
Automatic techniques for cochlear implant 
CT image analysis 

 
 
 

By  
 

Yiyuan Zhao 
 
 
 

Dissertation  
 

Submitted to the Faculty of the 
 

Graduate School of Vanderbilt University  
 

in partial fulfillment of the requirements  
 

for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

Electrical Engineering 
 
 

  May 11th, 2018 
 

Nashville, Tennessee 
 
 
 
 

Approved:  
 

Benoit M. Dawant, Ph.D. 
 

Jack H. Noble, Ph.D. 
 

                                                            Robert F. Labadie, M.D., Ph.D. 
 

                                                           Bennett A. Landman, Ph.D. 
 

Richard A. Peters, Ph.D. 



ii  

To my beloved grandparents Jufa Zhu and Chunxian Yang. You raised me up and gave me 
unconditional love and supports to pursue my dream.  



iii 

ACKNOWLEDGMENTS
 

 

 
 
The path towards finishing this work and writing up this dissertation is long and arduous – 

and it is not possible for me to finish this dissertation without the guidance and support and 

advice from my committee members and the colleagues at Vanderbilt University Medical 

Image Processing (MIP) lab and the Vanderbilt Biomedical Image Analysis for Image 

Guided Interventions Laboratory (BAGL).  

 First and foremost, I express my heartiest gratitude to my respected adviser Dr. 

Benoit M. Dawant for introducing me to this amazing research field and giving me his trust 

for letting me join his research team in MIP lab. During my Ph.D. years, Dr. Dawant not 

only financially supported me but also taught me the advanced medical image processing 

knowledge. He had always been very patient when giving me constructive feedbacks on my 

research. Working under his guidance helped me grow to be a professional researcher. The 

highly motivated attitude, the honest and hard-working work ethics I have learned from Dr. 

Dawant will benefit me for life.  

 I also owe my deepest gratitude to my other respected adviser Dr. Jack H. Noble. Dr. 

Noble had directly mentored me through my early days at the MIP lab. I would not be able 

to finish my first project, my first research paper, and my first conference presentation 

without his patient guidance. I had been deeply impressed by his dedication to research, his 

detail-oriented working ethic, and his passion to explore the new areas of the research field. 

Those spirits will always be inspirations for me to achieve more progress in the future.  

 I would also like to express my appreciation to other members on my dissertation 

committee. Besides giving feedbacks on my dissertation, they have also helped me progress 

both professionally and personally during my Ph.D. years. Thanks to Dr. Bennett A. 

Landman for choosing me to be his teaching assistant for one year. This process had  



iv 

 

 

strengthened my skillset for presenting knowledge. Thanks to Dr. Robert F. Labadie for 

teaching me the clinical background of cochlear implant. Through the meetings with him I 

learned the clinical impact of my research and the potential improvements that should be 

made. Thanks to Dr. Richard A. Peters. He had been my academic adviser for my first two 

years at Vanderbilt University. I appreciate his efforts in helping me with exploring my 

research interests and his encouragements for me to pursue my career goal. 

 I want to thank for the colleagues and some former colleagues from MIP lab, BAGL 

lab, and Vanderbilt University Medical Center for supporting my research. Thanks to Rui Li 

for providing software support for the research. Thanks to Dr. Raul Wirz and Ms. Priyanka 

Prasad for managing the cochlear implant patient database. Thanks to Au.D. Robert Dwyer 

for giving feedbacks on the performance of my algorithms. Thanks to Dongqing Zhang, 

Xiaochen Yang, Srijata Chakravorti, Ahmet Cakir, Dr. Yuan Liu, Dr. Fitsum A. Reda, 

Robert Shults and Bill Rodriguez in my lab for all the valuable discussions and help on my 

projects. The experience I spent with you was invaluable and unforgettable. 

 I would also like to thank for Dr. Julie A. Adams for recommending me to join MIP 

lab at the second year and giving me the confidence in continuing finishing my degree. Your 

words inspired me to stick to my goals whenever I met any obstacles.  

 Special thanks to financial support by NIH and NIDCD grants R01DC014037, 

R01DC008408, R21DC012620, R01DC014462, 5R01DC014462, and 5R01DC014037. 

Special thanks also to financial support by Vanderbilt Institute for Surgery Engineering. 

Last, I want to thank my parents Mr. Ming Zhao and Ms. Min Zhu, for the 

unconditional love, support and understanding they have given me over the years. Thank 

you and I dedicate my work to you.  



v 

TABLE OF CONTENTS 
 

 

Page  

DEDICATIONS ......................................................................................................................... ii 

ACKNOWLEDGMENTS ......................................................................................................... iii 

LIST OF TABLES ............................................................................................................................. ix 

LIST OF FIGURES .................................................................................................................... x 

LIST OF ABBREVIATIONS ................................................................................................. xvi 

Chapter 

1. INTRODUCTION ................................................................................................................ 1 

1.1. Cochlear Implant ........................................................................................................... 1 
1.2. Image-guided Cochlear Implant Programming (IGCIP) .............................................. 3 

1.2.1 Intra-cochlear anatomy segmentation in CT ........................................................ 5 
1.2.2 Cochlear implant electrode array segmentation in CT ........................................ 7 
1.2.3 Automatic electrode configuration selection for IGCIP .................................... 11 

1.3. Sensitivity of IGCIP .................................................................................................... 13 
1.4. Goals and Contributions of the Dissertation ............................................................... 13 
References .......................................................................................................................... 16 

2. AUTOMATIC LOCALIZATION OF COCHLEAR IMPLANT ELECTRODES IN CT 19 

Abstract .............................................................................................................................. 20 
2.1. Introduction ................................................................................................................. 20 
2.2. Methods ....................................................................................................................... 23 

  2.2.1. Data .................................................................................................................... 24 
 2.2.2. Centerline Initialization ...................................................................................... 24 
 2.2.3. Centerline Refinement ........................................................................................ 25 
 2.2.4. Validation ........................................................................................................... 28 

2.3. Results ......................................................................................................................... 29 
2.4. Conclusions ................................................................................................................. 30 
References .......................................................................................................................... 32 

3. AUTOMATIC GRAPH-BASED METHOD FOR LOCALIZATION OF COCHLEAR 
IMPLANT ELECTRODE ARRAYS IN CLINICAL CTS WITH SUB-VOXEL 
ACCURACY ...................................................................................................................... 33 

Abstract .............................................................................................................................. 34 
3.1. Introduction ................................................................................................................. 34 
3.2. Methods ....................................................................................................................... 40 
 3.2.1. Dataset ................................................................................................................ 40 
 3.2.2. Method overview ................................................................................................ 42 
 3.2.3. Candidate of Interest (COI) generation .............................................................. 44 
 3.2.4. Coarse path-finding algorithm ........................................................................... 47



vi 

 

 

 
 3.2.5. Path Refinement ................................................................................................. 54 
 3.2.6. Parameter tuning for GP ..................................................................................... 55 
3.3. Results of validation studies ........................................................................................ 55 
 3.3.1. Parameter tuning results ..................................................................................... 55 
 3.3.2. Electrode localization accuracy study on clinical CTs in Dataset 1 .................. 57 
 3.3.3. Robustness test on Dataset 2 with cochlear phantom CTs ................................. 62 
3.4. Conclusion ................................................................................................................... 63 
References .......................................................................................................................... 65 

4. AUTOMATIC LOCALIZATION OF CLOSELY-SPACED COCHLEAR IMPLANT 
ELECTRODE ARRAYS IN CTS ...................................................................................... 69 

Abstract .............................................................................................................................. 70 
4.1. Introduction ................................................................................................................. 71 
4.2. Methods ....................................................................................................................... 76 
 4.2.1. Dataset ................................................................................................................ 76 
 4.2.2. Method overview ................................................................................................ 77 
 4.2.3. Medial axes generation ....................................................................................... 79 
 4.2.4. Centerline localization and electrode localization ............................................. 80 
 4.2.5. Parameter selection process ............................................................................... 84 
4.3. Results ......................................................................................................................... 84 
 4.3.1. Parameter tuning ................................................................................................ 84 
 4.3.2. Validation study ................................................................................................. 85 
4.4. Discussion ................................................................................................................... 86 
4.5. Conclusions ................................................................................................................. 90 
References .......................................................................................................................... 92 

5. AUTOMATIC SELECTION OF THE ACTIVE ELECTRODE SET FOR IMAGE-
GUIDED COCHLEAR IMPLANT PROGRAMMING .................................................... 95 

Abstract .............................................................................................................................. 96 
5.1. Introduction ................................................................................................................. 96 
5.2. Methods ..................................................................................................................... 100 
5.3. Results ....................................................................................................................... 112 
5.4. Conclusion ................................................................................................................. 116 
References ........................................................................................................................ 119 

6. VALIDATION OF IMAGE-GUIDED COCHLEAR IMPLANT PROGRAMMING 
TECHNIQUES ................................................................................................................. 121 

Abstract ............................................................................................................................ 122 
6.1. Introduction ............................................................................................................... 123 
6.2. Methods ..................................................................................................................... 129 
 6.2.1. Image data ......................................................................................................... 129 

 6.2.2. Ground truth dataset creation ............................................................................ 130 
 6.2.3. Validation approaches and results .................................................................... 131 
 6.2.3.1. Error analysis for electrode localization method ................................... 131 



vii 

 

 

 6.2.3.2. Validation for intra-cochlear anatomy segmentation methods .............. 133 
 6.2.3.3. Sensitivity of intra-cochlear electrode position estimation to  
                     processing errors ................................................................................... 134 

 6.2.3.4. Sensitivity of IGCIP to processing errors .............................................. 136 
6.3. Results ....................................................................................................................... 139 
 6.3.1. Accuracy of the electrode localization technique ............................................. 139 
 6.3.2. Accuracy of intra-cochlear anatomy segmentation methods ............................ 140 
 6.3.3. Sensitivity of intra-cochlear electrode position estimation to  
               processing errors ............................................................................................... 143 
 6.3.4. Sensitivity of IGCIP to processing errors ......................................................... 144 
6.4. Conclusion ................................................................................................................. 148 
References ........................................................................................................................ 150 

7. SUMMARY AND FUTURE WORK .............................................................................. 152 

References ........................................................................................................................ 160



LIST OF TABLES

ix 

 

 

Table Page 
 

1.1. Specifications of different FDA-approved CI electrode arrays ............................................ 9 
 
3.1. Specifications of different FDA-approved distantly-spaced CI electrode arrays in our dataset 
        ............................................................................................................................................. 40 
 
3.2. Datasets used in Chapter 3 .................................................................................................. 41 
 
3.3. The selected values for parameters in GP ........................................................................... 56 
 
3.4. Mean localization errors for each image group in mm ....................................................... 62 
 
4.1. Specifications of different FDA-approved closely-spaced electrode arrays in our dataset 75 
 
4.2. Datasets used in Chapter 4 .................................................................................................. 77 
 
4.3. The selected values for parameters in our proposed method .............................................. 85 
 
4.4. p-value of t-test results among mean localization errors generated by GP, SL, pCL, CL, and 
       RCE ..................................................................................................................................... 89 
 
5.1. The feature cost terms generated for Med-El, Advanced Bionics, and Cochlear arrays .. 112 
 
6.1. The specifications of the CT images of the 35 temporal bone specimens ........................ 130 
 
6.2. Electrode configuration names in sensitivity analysis studies .......................................... 135 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



LIST OF FIGURES 

x 

 

 

Figure  Page 
 
1.1. Panel (a) shows the anatomical structure of an inner ear. Panel (b) shows the components of  
      a cochlear implant device. ...................................................................................................... 1 
 
1.2. Visualization of CI electrode activation patterns. In (a), the scala tympani (an intra-cochlear  
       cavity) is shown with the modiolar surface, which represents the interface between of the  
       SG nerves and the intra-cochlear cavities and is color-coded with the tonotopic place  
       frequencies of the SG in Hz. In (b), synthetic examples of stimulation patterns on the  
       modiolar interface created by the implanted electrodes are shown in multiple colors to  
       illustrate the concept of stimulation overlap ......................................................................... 2 
 
1.3. Examples of CT images in the coronal view. Panel (a) shows the cropped volume of interest  
       (VOI) containing the cochlea and the segmented intra-cochlear anatomy. Panel (b) shows  
       the VOI with the automatically localized and manually localized CI electrode array. ......... 3 
 
1.4. Workflow of IGCIP ............................................................................................................... 4 
 
1.5. Panels (a) and (b) show examples of distantly and closely-spaced arrays in eCTs. Panel (c)  
       shows an example of a closely -spaced array in a lCT .......................................................... 8 
 
1.6. Seven major types of CI electrode arrays provided by the three major manufacturers. Panel 
       (a) presents four typical examples of distantly-spaced electrode arrays and panel (b) presents  
       three typical examples of closely-spaced electrode arrays .................................................... 9 
 
1.7. Visualization of DVF curves. Panel (a) shows an example of a combination of the DVF  
        curves formed by 7 electrodes. Each single curve represents the distance from the  
        corresponding electrode to the frequency mapped sites along the length of the modiolus. (b)  
        shows the DVF curves after electrode configuration adjustment ...................................... 11 
 
2.1. Panel (a) shows a portion of an electrode array in an axial slice of a CT. Black dots indicate  
       locations of individual electrodes. An isocontour around high intensity voxels is shown in  
       red. Panel (b) shows a 3D isosurface of an electrode array with a manually determined  
       centerline in purple. The blue curve is the coarse approximation to the centerline determined  
       using our automatic initialization process discussed in Section 2.2.2 ................................ 21 
 
2.2. Flow chart of the electrode array centerline localization process ....................................... 23 
 
2.3. Panel (a) shows a slice of ܯ௩

ᇱሺ߱ሻ with ܯ௩
ᇱሺ߱ሻ ൌ 0 isocontour in black and ߱ ൌ 0 shown as  

       white dot. Panel (b) shows the 3D isosurface of ܯ௩
ᇱሺ߱ሻ (white) aligned with the tip of an  

       electrode array (green). ....................................................................................................... 27 
 
2.4. Barplots of mean (a) and max (c) curve distances; mean (b) and max (d) electrode distances;  
       and tip (e) and base (f) endpoint distances. ..........................................................................29



xi 

 

 

 
2.5. 3D renderings of GT (color-coded with curve distance in mm) and PT (shown in transparent  
       black) curves for our best (a) and worst (b) case errors. Points indicate electrode locations  
       along curves determined by distance priors .........................................................................30 
 
3.1. Visualization of the intra-cochlear anatomy and CI electrode array. Panel (a) shows the scala- 
       tympani in red and the modiolus in green. Modiolus is the interface between the auditory 
       nerves of the SG and the intra-cochlear cavities. Panel (b) illustrates the stimulation patterns  
       produced by electrodes on one array. The modiolar surface is color-coded with the tonotopic  
       place frequencies of the SG in Hz ........................................................................................35 
 
3.2. Panels (a) and (b) show examples of distantly and closely-spaced arrays in eCTs. Panel (c)  
       shows an example of a distantly-spaced array in a lCT .......................................................37 
 
3.3. Three types of distantly-spaced CI electrode arrays provided by the two major manufacturers 
        ..............................................................................................................................................40 
 
3.4. Workflow of GP ...................................................................................................................43 
 
3.5. Quality comparison between the COIs generated by our method on the features image at  
       sub-voxel resolution and at voxel resolution on the VOI .....................................................45 
 
3.6. A simplified example of the coarse path-finding algorithm in GP. At the ݅th iteration, the  
       existing path ݌ consisting of ݅-1 nodes has 3 reachable COIs ܿଵ, ܿଶ, and ܿଷ. The path-finding  
       algorithm computes the shape-based cost and intensity-based cost for the three COIs and  
       adding ܿ௜

ଶ to the existing path will result in lowest cost. Compared to ܿଶ, ܿଵ has acceptable  
       shape-based features but its intensity-based cost is high. Although ܿଷ  has the lowest  
       intensity-based cost, the sharp turn formed by ܿଷ and ݌ makes its shape-based cost high 
       . .............................................................................................................................................47 
 
3.7. One example of the problem in the traditional computation method for DOI(·). The 11th  
       electrode falls on the boundary of the cochlea, which is close to the boundary of the part of  
       the cochlea that is one turn before (−360°) the actual turn of the electrode. On the right side,  
       the color-coded of the angular DOI map around the electrode is shown. The DOI map is  
       generated by resampling a 3 × 3 × 3 voxels rectangular grid around the closest voxel to the  
       11th electrode with 27 points on the grid. ............................................................................52 
 
3.8. Visualization of the path-refinement process at iteration 13 for an existing candidate path.  
       This path grows by adding all the COI nodes (the re-sampled rectangular grids) around the  
       13th electrode to it. The prune step keeps only ߟ୫ୟ୶ଶ ൌ 500 candidate paths with lowest  
       costs for the next iteration. ...................................................................................................53 
 
3.9. Visualization of errors when testing each parameter used in the coarse path-finding algorithm 
       and the path refinement in GP. Each parameter is tested over a range from 0 to the double 
       of the optimal values. ...........................................................................................................57



xii 

 

 

 
3.10. Panel (a) shows the boxplot (in log-scale) of mean (blue) and maximum (magenta) coarse  
         (I) and refined (II) localization errors between the automatic generated results by lGP, pGP,  
         GP and the rater’s consistency errors (RCEs) on CTs in testing dataset. Panel (b) shows the  
         bar plot of the number of cases on which lGP, pGP, GP, and RCE achieves maximum final  
         localization errors lower than 25% (blue), lower than 50% (green and blue), lower than 75%  
         (magenta, green, and blue), lower than 100% (yellow, magenta, green, and blue), over the  
         100% (red) voxel diagonal of the CTs, and the failure subjects (black). ...........................58 
 
3.11. Visualization of localization results generated by (a) lGP and by (c) GP. In (b), pGP fails  
         to generate a fixed-length path as final localization result because the COIs are missing  
         around two electrodes .........................................................................................................60 
 
3.12. Panel (a)-(c) and (d)-(f) show localization results generated by GP, lGP, and pGP for two  
         cases, respectively. Panel (g) and (h) show two failure cases for GP. ...............................61 
 
4.1. Visualization of a CI electrode array and intra-cochlear anatomy after CI implantation  
        surgery. In (a), the scala tympani (an intracochlear cavity) is shown with the modiolus,  
        which represents the interface between the auditory nerves of the SG and the intra-cochlear  
        cavities. In (b), a subject implanted with an Advanced Bionics 1J electrode array and  
        stimulation patterns of the electrodes are shown. The modiolar surface is color-coded with  
        tonotopic place frequencies of the SG in Hz. ......................................................................73 
 
4.2. Panel (a) and (c) show examples of two slices of CT in coronal view of recipients implanted  
       with closely-spaced arrays. Blue points indicate the locations of individual electrodes. An  
       iso-contour around high intensity voxels is shown in red. Panels (b) and (d) show 3D iso- 
       surfaces of the electrode arrays with the manually determined electrode locations generated  
       by an expert. In panel (d), we also show the medial axis line (in green) of the largest ROI  
       extracted by our proposed method. As can be seen, the endpoints of the medial axis line do  
       not always correspond to the electrodes on the two ends of the array. ................................74 
 
4.3. Workflow of our proposed centerline-based method ...........................................................78 
 
4.4. The parameter tuning process for all the parameters in CL. The red hash mark indicates the  
       finally selected parameter value. ..........................................................................................84 
 
4.5. Panel (a) shows the boxplots of mean (blue) and maximum (magenta) electrode localization  
       errors in log-scale among the different localization methods. Panel (b) shows the distribution  
       of the ratio of the maximum localization errors with respect to the image voxel diagonal  
       (ܴ%) for different localization methods ...............................................................................86 
 
4.6. Visualization of localization results generated by GP, SL, pCL, and CL in comparison with  
       the manual ground truth localization results. .......................................................................87 
 
4.7. Visualization of two eCT cases on which CL generates localization results with maximum  
       errors larger than one voxel diagonal. ..................................................................................88



xiii

 

 

 
5.1. Visualization of CI electrode activation patterns. In (a), the scala-tympani (an intra-cochlear  
       cavity) is shown with the modiolar surface, which represents the interface between the  
       nerves of the SG and the intra-cochlear cavities and is color-coded with the tonotopic place  
       frequencies of the SG in Hz. In (b), synthetic examples of stimulation patterns on the  
       modiolar interface created by the implanted electrodes are shown in multiple colors to  
       illustrate the concept of stimulation overlap ........................................................................97 
 
5.2. Visualization of DVFs. (a) shows an example of a combination of the DVFs formed by 7  
       electrodes. Each single curve represents the distance from the corresponding electrode to the  
       frequency mapped sites along the length of the modiolus. (b) shows the DVFs after electrode  
       configuration adjustment ......................................................................................................99 
 
5.3. Visualization of three DVF-based features ........................................................................102 
 
5.4. The visualization of (a) Area-distance and (b) Depth of concavity-distance relationship and 
       the empirical separation line for electrodes in the training dataset. ...................................104 
 
5.5. The workflow of the automatic electrode configuration selection method ........................108 
 
5.6. The distance metric between electrode configuration patterns (Marker ൅ : Electrodes  
        activated; Marker െ: Electrodes deactivated). Both configuration have 5 differences in the  
        electrode activation patterns. With the optimal distance metric, configuration  ݁௕,௢  is  
        assigned with larger distance compared to configuration ݁௔,௢ to the optimal configuration  
        ݁௢௣௧,௢ ..................................................................................................................................110 
 
5.7. Validation study results. Panel (a) and (b) visualize the results of validation studies  
        performed by expert 1(JHN) and expert 2 (YZ) on automatic and control electrode  
        configurations, respectively ..............................................................................................113 
 
5.8. Visualization of automatically selected (a-d) and corresponding manual (e-h) electrode  
        configurations for several cases. An automatic AB plan that was judged as better than the  
        manual plan is shown in (a). An automatic MD plans judged to be equivalently good are  
        shown in (b). An automatic CO plans judged as acceptable is shown in (c). An automatic  
        MD result that was judged as not acceptable is shown in (d) ...........................................115 
 
6.1. Panels (a) and (b) show a CI electrode array superimposed on the scala-tympani (red) and  
       scala-vestibuli (blue) cavities of the cochlea in posterior-to-anterior and lateral-to-medial  
       views, respectively. Panel (c) shows the scalae and neural activation region color-coded by  
       place frequency in Hz. Panel (d) illustrates overlapping stimulation patterns (electrode  
       interaction) from the implanted electrodes as they stimulate neural regions .....................124 
 
6.2. Workflow of Image-guided cochlear implant programming (IGCIP) techniques .............125 



xiv 

 

 

 
6.3. Panels a-c show three post-implantation CTs: a conventional CT (a), the registered μCT (c),  
       and a checkerboard combination of the two (b). As can be seen, electrodes are more  
       separable in the μCT because of the higher resolution and less partial volume artifacts. Panels  
       d-f show three pre-implantation CTs: a conventional CT (d), the registered μCT (f), and a  
       checkerboard combination of the two (e). As can be seen in panel (f) and (d), the basilar  
       membrane is visible in μCTs but not visible in clinical CTs. This makes it possible for  
       generating ground truth anatomy segmentation results for ST and SV, and then MOD 
        ............................................................................................................................................126 
 
6.4. Panels (a) shows electrode migration in Specimen 3. The CT iso-surface of the highest  
        intensity voxels is shown in orange. The automatically (yellow) and manually (red)  
        localized electrodes from the CT and μCT are different from electrode P1 to P6. Panel (b)  
        shows an axial slice of a μCT around the “hook region” of SV. The blue and red contours  
        in the CT are the manual delineations of SV and ST generated by an expert. The  
        corresponding 3D meshes are shown on the right side. As can be seen, the “hook region” of  
        SV is guessed by the expert. ..............................................................................................132 
 
6.5. Panel (a) shows the measurement of the DOI value for the 3rd most apical electrode in the  
       coordinate system proposed by Verbist et al.. The ST is shown in the red. The electrode array  
       carrier is shown in light grey and the contacts are shown in dark grey. Panel (b) shows the  
       measurements of DtoM (magenta line) and DtoBM (orange line) values for a given electrode  
       (cyan point) in a CT slice in coronal view. The ST, SV and MOD are shown in red, blue,  
       and green, respectively .......................................................................................................136 
 
6.6. Panel (a) shows the boxplots for localization errors between AL-GL, IL-GL, and AL-IL.  
       Panels (b) shows the segmentation errors between ଵܵ-ܵ଴, ܵଶ-ܵ଴, and ܵଷ-ܵ଴ ......................141 
 
6.7. Panels (a), (b), (c) show qualitative segmentation results ( ଵܵ, ܵଶ,	and ܵଷ) generated by IGCIP  
       automatic methods ܯ୅ଵ, ܯ୅ଶ, and ܯ୅ଷ for a representative subject in Group 2. The three  
       surfaces of intra-cochlear anatomical structures are color-coded by the segmentation errors  
       computed by using ܵ଴. ........................................................................................................141 
 
6.8. Panels (a), (b), and (c) show the boxplots for the differences in the DOIs, the DtoM, and the  
       DtoBM of the automatic (ܥ஺ଵ) and the reference (ீܥଵ) configurations generated by IGCIP  
       for sensitivity analysis with respect to the electrode localization method  
       (study (a) in Table 6.2) .......................................................................................................142 
 
6.9. Panels (a-c) show the boxplots for the differences in the DOIs, the DtoM, and the DtoBM of  
       the electrodes generated by using automatic (ீܥଵ ଶீܥ , ଷீܥ , ) and the reference (ீܥ଴ )  
       processing methods on the 6 specimens in Group 2. Panels (d-f) show the boxplots for the  
       differences in the DOIs, the DtoM, and the DtoBM of the electrodes generated by using  
       automatic (ீܥଵ

ᇱ ଶீܥ ,
ᇱ ଷீܥ ,

ᇱ ) and the reference (ீܥଵ) processing methods on the 35 specimens  
       in Group 3 with the synthesized anatomy surfaces. These results are the IGCIP sensitivity  
       analysis study with respect to the intra-anatomy segmentation method  
       (study (b) in Table 6.2). ......................................................................................................142



xv 

 

 

 
6.10. Panels (a-c) show the boxplots for the differences in the DOIs, the DtoM, and the DtoBM  
         of the electrodes generated by using automatic (ܥ஺ଵ, ܥ஺ଶ, ܥ஺ଷ) and the reference (ீܥ଴)  
         processing methods on the 4 specimens in Group 4. Panels (d-f) show the boxplots for the  
         differences in the DOIs, the DtoM, and the DtoBM of the electrodes generated by using  
         automatic (ܥ஺ଵ

ᇱ ஺ଶܥ ,
ᇱ ஺ଷܥ ,

ᇱ ) and the reference (ீܥଵ) processing methods on the 30 specimens  
         in Group 1 with the synthesized anatomy surfaces. These results are the IGCIP sensitivity  
         analysis study with respect to the intra-anatomy segmentation method  
         (study (c) in Table 6.2) .....................................................................................................143 
 
6.11. Panels (a-e) show the boxplots for the cost values (in log-scale) of automatic, reference,  
         and control configurations for subjects in the data being used in the three studies in Table  
         6.2 for IGCIP sensitivity analysis ....................................................................................145 
 
6.12. Evaluation results of the configurations generated for the sensitivity analysis of IGCIP with  
         respect to (a) the electrode localization method, (b-c) the three intra-cochlear anatomy  
         segmentation methods, and (d-e) the overall automatic image processing techniques in 
         IGCIP ...............................................................................................................................146 
 
 
 
  



LIST OF ABBREVIATIONS 

xvi 

 

 

 
 
AB .................................................................................................................. Advanced Bionics® 
 
AB1 ..................................................................................................... Advanced Bionics 1J array 
 
AB2 ......................................................................................... Advanced Bionics Mid-scala array 
 
AB3 ................................................................................................ Advanced Bionics Helix array 
 
AL........................................................................ Automatic localization results for CI electrodes 
 
AR ...................................................................................................... Active region (of modiolus) 
 
ASM ................................................................................................................ Active shape model 
 
cGAN ..................................................................... Conditional Generative Adversarial Network 
 
CI ......................................................................................................................... Cochlear implant 
 
CL ........................................................................................ Centerline-based localization method 
 
CO ................................................................................................................................. Cochlear® 
 
CO1 .................................................................................... Cochlear contour advance (512) array 
 
CO2 .................................................................................................... Cochlear CI422 (522) array 
 
CO3 ..................................................................................................... Cochlear CI24RE-ST array 
 
COI .......................................................................... Candidate voxel of interest for CI electrodes 
 
DtoBM ............................................................................................. Distance to basilar membrane 
 
DtoM ................................................................................................ Distance to modiolar surface 
 
DOI ....................................................................................................... Angular depth of insertion 
 
CT ...............................................................................................................Computed tomography 
 
DVF .......................................................................................................... Distance-vs.-Frequency 
 
eCT ................................................................................................. Extended Hounsfield Unit CT 
 
GL.................................................................... Ground truth localization results for CI electrodes 
 
GP .......................................................................................... Graph-based path finding algorithm



xvii

 

 

GVF ............................................................................................................... Gradient vector flow 
 
IGCIP ..................................................................... Image-guided cochlear implant programming 
 
IL ..................................................................... Image-based localization results for CI electrodes 
 
lCT ..................................................................................................... Limited Hounsfield Unit CT 
 
MD .................................................................................................................................. Med-El® 
 
MD1 ............................................................................................................ Med-El standard array 
 
MD2 .............................................................................................................. Med-El Flex28 array 
 
MD3 .............................................................................................................. Med-El Flex24 array 
 
MLE ............................................................................................ Maximum likelihood estimation 
 
MOD................................................................................................................................ Modiolus 
 
pCL ............................................................... Preliminary version of the centerline-based method 
 
pGP ....................................................... Preliminary version of graph-based path-finding method 
 
RCE ......................................................................................................... Rater's consistency error 
 
ROI ..................................................................................................................... Region of interest 
 
SG ........................................................................................................................... Spiral ganglion 
 
SL ............................................................................................... Snake-based localization method 
 
ST ............................................................................................................................. Scala tympani 
 
SV ............................................................................................................................ Scala vestibuli 
 
VOI .................................................................................................................... Volume of interest 
 
wASM ............................................................................................. Weighted active shape model 
 
µCT .................................................................................................. Micro computed tomography 
 
 
 
 



Chapter I

1 

 

 

INTRODUCTION 

1.1 Cochlear implant 

The cochlea is the auditory portion of the inner ear. As shown in Figure 1.1a, it is a spiral-

shaped cavity which makes 2.5 turns around its axis. In a natural hearing process, when the 

sound waves reach the inner ear, the malleus, the incus, and the stapes vibrate. These 

vibrations cause the oval window of cochlea to send pulsating fluid waves that stimulate the 

spiral ganglions (SG) in the cochlea [1]. The SG nerves are the nerve pathways that branch 

to the cochlea from the auditory nerves, which are tonotopically ordered by decreasing 

characteristic frequency along the length of the cochlea [2, 3] as shown in Figure 1.2a. A SG 

nerve is stimulated if the incoming sound contains the frequency associated with it. This 

stimulation generates hearing impulses and the hearing impulses are sent to the brain to 

induce a sense of hearing. Cochlear implants (CIs) are neural prosthetics that provide a sense 

of sound to people who experience severe to profound hearing loss [1]. As shown in Figure 

1.1b, a CI consists of two components: an external component and an internal component. 

The external component contains a microphone, a processor, and a transmitter, which are 

used to process sounds and send signals to the implanted electrodes. The internal component 

contains a CI electrode array, which receives the signals sent by the external component and 

bypasses the damaged cochlea and directly stimulates the SG nerves. During a CI surgery, a 

CI electrode array is blindly threaded into the cochlea by a surgeon. After the surgery, 

audiologists need to program the CI device by defining a series of CI instructions we refer 

to as the “MAP”. The tuning of the “MAP” involves a process that specifies stimulation 

levels for implanted CI electrodes based on the measurements of the recipient’s perceived  
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loudness, and a process that selects a frequency allocation table, which defines activation 

levels for individual electrodes when specific frequencies are detected in the sound. 

According to the frequency allocation table, the electrodes associated with the specific 

frequencies that are present in the incoming sound are activated in a CI-assisted hearing 

process. The electrode activation stimulates the SG nerves and provides a sense of hearing 

to the CI recipients [4]. CIs have achieved a significant successful rate in hearing restoration 

among users with an average postoperative sentence recognition rates over 70% correct for 

unilaterally implanted users and 80% correct for bilaterally implanted users [5, 6]. However, 

there are still a number of recipients suffering from a marginal experience in hearing 

restoration. 

Recent studies have demonstrated a correlation between hearing outcomes and the 

intra-cochlear locations of CI electrodes [7-12]. Competing stimulation, which is also known 

as “electrode interaction” at the neural level, is one major factor causing hearing outcomes 

to decline. Electrode interaction occurs when multiple CI electrodes stimulate the same 

auditory neural site (competing stimulation) [13, 14]. This can be avoided by having CI 

(a)  (b)  

Figure 1.1. Panel (a) [35] shows the anatomical structure of an inner ear. Panel (b) [1] shows the 
components of a cochlear implant device.  
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experts manually deactivate the CI electrodes causing the competing stimulations. To 

perform this deactivation process, the spatial relationship between the electrodes and the 

auditory neural sites needs to be determined before analyzing the possibility for  individual 

electrodes to cause electrode interaction [15, 16], as shown in Figure 1.2b. However, 

determining the spatial relationship between the CI electrodes and the intra-cochlear 

anatomy is a difficult task because (1) electrode arrays are blindly threaded into cochlea by 

surgeons during the surgeries. There is no knowledge about the final locations of the 

electrodes after the surgery, and  (2) it is hard to locate the intra-cochlear anatomy in the 

post-implantation CTs due to the image artifacts introduced by the metallic implants. Figure 

1.3a shows an example of the cropped volume of interest (VOI) pre-implantation CT image 

with intra-cochlear anatomy structures segmented. Figure 1.3b shows the post-implantation 

CT image of the same case shown in Figure 1.3a. As can be seen in Figure 1.3b, the metallic 

electrodes lead to relatively high intensities around the electrode contacts, which makes it 

possible to manually pick them out. However, the metallic electrodes also distort the 

intensity around the electrode array due to the beam hardening artifacts, which makes it 

difficult to segment the intra-cochlear anatomy structures directly from the post-operative 

CT images. In Figure 1.2b we show the CI electrodes activation patterns. When the optimal 

Figure 1.2. Visualization of CI electrode activation patterns. In (a), the scala tympani (an intracochlear 
cavity) is shown with the modiolar surface, which represents the interface between of the SG nerves and 
the intra-cochlear cavities and is color-coded with the tonotopic place frequencies of the SG in Hz. In (b), 
synthetic examples of stimulation patterns on the modiolar interface created by the implanted electrodes 
are shown in multiple colors to illustrate the concept of stimulation overlap. 

(b) (a)  
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electrode configuration is selected, some electrodes are deactivated in order to reduce 

electrode interactions. The traditional clinical workflow assumes all the electrodes are placed 

within the cochlea at predefined positions and the audiologists use a default frequency 

allocation table to program the CIs. This generates sub-optimal electrode configurations 

which negatively affects hearing outcomes. 

1.2 Image-guided cochlear implant programming 

With the goal of providing patient-specific electrode configurations for CI recipients to 

improve their hearing outcomes, a process referred to as image-guided cochlear implant 

programming (IGCIP) [17] has been developed. Figure 1.4 visualizes the workflow for this 

IGCIP process. It relies on a series of image processing techniques and consists of two main 

stages: the pre-operative stage and the post-operative stage.  

Figure 1.3.  Examples  of  CT images in the coronal view. Panel (a) shows the cropped volume of interest 
(VOI) containing the cochlea and the segmented intra-cochlear anatomy. Panel (b) shows the VOI with the 
automatically  localized and manually localized CI electrode array.  
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In the pre-operative stage of IGCIP, the intra-cochlear anatomy, i.e., the modiolus  

(MOD), the scala tympani (ST) and scala vestibuli (SV) are segmented using pre-

implantation CTs [18-22]. For patients who do not have pre-implantation CTs,  the intra-

cochlear anatomy is segmented using only the post-implantation CTs [21].  

In the post-operative stage, an expert manually localizes the positions of the 

electrodes in the post-implantation CTs. Then the post-implantation CT images, where the 

locations of the CI electrodes are identified, are registered to the pre-implantation CTs, where 

the intra-cochlear anatomical structures are segmented, to find the electrode array position 

relative to the auditory nerves. This permits to analyze electrode interaction patterns. Lastly, 

an experienced CI programmer is asked to select an electrode deactivation plan based on the 

analysis result. Studies  have shown that when the set of active electrodes is selected to 

Figure 1.4.  Workflow of IGCIP 
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reduce competing stimulations, hearing outcomes are improved and these improvements are 

statistically significant [23-25]. Although substantial progress has been made toward 

automating IGCIP [18-22, 26-30], several steps still require manual intervention, especially 

in the post-operative stage.  

In the remainder of this chapter, we present brief reviews on the methods that are 

currently used for IGCIP, we identify their limitations, and we introduce the contributions 

of this dissertation to the full automation of the programming process.   IGCIP involves three 

main phases that we will discussed: (1) intra-cochlear anatomy segmentation, (2) implanted 

CI electrodes localization, and (3) automatic electrode configuration selection.  

1.2.1. Intra-cochlear anatomy segmentation in CT 

Segmenting intra-cochlear anatomy in clinical pre-implantation CTs is difficult because the 

membrane that separates the two major cavities, i.e, the ST and SV, in the cochlea cannot be 

seen in conventional CTs. To solve this problem, an active shape model-based method has 

been developed [18].  In this method, models are created with µCT scans of the cochlea in 

which intra-cochlear structures are visible. The model is then fitted to the regions that are 

visible in the conventional CTs. It is subsequently used to estimate the position of the 

anatomical structures that are not visible in the CT scans. This method thus makes it possible 

to segment automatically the intra-cochlear anatomy in pre-implantation CTs, which is 

crucial for the following steps in IGCIP. Among all the intra-cochlear anatomy segmentation 

methods used for IGCIP, the method described in [18] is the only one that had been validated 

with µCTs prior to this work. It is also the most accurate intra-cochlear anatomy 

segmentation method developed at our institution. It has been used to evaluate three other 

methods detailed in [19], [21], and [22] that have been developed to segment the intra-
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cochlear anatomy when pre-operative images are not available.  

For CI recipients who do not have a pre-implantation CT, the method [18] introduced 

above cannot be directly applied. This is because in post-implantation CTs, image artifacts 

introduced by the electrode array obscure the intra-cochlear anatomy.  To solve this problem, 

techniques that permit segmenting intra-cochlear anatomy with only post-implantation CTs 

have neem developed. The method described in [19] is applied to post-implantation CTs of 

unilateral CI recipients. This method firstly segments the labyrinth of the normal 

contralateral ear. Then, it uses the position of the labyrinth and leverages the intra-subject 

inter-ear symmetry to segment the intra-cochlear anatomy of the implanted ear. However, 

for bilateral CI recipients or CI recipients who only have CTs of the implanted ear, i.e., the 

contralateral ear is not visible in the image, this method cannot be applied. The method 

described in [21] addresses this problem. It relies on the observation that parts of the inner 

ear that are not typically affected by the image artifacts can be used to infer the locations of 

the intra-cochlear anatomical structures that are affected. It firstly localizes the former parts. 

Then, it uses a library of segmented cochlear labyrinth shape to build an active shape model. 

With this active shape model, the labyrinth of the cochlea in the post-implantation CT is 

segmented. Then, another pre-defined active shape model of the ST, SV and MOD is used 

to segment those structures of interest (SOIs).  Recently, we have also explored the 

possibility to use the method developed for pre-operative images directly on post-operative 

images processed to reduce the electrode-induced artifacts. This approach relies on deep 

learning techniques to synthesize from a post-operative image a corresponding image in 

which the artifact is eliminated.  

 



7 

 

 

1.2.2. Cochlear implant electrode array segmentation in CT 

Localizing CI electrodes automatically in post-implantation CTs is also a challenging 

problem. The first challenge is that the image quality of the CTs that are acquired clinically 

is limited for our needs. First, the resolution of typical CT images is coarse (the voxel size 

in clinical scans is typically 0.2 x 0.2 x 0.3 mm3) compared to the typical size of the CI 

electrodes which is on the order of 0.3 x 0.3 x 0.1 mm3. Due to the partial volume effect, it 

is difficult to localize small-sized CI electrode array in clinical CTs. The images resolution 

is also coarse relative to the spacing between electrodes. This makes it difficult to separate 

the individual electrodes from the array, as shown in Figure 1.5. Second, because the 

electrodes are composed of radiodense platinum, beam hardening artifacts distort the 

intensities in the region around the electrode array, resulting in erroneous intensities assigned 

to voxels around the electrodes during reconstruction. This complicates the identification of 

individual electrodes in CTs. Third, even though the CI electrodes usually appear as high 

intensity voxel groups in CTs, it is difficult to select a threshold such that the thresholded 

image only contains voxels occupied by CI electrodes. This is because voxels occupied by 

wire lead, receiver coils, and cortical bones are usually assigned high intensity values too. A 

fourth challenge is the fact that the CT images are reconstructed with different algorithms. 

In an image reconstructed with an “extended” Hounsfield Unit (HU) range (eCT), the 

metallic structures are assigned higher intensity values than the cortical bones. In an image 

reconstructed with a “limited” HU range (lCT), the maximum intensity is limited to the 

intensity of cortical bones. Thus, in an eCT, the false positive voxels are usually occupied 

by the metallic wire lead as shown in Figure 1.5a. In a lCT, there are many more false 

positive voxels as shown in Figure 1.5c. The last challenge is the fact that several models of 

electrode arrays are manufactured and used. These have different specifications, e.g., number 
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of contacts, size of contacts, or spacing between contacts. As a results they appearance in 

CT images can be substantially different. The most common electrode arrays are 

manufactured by the three leading manufacturers, i.e., Med-El®   (MD) (Innsbruck, Austria), 

Advanced Bionics® (AB) (Valencia, California, USA), and Cochlear® (CO) (Sydney, New 

South Wales, Australia). Table 1.1 shows the specifications of the commonly used models 

of CI arrays. Figure 1.6 illustrates the geometric models of typical CI electrode arrays 

produced by the three manufacturers. Based on their inter-electrode spacing, we classify CI 

electrode arrays into two broad categories: closely-spaced and distantly-spaced arrays. 

Closely-spaced arrays are such that individual electrodes cannot be resolved in the images 

and the set of electrodes thus usually form a single connected region as shown in Figure 1.5b. 

When localizing a closely-spaced electrode array in a post-implantation CT, there is usually 

not enough intensity contrast to separate the individual electrodes. To estimate the locations 

of closely-spaced electrodes in CT images, human experts need first to manually delineate 

the centerline of the ROI that contains all the electrodes. Then, they use their experience and 

visual clues to determine the locations of the basal and apical electrodes on the centerline. 

Last, they fit a 3D model of the implanted array to the centerline to estimate the locations of 

individual electrodes. This manual localization method requires time and experience and is 

Thresholded ROI   Manual localization of electrodes 

Figure 1.5. Panels (a) and (b) show examples of distantly and closely-spaced arrays in eCTs. Panel (c) 
shows an example of a closely -spaced array in a lCT.  

(a) (b) (c) 
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Some contrasts No contrast 
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prone to error. As can be seen from Figure 1.5b, the intensity contrast may not be obvious 

around the most basal electrode. This leads to a mis-localization of the basal electrode (e.g.,  

a point on the wire lead) and this error is propagated to the whole array when fitting the 3D 

model. When localizing a distantly-spaced electrode array in a post-implantation CT, experts 

manually select a threshold to separate contacts from the rest of the images. Next they need 

to manually select the center of the each contact to which the 3D model is fitted. This is also 

a time-consuming process that requires expertise. 

Figure 1.6. Seven major types of CI electrode arrays provided by the three major manufacturers. Panel 
(a) presents four typical examples of distantly-spaced electrode arrays and panel (b) presents three typical 
examples of closely-spaced electrode arrays.

MedEl-Standard 
Advanced Bionics 1J Advanced Bionics Mid-Scala

Contour Advance (512) 

(a) 

(b) 

Advanced Bionics Helix

CI-422 (522) CI24RE-ST 

Inactive 
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Inactive 
electrodeInactive 

electrode

Inactive depth 
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2.4mm 1.1mm 2.5mm
3.0mm

0.95mm 3.0mm3.0mm 
0.85mm
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~0.85mm

~0.75mm 

Inactive 
electrodes

Table 1.1 Specifications of different FDA-approved CI electrode arrays  

Type Electrode array brand Total electrodes Electrode spacing distance (mm) 

Distantly
-spaced 

Med-El standard (MD1) 12 2.4 

Med-El Flex28 (MD2) 12 2.1 

Advanced Bionics 1J (AB1) 17 (1 inactive electrode) 1.1 and 2.5 
Advanced Bionics Mid-Scala (AB2) 17 (1 inactive electrode) 0.95 and 3.0 

Advanced Bionics Helix (AB3) 18 (2 inactive electrodes) 0.85 and 3.0 

Closely-
spaced 

Contour Advance (512) (CO1) 22 ~0.65 
CI-422 (522) (CO2) 22 ~0.90 

CI24RE-Straight (CO3) 32 (10 stiffening rings) ~0.75 
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Two preliminary methods designed for localizing distantly- and closely-spaced 

electrode arrays in post-implantation CTs have been described in [28] and [26], respectively. 

The method described in [28] relies on two graph-based path finding algorithms. Given a 

post-implantation CT of a CI recipient implanted with a distantly-spaced array with ܰ 

electrodes, this method first generates the volume of interest (VOI) that contains the cochlea 

by using a reference image. Then, it thresholds the VOI to generate regions of interest (ROIs) 

that are regions that potentially contain individual contacts. By applying a voxel thinning 

method [32] to the ROIs, it generates a set of candidates of interest (COIs) that represent the 

possible locations of the electrodes. The COIs are treated as nodes in a graph for the 

following two path-finding algorithms. By using two path-finding algorithms, it finds a 

fixed-length path connecting ܰ COIs together as the localization result. But, when applying 

this method to a large-scale dataset of clinical CTs, we found it to lack robustness. As part 

of this dissertation, we have proposed several improvements that have substantially 

increased this earlier method.  

The method described in [26] is a snake-based method driven by the Gradient Vector 

Flow (GVF) [33-34] designed to localize contacts in closely-spaced arrays. It is based on the 

assumption that the centerline of the electrode corresponds to the medial axis of the artifact 

region because, as can be seen from Figure 1.5b, the metallic artifact is much brighter than 

the surrounding anatomy. Given a post-implantation CT of a CI recipient implanted with a 

closely-spaced array, this method localizes the centerline of the electrode array and then fits 

a 3D model of the implanted array to the extracted centerline to localize individual contacts. 

To initialize the centerline initialization algorithm, a curve representing the typical locations 

for a cochlear implant is defined in a reference image. This curve is then projected from the 
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reference image to the target post-implantation image using non-rigid registration. The 

initialized curve is updated with a snake-based method that uses GVF as the external force. 

Again, when applying this method to large data sets, we found the centerline initialization to 

be too coarse because the electrode array can be inserted much deeper or shallower than the 

manually defined curve in the reference image. This results in large errors in the initialization 

step that are propagated to the following steps. We also found that the GVF was not always 

capable of driving the initialized curve to the centerline of the implanted array. As part of 

this dissertation, we have developed and evaluated contact localization methods for closely-

space electrode arrays that substantially outperform earlier ones. 

1.2.3. Automatic electrode configuration selection for IGCIP 

As mentioned in Section 1.2, knowledge of the spatial relationship between the electrodes 

and the SG nerves is crucial for the CI programmer to be able to select the subset of active 

electrodes, i.e., the electrode configuration. In order to permit the analysis this spatial 

relationship a visualization method called electrode distance-vs.-frequency (DVF) curves 

[17] has been developed. The DVF curves are 2D plots which capture the patient-specific 

3D spatial relationship between the individual electrode and the SG nerve as is shown in 

Figure 1b. Figure 1.7 shows an example of DVF curves for 7 electrodes. The horizontal axis 
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Figure 1.7. Visualization of DVF curves. (a) shows an example of a combination of the DVF curves 
formed by 7 electrodes. Each single curve represents the distance from the corresponding electrode to the 
frequency mapped sites along the length of the modiolus. (b) shows the DVF curves after electrode 
configuration adjustment.  
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represents the positions along the length of the modiolus in terms of the characteristic 

frequencies of the SG nerves. A number is assigned to each DVF curve to represent the 

corresponding electrode. The height of each DVF curve on the vertical axis indicates the 

distance from the corresponding electrode to the frequency-mapped modiolar surface. Each 

DVF curve is constructed by finding the distance to the corresponding electrode from the 

frequency-mapped neural activation sites on the modiolar surface. As can be seen from 

Figure 1.7a, electrode 3 is approximately 1mm from the modiolar surface around the 1kHz 

characteristic frequency. The current assumption in IGCIP is that if one electrode’s DVF 

curve is not the closest DVF curve in the region around its minimum, it is likely that it is 

interfering with another electrode. As shown in Figure 1.7a, the minimum of the DVF curve 

of electrode 4 falls above the DVF curve of electrode 3, which indicates that electrode 4 is 

likely to stimulate the same neural region as electrode 3. Furthermore, even if the minimum 

of the DVF curve of electrode 6 falls below the other DVF curves, its depth of concavity 

relative to the minimum envelope of the neighboring DVF curves is small. This also indicates 

a high possibility for electrode 6 to interfere with electrode 5 and 7. The strategy used by the 

expert when selecting an electrode configuration is to keep active as many electrodes as 

possible that are not likely to cause stimulation overlap. Thus, in this case, electrodes 4 and 

6 would be deactivated, as shown in Figure 1.7b. 

 When manually selecting the electrode configuration, the expert makes his/her 

decision using a set of heuristics based on a series of DVF-based features. Automating the 

electrode configuration process is challenging because algorithms have to be developed to 

compute the DVF-based features and because the relative importance of these features in the 

expert’s decision process need to be estimated.  One contribution of this dissertation is an 

automatic method capable of producing deactivation plans.  
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1.3 Sensitivity of IGCIP 

As discussed in Section 1.2, IGCIP relies on an intra-cochlear anatomy segmentation method 

and electrode localization techniques to analyze the patient-specific spatial relationship 

between the implanted CI electrodes and the auditory nerves. This permits to provide patient-

customized electrode deactivation configurations. The accuracy of each method could affect 

the shape of the DVF curves and the generation of the deactivation configurations. Among 

the intra-cochlear anatomy segmentation methods, only the method in [18] has been 

validated with µCTs, from which an anatomical ground truth can be created. The methods 

in [19], [21], and [22] were validated by comparing them to the method in [18]. Electrode 

localization methods were validated only by comparing automatic and manual localization 

in clinical post-operative CT scans. Manual localization is an imperfect ground truth 

because: (1) as discussed above the clinical CTs have a coarse resolution (typical voxel size 

0.2 x 0.2 x 0.3mm3) compared to the electrode sizes (typical size 0.2 x 0.2 x 0.1mm3). When 

localizing small-sized objects in clinical CTs, partial volume artifacts make it difficult to 

identify the center of the electrodes;  (2) beam hardening artifacts in clinical CTs also make 

it difficult to localize the centers of the electrodes because the voxels around those positions 

are also assigned high intensity. Thus, to better characterize the performance of IGCIP and 

to fully understand the limitations of IGCIP, a thorough validation study needs to be 

completed with a better ground truth dataset. This has been accomplished as part of this 

dissertation. 

1.4 Goals and Contributions of the Dissertation 

The goals of this dissertation are to fully automate the image processing techniques needed 

in the post-operative stage of IGCIP and to perform a thorough analysis of (a) the robustness 
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of the automatic image processing techniques used in IGCIP and (b) assess the sensitivity of 

the IGCIP process as a whole to individual components. The automatic methods that have 

been developed include the automatic localization of both closely- and distantly-spaced CI 

electrode arrays in post-implantation CTs and the automatic selection of electrode 

configurations based on the stimulation patterns. Together with the existing automatic 

techniques developed for IGCIP, the proposed automatic methods enable an end-to-end 

IGCIP process that takes pre- and post-implantation CT images as input and produces a 

patient-customized electrode configuration as output.  

 The specific contributions of this dissertation are summarized below:  

Chapter II presents a snake-based automatic method which aims at extracting the 

centerline of the implanted array in CTs. It is an improvement on the method presented in 

[26] designed for localizing closely-spaced array in post-implantation CTs. This method is 

validated on 15 eCTs of CI recipients implanted with CO1 arrays.  

Chapter III presents an automatic graph-based method for localizing distantly-

spaced CI electrode arrays in clinical CT with sub-voxel accuracy.  This method is an 

extension of the method described in [28] and is validated on a large scale dataset of clinical 

CTs of CI recipients implanted with various types of distantly-spaced arrays. Its robustness 

with respect to several acquisition parameters (the HU range, resolution, dose, and type of 

the implanted arrays) is further validated on a set of phantom CTs acquired with different 

acquisition parameters. The method is the state of art technique for localizing distantly-

spaced electrode arrays in clinical CTs. 

Chapter IV proposes an automatic centerline-based method for localizing closely-

spaced electrode arrays in clinical CTs. This method is an extension of the method described 

in Chapter II and is a more generic method for closely-spaced array localization. It is 



15 

 

 

validated on a large scale dataset of clinical CTs of CI recipients implanted with CO1, CO2 

and CO3 arrays. This method is the state of art technique for localizing closely-spaced 

electrode arrays in clinical CTs. 

Chapter V presents an automatic electrode configuration selection method based on 

the spatial relationship generated by the anatomy segmentation and electrode localization 

procedures used in IGCIP. This method is trained on 36 subjects implanted with electrode 

arrays produced by the three major manufacturers. It is further validated on a dataset of 60 

subjects and the validation study results are evaluated by two experts in electrode 

deactivation configuration. This is the first automatic method that is capable of emulating 

human experts for selecting electrode configurations.  

Chapter VI creates a gold-standard ground truth dataset for electrode localization 

and intra-cochlear anatomy segmentation that relies on pre- and post-implantation µCTs of 

35 temporal bone specimens. The gold-standard ground truth dataset is used to rigorously 

evaluate the accuracy of the intra-cochlear anatomy segmentation methods [18], [21], and 

[22], and the accuracy of the electrode localization method described in Chapter III. The 

method described in [19] is not evaluated with this gold standard because the specimens do 

not have a normal contralateral ear. The methods described in Chapter II and IV are not 

evaluated because the electrode arrays implanted in the specimens are only distantly-spaced 

arrays. We also use the gold-standard ground truth dataset to evaluate the sensitivity of the 

IGCIP process as a whole to each step. This is the first thorough sensitivity analysis of IGCIP 

with respect to errors introduced by automatic image processing techniques. The dataset and 

the framework used in in this study can be extended to other validation studies.   

Chapter VII provides the summary of the work and discusses possible future work.
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Abstract 

Cochlear Implants (CI) are surgically implanted neural prosthetic devices used to treat 

severe-to-profound hearing loss. Recent studies have suggested that hearing outcomes with 

CIs are correlated with the location where individual electrodes in the implanted electrode 

array are placed, but techniques proposed for determining electrode location have been too 

coarse and labor intensive to permit detailed analysis on large numbers of datasets. In this 

paper, we present a fully automatic snake-based method for accurately localizing CI 

electrodes in clinical post-implantation CTs. Our results show that average electrode 

localization errors with the method are 0.21 millimeters. These results indicate that our 

method could be used in future large scale studies to analyze the relationship between 

electrode position and hearing outcome, which potentially could lead to technological 

advances that improve hearing outcomes with CIs. 

2.1. Introduction 

Cochlear Implants (CI) are surgically implanted neural prosthetic devices used to treat 

severe-to-profound hearing loss. In CI surgery, an electrode array is threaded into the 

cochlea. After surgery, a processor worn behind the ear sends signals to the implanted 

electrodes, which activate auditory nerve pathways inducing the sensation of hearing. 

Although CIs have been remarkably successful, a significant number of CI recipients 

experience marginal hearing restoration. Recent research has suggested that hearing 

outcomes with CIs are correlated with the location where the electrodes are placed [1-5]. 

However, without post-implantation imaging, the position of the electrodes is generally 
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unknown since the array is blindly threaded into a small opening of the cochlea during 

surgery, with its insertion path guided only by the walls of the spiral-shaped intra-cochlear 

cavities. 

In efforts to analyze the relationship between electrode location and outcome, several 

groups have proposed coarse electrode position measurements that can be visually assessed 

in CT images, e.g., whether all electrodes are within one of the two principal intra-cochlear 

cavities, depth of insertion of the first and last electrode, etc. [1-5]. Studies using these 

techniques have indicated that placement and outcome are indeed correlated, but it has not 

been possible to determine specific factors that affect outcome because dataset size was 

limited and because the electrode positions were never precisely quantified with these 

techniques. One factor that has limited the size of the datasets in the studies is the amount of 

manual effort that must be undertaken to analyze the images. Our group has shown that 

knowledge of electrode location can be used to select better CI processor settings to 

significantly improve hearing out-comes compared to standard clinical results [6]. In the 

current work, we propose a fully automatic approach for localizing CI electrodes in CT 

images. An electrode localization approach that is automatic and accurate would be 

significant as it could facilitate precise quantification of electrode position on large numbers 

Figure 2.1. Panel (a) shows a portion of an electrode array in an axial slice of a CT. Black dots indicate 
locations of individual electrodes. An isocontour around high intensity voxels is shown in red. Panel (b) 
shows a 3D isosurface of an electrode array with a manually determined centerline in purple. The blue curve 
is the coarse approximation to the centerline determined using our automatic initialization process discussed 
in Section 2.2.2. 

 (a)  (b) 
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of datasets to better analyze the relationship between electrode position and outcome, which 

may lead to advances in implant design or surgical techniques. It could also automate the 

electrode localization process in systems designed to determine patient-customized CI 

settings such as the one proposed in [6], reducing the technical expertise required to use such 

technologies and facilitating transition to large scale clinical use. 

Figure 2.1 shows an example of an electrode array in a CT slice. Localizing the 

electrodes in CT images is difficult because (a), as seen in the figure, the beam hardening 

artifacts caused by the metallic electrodes distort intensities in the region around the 

electrode array, leading to incorrect assignment of very high intensities during image 

reconstruction to nearby voxels that are not occupied by metal, thus making it difficult to 

segment electrodes via thresholding; and (b) the individual electrodes are so close that there 

is no contrast between them in standard CT images, even when acquired at very fine slice 

thickness and resolution. Our solution is to identify the centerline of the voxels occupied by 

the CI electrodes using a snake-based localization approach [7] and then to fit a 3D model 

of the electrode array to the extracted centerline. This is a similar approach to that which we 

proposed in [8]. However, the technique we presented in that paper leads to inaccurate results 

around the first and last electrodes due to curve shrinkage. This shrinking phenomenon is 

caused by the use of an intensity-based attraction function since the image intensity decreases 

mildly at the array endpoints relative to the rest of the array. Further, we found that the 

“forward energy,” an external energy term designed to counteract endpoint shrinking errors 

by expanding the curve, became unstable and led to failures when applying the technique on 

clinical image datasets. As will be described in the following section, in this work, we 

propose a new technique to counteract the shrinking effect by localizing and fixing the 

endpoints prior to snake optimization. Our results, presented and discussed in Sections 2.3 
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and 2.4, will show that this fully automatic approach can reliably be applied to clinical 

images. 

2.2. Methods 

The automatic segmentation method we propose is outlined in Figure 2.2. As can be seen in 

the figure, the first step (1) involves coarsely estimating the location of the region of interest 

(ROI), which is a local region ~1 cm3 around the cochlea. This is done through registration 

with a known volume. The subsequent processing steps are then performed solely within the 

ROI. The next step (2) is to initialize our electrode array centerline localization. This is done 

by segmenting via thresholding the region of the image that contains the metallic electrodes 

and then computing the initialized centerline as the medial axis of the result. The 

thresholding step will produce a segmentation that includes electrode voxels as well as those 

that appear bright due to partial volume or beam hardening artifacts, but the medial axis 

extraction step is able to reliably and coarsely approximate the centerline of the electrode 

array. After initialization, the next steps (3-4) are to refine the centerline using a snake-based 

optimization approach [7]. In the third step, the curve endpoints are first localized within the 

neighborhood of their initialized positions using an endpoint detection filter we have 

designed. In the fourth step, the endpoints are fixed and the points in the rest of the curve are 

Artifact Region  
& Medial Axis line 

End Points 

Figure 2.2. Flow chart of the electrode array centerline localization process 
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optimized. This is done using a snake with its external energy defined using the output of a 

vesselness filter that is applied to the original image to enhance the centerline of the electrode 

array [9]. By detecting and fixing the endpoints prior to snake optimization, curve shrinking 

effects discussed in the previous section are eliminated. The final step (5) is a straightforward 

resampling of the extracted centerline to determine individual electrode locations using a-

priori knowledge about the distance between neighboring electrodes. The following 

subsections detail this approach. 

2.2.1. Data 

The images in our dataset include images from 15 subjects acquired with a Xoran xCAT®. 

The images have voxel size 0.4 x 0.4 x 0.4 mm3. As a pre-processing step, an VOI bounding 

the region around the electrode array in each target image is automatically localized by using 

a mutual information-based affine registration computed between the target image and a 

known reference image [10]. The ROI is then automatically cropped from the original target 

image and all subsequent steps are performed on the cropped image. Each cropped image 

includes approximately 30 ൈ 30 ൈ	30 mm3. Each subject in this study was implanted with a 

Cochlear™ Contour Advance®. Thus, the methods presented are focused on segmenting this 

type of electrode array but could prove in future studies to be applicable to other implant 

models.   

2.2.2. Centerline Initialization 

The centerline is initialized by thresholding the region of the image that includes the 

electrode array and computing the medial axis of the result. We determine the threshold 

dynamically using a maximum likelihood estimation-based (MLE) threshold selection 

approach [11] since the best threshold can vary across subjects due to the relatively low 
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signal-to-noise ratio (SNR) achieved using the low-dose acquisition protocols on a flat panel 

scanner. We would also expect that a dynamic threshold would account for differences 

between scanners, but this was not tested in this study. The MLE approach we have designed 

is to fit a model, defined as the sum of two Gaussian distributions, to the VOI image 

histogram and compute a threshold based on this result. One distribution ܩሺߤଵ,  ଵሻߪ

corresponds to soft tissue and another ܩሺߤଶ,  ଶሻ corresponds to bony tissue. While air andߪ

metal are present in the VOI image, their relatively small volumes contribute little to the 

shape of the histogram, and thus these intensity classes are ignored in the histogram fitting. 

Once the distributions are estimated, the threshold is selected based on the upper tail of the 

Gaussian that models the intensity distribution of bone to be 2ߤ ൅ 2ߪ5 , which was 

empirically determined to lead to good results. We chose to use this MLE-based approach, 

rather than a simpler percentile-based approach, because this approach is not sensitive to 

differences in VOI volume or differences in volume of metal present in the VOI, which can 

vary across subjects. After a threshold is determined, the medial axis of the resulting 

thresholded volume is computed using the medial axis extraction techniques presented by 

Bouix et al. [12]. The resulting curve provides a close but coarse approximation to the 

centerline of the electrode array. An example result of this process is shown in blue in Figure 

2.1b. 

2.2.3. Centerline Refinement 

After the curve is initialized, we refine its position using a snake-based algorithm. The 

traditional snake algorithm localizes a contour by minimizing the energy equation: 

ܧ ൌ ׬ ሻ‖ଶݏᇱሺݔ‖ଵߩ ൅ ሻ‖ଶݏᇱᇱሺݔ‖ଶߩ ൅ ሻ൯ݏሺݔ௘௫௧൫ܧ ݏ݀
ଵ
଴ , (2.1)

where ݔሺݏሻ is the position of the parameterized curve at ߩ ,ݏଵ and ߩଶ are the tension and 
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rigidity weighting terms, and ܧ௘௫௧ is the external energy term. In our experiments, we set 

ଵߩ ൌ 0.03  and ߩଶ ൌ 0.08  as these values were empirically determined to lead to good 

results, and we define ܧ௘௫௧ to be the output of a vesselness response filter applied to the ROI 

image [9]. We apply the filter at scales ߪ ൌ ሼ0.08, 0.16,… ,0.8ሽ mm and set the other internal 

parameters to be ߙ ൌ 0.5, ߚ  ൌ 0.5,	  and ߛ ൌ 500 . Vesselness response, rather than, for 

example, a direct function of image intensity is used as an external energy because the high 

intensity voxels in the region around the electrode array can be noisy, and voxels with 

intensity that is locally maximal often do not fall on the centerline of the homogeneous bright 

region in the image (see Figure 2.1). Since the electrode array has the appearance of a tubular 

structure, a vesselness response filter is a natural choice to enhance the centerline of the 

electrode array. 

The robustness of the vesselness filter in detecting the centerline of the electrode 

array is high along the length of the array but diminishes at the endpoints. Thus, with no 

additional information, optimizing the snake would result in a shrinking of the curve at the 

endpoints. To address this, we determine the endpoint positions using an endpoint detection 

filter and fix them during the snake optimization. The endpoint detection filter we have 

constructed, ܯ௩ොሺ࣓ሻ, is a match filter. For the sake of simplicity, we define ܯ௩ොሺ࣓ሻ such that 

࣓ ൌ ૙ lies at the center of the filter (see Figure 2.3a). We also orient the filter using ݒො, which 

represents the orientation of the centerline of the electrode array at the endpoint. To define 

 ௩ොሺ࣓ሻ as′ܯ ௩ොሺ࣓ሻ, we first defineܯ

௩ොሺ࣓ሻ′ܯ ൌ ൜
ଶݎ െ ‖࣓‖ଶ ࣓ ∙ ොݒ ൒ 0

ଶݎ െ ‖࣓ െ ሺ࣓ ∙ ො‖ଶݒොሻݒ ࣓ ∙ ොݒ ൏ 0
 , (2.2)

This equation defines ܯ′௩ොሺ࣓ሻ such that when ∙ ොݒ ൒ 0 , i.e., in the ݒො direction from the origin 

as seen in Figure 3a, ܯ′௩ොሺ࣓ሻ matches a semispherical structure, whereas in the opposite 
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direction where ࣓ ∙ ොݒ ൏ 0, the filter matches a tubular structure. The radius, ݎ, of the sphere 

and tube are set to be 0.3 mm, which is approximately the radius of the electrode arrays in 

our images. The final form of the filter is defined as ܯ௩ොሺ࣓ሻ ൌ ௩ොሺ࣓ሻ′ܯ	 ቀߩଷܪ൫ܯ′௩ොሺ࣓ሻ൯ ൅

ሺ1 െ ଷߩ ሺ∙ሻ is the Heaviside function andܪ ௩ොሺ࣓ሻ൯ቁ, where′ܯ൫െܪଷሻߩ ൌ 0.97 is a parameter 

we chose empirically to optimize results and tunes the weighting between the fore- and 

background regions of the filter.  

To find each endpoint using this filter, we set ݒො to be the orientation of the central 

axis of the electrode array as estimated by the vesselness response at ࢞௘௜ , the location that the 

endpoint was initialized using the methods described in Section 2.2, and then compute the 

endpoint location ࢞௘ as: 

࢞௘ ൌ argmax࢞∈ே൫࢞೐೔ ൯ ∑ ሺ࢟ሻ࢟∈௅ሺ࢞ሻܫ ௩ොሺ࢟ܯ െ ࢞ሻ , (2.3)

ܰ൫࢞௘௜ ൯ is a neighborhood function that we define as the set of 16 x 16 x 16 points uniformly 

sampled in a 1.2 x 1.2 x 1.2 mm3 box surrounding ࢞௘௜  ሺ࢞ሻ is aܮ is the ROI image, and ܫ ,

neighborhood function defined as the set of 21 x 21 x 21 points uniformly sampled in a 1.2 

x 1.2 x 1.2 mm3 box oriented in the ݒො direction surrounding ࢞. In summary, Eqn. (2.3) selects 

the endpoint as the point in a local region around the initial endpoint that maximizes the 

Figure 2.3. (a) shows a slice of ܯ′௩ොሺ࣓ሻ with ܯ′௩ොሺ࣓ሻ ൌ 0 isocontour in black and ࣓ ൌ ૙ shown as white 
dot. (b) shows the 3D isosurface of ܯ′௩ොሺ࣓ሻ (white) aligned with the tip of an electrode array (green). 
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response of the endpoint enhancement filter, and the filter response should be maximized 

when it is aligned with and centered on the tip of the electrode array. 

After the endpoints are determined, they are fixed and the positions of the remaining 

points in our curve are optimized by iterating the standard snake update equations [7] until 

convergence or until reaching 100 iterations. Once the final curve is localized it is 

straightforward to resample the curve to identify the location of individual electrodes based 

on a priori knowledge of the distance between electrodes in the array. 

2.2.4. Validation 

We quantified the accuracy of our automatic electrode array extraction technique in a dataset 

of fifteen head CT images by comparing centerlines computed automatically using the 

proposed technique (PT) to ground truth (GT) curves, which were created by averaging of 

three sets of curves independently defined by an expert. Metrics used to characterize distance 

between two curves include mean and max curve distance (mean and max of the distances 

computed from each point on curve 1 to the closest point on curve 2 and vice versa), mean 

and max electrode distance (distance between each electrode location in curve 1 to the 

corresponding electrode in curve 2 after determining electrode locations along the curves as 

described in Section 2.2.3), and distance between corresponding endpoints in curves 1 and 

2.  To show the benefit our matched filter provides, we also report quantitative errors that 

result from computing the curve when (a) endpoints are fixed at their initialization position 

without the matched filter update (NM) and (b) when the endpoints are not fixed but 

optimized with the snake method similarly to the rest of curve (NF). 

To assess whether the PT produces acceptable results, we conducted a second study 

in which an expert was asked to select between the GT and PT endpoints, blind to their 
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identity. We focused on the endpoints because, as our results will show, this is the area in 

which there are the largest discrepancies between GT and PT curves. 

2.3. Results 

The quantitative comparisons between the GT and PT centerlines for all the datasets are 

shown in Figure 4 in red, and Figure 5 shows visualizations of two cases. In Figure 4, for 

each barplot, the height of the bars, crosses, and black whiskers denote the mean, outlier 

data, and maximum non-outlier value. Data are considered outliers if they fall above ݍଷ ൅

1.5ሺݍଷ െ  ଵ are the 25th and 75th percentiles of the dataset. As can be seenݍ ଷ andݍ ଵሻ, whereݍ

in the figure, our proposed method results in mean curve errors of 0.09 mm (0.13 of a voxel 

diagonal) and average maximum curve errors of 0.25 mm (0.36 of a voxel diagonal) with an 

overall maximum of 0.80 mm. Our method extracts a much more accurate centerline 

compared to prior work in which we achieved mean curve errors of 0.2 millimeters [8]. 

Further, the mean electrode localization error with our currently proposed method is only 

Figure 2.4. Barplots of mean (a) and max (c) curve distances; mean (b) and max (d) 
electrode distances; and tip (e) and base (f) endpoint distances.  
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0.21 mm. The utility of fixing the endpoints and optimizing them with our matched filter is 

also apparent in Figure 2.4 as NF and NM lead to much larger electrode and endpoint 

localization errors. This difference is not as pronounced in mean curve errors since curve 

distances along the length of the curve are not sensitive to errors at the endpoints. The mean 

tip and base endpoint errors with PT are 0.19 mm and 0.2 mm. These quantities are slightly 

higher for NM and substantially higher for NF. The outlier values for PT that fall above 0.6 

mm all correspond to the case shown in Figure 2.5b, where the tip of the array was localized 

incorrectly due to lower than normal SNR in the image. We also show in purple in Figure 4 

rater consistency errors computed among the three sets of curves manually delineated by an 

expert. We find mean and overall maximum consistency curve errors of 0.09 and 0.35 mm, 

suggesting that except for the outlier case, errors in our PT are close to the level of rater 

repeatability.  

In the expert endpoint selection test, among the 30 endpoints in the 15 cases, 8 PT 

endpoints were judged to be equally accurate to GT, and 29 of 30 PT endpoints were judged 

to be acceptable. The lone exception was the tip endpoint shown in Figure 2.5b. 

2.4. Conclusion 

In this work, we have designed an automatic cochlear implant electrode array centerline 

Figure. 2.5. 3D renderings of GT (color-coded with curve distance in mm) and PT (shown in transparent 
black) curves for our best (a) and worst (b) case errors. Points indicate electrode locations along curves 
determined by distance priors. 
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extraction method. Our experiments show that our method is highly accurate, even when 

applied to clinical images. Compared to our prior method reported in [8], the method we 

propose here achieves results with errors that are half as large on average. This improvement 

is due in large part to the use of our matched filter, which leads to better endpoint 

localization. Our approach requires approximately 3 minutes of computation time on a 

standard PC. 

Our method did result in unacceptably large errors for one of fifteen images. Future 

studies will involve developing techniques to detect and handle such errors. Additionally, 

we plan to test our method with images acquired with different scanners and of subjects with 

different implant models. We also plan to apply our method to large numbers of datasets to 

facilitate studying how the location of individual electrodes correlates with outcomes with 

the goal of developing technologies that can improve hearing outcomes with CIs.  
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Abstract 

Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who 

experience severe to profound hearing loss. Recent studies have demonstrated a correlation 

between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been 

conducting investigations on this correlation and has been developing an image-guided 

cochlear implant programming (IGCIP) system to program CI devices to improve hearing 

outcomes. One crucial step that has not been automated in IGCIP is the localization of CI 

electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize 

well on large-scale dataset of clinical CTs implanted with different brands of CI arrays. In 

this paper, we propose a novel method for localizing different brands of CI electrodes in 

clinical CTs. Our method firstly generates the candidate electrode positions at sub-voxel 

resolution in a whole head CT. Then, we use a graph-based path-finding algorithm to find a 

fixed-length path that consists of a subset of the candidates as the localization result. 

Validation on a large-scale dataset of clinical CTs shows that our proposed method 

outperforms the state-of-art CI electrode localization methods and achieves a mean error of 

0.12mm. This represents a crucial step in translating IGCIP from the laboratory to large-

scale clinical use. 

3.1 Introduction 
 
Cochlear implants (CIs) are surgically implanted devices for treating severe-to-profound 

hearing loss [11]. A CI device consists of an external and an internal component. The 

external component contains a microphone, a processor, and a transmitter. The transmitter 
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is used to send signals to a receiver coil that is under the skin and connects via a wire lead to 

an electrode array implanted within the cochlea. The implanted CI electrodes then stimulate 

the spiral ganglion (SG) nerves to induce a sense of hearing. The SG nerves are tonotopically 

ordered by decreasing characteristic frequency along the length of the cochlea [10, 22]) as 

shown in Figure 3.1. A SG nerve is stimulated when the frequency associated with it exists 

in the incoming sound [26]. After the CI surgery, an audiologist needs to program the CI. 

This includes the selection of the stimulation level of each individual electrode based on 

perceived loudness from the patient and the selection of a frequency allocation table, which 

determines which individual electrodes are activated when the incoming sound contains 

specific frequencies. CIs lead to remarkable success in hearing restoration for the vast 

majority of recipients with average post-implantation sentence recognition rates over 70% 

correct for unilaterally implanted users and 80% correct for bilaterally implanted users, 

respectively [8-9]. However, there are a significant number of users experiencing only 

marginal benefits. Recent studies have demonstrated that there exists a correlation between 

hearing outcomes and the intra-cochlear locations of CI electrodes [1, 20, 21, 23, 24, 25]. 

One factor that negatively affects hearing outcomes is electrode interaction (or channel 

(b)  (a)  

Figure 3.1. Visualization of the intra-cochlear anatomy and CI electrode array. Panel (a) shows the scala 
tympani in red and the modiolus in green. Modiolus is the interface between the auditory nerves of the SG 
and the intra-cochlear cavities. Panel (b) illustrates the stimulation patterns produced by electrodes on one 
array. The modiolar surface is color-coded with the tonotopic place frequencies of the SG in Hz.  
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interaction). Electrode interaction leads to nerve groups being activated in response to 

multiple frequency bands [2, 7]. Electrode interaction can be alleviated by deactivating the 

electrodes that cause electrode interaction [13]. In Figure 3.1 we show the CI electrodes and 

their activation patterns for a subject. As can be seen, by deactivating some electrodes 

(labelled with red crosses), electrode interaction can be reduced.   

Our group has developed methods for image-guided cochlear implant programming 

(IGCIP) [14] to assist audiologists with CI programming. IGCIP uses image processing 

techniques we have developed to analyze the spatial relationship between the CI electrodes 

and auditory neural sites for each individual recipients in order to estimate the occurrence of 

electrode interaction and select electrodes to deactivate to alleviate interactions. The major 

steps consist of (1) the segmentation of the intra-cochlear anatomy, [15, 17, 18, 19], (2) the 

localization of the implanted CI electrodes [28, 12, 29], (3) the analysis of the spatial 

relationship between the CI electrodes and the neural interface [14], and (4) the automatic 

electrode configuration selection [30-31]. Clinical studies have shown that hearing outcomes 

are significantly improved when the CI electrode deactivation plans generated by IGCIP are 

adopted [13, 32]. However, because the electrode localization procedure in IGCIP is still not 

fully automated, it is difficult to translate IGCIP from the laboratory to large scale clinical 

use.   

Automating the electrode localization procedure is challenging. The first challenge 

is that the image quality of the clinical CTs is limited due to the current CT scanners. For 

instance, the resolution of clinical CT images is usually coarse (resolution obtained 

nowadays is typically 0.2 x 0.2 x 0.3 mm3) compared to the typical size of the CI electrodes 

which is on the order of 0.3 x 0.3 x 0.1 mm3. Due to the partial volume effects, it is difficult 

to localize small-sized CI electrode array in clinical CTs. The images resolution is also coarse 
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relative to the spacing between electrodes. This makes it difficult to separate the individual 

electrodes from the array, as shown in Figure 3.2. Further, because the electrodes are 

composed of radiodense platinum, beam hardening artifacts distort the intensities in the 

region around the electrode array, resulting in erroneous intensities assigned to voxels around 

the electrodes during reconstruction. This complicates the identification of individual 

electrodes in CTs. The second challenge is that even though the CI electrodes usually appear 

as high intensity voxel groups in CTs, it is difficult to select a threshold such that the 

thresholded image only contains voxels occupied by CI electrodes because voxels occupied 

by wire lead, receiver coils, and cortical bones are usually assigned high intensity values too. 

In this article, the non-electrode voxels with intensity values higher than a selected threshold 

are defined as “false positive” voxels. CT images are also reconstructed with different 

algorithms. In an image reconstructed with an “extended” Hounsfield Unit (HU) range 

(eCT), the metallic structures are assigned higher intensity values than the cortical bones. In 

an image reconstructed with a “limited” HU range (lCT), the maximum intensity is limited 

to the intensity of cortical bones. Thus, in an eCT, the false positive voxels are usually 

occupied by the metallic wire lead as shown in Figure 3.2a. In a lCT, there are many more 

false positive voxels as shown in Figure 3.2c. The third challenge is that there exist several 

Figure 3.2. Panels (a) and  (b) show examples of distantly and closely-spaced arrays in eCTs. Panel (c) 
shows an example of a distantly-spaced array in a lCT.  
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models of electrode arrays, which lead to various intensity-based features in clinical CTs.  

The widely used models of electrode arrays made by the three leading manufacturers are: 

Med-El® (MD) (Innsbruck, Austria), Advanced Bionics® (AB) (Valencia, California, USA), 

and Cochlear® (CO) (Sydney, New South Wales, Australia). Arrays differ by the number of 

electrodes, the size of electrodes, and the spacing between electrodes. Based on inter-

electrode spacing, we classify CI electrode arrays into two broad categories: Closely-spaced 

and Distantly-spaced arrays. Closely-spaced arrays are such that individual electrodes cannot 

be resolved in the images and the set of electrodes thus form a single connected region as 

shown in Figure 3.2b. We have proposed a centerline-based snake-based localization method 

[28] to localize individual electrodes in this type of array. This method fails for distantly-

spaced arrays because electrodes do not form a single connected region as shown in Figure 

3.2a. Thus, to fully automate IGCIP, we need an automatic method to localize distantly-

spaced electrode arrays in clinical CTs. 

Other groups have investigated methods for localizing CI electrodes in CTs [33-34]. 

In [33], Bennink et al. proposed a method for localizing closely-spaced arrays by using the 

a-priori knowledge of the CI array geometry. This method requires a manual initialization 

on the whole head CT by defining a bounding box that includes all the electrode contacts for 

the subsequent CI array centerline localization algorithm. Then, it uses a curve tracking 

method and an intensity profile matching algorithm to localize individual electrodes on the 

array. However, the manual definition of the bounding box requires expertise in recognizing 

the intensity-based features of the endpoints of the implanted CI array and can also be 

complicated due to the existence of the false positive voxels on the wire lead. Due to the 

requirement for manual input, this method could not be directly applied for fully automatic 

IGCIP. Further, the curve tracking and intensity profile matching algorithms in this method 
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would also need to be modified to be used for localizing distantly-spaced arrays. The curve 

tracking algorithm only aims to find the voxels with maximum intensity in a small local 

search range. When localizing distantly-spaced arrays, the local search range would need to 

be set larger, however this could lead to erroneous results. Consider the Med-El Standard 

array case shown in Figure 3a. The Euclidean distance between electrodes 5-6 and electrodes 

5-11 are close. Thus, both electrode 6 and 11 could be present in the search range of electrode 

5. The curve tracking process could wrongly select electrode 11 as the next electrode after 

electrode 5. Further, the existence of false positive voxels in CTs could make the process 

even more difficult. In [34], Braithwaite et al. proposed a method for localizing distantly-

spaced arrays in CTs by using spherical measures. This method uses a thresholding step and 

a specialized filter chain to segment the electrodes and then uses a linear model to determine 

the order to connect the segmented electrodes. This method is also not fully automated as it 

requires a manual definition of a bounding box including all the intra-cochlear electrodes so 

that the order of the electrodes can be defined. Moreover, the method had only been validated 

on a small dataset of Cone Beam CTs of specimens implanted with CI arrays produced by 

one manufacturer, where all the CTs being used have the same intensity range. Thus, a pre-

defined threshold for the thresholding step can generate a response image in which the N 

greatest local maxima correspond to the N electrodes. When applying this method to CTs 

acquired with different scanners, the pre-defined threshold will not work. From our 

experiments on a large-scale dataset of CTs acquired by using different scanners, even a 

threshold determined by using an automatic method [28] could generate many false positive 

voxels in the thresholded image.  
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The graph-based path finding method we present in this article is designed to localize 

individual electrodes in distantly-spaced arrays. For simplicity, in the remainder of this 

article, we refer to our proposed method as GP. It builds upon and substantially improves a 

limited graph-based method (lGP) [12] proposed by our group. In Section 3.2, we describe 

this method in detail. In Section 3.3, we evaluate GP and we compare it to lGP and to an 

early implementation of GP (pGP) [29] that does not provide sub-voxel accuracy. This is 

done on a large-scale dataset of clinically acquired CT images of subjects implanted with 4 

different types of CI arrays. In Section 3.4, we summarize our work and discuss possible 

directions for extending it. 

3.2 Methods 

3.2.1. Dataset 

Figure 3.3 shows geometric models for three representative types of distantly-spaced 

Table 3.1. Specifications of different FDA-approved distantly-spaced CI electrode arrays in our dataset 

Manufacturer Brand Total electrodes Electrode spacing distance (mm) 

Med-El 
Standard (MD1) 12 2.4 
Flex28 (MD2) 12 2.1 

Advanced Bionics 

1J (AB1) 17 (1 inactive electrode) 1.1 and 2.5 
Mid-Scala (AB2) 17 (1 inactive electrode) 0.95 and 3.0 

Helix (AB3) 18 (2 inactive electrodes) 0.85 and 3.0 

Figure 3.3. Three types of distantly-spaced CI electrode arrays provided by the two major manufacturers.

MedEl: Standard 
2.4mm 
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electrode arrays. In Table 3.1, the specifications of the distantly-spaced CI electrode arrays 

produced by the major manufacturers are summarized. Table 3.2 lists the datasets we use in 

this study. Dataset 1 consists of whole head CTs of 177 patients. Among these, 151 are eCTs 

and the remaining 26 are lCTs. 144 of the 151 eCTs are acquired with a Xoran xCAT® flat 

panel scanner at the Vanderbilt University Medical Center. The remaining 7 are acquired 

with various scanners at various institutions. The two typical voxel sizes for our eCTs are 

0.4 ൈ 0.4 ൈ 0.4mmଷ  and 0.3 ൈ 0.3 ൈ 0.3mmଷ . The 26 lCTs are acquired with various 

conventional scanners at various institutions (Siemens Somatom Definition AS, Siemens 

Somatom Force, Siemens Sensation 64, Siemens Somatom Emotion 16, Philips iCT 128, 

Philip Brilliance 64, Philips Mx8000 IDT16, Philips Comer-256, GE LightSpeed VCT, and 

GE Medical System BrightSpeed). The typical voxel size for lCTs is 0.23 ൈ 0.23 ൈ

0.34mmଷ. The coarsest voxel size for lCT in our dataset is 0.46 ൈ 0.46 ൈ 0.50mmଷ. Since 

our method includes several parameters, we randomly select 52 CTs from Dataset 1 that 

contain different types of electrode arrays for a parameter tuning process. The rest of the 124 

CTs from Dataset 1 are used to validate the localization accuracy of our proposed method. 

An experienced CI electrode localization expert manually generated three sets of localization 

Table 3.2. Datasets used in Chapter 3 

Dataset # Purpose Type of array Number of eCTs Number of lCTs Total number of CTs 

Dataset 1 
(177 CTs) 

Training 
(52 CTs) 

AB1 15 0 15 

AB2 9 1 10 

AB3 3 0 3 

MD1 11 0 11 

MD2 12 1 13 

Validation 
(125 CTs) 

AB1 19 6 25 
AB2 25 7 32 

AB3 4 0 4 

MD1 17 0 17 

MD2 36 11 47 

Dataset 2 
(28 CTs) 

Robustness test 
AB1 9 5 14 

AB2 9 5 14 
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results on all the post-implantation CTs in Dataset 1. Among the three sets of manual 

localization results, we randomly select two and average them to serve as the ground truth 

localization results. The third manual localization result is used to estimate the rater’s 

consistency error (RCE) defined as the distance between the ground truth and the third 

localization.  

Dataset 2 consists of 28 CTs of a cochlear implant imaging phantom. We use Dataset 

2 to evaluate the robustness of GP to various acquisition parameters [4]. The phantom was 

created using a cadaveric skull implanted with CIs in both left (AB1) and right (AB2) ears. 

For each side, we have acquired 14 CT scans with a range of acquisition parameters (the HU 

range, resolution, dose, and type of the implanted arrays) and with different scanners. In this 

data set, the ground truth localization results are determined by averaging 10 sets of expert 

localization results.  

3.2.2. Method overview 

The workflow of GP is outlined in Figure 3.4. (1) We locate the volume of interest (VOI) 

that contains the cochlea region by registering the whole head CT to a reference image. (2) 

Next, we up-sample the VOI and the subsequent procedures are performed on the VOI. (3) 

Then, we determine the value of a set of parameters that will be used in the following steps 

using a-priori knowledge of the geometry of the array model. We call these parameters 

electrode spacing distance (ESD)-based parameters. As has been shown in Table 3.1, the 

distances between individual electrodes are known for each model. For a specific electrode 

array, we denote the distance between the centers of the ݅୲୦ and the (i+1)th electrodes as ܦ௜ 

and we define ሼܦ௜ሽ as the set of inter-electrode distances. We then define the set of ESD-

based parameters associated with this array as ൛݀௠,௠ୀଵ,..,ெൟ, with ܯ the number of unique 
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values in ሼܦ௜ሽ. For example, an AB1 array has a distance of 2.5 mm from the inactive 

electrode to the most proximal electrode ሺܦଵ ൌ 2.5mmሻ and a distance of 1.1 mm between 

each other individual active electrode on the array ሺܦଶ ൌ ଷܦ ൌ ⋯ ൌ ଵ଺ܦ ൌ 1.1	mmሻ. Thus, 

for an AB1 array, there are ܯ ൌ 2 different ESDs, ݀ଵ ൌ 2.5mm and ݀ଶ ൌ 1.1mm. In the 

same way, we determine the ESD-based parameters for the other types of electrode arrays. 

In the dataset we use for this study, ܯ ൌ 1 for arrays manufactured by Med-El and ܯ ൌ 2 

for arrays manufactured by Advanced Bionics. However, our design permits defining an 

arbitrary number of ESD-based parameters. Parameter values are used to tune filters or 

detection thresholds and produce M feature images, each optimized to detect electrodes 

separated by the corresponding ݀௜  distance. (4) Next, we identify the regions-of-interest 

(ROIs) that contain voxels occupied by the CI electrodes by using the M feature images. (5) 

Then, we perform a voxel thinning method on each of the ROIs to extract the medial axis 

points as candidates of interest (COIs). At this stage, COIs consists of voxels occupied by 

electrodes and false positive voxels. (6) Once the COIs are extracted, we perform a coarse 

Whole head 
CT image 

Blob filter 
response 
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distances ൛݀௠,௠ୀଵ,..,ெ		ൟ 
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path-finding algorithm to find a fixed-length candidate path linking ܰ COIs that minimizes 

a cost function to coarsely localize the electrodes. (7) Finally, we use a second path-finding 

algorithm to locally refine the location of each individual coarsely localized electrode. Each 

of these steps are detailed in the following subsections. In the remainder of this article the 

value of all the parameters denoted with Greek letters is determined through a parameter 

tuning process described in subsection 3.2.6. 

3.2.3. COI generation 

The first step in our method is to identify the VOI that contains the cochlea region (a local 

region ~30cm3 around the cochlea). We achieve this by registering a reference image where 

the VOI bounding box is defined [27] to the target CT. After determining the VOI, we up-

sample it to a voxel size of 0.1 ൈ 0.1 ൈ 0.1mmଷ and then compute a feature image ܫ௙ based 

on it. The feature image ܫ௙ is used for generating the ROIs and is computed as:  

ሻݒ௙ሺܫ ൌ ஻ሺ݀௠ሻߣ
ሻݒ୆ሺܫ െ ஻ܶሺߙ஻%ሻ

஻ܶሺߙ஻%ሻ
൅ ூሺ݀௠ሻߣ

ሻݒሺܫ െ ூܶሺߙூ%ሻ

ூܶሺߙூ%ሻ
 (3.1)

where ܫ is the intensity image of the VOI, ܫ஻ is the response to a blob filter applied to the 

VOI that is inspired by Frangi’s vesselness filter [6]. As does Frangi, we use the value of the 

three eigenvalues (ܮଵ, ܮଶ and ܮଷ) of the 3 ൈ 3 Hessian matrix at a voxel ݒ to define the filter:  

ሻݒ୆ሺܫ ൌ ൜
ሻݒଵሺܤ ∙ ሻݒଶሺܤ ∙ ,ሻݒଷሺܤ ,ଵܮ ,ଶܮ ଷܮ ൏ 0
0,											 otherwise

, (3.2)

The three terms in Eqn. (3.2) are defined as 	ܤଵ ൌ 1 െ exp ቀെ
∑ ௅೔

మయ
೔సభ

ௌభ
మ ቁ ଶܤ , ൌ

exp ቀെ ௥భమା௥మయା௥భయ
ௌమ

ቁ , and ܤଷ ൌ 1 െ exp	ቀെ ௅ౣ౟౤

ௌయ
ቁ , where ݎ௜௝ ൌ หܮ௜ െ ௝หܮ ୫୧୬ܮ , ൌ

minሺെܮଵ, െܮଶ, െܮଷሻ, ଵܵ ൌ ூܶሺߙூሻ, ܵଶ ൌ 5000, ܵଷ ൌ 40000. In Eqn. (3.2), ூܶሺߙூ%ሻ is a 

function which takes a percentage value ߙூ% as input argument and generates an intensity 
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threshold applied to ܫ  that corresponds to the top ߙூ% ൌ 0.048%  of the cumulative 

histogram. ܵଶ and ܵଷ were empirically selected. The term ܤଵ enhances the voxels with high 

intensity. The terms ܤଶ and ܤଷ enhance the voxels that have spherical structures. The scales 

for our blob filter are selected as [0.2, 0.4] mm with a step of 0.04mm, which is the typical 

range for the CI electrode radius. In Eqn. (3.1), as is ூܶሺߙூ%ሻ, ஻ܶሺߙ஻%ሻ is a function that 

generates a threshold applied to ܫ୆  that corresponds to the top ߙ஻% ൌ 0.028%  of the 

cumulative histogram of ܫ୆. ߣூሺ݀௠ሻ and ߣ஻ሺ݀௠ሻ are functions of the ESD-based parameters 

݀௠ that return two weighting scalars. Because the weighting scalars returned by ߣூሺ݀௠ሻ and 

 ஻ሺ݀௠ሻ are related to ݀௠, our method allows different weighting scalars to be assigned toߣ

the intensity and the blob filter response of the VOI depending on the spacing between 

electrodes. This is important because, for closer electrodes, heavier reliance on the blob filter 

image is necessary to differentiate electrodes. For more distant electrodes, the more reliable 

intensity image can be emphasized in the cost function and the blob filter image is less 

important. Thus, ߣூ and ߣ஻ are defined as: 

ூሺ݀௠ሻߣ ൌ ሺെߢூ݀௠ ൅ ூ݀௠ߢሺെܪூሻߚ ൅ ூሻ, (3.3)ߚ

COIs generated at sub-voxel resolution 
COIs generated at voxel resolution 
Manual localized electrode locations

Figure 3.5. Quality comparison between the COIs generated by our method on the feature image at sub-
voxel resolution and at voxel resolution on the VOI. 

Medial axis points quality comparison 

Centers of two neighboring voxels 
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஻ሺ݀௠ሻߣ ൌ ሺߢ஻݀௠ െ ஻݀௠ߢሺܪ஻ሻߚ െ ஻ሻ, (3.4)ߚ

where ߚூ ൌ ூߢ ,2.72 ൌ ஻ߚ ,1.82 ൌ ஻ߢ ,1.14 ൌ 1.21 are positive weighting scalars. ܪሺ∙ሻ is 

the Heaviside function.  

Each feature image ܫ௙ created with the corresponding ݀௠ is then thresholded at 0. 

The thresholded regions are the ROIs for electrodes with a ESD value ݀௠. Next, we apply a 

voxel thinning method [3] to the ROIs to generate the COIs associated with ݀௠. For each 

ROI, the voxel thinning method generates a series of points that are ordered sequentially as 

a medial axis lines. Since we have up-sampled the VOI before generating feature images, 

ROIs and COIs, the COIs we generate also have higher resolution than the COIs that would 

be generated by using the ROIs produced by the original VOI. Figure 3.5 shows the 

difference between medial axis points generated by the voxel thinning method simply on the 

thresholded VOI without up-sampling and the medial axis points generated by our voxel 

thinning method on the up-sampled VOI. As can be seen, by up-sampling the VOI, our 

method permits to generate COIs with sub-voxel resolution. Among the  COIs generated by 

using the up-sampled VOI (magenta), there exist candidate points that are closer to the actual 

locations of implanted electrodes (blue) than the COIs generated at voxel resolution (green). 

By up-sampling the VOI to a resolution higher than 0.1 ൈ 0.1 ൈ 0.1mmଷ, we can generate 

COIs with a higher resolution. However, we found that the selected resolution leads to an 

adequate resolution for the COIs with an acceptable computational efficiency.  

For a CT implanted with an array with ܯ ESD values ൛݀௠,௠ୀଵ,..,ெ		ൟ, GP generates 

 .sets of ROI groups, one for each ESD value. For each ROI, one set of COIs  is generated ܯ

The complete set of COIs for the M ESD values are denoted as ሼܥሽௗభ, ሼܥሽௗమ, … , ሼܥሽௗಾ. We 

denote a COI that is the ݇୲୦ medial axis point on the medial axis line of the ݆୲୦ ROI in the
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݉୲୦ ROI group as ܿ௠
௝,௞. These COIs serve as the candidate nodes in a graph search problem 

used to coarsely localize the individual electrodes. In the following descriptions, we note ݌ 

as a candidate path, ݌௜ as the ݅୲୦ COI on the path ݌, and ሼܥሽௗ೘
௝  as the set of COIs that are on 

the medial axis line of the ݆୲୦ ROI in the ݉୲୦ ROI group associated with ݀௠. 

3.2.4. Coarse path-finding algorithm 

The coarse path-finding algorithm aims to find a fixed-length path of ܰ COIs representing 

the electrodes on the array, where ܰ is the number of the electrodes on the array. While a 

standard technique such as Dijkstra’s algorithm [5] is typically used for path-finding 

problems because it guarantees finding a globally optimum solution, we instead use a custom 

path-finding algorithm that provides no such guarantee because it permits using non-local 

geometric-based constraints during the search.  At each iteration of our proposed path-

finding algorithm, a grow stage and a prune stage are included. At the first iteration, the 

algorithm uses every node in ሼܥሽ஽భ as a seed COI representing a candidate path that are each 

of length 1 in a candidate path group ሼ݌ሽ. The candidate path group ሼ݌ሽ is used to store the 

candidate paths during the path-finding algorithm. At the ݅୲୦ iteration, in the grow stage, 

 ݌

ܿଶ 

ܿଵ ܿଷ 
 

Color-mapped cost value of path 

Intensity-based cost for COIs 

Low High 

Low High 

Figure 3.6. A simplified example of the coarse path-finding algorithm in GP. At the ith iteration, the existing 
path ݌ consisting of i-1 nodes has 3 reachable COIs ܿଵ, ܿଶ, and ܿଷ. The path-finding algorithm computes the 
shape-based cost and intensity-based cost for the three COIs and adding ܿ௜

ଶ to the existing path will result 
in lowest cost. Compared to ܿଶ, ܿଵ has acceptable shape-based features but its intensity-based cost is high. 
Although ܿଷ has the lowest intensity-based cost, the sharp turn formed by ܿଷ and p makes its shape-based 
cost high. 
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each candidate path in ሼ݌ሽ is grown into a new set of candidate paths by connecting each of 

the reachable COIs in ሼܥሽ஽೔ to it. The new set of candidate paths are added into ሼ݌ሽ to replace 

the candidate paths before the prune stage. Reachability is defined in the next paragraph. 

After the grow stage, the candidate path group ሼ݌ሽ contains a large number of candidate 

paths. Because the number of candidate paths would grow exponentially at each iteration 

and the problem would become computationally intractable if left unchecked, we use a prune 

stage to reduce the set of candidate paths after the grow stage. This is done by computing at 

each iteration the value of a candidate path cost function and keeping the ߟ୫ୟ୶ ൌ 1200 best 

candidate paths in ሼ݌ሽ in the prune stage. After N-1 iterations, ሼ݌ሽ consists of candidate paths 

of length N and each node in these paths corresponds to a candidate electrode position. Node 

positions in the path with the lowest cost are used as coarse electrode positions.  The cost 

function consists of a shape-based cost term and an intensity-based cost term, which capture 

the geometric and intensity features of the electrode arrays in clinical CTs. Figure 3.6 shows 

a grow stage step for one candidate path with 3 reachable COIs. Among the three reachable 

COIs for path ݌, the path formed by adding ܿଶ leads to the lowest overall cost.  

At the ith iteration, a candidate path ݌ consists of ݅ െ 1 COIs. In the grow stage, a 

COI ܿ௠
௝,௞  is considered reachable for a candidate path ݌ if it obeys the following 5 hard 

constraints. First, it should be such that ߛଵܦ௜ିଵ ൏ distሺ݌௜ିଵ, ܿ௠
௝,௞ሻ ൏  ,௜ିଵ. In this equationܦଶߛ

distሺ݌௜ିଵ, ܿሻ is defined as the Euclidean distance between a COI ܿ௠
௝,௞ and the endpoint ݌௜ିଵ 

of the candidate path ݌. This constrains the distance between the current endnode of the path 

and the candidate node to be close to the expected a-priori distance ܦ௜ିଵ . The second 

constraint imposes that  ܿ௠
௝,௞  is only reachable for ݌  if ܦ௜ିଵ ൌ ݀௠ . This constrains the 

candidate node to belong to the corresponding ESD value. The third constraint imposes that 
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ܿ௠
௝,௞ ∉  which forbids to add a COI to a path if the COI is already in the path, keeping the ,݌

path from looping back upon itself. The fourth constraint imposes that if ݌௜ିଵ ∉ ሼܥሽ஽೔షభ
௝  (the 

ROI for ܿ௜
௝,௞), then it is only permitted to add ܿ௜

௝,௞ to ݌ if ݌௭ ∉ ሼܥሽ஽೔షభ
௝ , ݖ∀ ∈ ሾ1, ݅ െ 2ሿ. This 

constraint does not allow the path to return to the ROIs that the candidate path ݌ has already 

visited. The last constraint imposes that if ݌௜ିଵ, ௜ିଶ݌ ∈ ሼܥሽ஽೔షభ
௝  and ݀௠ ൌ ௜ିଵ, ܿ௠ܦ

௝,௞ is only 

reachable for ݌ if ݌௜ିଶ ௜ିଵ݌ , , and ܿ௠
௝,௞  are monotonically ordered in the medial axis line 

ሼܥሽ஽೔షభ
௝ . This constraint prevents the path from looping back within an ROI, since COIs 

belonging to a ROI should be ordered identically to the ROI’s medial axis.  

We use a cost function to evaluate the quality of each candidate path ݌ after adding 

a COI ܿ. At the ith iteration, ݌ has ݅ െ 1 COIs. The cost for adding a new COI ܿ into path ݌ 

is: 

C୓ଵሺܿ, ሻ݌ ൌ C୍ଵሺܿሻߩ ൅ Cୗଵሺܿ, ሻ (3.5)݌

where ߩ is a weighting scalar to specify  how much we rely on the intensity-based term 

C୍ଵሺܿሻ relative to the shape-based cost term Cୗଵሺܿ,  ሻ. N is the total number of electrodes in݌

the array. The intensity based cost term C୍ଵሺܿሻ is defined as: 

ଵሺܿሻ୍ܥ ൌ ߱ ∙ ൬ߤூ
୫ୟ୶ܫ െ ሺܿሻܫ

୫ୟ୶ܫ
൅ ஻ߤ

୆୫ୟ୶ܫ െ ୆ሺܿሻܫ
୆୫ୟ୶ܫ

൅ ௏ߤ
୚୫ୟ୶ܫ െ ୚ሺܿሻܫ

୚୫ୟ୶ܫ
൰, (3.6)

where ܫ୫ୟ୶ ୆୫ୟ୶ܫ , ୚୫ୟ୶ܫ ,  are the maximum values of the image intensity, blob filter 

response, and vesselness filter response for all the COIs, respectively. ܫሺܿሻ, ܫ୆ሺܿሻ, and ܫ୚ሺܿሻ  

are the same at the location of the COI ܿ. The blob filter is as described in Eqn. (3.2). The 

vesselness filter is Frangi’s vesselness filter [6] with a scale of 0.25mm. ߤூ ൌ ஻ߤ ,1 ൌ  ,஻ߣ

and ߤ௏ ൌ ூߤ ூ are weighting scalars. We include the image intensity and setߣ ൌ 1 because 

voxels occupied by metallic electrodes are usually assigned high intensity. The blob filter 



50 

 

 

response is included because the electrodes often have a blob-like appearance. When ݀௠ 

increases,	ܫ୆ becomes more reliable and ߤ஻ increases. We also include the vesselness filter 

response because the electrodes sometimes have a tubular appearance if there is not much 

contrast between them in CT images. When ݀௠ decreases, ܫ୚ becomes more reliable and ߤ௏ 

increases. ߱ is a multiplier we use to punish solutions for which the first electrode is selected 

as a COI with low blob filter response. We do so to capture the fact that the first electrode 

usually has a high blob filter response because it only has a neighbor in one direction. At the 

݅୲୦ iteration, ߱ is defined as: 

߱ ൌ ൜
100,				 ݅ ൌ 1 and ஻ሺܿሻܫ ൏ ஻ܶሺߙ஻

ᇱ %ሻ
1,							 otherwise

, (3.7)

where ஻ܶሺߙ஻
′ %ሻ is a function that gives a threshold value applied to ܫ஻ that corresponds to 

the top ߙ஻
ᇱ % ൌ 0.007% of the cumulative histogram of the blob filter response. Next, the 

shape-based cost term Cୗଵሺܿ,  when ݌ ሻ evaluates the geometric features of a candidate path݌

a COI ܿ is added. It is defined as: 

Cୗଵሺܿ, ሻ݌ ൌ ,Cୢሺܿୢߤ ௜ିଵሻ݌ ൅ ,ୱሺCୟሺܿߤ ,௜ିଵ݌ ௜ିଶሻ݌ ൅ C୧୬ୱሺܿ, ௜ିଵሻሻ (3.8)݌

where Cୢሺ∙ሻ, Cୟሺ∙ሻ, and C୧୬ୱሺ∙ሻ are the distance-based, smoothness-based, and the angular 

depth of insertion (DOI) based cost terms, respectively. The first term Cୢሺܿ,  ௜ିଵሻ is defined݌

as: 

Cୢሺܿ, ௜ିଵሻ݌ ൌ |distሺܿ, ௜ିଵሻ݌ െ ௜ିଵ|, (3.9)ܦ

ୢߤ ൌ ൜
ଵୢߤ ൌ 10, if distሺܿ, ௜ିଵሻ݌ ൏ ௜ିଵܦ
ଶୢߤ ൌ 6, if distሺܿ, ௜ିଵሻ݌ ൒ ௜ିଵܦ

 (3.10)

where distሺܿ,  ௜ିଵሻ is the Euclidean distance between a COI ܿ to the endpoint of a candidate݌

path ݌. Eqn. (3.9-3.10) punish the candidate path from growing an edge that is shorter or 

longer than the expected distance. Cୟሺܿ, ,௜ିଵ݌  :௜ିଶሻ is determined as݌
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Cୟሺܿ, ,௜ିଵ݌ ௜ିଶሻ݌ ൌ ሺ∠ሺܿ, ,௜ିଵ݌ ௜ିଶሻ݌ െ ∠෥௜ିଵሻܪሺ∠ሺܿ, ,௜ିଵ݌ ௜ିଶሻ݌ െ ∠෥௜ିଵሻ, (3.11)

where ܪሺ∙ሻ is the Heaviside function, ∠ሺܿ, ,௜ିଵ݌  ௜ିଶሻ is the bending angle formed by adding݌

c to the last two endpoints ݌௜ିଵ, ݌௜ିଶ of  an existing candidate path ݌ and is defined as:  

∠ሺܿ, ,௜ିଵ݌ ௜ିଶሻ݌ ൌ 1 െ
ሺܿ െ ௜ିଵሻ݌ ∙ ሺ݌௜ିଵ െ ௜ିଶሻ݌

distሺܿ, ௜ିଵሻ݌ ∙ distሺ݌௜ିଵ, ௜ିଶሻ݌
 (3.12)

and ∠෥௜ିଵ is a heuristically selected threshold bending angle value. Eqn. (3.11) punishes paths 

with bending angles that are sharper than the threshold value. From the ground truth 

localization results in our training dataset, we observed that (1) the electrodes inserted deeper 

in the cochlea have a sharper bending angle than the electrodes that are inserted shallower 

because the curvature of the cochlea increases with increasing the DOI, and (2) arrays from 

the MD family have sharper bending angles than arrays from the AB family due to a larger 

spacing distance between electrodes for MD arrays. Thus, we determine ∠෥ values for arrays 

from AB (∠෥୅୆ሺ∙ሻ) and MD (∠෥୑ୈሺ∙ሻ) families separately. ∠෥୅୆ሺ∙ሻ and ∠෥୑ୈሺ∙ሻ		are set as: 

∠෥୅୆ሺ݅ሻ ൌ ൜
0.30 , ݅ ൑ ୌୟ୪୤ܧ
0.59 , ݅ ൐ ୌୟ୪୤ܧ

, (3.13)

∠෥୑ୈሺ݅ሻ ൌ ൜
0.56 ݅ ൑ ୌୟ୪୤ܧ
1.27 , ݅ ൐ ୌୟ୪୤ܧ

, (3.14)

where	ܧୌୟ୪୤ ൌ
ே

ଶ
 is used to empirically distinguish the electrodes that are inserted deeply 

versus shallowly in the cochlea.  The values in Eqn. (3.13) and Eqn. (3.14) were selected  as 

130% of the maximum bending angles observed among training AB and MD arrays when 

݅ ൑ ݅ ୌୟ୪୤ andܧ ൐ ,ୌୟ୪୤. The DOI cost C୧୬ୱሺܿܧ  :௜ିଵሻ is defined as݌

C୧୬ୱሺܿ, ௜ିଵሻ݌ ൌ ቀܪ൫DOIሺ݌௜ିଵሻ െ DOIሺܿሻ൯ ൅ ሺ|DOIሺܿሻܪ െ DOIሺ݌௜ିଵሻ| െ 180°ሻቁ (3.15)

where DOIሺܿሻ is the angular depth of insertion value for COI ܿ. As the cochlea has a spiral 

shape with 2.5 turns, the depth of any position within the cochlea is quantified in terms of an 



52 

 

 

angle from 0 to 900 degrees. To obtain the DOIሺ∙ሻ values, we register a pre-implantation CT, 

in which the intra-cochlear anatomy is segmented, to our post-implantation target CT. For 

recipients that do not have pre-implantation CTs, our group also has developed a method to 

segment the intra-cochlear anatomy from post-implantation CTs directly [19]. These two 

methods generate a DOI map for each individual voxels in the post-implantation CT. The 

first term in Eqn. (3.15) punishes paths in which a newly added COI ܿ has a DOIሺܿሻ value 

that is smaller than the endpoint ݌௜ିଵ on the path ݌. The second term in Eqn. (3.15) punishes 

adding a COI ܿ into an existing path ݌ when the COI ܿ is more than a half turn (180°) ahead 

or behind the endpoint of ݌. The DOI term constrains the candidate path to grow in the 

correct direction and to not cross two turns of the cochlea. However, we have observed that 

in some training cases, some electrodes fall on the boundary of two turns of the cochlea. 

During the COIs generation step for those cases, due to (1) the registration errors between 

pre- and post-implantation CTs, (2) the localization errors for intra-cochlear anatomy 

segmentation, and (3) the limited accuracy of voxel thinning method for generating COIs 

28° 53° 
94° 

138° 

180° 

221° 
265° 

308° 

353° 
405° 

136° or 496°?

549° 

Electrode 11 falls on the boundary of 
the first and second turns of cochlea. 
The COIs could fall in both turns. 

Axial Coronal Sagittal 

Angular depth of insertion value 

550 275 0 

Figure 3.7. One example of the problem in the traditional computation method for DOIሺ∙ሻ. The 11th 
electrode falls on the boundary of the cochlea, which is close to the boundary of the part of the cochlea that 
is one turn before (െ360°) the actual turn of the electrode. On the right side, the color-coded of the angular 
DOI map around the electrode is shown. The DOI map is generated by resampling a 3 ൈ 3 ൈ 3 voxels 
rectangular grid around the closest voxel to the 11th electrode with 27 points on the grid. 

Cochlea 

DOI୑ୟ୶ ൌ 496°, DOI୑୧୬ ൌ 136° 
DOI୑ୟ୶ െ DOI୑୧୬ ൐ 180° 
Create a “twin” node for the cyan COI 
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from ROIs, the DOI values of the COIs close to the boundary of two turns of cochlea could 

be wrongly estimated.  Figure 3.7 shows one example that is implanted with a MD2 array. 

In Figure 3.7, we label the DOIሺ∙ሻ values for each individual ground truth location of the 

electrodes. As we can see, the 11୲୦ electrode is on the boundary between the second turn 

and the first turn of cochlea. The DOI of the COIs for the 11th electrode would be estimated 

in the wrong turn if selected by using the DOI value of the nearest voxel of those COIs. In 

the path-finding algorithm, this will lead to an inaccurate large cost value when growing a 

path from the 10th electrode to the COIs for the 11th electrode. To solve this issue, for each 

COI, we find the maximum and minimum (DOI୑ୟ୶ and DOI୑୧୬) among the DOI values for 

each voxel in a 3 ൈ 3 ൈ 3 neighborhood around its nearest neighbor voxel. If DOI୑ୟ୶ െ

DOI୑୧୬ ൒ 180°, the COI is near a border and so we create an additional “phantom” COI for 

the original COI at the same location in the image. The DOI values of the phantom COI and 

the COI are assigned DOI୑ୟ୶  and DOI୑୧୬ , respectively. Aside from DOI values, the 

phantom COI has the same information as the original COI. Thus, the path-finding algorithm 

has equal chance to visit the phantom COI and the original COI and evaluate the cost value 

for the candidate path with two estimates of the DOI values.  

COI nodes Coarsely localized electrodes

An existing candidate path at the 13th iteration

Some examples of growths at the 13th iteration

... 

1
23456789 

10 
11 

12 
13

14 15
16

17

Figure 3.8. Visualization of the path-refinement process at iteration 13 for an existing candidate path. This 
path grows by adding all the COI nodes (the re-sampled rectangular grids) around the 13th electrode to it. 
The prune step keeps only ߟ୫ୟ୶ଶ ൌ 500 candidate paths with lowest costs for the next iteration. 
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With the cost function defined above, GP runs the first path-finding algorithm to 

coarsely localize the location of the electrodes. After the completion of the first path-finding 

algorithm, the candidate path with the lowest overall cost is selected as the coarsely localized 

electrode array.  

3.2.5. Path refinement 

The process described in sub-section 2.4 coarsely localizes the electrodes. The second path 

finding procedure is to refine the coarse result in a local region around each coarsely 

localized electrode. In this step, the method defines a set of COIs ሼܿሽ௜	around each coarsely 

localized electrode ݌௜ by sampling a fine rectangular grid of points (Shown in Figure 3.8). 

The set of candidate COIs around the ݅୲୦ coarsely localized electrode is defined as: 

ሼܿሽ௜ ൌ ൛݌௜ ൅ ߮௤ሾݔ, ,ݕ ሿൟ௫,௬,௭∈ሾିఝೝ,ఝೝሿݖ
 (3.16)

In the path refinement algorithm, our method aims at localizing ܰ  electrodes after ܰ 

iterations. We use a candidate path group ሼ݌ሽ which is similar to the one being described in 

sub-section 2.4 to store the candidate paths during the path finding algorithm. At the first 

iteration, all the nodes in ሼܿሽଵ are treated as seed nodes which represent candidate paths with 

length 1. At the ݅୲୦  iteration, the method grows the candidate paths by adding the candidate 

nodes ሼܿሽ௜ to the existing candidate paths in the candidate path group (Shown in Figure 3.8). 

Then the method prunes the candidate path group by keeping only ߟ୫ୟ୶ଶ ൌ 500 paths with 

the lowest cost in the group after each iteration. The cost function to evaluate the quality of 

a new candidate path constructed by adding a COI ܿ to an existing candidate path ݌ consists 

of an intensity-based cost term and a shape-based cost: 

Costଶሺܿ, ሻ݌ ൌ C୍ଶሺܿሻ ൅ Cୗଶሺܿ, ሻ (3.17)݌

The intensity-based cost term ୍ܥଶሺܿሻ is defined as: 
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ଶሺܿሻ୍ܥ ൌ െቀ߮ூܩఙ൫ܫሺܿሻ൯ ൅ ߮஻ܫ஻ሺܿሻቁ (3.18)

where ܩఙ൫ܫሺܿሻ൯, and ܫ஻ሺܿሻ are the Gaussian filter response, and the blob filter response at ܿ, 

respectively. ߪ is the scale of the Gaussian filter, which is selected as 0.275mm. The shape-

based cost is defined as: 

,ୗଶሺܿܥ ሻ݌ ൌ |distሺܿ, ሻ݌ െ |௜ିଵܦ ∙ ൜
߮ୢଵ, distሺܿ, ሻ݌ ൏ ௜ିଵܦ
߮ୢଶ, distሺܿ, ሻ݌ ൒ ௜ିଵܦ

 (3.19)

where distሺܿ,  ሻ is the Euclidean distance between node ܿ to the endpoint electrode on path݌

 After ܰ iterations, the path with the lowest overall cost is selected as the final localization .݌

result generated by GP. 

3.2.6. Parameter tuning for GP 

The parameter tuning process is performed by using the CTs in our training dataset. The 

initial values of the parameters are heuristically determined. Then, parameters were 

optimized sequentially and iteratively until a local optimum was reached for each parameter 

with respect to the mean localization errors in the training dataset. The parameters used in 

the coarse localization step were optimized first and then the parameters used in the 

refinement step were optimized. After determining the optimized values of all the 

parameters, we fixed those parameter values and performed validation study of the GP on 

the testing dataset.  

3.3. Results of validation studies 

3.3.1. Parameter tuning 

Table 3.3 lists the parameter values after the tuning process. To show the effectiveness of 

the parameters we select, we visualize the parameter sweeping procedure in Figure 3.9a with 
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respect to the mean localization errors in log-scale. Each parameter was swept from 0 to the 

double of its final selected value with uniform step size. Two exceptions are ߟ୫ୟ୶ and ߟ୫ୟ୶ଶ. 

For ߟ୫ୟ୶ and ߟ୫ୟ୶ଶ, we start by setting them as 1 because the two path-finding algorithms 

need to store at least one candidate path.  

From Figure 3.9a, we observe that every parameter contributes to the coarse 

localization step and setting any of them to 0 increases the mean localization error. This 

indicates that the cost terms we have designed are useful, and the parameters we selected are 

effective in achieving low localization errors. Among the parameters in the coarse path-

finding algorithm, ߙூ, ߙ஻, ߚ ,୍ߚ୆, ߢ  ,୍ߢ୆, and ୢߤଶ are sensitive because adjusting them from 

their selected values results in much  larger errors. Aside from ୢߤଶ , the other sensitive 

parameters are all related to feature image construction and COIs generation, which shows 

that the COI generation step plays a crucial role for the following path-finding algorithms to 

localize the array.  ߟ୫ୟ୶, ߙ ,ߩ஻
ᇱ  ୗ are not sensitive around the selectedߤ ଶ, andߛ ,ଵߛ ,ଵୢߤ ,

values. However, using the selected values for those parameters lead to a lowest mean 

localization error in our parameter tuning process.  

Table 3.3 The selected values for parameters in GP 

Coarse path-finding algorithm Path refinement algorithm 

 ୫ୟ୶ଶ 500ߟ ୫ୟ୶ 1200ߟ
 ூ (%) 0.048 (%) ߮௤ 0.03ߙ
 ஻(%) 0.028 (%) ߮௥ 3ߙ

 0.275 ߪ ூ 2.72ߚ
 ூ 1.82 ߮ூ 32ߢ
 ஻ 1.14 ߮஻ 16ߚ
 ஻ 1.21 ߮ୢଵ 0.6ߢ
 ଵ 0.6 ߮ୢଶ 2.5ߛ
   ଶ 1.2ߛ

   2.0 ߩ

஻ߙ
ᇱ (%) 0.007 (%)   

   ௗଵ 10ߤ

   ௗଶ 6ߤ

   ௌ 450ߤ
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From Figure 3.9b, we can observe that the refined localization errors are relatively 

flat around the selected values of each individual parameters. The most sensitive parameter 

is the scale ߪ for the Gaussian blur filter. The other parameters are not sensitive around their 

selected values.  However, setting any parameter as 0 increases the mean localization error 

on the training dataset. After the parameters were selected through the training process, they 

were fixed to validate the performance of our electrode localization methods on our testing 

dataset.  

3.3.2. Electrode localization accuracy study on clinical CTs in Dataset 1 

In our validation study, we compare the performance of the proposed method GP with the 

baseline method lGP [12] and a preliminary implementation of GP (pGP) [29] on our testing 
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and the path refinement in GP. Each parameter is tested over a range from 0 to the double of the optimal 
values. 
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dataset in Dataset 1 with 125 clinical CTs implanted with different types of distantly-spaced 

electrode arrays. The baseline method lGP relies solely on image intensity of VOI to generate 

ROI and COIs. Because of this limitation, it generates less accurate results for most eCTs 

and unacceptable results for most lCTs because the false positive COIs in lCTs are assigned 

the same maximum intensity as the true positive COIs. pGP is a preliminary implementation 

of GP. It uses a set of two fixed weighting scalars (ߣ஻ and ߣூ in Eqn. (3.1)) to generate feature 

images for ROIs and COIs generation. For lCTs, to reduce false positives among COIs pGP 

performs image opening on the ROIs with an empirically selected kernel size, which may 

accidentally remove true positive COIs. With GP, a cost function term is used as soft-

constraint so that true positive COIs are not eliminated. In contrast to lGP and pGP, GP 

generates COIs with sub-voxel resolution, permitting more accurate results with the 

subsequent path-finding algorithms. The average running time for GP from CT registration 

to electrode localization is ~40 seconds on a standard Windows Server PC [Intel (R), Xeon 

Figure 3.10. Panel (a) shows the boxplot (in log-scale) of mean (blue) and maximum (magenta) coarse (I) 
and refined (II) localization errors between the automatic generated results by lGP, pGP, GP and the rater’s 
consistency errors (RCEs) on CTs in testing dataset. Panel (b) shows the bar plot of the number of cases 
on which lGP, pGP, GP, and RCE achieves maximum final localization errors lower than 25% (blue), 
lower than 50% (green and blue), lower than 75% (magenta, green, and blue), lower than 100% (yellow, 
magenta, green, and blue), over 100% (red) voxel diagonal of the CTs, and the failure subjects (black). 
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(R) CPU X5570, 2.93 GHz, 48GB Ram], which is longer than pGP (~8 seconds) and lGP 

methods (~5 seconds). GP has a longer run time because it up-samples VOIs to generate 

COIs with sub-voxel resolution. This COI generation process takes ~32 seconds. The two 

path-finding algorithms in GP takes ~8 seconds.  

We define a “failure” a case for which a method fails to find a fixed-length path from 

the COIs it generates or for which the method generates a solution that has a maximum error 

that is larger than one voxel diagonal. Among 125 clinical CTs in our testing dataset, lGP, 

pGP, and GP fails to find a fixed-length path for 6, 13, and 2 subjects, respectively. One 

major reason for the methods to fail is that COIs cannot be produced for one or more 

electrodes, and thus the subsequent coarse path-finding algorithm is not able to find a fixed-

length path with N COIs representing the electrodes on the array that obeys the hard 

constraints. Figure 3.10 shows the quantitative analysis of the localization results generated 

by lGP, pGP, GP, and the rater’s consistency errors (RCEs) in boxplots. Besides the failure 

cases, our GP generate coarse localization results with a mean error  of  0.15mm and final 

localization results with a mean error of 0.12mm. The mean error of GP’s final localization 

error is close to the mean RCE error, which is 0.1mm. Figure 3.10b shows the distribution 

of the number of cases that have localization errors that fall into the intervals [0, 25%),  [25%, 

50%), [50%, 75%), [75%, 100%), and larger than or equal 100% of the voxel diagonal as 

well as the failure cases. As can be seen from Figure 3.10b, GP generates 120 out of 125 

(96%) localization results that have maximum errors within one voxel diagonal, which is 

close to the RCE (100%) and outperforms pGP (58%) and lGP (41%).  We perform a paired 

t-test between the mean localization errors among lGP, pGP, GP and RCE. The p-values are: 

8.36 ൈ 10ିଵଶ for lGP-pGP, 1.07 ൈ 10ିଵହ for lGP-GP, 3.21 ൈ 10ିଵ଺ for lGP-RCE, 2.20 ൈ

10ି଼ for pGP-GP, 8.16 ൈ 10ିଽ for pGP-RCE, and 1.24 ൈ 10ିଵ for GP-RCE. According to 
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the ݌ values, the results generated by GP are significantly different from lGP, pGP, but are 

not significantly different from RCE. 

Figure 3.11 shows the localization results generated by GP (panel c) and lGP (panel 

a) for one example case. In this case, the lGP method generates an inaccurate result in an 

eCT implanted with an AB2 array. This is because the threshold selected for generating the 

ROIs and COIs is not high enough to eliminate the false positive voxels in the VOI, and lGP 

only relies on the image intensity for COIs generation. Thus, in Figure 3.11a, we see many 

false positives that do not represent the CI electrodes. The final localization result is affected 

by them. We also perform pGP on the same case but it fails to generate a result (Figure 

3.11b). pGP uses the blob filter response to enhance the high intensity blob-like structures 

in the VOI, but because pGP uses a single set of fixed weighting scalars for image intensity 

and blob filter response to construct a feature image rather than ESD-based parameters, the 

method removes some ROIs that contain relatively closely-spaced electrodes on the array. 

This is so because those ROIs have less blob-liked features. Consequently, the method fails 

Thresholded VOI Thresholded blob filter response

COIs 

Ground truthGP localization result

lGP localization result

(a) 

Figure 3.11. Visualization of localization results generated by (a) lGP and by (c) GP. In (b), pGP fails to 
generate a fixed-length path as final localization result because the COIs are missing around two electrodes. 

COIs missingCOIs generation affected 
by false positives 

ሼܥሽௗୀଷ.଴୫୫

ሼܥሽௗୀ଴.ଽହ୫୫

(b) (c) False positives
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to find a fixed length path with 17 COIs representing all the electrodes on the array. GP 

generates two sets of COIs for two ESD values. As can be seen, for ݀ ൌ 0.95mm, the COIs 

generation relies more on the image intensity, which results in more false positives but is 

less likely to miss electrodes. For ݀ ൌ 3.0mm, the COIs generation step relies on the blob 

filter response, which enhances the distantly-spaced electrodes that have a more obvious 

blob-like shape in the CT image. GP also up-samples the VOI, which permits the generation 

of more accurate COIs.  

In Figure 3.12, we show 4 complicated cases for which GP fails to generate 

localization results with maximum errors within one voxel diagonal. Panels (a)-(c) and 

panels (d)-(f) show three sets of localization results generated by GP, pGP, and lGP for two 

cases implanted with AB1 arrays. In Case 1 shown in Figure 3.12a-c, the CT has abnormal 

intensity features due to beam hardening artifact. Around the most apical electrodes, several 

false positive voxels are assigned similar high intensity values as the voxels occupied by the 

actual electrodes. Meanwhile, the inactive electrode has low intensity and blob filter 

response.  This causes all three localization methods to miss the inactive electrode and 

wrongly select one of the false positives as the most apical electrode. In Case 2 shown in 

(h)

The connected 
ring-shaped ROI 

(a) (e) 

Figure 3.12. Panel (a)-(c) and (d)-(f) show localization results generated by GP, lGP, and pGP for two 
cases, respectively. Panel (g) and (h) show two failure cases for GP. 

Thresholded VOI 

The connected 
ring-shaped ROI 

(g) 

(b) (c) (d) (f)

Ground truth 

Result by GP 

Result by pGP

Result by lGP
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Figure 3.12d-f, the inactive electrode lies much closer than usual to the first active electrode 

because the array is kinked between the electrodes. This leads to poor localization results 

generated by all the three methods.  Figure 3.12g-h shows 2 cases on which GP fails to 

generate a fixed-length path as localization results. This is because the electrode array in 

these two cases are folded. The ROIs generated by GP could not distinguish the electrodes 

that are pushed together. These 4 cases indicate our method is not robust to extreme cases 

where the array is kinked or folded or with severe image artifacts. Since such cases are 

uncommon, we treat them as outliers in our validation study results. 

3.3.3. Robustness test on Dataset 2 with cochlear phantom CTs  

Dataset 2 (Shown in Table 3.2) consists of 14 CTs of a cochlear phantom implanted with 

AB1 and AB2 arrays, acquired with different scanners by varying three parameters – HU 

range of reconstruction, image resolution and CT dose [4]. The localization sensitivity of 

any method over a variety of image acquisition parameters can be tested on this dataset. The 

CI arrays are automatically localized by all three methods under discussion – lGP, pGP and 

GP. Five results from lGP and three results from pGP are not included in robustness testing 

because they were too inaccurate and might lead to spurious inferences. The component of 

localization error expected just as a result of the imaging technique, i.e., the image-based 

localization error, was calculated separately. Table 3.4 lists the mean localization errors of 

Table 3.4. Mean localization errors for each image group in mm.  

 
HU range Resolution Dose Array 

lCTs eCTs Low Mid Mid High AB1 AB2 

lGP 1.59±1.97 0.14±0.10 1.59±1.97 0.15±0.10 1.22±1.83 0.18±0.11 0.50±1.17 0.56±1.22 

pGP 0.40±0.42 0.19±0.06 0.20±0.07 0.33±0.36 0.38±0.38 0.17±0.06 0.26±0.27 0.45±0.43 

GP 0.13±0.06 0.08±0.05 0.13±0.06 0.08±0.05 0.12±0.06 0.10±0.06 0.10±0.06 0.11±0.07 

IL 0.11±0.05 0.07±0.04 0.10±0.06 0.07±0.04 0.10±0.05 0.08±0.04 0.08±0.05 0.14±0.15 
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the automatic methods along with the image-based localization error. 

Using Bonferroni corrected unequal variances t-test, we determine that both lGP and 

pGP add significant algorithmic errors beyond the image-based localization errors for both 

AB1 and AB2, which is not unexpected. However, the automatic localization error for GP is 

not significantly different from the image-based localization errors (IL) within a corrected 

p-value of 0.05. This shows that we have achieved the best levels of localization accuracy 

that can be reasonably expected from these images given the imaging technique employed. 

The accuracy also isn’t unduly affected by the variations of the parameters when compared 

to the image-based localization errors. Unlike lGP and pGP, GP does not produce poor 

localizations in case of low   resolution or low dose images. The proposed method is thus 

highly accurate and robust to changes of the four CT acquisition parameters. 

3.4. Conclusion 

In this paper, we propose an automatic graph-based method for localizing distantly-spaced 

CI electrode arrays in clinical CTs with sub-voxel accuracy. We use a method to generate 

candidate voxels of interests that are around electrodes at a sub-voxel resolution and use two 

path-finding algorithms to find a fixed-length path whose nodes represent electrodes on the 

array. We perform a parameter tuning process for our proposed method on a training dataset 

with clinical CTs implanted with different types of distantly-spaced arrays. The results of 

the validation studies on a large-scale testing dataset including 125 clinical CTs, and 28 

phantom CTs show the accuracy and robustness of our proposed method. Comparing with 

the other two previously developed methods, our proposed GP achieves the lowest mean 

localization error of 0.12mm and fails to generate localization results with maximum errors 

within one voxel for only 4 cases. Our proposed automatic method generates localization 
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results that are not significantly different from the localization results generated by an expert. 

The validation study on 28 CTs acquired from a cochlear implant imaging phantom indicate 

that our proposed method is robust to several CT acquisition parameters. The overall 

localization errors of GP are significantly different from the errors of the previously 

developed methods and are close to the rater consistency errors. One limitation of our 

proposed method is that it is not robust to electrode arrays that are kinked or folded. Future 

work will be aimed at addressing this limitation. Another limitation of this study is that the 

accuracy of the ground truth is limited by the resolution of clinical CTs we have in our 

dataset. In the future, we plan to construct a dataset with paired ߤCTs and clinical CTs. ߤCTs 

have higher resolution and can be used to manually generate ground truth localization results 

with high accuracy. We plan to apply our GP on clinical CTs and manually segment the 

electrodes on the paired ߤCTs. Then we will register the paired CTs and ߤCTs together to 

evaluate the accuracy of GP. The success of the GP represents a crucial step for fully 

automating our IGCIP techniques and translating IGCIP into clinical use. It also enables us 

to conduct comprehensive large scale studies on the correlation between hearing outcomes 

and the intra-cochlear locations of CI electrodes. 
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Abstract 

Purpose:  

Cochlear Implants (CIs) are neural prosthetic devices that provide a sense of sound to people 

who experience profound hearing loss. Recent research has indicated that there is a 

significant correlation between hearing outcomes and the intra-cochlear locations of the 

electrodes. We have developed an image-guided cochlear implant programming (IGCIP) 

system based on this correlation to assist audiologists with programming CI devices. One 

crucial step in our IGCIP system is the localization of CI electrodes in post-implantation 

CTs. Existing methods for this step are either not fully automated or not robust. When the 

CI electrodes are closely-spaced, it is more difficult to identify individual electrodes because 

there is no intensity contrast between them in a clinical CT. The goal of this work is to 

automatically segment the closely-spaced CI electrode arrays in post-implantation clinical 

CTs. 

Methods:  

The proposed method involves firstly identifying a bounding box that contains the cochlea 

by using a reference CT. Then, the intensity image and the vesselness response of the VOI 

are used to segment the regions of interest (ROIs) that contain the electrode arrays. For each 

ROI, we apply a voxel thinning method to generate the medial axis line. We exhaustively 

search through all the possible connections of medial axis lines. On each possible connection, 

we define CI array centerline candidates by selecting two points on the connected medial 

axis lines as the array endpoints. For each CI array centerline candidate, we use a cost 

function to evaluate its quality, and the one with the lowest cost is selected as the array 
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centerline. Then, we fit an a-priori geometric model of the array to the centerline to localize 

the individual electrodes. The method was trained on 29 clinical CTs of CI recipients 

implanted with 3 models of the closely-spaced CI arrays. The localization results are 

compared with the ground truth localization results manually generated by an expert. 

Results:  

A validation study was conducted on 129 clinical CTs of CI recipients implanted with 3 

models of closely-spaced arrays. 98% of the localization results generated by the proposed 

method had maximum localization errors lower than one voxel diagonal of the CTs. The 

mean localization error was 0.13mm, which was close to the rater’s consistency error 

(0.11mm). The method also outperformed the existing automatic electrode localization 

methods in our validation study. 

Conclusion: 

Our validation study shows that our method can localize closely-spaced CI arrays with an 

accuracy close to what is achievable by an expert on clinical CTs. This represents a crucial 

step towards automating IGCIP and translating it from the laboratory into the clinical 

workflow. 

4.1 Introduction 

Cochlear implants (CIs) are neural prosthetic devices used for treating severe-to-profound 

hearing loss [1]. A CI device has a microphone, a processor, and a transmitter in the external 

component. The external component receives and processes sound signals and sends them 

to the internal component, which consists of an internal receiver coil and an electrode array 
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implanted within the cochlea. The implanted CI electrodes receive the electrical signals 

delivered by the receiver coil, then stimulate the spiral ganglion (SG) nerves to induce a 

sense of hearing. The SG nerves are the nerve pathways that branch to the cochlea from the 

auditory nerves, which are tonotopically ordered by decreasing characteristic frequency 

along the length of the cochlea [2-3] (Shown in Figure 4.1). A SG nerve is stimulated if the 

frequency associated with it is present in the incoming sound [4]. During a CI surgery, a CI 

electrode array is blindly inserted into the cochlea by a surgeon. After the CI surgery, for 

each CI recipient, based on the hearing response, the audiologist adjusts stimulation levels 

for each individual electrode and selects a frequency allocation table to determine which 

electrodes should be activated when specific sound frequencies are detected. CIs lead to 

remarkable success in hearing restoration among the vast majority of recipients [5-6]. 

However, there are a significant number of users experiencing only marginal benefits.   

Recent studies have demonstrated that there exists a correlation between hearing 

outcomes and the intra-cochlear locations of CI electrodes [7-12]. When multiple CI 

electrodes stimulate the same nerve pathways, those nerve pathways are activated in 

response to multiple frequency bands [13-14]. This is known as electrode interaction (or 

“competing stimulation”). Clinical studies conducted by our group have shown that hearing 

outcomes of CIs can be significantly improved by using an image-guided cochlear implant 

programming technique we have designed [15]. In Figure 4.1 we show the CI electrodes 

activation patterns. With IGCIP techniques, we select an active electrode set in which the 

electrodes causing competing stimulations are identified and then deactivated [16-18]. To 

program the CI with IGCIP, we need to know the locations of the CI electrodes with respect 

to the intra-cochlear anatomy. However, CI placement is unique to each patient. Thus, 
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identifying the intra-cochlear locations of CI electrodes for each individual CI recipient is a 

critical procedure in the IGCIP system.  

Identifying the locations of the CI electrodes relative to intra-cochlear structure is 

difficult. First, segmenting the intra-cochlear structures is difficult because they are not 

visible in CT images. To solve this problem, we have proposed several methods that use a 

statistical shape model to estimate the location of the invisible intra-cochlear anatomy by 

using the visible part of the external walls of the cochlea as landmarks [19-21]. Second, 

localizing CI electrodes in post-implantation CTs requires expertise. One challenge for 

localizing CI electrodes in clinical CTs is the limitation of the resolution of clinical CTs. The 

typical resolution of a clinical CT nowadays is on the order of 0.2 x 0.2 x 0.3mm3.  Typical 

CI electrode size is around 0.3 x 0.3 x 0.1mm3, which is smaller than the size of a typical 

voxel in clinical CT. Thus, partial volume effects make it difficult to accurately localize CI 

electrodes in a clinical CT, even with expertise. In a clinical CT, the voxels occupied by the 

metallic CI electrodes are assigned high intensity. For electrode arrays with electrodes 

pitched further than 1mm, the individual electrodes are separable thanks to the obvious 

intensity contrast between them. Thus, for localizing distantly-spaced CI electrode arrays, 

our group uses a graph-based method that relies on the intensity contrast between electrodes 

(b)  (a)  

Figure 4.1. Visualization of a CI electrode array and intra-cochlear anatomy after CI implantation surgery. 
In (a), the scala tympani (an intracochlear cavity) is shown with the modiolus, which represents the interface 
between the auditory nerves of the SG and the intra-cochlear cavities. In (b), a subject implanted with an 
Advanced Bionics 1J electrode array and stimulation patterns of the electrodes are shown. The modiolar 
surface is color-coded with tonotopic place frequencies of the SG in Hz. 
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[22]. However, for arrays with electrodes spaced closer than 1mm, the method for localizing 

distantly-spaced electrode arrays does not generalize well because, as shown in Figure 4.2, 

there is typically no intensity contrast between them due to the lack of resolution and beam 

hardening artifacts. The second challenge is that there exist many FDA-approved closely-

spaced CI electrode array models. The spacing of the electrodes on the array differs between 

models, which leads to different intensity features in the post-implantation CTs. Table 4.1 

shows the three major types of closely-spaced electrode array models produced by Cochlear® 

(Sydney, New South Wales, Australia). Among the three types, CO1 and CO3 have electrode 

spacing distances that are lower than 0.8mm. In a clinical CT implanted with these two types 

of arrays, the voxels occupied by the electrodes are usually connected in a high intensity 

region, as shown in Figure 2c-d. CO2 has a relatively larger electrode spacing distance 

compared to CO1 and CO3. In a clinical CT implanted with CO2, voxels occupied by those 

electrodes can be grouped into several regions, as shown in Figure 4.2a-b. The third 

challenge is the existence of false positive voxels. The wire lead and receiver coils are two 

sources of false positive voxels since they are also composed of metallic materials and have 

an appearance similar to the array in CTs. Another source of false positive voxels is the high 

(a) (b) 

Figure 4.2. Panel (a) and (c) show examples of two slices of CT in coronal view of recipients implanted with 
closely-spaced arrays. Blue points indicate the locations of individual electrodes. An iso-contour around high 
intensity voxels is shown in red. Panels (b) and (d) show 3D iso-surfaces of the electrode arrays with the 
manually determined electrode locations generated by an expert. In panel (d), we also show the medial axis 
line (in green) of the largest ROI extracted by our proposed method. As can be seen, the endpoints of the 
medial axis line do not always correspond to the electrodes on the two ends of the array. 
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density structures such as cortical bones. This is more common in a CT acquired with limited 

range of Hounsfield Unit (lCT). In a CT acquired with extended Hounsfield Unit (eCT), the 

intensity of the metallic material is much higher than the intensity of cortical bones, which 

makes the electrode array more separable from the cortical bones. In a lCT, the maximum 

intensity is limited to the intensity of cortical bones. Thus, the electrodes and the cortical 

bones are assigned the same maximum intensity, as shown in Figure 4.2c. All these three 

challenges complicate the automatic localization of closely-spaced electrode array in clinical 

CTs. 

Other groups have been exploring possible methods [23-24] for electrode localization 

in clinical CTs. Braithwaite et al. proposed a method using a simple thresholding step and 

then a specialized filter chain for distantly-spaced CI electrode arrays localization in CTs. 

This method relies on the intensity contrast between individual distantly-spaced electrodes. 

Thus, it cannot be directly applied to localizing closely-spaced electrode arrays due to the 

limited to no intensity contrasts between individual contacts. This method is also not fully 

automated as human intervention is required for the initialization of the step for connecting 

the segmented electrodes in the right order. Bennink et al. proposed a method for localizing 

closely-spaced electrode arrays in CTs. However, it also requires a manual procedure to 

define a bounding box that includes all the electrodes as a start point of its algorithm. 

Meanwhile, this method uses an intensity profile matching algorithm to localize the 

individual electrodes on the initialized centerline extracted by a curve tracking algorithm. 

Table 4.1. Specifications of different FDA-approved closely-spaced electrode arrays in our dataset 

Electrode array brand Total electrodes Electrode spacing distance (mm) 

Contour Advance (512) (CO1) 22 ~0.65 
CI-422 (522) (CO2) 22 ~0.90 

CI24RE-Straight (CO3) 32 (10 stiffening rings) ~0.75 
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This intensity profile matching algorithm was designed and validated on a small set of lCTs, 

in which the voxels occupied by electrodes are always have the same intensity value as 3071. 

In eCTs acquired by different scanners, the intensity values for individual electrodes are not 

homogeneous. The intensity profile matching algorithm needs to be modified to be 

applicable to eCTs. The existing electrode localization methods cannot be directly adopted 

for fully automating IGCIP. Thus, we still need a reliable method for automatic localization 

of closely-spaced arrays in CTs. 

In this article, we present an automatic centerline-based method (CL) for localizing 

closely-spaced CI electrode arrays in clinical CTs. The method is detailed in Section 4.2. We 

present the validation study of CL on a large-scale dataset of clinical CTs implanted with the 

three major types of closely-spaced CI arrays shown in Table 4.1. In our validation study, 

we compare CL with three existing methods developed by our group: (1) The Graph-based 

path-finding (GP) algorithm for localizing distantly-spaced array, (2) Snake-based 

localization (SL) method for localizing CO1 [24], and a preliminary implementation of CL 

(pCL) [25]. Quantitative comparison of the results generated by the three methods is 

discussed in Section 4.3 and 4.4.  

4.2 Methods 

4.2.1. Dataset 

Table 4.2 lists the dataset we use in this study. It consists of post-implantation clinical whole 

head CTs from 157 subjects acquired with different CT scanners.   Among the 157 clinical 

CTs, 129 are eCTs and 28 are lCTs. Most of the eCTs in our dataset are acquired with a 

Xoran xCAT® from Vanderbilt University Medical Center. These eCTs have an isotropic 
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voxel size 0.4 ൈ 0.4 ൈ 0.4mmଷ or 0.3 ൈ 0.3 ൈ 0.3mmଷ. The 28 lCTs are acquired with CT 

scanners from other institutions. For these lCTs, the voxel sizes vary and are usually 

anisotropic. Among the 157 CTs, the coarsest resolution is 0.37 ൈ 0.37 ൈ 0.63mmଷ. We 

randomly select 28 CTs as training dataset for parameter tuning for our proposed CL method. 

The remaining 129 CTs are used for validation. For each CT in our dataset, an expert 

manually generated 3 sets of electrode localization results. We average two sets of manual 

localization results to generate the ground truth localization results. The remaining set is used 

to compute the rater’s consistency error (RCE), which is defined as the distance between the 

ground truth and the remaining localizations. 

4.2.2. Method overview 

The workflow of our proposed CL method is shown in Figure 4.3. The first step is to extract 

the volume of interest (VOI) that contains the cochlea. Then, we compute a feature image 

which is the weighted sum of the intensity and the Frangi vesselness filter response [27] of 

the up-sampled VOI. We threshold the feature image to generate the regions of interest 

(ROIs) which contain electrodes and false positives. For each generated ROI, we perform a 

voxel thinning method [28] to generate its medial axis line. As is shown in Figure 4.3, the 

points on the actual centerline of the electrode array (shown in blue in Figure 4.3) are 

distributed across disconnected true positive ROIs. Meanwhile, there also exist several false 

positive ROIs that do not contain electrodes. When there are multiple ROIs, there exist many 

Table 4.2. Datasets used in this Chapter 4 

Purpose Type of array Number of eCTs Number of lCTs Total number of CTs 

Training 
(28 CTs) 

CO1 8 7 15 

CO2 8 2 10 
CO3 3 0 3 

Validation 
(129 CTs) 

CO1 78 10 88 
CO2 27 6 33 
CO3 5 3 8 
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possible ways for connecting any number of their medial axes together. We refer to a given 

connection of medial axes as a “centerline candidate”. Note that any centerline candidate 

constructed in this way cannot be treated as the array centerline directly because the 

endpoints of the centerline candidates do not always correspond to the two endpoints (the 

most basal and apical, as shown in Figure 4.1) electrodes on the array, for example, when 

the electrodes ROI also contains the lead as is shown in Figure 4.2d. Thus, we propose an 

approach to find an “array candidate” by exhaustively searching all the centerline candidates 

for the positions of the most basal and apical electrodes, such that the path formed by 

connecting the basal and apical electrodes along the centerline candidate optimizes a cost 

function we have designed. The pseudo-code for this algorithm is shown in Algorithm 4.1. 

The array candidate with minimum cost among all the centerline candidates found in the set 

of all possible combinations of connections of the medial axis lines is selected as the 

centerline of the implanted array. Last, we resample the centerline of the implanted array by 

Electrode localization result by CL 

1. VOI 

3. Generate ROI 
4. Voxel thinning  

Figure 4.3. Workflow of our proposed centerline-based method. 
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using the known electrode spacing distance of the array. The points on the resampled curve 

correspond to the centers of the electrodes. The following subsections present CL in details. 

All the parameters denoted with Greek letters are selected through a parameter tuning 

process described in Section 4.3.1.  

4.2.3. Medial axes generation 

To extract the VOI from a whole head CT image, we register it to a reference CT where the 

VOI bounding box is known [29]. All the subsequent procedures are performed on the VOI. 

We up-sample the VOI to a voxel size 0.1 ൈ 0.1 ൈ 0.1mmଷ  so that the following voxel 

thinning method permits generating a finer resolution medial axis with the subsequent voxel 

thinning step described below. The up-sampling process will generate an up-sampled VOI 

with around 270 ൈ 270 ൈ 270 voxels. Next, we compute a feature image constructed as the 

weighted sum of the normalized intensity image ܫ and the normalized Frangi vesselness filter 
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response ܫ௏ of the up-sample VOI. The range of scales for the Frangi vesselness filter are 

selected as [0.5, 0.6]mm with a step of 0.05mm. The feature image is computed as: 

௙ܫ ൌ ሺ1 െ ሻߩ
ܫ െ ூܶሺߙூ%ሻ

ூܶሺߙூ%ሻ
൅ ߩ

௏ܫ െ ௏ܶሺߙ௏%ሻ

௏ܶሺߙ௏%ሻ
 (4.1)

where ூܶሺߙூ%ሻ , ௏ܶሺߙ௏%ሻ  are functions which take percentage values ߙூ%  and ߙ௏%  as 

inputs, and generate thresholds applied to ܫ and ܫ௏ that correspond to the top ߙூ% ൌ 0.06% 

and ߙ௏% ൌ 0.06% of the cumulative histogram of ܫ and ܫ௏, respectively. We include the 

vesselness filter response ܫ௏  in addition to the intensity ܫ  in ܫ௙  because it proved to 

effectively enhance the centerline of the electrode array in the previously developed snake-

based localization method. ߩ ൌ 0.29  is a weighting scalar tuned for balancing the 

significance of ܫ and ܫ௏ in Eqn. (4.1). After computing the feature image, we threshold it at 

0 to generate ROIs. After generating the ROI, we perform a voxel thinning method [28] on 

the ROI to generate a medial axis line of the structure. The medial axis line consists of a set 

of ordered medial axis points. Those medial axis points are defined as the locus of locations 

which maximizes the Euclidean distance from the ROI’s boundary.  

4.2.4. Centerline localization and electrode localization 

As mentioned in Section 4.2.2, array candidates are formed by evaluating all possible 

selections of basal and apical electrode position across the centerline candidates formed by 

all combinations of connections between ROIs. Since a centerline candidate is a set of medial 

axis points ordered on a curve, by selecting two different points and labeling them as apical 

and basal endpoints, we construct an array candidate by connecting the points on the curve 

between the two selected apical and basal endpoints. In a centerline candidate with ݊ points, 

we can construct ݊ሺ݊ െ 1ሻ different array candidates. An exhaustive search among all the 
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possible array candidates is quick because (1) the maximum number of ROIs generated by 

our proposed method is usually less than 4, and (2) a centerline candidate typically has ݊ ൏

200 points. We exhaustively search all the array candidates and evaluate their quality by 

using a cost function defined as: 

Costሺ݌ሻ ൌ Cost୍ሺ݌ሻ ൅ Costୗሺ݌ሻ (4.2)

where Cost୍ሺ݌ሻ is the intensity-based cost term for ݌, and Costୗሺ݌ሻ is the shape-based cost 

term for ݌. The cost function is designed to capture intensity and shape-based heuristics for 

a closely-spaced electrode array so that it returns a low cost for the actual centerline of the 

implanted electrode array and higher cost values for the other array candidates. First, the 

intensity-based cost term Cost୍ሺ݌ሻ evaluates a blob filter response at the selected apical (a) 

and basal (b) endpoints: 

Cost୍ሺ݌ሻ ൌ
஻୫ୟ୶ܫ െ ஻ሺܽሻܫ

஻୫ୟ୶ܫ
൅ ଵߤ

஻୫ୟ୶ܫ െ ஻ሺܾሻܫ
஻୫ୟ୶ܫ

 (4.3)

where	ܫ஻ሺܽሻ and ܫ஻ሺܾሻ are blob filter responses for the selected apical and basal endpoints 

in an array candidate, respectively. ܫ஻୫ୟ୶ is the maximum blob filter response among all the 

medial axis points. The blob filter response at voxel ݒ is computed in a way that is similar 

to the Frangi vesselness filter [4] by using the three eigen-values ܮଵ, ܮଶ, ܮଷ of the Heissian 

matrix computed at ݒ: 

ሻݒ௕ሺܫ ൌ ൜
ሻݒଵሺܤ ∙ ሻݒଶሺܤ ∙ ,ሻݒଷሺܤ ,ଵܮ ,ଶܮ ଷܮ ൏ 0
0,											 otherwise

, (4.4)

The blob filter response is non-zero only when the three eigen-values of the Hessian matrix 

at ݒ are all negative.  This is because the blob structures we detect are bright structures on a 

dark background. The three terms in Eqn. (4.4) are 	

ଵܤ ൌ 1 െ exp ቀെ
∑ ௅೔

మయ
೔సభ

ௌభ
మ ቁ ଶܤ , ൌ exp ቀെ ௥భమା௥మయା௥భయ

ௌమ
ቁ , and ܤଷ ൌ 1 െ exp	ቀെ ௅ౣ౟౤

ௌయ
ቁ , where 



82 

 

 

௜௝ݎ ൌ หܮ௜ െ ୫୧୬ܮ ,௝หܮ ൌ minሺെܮଵ, െܮଶ, െܮଷሻ, ଵܵ ൌ ூܶሺߙூሻ, ܵଶ ൌ 5000, ܵଷ ൌ 40000. Eqn. 

(4.3) captures the heuristic that we expect the voxels occupied by the endpoints to have a 

large blob filter response. Due to the fact that the electrodes are closely-spaced and the CT 

resolution is limited, the blob filter responses for the non-endpoint electrodes are much 

smaller than for the two endpoint electrodes, as shown in Figure 4.3. Thus, we use the high 

blob filter response as an indicator to find the most apical and basal electrodes. We select 

the scales for the blob filter as the radius of the basal and apical electrodes in the brand of 

the implanted array. In Eqn. (4.3), we use 	ߤଵ ൌ 1.47  as a weighting scalar to place extra 

emphasis on the blob response feature of the basal electrode compared to the apical electrode.  

The shape-based cost function Costୗሺ݌ሻ  captures geometric heuristics for the 

centerline of the implanted array. First, we define one hard constraint for constructing an 

array candidate with selected apical electrode (a) and basal electrode (b) (See Figure 4.2) as:  

DOIሺܽሻ ൐ DOIሺܾሻ (4.5)

In Eqn. (4.5), DOIሺ∙ሻ is the angular depth of insertion value. As the cochlea has a snail shape 

with 2.5 turns, the depth into the cochlea of any point can be quantified in terms of an angle 

from 0 to 900 degrees. To determine DOIሺ∙ሻ, we register a pre-implantation CT in which the 

cochlea anatomy is segmented, to our target post-implantation CT. In general, the apical 

electrode is inserted deeper into cochlea than the basal electrode. Thus, we only permit 

constructing an array candidate when the selected apical electrode has a larger depth of 

insertion value than the basal electrode. For array candidates satisfying Eqn. (4.5), we define 

the shape-based cost Costୗሺ݌ሻ as: 
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Costୗሺ݌ሻ ൌ ଶߤ
DOIሺܽሻ
DOI୫ୟ୶

൅ ‖݌‖| െ |௘ܦ

ە
ۖۖ

۔

ۖۖ

,ଷߤۓ ସߤ ൑
‖݌‖

௘ܦ
൑ 1

ଷߤ ൅ 	ହߤ ቆߤସ െ
‖݌‖

௘ܦ
ቇ,												

‖݌‖

௘ܦ
൏ ସߤ

ଷߤ ൅ 	ହߤ ቆ
‖݌‖

௘ܦ
െ 1ቇ, 	

‖݌‖

௘ܦ
൐ 1

 (4.6)

where DOI୫ୟ୶ is the maximum angular depth of insertion value among all the points on the 

initialized centerline. ߤଶ ൌ 8.89 ଷߤ , ൌ 0.27 ସߤ , ൌ 0.9 , and ߤହ ൌ 1.78  are four tuned 

parameters. ‖݌‖ is the length of the array candidate ܦ .݌௘ is the a-priori expected length of 

the array when it is straight, given by a 3D model of the implanted array. In the first term of 

Eqn. (4.6), we expect the apical electrode to have a deep depth of insertion value. In the 

second term of Eqn. (4.6), we expect the length of the best array candidate to be close to the 

a-priori expected length. Since the array is not elastic, we should not expect the centerline 

of the implanted array to be longer than ܦ௘. Curvature of the array can result in a small 

reduction of the centerline length. Thus, we design separate cost terms for centerlines with 

length falling within and outside a pre-defined length range. This pre-defined length range 

is empirically selected as ሾ90%, 100%ሿ of ܦ௘. For array candidates with lengths out of the 

normal range, an extra cost weighted by ߤହ is added.  

The centerline of the implanted array is determined as the array candidate that results 

in the lowest cost among all the centerline candidates. The resulting centerline is then 

resampled using the known a-priori electrode spacing distance of the array so that the points 

that form the resulting curve correspond to the centers of the electrodes to generate the final 

electrode array localization result.  
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4.2.5. Parameter selection process 

The parameter selection process is performed with the 28 CTs in our training dataset. The 

initial values of those parameters are heuristically determined. Then, we sequentially and 

iteratively optimize each parameter until a local optimum is reached with respect to the mean 

localization errors. After determining the parameter values, we use them to perform the 

validation study on the testing dataset. 

4.3 Results 

4.3.1 Parameter tuning  

Table 4.3 lists the parameter values selected after the parameter tuning process. To show the 

effectiveness of the parameters selected, we visualize the parameter sweeping procedure in 

Figure 4.4 with respect to the mean localization error in log-scale. Each parameter was swept 

from 0 to the double of its selected value with 11 uniform step sizes. The mean localization 

error for the training cases with the selected parameters is 0.11mm. As can be seen from 

Figure 4.4, all the parameters reached a local minimum in mean localization error at their 

selected values. Setting any parameter as 0 would lead to an increase of mean localization 

Figure 4.4. The parameter tuning process for all the parameters in CL. The red hash mark indicates the finally 
selected parameter value. 
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errors in the training dataset. This shows that all the terms in our design contribute to the 

accuracy of the localization results.  

4.3.2 Validation study  

We apply GP, SL, pCL and our proposed CL to our testing dataset of 129 clinical CTs 

implanted with CO1, CO2, and CO3 arrays. GP and SL are two previously developed 

methods [10, 24] for localizing distantly-spaced electrode arrays and CO1 arrays, 

respectively. pCL [25] is a preliminary implementation of CL.  GP, pCL and CL are 

implemented in C++ on a standard Windows Server PC [Intel (R), Xeon (R) CPU X5570, 

2.93GHz, 48GB Ram]. SL was implemented with Matlab on the same platform. The average 

running time for GP, SL, pCL, and CL from extracted VOI to electrode localization are ~8s, 

~55s, ~40s, and ~42 seconds.  

Among the 129 testing cases, GP cannot generate localization results for 52 cases. 

This is because GP was designed for the localization of distantly-spaced arrays in CTs. One 

step in GP uses a voxel thinning method [2] to generate candidate nodes for the path-finding 

algorithms to find a fixed-length path with N candidate nodes (N is the number of the 

electrodes on the array). In the 52 cases, the candidate nodes cannot form a path that has the 

length of the implanted array. SL, pCL and CL can generate results for all the testing cases. 

The comparison of the mean/maximum electrode localization errors among GP (excluding 

the 52 cases for which GP cannot generate results), SL, pCL, CL, and RCE are shown as 

Table 4.3. The selected values for parameters in our proposed method 

Parameters Selected value Parameters Selected value 

 ଶ 8.89ߤ (%) ூ(%) 0.06ߙ
 ଷ 0.27ߤ (%) ௏(%) 0.06ߙ
 ସ 0.90ߤ 0.29 ߩ
ହߤ ଵ 1.47ߤ 1.78 
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boxplots in Figure 4.5a. As can be seen from Figure 4.5a, CL generates localization results 

with a mean localization error of 0.13mm, which is close to the mean RCE (0.11mm). The 

three methods GP, SL and pCL have mean localization errors of 2.09mm, 2.06mm, and 

0.94mm. In Figure 4.5b, we can see that CL generates 127 localization results among 129 

subjects (98%) that have maximum errors within one voxel diagonal, which is close to the 

RCE  (100%) and outperforms the preliminary version pCL (80%) and the previous 

developed GP (5%) and SL (51%) methods.   

4.4 Discussion 

Figure 4.6 shows two localization results generated by GP, SL, pCL and CL in comparison 

with the ground truth localization results for two cases. In Figure 4.6a, we show an eCT 

implanted with a CO2 array. In this case, we cannot find a threshold that makes all the 

electrodes appear in a connected region with high intensity voxels. The threshold we select 

also includes the wire lead in the ROIs. GP generates inaccurate localization result by 

selecting two points on the wire lead as the two most basal electrodes. This is because the 

Figure 4.5. Panel (a) shows the boxplots of mean (blue) and maximum (magenta) electrode localization errors 
in log-scale among the different localization methods. Panel (b) shows the distribution of the ratio of the 
maximum localization errors with respect to the image voxel diagonal (ܴ%) for different localization methods.
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path-finding algorithm in GP cannot distinguish the voxels on the wire lead from the voxels 

occupied by electrodes. SL and pCL both ignore the electrodes that are not in the largest 

ROI. This is because both of the two methods assume all the electrodes are within one 

connected group of voxels with high intensity. CL successfully localizes all the electrodes 

by evaluating the array centerline candidates produced by all the possible connections of 

ROIs. Figure 4.6b shows results of a lCT implanted with a CO1 array. In this case, the voxels 

occupied by the wire lead and the electrodes have the same maximum intensity value. Thus, 

both GP and SL fail to distinguish the wire lead from the electrodes. To avoid localizing the 

voxels on the wire lead as the basal electrode, pCL added one process before endpoints 

selection. After generating the medial axis line of the largest connected region after 

thresholding the VOI, pCL performs an image erosion operation on the thresholded VOI 

with an empirically selected kernel size to eliminate the false positives on the wire lead 

before blob filter response computation for endpoints localization. Then, pCL constrains the 

Figure 4.6. Visualization of localization results generated by GP, SL, pCL, and CL in comparison with the 
manual ground truth localization results. 
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search of the basal and apical electrodes within the remaining voxel groups (labeled with 

grey color). As can be seen in Figure 4.6b, the image erosion operation eliminates the voxel 

groups around the most basal electrode in this specific case. CL localizes the electrodes with 

a maximum error within one voxel diagonal in this case. Without using image erosion for 

eliminating the false positives on the wire lead, CL uses the first cost term in Eqn. (4.6) to 

ensure that the points that are in the deeper region of cochlea are more likely to be selected 

as the apical point. Then, with an optimal apical electrode selected, CL uses the second term 

in Eqn. (4.6) so that the selection of the basal electrode and the apical electrode forms an 

array candidate that has a length close to the implant model.  

Figure 4.7 shows two eCTs on which our proposed CL generates localization results 

with maximum localization errors larger than one voxel diagonal. In Figure 4.7a, the voxels 

between the most basal electrode and the third apical electrodes are abnormally assigned 

high intensity voxels. This causes CL to incorrectly localize the medial axis line, which  

further affects the centerline localization process. The automatically localized centerline 

deviates from the ground truth locations to the voxels that are closer to the apical end. In 

Figure 4.7b, the apical electrode is folded, which has been verified by an electrode 

localization expert (JN). However, the intensity feature does not show the folded electrode 

Figure 4.7. Visualization of two eCT cases on which CL generates localization results with maximum errors 
larger than one voxel diagonal. 
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due to the limited resolution of clinical eCTs. Thus, CL mis-localizes the apical electrode 

and selects a false positive voxel on the wire lead as the basal electrode. The other existing 

methods all generate inaccurate localization results on these two cases. Failure cases as those 

shown in Figure 4.7 are rare, and our method generates accurate localization results on the 

remaining testing cases.  

We perform paired t-tests with Bonferroni correction on the mean localization errors 

generated by GP, SL, pCL, CL, and RCE. The results are shown in Table 4.4. Our proposed 

method CL generates localization results that are significantly different than all the other 

methods and the RCE. However, the mean and maximum localization errors indicate CL can 

generate localization results with an accuracy that is close to the manual localization results 

generated by the CI electrode localization expert in our group.  

Even though CL generates localization results close to the ground truth, its accuracy 

can still be improved. An example of errors that can be improved can be seen in Figure 4.6a.  

In this example, the five most basal electrodes have obvious deviations from the center of 

the high intensity blob in the CT images. This is because CL uses basal and apical electrodes 

as landmarks and the accuracy of the localization of electrodes in between them is not 

influenced by their local intensity-based features. However, when the CT has high resolution 

and the electrodes have larger spacing distance between each other, some contrast between 

Table 4.4. p-value of t-test results among mean localization errors generated by GP, SL, pCL, CL and RCE 

 
GP SL pCL CL RCE 

GP / 2.15 ൈ 10ିଵ 2.16 ൈ 10ିଵ 7.58 ൈ 10ିହ 6.81 ൈ 10ିହ 
SL  / 1.03 ൈ 10ିସ 2.74 ൈ 10ିଵଶ 1.42 ൈ 10ିଵଶ 

pCL   / 3.74 ൈ 10ିସ 2.44 ൈ 10ିସ 
CL    / 6.30 ൈ 10ିଷ 

RCE     / 
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electrodes could be used in the electrode localization process to further improve the electrode 

localization accuracy.  

4.5 Conclusions 

Localization of CI electrode arrays is a crucial step to analyze the electrode stimulation 

patterns with respect to the auditory nerves in our IGCIP system. In clinical CTs implanted 

with closely-spaced electrode arrays, the identification of each individual electrode is 

difficult because the intensity contrast between electrodes is small. In this paper, we have 

proposed an automatic centerline-based method for the localization of closely-spaced CI 

electrode arrays in clinical CTs. The validation study shows that our method outperforms the 

existing methods for localizing CI electrodes. Our proposed method generates localization 

results with mean localization error of 0.13mm. 98% of our localization results have 

maximum localization errors lower than one voxel diagonal. These results show that our 

proposed method can generate localization results with errors that are close to the rater’s 

consistency errors and are smaller than the existing methods. This method represents a 

crucial step in fully automating IGCIP and translating it from the laboratory to clinical use. 

It also enables us to conduct large-scale studies on the electrode location and its effects on 

hearing outcomes. One limitation is that our proposed method uses intensity-based features 

only to localize the basal and apical electrodes. The other electrodes between them are 

localized by resampling a centerline defined by these two electrodes and the medial axis 

points between them. In future work, we will explore modifications to our approach to permit 

leveraging intensity contrast between electrodes when it is available. Another limitation of 

this study is the accuracy of the ground truth. Our ground truth is based on clinical CTs with 
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limited resolutions that has inherent errors due to partial volume artifacts. In the future, we 

plan to use ߤCT-CT pairs of cochlear specimen for better characterizing the accuracy of our 

proposed electrode localization method. The ߤCTs will be used to generate ground truth 

localization results since they have a higher resolution. The paired clinical CTs will be used 

to generate automatic localization results. We will register the ߤCTs and CTs together so 

that we can analyze the electrode localization errors generated by our proposed method with 

more a reliable ground truth.  
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Abstract 

Cochlear implants (CIs) are neural prostheses that restore hearing by stimulating auditory 

nerve pathways within the cochlea using an implanted electrode array. Research has shown 

when multiple electrodes stimulate the same nerve pathways, competing stimulation occurs 

and hearing outcomes decline. Recent clinical studies have indicated that hearing outcomes 

can be significantly improved by using an image-guided active electrode set selection 

technique we have designed, in which electrodes that cause competing stimulation are 

identified and deactivated. In tests done to date, an expert is needed to perform the electrode 

selection step with the assistance of a method to visualize the spatial relationship between 

electrodes and neural sites determined using image analysis techniques. In this work, we 

propose to automate the electrode selection step by optimizing a cost function that captures 

the heuristics used by the expert. Further, we propose an approach to estimate the values of 

parameters used in the cost function using an existing database of expert electrode selections. 

We test this method with different electrode array models from three manufacturers. Our 

automatic approach generates acceptable active electrode sets in 98.3% of the subjects tested. 

This approach represents a crucial step towards clinical translation of our image-guided CI 

programming system.  

5.1 Introduction 

Over the last 20 years, cochlear implants (CIs) have become the most successful neural 

prosthesis and are used to treat severe-to-profound hearing loss [1]. In CI surgery, an array 

of electrodes is blindly threaded into the cochlea. After the surgery, the processor worn 
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behind the ear sends signals to the implanted electrodes, which stimulate the auditory nerve 

pathways within the cochlea. After implantation, the CI is programmed by an audiologist. 

CI programming begins with the selection of a general signal processing strategy, e.g., 

continuous interleaved sampling [2]. Then the audiologist defines the “MAP”, i.e., the CI 

processor instructions that determine what signals are sent to the implanted electrodes in 

response to incoming sounds. The MAP is determined by selecting the electrode 

configuration, i.e., the active electrode set, by specifying stimulation levels for each active 

electrode based on measures of the user’s perceived loudness, and by selecting a frequency 

allocation table that specifies which electrodes will be activated when specific sound 

frequencies are detected. Electrode activation stimulates the spiral ganglion (SG) nerves, the 

nerve pathways that branch to the cochlea from the auditory nerve. In natural hearing, an SG 

nerve is activated when the characteristic frequency associated with that pathway is present 

in the incoming sound. The SG nerves, which are located within the modiolus of the cochlea, 

are tonotopically ordered by decreasing characteristic frequency along the length of the 

cochlea, and this precisely tuned spatial organization is well known [3-4] (see Figure 5.1a).  

The modiolar surface shown in Figure 5.1a represents the interface between the intra-

Figure 5.1. Visualization of CI electrode activation patterns. In (a), the scala tympani (an intracochlear 
cavity) is shown with the modiolar surface, which represents the interface between the nerves of the SG 
and the intra-cochlear cavities and is color-coded with the tonotopic place frequencies of the SG in Hz. In 
(b), synthetic examples of stimulation patterns on the modiolar interface created by the implanted electrodes 
are shown in multiple colors to illustrate the concept of stimulation overlap. 
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cochlear cavities where the electrodes are placed and the modiolus where the SG nerves that 

are stimulated by the electrodes are located. Recent research has suggested that hearing 

outcomes with CIs are correlated with the location at which the electrodes are placed in the 

cochlea [5-10]. In surgery, the array is blindly threaded into the cochlea with its insertion 

path guided only by the walls of the spiral-shaped intra-cochlear cavities. The final position 

of the electrodes is not generally known in the traditional clinical workflow. However, we 

have developed techniques that enable accurately locating the electrodes using CT images 

[11-13].  

 Recent research by our group [11, 14] has shown that the spatial relationship between 

the neural pathways and the electrodes can be used to estimate electrode interactions at the 

neural level, i.e., cross-electrode neural stimulation overlap (see Figure 5.1b), which is a 

phenomenon known to negatively affect hearing outcomes [15-16]. We have shown in a 

large clinical study that when stimulation overlap is detected and the configuration of active 

electrodes is adjusted to reduce that overlap, hearing outcomes are improved, and those 

improvements are statistically significant [17]. Our goal now is to fully automate our system 

so that clinical translation of this technology is feasible. 

One step that has not yet been automated is the electrode configuration selection step. 

Thus far, electrode configurations have been selected manually based on the electrode 

distance-vs.-frequency curves (DVFs). The DVF is a technique developed by our group to 

facilitate the visualization of electrode interaction in individual patients [11]. It is a 2D plot 

that captures important information about the patient-specific spatial relationship between 

the electrodes and the spiral ganglion (SG) nerves such as is shown in 3D in Figure 5.1b. 

Figure 5.2a is an example of DVFs for a 7 electrode array. The horizontal axis represents 

position along the length of the modiolus in terms of the characteristic frequencies of 
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adjacent SG nerves. Each DVF is labeled with a number representing its electrode number. 

The height of each DVF on the vertical axis represents the distance from the corresponding 

electrode to the frequency mapped modiolar surface. Thus, a DVF is constructed for a given 

electrode by finding the distance to that electrode from nearby, frequency-mapped sites on 

the modiolus. From this visualization technique, we can see that electrode 3 is approximately 

1 mm from the modiolus, and the characteristic frequencies of the SG nerves closest to 

electrode 3 are around 1 kHz. Our current electrode configuration selection method is based 

on the assumption that if an electrode’s DVF is not the closest DVF in the region around its 

minimum, it is likely that its stimulation region overlaps with other electrodes and thus it is 

negatively affecting hearing performance. As shown in Figure 5.2, we can see that since the 

minimum of the DVF for electrode 4 is entirely above the DVF for electrode 3, it is likely 

that electrode 4 is stimulating the same neural region as electrode 3. Also, while the 

minimum of the DVF for electrode 6 falls below the other curves, its depth of concavity 

relative to the minimum envelope of the other neighboring DVFs is small, so it is likely that 

electrode 6 has an overlapping stimulation region with electrodes 5 and 7. Our active 

electrode set selection approach is to keep active the largest subset of electrodes that are not 
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Figure 5.2. Visualization of DVFs. (a) shows an example of a combination of the DVFs formed by 7 
electrodes. Each single curve represents the distance from the corresponding electrode to the frequency 
mapped sites along the length of the modiolus. (b) shows the DVFs after electrode configuration 
adjustment. 
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likely to cause stimulation overlap. Thus, in the example, we would remove electrodes 4 and 

6 from the active electrode set. The DVFs of the updated electrode configuration are shown 

in Figure 5.2b.  

As discussed above, we have shown in clinical studies that our manual approach for 

selecting active electrode set results in significant improvement in hearing performance. 

While selecting the electrode set manually can usually be done relatively quickly (0.5-2 

minutes), it requires specialized expertise, and training new individuals to become experts is 

time consuming. In order to develop an automated system that implements our approach and 

can be widely deployed for clinical use, we need an automated method that performs as well 

as an expert on average for selecting the electrode configuration. To solve this problem, we 

have developed a DVF-based cost function and propose to optimize it using an exhaustive 

search method. The rest of this paper presents our approach. 

5.2 Methods 

Our dataset consists of DVFs and expert-defined optimal and acceptable electrode 

configurations for 96 cases. We divided the dataset into a training and a testing dataset. The 

training dataset contains 12 subjects implanted with arrays manufactured by Med-El (MD) 

(Innsbruck, Austria), 10 subjects implanted with arrays manufactured by Advanced Bionics 

(AB) (Valencia, California, USA), and 14 subjects implanted with arrays manufactured by 

Cochlear (CO) (New South Wales, Australia). Our testing dataset contains 20 subjects of 

arrays manufactured by MD, 20 subjects of arrays manufactured by AB, and 20 subjects of 

arrays manufactured by CO. In our training dataset, we have 18 male and 18 female subjects. 

Subject age ranges from 18 to 84 with a mean age of 57.9 and standard deviation of 14.69 



101 

 

 

years. In our testing dataset, we have 28 male and 32 female subjects. The age range is 21 to 

84 with a mean age of 58.1 and a standard deviation of 14.6 years. 

Our approach is to develop a cost function that assigns a cost for a given electrode 

configuration, i.e., a particular set of “on” and “off” electrodes, for a subject based on the 

electrode DVFs. We then can use an exhaustive search method in which all possible 

configurations are generated, compute the cost for each configuration, and select the one 

with the minimum cost. In this work, we have chosen to design the cost function to be a 

linear combination of a set of DVF-based features that capture the heuristics we use for 

manually producing electrode configuration plans. The features aim at reducing the cross-

electrode neural stimulation overlap as described in Section 1. We have defined a total of 

ܰ ൌ 10 feature cost terms. The weighted sum of the ܰ feature cost terms is determined as 

the final cost value. The weights ሼݓ௜ሽ௜ୀଵ
ே  for the ܰ feature cost terms are determined through 

a training process using the subjects in the training dataset. Each of the three electrode arrays 

types has a different number of electrodes (Med-El has 12, Advanced Bionics has 16, and 

Contour Advance has 22 electrodes) and a different geometry. Thus, they create different 

DVF patterns, which leads us to estimate the set of weights separately for each electrode 

type. After generating the estimates of the weights ሼݓ௜ሽ௜ୀଵ
ே , we apply the weights to the 

testing dataset for validation. 

The feature cost terms ሼ ௜݂ሽ௜ୀଵ
ே  are defined as follows. First,  

ଵ݂ ൌ ൜
0 If	the	most apical electrode ∈ active set
1 If	the	most apical electrode ∉ active set , (5.1)

which assigns a zero cost to configurations whose most apical electrode, i.e., the deepest 

electrode in the cochlea (see Figure 5.1b), is activated and a non-zero cost otherwise. ଵ݂ is 

included because deactivating the most apical electrode, which stimulates nerves with lower 
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characteristic frequencies, can result in an up-shift in perceived sound frequency. This affects 

hearing quality and is usually not preferred. Next,  

ଶ݂ ൌ
1
௔ܭ

, (5.2)

where ܭ௔ is the number of electrodes that are active in the configuration. While other terms 

below are designed to deactivate electrodes to increase channel independence, ଶ݂ captures 

the heuristic that keeping more electrodes active is desirable because it results in less 

frequency compression and better outcomes if those electrodes provide independent 

stimulation. Next,  

ଷ݂ ൌ ሺ෍݁ି஺௥௘௔_்௘௥௠೔

௄

௜ୀଵ

ሻ/(5.3) ,ܭ

where K is the total number of electrodes, and  
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௜݉ݎ݁ܶ_ܽ݁ݎܣ ൌ

ە
۔

ۓ
ܶሺܦ௜ሻ
௜ܽ݁ݎܣ

if electrode ݅ ∈ active set

௜ܽ݁ݎܣ
ܶሺܦ௜ሻ

if electrode ݅ ∉ active set
, (5.4)

 is a term that captures the channel independence of electrode i by measuring the area	௜ܽ݁ݎܣ

above the DVF for electrode i and below the envelope of the other DVF curves, and ܶሺܦ௜ሻ 

is a term that defines the value of ܽ݁ݎܣ௜ at which activating or deactivating electrode ݅ is 

equally desirable as a function of the distance ܦ௜ between electrode ݅ and modiolus. Eqn. 

(5.3) is designed to assign a lower cost for activating (deactivating) electrodes with DVFs 

whose ܽ݁ݎܣ௜  is larger (smaller) than the threshold value ܶሺܦ௜ሻ . Figure 5.3a shows 

qualitatively the term ௜ܽ݁ݎܣ	  for several DVF curves. In this example, ܽ݁ݎܣଶ ൐ ଷܽ݁ݎܣ , 

ଶܽ݁ݎܣ ൐ ܶሺܦଶሻ, and ܽ݁ݎܣଷ ൏ ܶሺܦଷሻ, which leads to electrode 2  having a small cost for 

being active and 3 having a large cost for being active. This will favor configurations with 

electrode 2 being activated and electrode 3 being deactivated. Optimal electrode 

configurations will thus tend to consist of electrodes with DVF curves that have larger ܽ݁ݎܣ௜ 

values. To compute ܽ݁ݎܣ௜, we sum the squared distances measured between the DVF for 

the ith electrode and the envelope of the other DVFs at discrete positions sampled along the 

frequency axis. We found empirically that defining ܽ݁ݎܣ௜  as the sum of the squared 

distances between the curves is better than a sum of direct distances for describing expert-

perceived channel overlap because the sum of squared distances is larger for DVFs that have 

at least some regions that lie relatively far below the envelope of the other DVFs. ܶሺ⋅ሻ is a 

function that is defined using a subset of electrodes in our training dataset as follows. Figure 

5.4a shows a scatter plot of Electrodes-Of-Interest (EOIs), which are a subset of electrodes 

from our training dataset for which the expert identified that the decision to keep them active 

or not was driven by the DVF area. ܽ݁ݎܣ௜ is shown on the y-axis and the electrode distance 
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to the modiolus, ܦ௜, is shown on the x-axis. As observed in the plot, the activation decision 

is a function of both ܦ௜ and ܽ݁ݎܣ௜. This is because when ܦ௜ is larger, the electrode is farther 

from the modiolus, and we expect wider spread of excitation. Thus we would require a 

greater ܽ݁ݎܣ௜ to obtain adequate channel independence and to want to keep the electrode 

active. Thus, we define ܶሺ⋅ሻ   as a polynomial function of modiolar distance that best 

separates the active and inactive EOIs from the training dataset in this plot in a least squares 

sense:  

ܶሺܦ௜ሻ ൌ െ0.2660 ൅ ௜ܦ1.4125 ൅ ௜ܦ0.5398
ଶ, (5.5)

௜ܶ  is shown as the green curve in Figure 5.4a. The coefficients and the order of the 

polynomial function are determined with our training dataset. First, we randomly separate 

the EOIs into 90 training EOIs and 20 validation EOIs. Next, we investigated first order, 

second order and third order polynomials as candidate functions. The coefficients of each 

polynomial are chosen so that the polynomial best separates the active and inactive training 

EOIs in a least squares sense. Next, we evaluated each of the three candidate polynomials 

with the validation EOIs. We found that the second order polynomial correctly classified the 
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largest number of testing EOIs. Thus, we chose to use the second order polynomial as ܶሺ∙ሻ 

and this as shown as the green curve in Figure 5.4a. Next,  

ସ݂ ൌ ෍݁ି஽௘௣௧௛_்௘௥௠೔

௄

௜ୀଵ

(5.6) ,ܭ/

where ܭ is the total number of electrodes, 

௜݉ݎ݁ܶ_݄ݐ݌݁ܦ ൌ

ە
ۖ
۔

ۖ
௜݄ݐ݌݁ܦۓ
ܴሺܦ௜ሻ

if electrode ݅ ∈ active set

ܴሺܦ௜ሻ
௜݄ݐ݌݁ܦ

if electrode ݅ ∉ active set
, (5.7)

௜݄ݐ݌݁ܦ ൌ minሺܥ௜௅, ௜ோሻ, (5.8)ܥ

 ௜ோ are the depth of concavity of the ݅௧௛ electrode DVF relative to its left and rightܥ ௜௅ andܥ

neighbors, ݄ݐ݌݁ܦ௜ is the overall depth of concavity for the curve, and ܴሺܦ௜ሻ is the value of 

 ௜ for which activating and deactivating the electrode are equally desirable as a function݄ݐ݌݁ܦ

of the distance ܦ௜ between electrode ݅ and modiolus. Eqn. (5.7) is designed to assign a lower 

cost for activating (deactivating) electrodes with DVFs whose depth of concavity ݄ݐ݌݁ܦ௜ is 

larger (smaller) than the threshold value ܴሺܦ௜ሻ. This term captures the property that optimal 

configurations consist of electrodes whose DVFs have large depth of concavity. Figure 5.3b 

shows an example of the depth of concavity measurement. In this example, ݄ݐ݌݁ܦଶ ൌ ܿଶோ ൏

ܴሺܦଶሻ, ݄ݐ݌݁ܦଷ ൌ ܿଷ௅ ൐ ܴሺܦଷሻ, which leads to a large cost for activating electrode 2 and a 

small cost for activating electrode 3. This will favor solutions in which electrode 3 is 

activated and electrode 2 is deactivated. ܴሺ⋅ሻ is a polynomial function that is defined using 

a subset of electrodes selected from our training dataset in a manner identical to ܶ as: 

ܴሺܦ௜ሻ ൌ 0.0328 ൅ ௜ܦ0.005 ൅ ௜ܦ0.0351
ଶ, (5.9)

Figure 5.4b shows a scatter plot of EOIs in our training dataset for which the expert decision 
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to keep them active or not was driven by the depth of concavity. ݄ݐ݌݁ܦ௜ is shown on the y-

axis, the electrode distance to the modiolus ܦ௜ is shown on the x-axis, and ܴ is shown in 

green. As observed in the plot, the activation decision is a function of both electrode distance 

௜ܦ  and ݄ݐ݌݁ܦ௜ . This is because, similarly to Eqn. (5.4) above, when ܦ௜  is larger and we 

expect wider spread of excitation, we would require larger ݄ݐ݌݁ܦ௜  to indicate adequate 

channel independence and to keep the electrode active. Next, 

ହ݂ ൌ ෍ሺܦ௜ െ ௜ሻܯ ௜ܦሺݑ െ ௜ሻܯ
௄

௜ୀଵ

, (5.10)

where ܦ௜ is the distance from the electrode ݅ to the modiolus, ܯ௜ is a linear function defined 

as: 

௜ܯ ൌ െ17.29 logଵ଴ሺݍ݁ݎܨ௜ሻ ൅ 72.81, (5.11)

in which ݍ݁ݎܨ௜ is the place frequency of the nerves closest to electrode i, and ݑሺ∙ሻ is the unit 

step function. ହ݂ is designed to assign a cost to electrodes that fall above the line defined by 

Eqn. (5.11). This line is shown in Figure 5.3c, which shows a small, zoomed in portion of 

the plot shown in Figure 5.3b. Since the line is steep, electrodes located above it are located 

in the very high frequency region (>13 kHz) near the entrance of the cochlea. These 

electrodes are often deactivated clinically because they are outside or nearly outside the 

cochlea or provide abnormal perception due to loss of neural survival that is common in this 

region. Thus, ହ݂ is used to indicate that electrodes in this region are less desirable. As shown 

in Figure 5.3c, Eqn. (5.12) was designed by finding the least squares fit line that separates 

the groups of electrodes in the training electrode configurations that were set as activated 

(red) and deactivated (blue). Also shown are distances ܦ௜  and ܯ௜  for one electrode 

(magenta).  Next, 
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଺݂ ൌ ௔, (5.12)ܭ/ூܭ

where ܭ௔ is the number of active electrodes in the configuration, and ܭூ is the number of 

DVFs that have a minimum that falls above the envelope of other electrodes’ DVFs (see 

electrode 4 in Figure 5.2a). When this term is larger than 0, it is a strong indicator that one 

or more electrodes is stimulating the same frequency range as other electrodes but less 

effectively since it is located further away from the modiolar surface. Next, 

଻݂ ൌ ൬෍ ݁ି௥௔௧௜௢ೄሺ೔ሻ
௄ೞ

௜ୀଵ
൰ ௦, (5.13)ܭ/

where ܵ is the set of ܭ௦ active electrodes that have active neighbors on both the left and right 

side,  

௜݋݅ݐܽݎ ൌ minሺܣ௜௅, ,௜௅ܣ௜ோሻ/maxሺܣ ௜ோሻ, (5.14)ܣ

and ܣ௜௅ and ܣ௜ோ indicate the left and right half area terms of the DVF curve of electrode ݅ 

(see Figure 5.4a). ܣ௜௅ and ܣ௜ோ are defined as the sum of the distances measured between the 

DVF curve for the ݅th electrode and the envelope of the other DVFs at the discrete positions 

sampled along the  frequency axis to the left and right of the minimum, respectively. Eqn. 

(5.14) assigns a low cost to the configurations with symmetric DVFs, and a high cost to the 

configurations with one or more highly asymmetric DVFs. Finally, ଼݂ ൌ ඥ ଷ݂, ଽ݂ ൌ ඥ ସ݂, and 

ଵ݂଴ ൌ ඥ ଻݂. These terms were included after testing all combinations of squares and square 

roots of ଵ݂ି଻ and finding that including these terms led to better results. 

A linear combination of the cost terms is used to define an overall cost function for 

a given configuration, i.e., 

ܥ ൌ෍ݓ௜ ௜݂

ே

௜ୀଵ

, (5.15)

Because current electrode arrays have ~22 electrodes, it is practical to find the globally 
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optimal configuration through an exhaustive search that evaluates all possible 

configurations. The values for the set of scalar coefficients ሼݓ௜ሽ௜ୀଵ
ே  used to weigh each of 

the cost terms in Eqn. (5.16) are estimated using a training set of existing manually selected 

electrode configurations and a least-squares technique.  

Our methods are summarized in Figure 5.5. As can be seen in the figure, there is a 

training stage and a testing stage. The training stage is used to determine the parameter 

(weight) values ሼݓ௜ሽ௜ୀଵ
ே  that control the contribution of each feature term in the overall cost 

function. Input 1 is the DVF-based feature set. Using this feature set, a cost term is computed 

for each feature for all the possible electrode configurations in the set of training cases. The 

resulting cost terms (Output 2) are passed to the least-squares solver, which solves equations 

of the form: 

൝෍ ௜݂
௠,௢

ே

௜ୀଵ

௜ݓ ൅ ߜ ൌ ௠,௢ൡܥ
௠ୀଵ,௢ୀଵ

ெ,ை

, (5.16)

where ൛ ௜݂
௠,௢ൟ is the set of ܰ cost terms for each of the ܯ electrode configurations for the ܱ 

subjects in our training dataset, ሼܥ௠,௢ሽ is the set of cost estimates for each configuration, and 

 ௠,௢ሽ using a piecewise function defined asܥis a constant. We compute ሼ ߜ

Training cases Compute the 
cost term for 
each feature 

DVF-based 
features set 

Least-squares 
weight computation

A specific testing case 
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cost as weighted 
sum of cost terms

Find configuration 
with minimum cost 

Automatic 
configuration 

2

Electrode configuration 
cost estimates 

5

3

4

1
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Figure 5.5 The workflow of the automatic electrode configuration selection method 
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௠,௢ܥ ൌ

ە
ۖ
۔

ۖ
ۓ 0 ݁௠,௢ ൌ ݁opt,௢

1
2

݁௠,௢ ∈ ൛݁acc,௢ൟ

dist൫݁௠,௢, ݁opt,௢൯ otherwise

, (5.17)

where ݁௢௣௧,௢ is the electrode configuration chosen manually by an expert for the ݋௧௛ subject, 

൛݁௔௖௖,௢ൟ is a set of other electrode configurations that were identified by the expert as being 

acceptable for the ݋௧௛ subject, and dist൫݁௠,௢, ݁௢௣௧,௢൯ is an electrode configuration distance 

metric we have defined on all other electrode configurations. distሺ∙		,∙ሻ needs to capture the 

difference in quality between configurations and is thus a critical element of our method. A 

straightforward approach would be to use the hamming distance between the electrode 

configurations. However, we found this to be sub-optimal as certain configuration patterns, 

such as on-off-on-off vs off-on-off-on would be assigned the highest possible distance value 

even though this often does not lead to very different stimulation patterns. To address this 

issue dist൫݁௠,௢, ݁௢௣௧,௢൯ is computed in this work in two steps as shown in Figure 5.6: (1) The 

activation status of each electrode in ݁௠,௢ is compared with the corresponding electrode in 

݁௢௣௧,௢ . For each ݆th electrode ݁௠,௢,௝  in ݁௠,௢  that does not match ݁௢௣௧,௢,௝ , we compute the 

distance, in terms of the number of electrodes, to the nearest  electrode in ݁௢௣௧,௢ that does 

match ݁௠,௢,௝ . This results in an array of distances, Ԧ݀ ൌ ൛ ௝݀ൟ , where ௝݀ ൌ |݆ െ ݇|  is the 

distance from ݁௠,௢,௝ to ݁௢௣௧,௢,௞, the closest electrode in ݁௢௣௧,௢ that matches  ݁௠,௢,௝. (2) We 

then compute dist൫݁௠,௢, ݁௢௣௧,௢൯ as the sum of the local maxima in Ԧ݀. This metric is designed 

to assign a higher cost to configurations that have more distant mismatches, which indicates 

greater disagreement with the optimal configuration. In summary, our approach assigns 

higher values to ܥ௠,௢ for less desirable electrode configurations and lower values to ܥ௠,௢ 

for more desirable electrode configurations.  
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The set of weights ሼݓ௜ሽ௜ୀଵ
ே  can be determined by solving Eqn. (5.16) once offline 

using a constrained least-squares linear system solver in MATLAB 2014b (Mathworks, Inc. 

Natick, MA), with the constraint ݓ௜ ൒ 0	∀	݅ ൌ ሾ1, ܰሿ . This constraint represents an 

additional piece of a priori knowledge that captures the fact that the cost function should 

increase when feature terms increase since, as designed, the value of the features increases 

for less desirable electrode configurations. We have found that this constraint leads to better 

results. Once the weights are defined by using the training dataset, the optimal electrode 

configuration for a new subject is determined automatically by finding the global minimum 

of the cost function through an exhaustive search. 

+ + - + - + - + + + + +  ݁௔,௢ 

+ - + - + + + + + + + + ݁௢௣௧,௢ 

dist൫݁௔,௢, ݁௢௣௧,௢൯ ൌ 1 ൅ 3 ൌ 4 

+ - + - + + + + + + + +  ݁௢௣௧,௢ 

dist൫݁௕,௢, ݁௢௣௧,௢൯ ൌ 1 ൅ 7 ൌ 8

Local maxima 7  

Local maxima 1  

(b) 

(a) 

   Ԧ݀ 

   Ԧ݀ 

0 1 1 1 1 0 3 0 0 0 0 0

- - + - + + + - - - - +   ݁௕,௢ 

1 0 0 0 0 0 0 4 5 6 7 0

Figure 5.6. The distance metric between electrode configuration patterns (Marker ൅: Electrodes activated; 
Marker െ : Electrodes deactivated). Both configuration have 5 differences in the electrode activation 
patterns. With the optimal distance metric, configuration  ݁௕,௢ is assigned with larger distance compared to 
configuration ݁௔,௢ to the optimal configuration ݁௢௣௧,௢.  
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We performed a validation study to show the robustness of our method. To evaluate 

our method on our testing dataset, we asked two electrode configuration selection experts 

(JHN and YZ) who currently verify all the configurations used in our clinical studies to 

perform a blinded and randomized evaluation of the automatic configurations against control 

configurations. To do this, for the 60 subjects in our testing dataset, we generated three sets 

of electrode configurations: Manual, automatic, and control electrode configurations. The 

manual electrode configurations were manually selected by JHN and have been implemented 

in patients in our previous clinical research studies. The automatic electrode configurations 

were generated by running our proposed method on the subjects in testing dataset. Control 

electrode configurations were constructed for each subject in the testing set by the experts 

by manually selecting a configuration that is not “acceptable” but “close” to acceptable for 

all testing subjects. An electrode configuration is judged as “acceptable” when the expert 

believes it can be used for CI programming and is likely to lead to hearing outcomes that are 

nearly as good as those that would be achieved using the best possible configuration. For 

each test subject, two tests were done in which each expert was presented with a pair of 

electrode configurations and asked to rank them in terms of quality and rate whether each 

configuration was acceptable. In one test, the pair of configurations consists of the automatic 

and manual plan. In the other test, the control and the manual plan are ranked and rated. The 

ordering of all tests across all test subjects was randomized and the expert was masked to the 

identity of each configuration. The control configurations used for tests with one expert were 

generated by the other expert. Masking the identity of all the configurations, including 

control configurations, and randomizing the order of tests were steps done to minimize the 

potential for the experts to be biased towards evaluating all configurations as acceptable and 

so that the presence of such a bias could be detected in the results. Rating a significant portion 
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of the control plans as acceptable would be indicative of such a bias. Two experts were 

included so that inter-rater variability could be characterized.  

5.3 Results 

The parameter training process was implemented in MATLAB (Mathworks Inc., Natick, 

MA) and the electrode configuration selection algorithm was implemented in C++. The 

training process is an offline process, which generates the feature cost term weights in 1 

minute, 4 minutes, and 7 hours 40 minutes on a standard Windows Server PC (Intel (R), 

Xeon (R) CPU X5570, 2.93GHz, 48GB RAM) for MD, AB, and CO arrays, respectively. 

The electrode configuration selection algorithm required 15 seconds, 30 seconds, and 2 

minutes for MD, AB, and CO arrays, respectively. Compared to the manual selection done 

by expert (requires 0.5-2 minutes), our automatic electrode configuration selection algorithm 

is comparable but does not require any specialized training. The feature weight values 

computed for the MD, AB, and CO arrays from the training dataset are shown in Table 5.1. 

As can be seen from the table, the feature that prevents deactivating the most apical electrode 

( ଵ݂) and one of the channel interaction features ( ଺݂) were assigned the highest weight values 

Table 5.1. The feature cost terms generated for Med-El, Advanced Bionics, and Cochlear arrays 

Cost 
Terms 

Expert Heuristics MedEl 
Advanced 

Bionics 
Cochlear

1 Activate the most apical electrode 0.68 0.28 1.09 
2 Active as many electrodes 0 1.55ൈ 10ିଽ 1.62ൈ 10ିସ

3 Activate electrodes with large area terms in DVFs 3.72ൈ 10ିଷ 8.89ൈ 10ିହ 8.95ൈ 10ିସ

4 Active electrodes with large depth of concavities in DVFs 0 6.02ൈ 10ିଽ 5.09ൈ 10ିହ

5 Deactivate electrodes outside of cochlea 3.23ൈ 10ିସ 8.32ൈ 10ିଶ 4.89ൈ 10ିସ

6 Deactivate electrodes with minimum of DVFs above others 2.28 1.37 5.43 
7 Tends to activate electrodes with symmetric DVFs 0 6.75ൈ 10ିଵ଴ 4.75ൈ 10ିହ

8 Square root of term 3 0 3.58ൈ 10ିଽ 5.55ൈ 10ିହ

9 Square root of term 4 0 5.07ൈ 10ିଵ଴ 4.98ൈ 10ିହ

10 Square root of term 7 0 1.18ൈ 10ିଽ 4.80ൈ 10ିହ
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for all three types of implants. For the AB and the CO arrays, the other feature that was 

assigned a high weight value is the term punishing electrodes falling around the entrance of 

the cochlea ( ହ݂). The other features were assigned relatively low weight values. For Med-El, 

the term punishing activating electrodes that fall around the entrance of the cochlea ( ହ݂) and 

the term favoring a large area for each DVF curve ( ଷ݂) were assigned moderately high weight 

values. The remaining features were assigned weights with very low magnitude (൑ 10ିଵଷ). 

In experiments on the MD training set we found that removing the features that were 

assigned the very low weights produced identical electrode configurations. This confirms 

that the features with low magnitude weights (൑ 10ିଵଷ) do not play a significant role in 

achieving the best results and can be ignored. Thus, for MD, we only kept ଵ݂, ଷ݂, ହ݂ and ଺݂ 

and remove the other features by setting their weights as 0.  

The results of our validation study on our testing set are shown in Figure 5.7. As can 

be seen from Figure 5.7a, according to expert 1 (JHN), across the 60 subjects in our testing 

dataset, 14 of the automatically generated electrode configurations were found to be better 
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Replicate the manual configuration 

Equally good as the manual configuration 

Better than the manual configuration 

Acceptable but can be improved 

Not acceptable and needs modification 

0 

5 

10 

15 

20 
N

um
be

r 
of

 c
as

es
 

MD AB CO 

Automatic 

MD AB CO

Control 

 

0

5

10

15

20

N
um

be
r 

of
 c

as
es

 

MD AB CO

Automatic 

MD AB CO

Control 
(b) 

Figure 5.7. Validation study results. Panel (a) and (b) visualize the results of validation studies performed 
by expert 1(JHN) and expert 2 (YZ) on automatic and control electrode configurations, respectively. 
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than the manually selected configuration. In these tests, the manual configuration was found 

to be acceptable, but not as good as the automatic configuration. In the remaining tests, 33 

automatic configurations were found to be equivalent to or exactly the same as the manual 

configurations, 12 were found to be not as good as the manual configuration but still 

acceptable, and only 1 was found to be not acceptable. None of the control configurations 

was evaluated as equivalent to or better than the manual configuration, 8 were evaluated as 

acceptable, and 52 were evaluated as not acceptable. For expert 2 (YZ), 24 automatic 

configurations were found to be better than the manual configurations, 26 were found to be 

equivalent to or exactly the same as the manual configurations, 9 were found to be 

acceptable, and only 1 was evaluated as not acceptable. The same automatic case was rated 

as not acceptable by both experts. None of the control configurations was rated as equivalent 

to or better than manual configurations, only 6 were evaluated as acceptable, and the 

remaining 54 were rated as not acceptable. These results show that, with the exception of 

one unacceptable result, our method performs similarly to an expert. On average, the 

automatic method slightly outperforms an expert since more automatic plans are ranked 

better than manual plans than vice versa. Two-tailed paired-sign tests were used to compare 

the acceptance rate for control vs. automatic plans and showed that the rate at which the 

automatic plans are judged to be acceptable was significantly better for both expert 1 (݌ ൌ

1 ൈ 10ିଵହ) and expert 2 (݌ ൌ 1 ൈ 10ିଵ଺). No statistically significant differences were found 

when comparing ratings of the automatic electrode configurations across the two raters (݌ ൌ

1).   

In Figure 5.8, we show the DVFs for automatically determined electrode 

configurations for several cases. The blue dotted curves represent DVFs for electrodes that 

are removed from the active electrode configuration, and the red solid curves represent DVFs 
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Figure 5.8. Visualization of automatically selected (a-d) and corresponding manual (e-h) electrode 
configurations for several cases. An automatic AB plan that was judged as better than the manual plan is shown
in (a). An automatic MD plans judged to be equivalently good are shown in (b). An automatic CO plans judged 
as acceptable is shown in (c). An automatic MD result that was judged as not acceptable is shown in (d). 
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for electrodes that are active. The electrode numbers are in increasing order from the left to 

the right. To facilitate interpretation, we label the electrodes of interest in the figure. In Figure 

5.8a, a result for an AB case is shown that is identified as better than the manual 

configuration because the 2nd and the 4th electrodes are deactivated in the automatically 

generated configuration. Deactivating those electrodes is good because they are likely to 

interfere with electrode 3. Figure 5.8b presents a result for a MD case that is identified as 

equivalent to the manual configuration. The automatic plan deactivates electrode 5 while the 

manual plan keeps it. The plans are judged to be equivalent because it is hypothesized that 

reducing channel interaction artifacts by turning off electrodes will be offset by an increase 

in frequency compression artifacts resulting in equivalent outcomes. Figure 5.8c presents a 

result for a CO case that is judged to be not optimal compared with the manual configuration 

but still acceptable. The 11-14-17 configuration in the automatic plan is not as good as the 

10-12-15-18 because the minimum of electrode 11 and 17 in the automatic plan are very 

close to the curves of the neighbor electrodes 10 and 18. Thus, the 11-14-17 configuration 

in the automatic plan does not adequately address the channel interaction problem between 

electrodes 10 and 11 and electrodes 17 and 18. Figure 5.8d presents the only automatic 

configuration for a MD case that is judged to be not acceptable. In Figure 5.8d, the automatic 

configuration deactivates electrode 2 and 9. This is not desirable because of the relatively 

large distances between electrodes 1 and 3 and 8 and 10. This plan is likely to cause 

frequency compression artifacts. 

5.4 Conclusions 

In this study, we propose the first approach for automatic selection of electrode 
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configurations for image-guided cochlear implant programming. This is a crucial step 

towards clinical translation of our image-guided cochlear implant programming system that 

has been shown in clinical studies to lead to significant improvement in outcomes. Our 

approach is to design a DVF-feature-based cost function and to train its parameters using 

existing electrode configuration plans that we have accumulated in our database. Our 

validation study has shown that our method generalizes well on a large-scale testing dataset 

and can produce acceptable electrode configurations in the vast majority of cases. In the 

validation tests with implant models from the 3 major CI manufacturers, our automatic 

method produces acceptable configurations for 98.3% of the arrays tested. According to the 

evaluation results from two experts in our group, around 83% of the configurations produced 

by our automatic method were ranked as at least equivalent to the manual configurations. 

Around 33% of the configurations produced by our automatic method were ranked as better 

than the manual configurations, wheras only 17% of the manual configurations were ranked 

as better than the automatic. These results suggest that our method is a viable approach for 

automatically selecting electrode configurations for image-guided cochlear implant 

programming with similar performance to a trained expert. While the best approach to assess 

our IGCIP system would be to analyze a collection of hearing outcomes data from CI 

recipients before and after using IGCIP with the automatic and the manual electrode 

configuration selection methods, such data is difficult to obtain. This is so because it would 

require subjects to come back once for re-programming and again to re-evaluate outcomes 

3-6 weeks after re-programing. In the future, we plan to perform such a study with a limited 

number of recipients who live in close proximity to our institution. While our method 

generates acceptable configurations for the vast majority of cases tested, it is still capable of 

producing unacceptable configurations. Thus, in future work we will investigate developing 
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an automatic method to evaluate the quality of the electrode configuration generated by our 

method. This would enable our IGCIP system to notify the user that expert intervention 

might be needed to select the electrode configuration when our automatic method fails.  
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Abstract 

Cochlear implants (CIs) are a standard treatment for patients who experience severe to 

profound hearing loss. Recent studies have shown that hearing outcome is correlated with 

the intra-cochlear locations of CI electrodes. Our group has developed image-guided CI 

programming (IGCIP) techniques that use image analysis techniques to analyze the patient-

specific intra-cochlear locations of the implanted CI electrodes to assist audiologist with CI 

programming by selecting a subset of active electrodes. The image analysis techniques in 

IGCIP include the identification electrode locations in post-implantation CTs, and the 

segmentation of intra-cochlear anatomy in pre- and post-implantation CTs. Clinical studies 

have shown that IGCIP can improve hearing outcomes for CI recipients. However, the 

sensitivity of IGCIP with respect to the accuracy of the two major steps, electrode 

localization and intra-cochlear anatomy segmentation, is unknown. In this article, we create 

a ground truth dataset by using conventional and µCT pairs of 35 temporal bone specimens 

to rigorously characterize the accuracy of these two steps and then use those dataset for 

IGCIP sensitivity analyses. The validation study results show that with pre- and post-

implantation CTs available, IGCIP can generate acceptable active electrode sets in 86.7% of 

the subjects tested. With only post-implantation CTs available, IGCIP can generate 

acceptable active electrode sets in 83.3% of the subjects tested.  
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6.1. Introduction 

Cochlear implants (CIs) are neural prosthetic devices that are the standard of care treatment 

for patients experiencing severe to profound hearing loss [1]. The external components of a 

CI device include a microphone, a signal processor, and a signal transmitter, which are used 

to receive and process sounds, and send signals to implanted CI electrodes. The major 

internal component is the implanted CI electrode array. The implanted CI electrodes bypass 

the damaged cochlea and directly stimulate the auditory nerves to induce a sense of hearing 

for the recipient. During CI surgery, a surgeon threads a CI electrode array into a recipient’s 

cochlea. After the surgery, an audiologist needs to program the CI device which includes 

determining a series of CI instructions. The programming procedure involves specifying the 

stimulation levels for each electrode based on the recipient’s perceived loudness, and the 

selection of a frequency allocation table, which determines which electrode is to be activated 

when a specific frequency is detected in the incoming sound [2]. CIs lead to remarkable 

success in hearing restoration among the majority of recipients [3-4]. However, there are still 

a significant number of CI recipients experiencing only marginal benefit.  

Recent studies have indicated that hearing outcomes with CI devices are correlated 

with the intra-cochlear locations of CI electrodes [5-10]. As the electrode array is blindly 

inserted by a surgeon, the intra-cochlear locations of CI electrodes are generally unknown. 

Thus, audiologists do not have information about locations of CI electrodes with respect to 

the auditory nerves. In the traditional CI programming procedure, the audiologist assumes 

the electrodes are optimally situated and selects a default frequency allocation table. This 

leads to an artifact named “electrode interaction” [11-12], as shown in Figure 6.1 as 

overlapping stimulation of electrodes. Electrode interaction occurs when multiple CI 



124 

 

 

electrodes are stimulating the same group of auditory nerves.  In natural hearing, a specific 

group of nerves are activated in response to a specific frequency band. In a CI-assisted 

hearing process with electrode interaction, the same nerve group is activated in response to 

multiple frequency bands, which is thought to create spectral smearing and negatively affect 

hearing outcomes. It is possible to alleviate the negative effect of electrode interaction, by 

selecting a subset of the available electrodes to keep active, aka the “electrode 

configuration”, that do not have overlapping stimulation patterns. However, without the 

benefit of knowing the spatial relationship between the electrodes and the auditory neural 

sites, selecting such an electrode configuration is not possible and audiologists typically 

leave active all available electrodes.  

Our group has been developing an image-guided cochlear implant programming 

(IGCIP) system [2], which uses image analysis techniques to assist audiologists with 

electrode interaction analysis and electrode configuration selection [18, 24] during the CI 

programming procedure. Figure 6.2 shows the workflow of IGCIP. We use whole head 

computed tomography (CT) images of CI recipients as input for IGCIP. For recipients having 

both pre- and post-implantation CTs, we firstly use a mutual information-based method to 

18k

1k

50

(a) (b) (c) (d) 

Figure 6.1. Panels (a) and (b) show a CI electrode array superimposed on the scala tympani (red) and scala 
vestibuli (blue) cavities of the cochlea in posterior-to-anterior and lateral-to-medial views, respectively. 
Panel (c) shows the scalae and neural activation region color-coded by place frequency in Hz. Panel (d) 
illustrates overlapping stimulation patterns (electrode interaction) from the implanted electrodes as they 
stimulate neural regions. 

Overlapping stimulation 
(Electrode interaction) 
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register the pre-implantation CT with a reference CT, where the intra-cochlear anatomy 

could be segmented by using [13]. In the post-implantation CT, the locations of electrodes 

can be identified by using [14] or [15]. Then, we register the pre- and post-implantation CTs 

together to analyze the possibility for electrode interactions. For recipients that do not have 

pre-implantation CTs, we developed two methods [16] and [17] that can segment the intra-

cochlear anatomy directly from post-implantation CTs. After segmenting the intra-cochlear 

anatomy using one of these techniques, we localize the electrodes in the same post-

implantation CTs by using [14] or [15] and then proceed to electrode interaction analysis 

process. To analyze the electrode interactions, our group has develop a technique named 

distance-vs.-frequency curves (DVFs). The DVF is a 2D plot for facilitating the visualization 

of electrode interaction in individuals. It captures the patient-specific spatial relationship 

between the electrodes and the auditory nerves [2], as shown in Figure 6.2. The DVFs show 

Electrode configuration 
selection 

Figure 6.2. Workflow of Image-guided cochlear implant programming (IGCIP) techniques. 

Pre-implantation CT 

Post-implantation CT 

(c) 

(b) 

(a) 

(d) 
DVFs 

(e) 

Has both pre- and post-
implantation CTs 

Has post-implantation CTs only 

(a). Anatomy segmentation in pre-
implantation CTs 
(b). Electrode localization in post-
implantation CTs 

(c). Anatomy segmentation in post-
implantation CTs 
(d). Pre- and post-implantation CTs 
registration 

(e). Electrode interaction analysis 
and deactivation plan generation 

Scala tympani Scala vesibuli Modiolus 

Frequency in log-scale 

Dis
tan
ce 
to 
mo
dio
lus 

On Off 



126 

 

 

the distance from each electrodes to neural stimulation sites along the length of the cochlea. 

Based on the DVFs, our group has developed an automatic electrode configuration selection 

method [18] to select a subset of active electrodes that have reduced electrode interaction. 

Recent clinical studies we performed indicated that by using our IGCIP-generated electrode 

configuration, hearing outcomes can be significantly improved [19-21]. The electrode 

configuration generated by IGCIP is affected by the accuracy of the anatomy and electrode 

segmentation techniques. To better understand the limitations of IGCIP, in this work, we 

rigorously characterize the accuracy of the electrode localization and intra-cochlear anatomy 

segmentation procedures. These results enable determining which automatic processes are 

the most accurate, and thus the most preferable, and enable the evaluation of the sensitivity 

Figure 6.3. Panels a-c show three post-implantation CTs: a conventional CT (a), the registered µCT (c), 
and a checkerboard combination of the two (b). As can be seen, electrodes are more separable in the µCT 
because of the higher resolution and less partial volume artifacts. Panels d-f show three pre-implantation 
CTs: a conventional CT (d), the registered µCT (f), and a checkerboard combination of the two (e). As can 
be seen in panel (f) and (d), the basilar membrane is visible in µCTs but not visible in clinical CTs. This 
makes it possible for generating ground truth anatomy segmentation results for ST and SV, and then MOD. 

2mm

Registration Registration

(a) (b) (c) 
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of IGCIP with respect to the automatic image processing techniques. 

The electrode localization method being evaluated in this study is a graph-based path-

finding algorithm [14]. We refer to this method as ܯா in the remainder of this article. In 

post-implantation CTs, the CI electrodes appear as high intensity voxel groups, as shown in 

Figure 6.3. ܯா firstly extracts the volume of interest (VOI) that contains the cochlea by using 

a reference image. Next, it generates candidates of interest (COIs) that represent the potential 

locations of electrodes. The COIs are used as nodes in a graph for the following path-finding 

algorithms. Then, it uses path-finding algorithms to find a path constructed by a subset of 

COIs representing the centroids of CI electrodes on the array. The intra-cochlear anatomy 

segmentation step in IGCIP focuses on the segmentation of three anatomical structures in 

cochlea: scala tympani (ST), scala vestibuli (SV), and the active region (AR) of the modiolus 

(MOD). ST and SV are the two principal cavities of the cochlea. The MOD is the anatomical 

region housing the auditory nerves. AR is the interface between the MOD and the union of 

the ST and SV. The auditory nerves stimulated by the electrodes are located in immediate 

proximity to AR within MOD. In conventional clinical pre-implantation CTs, the basilar 

membrane that separates ST and SV is not visible, as shown in Figure 6.3d, which makes 

the segmentation of the intra-cochlear anatomy difficult. When pre-implantation CTs are not 

available, the segmentation of intra-cochlear anatomy becomes more difficult. This is 

because in post-implantation CTs, the artifacts caused by metallic electrodes obscure the  

anatomy  structures. Thus, for intra-cochlear anatomy segmentations in both pre- and post-

implantation CTs, our group had proposed three automatic methods: (1) a statistical shape 

model-based method [13], (2) a library-based method [16], and (3) a method [17] based on 

the Conditional Generative Adversarial Network (cGAN) [18]. We refer to them as ܯ஺ଵ, 

 ஺ଵ, weܯ ஺ଵ is used on pre-implantation CTs if available. Inܯ .஺ଷ, respectivelyܯ ஺ଶ, andܯ
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create an active shape model for ST, SV, and MOD by using the manually delineated 

anatomical surfaces from 9 high resolution µCTs [13]. Then, the model is fit to the partial 

structures that are available in conventional CTs, and used to estimate the position of 

structures not visible in these CTs. When pre-implantation CTs are not available, we apply 

 ஺ଶܯ .஺ଷ directly to post-implantation CTs for intra-cochlear anatomy segmentationܯ ஺ଶ orܯ

leverages a library of shapes of cochlear labyrinth and intra-cochlear anatomy. Given a target 

post-implantation CT, first, ܯ஺ଶ segments the portions of the cochlear labyrinth that are not 

typically affected by image artifacts. Then, it selects a subset of labyrinth shapes from the 

library based on the similarity of the regions not affected by the artifacts. Using this subset 

of shapes, the method builds a weighted active shape model (wASM) of the cochlear 

labyrinth to localize the labyrinth in the target image. Then weights of the vertices that are 

close to (or distant to) the image artifacts are assigned 0 (or 1), respectively. Last, it uses 

another pre-defined active shape model of ST, SV, and MOD to segment the intra-cochlear 

anatomy based on the localized labyrinth. ܯ஺ଷ uses a cGAN [18] to translate the given post-

implantation CT, in which the intra-cochlear anatomy is corrupted by artifacts, to a 

synthesized pre-implantation CT in which the artifacts are removed. Then on the recovered 

pre-implantation CT image, we apply ܯ஺ଵ to generate the ST, SV and MOD surfaces. 

As has been discussed above, to analyze the accuracy of IGCIP, we need to 

rigorously characterize the accuracy of the automatic image processing techniques. In 

previous studies, ܯா ஺ଶܯ , , and ܯ஺ଷ  have only been validated by using reference 

segmentation results on conventional CTs that have limited accuracy. In [14], to evaluate the 

accuracy of ܯா, we used a set of manual localization results generated by an expert on post-

implantation clinical CTs. The clinical CTs have a limited resolution (the typical voxel size 
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is 0.2ൈ0.2ൈ0.3mm3). When localizing small-sized objects such as CI electrodes (typical size 

is 0.3ൈ0.3ൈ0.1mm3), partial volume artifacts (see Figure 6.3a) in clinical CTs limit the 

accuracy of the localization, even with care and expertise. Other image quality issues, such 

as the beam hardening artifacts, also complicate localizing CI electrodes. In previous studies 

for intra-cochlear anatomy segmentation, ܯ஺ଶ  and ܯ஺ଷ  were only validated by using 

reference anatomical structures generated by ܯ஺ଵ on corresponding pre-implantation CTs. 

These limited reference segmentations used in prior studies could only be as accurate as the 

conventional CT images on which they were defined.  

In this article, we create a high accuracy ground truth dataset using µCT imaging to 

rigorously evaluate the accuracy of our automatic techniques in IGCIP and the sensitivity of 

IGCIP with respect to them. In Section 2, we describe the creation of the ground truth dataset 

and the design of the validation approaches. In Section 3, we present and analyze the 

validation results. In Section 4, we summarize the contribution of this work and discuss 

potential improvements for the IGCIP process. 

6.2. Methods 

6.2.1. Image data 

Our image data consists of CTs and µCTs of 35 temporal bone specimens implanted with 4 

different types of CI electrode arrays by an experienced otologist. The detailed specifications 

of the 35 specimens are shown in Table 6.1. Among the 35 specimens, 20 (Specimen 16 to 

35 in Table 6.1) were implanted with an array type that our electrode localization method 

had been trained to localize, and the remaining 15 were implanted with three other array 

types (5 specimens each, Specimen 1 to 15 in Table 6.1) on which our method was not 



130 

 

 

trained. Every specimen underwent pre- and post-implantation CT imaging and post-

implantation µCT imaging. Six specimens underwent pre-implantation µCT imaging 

(Specimen 30 to 35). The typical voxel size for CT images and µCT images are 0.30 ൈ

0.30 ൈ 0.30mmଷ and 0.02 ൈ 0.02 ൈ 0.02mmଷ, respectively.    

6.2.2. Ground truth dataset creation 

Figure 6.3 show examples of pre- and post-implantation CTs and µCTs. As can be seen, the 

Table 6.1. The specifications of the CT images of the 35 temporal bone specimens 

# 
Conventional CT voxel size (mm2) µCT voxel size (mm2) 

Migration 
Data 

Group 
# Pre-op CT Post-op CT Pre-op CT Post-op CT 

1 0.26 × 0.26 × 0.30 0.26 × 0.26 × 0.30  0.02 × 0.02 × 0.02  1,3 
2 0.28 × 0.28 × 0.30 0.24 × 0.24 × 0.30  0.02 × 0.02 × 0.02  1,3 
3 0.30 × 0.30 × 0.30 0.34 × 0.34 × 0.30  0.02 × 0.02 × 0.02 Yes 3 
4 0.27 × 0.27 × 0.30 0.34 × 0.34 × 0.30  0.02 × 0.02 × 0.02  1,3 
5 0.26 × 0.26 × 0.30 0.21 × 0.21 × 0.30  0.02 × 0.02 × 0.02  1,3 
6 0.27 × 0.27 × 0.30 0.31× 0.31 × 0.30  0.02 × 0.02 × 0.02  1,3 
7 0.25 × 0.25 × 0.30 0.34 × 0.34 × 0.30  0.02 × 0.02 × 0.02  1,3 
8 0.32 × 0.32 × 0.30 0.30 × 0.30 × 0.30  0.02 × 0.02 × 0.02  1,3 
9 0.24 × 0.24 × 0.30 0.32 × 0.32 × 0.30  0.02 × 0.02 × 0.02  1,3 

10 0.21 × 0.21 × 0.30 0.30 × 0.30 × 0.30  0.02 × 0.02 × 0.02  1,3 
11 0.35 × 0.35 × 0.30 0.28 × 0.28 × 0.30  0.02 × 0.02 × 0.02  1,3 
12 0.35 × 0.35 × 0.30 0.21 × 0.21 × 0.30  0.02 × 0.02 × 0.02  1,3 
13 0.38 × 0.38 × 0.30 0.23 × 0.23 × 0.30  0.02 × 0.02 × 0.02  1,3 
14 0.40 × 0.40 × 0.30 0.27 × 0.27 × 0.30  0.02 × 0.02 × 0.02  1,3 
15 0.25 × 0.25 × 0.30 0.26 × 0.26 × 0.30  0.02 × 0.02 × 0.02  1,3 
16 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
17 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
18 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
19 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
20 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
21 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
22 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
23 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
24 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
25 0.40 × 0.40 × 0.40 0.40 × 0.40 × 0.40  0.03 × 0.03 × 0.03  1,3 
26 0.34 × 0.34 × 0.29 0.15 × 0.15 × 0.30  0.02 × 0.02 × 0.02  1,3 
27 0.31 × 0.31 × 0.30 0.25 × 0.25 × 0.30  0.02 × 0.02 × 0.02  1,3 
28 0.32 × 0.32 × 0.30 0.16 × 0.16 × 0.30  0.02 × 0.02 × 0.02 Yes 3 
29 0.30 × 0.30 × 0.30 0.20 × 0.20 × 0.30  0.02 × 0.02 × 0.02 Yes 3 
30 0.38 × 0.38 × 0.30 0.19 × 0.19 × 0.30 0.02 × 0.02 × 0.02 0.02 × 0.02 × 0.02 Yes 2,3 
31 0.39 × 0.39 × 0.30 0.14 × 0.14 × 0.30 0.02 × 0.02 × 0.02 0.02 × 0.02 × 0.02  1,2,3,4 
32 0.33 × 0.33 × 0.30 0.20 × 0.20 × 0.30 0.02 × 0.02 × 0.02 0.02 × 0.02 × 0.02  1,2,3,4 
33 0.29 × 0.29 × 0.40 0.32 × 0.32 × 0.30 0.02 × 0.02 × 0.02 0.02 × 0.02 × 0.02  1,2,3,4 
34 0.32 × 0.32 × 0.30 0.23 × 0.23 × 0.30 0.02 × 0.02 × 0.02 0.02 × 0.02 × 0.02  1,2,3,4 
35 0.29 × 0.29 × 0.30 0.17 × 0.17 × 0.30 0.02 × 0.02 × 0.02 0.02 × 0.02 × 0.02 Yes 2,3 
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individual electrodes in a post-implantation µCT are more separable than in a conventional 

post-implantation CT because the µCT has 3 orders of magnitude better resolution and little 

partial volume artifact. It is also easier to segment the intra-cochlear anatomy in a pre-

implantation µCT because the image quality of µCTs is higher and the basilar membrane is 

visible in a µCT. Thus, our ground truths are manually generated on pre- and post-

implantation µCTs.  

We use the dataset for four validation purposes: (1) Characterize the accuracy of the 

electrode localization method ܯா. (2) Characterize the accuracy of the three existing intra-

cochlear anatomy segmentation methods ܯ஺ଵ, ܯ஺ଶ, and ܯ஺ଷ. (3) Analyze the sensitivity of 

IGCIP with respect to the accuracy of the methods in (1) and (2). (4) Assess the quality of 

the IGCIP-generated electrode configurations generated by using the complete automatic 

process, including both the electrode localization and anatomy segmentation. Using the 

image of the 35 specimens, we create 4 dataset groups and one “electrode configuration 

dataset”. The 4 groups of validation datasets are shown in Table 6.1. The details of each 

group and the electrode configuration dataset are explained in Section 6.2.3. 

6.2.3 Validation approaches 

6.2.3.1 Error analysis for electrode localization method 

We use Group 1 (see Table 6.1) to characterize the accuracy of ܯா. It consists of 30 out of 

35 specimens with pre-, post-implantation CTs and post-implantation µCTs. An expert 

manually delineated the ground truth locations (GL) of electrodes on the post-implantation 

µCTs of these 30 specimens. Then, we apply ܯா to the corresponding 30 conventional post- 

implantation CTs of specimens in Group 1 to generate the automatic localization (AL) of 

electrodes. Post-implantation conventional and µCTs were registered to facilitate 
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comparison between automatic and gold-standard ground truth localizations using mutual 

information-based registration techniques. The registrations were visually inspected and 

confirmed to be accurate, as shown in Figure 6.3b. We do not include specimens 3, 28, 29, 

30, and 35 in Group 1 because we observed that the CI electrode arrays had clearly moved 

between the conventional and the µCTs during visual inspection, which makes those 5 

subjects not available for the evaluating the accuracy of ܯா. One example of specimen that 

has electrode migration between post-implantation µCT and CT is shown in Figure 6.4a. We 

hypothesize that this motion occurred due to the fact that the specimen cochlea do not have 

fluid that could typically stabilize the array. Thus, when the specimens being transferred 

between different imaging sites, the electrode arrays were not internally fixed and may have 

moved. In addition to GL and AL, we also created an image-based localization (IL) as the 

average of multiple expert localizations in the CT images. To create IL, an expert manually 

generated electrode localization results for each case repeatedly until adding a new instance 

changes the position of each electrode in the average localization by no more than 0.05mm 

(approximately ¼ the width of a CT voxel). This indicated that the expert’s localizations 

(b)

Hook region 

Figure 6.4. Panels (a) shows electrode migration in Specimen 3. The CT iso-surface of the highest intensity 
voxels is shown in orange. The automatically (yellow) and manually (red) localized electrodes from the CT and µCT 
are different from electrode P1 to P6. Panel (b) shows an axial slice of a µCT around the “hook region” of SV. 
The blue and red contours in the CT are the manual delineations of SV and ST generated by an expert. The 
corresponding 3D meshes are shown on the right side. As can be seen, the “hook region” of SV is guessed 
by the expert. 

(a) 
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converge to the best localization manually achievable when using the conventional CTs. To 

compare two electrode localizations, we measured Euclidean distances between the centroids 

of the corresponding electrode points and compared AL and GL to evaluate the overall 

accuracy achieved when using our automatic approach. However, the overall localization 

error is a function of algorithmic errors and errors due to image-based errors. The algorithmic 

errors exist due to the limitation of the automatic techniques. The image-based errors exist 

due to the limitation in the quality of the conventional CTs. Thus, we compared IL and AL 

to estimate algorithmic errors. We also compared AL and GL to measure image-based errors. 

In Section 6.3.1 we present the validation results of ܯா. 

6.2.3.2 Validation for intra-cochlear anatomy segmentation methods 

We use Group 2 (see Table 6.1) to evaluate the accuracy of the three intra-cochlear anatomy 

segmentation methods. Group 2 consists of 6 specimens with post-implantation CTs, pre-

implantation CTs, and pre-implantation µCTs available. We apply ܯ஺ଵ  to the pre-

implantation CTs, and ܯ஺ଶ  and ܯ஺ଷ  to the post-implantation CTs of the 6 specimens in 

Group 2, respectively. On the pre-implantation µCTs, an expert manually delineated the ST, 

SV, and MOD to serve as gold-standard ground truth for intra-cochlear anatomy. We 

registered pre-implantation and post-implantation CTs, and the pre-implantation µCTs 

together to facilitate comparing gold-standard segmentation results and automatic 

segmentation results. The automatic intra-cochlear anatomy segmentation methods generate 

surface meshes for ST, SV, and MOD that have pre-defined numbers of vertices. Those pre-

defined numbers are different from the number of vertices in the manually generated surface 

meshes. To enable a point-to-point error estimation for manually and automatically 

generated meshes, we used an ICP-based [26] iterative non-rigid surface registration method 
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developed in house to register the active shape model used to localize the ST, SV, and MOD 

to the manually delineated ST, SV, and MOD surfaces in the µCTs. This process results in 

a set of ground truth ST, SV, and MOD surfaces that have a one-to-one point correspondence 

with the surfaces generated by our automatic methods. For each intra-cochlear anatomy 

segmentation method, we then measured the Euclidean distance from each vertex on the 

automatically localized surfaces to the corresponding point on the gold-standard surfaces. 

The SV in the cochlea is a cavity with an open region on the side that is close to the round 

window membrane of the cochlea. In both CT and µCT, the border of the SV in the “hook 

region” (see Figure 6.4b) that is close to the round window membrane of cochlea cannot be 

delineated consistently because the SV is an open cavity without an anatomical boundary at 

the hook region. Thus, the border must be estimated somewhat arbitrarily by the expert when 

generating the ground truth. Since the accuracy of the segmentation in this region is not 

important for intra-cochlear electrode localization or IGCIP, we exclude approximately 

1.5cm3 around the SV hook region when estimating the SV segmentation error. In the 

remainder of this article, we denote the gold-standard intra-cochlear anatomy surfaces as ܵ଴, 

and the surfaces generated by using ܯ஺ଵ, ܯ஺ଶ, and ܯ஺ଷ as	 ଵܵ, ܵଶ, and ܵଷ. In Section 6.3.2 

we analyze the results for the validation studies of the accuracy of ܯ஺ଵ, ܯ஺ଶ, and ܯ஺ଷ. 

6.2.3.3 Sensitivity of intra-cochlear electrode position estimation to processing errors 

We conduct three studies to analyze the sensitivity of IGCIP by using different groups of 

specimens, as shown in Table 6.2. As is shown in Figure 6.2, one electrode localization and 

one intra-cochlear anatomy segmentation define one estimation of the spatial relationship  

between the electrodes and auditory nerves. This relationship can be described by measuring 

locations of electrodes relative to intra-cochlear structures using an electrode coordinate 
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system proposed by Verbist et al. [25]. As is discussed in Section 1, the intra-cochlear 

location of electrodes and their relationship to hearing outcomes has been a subject of intense 

study in recent years [5-10]. Thus, independently of IGCIP, it is of interest to quantify the 

accuracy of the processing methods for estimating intra-cochlear position to understand the 

limitations of these techniques for use in such large scale analyses of how electrode position 

affects accuracy. Thus, in this study, we quantify errors in estimating intra-cochlear electrode 

position when using	ܯா  ஺ଷ. Electrode position is measured in terms ofܯ ஺ଶ, andܯ ,஺ଵܯ ,

angular depth-of-insertion (DOI), the distance to modiolar surface (DtoM), and the distance 

to the basilar membrane (DtoBM). As the cochlea has a spiral shape with 2.5 turns in human, 

the depth of any position within it can be quantified in the terms of a DOI value from 0 to 

900 degrees. The DtoM values are directly computed as the Euclidean distances between the 

centroids of electrodes and the vertices on the modiolar surface. The DtoBM value is 

computed as the signed Euclidean distance between the centroids of electrodes and basilar 

Table 6.2. Electrode configuration names in sensitivity analysis studies 

Study Data group # 
Intra-cochlear 

anatomy 
Electrode 
locations 

Configuration 
name 

(a). Electrode localization 
sensitivity 

1 ଵܵ 
GL ீܥଵ (Reference) 
AL ܥ஺ଵ 

(b). Anatomy segmentation 
sensitivity 

2 

ܵ଴

GL 

 ଴ (Reference)ீܥ

ଵܵ ீܥଵ 
ܵଶ  ଶீܥ
ܵଷ ீܥଷ 

3 

ଵܵ

GL 

 ଵ (Reference)ீܥ

ଵܵ
ᇱ ଵீܥ 

ᇱ  
ܵଶ
ᇱ ଶீܥ 

ᇱ  
ܵଷ
ᇱ ଷீܥ

ᇱ  

(c). Overall sensitivity 

4 

ܵ଴ GL ீܥ଴ (Reference) 

ଵܵ AL ܥ஺ଵ 
ܵଶ AL ܥ஺ଶ 
ܵଷ AL ܥ஺ଷ 

1 

ଵܵ GL ீܥଵ (Reference)

ଵܵ
ᇱ  AL ܥ஺ଵ

ᇱ 	
ܵଶ
ᇱ AL ܥ஺ଶ

ᇱ 	
ܵଷ
ᇱ  AL ܥ஺ଷ

ᇱ 	
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membrane, which lies between ST and SV. Figure 6.5 shows the measurements of the three 

values. Among the three values, DOI and DtoM values are directly related with the 

construction of DVFs as they correspond to the horizontal and vertical axes of DVFs. DtoM 

values are not directly related but are still have important information of the intra-cochlear 

locations of the implanted electrodes. 

6.2.3.4 Sensitivity of IGCIP to processing errors 

The spatial relationship between the electrodes and the intra-cochlear anatomy defines a set 

of DVFs. Based on the DVFs, an electrode deactivation plan, the “electrode configuration” 

is generated by using our automatic electrode configuration selection method [18]. In each 

study shown in Table 6.2, the sensitivity of IGCIP is defined as the difference between the 

electrode configurations generated by using “automatic” and “reference” intra-cochlear 

electrode position estimation. Table 6.2 defines the automatic and reference electrode 

position estimation techniques for each study and denotes the name for each resulting 

electrode configuration. 

  In study (a), we evaluate the sensitivity of IGCIP with respect to the electrode 

Angular insertion depth 

RW entry site 

360º line 

Mid-modiolar axis 
273º  

Figure 6.5. Panel (a) shows the measurement of the DOI value for the 3rd most apical electrode in the 
coordinate system proposed by Verbist et al. [25]. The ST is shown in the red. The electrode array carrier 
is shown in light grey and the contacts are shown in dark grey. Panel (b) shows the measurements of DtoM 
(magenta line) and DtoBM (orange line) values for a given electrode (cyan point) in a CT slice in coronal 
view. The ST, SV and MOD are shown in red, blue, and green, respectively.

0º  

(a). (b). 
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localization method by using the specimens in Group 1. The reference configurations in 

study (a) are defined as ீܥଵ , which are generated by using ଵܵ , together with GL. The 

automatic configurations are defined as ܥ஺ଵ, which are generated by using ଵܵ together with 

AL. In study (b), we evaluate the sensitivity of IGCIP with respect to the intra-cochlear 

anatomy segmentation methods by using specimens in Groups 2 and 3. In Group 2, which 

consists of the 6 subjects with pre-implantation CTs, the reference configurations ீܥ଴ are 

generated by ܵ଴ together with the GL. The three sets of automatic configurations ீܥଵ, ீܥଶ, 

ଷீܥ  are generated by using ଵܵ , ܵଶ, ܵଷ together with GL, respectively. Due to the limited 

number of pre-implantation µCTs acquired for subjects in our dataset, we use Group 3 to 

generate synthesized surfaces for ܯ஺ଵ, ܯ஺ଶ, and ܯ஺ଷ so that we can analyze the sensitivity 

of IGCIP with respect to the errors of the three intra-cochlear anatomy segmentation methods 

on a larger dataset. For the specimens in Group 3, we select ଵܵ of all the 35 specimens as our 

reference intra-cochlear anatomical surfaces. Then, for each subject, we deform ଵܵ  to 

generate the synthesized surfaces ଵܵ
ᇱ , ܵଶ

ᇱ , ܵଷ
ᇱ  that simulate the segmentation errors of method 

஺ଷ. To build synthesized surfaces ଵܵܯ ஺ଶ, andܯ ,஺ଵܯ
ᇱ  for ܯ஺ଵ, we firstly build a gamma 

distribution by using the mean and the standard deviation of the segmentation error of ܯ஺ଵ, 

which is estimated by using specimens in Group 2 and the error measurement approach 

described in sub-section 6.2.3.2. Then, for each specimen in Group 3, we draw a random 

number from the defined gamma distribution and set this number as the “desired mean 

segmentation error” between the synthesized surfaces and the reference surfaces of the 

selected subject. We randomly adjust the shape control parameters in the active shape model 

[22] so that we deform the reference surfaces to the synthesized surfaces with a mean point-

to-point difference equal to the desired mean segmentation error. The same process is used 
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to generate ܵଶ
ᇱ  and ܵଷ

ᇱ .  We use an active shape model to perform this deformation, instead 

of directly adding errors to each vertices on the reference surface ଵܵ, so that the changes in 

the deformed surfaces have realistic anatomical constraints. In Group 3, the reference 

configurations ீܥଵ  are generated by using ଵܵ  and GL. The three sets of automatic 

configurations ଵீܥ	
ᇱ ଶீܥ ,

ᇱ ଷீܥ ,
ᇱ  are generated by using ଵܵ

ᇱ , ܵଶ
ᇱ , ܵଷ

ᇱ , together with GL, 

respectively. In study (c), we evaluate the sensitivity of IGCIP with respect to both the 

electrode and anatomy segmentation methods by using specimens in Group 4 and 1. Group 

4 consists of the 4 specimens that have pre-implantation µCTs and do not have electrode 

migration. The reference configurations ீܥ଴ in Group 4 in study (c) are generated by using 

the anatomy ܵீ, together with the GL. The three sets of automatic configurations	ܥ஺ଵ, ܥ஺ଶ, 

and ܥ஺ଷ are generated by using ଵܵ, ܵଶ, ܵଷ, together with AL, respectively. Due to the same 

issue with the limited pre-implantation µCTs in study (b), for study (c), we use Group 1, 

which consists of the 30 specimens that do not have electrode migration to expand the size 

of our dataset for overall sensitivity analysis. The reference configurations ீܥଵ in Group 1 

are generated by using ଵܵ and GL. The three sets of automatic configurations ܥ஺ଵ
ᇱ ஺ଶܥ ,

ᇱ ஺ଷܥ ,
ᇱ  

are generated by using ଵܵ
ᇱ , ܵଶ

ᇱ , ܵଷ
ᇱ , together with AL, respectively. 

The most direct way to show the difference of two electrode configurations is to use 

a binary code (use “1” to indicate an electrode being “activated” and “0” to indicate an 

electrode being “deactivated”) to represent the two configurations and then compute the 

hamming distance between them. This directly shows the differences between two given 

configurations. However, sometimes a configuration of “on-off-on-off-on” has an equal 

quality stimulation pattern with a configuration of “off-on-off-on-off”, even though they 

result in large hamming distance. Thus, we use two other metrics to compare the automatic 
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and reference configurations to evaluate the sensitivity of IGCIP. The first metric we use is 

the difference between “cost values” of the two configurations. In our automatic electrode 

deactivation strategy [18], we have developed a cost function which assigns a cost value to 

a specific electrode configuration. In our design, a lower cost value indicates a configuration 

that is less likely to cause electrode interaction and more likely to stimulate a broad frequency 

range. Thus, the difference between the cost values of two configurations is an indicator for 

the difference between the automatic and the reference electrode configurations. The second 

metric is the difference between the quality of the automatic and reference electrode 

configurations. The quality of the electrode configurations is evaluated by an expert (JHN) 

through an electrode configuration quality assessment study, which is discussed in details in 

the next subsection. 

6.3. Results 

6.3.1 Accuracy of the electrode localization technique 

Validation of the electrode localization technique was presented in [23], and the results are 

summarized here. Figure 6.6a shows boxplots of the mean, median, maximum, and the 

standard deviation of localization errors between AL and GL across the 30 specimens in 

Group 1. In each boxplot, the median value is given as a red line, 25th and 75th percentiles 

are indicated by the blue box, whiskers show the range of data points that fall within 1.5x 

the interquartile range from the 25th or 75th percentiles but are not considered outliers, and 

red crosses indicate outlier data points. Comparing AL and GL, we found mean electrode 

localization errors of 0.13mm and a maximum localization error of 0.36mm. Comparing IL 

and GT, we found the mean electrode localization error was 0.12mm and the maximum 
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localization error was 0.32mm. Comparing AL and IL, we found the mean and maximum 

localization errors are 0.10mm and 0.39mm, respectively. This shows that our automatic 

method generated localization results close to the optimal localization results that can be 

generated by an expert from clinical post-implantation CTs. All localization errors were 

smaller than the length of one voxel diagonal of the conventional post-implantation CTs in 

our dataset. We performed a paired t-test between the mean localization errors between AL-

GL and AL-IL and found the p value was 4.96 ൈ 10ିହ. This shows that the algorithmic 

errors that would be estimated if using the CT image to create a ground truth would be 

significantly different from the errors measured when using the µCT to serve as ground truth. 

However, the errors between AL-GL are still small. Thus, even by using imperfect CT 

images with limited resolution, our electrode localization method in IGCIP can still generate 

accurate localization results. 

6.3.2 Accuracy of intra-cochlear anatomy segmentation methods 

Figure 6.6b show the boxplots of the mean, the maximum, the median, and the standard 

deviation of anatomy segmentation errors between automatic methods and the ground truth  

Figure 6.6. Panel (a) shows the boxplots for localization errors between AL-GL, IL-GL, and AL-IL. Panels 
(b) shows the segmentation errors between ܵ1-ܵ0, ܵ2-ܵ0, and ܵ3-ܵ0. 
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across the 6 specimens in Group 2. Comparing ܵ଴ and ଵܵ, the mean and standard deviation 

of the segmentation errors was 0.23±0.12mm. Comparing ܵ଴  and ܵଶ , the mean and the 

standard deviation of the segmentation errors was 0.41±0.15mm. Comparing ܵ଴ and ܵଷ, the 

mean and the standard deviation of the segmentation errors was 0.30±0.14mm. Finally, 

among the three existing automatic methods in IGCIP and our gold-standard ground truth, 

we found the most accurate method was ܯ஺ଵ. This is because ܯ஺ଵ is implemented on pre-

implantation CTs in which the metallic artifacts caused by electrodes do not exist. Among 

the rest two methods ܯ஺ଶ and ܯ஺ଷ implemented on post-implantation CTs, ܯ஺ଷ results in 

better mean segmentation errors than ܯ஺ଶ on post-implantation CTs. ܯ஺ଶ is less accurate on 

post-implantation CTs because it relies on using the shape of the cochlear labyrinth to 

Figure 6.7. Panels (a), (b), (c) show qualitative segmentation results (ܵ1, ܵ2, and ܵ3) generated by IGCIP 

automatic methods ܯA1, ܯA2, and ܯA3 for a representative subject in Group 2. The three surfaces of intra-

cochlear anatomical structures are color-coded by the segmentation errors computed by using ܵ0.  

ST SV AR 

ST SV AR 

ST SV AR 

(a)

(b)

(c)

0.0m 1.2m
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Figure 6.8. Panels (a), (b), and (c) show the boxplots for the differences in the DOIs, the DtoM, and the 
DtoBM of the automatic (1ܣܥ) and the reference (1ܩܥ) configurations generated by IGCIP for sensitivity 
analysis with respect to the electrode localization method (study (a) in Table 6.2). 
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Figure 6.9. Panels (a-c) show the boxplots for the differences in the DOIs, the DtoM, and the DtoBM of 
the electrodes generated by using automatic (3ܩܥ ,2ܩܥ ,1ܩܥ) and the reference (0ܩܥ) processing methods on 
the 6 specimens in Group 2. Panels (d-f) show the boxplots for the differences in the DOIs, the DtoM, and 
the DtoBM of the electrodes generated by using automatic (ீܥଵᇱ ଶீܥ ,

ᇱ ଷீܥ ,
ᇱ ) and the reference (1ܩܥ) processing 

methods on the 35 specimens in Group 3 with the synthesized anatomy surfaces. These results are the IGCIP 
sensitivity analysis study with respect to the intra-anatomy segmentation method (study (b) in Table 6.2).  
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localize the intra-cochlear anatomy and the shape of the cochlear labyrinth may not be a 

good predictor for the positions of the intra-cochlear anatomy. Overall, all three methods had 

<0.5mm mean segmentation errors. Figure 6.7 shows the segmentations of ST, SV, and AR 

from one case generated by all the methods. The surfaces are color-coded by using the    

segmentation errors computed by using ܵ଴. 

6.3.3 Sensitivity of intra-cochlear electrode position estimation to processing errors 

Figure 6.8, Figure 6.9, and Figure 6.10 show boxplots for the difference between the intra-

Figure 6.10. Panels (a-c) show the boxplots for the differences in the DOIs, the DtoM, and the DtoBM of 
the electrodes generated by using automatic (3ܣܥ ,2ܣܥ ,1ܣܥ) and the reference (0ܩܥ) processing methods on 
the 4 specimens in Group 4. Panels (d-f) show the boxplots for the differences in the DOIs, the DtoM, and 
the DtoBM of the electrodes generated by using automatic (ܥ஺ଵᇱ ஺ଶܥ ,

ᇱ ஺ଷܥ ,
ᇱ ) and the reference (1ܩܥ) processing 

methods on the 30 specimens in Group 1 with the synthesized anatomy surfaces. These results are the IGCIP 
sensitivity analysis study with respect to the intra-anatomy segmentation method (study (c) in Table 6.2).  
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cochlear locations of the electrodes identified by using the automatic and the reference 

processing methods defined in study (a), (b), and (c) in Table 6.2. Comparing the results 

presented in Figure 6.8 and Figure 6.9, we find that the intra-cochlear locations of the 

electrodes are less sensitive to the electrode localization method than to the intra-cochlear 

anatomy segmentation methods. Among the three intra-cochlear anatomy segmentation 

methods, ܯ஺ଵ is the most reliable method for generating accurate intra-cochlear locations, 

then ܯ஺ଷ, followed by ܯ஺ଶ. Comparing the results presented in Figure 6.8-6.10, we find that 

the overall errors of both the electrode localization and intra-cochlear anatomy segmentation 

techniques are not substantially larger than the errors due to the intra-cochlear anatomy 

segmentation alone. 

6.3.4 Sensitivity of IGCIP to processing errors 

In Figure 6.11, we show the boxplots for the cost values of automatic, reference, and the 

control configurations defined in sub-section 6.2.3.5. The name of the configurations are 

indexed in Table 6.2. From Figure 6.11, we can see that besides the outliers, the average cost 

values for all the automatic configurations are close to the average cost values for the 

reference configurations. The average cost values for the control configurations are 

significantly larger than the ones for the reference and the automatic configurations. These 

results show that the automatic image processing techniques in our IGCIP can generate 

configurations that have similar quality to the configurations generated by using the 

reference anatomy and electrode locations. From Figure 6.11b-e, we see that ܯ஺ଵ generates 

the intra-cochlear anatomy that lead to the lower average cost than ܯ஺ଶ and ܯ஺ଷ. This is 

because ܯ஺ଵ is applied on pre-implantation CTs, where the intra-cochlear anatomy are not 

obscured by the metallic artifacts. For the two methods designed for post-implantation CTs, 
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஺ଷܯ  generates intra-cochlear anatomy that lead to lower average cost than ܯ஺ଶ . This 

indicates that ܯ஺ଷ is more reliable than ܯ஺ଶ. This is also shown in the differences in the DOI 

and the DtoBM values in Figure 6.9 and Figure 6.10. 

Figure 6.12 shows the evaluation results for the 255 electrode configuration sets inour 

electrode configuration dataset discussed in sub-section 6.2.3.5. In Figure 6.12, panel (a) 

shows the evaluation results of the configurations generated for the sensitivity analysis of 

IGCIP with respect to the electrode localization method. These configurations belong to 

study (a) in Table 6.2. Panel (b) and (c) show the evaluation results of the configurations 

generated for the sensitivity analysis of IGCIP with respect to the three intra-cochlear 

anatomy segmentation methods. These configurations belong to study (b). Panel (d) and (e) 

show the evaluation results of the configurations generated for the overall sensitivity analysis 

of IGCIP with respect both the electrode and anatomy segmentation methods for study (c). 

Figure 6.11. Panels (a-e) show the boxplots for the cost values (in log-scale) of automatic, reference, and 
control configurations for subjects in the data being used in the three studies in Table 6.2 for IGCIP 
sensitivity analysis.    
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As can be seen in Figure 6.12a, among the 30 automatic electrode configurations in ܥ஺ଵ 

generated by using AL, none of them in is rated as not acceptable, and 21 out of 30 automatic 

configurations in ܥ஺ଵ are rated as at least equally good as the reference configurations ீܥଵ. 

This shows that the errors in the electrode localization method is robust enough to generate 

localization results that lead to acceptable electrode deactivation configurations.  

In Figure 6.12b, among the automatic configurations generated by using GL and ଵܵ, 

ܵଶ , and ܵଷ , none of the automatic configurations in ீܥଵ ଶீܥ , , and ீܥଷ  is rated as not 

acceptable. Meanwhile, ீܥଵ, ீܥଶ, and ீܥଷ have generated 4, 3, and 2 configurations that are 

at least equally as good as the reference configurations ீܥ଴. In Figure 6.12c, among the 

Figure 6.12. Evaluation results of the configurations generated for the sensitivity analysis of IGCIP with 
respect to (a) the electrode localization method, (b-c) the three intra-cochlear anatomy segmentation 
methods, and (d-e) the overall automatic image processing techniques in IGCIP. 
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automatic configurations generated by using GL and ଵܵ
ᇱ , ܵଶ

ᇱ , ܵଷ
ᇱ , 2, 8, and 3 automatic 

configurations in ீܥଵ
ᇱ ଶீܥ ,

ᇱ , and ீܥଷ
ᇱ  are rated as not acceptable, and 26, 14, and 15 automatic 

configurations in ீܥଵ
ᇱ ଶீܥ ,

ᇱ , and ீܥଷ
ᇱ  are rated as at least equally good as the reference 

configurations	ீܥଵ. The results shown in Figure 6.12a-c show that the quality of the IGCIP-

generated electrode configurations generated are less sensitive to the errors in the electrode 

localization method than to the intra-cochlear anatomy segmentation methods. In Figure 

6.12d, among the automatic configurations generated by using AL and ଵܵ, ܵଶ, ܵଷ, none of 

them in ܥ஺ଵ, ܥ஺ଶ, and ܥ஺ଷ  is rated as unacceptable. Three automatic configurations in ܥ஺ଵ 

are rated as equally good as the reference configurations in ீܥ଴. In Figure 6.12e, among the 

automatic configurations generated by using AL and ଵܵ
ᇱ , ܵଶ

ᇱ , ܵଷ
ᇱ , 4, 10, and 5 automatic 

configurations in ܥ஺ଵ
ᇱ ஺ଶܥ ,

ᇱ , and ܥ஺ଷ
ᇱ  are rated as not acceptable, and 17, 11, and 14 automatic 

configurations in ܥ஺ଵ
ᇱ ஺ଶܥ ,

ᇱ , and ܥ஺ଷ
ᇱ  are rated at least as good as the reference configurations 

ଵீܥ . Altogether, these results suggest that ܯ஺ଵ  is the most reliable anatomy localization 

method to generate acceptable electrode configurations. Further, ܯ஺ଷ should be used as the 

secondary choice for anatomy segmentation when pre-implantation CTs are not available 

and ܯ஺ଵ cannot be directly used.  

In the results shown in Figure 6.12e, the expert evaluated 26 out of 30 (86.7%) 

automatic configurations generated by ܯா ൅ܯ஺ଵ as acceptable, and 25 out of 30 (83.3%) 

automatic configurations generated by ܯா ൅ܯ஺ଷ as acceptable. These results, together with 

the results presented in Section 6.3.3, indicate that our IGCIP can generate reliable electrode 

configurations by using the automatic image processing techniques. To further improve the 

reliability of IGCIP, we should increase the accuracy of the intra-cochlear anatomy 

segmentation methods. 
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In Figure 6.12a-e, we find that among all the control configurations in all the 

experiments, 83.3%, 83.3%, 85.7%, 100%, and 81.1% are rated as unacceptable by the 

expert. This suggests that the evaluation results generated by the expert shown above are not 

biased towards the tendency for evaluating every configuration as acceptable.  

6.4. Conclusion 

In this article, we create a ground truth dataset with high accuracy and use it for a validation 

study on an image-guided cochlear implant programming (IGCIP) system developed by our 

group. The two major image processing techniques in IGCIP are the CI electrode localization 

and intra-cochlear anatomy segmentation methods. The validation study results show that 

among 30 cases in our dataset, our localization method can generate results that are highly 

accurate with mean and maximum electrode localization errors of 0.13mm and 0.36mm. Our 

three intra-cochlear anatomy localization methods can generate results that have mean errors 

of 0.23mm, 0.41mm, and 0.30mm. In a sensitivity analysis for IGCIP, we found that our 

IGCIP is less sensitive to the electrode localization method than to the intra-cochlear 

anatomy segmentation method. Among the three intra-cochlear anatomy segmentation 

methods, we found that IGCIP is the least sensitive to method ܯ஺ଵ, then ܯ஺ଷ,	then ܯ஺ଶ. In 

an overall IGCIP-generated automatic electrode configuration quality evaluation study, we 

found that IGCIP can generate configurations that are 86.7% acceptable when the pre-

implantation CTs are available, and 83.3% acceptable when the pre-implantation CTs are 

not available. One limitation of this study is that while it includes several models of CI 

electrode arrays, they were produced by only one manufacturer. In the future, we plan to 

expand the validation dataset by acquiring pre- and post-implantation CTs and µCTs of 
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temporal bone specimens implanted with electrode arrays from different CI manufacturers. 

We also will study hearing outcomes of CI recipients using IGCIP-generated configurations 

and the manually selected configurations to show the effectiveness of IGCIP-generated 

configurations. 
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Chapter VII 
 

 

SUMMARY AND FUTURE WORK 

 

This dissertation introduces several innovative image processing and image-based automatic 

techniques for fully automating our image-guided cochlear implant (CI) programming 

(IGCIP) system [1]. Prior to this dissertation, the electrode localization and electrode 

deactivation configuration selection steps in IGCIP were not fully automated. In this 

dissertation, we have made three major contributions: (1) We propose several automatic 

methods for localizing different types of CI electrode arrays in post-implantation CTs [2-4], 

as described in Chapter II, III, and IV. (2) We develop an automatic method for electrode 

deactivation configuration selection that can generate configurations that are comparable to 

the ones selected by experts [5], as described in Chapter V. (3) We perform the first thorough 

validation of IGCIP by using a highly accurate ground truth dataset [6] and analyze the 

sensitivity of IGCIP to errors introduced by the image processing techniques we have 

developed, as described in Chapter VI. 

 In Chapter II, we propose a snake-based method [2] for localizing one type of the 

closely-spaced CI electrode arrays. First, this method uses a reference image to locate the 

VOI that contains the cochlea region from a whole head clinical CT image. Then, it uses a 

Maximum Likelihood Estimation-based (MLE-based) method to estimate a threshold for the 

VOI. By applying the threshold to the VOI, the method generates ROIs that possibly contain 

the electrode array. The assumption is that the ROI that contains the largest number of voxels 

is occupied by the electrode array. Next, we apply a voxel thinning method [7] to the largest 

ROI to generate the medial axis line, which is treated as the initial centerline of the implanted 

CI electrode array. The centerline endpoints are first localized within the neighborhood of  
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their initialized positions using an endpoint detection filter we have designed [2]. Then, the 

endpoints are fixed and the points in the rest of the centerline are optimized by using a snake 

[8] with its external energy defined using the output of a vesselness filter that is applied to 

the original VOI to enhance the centerline of the electrode array. The final step is a 

resampling step on the extracted centerline to determine the position of each electrode using 

a-priori knowledge about the distance between neighboring electrodes. Out of 15 cases, our 

testing results show that the average electrode localization error with this method is 0.21mm. 

This method is a preliminary method for localizing closely-spaced CI electrode arrays in CIs. 

It shows the feasibility of using the centerline of the implanted array to estimate the 

individual locations of closely-spaced electrodes. In a more comprehensive evaluation of the 

snake-based method on a large scale dataset, we discovered several limitations of this 

method and have proposed a more refined method for localizing closely-spaced electrode 

arrays that is presented in Chapter IV.  

In Chapter III, we propose a graph-based method for localizing distantly-spaced CI 

electrode arrays in clinical CTs with sub-voxel accuracy [3]. This method is extended from 

a graph-based path finding algorithm [15] developed earlier. The first step of this method [3] 

is also the localization of the VOI in a whole head clinical CT image using a reference image. 

We up-sample the VOI and the subsequent procedures are performed on the up-sampled 

VOI. Next, we identify the ROIs by thresholding a set of feature images, which are created 

with a weighted sum of the up-sampled VOI and the blob filter response of the up-sampled 

VOI. The weighting scalars are determined using a-priori knowledge of the geometry of the 

electrode array model. Then, we identify the ROIs by using the feature images. We perform 

a voxel thinning method [7] on each of the ROIs to generate the medial axis points as COIs. 

Once the COIs are extracted, we treat them as nodes in a graph. We use a coarse path-finding 
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algorithm to firstly find a fixed-length candidate path with the N COIs on that path 

representing the N electrodes on the array. The candidate path selected minimizes a cost 

function we designed. Finally, we use a second path-finding algorithm to locally refine the 

location of each coarsely localized electrode. The final path minimizes another cost function 

designed for this purpose. The validation study performed to validate this method shows that 

among 125 clinical CTs, this method generate final localization results with a mean error of 

0.12mm when comparing them with the average of two manual localization results generated 

by an expert. The mean localization error of this method outperforms the other existing 

electrode localization methods and it is close to the mean rater’s consistency error. Another 

validation study performed on 28 CTs of a cadaveric specimen acquired with different 

acquisition parameters (dose, resolution, extended or limited Hounsfield range, and the types 

of electrode array) shows that this method is not sensitive to acquisition parameters [9]. This 

method represents the state-of-the-art for the automatic localization of CI electrodes in 

distantly-spaced arrays. It is also a crucial step for fully automating IGCIP. 

In Chapter IV, we present a generic method for localizing closely-spaced electrode 

arrays in clinical CTs [4]. This method is a generalization of the preliminary method 

presented in Chapter II that can be applied to a range of closely-spaced array types and to 

images acquired with different CT scanners. It firstly generates the VOI using a reference 

image. Then, a feature image is computed using the weighted sum of the intensity of VOI 

and the Frangi vesselness filter response [10]. We threshold the feature image to generate 

the ROIs that contain electrodes and false positive voxels. For each ROI, we perform a voxel 

thinning step [7] to generate its medial axis line. A particular connection of medial axes is 

denoted as a “centerline candidate”. We propose an approach to find the centerline of the 

implanted array by exhaustively searching all the centerline candidates for the positions of 
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the most basal and apical electrodes, such that the centerline defined by those two points and 

the points between them minimizes a cost function we have designed. After finding the 

centerline of the implanted array, we resample it by using the known electrode spacing 

distance of the array. The points on the resampled curve correspond to the centers of the 

electrodes. On a testing dataset consisting of 129 clinical CTs implanted with three types of 

electrode arrays, our centerline-based method generates localization results with mean 

localization error of 0.13mm.  98% of our results have a maximum localization error lower 

than one voxel diagonal. This method can generate localization results for closely-spaced 

arrays with errors that are close to the rater’s consistency errors and are smaller than the 

snake-based method discussed in Chapter II. This method is the state-of-the-art for the 

automatic localization of CI electrodes in closely-spaced arrays. With the methods presented 

in Chapter III and IV, we are now capable of fully automating the electrode localization step 

in IGCIP. 

Chapter V presents an automatic method [5] for automatic electrode configuration 

selection in IGCIP. The method captures the heuristics used by the expert when selecting 

electrode configurations with the assistance of a method to visualize the spatial relationship 

between electrodes and the auditory nerves determined with the image analysis techniques 

presented in Chapter III and IV. In this method, we design a DVF-feature-based cost function 

and train its parameters using existing electrode configurations in our database. In the testing 

stage, given a set of DVF curves, our method computes the cost values for all the possible 

configurations and selects the configuration with the lowest cost as the automatic electrode 

configuration. The validation study has shown that our method generalizes well on a large-

scale testing dataset and that it can produce acceptable electrode configurations in most 

cases. 98.3% of the automatic configurations generated by our method in our testing dataset 
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are rated as acceptable by two experts. These results suggest that our method is a viable 

approach for automatic selection of electrode configuration in IGCIP. This is the first method 

that is capable of automatically generating electrode configurations that are comparable to 

those manually selected by human experts. Our fully automated electrode localization 

methods (presented in Chapter III and IV) and our automated electrode configuration 

selection method are critical to permit translation of IGCIP from the laboratory to clinical 

use. 

In Chapter VI, we create a highly accurate ground truth dataset to characterize the 

accuracy of the electrode localization and the intra-cochlear anatomy segmentation methods 

we have developed for IGCIP [6]. The ground truth dataset is created with 35 temporal bone 

specimens. All specimens underwent pre- and post-implantation CT imaging and post-

implantation µCT imaging. Six of them underwent pre-implantation µCT imaging. We use 

the post-implantation µCTs to manually localize the electrodes and the pre-implantation 

µCTs to manually segment the anatomy. Manual localizations and segmentations serve as 

ground truth.  The mean localization error of our electrode localization methods evaluated 

with the gold-standard ground truth is 0.13mm. The mean segmentation errors of our three 

intra-cochlear anatomy segmentation methods ([11], [12], and [13]) are 0.24mm, 0.41mm, 

and 0.31mm, respectively. In our sensitivity analysis for IGCIP, we found that IGCIP is not 

sensitive to the electrode localization method. For intra-cochlear anatomy segmentation 

method, we found that IGCIP achieves the best performances when using method [11] and 

[13], on pre- and post-implantation CTs, respectively. In a qualitative evaluation of the 

automatic electrode configurations generated by IGCIP using the most advanced automatic 

image processing techniques, we found that IGCIP can generate configurations that are 

86.7% acceptable when the pre-implantation CTs are available, and 83.3% acceptable when 
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the pre-implantation CTs are not available. This shows that our automatic techniques for 

IGCIP can, in most cases, lead to reliable electrode deactivation configurations for 

improving hearing outcomes for CI recipients. This is the first thorough validation study on 

the sensitivity of IGCIP to the errors introduced by the IGCIP-related automatic image 

processing techniques we have developed. We have also created a highly accurate ground 

truth dataset made of 35 temporal bone specimens. The ground truth dataset includes expert 

localization of electrode positions in post-implantation µCTs and expert segmentation of the 

intra-cochlear anatomy in pre-implantation µCTs. This dataset and the validation framework 

we have developed can be used for other validation studies related to other aspects of IGCIP. 

Even though we have made substantial progresses in automating IGCIP, further 

improvements are possible. With regards to electrode configuration selection, our proposed 

method relies on three sets of parameters, the values of which are separately estimated with 

three sets of DVF curves corresponding to the three arrays models produced by the three 

major manufacturers, respectively. This design limits the potential of this method to be used 

for other arrays with different numbers of electrodes. Zhang et al. proposed a generic 

algorithm for electrode configuration selection [14] that uses a set of DVF curves with 

known expert-approved configurations to build a DVF patch library. This library is used by 

a template matching-based method for selecting electrode deactivation configurations for a 

new set of DVFs. The validation study results presented in [14] show that the template 

matching-based method generates configurations with quality that are comparable to the 

ones obtained by our proposed method. In the future, the assessment of the effectiveness of 

the configurations generated by these two methods should also be done by comparing 

hearing outcomes in the same group of CI recipients when using the two configurations 

recommended by the two methods.  



158 

 

 

The validation study in Chapter VI includes ground truths for both electrode 

localization and intra-cochlear anatomy segmentation. One limitation is that the electrode 

arrays we have in this dataset are produced by only one of the major manufacturers 

(Advanced Bionics®, Valencia, CA, USA) and the electrodes in those arrays are all distantly-

spaced. Thus, only the distantly-spaced array localization method has been validated by 

using the dataset. In the future, a larger study should be done with an expanded dataset that 

contains both distantly- and closely-spaced CI electrode arrays. Another limitation is that 

one intra-cochlear anatomy segmentation method [16] is not validated. This method requires 

a clinical CT containing both ears with only one implanted ear. It would be desirable to 

acquire more specimens to enable the validation of this specific method. We also note that 

the best approach to assess the quality of different electrode configurations is to compare 

hearing outcomes obtained with each of them. This is difficult to do because it require CI 

recipients to commute between home and the Vanderbilt University Medical Center several 

times for reprogramming and hearing outcomes evaluation. In the future, such study could 

be done with a limited number of recipients who live close by Vanderbilt University and are 

willing to participate in our research.  

The current assumption on which IGCIP is based on is that the electrode interaction 

is associated with the distance between the electrodes and the modiolar surface. The DVF 

curves are also designed to visualize a simplified group of stimulation patterns based on this 

distance information. In the future, a more complicated electrode stimulation model can be 

created for the electrodes in the different locations within cochlea. Thus, a better method for 

characterizing electrode interaction can be one direction of future research. 

The automatic electrode localization techniques presented in this paper also enables 

a thorough investigation of the correlation between intra-cochlear locations of CI electrodes 
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and hearing outcomes. These studies can be conducted by using hearing outcome data and 

the clinical whole head CTs of a large number of CI recipients. The results of these studies 

could inform the design of future CI arrays and provide valuable information for the 

implantation phase of the procedure.  

This dissertation presents methods that have automated two crucial steps in IGCIP: 

electrode localization in post-implantation CTs and automatic electrode configuration 

selection for CI programming. The automatic techniques presented in Chapter III, IV and V 

have been integrated in the latest version of the IGCIP software. The inclusion of these two 

procedures is key to make IGCIP a fully automatic end-to-end system. Although the 

automatic techniques that have been presented herein may not be the final solutions for 

IGCIP, we believe the work that has been accomplished  has made valuable contributions 

towards improving hearing outcomes for CI recipients and that it provides efficient tools for 

future research related to image-guided cochlear implant programming.  
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