ATMs. 
Total leukocytes were isolated from AT of mice fed an LFD or HFD, and isoLG content was quantified using 
previously described gating schema. A: Structure of the major isoLG protein adducts. The major intermediates 
are a pair of pyrrolic epimers whose covalently bonded nitrogen originates from lysine residues on proteins. 
Phospholipids attached to isoLGs derive from polyunsaturated acids, arachidonic acids, and phospholipids 
thereof. B: Representative flow cytometry plot and average data showing intracellular staining for isoLG protein 
adducts in ATMs using the single-chain antibody D-11 single-chain variable fragment. C: Representative FACS 
plots and average data showing surface expression of CD86 and isoLGs in ATMs (proportion of ATMs staining 
CD86+isoLG+). D–F: Representative flow cytometry plots and average data showing the number of isoLG+ cells 
per gram of tissue and percentage of isoLG+ cells per ATM subsets CD11c+ (D), CD206+ (E), and CD11c+CD206+ 
(F) of HFD-fed mice. Data are mean ± SEM (n = 5-10 mice/group). **P < 0.01, ***P < 0.001, ****P < 0.0001. 

 
As previously reported by other research groups,302,303 HFD increased total ATM 

density and ATM subsets CD11c+ (M1-like ATMs), CD206+ (M2-like ATMs), and 

double-positive populations (Figure 39). After HFD, ATMs showed increased isoLG- 

adduct formation (Figure 38B) and expression of the costimulatory molecule B7 

ligand CD86 (Figure 38C). Regardless of ATM polarization state, HFD led to 
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significant elevations of isoLGs in the number of cells per gram of AT of CD11c+, 

CD206+, and CD11c+CD206+ ATMs compared with LFD (Figure 38D–F). However, 

HFD only increased the percentage of isoLG+ cells in CD206+ ATMs (Figure 38E).

 

Figure 39. Gating strategy and quantification of ATMs. Gating strategy for total ATMs and (B) quantification 
of ATMs in LFD and HFD mice. (B) ATMs are significantly higher in diet-induced obesity. (C) Gating strategy for 
CD11c and CD206 expressing ATMs and quantification of flow analysis. 

 
Because HFD led to elevations in isoLGs in ATMs, we sought to determine 

whether isoLGs in macrophages induce T-cell activation. As a control and to verify 

that isoLG-containing macrophages activate T cells, we treated BMDMs with 1 

mmol/L TBHP, which induces oxidative stress. Treatment with TBHP led to 
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elevations in isoLGs in BMDMs (Figure 40) and as previously reported.288 

 

Figure 40. M2 polarization increases isoLG levels and promotes activation of CD8+ T cells. BMDMs were 
polarized to M0, M1, M2, or MMe or treated with TBHP. After polarization, BMDMs were cocultured with 
isolated T cells from the spleen of mice fed an LFD or HFD for 3 days. IsoLG content was quantified in polarized 
BMDMs by flow cytometry. A and B: Flow analysis (A) and quantification (B) of IsoLG+ F4/80+ cells (one-way 
ANOVA). Data are mean 6 SEM (n = 3 wells/group). T cells were collected from cocultures, and flow analysis was 
performed to quantify CD8+ T cells (C) and CD8+CD69+ T cells (D) (two-way ANOVA). Data are mean ± SEM (n = 
5 mice/LFD or HFD group) and mean ± SEM (n = 5 wells/group). *P < 0.05, ****P < 0.0001. 

 
With use of an in vitro coculture system, we polarized BMDMs to M1, M2, and 

obesogenic MMes to represent the various subsets present in AT during HFD. Of 

note, isoLG levels were elevated only in M2-polarized macro- phages compared 

with M0 (P < 0.05), were lower in M1 macrophages (P < 0.001), and were not 
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different in MMes compared with M0 (Figure 40A and 40B). TBHP-treated and 

polarized BMDMs were subsequently cultured with pan-T cells isolated from 

spleens of LFD- and HFD-fed mice. As expected, coculture with TBHP-treated 

macrophages led to elevations of total CD8+ T cells (Figure 40C) and more 

specifically in activated cells as indicated by expression of the early activation 

marker CD69 (Figure 40C). Furthermore, only the isoLG-containing M2 

macrophages promoted an increase in CD8+ T cells and their activation (Figure 40C 

and 40D), and this was only when cocultured with CD8+ T cells from the obese 

HFD-fed mice. Together, these findings demonstrate that ATMs express isoLGs 

under obese conditions and that isoLG-containing M2 macrophages are capable of 

driving CD8+ T-cell activation in vitro. 

 

Discussion 
 
We demonstrate that HFD-fed mice have a higher AT CD8+ T-cell density and TCR 

clonality. CD8+ cells from AT of HFD-fed mice also have a distinctive TCR repertoire 

that differs in both charge and polarity within the CDR3 region compared with LFD-

fed mice. These changes are not observed within the CD4+ TCR repertoire, which 

uses different V-segment genes than CD8+ T cells, regardless of diet (Figure 32A). 

The repertoires of mice fed an HFD are also more public than of mice fed an LFD, 

which has been reported previously in autoimmune pathologies but un- commonly 
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in antipathogen responses (reviewed in Madi et al.304). Furthermore, we provide 

evidence that these repertoire properties may emerge in part as a response to an 

increase in immunogenic isoLG adducts present in the ATMs of mice fed an HFD. 

We have directly identified and quantitated specific clonally expanded TCRs within 

the CD8+ and CD4+ T-cell populations that appear to arise in response to DIO. We 

also demonstrate that the AT TCR repertoire alone can distinguish between LFD- 

and HFD- fed mice. To that end, we note that HFD induces repertoire-level changes 

previously described in studies of autoimmunity and enriches for amino acid 

sequences biased toward a positive charge. In fact, Glanville et al.305 recently 

described a strong inverse correlation between CDR3 charge and epitope charge in 

TCRs of both humans and mice. Finally, we document elevated numbers of isoLG-

positive macrophages in the AT of HFD-fed mice and that M2 macrophages 

containing isoLG-adducted protein enhance T-cell survival and activation. These 

data suggest a coordinated mechanism of inflammation within AT wherein T cells 

infiltrate tissue in response to neo- antigen presented on ATMs. 

To date, other studies have described the infiltration of a possibly clonally 

expanded T-cell population within AT.281,284,287,295 In mice, Yang et al. observed shifts 

in the clonality of both the AT CD4+ and CD8+ TCR repertoires in obese versus lean 

mice using PCR-based spectratyping,286 where clonal expansion was detected as a 

deviation from the normally Gaussian frequency distribution of CDR3 length. 



 111 
 

Although spectratyping has been advantageous in the detection of unusual T-cell 

clones in lymphoma, it does not provide the specificity or direct measurement of 

clonal expansion and cannot distinguish between expanded clones with different 

amino acid sequences and similar V and J gene usage. Consequently, spectratyping 

also cannot detect clones with identical amino acid sequences and different V and J 

gene usage, as we observed in the CD8+ and CD4+ TCR repertoires of mice fed both 

an LFD and an HFD. In contrast, deep sequencing of the TCR repertoire makes it 

possible to distinguish between the TCR repertoires of LFD- or HFD-fed mice (Figure 

33) and to assess intricate biochemical details of the TCR at the repertoire level 

(Figures 34-38). Similar observations have been made with regard to HFD-induced 

T-cell infiltration in pancreatic islets,306–310 skeletal muscle,311 and liver.312 We 

observed similar levels of macrophage and CD8+ T-cell infiltration as reported in 

prior studies and further identified several highly oligoclonal CD8+ T-cell 

populations induced by HFD. As previously reported by Nishimura et al.,281 we 

observed no difference in CD4+ T-cell infiltration into AT and extend this 

observation to include no significant difference in CD4+ T-cell clonality (P = 0.18). 

Although we do not observe enrichment of Vb gene families 7 and 10b as in 

Nishimura et al., we do observe slight enrichment of Vb families 17, 18, 21, 22, 25, 

27, 28, and 29 (Figure 32). We observe a pronounced increase in the clonality of 

CD8+ T cells in AT of HFD-fed mice and note that future studies should specifically 
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examine the extent to which this is induced by diet alone or entirely depends on 

obesity. Future dietary studies also would benefit from analysis of age because at 

least one study indicated that AT mass and CD8+ T cells—but not CD4+ T cells—are 

elevated independent of diet in aging male and female mice.313 

Highly clonal T-cell populations have been described in a broad array of 

pathologies.314 Our group has demonstrated recently that the TCR repertoire is 

more clonal in the AT of obese and overweight adults with HIV infection receiving 

long-term therapy than in the blood and that the V-J gene family pairings appear to 

differ between tissue compartments,315 suggesting that similar repertoire 

contraction also occurs in the AT of humans. Adverse effects of similarly clonal 

populations have been described in both obesity and diabetes. Highly clonal T-cell 

populations recognizing an HLA-DR4–restricted epitope of insulin have been 

documented in patients with type 1 diabetes.316 Obesity in both mice and humans 

leads to markedly lower naive T-cell pools and highly clonal T-cell populations, 

further restricting the availability of diverse TCRs.317 A recent report by Pham et 

al.279 indicated that HFD also limits the diversity of the B-cell repertoire, which 

corresponds with IR. The presence of a clonally expanded T-cell population within 

tissue can be explained by several immunological processes. One possible scenario 

is that a T-cell population may infiltrate in response to an antigen within the tissue, 

as documented in the AT of humans and macaques during chronic simian 
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immunodeficiency viral and HIV infection.318 Another is the presence of multiple T-

cell populations sharing the same TCR but with drastically different functional roles 

and properties.319 Alternatively, dominant clones from the blood could enter the 

tissue in an antigen-blind fashion. 

Our findings raise the question of where and how antigen is presented to 

drive TCR clonal expansion. Several published reports have indicated that antigen 

presentation to CD4+ T cells occurs directly in AT. Multiple MHC- II–expressing APC 

populations in AT can present to CD4+ T cells, including B cells,280 dendritic cells,320 

macrophages,321 and even adipocytes.322 Mice with global deficiency of MHC-II 

demonstrate protection from AT inflammation and systemic IR when placed on an 

HFD.320 A portion of the reduced inflammation in AT was due to attenuation of 

CD11c+ macrophages and CD4+ T-cell accumulation.320 Adipokines also can activate 

these APCs directly, including leptin, adiponectin, and retinol-binding protein 4.322–

324 Thus, AT has all the prerequisite components to activate CD4+ T cells. However, 

our studies show clonality in the CD8+ T-cell population, begging the question of 

their activation signals. MHC-I is expressed on all cell types and could allow for 

presentation of neoantigens or modified proteins. The current data suggest an 

enrichment of arginine and positively charged amino acids in the TCRs of CD8+ T 

cells that are clonally expanded in HFD-fed mice. This positive charge led us to 

consider that protein modifications leading to a negative charge might serve as 
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neoantigens in AT. Indeed, the data suggest that ATMs display increased levels of 

isoLG adducts (Figure 38). Similar alterations in charge and amino acid content 

have been reported in the context of renal disease.288,325 Insulin-reactive TCRs have 

been reported to be enriched for arginine and for nonpolar amino acids at position 

7,326 which we also observed. We identified TCRs previously associated with obesity 

and IR in mice (Table 1), two of which were significantly enriched in HFD TCR 

repertoires. One clonotype that was highly prevalent in AT is known to be insulin 

reactive, and another is known to be enriched in the pancreas of diabetic mice. In 

contrast, two previously reported diabetogenic clonotypes were detected at 

elevated levels in LFD-fed mice alone (Table 1), which demonstrates that changes to 

the TCR repertoire extend to multiple tissues in the context of obesity and IR and 

that insulin reactivity alone may not explain clonal expansion within AT. Although 

we did not observe significant changes in the TCR repertoire of CD4+ T cells of the 

AT, future studies also could examine the TCR repertoire of CD4+ T cells within the 

liver, where fat also accumulates during DIO. 

The current findings suggest that isoLGs may act as neoantigens responsible 

for AT TCR clonal expansion. Generation of these reactive lipid aldehydes primarily 

depends on oxidative stress, and reactive lipid aldehydes are detected at elevated 

levels in other autoimmune processes, including multiple sclerosis, glaucoma, 

allergic inflammation, and cancer (reviewed in Salomon and Bi).327 Previous studies 
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examined the role of various lipid adducts on the immunogenicity of APCs and 

found that only proteins adducted to isoLGs induced APC immunogenicity.288 A 

number of reports demonstrated that oxidative stress levels are elevated in AT of 

obese mice and humans.328,329 In pulmonary injury, impaired NADPH oxidase 

reduces production of isoLG-adducted proteins, whereas impairment of the Nrf2-

antioxidant response element signaling pathway increases isoLG-modified protein 

levels.330 Furthermore, inhibition of NADPH oxidase reduces obesity- induced AT 

reactive oxygen species production, inflammation, and IR.328,329 Thus, obesity-

induced oxidative stress in ATMs may account for the elevation in isoLGs. 

Although our results suggest that M2-like ATMs induce or enhance clonal 

expansion of AT-infiltrating T cells through the presentation of immunogenic isoLG-

adducted peptides, the extent to which ATM-generated isoLGs induce clonal 

expansion in T cells remains to be explored. We also note that T cells derived from 

splenocytes in the liver may not precisely reflect those found in AT and that a 

culture model able to effectively enrich such lymphocytes from the AT would be a 

valuable contribution to the field. The current results also suggest several new 

directions for further investigation. The antigen specificity of clonally expanded T 

cells within AT remains to be determined, and single-cell TCR sequencing can 

connect surface phenotype information from flow cytometry with transcriptomics 

and paired TCRa/b sequences.331 Although we did not identify any clonotypes that 
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were universally shared at high (>1%) frequencies between or within diet groups, 

we did observe several TCRs that were shared within the top 100 clonotypes of 

each dietary group (Table 1), particularly with respect to HFD-fed mice. This 

suggests that the antigens or neoantigens presented in obesity may not be the 

same from mouse to mouse. These TCRs may be specific for one or more antigens, 

although we have previously shown that TH1 CD4+ cells, CD8+ T cells, and memory 

cells accumulate in the AT of weight-cycled mice, suggesting secondary immune 

responses with repeat exposure to HFD,332 and our in vitro experiments suggest 

that isoLG-containing macrophages augment T-cell activation and survival in tissue-

resident immune populations that are expanded in obesity (Figure 40). 

In summary, we have demonstrated that T cells infiltrating AT of obese mice 

are clonally expanded, that the TCR repertoires of lean and obese mice are distinct 

in their sequences and biochemical properties, that immunogenic isoLGs are 

elevated in ATMs of obese mice, and that T cells of obese mice accumulate and 

activate in response to isoLG-containing M2 macrophages. Our observations also 

suggest that therapy targeting the CD8+ T-cell population and antigens thereof 

could potentially abrogate inflammation and other consequences of adaptive 

immune activation in obesity. 
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Chapter IV 
 

Adipose tissue in persons with HIV is enriched for CD4+ T effector memory 
and T effector memory RA+ cells, which show higher CD69 expression and 

CD57, CX3CR1, GPR56 co-expression with increasing glucose intolerance 
 
N.B. This work was published in its entirety as Wanjalla & McDonnell et al. Frontiers 
in Immunology 2019; 10:408. doi: 10.3389/fimmu.2019.00408. In this work, we 
identify for the first time a novel population of CD4 effector memory T cells that 
increase in frequency according to diabetic status. These cells are cytotoxic, express 
a unique vascular homing profile, and could serve as a biomarker or a therapeutic 
target of incident type II diabetes. 
 
Abstract 
 
Chronic T cell activation and accelerated immune senescence are hallmarks of HIV 

infection, which may contribute to the increased risk of cardiometabolic diseases in 

people living with HIV (PLWH). T lymphocytes play a central role in modulating 

adipose tissue inflammation and, by extension, adipocyte energy storage and 

release. Here, we assessed the CD4+ and CD8+ T cell profiles in the subcutaneous 

adipose tissue (SAT) and blood of non-diabetic (n = 9; fasting blood glucose [FBG] < 

100 mg/dL), pre-diabetic (n = 8; FBG = 100–125 mg/dL) and diabetic (n = 9; FBG ≥ 

126 mg/dL) PLWH, in addition to non- and pre-diabetic, HIV-negative controls (n = 

8). SAT was collected by liposuction and T cells were extracted by collagenase 

digestion. The proportion of naïve (TNai) CD45RO−CCR7+, effector memory (TEM) 

CD45RO+CCR7−, central memory (TCM) CD45RO+CCR7+, and effector memory 

revertant RA+ (TemRA) CD45RO− CCR7− CD4+ and CD8+ T cells were measured by 
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flow cytometry. CD4+ and CD8+ TEM and TemRA were significantly enriched in SAT 

of PLWH compared to blood. The proportions of SAT CD4+ and CD8+ memory 

subsets were similar across metabolic status categories in the PLWH, but CD4+ T 

cell expression of the CD69 early-activation and tissue residence marker, 

particularly on TEM cells, increased with progressive glucose intolerance. Use of t-

distributed Stochastic Neighbor Embedding (t-SNE) identified a separate group of 

predominantly CD69lo TEM and TemRA cells co-expressing CD57, CX3CR1, and 

GPR56, which were significantly greater in diabetics compared to non-diabetics. 

Expression of the CX3CR1 and GPR56 markers indicate these TEM and TemRA cells 

may have anti-viral specificity. Compared to HIV- negative controls, SAT from PLWH 

had an increased CD8:CD4 ratio, but the distribution of CD4+ and CD8+ memory 

subsets was similar irrespective of HIV status. Finally, whole adipose tissue from 

PLWH had significantly higher expression of TLR2, TLR8, and multiple chemokines 

potentially relevant to immune cell homing compared to HIV-negative controls with 

similar glucose tolerance. 

 

Introduction 
 
People living with human immunodeficiency virus (HIV) are at an increased risk of 

developing insulin resistance and overt diabetes mellitus, but the factors 

contributing to the high prevalence of metabolic disease in the HIV population are 
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not fully understood.333–335 Since HIV was identified as the cause of acquired 

immune deficiency syndrome (AIDS) in the early 1980s, the metabolic 

consequences of altered adipose tissue function in people living with HIV (PLWH) 

have been a major research focus.336 Early studies identified accelerated lipolysis 

and hepatic lipogenesis as central energy metabolism abnormalities in untreated 

HIV infection,337–339 while early- generation nucleoside reverse transcriptase 

inhibitors (NRTIs) caused adipocyte mitochondrial damage and adipose tissue 

fibrosis,340–344 and treatment with early protease inhibitors was accompanied by 

accumulation of visceral adipose tissue (VAT), hyperlipidemia, and insulin 

resistance.345–348 More recently, several studies describe profound changes in 

adipose tissue T cell populations during chronic HIV and simian immunodeficiency 

virus (SIV; a non-human primate virus similar to HIV) infections, which may 

influence adipose tissue metabolic function. These include changes in T cell surface 

marker phenotypes, cytokine production, antigen receptor repertoire, and capacity 

for latent infection with HIV or SIV provirus.315,318,349–352 Notably, several studies 

found that HIV and SIV were accompanied by a substantial increase in the 

proportion of adipose CD8+ T cells relative to CD4+ T cells, which is strikingly similar 

to the enrichment in CD8+ T cells also described in obesity.281,283,353 

Adipose tissue is a complex and vascularized cellular amalgam, comprised of 

multipotent adipocyte progenitors, mature adipocytes, fibroblasts, and immune 
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cells of the adaptive and innate lineages. A diverse group of immune cells 

collectively identify and eliminate the range of viruses and other pathogens which 

can infiltrate adipose tissue, and these processes impact local levels of pro-

inflammatory and other cytokines with subsequent effects on adipocyte regulation 

and energy storage and release. T lymphocytes play several beneficial and 

detrimental roles within this environment. Studies of obese humans and animals 

demonstrate an increase in adipose tissue CD8+ T cells and CD4+ TH1 cells, a 

decrease in T regulatory cells, and an increase in M1-phenotype (CD68+, tumor 

necrosis factor-α [TNF-α], interleukin [IL]-6, IL-12, and IL-23-producing) pro-

inflammatory macrophages compared to non-obese controls.280,281,283,284 In animal 

models of obesity, the infiltration of CD8+ T cells into adipose tissue precedes the 

recruitment of macrophages;281 and the resulting increase in local IL-6, TNF-α and 

other inflammatory mediators act on adipocyte surface receptors and other 

mechanisms to inhibit insulin signaling via reduced insulin receptor substrate-1 

(IRS-1), phosphoinositide 3-kinase p85α, and glucose transporter type 4 (GLUT4) 

expression.14,281,349,354–358 

The increase in the CD8+ to CD4+ T cell ratio observed in HIV infection is like 

that seen in diet-induced obesity, though the mechanisms underlying the 

accumulation of CD8+ T cells in the adipose tissue of PLWH are not well-defined. 

Studies in macaques suggest that the high proportion of CD8+ T cells is not due to 
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depletion of CD4+ T cells.318 Although lack of Ki-67 expression in adipose tissue T 

cells has been interpreted as lack of evidence for in situ proliferation, greater CD8+ 

TCR clonality in subcutaneous adipose tissue (SAT) implies antigen specificity might 

drive the increase rather than stochastic recruitment of circulating CD8+ T cells. 

This is further supported by the finding that CD8+ and CD4+ T cells in adipose 

tissue predominantly display a memory phenotype with increased levels of CD69 

expression compared to those in blood.318,349 

While prior studies have shown enrichment of CD8+ over CD4+ T cells in 

adipose tissue after HIV infection, there is a paucity of data on whether a particular 

subset of cells underlies this change, and whether adipose tissue T cell profiles 

differ according to insulin sensitivity in PLWH (as might be expected given prior 

findings in obesity-related insulin resistance). In this study, we hypothesized that 

the enrichment of CD8+ T cells in the adipose tissue of PLWH could be attributed to 

an over-representation of one or a few memory cell subtypes, and that greater 

CD8+ and CD4+ T cell activation would characterize the adipose tissue of diabetic 

PLWH. We evaluated SAT CD4+ and CD8+ T cell subsets (including naïve cells, 

activated cells, and central memory [TCM], effector memory [TEM], and effector 

memory revertant RA+ [TemRA] cells) in PLWH vs. HIV- negative controls, and 

among diabetic vs. non-diabetic PLWH. 
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Methods 
 
Study participants 
 
We enrolled 26 PLWH on long-term antiretroviral therapy (ART) with sustained 

virologic suppression from the Vanderbilt Comprehensive Care Clinic between 

August 2017 and June 2018. Hemoglobin A1c (HbA1c) and fasting blood glucose 

(FBG) were used to classify participants as non-diabetic (n = 9; HbA1c < 5.7% and 

FBG < 100 mg/dL), pre-diabetic (n = 8; HbA1c 5.7–6.5% and/or FBG 100–125 mg/dL), 

and diabetic (n = 9; HbA1c ≥ 6.5% and/or FBG ≥ 126 mg/dL, and on anti- diabetes 

medications). A group of 8 HIV-negative, non- and pre-diabetic controls were 

enrolled from the community. The PLWH were on ART for at least 18 months, had 

HIV-1 RNA <50 copies/ml for the prior 12 months, CD4+ count >350 cells/μl, and 

had no known inflammatory or rheumatologic conditions. We excluded persons 

with self-reported heavy alcohol use (defined as >11 drinks/week), any 

cocaine/amphetamine use, and those receiving corticosteroids or growth hormone. 

All visits occurred in the Vanderbilt Comprehensive Care Clinic research suite 

or the Vanderbilt Clinical Research Center between 8 and 11 am. Participants fasted 

for a minimum of 8 h prior to blood collection for laboratory measurements and 

peripheral blood mononuclear cell (PBMC) separation (PLWH only). Blood glucose, 

HbA1c, high-sensitivity C-reactive protein (hsCRP), low-density lipoprotein (LDL), 
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triglycerides, and high- density lipoprotein (HDL) were measured in the fasting 

blood samples at the Vanderbilt Clinical Chemistry Laboratory. 

 

Adipose tissue biopsy and T cell extraction 
 
SAT biopsies were collected ∼3 cm to the right of the umbilicus after anesthetizing 

the skin with lidocaine and infiltrating 40 ml of sterile saline and lidocaine into the 

subcutaneous adipose tissue as tumescent fluid. We collected ∼5 grams of adipose 

tissue using a 2.1mm blunt, side-ported liposuction catheter (Tulip CellFriendly™ 

GEMS system Miller Harvester, Tulip Medical Products) designed for the extraction 

of viable adipocytes and stromal vascular cells during cosmetic adipose tissue 

transfer procedures.359 With this approach, adipose tissue is recovered in droplets 

generally <3 mm in diameter, limiting the need to mechanically mince the sample, 

and the tissue is placed in 40– 50 cc of cold saline and mixed to rinse. Any visible 

clots are removed before the sample is transferred to a 70 μm mesh filter for 

repeated saline rinses with constant stirring. The adipose tissue is then placed in a 

gentleMACS™ Dissociator (Miltenyi Biotec) followed by incubation with collagenase 

(Roche Catalog #11088866001). Mononuclear cells were separated by Ficoll-Paque 

Plus density gradient and cryopreserved in fetal bovine serum (FBS) with 10% 

DMSO. 
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Flow cytometry analysis 
 
PBMC and SAT mononuclear cell aliquots were processed and stained as previously 

published.315 In brief, matched cryopreserved PBMCs and SAT cells were quickly 

thawed at 37◦C and suspended in R10 media (RPMI with 10% FBS). These were then 

washed once in phosphate buffered saline (PBS) and stained with multiple 

fluorescent tagged antibodies: CD3- BV786 (Clone SK7; BD Biosciences #563800), 

CD4-PcPCy5.5 (Clone RPA-T4; BD Biosciences #560650), CD8-A700 (Clone PRA-T8; 

BD Biosciences #557945), CD57-FITC (Lot 4182924; BD Pharmingen # 555619), 

CX3CR1-PE (Clone 2A9-1; BD Biosciences #565796), CD45RO-PECF594 (Clone UCHL1; 

BD Biosciences #562299), CD14-V500 (Clone M5E2, BD Biosciences #561391), CD19-

V500 (Clone HIB19; BD Biosciences #561121), LIVE/DEAD Fixable Aqua 

(ThermoFisher; L34957), CD69-APC (Clone FN50; BD Biosciences #560711), CCR7-

V450 (Clone 150503; BD Biosciences #562555), GPR56-PECy7 (Clone CG4; 

BioLegend #358205), and HLA-DR APC Cy7 (Clone G46.6; BD Biosciences #561358). 

CCR7 and CX3CR1 antibody stains were performed at 37◦C; the remainder was 

stained at room temperature. Cells were analyzed on a 4-laser FACSAria III (all 

samples from PLWH) or 5-laser LSRII (HIV-negative SAT samples) (BD Biosciences, 

San Jose, CA). Bead calibration was used to standardize runs done on different 

days. Flow cytometry data were analyzed using FlowJo software (version 10.4.1) and 

Cytobank (version 6.3.1).360,361 
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The T cell memory populations in our study are defined as naive T cells (TNai, 

CD45RO−CCR7+), T effector memory (TEM , CD45RO+ CCR7−), T central (TCM , 

CD45RO+CCR7+), and T effector memory revertant/re-expressing CD45-RA (TemRA , 

CD45RO−CCR7−). Representative gating strategies in Figure 41 and Figure 42 show 

the phenotypic markers used to define the memory subsets (CD45RO and CCR7). 

Total memory cells are a combined group consisting of TEM, TCM, and TemRA. 

 

Figure 41. Subcutaneous adipose tissue from PLWH has a higher percentage of CD4+ and CD8+ memory T 
cells compared to matched blood samples. (A) Frequencies of total CD4+ and CD8+ T cells (percentage of 
CD3+ cells) in subcutaneous adipose tissue (SAT) and blood (PBMC) from all 26 PLWH. (B) Representative plot 
showing gating of CD4+ memory T cells (gated on CD3+) in SAT and PBMC depicted by the yellow and red 
shading, respectively; on the right are individual values and means. (C) Representative plot showing total CD8+ 
memory T cells in adipose tissue and PBMC. The box and whiskers plot indicate mean ± SD. Wilcoxon matched 
pair signed test was used to calculate statistics (A-C); ****p < 0.0001. 
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Figure 42. Study groups and flow cytometry gating panels. (A) Study subjects were placed in four groups. 
Matched cryopreserved PBMC and SAT were analyzed from subjects from Group 1 (n=9), Group 2 (n=8), and 
Group 3 (n=9). (B) Representative plots showing multi-parametric flow cytometry gating panels used to analyze 
CD3+, CD4+ and CD8+ T cells in matched PBMC and SAT. (C) Memory CD4 and CD8 T cells were assessed using 
CCR7 and CD45RO surface markers (TEM: CCR7−CD45RO+; TCM: CCR7+CD45RO+; TemRA: CCR7−CD45RO−). 

 
Adipose tissue gene expression 
 
Adipose tissue was rinsed, placed in cryovials and snap-frozen in liquid nitrogen 

immediately after collection for subsequent mRNA expression assays. mRNA was 

extracted after mechanical lysis with the Qiagen RNeasy Lipid Tissue Kit. We used 

the Nanostring nCounter Plex2 human inflammation panel to quantify mRNA 

expression of over 250 genes spanning a broad range of relevant immune 

pathways including interleukin signaling, Ras, T-cell markers, and Toll-like receptor 

signaling. Adipose tissue mRNA expression levels were normalized using 14 

synthetic spike-ins (6 positive controls and 8 negative controls) and 6 cellular 
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housekeeping genes included in the assay (GAPDH, GUSB, HPRT1, PGK1, TUBB, and 

CLTC). We first calculated the coefficient of variation (CV) for the control genes. The 

CV of the positive controls is proportional to the technical variability introduced by 

the nCounter platform. The CV for the housekeeping controls is proportional to the 

confounding biological variation due to sample input. The mean endogenous CV 

shows the global noise of experimentally observed genes. After evaluating different 

normalization approaches based on CV values, we developed a normalization 

strategy including the following steps. First the background count levels were 

calculated using the mean of negative controls, then subtracted from each sample. 

The normalization factor for sample/RNA content was calculated using the 

geometric mean of a set of pre-specified annotated housekeeping genes. The 

algorithm normalizes for sample or RNA content, i.e., “pipetting” fluctuations, using 

the geometric mean of pre-specified annotated housekeeping genes. The count 

data were then divided by the normalization factor to generate counts normalized 

to the geometric mean of housekeeping genes. None of the housekeeping genes 

differed significantly in their distribution between study groups. 

 

Statistical analyses 
 
For comparisons, PLWH were grouped according to metabolic status as non-

diabetic (n = 9), pre-diabetic (n = 8), and diabetic (n = 9). The 8 HIV-negative controls 



 128 
 

were matched to 9 PLWH with similar HbA1c and body mass index (BMI) values to 

yield a similar comparison group (one control was matched to two PLWH). 

Percentages of CD4+ and CD8+ subsets were compared between paired blood and 

adipose tissue samples using Wilcoxon signed-rank tests for paired data. 

Differences between the PLWH metabolic groups, and between HIV- negative 

controls and the PLWH, were calculated using Mann-Whitney and Kruskal Wallace 

tests. When significant between-group comparisons were noted among the PLWH, 

univariable and multivariable linear regression were used to assess the relationship 

of cellular populations with progressive glucose intolerance. Statistical analyses and 

graphs were performed using SPSS (IBM, Armonk, NY), R (www.r-project.org), and 

GraphPad Prism 7 (GraphPad Software, La Jolla, CA). 

Adipose tissue genes were grouped according to immune system pathways 

specified in the NanoString kit, and normalized mRNA levels were compared 

between the PLWH and HIV- negative participants. DEseq2 was used to detect 

differential expression between two groups based on the normalized count data, 

taking into account technical and biological variability.362,363 Differences in gene 

expression were calculated as fold-changes, and p-values were adjusted for 

multiple comparisons using the Benjamini-Hochberg procedure. Analyses were 

performed using R. Volcano plots displaying the NanoString data were generated 

using XL-STAT. 
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Results 
 
Clinical and demographic characteristics of PLWH and HIV-negative subjects 
 
The non-diabetic (n = 9), pre-diabetic (n = 8), and diabetic (n = 9) groups of PLWH are 

compared in Table 2. Age, race and sex were similar across the groups, as were 

CD4+ nadir, duration of ART, and the proportions receiving integrase inhibitor-

based regimens (p > 0.05 for all comparisons). BMI and waist circumference 

increased with progressive glucose intolerance (p = 0.04 for both). The HIV-negative 

controls (n = 8) and comparator PLWH (9 out of 26 total) were similar in age, BMI, 

and HbA1c values (p > 0.05 for all), though the controls were more likely to be 

female and white (Table 3, next page). Bold values in Tables 2, 3 indicate p < 0.05. 

 

Table 2. Comparison of HIV-negative participants and comparator non- and pre-diabetic PLWH. The 
bolded values are p-values <0.05, indicating statistical significance. 
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Table 3. Cohort demographic and clinical characteristics according to glucose tolerance. ART, 
antiretrovirals; AZT, azidothymidine; BMI, body mass index; FG, fasting glucose; HDL, high-density lipoproteins; 
IQR, interquartile range; LDL, low-density lipoproteins; TG, triglycerides; yr, year. The bolded values are p-values 
<0.05, indicating statistical significance. 

 

Adipose tissue from PLWH is enriched in memory CD8+ and CD4+ T cells 
 
We found no difference in the percentage of total CD8+ and CD4+ T cells (gated on 

CD3+ T cells) between SAT and peripheral blood from PLWH (Figure 42A). We also 

observed, as previously described by other groups, a higher percentage of total 

CD4+ memory T cells (Figure 42B) and CD8+ memory T cells (Figure 42C) in SAT 

compared to peripheral blood (p < 0.0001).349 
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SAT from PLWH is enriched in CD4+ and CD8+ TEM and TemRA cells compared to 

blood 

Despite the growing body of literature on adipose tissue immune cells, the 

distribution of memory T cell subsets in adipose tissue from PLWH has not been 

characterized, and the role of memory T cell subsets within tissue compartments in 

general is not well- understood. A prior study assessed the distribution of CD4+ and 

CD8+ TNai , TEM , TCM , and TemRA subsets in lung, spleen, colon, ileum, jejunum, 

and lymph nodes, but not adipose tissue, from healthy donors, and found that 

CD4+ TNai , TEM , and TCM proportions in lung and pulmonary and mesenteric 

lymph nodes were similar to the proportion in blood, while jejunum, ileum, and 

colon were roughly 3- to 4-fold enriched in TEM.364 In all tissues, CD4+ TemRA were 

relatively sparse (<10%). In contrast, ∼30% of CD8+ T cells in blood, spleen, and lung 

had a TemRA phenotype, while the CD8+ T cells in jejunum, ileum, and colon were 

overwhelmingly TEM.364 A subsequent study in the adipose tissue of mice found 

approximately equal proportions of CD4+ TEM and CD4+ TRM cells (a “resident 

memory” phenotype defined by the authors as CD69 expression on TEM cells) in 

adipose tissue samples, and fewer TCM.365 However, CD8+ memory cells were 

predominantly TRM in SAT, with similar, lower proportions of TEM and TCM. The 

same study looked at mesenteric adipose tissue in macaques and again found high 
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levels of CD8+ TRM, while CD4+ cells were primarily TNai and TCM, with low levels 

(<10%) of TEM and TRM, potentially highlighting important differences between 

species. 

We first assessed CD4+ and CD8+ memory subsets in SAT and blood from all 

26 PLWH. Multiparameter gates were used to quantify memory CD4+ and CD8+ T 

cells within each sample as shown in Figure 41. Each sample had >100,000 ungated 

cells (Figure 43). 

 

Figure 43. Event counts of individual SAT and PBMC samples from all twenty-six subjects. Ungated cells B) 
Lymphocytes and C) Live CD3+ T cells. 

 
SAT was significantly enriched in CD4+ and CD8+ TEM and TemRA cells 

(Figure 44) compared to blood but had fewer TNai and TCM cells. We then 

compared the average TNai, TCM, TEM, and TemRA fractions within SAT and blood 

among the 26 PLWH (Supplementary Figure 2). We found that CD4+ T cells in SAT 

can be ranked by frequency as TEM > TCM > TNai > TemRA, whereas peripheral 
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blood contains CD4+ TCM > TNai > TEM > TemRA. In contrast, SAT CD8+ T cells are 

primarily TemRA followed by TEM. 

 

Figure 44. Subcutaneous adipose tissue has a higher percentage of TEM (CD45RO+CCR7-) and TemRA 
(CD45RO-CCR7-) cells compared to blood in PLWH. (A) The bar graphs show frequencies of CD4+ TNai, TEM, 
TCM, and TemRA cells in subcutaneous adipose tissue (SAT) and blood (PBMC) from all twenty-six subjects. (B) 
Frequencies of CD8+ TNai, TEM, TCM, and TEMRA cells in SAT and PBMC. The numbers in the bar graphs on the 
left indicate mean and diagonal lines indicate matched pairs of SAT and PBMCs. Wilcoxon matched pair signed 
test was used to calculate statistics ****p < 0.0001; ***p < 0.001. 

 

The relative distribution of SAT memory T cell subsets does not differ with metabolic 

status in PLWH 

The study of adipose tissue T cells in mice by Han et al. also found that recall 

responses of adipose tissue memory T cells were enhanced after antigen re-

challenge, with downregulation of several metabolic pathways in whole adipose 

tissue (including lipid biosynthesis and cholesterol and long-chain fatty-acyl- CoA 

metabolic processes) and a detectable reduction in serum levels of adiponectin and 
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cholesterol.365 These findings suggest a possible mechanism by which the 

accumulation, and subsequent stimulation, of memory cells in adipose may disrupt 

metabolic homeostasis. 

In light of prior animal studies indicating a potential contribution of effector 

memory T cells to inflammation and impaired metabolic function in adipose tissue, 

we sought to characterize the distribution of SAT memory T cell subsets in PLWH to 

determine if there were clear differences between non-diabetics, pre-diabetics, and 

diabetics in the relative proportions of TNai, TCM, TEM, and TemRA cells. We 

utilized t- distributed Stochastic Neighbor Embedding (t-SNE) to visualize groups of 

adipose tissue and blood CD4+ and CD8+ T cell populations based on 12-color flow 

cytometry staining.

 

Figure 45. Unsupervised analysis showing distribution of CD4+ and CD8+ subsets compared to matched 
PBMCs. Representative plots showing analysis performed on gated CD3+ T cells in PBMCs and SAT cells. viSNE 
analysis illustrates the distribution of memory (TCM, TEM, TemRA) and naïve CD8+ and CD4+ T cell subsets 
within gates CD3+ T cells. 
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Figure 46 shows the distribution of TNai, TCM, TEM, and TemRA cells in CD4+ 

and CD8+ T cells in the adipose tissue and blood from four representative non-

diabetic and diabetic PLWH. The plots showed fewer TNai cells and enriched CD4+ 

and CD8+ TEM and TemRA cell fractions in the SAT compared to the matched 

peripheral blood. 

The t-SNE findings were congruous with our results from 2-dimensional flow 

cytometry gating. For CD4+ T cells, the proportion of TNai and TCM cells were 

significantly lower compared to blood in all three groups, while the proportion of 

TEM and TemRA cells was significantly higher (Figure 45). 

 

Figure 46. Analysis of CD4+ and CD8+ memory subsets by metabolic status in PLWH. 

 

However, none of the adipose memory subsets in the pre- diabetics or diabetics 

were significantly different from the non- diabetics in pairwise comparisons. There 
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was less consistency in the relative proportions of CD8+ memory cells in the blood 

and adipose tissue. While CD8+ TNai and TCM cells were significantly lower in the 

SAT in all three groups (Figure 46), SAT CD8+ TEM cells were only significantly 

higher compared to blood in the diabetics, and SAT TemRA cells were only 

significantly higher in the non- and pre-diabetic groups. In summary, these findings 

suggest that while adipose tissue is enriched in CD4+ and CD8+ TEM and TemRA 

cells compared to blood, the relative distribution of naïve and memory T cells 

within SAT does not markedly vary by metabolic status in PLWH. 

Next, we assessed SAT memory T cells according to BMI category and age 

(Figure 47, Figure 48). We observed no significant differences in SAT CD4+ and 

CD8+ memory T cell populations according to BMI status. 

 

Figure 47. Analysis of CD4+ and CD8+ memory subsets and BMI. The graphs on the top row show 
frequencies of TNai, TEM, TCM and TemRA CD4+ cells in SAT and PBMC from all twenty-six subjects. Plots 
separated based on BMI (<30 [n=4], 30-35 [n=12], > 35 kg/m2 [n=10]. B) The bottom row shows frequencies of 
CD8+ TNai, TEM, TCM and TEMRA cells in adipose tissue and PBMC according to BMI. The box and whiskers plot 
indicate mean + SD. Wilcoxon matched pair signed test was used to calculate statistics between matched PBMC 
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and adipose pairs; Mann-Whitney test was used to analyze differences in SAT and PBMC T cell subsets between 
metabolic groups; ***< 0.001, **< 0.01, * p < 0.05. 

 
When we compared naïve and memory T cell subsets by age, we found the 

proportion of CD4+ TNai cells in SAT from PLWH <35 years (34% of total CD4+ cells) 

was significantly higher than in older subjects 35– 55 years (12%, p < 0.05) and 

those >55 years (16%, p < 0.01). The relative reduction in CD4+ TNai cells appeared 

principally due to an increase in the proportions of TEM cells at higher ages; TEM 

cells constituted 29% of total CD4+ cells in participants <35 years, but rose to 50% 

in those 35–55 years (p = 0.06) and 47% in those >55 years (p < 0.01). These 

differences were less pronounced for CD8+ T cells; the TEM proportion in PLWH 

>55 years was significantly higher than those <35 years (38% vs. 22%, p < 0.05), but 

the difference was not significant for those ages 35– 55.  
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Figure 48. CD4+ and CD8+ TEM proportions in SAT increase with age while naive T cells decrease with 
age. Frequencies of CD4+ TNai, TEM, TCM and TemRA cells in adipose tissue and PBMC from all twenty-six 
subjects. Plots separated based on Age (<35 [n=4], 35-55 [n=12], > 56 years [n=11]). B) The bottom row shows 
frequencies of CD8+ TNai, TEM, TCM and TemRA cells in SAT and PBMC. The box and whiskers plot indicate 
mean + SD. Wilcoxon matched pair signed test was used to calculate statistics between matched PBMC and 
adipose pairs; Mann-Whitney test used to analyze differences in SAT and PBMC T cell subsets between 
metabolic groups; ** p< 0.01, * p < 0.05. 

 
Our findings were similar to a prior study of health donors, which found the 

proportion of total CD4+ memory (CD45RO+) T cells in lung and mesenteric lymph 

nodes, spleen, ileum and colon also rose with increasing age.364 

 

CD4+ T cell CD69 expression increases with progressive glucose intolerance in PLWH 
 
CD69 is an inducible, early-activation indicator which also serves as a putative 

tissue-resident marker on memory T cells in human, as well as in animal, mucosal 

and lymphoid tissues,364,366,367 but is largely absent on memory T cells in blood.364 

CD69 has been used as a marker of adipose tissue resident memory cells in 

animals,365 including in SIV-infected macaques,318 as well as in prior studies of 
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PLWH.349,350 At present, there are few studies on CD69 expression on adipose tissue 

T cells in PLWH, none of which has looked at their link with metabolic status. 

 

Figure 49. CD4+ T cells co-expressing CD57, CX3CR1, and GPR56 in PBMCs are higher in pre-diabetic and 
diabetic PLWH. A) Visualization of groups of CD4+ TNai, TEM, TCM and TemRA cells from peripheral blood B) 
Concatenated viSNE plots of non-diabetic (n=7), pre-diabetic (n= 5) and Diabetic (n=6) PLWH showing clusters of 
cells expressing CX3CR1, CD57, GPR56 and CD69 C) Violin plots showing percentage of CD4+ total, TEM and + 
TemRA cells co-expressing CD57, CX3CR1 and GPR56. Mann-Whitney test used to analyze differences between 
unpaired samples; ** P < 0.01, * P < 0.05. 

We measured CD69 expression on memory T cell subsets in SAT and blood. 

As reported in prior studies of PLWH, CD69 expression was present on CD4+ T cell 

subsets from SAT but almost absent in peripheral blood (Figure 50),349,350 whereas 

CD69 expression on CD8+ T cells from SAT and blood was similar (data not shown). 

While we observed the relative proportions of SAT CD4+ and CD8+ TCM, TEM, and 

TemRA cells to be similar regardless of metabolic status in PLWH (Figure 50), 

expression of CD69 on CD4+ T cells rose with progressive glucose intolerance in a 
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step-wise progression from non-diabetic, to pre-diabetic, to diabetic. Compared to 

non-diabetics, diabetic PLWH had significantly higher CD69 expression on total 

CD4+ T cells, TCM, and TEM (p < 0.01 for all three), as well as TNai and TemRA (p < 

0.05 for both, Figure 50).  

 

 

Figure 50. CD69 expression on subcutaneous adipose tissue CD4+ T cells increases with progressive 
glucose intolerance. (A–E) Frequencies of CD4+ total T cells, TNai, TCM, TEM, and TemRA cells expressing the 
CD69 activation and putative tissue-residence marker in subcutaneous adipose tissue (SAT) and blood (PBMC). 
The box and whiskers plot indicate mean ± SD. Wilcoxon matched-pair rank test was used to calculate 
differences between PBMC and SAT. Mann-Whitney test used to calculate differences between groups; blue 
lines and red * depict differences between groups **p < 0.01, *p < 0.05. 
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Similarly, the pre-diabetics also had higher CD69 expression on SAT total 

CD4+ T cells and TNai, TEM, and TemRA (p < 0.05 for all) compared to non-diabetics, 

but not on TCM (p < 0.07). In contrast, we did not observe any significant 

differences in CD69 expression on CD8+ T cells according to metabolic status. 

Given the stepwise progression of CD69 expression on CD4+ T cell subsets 

with rising glucose intolerance, and the significant pairwise comparisons, a linear 

regression model was used to assess CD69 expression according to metabolic 

status. Mean CD4+ T cell CD69 expression for non-diabetics, pre- diabetics, and 

diabetics is shown in Table 4. 

 

Table 4. Mean SAT CD4+ and CD8+ T cell CD69 expression according to glucose tolerance. *Univariable 
linear regression. The association of total CD4+ T cell CD69 expression with progressive glucose intolerance was 
robust to adjustment for BMI (p = 0.03) and to age (p = 0.01) in separate models. The bolded values are p-values 
<0.05, indicating statistical significance. 
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Frequencies of CD69+ cells were natural-log transformed to improve 

normality (Shapiro-Wilk p < 0.01 for all untransformed CD4+ and CD8+ T cell 

subsets). Expression of CD69 on total CD4+ T cells rose with progressive glucose 

intolerance (Table 4, p = 0.004), which was robust to adjustment for BMI (p = 0.03 

for metabolic status) and to age (p = 0.01 for metabolic status) in separate models 

(data not shown). Among CD4+ T cell subsets, progression from non-diabetic to 

diabetic groups was accompanied by increased CD69 expression on TCM (p = 0.02), 

TEM (p = 0.04), and TemRA (p = 0.04) cells. 

 

CD57 expression is higher on SAT CD4+ and CD8+ T cells, but does not vary with 

metabolic status in PLWH 

We previously reported a higher proportion of late- differentiated, CD57+ CD8+ T 

cells in the SAT of non-diabetic PLWH compared to blood (37 vs. 23%, p < 0.01).295 

CD57 is a terminally-sulfated glycan carbohydrate epitope found on T cells and 

natural killer (NK) cells which serves as a marker of late differentiation, though 

there is limited consensus as to whether CD57 is a marker of an inability to 

proliferate in response to antigen stimulation, signifies reduced replicative capacity, 

or represents an increased susceptibility to activation- induced apoptosis.368–370 

Prior studies have shown that CD57 expression on CD4+ and CD8+ T cells is higher 

in the blood of PLWH compared to that of HIV-negative controls.370–372 CD8+ T cells 
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expressing CD57 produce more interferon-γ and TNF-α after TCR stimulation than 

CD57− T cells, and CD57+ CD8+ T cells have a distinct gene expression profile 

characterized by greater cytotoxic effector potential (e.g., production of perforin, 

granzymes, and granulysin).373,374 Additionally, a higher percentage of CD57+ 

expression on T cells has been implicated in other inflammatory diseases, such as 

rheumatoid arthritis375 and beryllium-induced disease.376 

Given the potential pro-inflammatory effects of CD57+ T cells in adipose 

tissue, we compared CD4+ and CD8+ T cell expression of CD57 in SAT vs. blood, and 

according to metabolic status (Figure 51). 

 

Figure 51. CD57 expression on CD4, CD8 T cells and CD69 expression on CD8 T cells. Total CD8+ T, TNai , 
TEM, TCM and TemRA cells expressing the CD69 marker, and B) Frequencies of total CD4+ cells and subsets 
expressing CD57 and C) total CD8+ cells and subsets expressing CD57. The box and whiskers plot indicate mean 
+ SD. Wilcoxon matched-pair rank test was used to calculate differences between PBMC and SAT. Mann-
Whitney test used to calculate differences between groups; blue lines and red * depict differences between 
groups** p < 0.01, * p < 0.05. 
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In all three metabolic groups, expression of CD57 on SAT CD8+ T cells was higher 

compared to blood, confirming our prior study findings.295 Among the memory 

subsets, CD57 expression was highest on CD4+ TemRA and CD8+ TEM and TemRA 

cells. However, we did not observe an increase in CD57 expression on either CD4+ 

or CD8+ memory cell subsets with progressive glucose intolerance, with the 

exception of higher CD57 expression on CD4+ TCM in diabetic individuals 

compared to those without diabetes. 

 

CD4+CD69lo cells co-expressing CD57, CX3CR1, and GPR56 are associated with 

increasing glucose intolerance 

Adipose tissue serves as a reservoir for both latently HIV-infected CD4+ T cells and 

free HIV RNA virus, and in the Genotype-Tissue Expression (GTEx) project adipose 

tissue contained one of the highest levels of CMV transcripts.295,349,354,377 These 

findings suggest adipose tissue may also serve as a site for antiviral immune 

activity. Recent studies of CD4+ TemRA cells have identified major subsets based on 

G protein-coupled receptor GPR56 expression, with virus-specific cells more 

frequently GPR56+ and more clonally expanded compared to GPR56− cells.378 

Increased expression of GPR56 and killer-like receptors (KLR) has been linked to 

higher cytokine expression by memory CD4+ T cells, including T cells obtained from 
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liver tissue.379 CD4+ and CD8+ TemRA cytotoxic T cells expressing GPR56 have also 

been associated with increased co-expression of CX3CR1.378,380,381 CX3CR1 receptor 

is expressed on terminally differentiated T cells, gamma-delta T cells and NK cells, 

and has also been identified as a marker of anti-CMV T cells.111,381–383 

To assess the presence of GPR56+ CX3CR1+ T cells, and the parent memory 

cell population(s), we used t-SNE and viSNE to identify surface marker clusters that 

differed between non- diabetic, pre-diabetic, and diabetic individuals. We identified 

a group of cells that expressed CD57, lacked CD69, and also co-expressed GPR56 

and CX3CR1. A representative plot of t- SNE maps generated from CD4+ gated T 

cells showed that the CD57+ CX3CR1+ GPR56+ co-expression was mainly on TEM 

and TemRA cells (Figure 52A, see next page).  
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Figure 52. CD4+ T cells co-expressing CD57, CX3CR1, and GPR56 in subcutaneous adipose tissue increase 
with progressive glucose intolerance. viSNE plots were generated in Cytobank to identify groups of cells that 
differ between non-diabetic, pre-diabetic and diabetic categories. (A) Clusters of CD4+, TNai, TEM, TCM, and 
TemRA cells from subcutaneous adipose tissue (SAT). (B) Concatenated viSNE plots of non-diabetic, pre-
diabetic, and diabetic PLWH showing clusters of cells expressing CX3CR1, CD57, GPR56, and CD69. (C) Violin 
plots showing percentage of total CD4+, TEM, and TemRA cells co-expressing CD57, CX3CR1, and GPR56. Mann-
Whitney test used to analyze differences between metabolic groups; *P < 0.05. 

 
Concatenated viSNE plots of non-diabetic, pre-diabetic and diabetic PLWH 

demonstrated two distinct clusters of cells: CD57−/+ CD69+ CX3CR1−/+ GPR56−/+ 

and CD57+ CD69lo CX3CR1+ GPR56+ (Figure 52B). A significantly larger proportion 

of total CD4+ and CD4+ TemRA cells in SAT from diabetics were CD57+ CD69lo 

CX3CR1+ GPR56+ compared to SAT from non-diabetics (p = 0.051), and approached 

significance for CD4+ TEM cells (p = 0.07) (Figure 52C). Of note, we observed a 

similar population of CD4+ TemRA and TEM cells co-expressing CD57+ CX3CR1+ 

GPR56+ in matched PBMC samples which, again, increased with glucose intolerance 
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and were significantly different between diabetic and non-diabetic PLWH (total 

CD4+ [p < 0.01], CD4+ TEM [p = 0.05] and CD4+ TemRA [p < 0.05]) (data not shown). 

Similar plots of CD8+ T cells were generated for adipose tissue and PBMC (data not 

shown) from PLWH. As with the CD4+ T cells, CD57+CX3CR1+GPR56+ co-expressing 

CD8+ T cells were predominantly TEM and TemRA, though there were no significant 

differences between non-diabetics and diabetics. 

Lastly, we assessed CD57+ CX3CR1+ GPR56+ co-expression on SAT CD4+ and 

CD8+ T cells from our HIV-negative controls (Figure 53). We identified two distinct 

clusters of CD4+ and CD8+ TEM and TemRA cells co-expressing CD57, CX3CR1, and 

GPR56 though the expression was more diffuse compared to SAT cells from PLWH, 

particularly for GPR56.  
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Figure 53. CD4+ and CD8+ T cells co-expressing CD57, CX3CR1, and GPR56 in SAT of HIV-negative persons. 
Representative plot showing clusters of naïve, TEM, TCM and TemRA CD4+ T from SAT and Concatenated viSNE 
plots (n=8) showing clusters of cells expressing CX3CR1, CD57, GPR56 and CD69. B) Representative plot showing 
clusters of naïve, TEM, TCM and TemRA CD8+ T from SAT and concatenated viSNE plots (n=8) showing clusters 
of cells expressing CX3CR1, CD57, GPR56 and CD69. 

 
Taken together, our results demonstrate a population of 

CD57+CX3CR1+GPR56+ co-expressing predominantly CD4+ TemRA cells in both 

blood and SAT of PLWH which appear to be associated with diabetes. The 

expression of the GPR56 and CX3CR1 markers may indicate these cells are virus-

specific TemRA cells, a population that could contribute to inflammation in adipose 

tissue. 
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SAT CD4+ and CD8+ T cell memory subsets compared by HIV status 
 
Couturier et al. identified a major shift in the CD4:CD8 T cell ratio in PLWH 

compared to HIV-negative controls,349 a finding that has been replicated in 

subsequent HIV and SIV studies.295,318,350 Specifically, adipose tissue stromal 

vascular fraction (SVF) CD3+ T cells from individuals without HIV were 

predominantly memory CD4+ CD45RO+ T cells rather than memory CD8+ T cells. In 

contrast, this distribution was reversed in PLWH, with more memory CD8+ T cells in 

the adipose tissue, which represented a ∼50% enrichment in memory CD8+ T cells 

over the peripheral blood, and could not be attributed to differences in peripheral 

blood T cell subsets. 

Phenotypic analysis of SAT memory T cell subsets in PLWH could provide 

insight on possible mechanisms contributing to the profound shift in the CD4:CD8 

ratio that accompanies HIV infection. Therefore, we compared the proportion of 

CD4+ and CD8+ naive, TCM, TEM, and TemRA cells between 8 non- and pre-diabetic 

HIV-negative persons and 9 PLWH; these subjects were selected from the 26 PLWH 

in our cohort based on similar age, HbA1c and BMI values (Table 3). As in prior 

studies, we found that SAT from PLWH is enriched in CD8+ T over CD4+ T cells (51 

vs. 47%, respectively) compared to HIV-negative persons (21 vs. 66%; Figure 54A,D). 

Although PLWH have a much higher proportion of CD8+ T cells in the SAT, we found 

no significant difference in the overall proportions of SAT CD4+ and CD8+ memory 
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cells between PLWH and HIV-negative persons (Figure 54C,F), and the distribution 

of CD4+ and CD8+ memory T cell subsets was remarkably similar (Figure 54B,E). 

However, three notable differences were present: compared to PLWH, the HIV-

negative persons had a significantly higher percentage of CD4+ TEM (58 vs. 39%, p = 

0.02), a lower percentage of CD4+ TCM (15 vs. 29%, p = 0.07) in their SAT (Figure 6B), 

and a significantly higher percentage of CD8+ TCM compared to PLWH (6.4 vs. 3.4%, 

p = 0.03) (Figure 54E).

 

Figure 54. Comparison of CD4+ and CD8+ T cell subsets in subcutaneous adipose tissue of PLWH and 
match HIV-negative comparators. Cells recovered from subcutaneous adipose tissue (SAT) of PLWH (n = 9) 
and HIV-negative controls (n = 8) with similar BMI and hemoglobin A1c were compared. (A) CD4+ T cells as a 
percentage of total live CD3+ T cells. (B) Frequencies of TNai, TEM, TCM, and TemRA cells in SAT of PLWH and 
HIV-negative controls. (C) Total CD4+ memory T cells (TCM + TEM + TemRA). (D) Similar analysis also done on 
CD8+ T cells, which are displayed as percentage of total live CD3+ T cells. (E) Frequencies of CD8+ TNai, TEM, 
TCM, and TemRA cells. (F) Total CD8+ memory T cells. The box and whiskers plot indicate mean ± SD. Mann-
Whitney test used to analyze differences between unpaired PLWH and (–) subjects; **p < 0.01, *p < 0.05. 
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These findings suggest the profound change in the SAT CD4:CD8 T cell ratio 

observed in PLWH is not driven by the enrichment or depletion of a single memory 

T cell phenotype. Rather, it is phenotype agnostic and involves shifts in disparate 

nai ̈ve and memory T cell phenotypes from both the CD4+ and CD8+ lineages. This 

raises the possibility that a chemotactic signal from SAT in PLWH is recruiting CD8+ 

T cells more robustly in the context of infection with HIV. However, the similar 

subset distributions suggest this signal, if present, may represent the amplification 

of a normal physiologic pathway as opposed to an “HIV-specific” process. 

 

Comparison of SAT gene expression in PLWH and HIV-negative people with similar 

glucose tolerance 

Given the increased proportion of CD8+ T cells in SAT from PLWH, we performed a 

sub-study to investigate potentially relevant adipose tissue immune signaling 

pathways upregulated in the context of HIV infection. Extracted SAT mRNA from 6 

PLWH and 7 HIV-negative individuals was assayed using a NanoString human 

inflammation panel to quantitate expression of over 250 genes representing a 

broad range of immune pathways (Figure 55A). The overall fold change in genes 

expressed from SAT of PLWH over HIV-negative is shown in the volcano plot (Figure 

55B). In general, we found increased expression of chemokine receptors (CXCR2, 

CXCR1, CXCR4) and ligands (CCL5, CXCL5) in those with HIV. Additional genes 
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including ALOX12 and IL12A were also elevated. We further analyzed inflammatory 

gene pathways defined by NanoString (Figure 55C). CXCR2, CXCR1, CXCR4, TLR2, 

and TLR8 gene expression were significantly higher in PLWH compared to HIV-

negative (Figure 55C) whereas CD4 and CXCL9 were higher in HIV- negative 

individuals. Future studies are needed to identify the cells expressing these genes, 

and whether receptor and ligand expression might account for differences in the 

cells that traffic to SAT in PLWH.

 

Figure 55. PLWH have a higher CXCR1, CXCR2, CXCR4, CCL5, CXCL5, TLR2, and TLR8 RNA expression 
within the subcutaneous adipose tissue compared to HIV-negative individuals with similar glucose 
tolerance. RNA was extracted from subcutaneous adipose tissue of PLWH (n = 6) and HIV negative individuals 
(n = 7). (A) Schematic showing data analysis. (B) Volcano plot showing log2 fold change (PLWH vs. HIV negative) 
vs. log10 p-value. Relevant genes out of 249 genes are labeled. (C) Sub-groups of inflammatory gene panels 
available through NanoString were compared and adjusted p-values calculated within these groups. Genes in 
G-alpha signaling, defensins and Toll-like receptors with significant findings are shown. Red denotes genes that 
are higher in PLWH and blue denotes higher gene expression in HIV negative. 
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Discussion 
 
Several recent studies have uncovered a profound change in the balance of adipose 

tissue CD8+ and CD4+ T cells in PLWH, and similar studies in SIV-infected macaques 

indicate that the relative enrichment of CD8+ T cells stems from viral infection 

rather than from ART treatment or CD4+ cell depletion. However, the 

characteristics and consequences of this CD8+ cell enrichment are generally 

unknown. Here, we demonstrate that the adipose tissue of PLWH with viral 

suppression on long-term ART is a reservoir of CD4+ and CD8+ TEM and TemRA 

cells; two cell types with high pro-inflammatory potential when stimulated. 

Furthermore, we show that expression of CD69, a putative marker of TCR-linked 

activation and tissue residency, increased on CD4+ TEM and TemRA cells in a 

stepwise manner from non-diabetic, to pre-diabetic, to diabetic individuals. We also 

identify a phenotypically unique population of CD4+ T cells co-expressing CX3CR1, 

GPR56, and CD57 that is specifically enriched in the SAT of diabetic PLWH. While the 

significance of these cells is currently unclear, CX3CR1 and GPR56 have previously 

been identified on cells with antiviral functions.111,381–384 Finally, our results 

demonstrate that the enrichment of CD8+ T cells over CD4+ T cells in PLWH as 

compared to HIV- negative individuals is relatively non-specific in the sense that the 

change is not attributable to a profound increase or reduction in a single memory 

cell subset. 
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Our findings contribute to the growing body of literature on both adipose 

tissue T cells in general, as well as the immune phenotype of adipose tissue in the 

context of metabolic disease among PLWH. Han et al. recently demonstrated that 

white adipose tissue in mice is a major reservoir for memory T cells with potent 

proliferative, effector, and protective potential.365 The adipose tissue T cells 

predominantly expressed CD44, a marker of antigen experience, and were CD62L 

negative, which is consistent with TEM and TRM populations in mice. Furthermore, 

approximately half the CD44+CD62L− CD8+ and CD4+ cells expressed CD69. The 

study also assessed recall responses of adipose tissue T cells in mice previously 

challenged with antigen, demonstrating an influx of monocytes and neutrophils, as 

well as highly reactive memory T cells. Specifically, these memory T cells indicated 

rapid and enhanced effector potential with upregulation of several genes involved 

in antimicrobial defenses. Furthermore, antigen re-challenge led to downregulation 

of several metabolic pathways (including lipid biosynthesis and cholesterol and 

long-chain fatty-acyl-CoA metabolic processes) as well as to a detectable reduction 

in serum levels of adiponectin and cholesterol, further highlighting the potential 

role memory T cells play in metabolic disease. 

These animal studies suggest the accumulation of TEM and TemRA cells in 

the adipose tissue of PLWH may represent a potent source of inflammation in the 

setting of antigen stimulation. Viral pathogens, including HIV and CMV, are found in 
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adipose tissue and could serve as a chronic stimulus for TEM and TemRA cells, with 

downstream effects on metabolic function (17, 21, 39, 51).295,349,365,377 Our 

observation of increasing TEM and TemRA CD69 expression with declining glucose 

tolerance in PLWH may indicate the enrichment of a resident memory phenotype in 

diabetic individuals. Our study design precludes an assessment of whether the 

presence of increased CD69+ TEM and TemRA cells preceded or followed the 

development of glucose intolerance, though future longitudinal studies in PLWH 

with early indications of metabolic disease could address this question. 

Furthermore, future studies to identify the receptor specificity of the CX3CR1, 

GPR56, and CD57-expressing CD4+ cells, and experiments to co-culture these cells 

with adipocytes, may help characterize the role of these immune cells in adipose 

tissue, identify their cytokine expression patterns, and explore the potential effects 

of these cells on adipocyte function. 

An early study of SAT and VAT from PLWH by Couturier et al. identified major 

differences in CD4+ and CD8+ T cell populations compared to HIV-negative 

controls,349 which were subsequently reported in other HIV and SIV studies.295,318,350 

In the HIV-negative controls, adipose tissue SVF CD3+ T cells in SAT were 

predominantly memory CD4+ CD45RO+ T cells (61%) with fewer memory CD8+ T 

cells (15%), while this distribution was reversed in PLWH, with more memory CD8+ 

T cells (46%) compared to memory CD4+ T cells (35%). This represented an ∼50% 
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enrichment in memory CD8+ T cells over the blood in the subjects with HIV and was 

not reflective of differences in peripheral blood T cell subsets between the two 

groups. 

Notably, the Couturier et al. study found significant differences in the rates of 

CD69 expression on memory CD4+ and CD8+ T cells in adipose tissue vs. blood: 

<5% of these cells expressed CD69 in the blood, compared to 60–67% in adipose 

from PLWH and 61–72% in the adipose from HIV negative persons. A similar study 

comparing activation markers on adipose tissue T cells in HIV-negative lean, 

overweight and obese individuals using fine needle aspiration found ∼5–10% CD69 

expression on SAT CD4+ T cells and ∼25% expression on CD8+ T cells.385 We 

observed the highest CD69 expression on TEM cells in diabetic PLWH (mean 22%). 

This was significantly higher than CD69 expression on TEM cells from non-diabetics 

(mean 15%) and pre-diabetics (mean 18%), and 20-fold higher compared to TEM 

cells in blood. The reason for the lower CD69 expression in our cohort compared to 

Couturier et al. is unclear and may reflect differences in CD69 expression in adipose 

tissue samples collected after death or by surgical resection as opposed to 

liposuction aspirates processed within 30–60 min of collection in our study, 

differences in tissue processing to extract T cells, or could be explained by residual 

peripheral blood in samples obtained via liposuction. 
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Prior studies have also demonstrated a significantly higher proportion of SAT 

Treg cells (defined as CD25+ FOXP3+ CD4+ T cells; a cell type thought to exert an 

anti-inflammatory effect and reported to be depleted in obese adipose tissue) in 

PLWH compared to HIV-negative persons, with no major differences in TH 1 and TH 

17 pro-inflammatory subsets.283,350 The proportion of TH1 CD4+ T cells (expressing 

intermediate or high levels of T-bet) did not differ according to HIV status, while 

TH2 CD4+ T cells (expressing GATA-3) were barely detected in the adipose tissue 

from both PLWH and HIV-negative persons. While CD4+ T cell expression of HLA-DR 

(24%) in SAT was higher compared to blood in the HIV-negative, similar levels of SAT 

HLA-DR expression were observed in the PLWH. Furthermore, SAT CD4+ T cell 

expression of PD-1 expression was much higher compared to PBMCs (45 vs. 3%), 

but again there were no significant differences in SAT according to HIV status.350 

Two studies of SIV-infected cynomolgus macaques confirm the adipose 

tissue CD8+ T cell enrichment observed in PLWH is a viral phenomenon, rather than 

related to ART treatment.354,386 In both studies, SIV infection was associated with a 

higher percentage of CD8+ T cells in both the SAT and VAT compared to non-

infected animals. One study also demonstrated the inverted CD8:CD4 ratio was not 

driven by a reduction in the total number of CD4+ T cells in infected animals; rather, 

SIV- infected animals had significantly higher density of CD8+ T cells in VAT and a 

somewhat higher density in SAT.354 For both non-infected healthy and SIV-infected 
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monkeys, the majority of the adipose tissue CD4+ and CD8+ T cells were memory T 

cells (>94% CD95+), with a large fraction of activated cells marked by expression of 

CD69+ (62–84%) and CD25+ (3–13%). 

A central question that remains unanswered is whether the increase in the 

proportion of adipose tissue CD8+ T cells in PLWH and macaques with SIV results 

from in situ proliferation vs. increased infiltration from the circulation. The high 

expression of CD69 on SAT memory cells suggests a “tissue resident” phenotype, 

but does not answer the question of whether these cells are expanded clones or 

prior migrants. On the one hand, a study by Damouche et al. found no significant 

differences in the proportion of CD4+ or CD8+ T cells expressing Ki-67, indicative of 

cycling and recently divided cells, between PLWH vs. HIV-negative controls.350 The 

authors suggested the low percentage of Ki-67+ cells in SAT (<2%) from PLWH and 

HIV- negative subjects reflected minimal T cell proliferation within the tissue. 

Similarly, a study in macaques found no differences in proportions of Ki-67-

expressing CD4+ or CD8+ T cells in animals with and without SIV, suggesting the 

higher density of CD8+ T cells in adipose tissue does not result from recent 

proliferation.354 However, proliferation of memory T cells within adipose tissue is 

clearly demonstrated in other studies. Han et al. injected mice with 

pseudotuberculosis and evaluated memory T cells 4 weeks later. They showed 
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proliferation of TEM and TRM by Ki67 expression, bromodeoxyuridine labeling, and 

cell cycle stage analysis of memory T cells.365 

The use of T cell receptor (TCR) sequencing of adipose tissue T cell subsets in 

future studies may provide insight into the clonal lineage of adipose tissue T cells. 

Previously, our group demonstrated that CD8+ TCR clonality is higher in SAT 

compared to blood in PLWH using bulk TCRβ CDR3 deep sequencing, where bias-

adjusted V and J gene primers are used to amplify rearranged V(D)J segments.290,295 

In that study, the 10 most prevalent TCRβ clones comprised a significantly larger 

percentage of total clones in SAT (25%) compared to paired blood (16%), and the 

Shannon’s Entropy index, a measure of overall repertoire diversity, was lower in 

adipose tissue compared to blood (4.39 vs. 4.46, respectively). Additionally, V-J gene 

pairing and gene usage differed between blood and adipose tissue, albeit not 

statistically significant, potentially due to the small sample size. While these findings 

are intriguing, the lower proportion of CD4+ and CD8+ TNai cells in SAT 

demonstrated in the current analysis may have had a role in the higher SAT 

clonality scores reported in the prior study. In addition to clonal lineage, TCR 

sequencing may also inform our understanding of potential antigen targets for 

adipose tissue T cells in PLWH. A recent study in mice demonstrated that diet-

induced obesity is characterized by increased adipose tissue CD8+ T cell density, 

and the TCR repertoire of these CD8+ T cells is more clonal and positively charged 
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(in respect to amino acids).353 This work was also the first to demonstrate that 

isolevuglandins (a group of negatively charged reactive gamma-ketoaldehydes 

generated by free radical oxidation) presented on adipose tissue macrophages 

from obese fat can independently activate T cells, potentially highlighting a 

mechanism contributing to inflammation.353 Examining TCR charge and polarity, in 

addition to clonality, and investigating antigen presenting cells in the adipose tissue 

may be an important approach for further characterizing the adipose tissue 

immune milieu in PLWH vs. HIV-negative persons. 

Profiling of adipose tissue mRNA expression in SIV-infected macaques 

showed significantly higher levels of IL-2, IL-7, and CCL19 in acute SIV compared to 

uninfected controls, which may contribute to the homing and survival of T cells.386 

In our gene expression sub-study on whole adipose tissue of PLWH and HIV- 

negative controls with similar glucose tolerance, we found >2- fold expression of 

IL12A, CXCR1, CXCL5, ALOX12, and C9 in the PLWH compared to HIV-negative. 

Analysis of subgroups of inflammatory gene pathways revealed significantly higher 

levels of TLR2, TLR8, CXCR4, CCR7, CCL5, CXCR1, and CXCR2 and lower levels of 

CXCL9 and CD4 in the PLWH. 

Previous studies have linked inducible and increased expression of TLR2 in 

PBMC and SAT of obese individuals with type 2 diabetes.387–390 TLR8 is an 

endosomal receptor that binds HIV-1 single-stranded RNA and is similar to TLR2 in 
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its MyD88-dependent activation of NF-kB. Previous studies of TLR8 expression 

indicate that it is most often absent or present at low levels in adipose tissue,387 but 

that a positive correlation exists between plasma CRP levels and adipose tissue 

TLR8 expression. In our study, we are unable to discriminate whether the 

differences in TLR expression are due to alterations on T cells, macrophages, 

adipocytes or pre-adipocytes. However, we likely have identified a contribution of 

TLR8 to SAT inflammation that is more pronounced in PLWH compared to HIV-

negative individuals with similar glucose tolerance and BMI. 

Regarding chemokine ligands and receptors, M1 macrophages express 

higher levels of CCR7, CCL9, and CCL5 and lower levels of CXCR4 in comparison to 

M2 macrophages.391 In the context of HIV infection, CXCR1 and CXCR2 are of 

interest because HIV-1 matrix protein p17 has been shown to mimic IL-8 and binds 

CXCR2 with high affinity, stimulating pro-angiogenic ERK downstream.392 

Angiogenesis has been linked to obesity via neovascularization-driven migration of 

adipocytes.393 Further studies of chemokine receptors on CD4+ and CD8+ T cells 

may provide insight into whether HIV infection results in signals that preferentially 

recruit CD8+ T cells over CD4+ T cells independent of obesity. 
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Limitations 
 
Our cohort study was cross-sectional and enrolled a total of 34 participants. We 

classified participants as non-diabetic and pre-diabetic based on fasting blood 

glucose and HbA1c values as recommended for clinical practice by the American 

Diabetes Association (diabetics were classified based on medication usage). In the 

future, the measurement of fasting insulin and use of the homeostatic model 

assessment (HOMA) may provide more nuanced stratification of participants. While 

a strength of our study was the collection of SAT via liposuction and rapid 

processing to extract T cells, samples may have contained residual peripheral 

blood, which would bias our comparisons of SAT and blood toward the null 

hypothesis. We were limited in the number of markers we could examine via flow 

cytometry and did not examine additional markers of tissue resident cells, as well 

as T regulatory cells and TH1/TH2 subsets. Our gene expression analysis of SAT 

from PLWH and HIV-negative persons was on whole adipose tissue as opposed to 

sorted SVF cells. Therefore, differences in genes cannot be directly linked to specific 

cell types. 

 

Conclusions 
 
Although PLWH can survive decades on effective ART, this success is offset by the 

rising burden of metabolic diseases affecting the HIV population.333–335 Here, we 
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demonstrate that the adipose tissue of PLWH is a reservoir of CD4+ and CD8+ TEM 

and TemRA cells; two cell types with high pro-inflammatory potential when 

stimulated. Furthermore, we show that expression of CD69, a putative marker of 

TCR-linked activation and tissue residence, on CD4+ T cells increases in a stepwise 

manner from non-diabetic, to pre-diabetic, to diabetic individuals, which may reflect 

an interaction between cells of the adaptive immune system and adipocytes in the 

context of metabolic disease. We also identify a population of 

CD57+CX3CR1+GPR56+ co- expressing CD4+ T cells that is specifically enriched in 

the SAT of diabetics. This could represent a group of virus-specific cells that 

contribute to inflammation in adipose tissue and potentially pre-dispose PLWH to 

metabolic disease, though further studies to assess the effects of these cells on 

adipocytes are needed. Finally, our results demonstrate that the enrichment of 

CD8+ T cells over CD4+ T cells in PLWH as compared to HIV- negative individuals is 

relatively non-specific in the sense that the change is not attributable to a profound 

increase or reduction in a single memory cell subset. Further studies are needed to 

understand the clonal lineage, TCR characteristics, antigen targets, chemokine 

receptors and the functional phenotype of CD57+CX3CR1+GPR56+ T cells in the 

adipose tissue of PLWH, and to identify potential therapeutic targets.  
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Chapter V 
 

Clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-
induced encephalitis 

 
N.B. This work in the entirety of the version below was in revision at Nature 
Medicine/under embargo when this dissertation was completed. Here, we outline 
the first known molecular profiling of immune-mediated neurotoxicity 
accompanying checkpoint inhibitor therapy. We describe a pathologic, cytotoxic 
CD4+ T cell population found in the brain of a checkpoint inhibitor-treated 
melanoma patient and identify a possible immune trigger originating from EBV 
reactivation in the brain. In addition to applying novel immunoinformatic 
approaches, we demonstrate proof-of-concept for performing single-molecule 
phenotyping of immune cells found in FFPE samples. 
 
Summary 
 
Immune checkpoint inhibitors induce durable anti-tumor responses across cancer 

types but may simultaneously unleash autoimmune-like toxicities affecting nearly 

all organs. The molecular underpinnings of these toxicities have not been well 

characterized. Here, we report a case of fatal encephalitis associated with immune 

checkpoint inhibitor therapy, with in-depth molecular evaluation of the affected 

brain tissue. We observed robust T cell infiltration of affected tissue, high degree of 

compensatory immune checkpoint expression, and a unique oligoclonal population 

of cytotoxic CD4+ T cells. Further analyses revealed homology of this clonal subset 

with known Epstein-Barr virus (EBV)-recognizing T cells, in addition to high-

frequency EBV-specific T cells and latent EBV+ B lymphocytes. This is the first deep 

molecular description of immune checkpoint inhibitor neurotoxicity. Further, we 
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show a potential interaction between immune checkpoint inhibitor toxicity and a T 

cell response to EBV viral proteins. 

 

Abstract 
 
Checkpoint inhibitors produce durable responses in numerous metastatic cancers, 

but immune-related adverse events (irAEs) complicate and limit their benefit. IrAEs 

may affect any organ system in an idiosyncratic fashion; presentations range from 

mild and self-limited to fulminant and fatal. The molecular mechanisms underlying 

these irAEs are not well understood. Here, we report a case of fatal encephalitis 

arising during anti-PD-1 therapy. Histopathologic analysis of affected brain tissue 

revealed a robust T-cell infiltration and prominent PD-L1 expression. To assess the 

scope and impact of checkpoint inhibitor-associated encephalitis, we searched 

global pharmacovigilance databases and identified 209 reported cases of 

encephalitis associated with anti-PD-1 and/or anti-CTLA-4 regimens. Cases occurred 

across cancer types and had a 19% fatality rate, demonstrating the recurrent and 

often fulminant nature of these irAEs. Further analyses were performed from the 

index case and two additional cases.  

Multidimensional protein and transcriptomic analyses pinpointed memory 

activated CD4+ T cell phenotypes as highly enriched in the inflamed region. T cell 

receptor (TCR) sequencing identified a highly oligoclonal T cell repertoire, with one 
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clone representing nearly 20% of detected T cells. The clonal TCR bore striking 

resemblance to a known CD8+ TCR with Epstein-Barr virus (EBV) reactivity, and 

several other highly represented clones were identical to known TCRβs recognizing 

EBV. Dual immunohistochemistry (IHC)/RNA in situ analysis localized this clone to 

memory activated cytotoxic (CD45RO+GZMB+) CD4 cells. Staining of neural tissue 

for EBER transcripts identified EBV+ lymphocytes in the cortex and meninges of the 

affected region. Collectively, this study suggests that latent EBV+ lymphocytes 

infiltrating the CNS may contribute to neural inflammation after release from 

peripheral tolerance by anti-PD-1 therapy and identifies cytotoxic CD4+ and CD8+ T 

cells as culprits of checkpoint inhibitor-associated immune encephalitis. 

 

Introduction 
 
Monoclonal antibodies blocking key negative regulators of T cell function have 

transformed the management of numerous cancers.394 While these immune 

checkpoint inhibitors may induce durable responses in a subset of patients, 

aberrant immune-mediated phenomena, termed immune-related adverse events 

(irAEs) may be unleashed in an unpredictable fashion.395 Most commonly, irAEs are 

self-limited or resolve with glucocorticoid therapy,396 although highly morbid and 

even fatal events can occur (4-6).397–399 The effect of treatment cessation on 

symptom resolution is unclear as the half-life of immunoglobulin at 12 mg/ml is 
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approximately 21 days.400 At a cellular level, inflamed tissues affected by irAE are 

characterized by robust infiltration by T lymphocytes and myeloid-lineage 

cells.398,399,401,402 Two cases of immune-mediated myocarditis also suggested that 

such T cell infiltrates are clonal, display an activated phenotype, and induce reactive 

immune checkpoint expression (e.g. PD-L1) in damaged tissues.398 IrAEs involving 

the nervous system have been described in individual reports and case series. 

These have most commonly affected the central nervous system (encephalitis), 

peripheral nervous system (Guillain-Barre, peripheral sensory neuropathy), and 

neuromuscular junction (myasthenia gravis).403 Despite these early findings, the 

molecular basis of irAEs, including neurologic irAEs, remains poorly understood. 

We performed deep molecular profiling of a case of fulminant and fatal anti-

PD-1-induced encephalitis to provide insight into a severe irAE affecting the central 

nervous system (CNS). Using a global pharmacovigilance database, we show that 

immune checkpoint inhibitor-induced encephalitis can occur across cancer settings 

and can be severe and even fatal in a significant number of patients. Here, we 

suggest a role for latent viral infection contributing to irAE pathogenesis. We 

demonstrate a highly clonal CD4+ memory activated cytotoxic T cell population with 

striking similarity to a known Epstein-Barr Virus (EBV)-specific CD8+ T cell, several 

other high-frequency known EBV-specific clones, and latently-infected EBV+ 
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lymphocytes using next-generation sequencing and immunohistochemistry (IHC) 

analyses of inflamed neural tissue. 

 

Methods – Wet lab 
 
Index patient and autopsy case 
 
The index patient was consented to protocols that permitted de-identified research 

use of biospecimens, genetic testing results, and clinical data (Vanderbilt IRB 

numbers 100178, 181685, and 030220) and his family consented to a post-mortem 

histopathologic evaluation; cases from outside institutions were approved with 

institution-specific protocols. Clinical data was obtained through chart review. 

During the autopsy, evaluation for melanoma using standard melanoma stains 

(MITF, MelanA, SOX10, S100), and histopathologic evaluation of infiltrating immune 

cell subsets using CD3, CD20, and CD68 was performed in accordance with 

institutional protocols. 

 

Additional cases of checkpoint inhibitor-associated encephalitis 
 
Additional case 1 was seen at the University Hospital, Zurich Switzerland and has 

been previously described.404 Briefly, she was a 60-year-old (2012) patient with an 

isolated lesion in the right gyrus frontalis medius as well as bilateral pulmonary 

metastases. After neurosurgical resection followed by adjuvant radiotherapy (with a 
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total of 30 Gray) the patient was treated with ipilimumab (3 mg/kg IV) for a total of 4 

doses. Three months after the last dose, the patient reported generalized tiredness, 

weakness, and loss of appetite. However, serum endocrinological work-up revealed 

a non-significant cortisol shift without osmolality changes, which was not specific 

for hypopituitarism or adrenal insufficiency. No new metastases were found in the 

MRI of the brain. A new PET-CT scan showed bilateral pulmonary progression. 

Subsequent therapy with pembrolizumab was initiated (1 infusion). The patient 

passed away without any antecedent evidence of altered physical status within 2 

weeks. At autopsy, gross inspection revealed a 3 cm defect in the right frontal lobe. 

No other lesions were seen on further sectioning. Microscopic examination was 

remarkable for scattered perivascular and parenchymal collections of mature 

lymphocytes, mostly CD8-positive T-cells, in the hemispheres and brainstem. In 

addition, sections of brainstem showed CD68-positive microglial cells, occasionally 

organized in loose nodules. IHC preparations for cytomegalovirus, herpes simplex 

virus I and II, simian virus 40, toxoplasmosis and varicella zoster virus were 

negative. There was evidence of melanoma metastasis, even after additional 

sampling. A diagnosis of encephalitis was rendered based on the presence of 

intraparenchymal and perivascular CD8-positive lymphocytes accompanied by 

microglial proliferation. 
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Additional case 2 was seen at Dana-Farber Cancer Institute in Boston, MA 

and initially presented in 2013 with a T1a melanoma of the left lower extremity. He 

was followed until 2015 when he noted increased dyspnea on exertion and a CT 

scan showed numerous enlarged lymph nodes throughout the chest, abdomen and 

pelvis. The largest of these was a 7.4 ⨉ 5.3 cm left pelvic sidewall node with 

numerous other large nodes noted. He underwent an ultrasound guided biopsy 

which demonstrated metastatic melanoma. He was started on single agent 

pembrolizumab and after the first dose started reporting increased tremors and leg 

weakness. Due to the subacute nature of these symptoms he received two more 

treatments with pembrolizumab with progressively worsening symptoms. He 

developed increased weakness and memory issues and the pembrolizumab was 

held and he was admitted for work-up of this. Lumbar puncture X3, MRI of the 

brain and spine, neurologic evaluation and extensive work-up for other causes of 

his symptoms was performed without an etiology. He received a short course of 

high dose steroids followed by IVIG and a longer steroid taper without benefit. His 

functional status continued to decline without a clear etiology despite these 

interventions and brain biopsy was performed which showed T-cell inflammatory 

infiltrate and gliosis suspicious for pembrolizumab-related encephalopathy. He 

subsequently died from progressive neurologic decline. 
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Additional cases of encephalitis of other etiologies 
 
Additional cases of encephalitis not associated with checkpoint inhibitor use were 

collected under an IRB-approved protocol to study cellular heterogeneity in normal 

brain and brain neoplasms (IRB#180238). Cases were stained with EBNA1 RNA-ISH 

as detailed below, and with anti-PD-L1 IHC as detailed below. Details of the cases 

are listed in Table 5. Positive and negative control probes were used in all cases to 

verify specificity and presence of intact RNA for analysis. 

Diagnosis Age/Sex Pathology 
notes 

EBNA1+ 
(% cells) 

PD-L1+ 
(% cells) 

Chronic meningoencephalitis consistent with 
clinical history of atypical Rasmussen's 
encephalitis 

50/F Relatively mild 
inflammation 

0 

0 
Meningoencephalitis with anti-calcium 
channel antibodies. CMV identified reactive 
cells presentc 

40/M 
 

0 

5 
Toxoplasmosis 34/M Small sample 0 0 
Progressive Multifocal Leukoencephalopathy 
(JC virus infection) 

62/F Very small 
sample 

0 
2 

Demyelinating process (multiple sclerosis) 25/F 
 

0 0 
Rasmussen’s encephalitisb 3/M 

 
0 0 

Autoimmune encephalitis of unknown 
etiologya 

50/M Relatively mild 
inflammation 

0 
1 

Acute hemorrhagic leukoencephalitis (variant 
of acute disseminated encephalomyelitis) 

63/M 
 

0 
0 

Rasmussen’s encephalitis 5/F 
 

0 5 
a Non-ICI-encephalitis (1) in Figure 2 
b Non-ICI-encephalitis (2) in Figure 2 
c Non-ICI-encephalitis (3) in Figure 2 

Table 5. Cases of non-immunotherapy-induced encephalitis assessed for EBNA1 staining, NanoString 
DSP, and RNAseq.  

 
Immunohistochemistry 
 
Archival tissue from the autopsy was obtained and IHC evaluation was performed. 

Antibodies utilized were anti-CD45RO (Thermo Scientific, cat# MA5-11532, 1:1,600), 
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anti-GZMB (Granzyme B, Biocare cat# ACI 3202 AA, prediluted), anti-Ki67 (Dako, 

cat# M7240, 1:200), anti-CD4 (StatLab, cat# RM27-10, prediluted) , anti-CD8 

(StatLab, cat#MM39-10, prediluted), anti-PD-L1 (Cat.#PA5-28115 ThermoFisher, 

Grand Island, NY; 1:7500), anti-CD68 (PA0191, Leica, Buffalo Grove, IL; prediluted), 

anti-PD-1 (HPA035981, Sigma-Aldrich Co., St. Louis, MO; 1:75), anti-CD20 (PA0906, 

Leica, Buffalo Grove, IL, prediluted), anti-LAG3 (Cell Signaling, Catalog# 15372, 

dilution 1:200), CD244 (Proteintech, Catalog# 16677-1-AP, dilution 1:200), CD160 

(Abcam, Catalog# ab202845, dilution 1:600). The Bond Polymer Refine detection 

system or Envision system was used for visualization. Slides were then dehydrated, 

cleared, and coverslipped. 

 

RNA in situ hybridization (RNA-ISH) analysis 
  
For RNAscope RNA-ISH (Advanced Cell Diagnostics) analysis of EBNA1, standard 

RNAscope manufacturer’s protocols were followed using the RNAscope H2O2 and 

Protease pretreatment kit (ACD, reference# 322381), RNAscope Target retrieval 

buffer (ACD, reference# 322000), and appropriate positive and negative RNA 

probes for controls. For custom BaseScope RNA-ISH (Advanced Cell Diagnostics) 

TCRβ analysis (ACD, reference# 712111), standard BaseScope manufacturer’s 

protocols were followed using BaseScope™ Detection Reagents– RED (ACD, 

reference# 322910). Dual ISH-IHC was performed using the custom TCRβ target 
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probe(s) followed by incubation with primary antibodies (CD4, CD8, Ki67, CD45RO, 

and GZMB) as described above, using the Envision (Dako) system, DAB (Dako), and 

hematoxylin counterstain. For EBER staining, slides were placed on the Leica Bond 

Max IHC stainer, and all steps, besides dehydration, clearing and coverslipping, 

were performed on the Leica Bond Max. Slides were deparaffinized, and enzyme 

retrieval was performed using Proteinase K (Ref# S3020, Dako, Santa Clara, CA) for 

5 minutes. Slides were put through ISH Hybridization with the Ready-To-Use EBER 

probe (Ref# ISH5687-A, Leica, Buffalo Grove, IL) for two hours. Slides were placed in 

an anti-Fluorescein antibody (Ref# AR0222, Leica, Buffalo Grove, IL) for 15 minutes. 

The Bond Polymer Refine detection system was used for visualization. Slides were 

then dehydrated, cleared and coverslipped. For dual staining, data were quantified 

by colocalization of the signal as a fraction of the TCR+ cells, by a licensed 

pathologist (PIE-G). 

 

Methods – Dry Lab 
 
RNA sequencing 
 
Total RNA quality was assessed using the 2200 TapeStation (Agilent). At least 20 ng 

of DNase-treated total RNA having at least 30% of the RNA fragments with a size 

>200 nt (DV200) was used to generate RNA Access libraries (Illumina) following 

manufacturer’s recommendations. Library quality was assessed using the 2100 
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Bioanalyzer (Agilent) and libraries were quantitated using KAPA Library 

Quantification Kits (KAPA Biosystems). Pooled libraries were subjected to 75 bp 

paired-end sequencing according to the manufacturer’s protocol (Illumina 

HiSeq3000). Bcl2fastq2 Conversion Software (Illumina) was used to generate de-

multiplexed Fastq files. Quality control for the paired-end raw sequencing reads of 

all samples were performed using FastQC for the analysis of sequence quality, GC 

content, the presence of adapters, overrepresented k-mers and duplicated reads. 

Sequencing reads were mapped to human reference genome GRCh38 (Release-85, 

Ensembl55) using STAR 2.2.1 with 2-pass mapping.405 QC for read alignment and 

mapping was evaluated with RSeQC406 for sequencing saturation, mapped reads 

clipping profile, mapped read distribution, and coverage uniformity. The TPM 

(transcripts per million) values were calculated using RSEM407 and used to assess 

the global quality and reproducibility of the RNA-seq dataset and exported for 

downstream data analyses. 

 

CIBERSORT and gene set analysis 
  
CIBERSORT analysis was performed on RNAseq TPM level data generated above, 

using both the ‘relative’ and ‘absolute’ methods available on the analysis website 

(https://cibersort.stanford.edu/). The CIBERSORT method used is explained in full 

detail elsewhere.408 To complete this analysis, we used the LM22 dataset which was 
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carefully developed and validated in the manuscript. The genes utilized, along with 

computational methods and development/validation approach are provided as 

supplemental data in the original report408 and also freely available on the 

CIBERSORT website above. Analysis was performed as previously described.408 For 

interferon gene set analysis, the HALLMARK_INTERFERON_GAMMA_RESPONSE 

(M5913; 200 genes, 177 genes in overlap/matching) signature was downloaded 

from the Molecular Signatures Database 

(http://software.broadinstitute.org/gsea/msigdb). For each gene, the log 2 fold 

change was calculated between the inflamed and unaffected region, or across 

additional tissues as indicated. 

 

Digital Spatial Profiling (DSP) of Protein 
 
Single FFPE slides from inflamed and non-inflamed brain tissue were selected, as 

well as from non-inflammatory ‘healthy’ brain (epileptic) and 3 additional cases of 

non-ICI-induced encephalitis. Ten regions of interest (ROIs) within each slide were 

selected by pathologists. Multiplexed protein profiles were generated with the 

NanoString® GeoMX™ digital spatial profiling platform (RUO – Research Use Only). 

Formalin-fixed paraffin-embedded tissue sections of 5um thickness were subjected 

to antigen retrieval (citrate buffer pH 6) and stained with a cocktail of antibodies 

labeled with photocleavable DNA-indexing oligos (to generate quantitative protein 



 176 
 

profiles), fluorescent anti-CD3 and anti-GFAP (visualization markers) and SYTO 83 

nuclear dye (Thermo Fisher, S11364). Tissues were imaged by fluorescence 

microscopy on the GeoMX platform and regions of interest (ROI) were chosen for 

molecular profiling. ROIs were selected as circles 200 μm in diameter from inflamed 

or heathy tissue or by custom masking using the fluorescent CD3 signal to 

specifically identify T cells and a digital micromirror device to precisely control the 

pattern of UV illumination. ROIs were exposed to UV light (365 nm) to release oligos 

which were captured via microfluidics and stored in individual wells of a microtiter 

plate. Following collection from all ROIs, oligos were hybridized to unique 4-color, 6-

spot optical barcodes and enumerated on the nCounter® platform. Data were 

normalized to ERCC-sequence specific probes to control for technical variation in 

hybridization efficiency, followed by area normalization to control for ROI size and 

control IgG (rabbit and mouse) to normalize for background. Data were visualized 

by unsupervised hierarchical clustering or grouped dot plots. 

 

T cell receptor (TCR) sequencing 
 
TCR sequencing and clonality quantification was assessed in neuropathologist-

selected FFPE samples of highly inflamed and non-inflamed brain parenchyma 

using survey level immunoSEQ™ and the Immunoverse™ assay, as previously 

described (Adaptive Biotechnologies, ArcherDX).409–411 Sequencing results were 
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evaluated using the immunoSEQ analyzer version 3.0. Shannon entropy, a measure 

of sample diversity, was calculated on the clonal abundance of all productive TCR 

sequences in the data set. Shannon entropy was normalized by dividing Shannon 

entropy by the logarithm of the number of unique productive TCR sequences. This 

normalized entropy value was then inverted (1 – normalized entropy) to produce 

the clonality metric. 

 

HLA genotyping 
 
High-resolution HLA-A, -B, -C, and DP/DQ/DR HLA typing was performed at the 

Institute for Immunology and Infectious Disease (Perth, Western Australia). Allele-

specific primers targeting exons 2 and 3 of the HLA loci were used to perform PCR 

amplification. Unequivocal HLA genotypes were assigned at four-digit resolution 

using proprietary commercial software developed by the Institute for Immunology 

and Infectious Disease. 

 

TCR repertoire analysis 

Data processing 

We processed raw immunoSEQ data for downstream analysis using VDJTools.293 We 

excluded clonotypes if a TRBV or TRBJ gene was not assigned or if they were non-

productive. We then recalculated the frequency of each remaining productive 
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sequence and collapsed the resulting TCR repertoire dataset by CDR3 amino acid 

sequence (i.e. the counts for two clonotypes with different nucleotide sequences 

encoding the same CDR3 AA sequence would be summed). Clonotype annotation 

and known antigen assignment. We first retrieved continuous and discontinuous 

CDR3β motifs significantly enriched at least 3-fold above a naïve repertoire of 

200,000 unselected CD4 and CD8 T cells at a resampling depth of 10,000 using the 

GLIPH algorithm.305 We then annotated each TCR repertoire for known and possible 

antigen-specificity and pathogenic associations using the greedy VDJMatch 

algorithm in VDJDB412 against each CDR3β and significant motifs from GLIPH, and a 

Levenshtein distance of 1 for sequences stored in McPAS-TCR.413 We also searched 

2,460 HLA-A2 restricted previously published414 melanoma-specific TCRs for 

matches and homology to our TCR repertoire data.  

 

In silico epitope prediction 
 
Finally, we annotated each clonotype sequence for potential recognition of 38 viral 

and 5 cancer T cell epitopes using CDR3β sequence, TRBV gene, and TRBJ gene as 

input to the random forest TCRex model415,416 at a false positive rate of 1 in 10,000 

(0.01%). 
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Pharmacovigilance database analysis 
 
We queried VigiBase, the WHO database of individual case safety reports on 

January 23, 2019. VigiBase is managed by Uppsala Monitoring Centre (UMC) and 

contains more than 18 million ICSRs submitted by national pharmacovigilance 

centers since 1968. These reports originate from different sources such as 

healthcare professionals, patients, and pharmaceutical companies and are 

generally notified post-marketing. We used the following Medical Dictionary for 

Regulatory Activities (MedDRA) preferred terms for encephalitis associated with ICI: 

encephalitis, encephalitis autoimmune, limbic encephalitis, meningoencephalitis, 

and cerebellitis for the following drugs: nivolumab, pembrolizumab, ipilimumab, 

atezolizumab, durvalumab, avelumab, and tremelimumab. We collected date of 

report, therapy, indication (cancer type), age, gender, concurrent adverse events, 

time of onset, and outcome for all patients when available. We used descriptive 

statistics to quantify medians and range for continuous variables and percentages 

for categorical variables. We used the R statistical language (3.5.1) to perform the 

χ2 test for contingency tables. 
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Results 
 
Index case report 
 
A man in his 70s with metastatic melanoma developed meningoencephalitis 18 

months after start of pembrolizumab. He was initially diagnosed with early stage 

melanoma on his back, then developed regional lymph node recurrence 9 years 

later that was surgically resected and treated with adjuvant ipilimumab 

(complicated by colitis requiring steroids and infliximab). He then developed a brain 

metastasis two years later that required resection and postoperative radiation 

followed by emergence of omental metastases treated with BRAF and MEK inhibitor 

therapy followed by progression (Figure 56A, see next page).  

  



 181 
 

 

Figure 56. Clinical course of anti-PD-1-induced encephalitis and histologic findings at autopsy. Timeline of 
index patient diagnosis, prior therapies and anti-PD-1 therapy. B) (left) Magnetic resonance image (MRI) 
demonstrating restricted diffusion and hyper-intensity in the right temporal lobe and left basal ganglia from the 
day of hospital admission. (right) MRI showing progressive bilateral medial temporal encephalitis with bilateral 
putamen involvement. C) H&E stain shows intense perivascular lymphocytic infiltrate extending to adjacent 
brain parenchyma, next to a region of infarction (lower left); 20x. D) CD4 and CD8 IHC showing the lymphocytic 
infiltrate is composed of approximately equal ratios of CD4+ and CD8+ T cells; 20x. E) Diffuse PD-L1 positivity 
staining in cells with macrophage morphology surrounding the region of infarction; 20x. *Of particular note, 
tissues collected and assayed in this study anteceded treatment with steroids and anti-TNFa, which could 
impact the immunologic status of the patient.  

 
His subsequent treatment with pembrolizumab resulted in a near complete 

response without toxicity. Approximately 18 months into pembrolizumab therapy, 

he developed nausea, fevers, confusion, and aphasia progressing over 2 days. Brain 

MRI showed restricted diffusion and enhancement in the basal ganglia and right 

temporal lobe consistent with inflammatory or herpes simplex virus (HSV) 

encephalitis (Figure 56B). Lumbar puncture (LP) showed a neutrophilic pleocytosis 

(590 nucleated cells/μL; neutrophils 80%, lymphocytes 6%), normal glucose 

A
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H&E



 182 
 

(67mg/dl; normal range 45-75) and elevated protein (135mg/dl; normal range 15-

40). Broad spectrum antibiotics and acyclovir were initiated. Bacterial cultures, HSV-

1/2 polymerase chain reaction (PCR), cytology, and paraneoplastic panels were 

negative; Epstein Barr Virus (EBV) PCR later returned positive with viral load of 1200 

copies/mL and was also persistently detected in the blood (1888-4321 copies). PCR 

for EBV was persistently positive across multiple CSF samples. He continued to have 

neurologic deterioration requiring intubation and mechanical ventilation; MRI 

showed progressive encephalitis involving both temporal lobes (Figure 56B). Five 

days into the hospitalization, methylprednisolone 1mg/kg twice daily was initiated, 

leading to dramatic and rapid clinical improvement. 

Two weeks later, he developed recurrent neurologic symptoms while 

tapering steroids; MRI showed worsening of encephalitis; subsequent CSF 

evaluation showed evolution to a lymphocyte predominance (83 nucleated cells, 8% 

neutrophils, 91% lymphocytes). Over the next several weeks, he had brief episodes 

of clinical improvement with high-dose steroids and intravenous immunoglobulin, 

followed by progressive deterioration of his mental status and motor strength. He 

expired 42 days after symptom onset. 
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Pharmacovigilance database analysis 
 
To assess whether encephalitis is a recurrent event among patients with treated 

with immune checkpoint inhibitors, we queried VigiBase. VigiBase is a WHO 

database of individual case safety reports and contains more than 18 million ICSRs 

submitted by national pharmacovigilance centers since 1967. These reports 

originate from sources including healthcare professionals, patients, and 

pharmaceutical companies and are generally reported post-marketing. Of 

>18,000,000 individual reports, 47,240 were from patients receiving nivolumab, 

pembrolizumab, ipilimumab, atezolizumab, durvalumab, avelumab, or 

tremelimumab. Of these, 209 reports of encephalitis were identified. The median 

age was 61 years (range 7−85) and 59% had either melanoma or lung cancer (Table 

6, see next page).  
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Table 6: Characteristics of patients with immune checkpoint inhibitor 
associated encephalitis (n=209) 
Characteristic Number (%) 
Male 113 (54) 
Female 69 (33) 
Not listed 27 (13) 
Age (years; median, range) 61, 16 – 85 
Cancer  
Melanoma 
Lung cancer (NSCLC and other) 
Hodgkin’s lymphoma 
Non-Hodgkin’s lymphoma 
Renal 
Other/not listed 

44 (21) 
80 (38) 
14 (7) 
3 (1.5) 
9 (4.5) 
59 (28) 

Region reporting  
Americas 
Europe 
Asia 
Oceania 

117 (56) 
67 (32) 
19 (9) 
6 (3) 

Regimen  
Anti-PD-1 monotherapy 
Combination anti-PD-1 + anti-CTLA-4 
Other combinations* 
Anti-PD-L1 monotherapy 
Anti-CTLA-4 (ipilimumab) monotherapy 

137 (66) 
31 (15) 
14 (7) 
15 (7) 
12 (6) 

Timing, days (median, range)  67 (5 – 456) 
Reporting term  
Encephalitis 
Encephalitis autoimmune 
Limbic encephalitis 
Meningoencephalitis 
Cerebellitis 

145 (69) 
36 (17) 
15 (7) 
12 (6) 
1 (1) 

Concurrent irAEs  
Colitis 
Pneumonitis 
Thyroiditis 
Myocarditis 
Vasculitis 
Adrenal insufficiency 
Dermatitis 
Other‡ 

4 (2) 
6 (3) 
7 (3) 
2 (1) 
2 (1) 
4 (2) 
4 (2) 
7 (3) 

Fatal outcome 39 (19) 
Reporting year  
2012 – 2014 
2015 
2016 
2017 
2018 (through Sep 5) 

5 (2.5) 
5 (2.5) 
36 (17) 
77 (37) 
86 (41) 

Table 6. Characteristics of patients with immune checkpoint inhibitor-associated encephalitis (n=209). 
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66% of patients received anti-PD-1 monotherapy and 88% of patients had no other 

concurrent irAEs reported. The median time to symptom onset was 67 days (range 

5 – 456 days) and 39 patients (19%) had a fatal outcome. In contrast to other 

toxicities (e.g. myocarditis),397 the fatality rate was similar with encephalitis from 

anti-PD-1 monotherapy vs. combined anti-PD-1 + anti-CTLA-4 (20% vs. 26%, chi-

square P = 0.50). No patients treated with ipilimumab monotherapy experienced 

fatal encephalitis. To confirm these findings in clinically-diagnosed cases of 

encephalitis (as opposed to de-identified pharmacovigilance reports), we queried 

2501 patients from 4 large academic centers treated with immune checkpoint 

inhibitors, and identified 22 cases of meningoencephalitis (0.88% incidence). These 

findings (Table 7) were similar to the pharmacovigilance database, with a median 

age of 65 years and median onset of 80 days (range 4-684).  
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Age (years; median, range) 65 (26-83) 
Female gender 6 (27) 
Primary cancer melanoma 20 (91) 
Agent 
  Anti-PD-1/PD-L1 monotherapy 
  Ipilimumab monotherapy 
  Anti-PD-1 + ipilimumab 

 
6 (27) 
6 (27) 
10 (44) 

Prior brain metastases? 5 (23) 
Active brain metastases? 2 (9) 
Prior brain surgery? 2 (9) 
Prior brain radiation 2 (9) 
Neurologic co-morbidities 7 (32)* 
Prior autoimmune disease 3 (14) 
Time to onset (days, median, range) 
  Anti-PD-1/PD-L1 monotherapy 
  Ipilimumab monotherapy 
  Anti-PD-1 + ipilimumab 

80 (4-684) 
86 (5-684) 
58 (39-138) 
93 (4-517) 

Symptoms 
  Confusion 
  Headaches 
  Seizures 
  Fevers 
  Focal neurologic deficits 

 
11 (50) 
8 (36) 
5 (23) 
4 (18) 
5 (23) 

Concurrent irAEs 
  None 
  Colitis/enteritis 
  Thyroiditis 
  Rash 
  Other 

 
10 (44) 
3 (14) 
3 (14) 
3 (14) 
3 (14)# 

MRI findings 
  Unremarkable 
  Findings present 

 
16 (73) 
6 (27)** 

Cerebrospinal fluid analysis 
  Nucleated cells/mL (median, range) 

 
37 (2-590) 

Hospitalized 
  Multiple hospitalizations 
  Length of stay (days; median, range) 

20 (91) 
5 (23) 
6.5 (2-120) 

Treatments 
  High dose steroids 
    Pulse dose (e.g. 1g/daily) 
    1-2mg/kg 
  Intravenous immunoglobulin 
  Other (Plasma exchange, rituximab) 

 
19 (86) 
3 (14) 
16 (73) 
4 (18) 
2 (9) 

Outcome 
  Resolved 
  Persistent symptoms 
  Fatal 

 
15 (68) 
5 (22) 
2 (9)## 

Table 7. Characteristics of 22 cases of ICI-induced meningoencephalitis. *Includes seizure disorder (n=3), 
cerebrovascular accident (n=2), migraines, cerebral arteriovenous formation. #Hypophysitis, hepatitis, and 
epididymitis. **Enhancement of temporal lobes (n=3), enhancement of occipital lobes (n=2), perivascular 
enhancement in caudate/putamen/internal capsule (n=1), cranial nerve enhancement (n=1). ##Both in patients 
with MRI findings 
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Confusion was the most frequent presenting symptom (50%), followed by 

headaches (36%), seizures (23%), and fevers (18%). The most common imaging 

finding was temporal or occipital lobe enhancement in 5 patients (22%). Most 

patients recovered completely (68%) although 5 (22%) had persistent neurologic 

symptoms and 2 (9%) died; median hospitalization time was 6.5 days (range 2-120 

days). Thus, encephalitis is a rare but recurrent and potentially fatal toxicity of 

checkpoint inhibitors that occurs across cancer types. 

 

Autopsy and histologic findings 
 
An autopsy of the index case was performed. No evidence of melanoma was 

observed in the central nervous system or elsewhere using pan-melanoma stains 

S100, SOX10, melanoma antigen recognized by T cells 1 (MelanA/MART-1), and MITF 

(data not shown). Analysis of T cell receptors (reported subsequently in this 

manuscript) also did not identify any known or likely MelanA/MART-1 specific HLA-

A*02:01 TCRs.  
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Figure 57. Inflammatory and myeloid/microglial infiltrate in infarct regions of brain. A) H&E stain shows a 
dense chronic inflammatory infiltrate in the meningees (upper left; black arrow), focal hemorrhage in the 
underlining brain parenchyma (lower left; red arrow), and gliotic gray matter; 20x). B) CD68+ cells at the 
interface of the necrotic area (black arrow) and the adjacent brain parenchyma (red arrow) 20x. C) Limited 
expression of CD20 staining in perivascular and parenchymal regions of brain; 20x.  

 
Vigorous inflammation, multiple cerebral infarctions with necrosis, and sporadic 

hemorrhagic transformation were noted in the bilateral temporal lobes and 

striatum with surrounding gliosis and numerous macrophages (Figure 56C, Figure 

57A). Exuberant perivascular inflammation extending to adjacent gray matter 

characterized by approximately equal ratios of CD4+ and CD8+ T cells was observed 

(Figure 56D), although it was noted that CD4+ cells were present in localized 

patterns while CD8+ cells were diffuse and consistently present. Frequent CD68+ 

cells, a macrophage marker (which also stains microglial cells), were also observed 

(Figure 57B). Minimal CD20+ infiltrates or immunoglobulin deposition were 

observed, suggesting that B cells did not constitute a major component of the 

inflammatory process (Figure 57C). Similar patterns of T cell and macrophage 

infiltration were observed in inflamed meninges and adjacent gray matter, 

A H&E CD20CB CD68
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including perivascular spaces (Figure 58). 

 

Figure 58. Lymphocytic and myeloid infiltrate in meninges, perivascular, and parenchymal regions. The 
lymphocytic infiltrate involving the meninges (upper image; upper left of image, black arrow), parenchyma and 
brain perivascular regions (upper image; upper left of image, black arrow), parenchyma and brain perivascular 
regions (upper image; lower right of image, red arrow and lower image) includes CD4+ and (B) CD8+ T cells; 20x. 
C) CD68+ cells accompanying lymphocytic infiltrate in meninges (upper left of image, black arrow) and brain 
parenchyma (lower right, red arrow); 20x. 

 
By contrast, non-affected brain tissue obtained from radiographically and 

macroscopically normal brain was histologically unremarkable with no 

inflammatory infiltrate (Figure 59, see next page).  

 

 

 

A BCD4 CD8 CD68C
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Figure 59. Absence of substantial inflammatory infiltrate in radiologically and macroscopically non-
affected area. A) H&E corresponding to radiologically and macroscopically non-affected area with preserved 
architecture and no apparent inflammatory infiltrate; 20x. B) CD4 and (C) CD8 stains demonstrating sparse 
presence or absence of T cell infiltrates in radiologically and macroscopically non-affected area; 20x. 

 
We then profiled the T cell exhaustion markers PD-1 and PD-L1. PD-L1 was 

diffusely expressed by cells with macrophage morphology (Figure 56E). We also 

observed few-to-no cells expressing PD-L1 in samples from patients with 

encephalitis of other etiologies (Table 6); these samples also showed minimal to no 

lymphocytic infiltration, suggesting that PD-L1 expression in the brain may 

represent an attempt to dampen lymphocyte-derived inflammation and injury. PD-

1 was expressed at lower levels by infiltrating lymphocytes as well as by pericytes, 

cells which surround the capillary and venular endothelium and play a critical role 

in blood-brain barrier maintenance (Figure 60, next page).417  
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Figure 60. PD-1 expression in inflamed region of brain. PD-1+ perivascular lymphocytes and pericytes; 20x. 

 
Taken together, the pattern of immune cell infiltration and exhaustion 

markers were reminiscent of that reported in two cases of fulminant PD-1/CTLA-4 

blockade-induced myocarditis.398 

Additionally, we profiled other markers of immune cell exhaustion including 

LAG-3 (T cells), CD244 (NK cells), and CD160 (CD8+ T cells and NK cells) in the 

inflammatory microenvironment and histologically normal regions (Figure 61). LAG-

3 was highly expressed in the inflamed region, and absent in the uninflamed 

region. CD244+ cells were also present although less dramatically than with LAG-3. 

PD-1+ lymphocytes

PD-1+ lymphocytes

PD-1+ pericytes

PD-1
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CD160+ cells were identified in both tissues, although present at a higher degree in 

the inflamed region. These results suggest that repeated antigen exposure likely 

resulted in the infiltrating T cell population receiving negative co-stimulation, as 

demonstrated here.  

 

Figure 61. Expression of T cell and NK cell markers of immune cell exhaustion. Inflamed and non-inflamed 
adjacent regions of neural tissue were immunostained for CD244, CD160, and LAG-3; 20x. 
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Digital spatial profiling of encephalitic immune microenvironment 
 
As only formalin–fixed autopsy tissue was available, we characterized the immune 

microenvironment using NanoString digital spatial profiling. This methodology 

utilizes UV-photocleavable oligonucleotide barcodes conjugated to monoclonal and 

polyclonal antibodies to quantitatively detect over 30 immune-related protein 

targets simultaneously from a single tissue section. Tissue architecture is visualized 

by fluorescent-labeled antibodies—e.g. in this case glial fibrillary acidic protein 

(GFAP) to identify neural tissue and CD3 to identify T lymphocytes. Micro-capillaries 

collect barcodes released by the focusing of UV light on specific regions of interest 

(ROIs) selected spatially or based on specific cell populations (e.g. CD3+ cells only). 

NanoString nCounter analysis directly and digitally quantifies the numbers of each 

barcode present on each ROI or cell population selected (Figure 62A, next page).  
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Figure 62. Digital spatial profiling of immune-related protein markers across inflamed and non-inflamed 
neural tissue. A) Schematic describing DSP workflow. B). Representative region-of-interest selection under 
immunofluorescence for analysis. Tissue was stained with anti-GFAP (pink) and anti-CD3 (green) in addition to 
SYTO 83 nuclear staining for ROI visualization and selection. Circular regions 200 μm in diameter were excited 
with UV light to release barcodes for collection and analysis. C) Heatmap of area-normalized barcode counts 
from inflamed and unaffected tissue sections across 12 ROIs. Key antigens representing activation, T cell, and B 
cell markers are identified by arrows. D) Spatio-regional protein expression patterns across 8-10 ROIs from 
brain tissues demonstrating enrichment for T cell markers in encephalitis cases, but only memory activated 
markers in (Ki67HI CD45ROHI GZMBHI) in ICI-encephalitis E) Representative images of CD3+ T cells gated for 
barcode collection across 2 spatial ROIs in the inflamed region. F) Area-normalized counts for key antigens 
demonstrating enrichment of memory activated phenotypes (Ki67HI CD45ROH IGZMBHI) in CD3+ population ROIs 
from ICI-induced encephalitis versus non-ICI-encephalitis. 

CD3 GFAP SYTO 83
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We selected 12 ROIs each from inflamed and adjacent unaffected tissue sections 

(Figure 62B). This analysis demonstrated a high degree of T cell and cytotoxic 

activation, with large increases in CD4, CD8, CD3, Ki67, PD-L1, GZMB, and CD45RO 

in the affected region and minimal increase in the B cell markers CD19 and CD20 

(Figure 62C). We extended this analysis across additional tissue controls, including 

a normal temporal lobe specimen and 3 cases of non-ICI-associated encephalitis 

(Table 7). While T cell infiltrate (CD3/4/8) was variable but similar across affected in 

both the present case as well as the non-ICI encephalitic cases, there was a 

preponderance for markers of memory activated phenotypes (granzyme B 

expression, CD45RO, and Ki67) in the present case (Figure 62D). Selecting two 

CD3+ T cell-specific ROIs on the inflamed region of brain, as well as non-ICI 

encephalitic cases (Figure 62E), we next asked what markers were specifically 

enriched on the infiltrating T cell population. While CD3 is expected to be enriched 

in these ROIs based on its use of fluorescently-labeled selection markers, this 

analysis further localized Ki67, CD45RO, and GZMB specifically to T cells (Figure 

62F). Altogether, we reasoned that memory activated T cells were likely playing an 

important role in the pathophysiology.  
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Transcriptomic sequencing identifies memory-activated CD4 T cell phenotypes 
 
We performed mRNA sequencing on tissue from both the inflamed and unaffected 

brain of the patient, as well as tissue controls utilized above. Using the CIBERSORT 

method,408 we characterized the predicted composition of the immune infiltrate. 

Absolute fractional analysis demonstrated, as expected, an increase in nearly all 

populations of immune cells in the inflamed region. 

 

Figure 63. RNAseq analysis of encephalitic and unaffected tissue. Absolute and relative quantification of 
immune subsets by CIBERSORT. B) Interferon-γ-inducible genes (HALLMARK_INTERFERON_GAMMA_RESPONSE; 
M5913; 177 overlapping genes) quantified in inflamed and unaffected regions by RNAseq, as well as additional 
cases identified in Supplementary Table 1. *adjusted P value <0.0001 versus all other samples via ANOVA with 
Tukey’s post-hoc test. 

 
However, adjusting for immune cell input through the relative fraction analysis, we 

observed several key changes: 1) conversion of naïve CD4 cells to CD4 memory-

activated T cell population in the inflamed tissue, 2) conversion from resting to 

activated mast cells, 3) a loss of memory B cells, and 4) differentiation of M0 to 
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M1/M2 macrophage phenotypes (Figure 63A). As response to anti-PD-1 therapy 

has been linked to type-II interferon responses, we asked whether IFNγ-inducible 

genes were also over-represented in the inflamed region. Such genes were 

markedly upregulated (Figure 63B).  

 

T cell receptor profiling identifies oligoclonal cytotoxic CD4 memory T cells 
 
To examine the clonality of infiltrating T cells, we performed TCRβ CDR3 sequencing 

using the immunoSEQ and ArcherDX platforms on: 1) the inflamed and unaffected 

regions of the brain, 2) prior resections of the tumor-adjacent lymph node, 

mesentery, and metastasis to the brain, and 3) the recurrence scar and spleen. The 

inflamed section demonstrated a high T cell fraction (0.71 of all nucleated cells; 

Figure 64A). An extremely high degree of productive T cell clonality was also 

demonstrated (0.369; Figure 64B, 64C). Notably, a single TCRβ sequence comprised 

19.6% of all infiltrating T cells (CDR3 amino acid CASSFPSGSYEQYF; Figure 64D), 

with two other high frequency clones making up 5.98% and 5.91% of infiltrating T 

cells, respectively. As a comparison, the most highly prevalent clone infiltrating the 

heart muscles among two analyzed patients with myocarditis398 was approximately 

9% compared to 19.6% in this case of encephalitis. We also detected this dominant 

clone at 1.08% in the spleen and 6.44% in the recurrence scar, though analyses of 
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the TCR repertoire of additional tissues revealed mostly unique repertoires in 

comparison to the brain (Figure 64G). 

 

Figure 64. TCR sequencing identification of oligoclonal CD4+ cytotoxic T cells in inflamed encephalitic 
tissue. A) ImmunoSEQ statistics of total cellular content, composition (fraction of T cells) and total T cells 
sequenced in inflamed and unaffected neural tissue. B) Enrichment of productive clonality in inflamed region of 
encephalitic tissue. C) Circos plot depicting the V(D)J rearrangements in TCRβ in the repertoire. D) Biplot 
demonstrating enrichment of shared TCRs among the unaffected (likely regional presence) and inflamed 
tissues. The amino acid sequence predicted from the most highly represented DNA sequence is identified 
(CASSFPSGSYEQYF). E) Representation of top 25 clones according to known EBV-specificity based on patient HLA 
haplotype. F) Sequence similarity in TCRβ amino acid sequence to a known EBV clone with specificity for the 
immediate-early HLA-A2-restricted epitopes GLC (BMLF1) G) Clonotype tracking over time and across tissue 
samples of EBV-specific and non-EBV-specific dominant clones found in the inflamed brain tissue. H) Dual 
IHC/RNA-ISH analysis for CD4/CD8 and EBV-like CASSFPSGSYEQYF RNA sequence. Upper left: only the TCR 
probe (pink); upper right: exclusion of TCR probe with CD8+ T cells, lower: Co-expression of CD4 with TCR 
probe. I) Co-expression of granzyme B with TCR probe J) Co-expression of CD45RO with TCR probe. K) 
Quantification for Ki67, CD45RO, and granzyme B (GZMB) expressed as percent of all CASSFPSGSYEQYF TCRβ+ 
cells, or the comparator CASSRGQGSADTQYF TCRβ sequence, a known HLA-A*02:01 restricted EBV clone. 
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We next performed 6-digit HLA-haplotyping on the patient in order to have a 

greater contextual understanding of the TCR repertoire and to leverage existing 

knowledge bases of TCR-antigen specificity. The patient was homozygous for HLA-

A*02:01:01, a common allele in the European/Caucasian population. The high 

degree of clonality suggested that a single antigenic epitope might have triggered 

this aberrant T cell response. We used several previously described algorithms to 

identify: 1) significantly enriched amino acid motifs in the TCR repertoire and 2) the 

antigen specificity of TCRs involved in the immune response of the inflamed 

section. These annotations revealed a [PSGS] motif expanded in the TCR repertoire 

in the inflamed section of the brain. This same [PSGS] motif was solely found in the 

dominant clone and in the junctional region where CDR3 diversity is highest (i.e. 

outside of the germline CASS and YEQYF regions encoded by the V and J genes). 

When we queried available public TCR databases, we also found this motif in two 

known EBV-specific TCRs recognizing the immediate-early epitopes GLCTLVAML and 

RAKFKQLL. This enrichment of the [PSGS] motif in the inflamed section of the brain 

indicates that TCRs containing this sequence are likely involved in an antigen-

specific response not found in the naïve T cell compartment, where these motifs 

are highly infrequent. Similarly, TCRs not containing significantly enriched motifs 

can be inferred to be less important to, or involved in, the antigen-specific response 
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of a given T cell repertoire. We queried public TCR databases412,413 and found that 

the [PSGS] motif in reported TCR sequencing data to-date is exclusively found in 

TCRs recognizing viral proteins; this motif was not identified in any known 

autoimmune-associated or autoimmune-specific TCRs (Table 8). 

 

CDR3 TRBV 

gene 

TRBJ 

gene 

HLA 

restriction 

Epitope Epitope 

origin 

PMID 

CASSVAPSGSESPLHF V9*01 J1-6*01 HLA-DRA*01 PKYVKQNTLKLAT InfluenzaA 12466894 

CASRPSGSELIYEQYF V5-1*01 J2-7*01 HLA-A*02 GILGFVFTL InfluenzaA 28423320 

CASSPPSGSAYNEQFF V9*01 J2-1*01 HLA-B*07:02 LPRRSGAAGA InfluenzaA 28636589 

CAISDPSGSSYNEQFF V10-3*01 J2-1*01 HLA-B*07:02 RPRGEVRFL HSV-2 20139278 

CASSPPSGSYEQYF V7-9*01 J2-7*01 HLA-B*08 FLKEKGGL HIV-1 17287271 

CASSQEPSGSWGEQYF V3-1*01 J2-7*01 HLA-A*02 CINGVCWTV HCV 28146579 

CASSQEPSGSWGEQYF V3-1*01 J2-7*01 HLA-A*02 CINGVCWTV HCV 28146579 

CASSQEPSGSWGEQYF V3-1*01 J2-7*01 HLA-A*02 CINGVCWTV HCV 28146579 

CASSPPSGSGFNEQFF V18*01 J2-1*01 HLA-A*02:01 GLCTLVAML EBV 12504586 

CASSSDPSGSIAYEQYF V5-1*01 J2-7*01 HLA-B*08:01 RAKFKQLL EBV 24512815 

CASSPPSGSYEQYF V7-9*01 J2-7*01 HLA-A*02 NLVPMVATV CMV 28423320 

CSAPSGSSYEQYF V20-1*01 J2-7*01 HLA-A*02 NLVPMVATV CMV 28423320 

CATSRVPSGSYEQYF V15*01 J2-7*01 HLA-A*02 NLVPMVATV CMV 28423320 

CASSLVPSGSTDTQYF V5-1*01 J2-3*01 HLA-A*02:01 NLVPMVATV CMV 28636589 

Table 8. TCRs containing the [PSGS] motif are viral-specific and not associated with autoimmune 
reactivity. 

 
Further analyses including query of publicly available databases412,413 

revealed 23 additional EBV-specific TCRs, 7 of which were exact matches to known 

HLA-A2-restricted EBV-specific TCRs that were previously described.305,418–423 These 
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sequences represented 10.9% of the infiltrating T cells in the infarct, including the 

second most dominant TCR in the inflamed region of the brain (Figure 64E, 64F), 

with specificity for the immediate-early HLA-A2-restricted epitopes GLC (BMLF1) 

and YVL (BRLF1). We observed these sequences at frequencies higher than those 

found in acute phase infectious mononucleosis patients and in the synovial fluid of 

rheumatoid arthritis patients, in whom these TCRs were first detected at 

frequencies of 5% of CD8+ T cells.418 While the frequency of these EBV-specific 

sequences fell to less than 1% of CD8+ T cells over time in acutely infected patients 

in those studies, we observed a distinct increase in the frequency of EBV-specific 

sequences in multiple tissues of the index case over time (Figure 64G). These 

sequences also occupied 16.1% of sequences detected in the spleen biopsy of this 

patient and 5% of the brain recurrence scar. Notably, we did not detect any 

previously described HLA-A2-restricted or HLA-restriction-unknown TCRs specific to 

MelanA epitopes (see Methods). 

Given consistent findings in our earlier data suggesting a predominance of 

CD4 memory activated T cells in the inflamed region, we performed dual RNA in situ 

analysis (using an RNA probe specific to the oligoclonal RNA sequence) and IHC to 

characterize the cells. This analysis surprisingly yielded a complete localization of 

CASSFPSGSYEQYF+ cells to CD4+ T cells (Figure 64H). Furthermore, these CD4+ cells 

were also GZMB+ (40%), CD45RO+ (55%) and Ki67+ (10-15%) (Figure 64I-K). Thus, 
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the oligoclonal cells detected by TCRβ sequencing are likely the same cells 

identified by digital spatial analysis and CIBERSORT, together corroborating that 

CD4 memory activated T cells played a key role in this syndrome. Importantly, the 

second dominant TCR sequence (CASSRGQGSADTQYF), recognizing immediate-

early HLA-A2-restricted epitopes GLC (BMLF1) and YVL (BRLF1), was found 

specifically in CD8+ T cells as expected, and also colocalized with markers of 

activation (Figure 64J and Figure 65).  

 

Figure 65. Overlap of HLA-A*02:01-restricted known EBV-specific TCR with CD8+ Ki67+ and GZMB+ 
phenotypes. Representative images of the TCRβ RNA-ISH probe overlaid with IHC markers. 
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Latent EBV+ lymphocytes in neural tissue of anti-PD-1-induced encephalitis 
 
Given the findings that the patient had persistently positive EBV PCR from multiple 

CSF samples and that there were known HLA-A*02:01:01 EBV-specific TCRβ 

sequences detected at high clonality in the inflamed tissue, we asked whether EBV+ 

lymphocytes could be found in the local immune microenvironment. A substantial 

percentage (~90%) of the population is known to be infected with EBV,424 which 

persists indefinitely in latently infected B lymphocytes in peripheral lymphatic 

structures.425 These cells, however, are rarely found in the CNS, and EBV-induced 

encephalitic syndromes are rare, but can occur (25-28).426–429 It should be noted 

that the number of EBV+ B cells found in circulation in asymptomatic donors is less 

than 0.01% of all B cells (or approximately 38 out of 106 B cells).430 Notably, other 

herpesviruses can also establish latency in the central nervous system, including 

varicella zoster (VZV), herpes simplex (HSV), and human herpes virus 6 (HHV-6). 

Using a diagnostic RNA in situ hybridization (RNA-ISH) stain against EBV-encoded 

RNAs (EBER1/2), we identified rare but reproducible EBER+ lymphocytes in both the 

cortex and meninges (Figure 66A and B, respectively) of the affected region of the 

patient’s brain. EBNA1-specific RNA-ISH confirmed the presence of EBV-infected 

cells (Figure 66C and D). Staining of a lymph node dissection anteceding 

administration of anti-PD-1 therapy demonstrated EBER+ cells in the node, 

suggesting that the encephalitis did not arise from acute infection (Figure 66E). 



 204 
 

Surprisingly, EBER staining of the patient’s resected brain metastasis, also predating 

immunotherapy and symptoms, identified rare melanoma cells with EBER reactivity 

(Figure 66F).  

 

Figure 66. Evidence of latent EBV infection at the site of encephalitic inflammation. A) EBER(1/2) staining 
of lymphocytes by RNA in situ hybridization in the cortex and meninges (B) of the encephalitic infarct. C) EBNA1 
staining of lymphocytes by RNA in situ hybridization in the cortex and meninges (D) of the encephalitic infarct. 
E) Positive EBER staining of rare lymphocytes in lymph node resection pre-dating anti-PD-1 therapy, suggesting 
historic EBV infection. F) Positive EBER staining of rare tumor cells in brain metastasis resection pre-dating anti-
PD-1 therapy, also suggesting historic EBV infection. 
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In contrast, EBNA1 staining of 9 additional non-immunotherapy related encephalitis 

cases demonstrated complete absence of EBER positive lymphocytes in all cases, 

suggesting that EBV+ lymphocyte presence is an uncommon finding in cases of 

encephalitis caused by other etiologies (Table 7). Notably, archival neural tissue 

from two other cases of immune checkpoint inhibitor encephalitis, which were 

characterized by substantially less robust inflammation, had negative EBER staining 

(Figure 67; case details in methods), suggesting that other mechanisms may also 

contribute in these cases. 

 

Figure 67. Lack of detection of EBER+ cells in 2 additional cases of checkpoint-inhibitor encephalitis. A) 
EBER stain of neural tissue from additional case 1 and B) additional case 2 (details of case in methods). 

 

Discussion 
 
The molecular basis of immune checkpoint inhibitor toxicities is unclear, and 

difficult to analyze as such cases seem to arise stochastically in the clinic. While 

these toxicities can affect nearly all organ systems, encephalitis is the most 

Additional case 1 Additional case 2A
EBER

B
EBER
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common neurological toxicity associated with checkpoint inhibitor therapy.431 

Herein, we report for the first time the clinical and molecular features of a 

fulminant and fatal case of anti-PD-1 induced encephalitis. It is important to note 

that tissues collected in this study anteceded treatment with steroids and anti-

TNFα, which could impact the immunologic status of the patient. Characterization 

of affected brain tissue demonstrated robust and clonal infiltration of cytotoxic 

CD4+ activated memory T cells, reactive immune checkpoint (PD-L1) expression, 

and evidence of concurrent EBV infection. To our knowledge, this is the first 

molecular description of immune-therapy induced neurotoxicity and the first 

suggestion of interplay between viral infection and immune checkpoint inhibitor 

toxicity. 

Recent studies have suggested that neurologic irAEs affect approximately 1-

3% of patients treated with anti-PD-1 therapy, with higher proportions of 

ipilimumab-treated patients affected (up to 14%) (10,31-33).403,432–434 

Encephalitis/meningitis, neuropathy, and myasthenia gravis were the most 

common adverse events noted in these studies, showing these events are recurrent 

but uncommon. Although these studies are important findings, our 

pharmacovigilance database characterized 209 cases of immune checkpoint 

inhibitor encephalitis (compared with a total number of 9 cases combined in the 
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largest series published to date), which is augmented by 22 cases identified and 

curated at large academic centers (Table 7). 

In this case, the patterns of immune cell infiltration and TCR clonality were 

also reminiscent of our recent observations in fulminant immune checkpoint 

inhibitor-mediated myocarditis. Given this recurrent presentation, we posit that the 

canonical features of severe and fulminant checkpoint inhibitor toxicity include 1) T 

cell and macrophage infiltration into inflamed tissue, 2) clonal expansion of 

infiltrating T cells, and 3) reactive upregulation of PD-L1as a compensatory 

mechanism to limit tissue injury. We speculate that PD-L1 upregulation fails to 

abrogate tissue damage in the presence of anti-PD-1, thus potentiating 

inflammation and injury. 

The cellular mechanisms of immune checkpoint inhibitor toxicity remain 

poorly characterized. We and others have suggested that causes or correlations 

could include shared antigens present in tumor and affected tissue,398 pre-existing 

subclinical autoimmune responses (e.g. autoantibodies),435,436 early B cell 

changes,437 and specific intestinal microbiota.438 We observed an extremely clonal 

population of T cells present in this sample. Intriguingly, bioinformatic analyses 

suggested that this represented an unusual activated memory cytotoxic CD4+ T cell 

population. Interestingly, cytotoxic CD4+ T cells have demonstrated roles in 

autoimmunity (including multiple sclerosis),439 antitumor immunity,440,441 and both 
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protective and pathologic442 roles in antiviral defense (including against EBV).443 

Cytotoxic CD4+ T cells also play an essential protective role by directly lysing EBV-

infected B cells while providing cytokine help; this highlights not only their abilities 

to recognize and kill virally infected cells but also their enhancement of the adaptive 

and innate immune response against EBV (reviewed by Martorelli et al. and Hislop 

and Graham).444–447 

Though our ability to assign causality to EBV specifically is limited by tissue 

availability and lack of in-depth longitudinal molecular monitoring of the primary 

patient, several features led us to hypothesize that EBV in the setting of concurrent 

anti-PD-1 may have served as a potential trigger of this encephalitis. First, the 

patient had persistent albeit modest levels of EBV in the CSF and blood in 

conjunction with imaging and clinical findings reminiscent of viral encephalitis. 

Second, the extremely high degree of T cell clonality, which far exceeded our 

analyses of other irAEs (myocarditis, myositis, and colitis), suggested that a single 

epitope drove inflammation. Third, >10% of TCRs in the inflamed brain were 

identical to known CD8+ TCRs specific to EBV, a frequency much higher than 

previously described even with acute EBV infection or in autoimmune disease 

where EBV-specific T cells were identified. In addition, the dominant clone bore a 

striking degree of homology to a known CD8+ EBV-specific TCR in the form of a 

PSGS motif that was significantly enriched; this motif has been described only in 
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antiviral rather than autoimmune responses to date. However, this sequence 

localized to the aforementioned cytotoxic CD4+ T cell population, limiting our ability 

to more precisely specify the culprit antigen. Additionally, while we identified TCR 

sequences known to recognize EBV antigens in a class I-restricted fashion, we 

cannot exclude the possibility that the dominant CD4+ clone we describe above is 

restricted by HLA-A2, as both CD4+ T cells restricted by HLA class I and CD8+ T cells 

restricted by HLA class II have been described in a variety of healthy and disease 

states.448–451 The frequency and cytotoxic memory phenotype of the dominant 

CD4+ clone we describe above suggests a novel role for cytotoxic memory CD4+ T 

cells if the clone is tumor-reactive, both in the context of tumor control and 

potential danger of autoreactivity as shown by others.440,441 Indeed, others have 

observed that select TCRs are restricted by peptides presented individually on both 

HLA class I and class II, implying that such TCRs possess multiple specificities.452 

Finally, latent B cells present in the brain expressed EBER and EBNA1 mRNAs, which 

encode EBV-proteins. Although these cells were infrequent, nine additional 

encephalitis cases completely lacked these cells. We speculate that latent EBV+ 

lymphocytes may have leaked into the CSF, perhaps due to the prior CNS 

metastatectomy or radiation, setting the stage for the fatal immune response. 

Recent work by Harley et al. implicates EBNA2-dependent transcriptional programs 

as potential causal agents of multiple immunopathies,453 though in a fashion not 
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necessarily mediated by T cell inflammation and subsequent pathology as 

suggested by the data we present here. The presence and frequency of both CD4+ 

and CD8+ cytotoxic T cell populations in the brain and tumor microenvironment 

merits further study in additional cancer types and in autoimmune models, 

especially given that the additional cases we examined both showed marked 

inflammation-associated T cell infiltration into the brain. 

In conclusion, this is the first molecular analysis of neurotoxicity due to 

immune checkpoint inhibitors to our knowledge. In addition, we believe this is the 

first evidence linking concurrent viral infection with irAEs, and the first detailed 

identification and phenotyping of culprit immune cell populations. Further studies 

are needed to determine the best interventions for prevention and management of 

these rare but fulminant toxicities. 
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Chapter VI 
 
Select vignettes of the application of computational methods in the analysis 

of single-cell RNA sequencing data. 
 
N.B. The methods described in this chapter are methods that I have applied to 
select or multiple scRNA-seq data sets derived from samples of human disease and 
healthy human samples. They comprise a computational toolbox that can be used 
to understand heterogeneity of the immune system, identify disease-specific 
transcriptomic features, dissect single cells using multi-modal/multi-omic 
approaches, and will be critical to future studies flowing from the work described in 
this thesis. 
 
As I describe in Chapter I of this dissertation, current analytical approaches to 

scRNA-seq and similar single cell measurements typically fall into one of four 

classes, ranked from more to less common: 1) clustering and analyses, 2) trajectory 

and differentiation analyses, 3) gene and transcription factor mechanic analyses, 

and 4) network inference analyses. In this chapter, I provide several brief examples 

and applications of these different types of analyses to scRNA-seq data derived 

from different examples and types of human disease. 

 

Consensus and non-consensus clustering of single immune cells 
 
Allopurinol can induce an HLA-B*58:01-associated severe blistering disease of the 

skin known as Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). The 

major cytolytic mediator of this disease is granulysin (gene symbol GNLY), which is 

known to be produced by T lymphocytes and NK cells in the blister fluid of patients 
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suffering from SJS/TEN. Consensus clustering is a clustering approach that uses 

multiple types of clustering algorithms—each with distinct loss functions, simply 

described as “goals”—with the aim of locating stably identifiable groups of 

observations (single cells). Here, I apply consensus clustering implemented by the 

SC3 algorithm to show that there are distinctive genes that clearly separate 

activated CD8+CD137+ T cells from the blister fluid of an allopurinol SJS/TEN patient 

from non-activated CD8+CD137− T cells from the same blister fluid (Figure 68).   

 

Figure 68. SC3 consensus clustering separates activated and non-activated single T cells from the blister 
fluid of an allopurinol SJS/TEN patient. In this diagram, rows represent genes and columns represent 
individual cells from multiple plates of index-sorted CD8+CD137+ or CD8+CD137− T cells from an allopurinol 
SJS/TEN patient. The indexed protein measurements from flow cytometry are represented as rows above the 
columns, as well as the read alignment ratio (PF_READS), the plate of origin, and each cell’s CD137 expression 
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status (±). Three distinct clusters are observable: 1) a mostly CD8+CD137+ population, 2) a mostly CD8+CD137− 
population, and 3) an outlier cluster of CD8+CD137− cells that are enriched in mitochondrial genes and which 
express fewer genes than their peers in clusters 1 and 2.  

 
This demonstrates several of the advantages of consensus clustering, namely: 1) 

the ability to inspect multiple pieces of metadata in relation to the degree of 

heterogeneity within a cellular population, 2) the automatic identification of 

signatures and “metagenes” that best explain the variation between groups of 

single cells, and 3) the identification of groups of cells that multiple algorithms vote 

on as being biologically similar, and therefore more likely to exist (validated in this 

analysis by the clear separation of ground-truth CD8+CD137+ and CD8+CD137− 

cells). Further inspection of the signature distinguishing between these populations 

using a mixed-effect Poisson regression test for differential expression with a 

random-effect to account for technical variation across plates clearly reveals genes 

of immunologic importance enriched in the activated population, including: 1) the 

identification of the TRBV and TRAV genes encoding the dominant and pathologic 

clonotype in this patient, 2) a gene signature with enrichment of genes that 

negatively regulate IL-12 production (p  = 2.78 x 10-6, FDR q-value 5.86 x 10-3), and 3) 

selective expression of KLRC1, a negative inhibitor of NK and T cell cytotoxicity, in 

the pathologic T cell population (Figure 69). A subset of these genes have at least 

80% power to classify T cells from this blister fluid as belonging to one of the 3 main 

clusters using a simple one-vs-one multiclass classification function, demonstrating 
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the power of this approach to identify from hundreds to thousands of differentially 

expressed genes a more limited set that may be more relevant (Figure 70, next 

page). 

 

Figure 69. Consensus clustering reveals a subset of strongly differentially expressed genes between 
activated CD8+CD137+ and CD8+CD137− blister fluid T cells. The 50 most-differentially expressed genes 
between the 3 consensus clusters in this analysis reveals enrichment of co-stimulatory and co-inhibitory genes 
(TIGIT, KLRC1, CALR, TNFRSF1B, WARS), metabolic genes (PKM, WARS, HNRNPC, H3F3A, EID1), genes with a 3’ 
UTR NFAT-binding transcription factor binding site (H3F3A, NONO, WARS, COTL1, TNFRSF1B, PGAM1), and 
genes with a 3’ UTR PAX4-binding transcription factor binding site (HNRNPC, HNRNPF, PTPN6, UBE2F, ENTPD1, 
IGFLR1, CD38).  
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Figure 70. A subset of genes have strong classification power (AUROC > 0.8) between CD8+CD137+ and 
CD8+CD137− T cells from the blister fluid of an allopurinol SJS/TEN patient. Genes displayed here in rows 
have strong classification/discriminatory power (at least 80% area under the receiver operating characteristic 
curve) between activated and non-activated single T cells from the blister fluid. 

 
Quality analysis of these results indicates that the outlier/low-quality cluster is a 

group of cells that are commonly unassigned to the CD8+CD137+ or CD8+CD137− 

clusters; plotting the silhouette of how far cells within these clusters are from cells 

in the other clusters reveals that these cells are frequently consensus clustered 

“between” the two main clusters (i.e. they are difficult or impossible to stably 

identify as belonging to one of the main clusters, which are strong communities in 

multidimensional space) (Figure 71, next page). This suggests that these cells 

should be treated as their own analytical subgroup/cluster, excluded from further 
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analysis downstream, or evaluated with a different clustering scheme. 

 

Figure 71. Evaluation of SC3 consensus clustering quality via silhouette analysis identifies low-quality 
single T cells from the blister fluid. Each line is a single T cell as shown in the figures above. Negative 
silhouette widths represent cells that are unstably clustered into a given group, while positive silhouette widths 
represent single cells that are stably and repeatedly assigned to a cluster by multiple algorithms. 

 

Elimination of persistent batch effects from SMART-seq2 scRNAseq data and 

10X Chromium scRNAseq data  

Idiopathic subglottic stenosis (iSGS) is an upper airway disease that afflicts a 

population of Caucasian women of western European descent who are mostly over 
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the age of 40 years old.454 This disease is characterized by accrual of fibrotic scar 

tissue enriched in CD8+ resident memory and effector memory T cells. Due to the 

stochastic nature of sample availability (i.e. fresh single-cell suspensions are only 

available for processing, sorting, and sequencing when a subglottic scar is removed 

from one of these patients), cells from the patients analyzed here had to be 

sequenced across two sequencing runs. Several samples failed the first sequencing 

run (run #124), and had to be re-sequenced in a second run (run #124).  

Initial analyses of these data revealed strong separation in multidimensional 

space that was almost completely explainable by which sequencing run the data 

corresponding to each cell were generated on (Figure 72). Attempts to correct 

these data using the canonical correlation analysis (CCA) algorithm of Seurat189 

were unsuccessful, and clustering analyses merely separated cells into clusters that 

grouped by sequencing run—making downstream analysis unreliable as the 

sequencing run was a perfectly confounding variable. This is a frequent challenge 

faced by many groups, with potential to endanger published results if the 

conversation between sequencing cores, wet lab biologists, and computational 

biologists does not identify such batch effects. While there are many batch-

correction algorithms,188,243,455–460 most of which function by identifying “nearest 

neighbors” among cells in multidimensional space or by using a form of deep 

machine learning called autoencoding, there are few-to-no benchmark datasets 
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available to test existing and new correction tools, and existing methods frequently 

compare their performance to only one or two other methods; hence, a tool that 

works well for one dataset may not always work well for another.  

 

 
Figure 72. Removal of batch effects from SMART-seq2 scRNA-seq data. Left: Efforts to correct the data for 
sequencing run using Seurat’s CCA algorithm were unsuccessful, and showed a clear separation and clustering 
in multidimensional space based on sequencing run (shown via UMAP dimensional reduction). Right: 
Application of the Harmony correction algorithm, which uses local linear regression after performing k-
clustering across a wide range of k, successfully eliminates this batch effect.  

 
Given that our attempts to correct the data with the CCA algorithm failed, we 

instead applied the Harmony algorithm to the principal components of these data 

and re-ran Leiden clustering in Seurat. After this successful correction, 3 distinct 

clusters of cells appear that are evenly and unevenly represented in cells from 3 

patients with idiopathic subglottic stenosis, one with ANCA-associated vasculitis, 

and a sixth with post-intubation stenosis (Figure 73). Thus, performing differential 

expression analysis of cells within these 3 clusters enables the identification of 

Before batch correction After batch correction
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genes that are uniquely expressed by T cells of iSGS. 

 

Figure 73. Harmony correction enables joint clustering and batch effect removal, leading to the 
identification of a select set of marker genes unique to CD8+ T cells infiltrating the scar tissue of iSGS 
patients. Top left: Three clusters of cells are readily identifiable by Leiden clustering using the Harmony-
corrected principal components as input. Top right: The resulting clusters are comprised of T cells from iSGS 
patients (iSGS, green, 4 left-most columns bottom panel), an ANCA-associated vasculitis patient (GPA, red, 
second-from-right column bottom panel), and a post-intubation patient (LTS, blue, right-most column bottom 
panel). Bottom: Differential expression between these three clusters enables the identification of SP100, GREM1, 
and DNMT3A as iSGS-specific marker genes (p < 0.0001, all comparisons). 

 
Harmony and similar approaches are also excellent for the correction of 

effects introduced by biological effects (as I show in chapter II), but also for 

technical effects introduced by different single-cell sequencing technologies. Below, 

3 clusters identified 1 GPA and iSGS-specific cluster
1 stable cluster across all 3 conditions
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I show that application of Harmony to data from the same allopurinol blister fluid 

samples sequenced on both the 10X Chromium 3’ platform and the 10X Chromium 

5’ platform effectively removes batch effects present in the data due to differences 

in the sequencing technology and also enables the identification of shared 

transcriptomic features and immune populations in two separate donors (Figure 

74). 

 
Figure 74. Harmony correction enables the identification of shared populations of immune cells found 
in two different allopurinol SJS/TEN patients and correction of sequencing platform batch effects. Top 
panels: UMAP dimensional reduction utilizing uncorrected principal components; plots showing individual cells 
as dots colored by donor of origin (left) and sequencing technology (right). Bottom panels: UMAP dimensional 
reduction using Harmony-corrected principal components; cells are colored as in the top panels.  

 
This analytical approach also proves useful in learning the strongest features that 

are pathology-specific or cell-type-specific. In an extension of this experiment, after 
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stimulating separate aliquots of PBMCs from these patients with staphylococcal 

enterotoxin B (SEB), oxypurinol (the drug metabolite to which allopurinol SJS/TEN 

patients experience a reaction), or unstimulated PBMCs (though it is possible that T 

cells within the PBMCs were being stimulated in vivo by oxypurinol as the patient 

was experiencing severe SJS/TEN at the time of blood draw), we applied Harmony 

correction to these data to demonstrate that the cytotoxic and cytolytic T cells 

found in the blister fluid of these patients (CD3+CD8+GNLY+GZMB+) are enriched in 

CXCL13, a chemotactic molecule used to recruit B cells into germinal centers 

(Figure 75, see next page). These results also suggest that the blister fluid of 

allopurinol patients shares aspects of tertiary lymphoid structures found in patients 

whose tumors contain CD8+CXCL13+ T cells.461,462  
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Figure 75. Harmony analysis enables the identification of blister-fluid-specific transcriptomic features 
that differ from artificially stimulated T cells and T cells found in the peripheral blood. Expression is 
colored on each cell from lowest (white) to highest (dark). Each dot represents a single cell, and cells are 
separated by their sample types in columns. This shows that the cytolytic granulysin-granzyme B-T cell 
signature is not unique to blister fluid. Rather, the expression of granulysin within a distinct population of T 
cells in the blister fluid, many of which also express the chemotactic molecule CXCL13, is unique—as well as the 
widespread expression of these cytotoxic molecules in other T cell populations in the blister fluid.  

 
These analyses show the power and flexibility of so-called joint analyses, whose 

strengths include the benefit of added statistical power (by pooling cells from 

multiple samples, the number of cells that can be compared between clusters is 

increased, and the probability of detecting rare populations of cells is increased), 

the correction of batch effects within data, and the ability to identify common 
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transcriptomic features within heterogenous populations of single cells from 

different individuals.  

 

Normalization of SMART-seq2 data using ‘sequins’ 
 
Normalization of scRNA-seq data is a problem for which many researchers have 

devised approaches. One of the most recent approaches includes the use of 

synthetic External RNA Control Consortium (ERCC) spike-in synthetic RNAs,463 which 

are pooled together and vary in their length and GC base content. However, ERCC 

sequences are derived from in vitro transcription of synthetic DNA sequences 

originating from Bacillus subtilis and Methanocaldococcus jannaschii.463 As a result, 

these sequences are useful for assessing the quantitative accuracy of scRNA-seq 

and RNA-seq experiments, but they are limited in their usefulness to assess 

differential expression of individual isoforms, identify isoform fusions, and 

represent single-exon transcripts. In contrast, ‘sequins’ (so named as a 

portmanteau of “sequencing” and “spike-ins”), are synthetic RNAs designed by 

sampling regions of the human genome and 1) inverting the sequences, 2) 

mutating the sequences to remove homology to known human genes while 

maintaining GC content, sequence uniqueness, repetition, and original nucleotide 

composition.464 The in silico chromosome containing these sequins is comprised of 

78 loci, with 164 alternatively spliced isoforms made of 869 exons and 754 unique 



 224 
 

introns. These sequins also vary significantly in the number of exons in each sequin, 

in length, and in isoform complexity.  

Recent innovations in scRNA-seq analyses such as isoform-level differential 

expression,186 reconstruction of the TCR and BCR,183,184 and detection of single-cell-

specific gene fusion events would all benefit from wet-lab and dry-lab approaches 

enhancing study design. Sequins represent a promising addition to the single-cell 

toolkit. In a proof-of-principle study, we spiked Sequins over a range of 

concentrations into 96-well plates containing the necessary reagents to perform 

SMART-seq2 scRNA-seq.  

Using the Anaquin pipeline,465 we aligned and quantified Sequin-derived 

sequencing reads, and used the scater package466 to normalize read counts in 

relation to 1) the number of Sequin genes detected, 2) the abundance of each 

Sequin gene, and 3) known sequencing quality control metrics. We found that the 

acceptable concentration of Sequin per well likely ranges between 0.005 picogram 

(pg)/μL and 0.09 pg/μL (Figure 76, see next page). This ensures that Sequins only 

occupy 1-10% of the sequencing library for each cell.  
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Figure 76. Sequins can be spiked-in to plate-based scRNA-seq samples without compromising library 
integrity. Left: The optimal concentration of Sequin per well is approximately 0.005 to 0.09 pg/μL. Beyond this 
concentration, Sequins take over the sequencing library (i.e. cell-derived RNA is drowned out by the Sequin-
derived signal). Right: Relationship between sequencing depth (reads/cell) and Sequin counts as quantified by 
the Anaquin pipeline. As expected, the number of Sequins detected per cell increases with sequencing depth, 
demonstrating that Sequins are a reliable synthetic spike-in. 

 

Analysis of the Sequin-corrected count data revealed successful reconstruction of 

correlations between known quality-control genes (ACTB and GAPDH), the 

relationship between mitochondrial content per cell and Sequin diversity 

(suggesting that Sequin diversity within a given single cell library is an intrinsically 

valuable quality control measurement), and known cell-size correlations (CD3E and 

ACTB) (Figure 77). These analyses provide evidence that Sequins are a suitable 

substitute for ERCC spike-ins; importantly, Sequins are free of charge for research 

use, suggesting that well-designed scRNA-seq experiments can benefit from the 
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addition of Sequins without adding reagent cost. 

 

Figure 77. Sequins recover known correlations of high-strength, quality control, and cell size. Top left: 
The correlation between GAPDH and ACTB expression is commonly >0.9 in bulk RNA-seq experiments, but due 
to dropout and technical variation this correlation is lost in scRNA-seq data. Simple normalization using Sequin 
counts recovers this relationship. Bottom left: The correlation between ACTB and CD3D (and other CD3 variants, 
data not shown) suggests, as would be expected, that increased levels of CD3 complex members correspond to 
cell size. Right: The mitochondrial content (the percent of counts corresponding to mitochondrial genes) 
strongly negatively correlates with the number of Sequin genes detected in each single cell, suggesting that 
Sequins can automatically identify cells that are information-poor. 

 

Rebuilding the TCR repertoire of cells responding to an IL-12 adjuvanted HIV 

vaccine 

HIV Vaccine Trials Network trial 087 (HVTN-087) evaluated the immune response 

elicited by priming over the course of 3 months with a DNA plasmid vaccine 

containing gag, pol, and env and boosting 3 months afterwards with a pseudotyped 
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vesicular stomatitis virus expressing gag. Trial participants also received 1 of 4 

concentrations of IL-12 adjuvant in parallel: 0, 250, 1000, or 1500 μg of IL-12. 

Evaluation by intracellular staining of CD4+ T cells from individuals in this study in 

response to HIV Gag peptide pools revealed that increased dosage of this vaccine 

did not increase the size of the HIV-specific CD4+ T cell response, but that it did 

correlate with increased HIV-specific CD8+ T cell responses in a dose-dependent 

fashion.467 We sorted activated CD8+CD137+ T cells after overnight HIV Gag peptide 

pool stimulation of study participant PBMCs from 4 no-IL-12 recipients and 2 1500-

μg-IL-12 recipients, and performed SMART-seq2 to analyze the transcriptomes of 

these potentially vaccine-reactive CD8+ T cells. After correcting the raw data for cell 

cycle (as in McDavid et al. 468) and sequencing depth using Seurat, we visualized 

these single cells using the t-SNE dimensional reduction algorithm (Figure 78, next 

page). 
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Figure 78. t-SNE and Leiden clustering reveal distinctive groups of CD8+CD137+ T cells in response to HIV 
peptide stimulation and an IL-12-adjuvanted transcriptomic signature that is identifiable with 
supervised learning. 

 

We then used the TPOT genetic programming suite469,470 to build a support-

vector machine capable of classifying cells as originating from no-IL-12 or 1500-μg-

IL-12 donors using a limited set of genes; this supervised learning approach allowed 

us to build a potential “vaccine response” signature that could be applied to single 

cells from other vaccinees in the future (Figure 78). In order to gain a better 

understanding of the high-level differences between these T cells, we performed 

two main analyses: differential expression analysis using the MAST and bimod 

tests223,471 and reconstruction of the TCR using TraCeR.183 We found that IL-12-
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receiving individuals produced CD8+CD137+ T cells high in inflammatory molecules 

such as MIP1a, MIP1b, and STING (all p < 0.0001, Figure 79). 

  

Figure 79. Identification of differentially expressed genes between IL-12-receiving and IL-12-non-
receiving individuals. CCL3 and CCL4 are two examples of genes distinguishing between the single T cells of 
IL-12-receiving and IL-12-non-receiving cells shown in the previous Figure (where CCL3 and CCL4 are more 
highly expressed in the peptide-reactive T cells of IL-12-receiving vaccinees). 

 
We also identified a population of mucosal-associated invariant T cells found 

in all vaccinees; whether or not these MAIT cells were responsive to HIV peptide 

representative of noise due to activation marker selection is still unclear, and no 

reports in the literature have identified these cells using similar approaches or 

single-cell sequencing. We recovered the majority of TCR sequences from each 

sorted cell using TraCeR, and identified dominant clonotypes within each patient 

that corresponded with bulk TCR sequencing frequencies of the same activated 
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CD8+CD137+ population (Figure 80; Table 9, next page). 

 

Figure 80. Successful reconstruction of alpha, beta, gamma, and delta TCRs from SMART-seq2 data of 
CD8+CD137+ T cells. Each square represents a single cell in a single well of a 96-well plate. We successfully 
recovered paired TCRab sequences from the majority of cells, but we also recovered TCRgd sequences from 
multiple cells. Further analyses (data not shown) revealed that approximately 30% of single T cells in this 
experiment express 2 TCRa sequences, indicating that allelic exclusion is detectable at the single-cell level.	
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Table 9. Dominant TCR clonotypes of CD8+CD137+ T cells from 6 HVTN-087 donors reconstructed using 
TraCeR. 

 

These data demonstrate that it is possible to link surface protein expression, 

transcriptome, and TCR clonotype together in a fashion that enables the 

identification of features indicative of differences in the vaccine response to HIV, 

and potentially other pathogens. 

   

087-159 Frequency
TCR Single cell Bulk TRBV CDR3 TRBJ TRAV CDR3 TRAJ
1 56.3% 28.5% TRBV-9 CASSVDWAEYNEQFF TRBJ 2-1 TRAV 13-1 CATYNNDMRF TRAJ 43
2 9.4% 15.3% TRBV 4-1 CASSQDRLTGGYTF TRBJ 1-2 TRAV 24 CASSSSNTGKLIF TRAJ 37
3 7.0% 6.7% TRBV-19 CASFWTTGDGNTIYF TRBJ 1-3 TRAV 38-2 CALGGGAQKLVF TRAJ 54
4 1.6% 1.9% TRBV 5-6 CASSPGWGTYEQYF TRBJ 2-7 TRAV 12-3 CAMSGDTGNQFYF TRAJ 49

087-101 Frequency
TCR Single cell Bulk TRBV CDR3 TRBJ TRAV CDR3 TRAJ
1 26.2% 27.0% TRBV 13 CASSLQRDGEQYF TRBJ 2-7 TRAV 20 CAVPVRDSGYALNF TRAJ 41
2 15.4% 3.2% TRBV 13 CASSLSRAWEDTQYF TRBJ 2-3 TRAV 41 CAVVPSTGTASKLTF TRAJ 44
3 1.5% 1.7% TRBV 29 CSVDYWDSLRDGYTF TRBJ 1-2 TRAV 39 CAVDGGTSGTYKYIF TRAJ 40

087-072 Frequency
TCR Single cell Bulk TRBV CDR3 TRBJ TRAV CDR3 TRAJ
1 9.2% 49.8% TRBV 5-6 CASSLGWGQNQPQHF TRBJ 1-5 TRAV 12-2 CAVNMGGDNFNKFYF TRAJ 21
2 2.5% 5.9% TRBV 7-6 CASSLGWSTDTQYF TRBJ 2-3 TRAV 8-1 CAVHFGNEKLTF TRAJ 48

087-059 Frequency
TCR Single cell Bulk TRBV CDR3 TRBJ TRAV CDR3 TRAJ
1 8.5% 43.0% TRBV 27 CASSFDGPMNTEAFF TRBJ 1-1 TRAV 27 CAGGTYKYIF TRAJ 40
2 1.6% 1.4% TRBV 30 CAWTYEQYF TRBJ 2-7 TRAV 1-2 CAVRDSNYQLIW TRAJ 33
3 0.8% 0.6% TRBV 6-4 CASSQEPSGANVLTF TRBJ 2-6 TRAV 1-2 CAAMDSSYKLIF TRAJ 12

087-143 Frequency
TCR Single cell Bulk TRBV CDR3 TRBJ TRAV CDR3 TRAJ
1 50.6% 87.8% TRBV 5-6 CASSLGWGNEKLFF TRBJ 1-4 TRAV 13-1 CAASNEGNTPLVF TRAJ 29
2 2.4% 2.4% TRBV 5-6 CASSLGFGGGDTQYF TRBJ 2-3 TRAV 38-2 CASNTGNQFYF TRAJ 49

087-51 Frequency
TCR Single cell Bulk TRBV CDR3 TRBJ TRAV CDR3 TRAJ
1 64.1% 32.3% TRBV 5-1 CASRLAERKFF TRBJ 2-1 TRAV 8-2 CVVSETGNQFYF TRAJ 49
2 4.3% 11.0% TRBV 5-1 CASSLVYEQFF TRBJ 2-1 TRAV 13-2 CADLKEGGSYIPTF TRAJ 1-2
3 0.9% 10.9% TRBV 5-1 CASSLGGKAFF TRBJ 1-1
4 0% 2.3% TRBV 30 CAWMGPAGANVLTF TRBJ 2-6



 232 
 

Summary and Future Directions: Expanding the Immunologist’s Toolbox 
 
In the previous chapters, I have outlined a population-to-single-individual, and 

population-to-single-cell approach to studying immune-mediated human disease. 

In chapter II, I provided evidence that alteration of the CD4 T cell compartment is 

associated with mortality using flow cytometry measurements from a cohort of 

veterans. In chapters III and IV, I show how using an increased number of 

immunomic approaches (flow cytometry, TCR sequencing, RNA sequencing and 

quantification) can shed light on how the immune system is associated with glucose 

intolerance and obesity in mice and in humans (these studies are excellent 

examples of utilizing the contrast provided by the perturbation framework I 

describe in Chapter I, Figure 2. I conclude the dissertation in Chapters V and VI by 

demonstrating various ways in which single-molecule and immunomic approaches, 

including single-cell RNA sequencing, can clarify complex immunopathologic 

processes in multiple disease settings.  

While randomized studies and prospective longitudinal studies are gold 

standards and keystones of evidence-based medicine, these approaches are less 

common in immunologic—and notably, single-cell—studies. There are several 

factors that explain this, including 1) the difficulty in collecting diseased tissue and 

cellular samples from humans while complying with ethical research standards and 

logistic challenges of collecting these samples, 2) the fiscal cost and analytical 
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expertise required to apply immunomic approaches to large cohorts, and 3) a 

surprising lack of tools that enable researchers to leverage the power of these 

study designs in existing computational tools. 

In addition to existing proteoimmunogenomic approaches such as CITE-seq, 

further developments with respect to single-cell technologies would do well to 

elucidate the specificity of the B cell receptor repertoire; efforts are well underway 

in this regard in T cell immunology. While recent research has established 

approaches to identify spatial niches using single-cell sequencing and imaging, and 

even to identify T- and B-cell/APC interacting pairs,472 bioinformatic and wet-lab 

approaches to achieve this in humans will need to be developed to extract this 

valuable information from rare human disease samples; one promising approach 

recently established a way of estimating these interactions by scoring receptor-

ligand interaction via scRNA-seq.473 

Recent developments in spatial transcriptomics474 represent significant 

advancements in the single-cell field; these approaches enable the construction of 

spatial transcriptomic signatures that can be used to estimate the spatial proximity 

of single cells in samples where no spatial information could be preserved, and 

more importantly allow for the identification of multiple immune cell subsets “at 

the site of the crime.” I show one such example of this in Chapter V with a limited 
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number of transcriptomic features, single-molecule imaging, and traditional 

ISH/IHC. 

From a more broad perspective, I have investigated the influence of immune 

perturbations introduced by experiments of nature (infection with CMV and/or HIV, 

Chapter II) and experiments of man (provision of excess energy to the immune 

system, the effect of ART on immune cell subsets, and the effects of checkpoint 

inhibitor therapy, Chapters III-IV) as I describe in Chapter I (Figure 2). Key points 

and future studies supported by these data include the following:  

1. Chapter II: 

a. Key point 1: Co-infection with CMV in the setting of HIV infection is 

beneficial, however, 

b. Key point 2: when CMV-seropositive individuals walk too far along 

an immune trajectory associated with CD4 differentiation (and 

likely T cell memory inflation), the resulting immunologic 

composition is associated with higher mortality.  

c. Key point 3: Chronic HIV infection is associated with higher levels of 

CD4 Tem and TemRA cells (which in turn correlate negatively with 

CD4 Tcm and CD4 Treg populations); this suggests that 

immunologic senescence is a stronger predictor of mortality than 

chronologic age. 



 235 
 

d. Future studies should include: the validation of select immune cell 

subsets as predictors of all-cause and cause-specific mortality in 

other cohorts, inspection of the relationships between genotype 

and these immune cell subsets, and randomized controlled trials of 

anti-CMV drugs such as letermovir to reduce immune-associated 

mortality. 

2. Chapter III: 

a. Key point 1: Diet-induced obesity via a high-fat diet causes a post-

translational modification of protein presented in the adipose 

tissue by M2-polarized macrophages.  

b. Key point 2: This post-translational modification (increased isoLG 

expression) is associated with clonal expansion of a CD8+ T cell 

population in the adipose tissue which specifically expands in 

response to isoLG-presenting APCs. 

c. Future studies should: assess the ability of scavengers such as 2-

HOBA to prevent or reduce the formation and presentation of 

isoLGs on adipose tissue APCs, and use lineage-tracing mice such 

as the CRISPR-barcoded MARC1 mouse to assess whether or not 

the expansion of the CD8+ T cells in adipose tissue is a naïve 

response, a memory/restimulated response, and if this response 
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can also seed oxidative damage in other adipose tissue reserves 

throughout the body. 

3. Chapter IV: 

a. Key point 1: Increases in CD4+ and CD8+ Tem and TemRA T cells in 

the adipose tissue of PLWH may contribute to or be associated with 

protection from type 2 diabetes. 

b. Key point 2: CD4+CX3CR1+GPR56+CD57+ T cells are a biomarker 

associated with glucose intolerance in the peripheral blood and 

adipose tissue. These cells could match the phenotypes of both 

HIV- and CMV-specific T cells (among other viral-specific T cells) 

based on literature reports.  

c. Future studies should: examine the lymphocyte landscape of 

human adipose tissue in PLWH and HIV-negative persons using 

single-cell transcriptomics, and study the effects of anti-CMV and 

other T cell metabolic drugs on the phenotype and infiltration of T 

cells into human adipose tissue.  

4. Chapter V: 

a. Key point 1: Fatal checkpoint inhibitor-associated neurotoxicity is 

associated with clonal expansion of, and pathology induced by, 

cytotoxic CD4 and CD8 T cells.  
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b. Key point 2: In situ techniques are critically important to 

understanding and dissecting these rare immune-mediated 

diseases; spatial transcriptomics will become increasingly 

important to replicate and further dissect these pathologies. 

c. Future studies should: monitor the presence and association of 

human herpesviruses and other human infections in multiple types 

of checkpoint inhibitor toxicity (colitis, myocarditis, encephalitis, 

myasthenia gravis, and type I diabetes), monitor the association of 

specific HLA alleles with these toxicities to enable preventive 

screening, and prospectively study the differentiation trajectories 

of peripheral lymphocytes from checkpoint inhibitor-treated 

patients using scRNA-seq in order to identify the functional and 

cellular bases of how these toxicities develop. 

5. Additional future studies should:  

a. Use autologous patient-derived T cells to confirm and study the 

antigen specificity of single T cells isolated by altering ex vivo T 

lymphocytes in order to retain the genetic features and phenotypes 

of the patient’s own cells; 

b. Use high-throughput screening technologies (HLA-gnostic 

combining HLA typing and TCR sequencing, and HLA-agnostic 
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combining peptide pools and TCR stimulation screening) with 

human herpesvirus (HHV) and other holobiont peptide pools to 

examine the extent to which response to these viruses and 

organisms is associated with checkpoint inhibitor toxicity, adverse 

drug reactions, and other immune-mediated adverse events. 

This thesis is a product of new and powerful methods of our time, which 

represent a set of emergent properties from convergent advances in molecular 

biology, liquid handling and miniaturization, optical and sequencing technology, 

mathematics and computation, and computing hardware innovation. Coming 

advances in spatial and single-cell transcriptomic approaches will include: Slide-seq 

and DART-seq and others240,475–484; the application of deep learning and transfer 

learning models to multi-modal spatial and scRNA-seq data187,190,191,476,485–489; 

extension of scRNA-seq-based predictive models of mortality; automation of 

processes such as cell types and subtypes identification490–493; scRNA-seq 

experimental design for maximal recovery of new cell types and rare cells494,495; 

implementation of graph-based reference genomes and transcriptomes496,497; and 

discovery of antibody-free flow sorting schemes from scRNA-seq data498 will begin 

to comprise robust modes of discovery. Collectively, many of these approaches will 

become part of the “immunologist’s toolbox.”   
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