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INTRODUCTION 

 

 

Mathematical thinking pervades nearly all aspects of modern life, from personal accounting to 

understanding important information about one’s health. Accordingly, individuals with poor 

mathematical skills are less likely to graduate high school, go to college, have steady employment 

(Bynner, Parsons, Bynner, & Parsons, 2006; Geary, Hoard, Nugent, & Bailey, 2013; Goodman, Sands, & 

Coley, 2015; Ritchie & Bates, 2013; Rivera-Batiz, 1992), and are at a higher physical and mental health 

risk (Duncan et al., 2007; Hibbard et al., 2007; Parsons & Bynner, 2005).  And yet, an estimated 1 in 4 

economically active adults in the United States is functionally innumerate, lacking the ability to engage in 

and manage mathematical demands of a range of situations required in adult life (Gross, Hudson, & Price, 

2009). For many, even with adequate support and educational resources, becoming fluent in basic 

mathematics is extremely difficult for a range of reasons (Butterworth & Laurillard, 2010). The 

development of mathematical skills requires the training and cooperation of a host of neurocognitive 

mechanisms with functions ranging from perceiving and maintaining numerical information to executing 

attentional demands of multi-step mathematical procedures. Any one of these requisite mechanisms is a 

potential source of difficulty on the path to mathematical competence. By understanding how these 

mechanisms function biologically, we may come to understand their developmental origin in the brain, 

atypical trajectories in that development, and potentially gain insight into paths for improved pedagogical 

techniques, diagnosis of learning disabilities, and remediation of specific deficits. 

In addition to the normal range of difficulties that most students encounter while learning 

mathematics, an estimated 3-6% of the population is affected by the specific mathematics learning 

disability developmental dyscalculia (DD) (Shalev, Auerbach, Manor, & Gross-Tsur, 2000; Szűcs & 

Goswami, 2013). These individuals display difficulties with fundamental aspects of numerical processing 

from very early ages and continue to struggle with math, even when given the same schooling 

opportunities as their peers. The Diagnostic and Statistical Manual of Mental Disorders (DSM) and the 

International Classification of Diseases-10 (ICD-10) categorize DD as a neurodevelopmental disorder 
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with a biological origin (i.e. an interaction of genetic, epigenetic, and environmental factors) 

characterized by difficulties with processing numerical information, learning arithmetic facts, and 

performing accurate or fluent calculations (American Psychiatric Association, 2013). Despite the 

significant negative consequences, a detailed consensus characterization of the neurocognitive deficits 

associated with DD and their causes remains lacking. The current collection of studies investigates the 

neurocognitive mechanisms that serve as a foundation for the development of mathematical competence 

in typically developing individuals and may be atypical in those with DD.  

One such mechanism, proposed to be foundational for math development, is often referred to as 

the approximate number system (ANS)(Halberda, Mazzocco, & Feigenson, 2008) or number sense 

(Stanislas Dehaene, 2011). This is the system used to order, compare, add, or subtract numerical 

magnitudes without reference to symbols. A significant body of research has provided evidence of a 

relation between individual differences in the processing of numerical magnitudes and the development of 

mathematical skills associated with atypical developmental trajectories (Mazzocco, Feigenson, & 

Halberda, 2011; Piazza et al., 2010). Further, neuroimaging evidence of structural and functional 

differences in the neural substrates of the ANS have been related to mathematical competence in a 

number of studies (Iuculano, Tang, Hall, & Butterworth, 2008; Mejias, Mussolin, Rousselle, Grégoire, & 

Noël, 2012; Mussolin, Mejias, Noël, & Noel, 2010; Price, Holloway, Räsänen, Vesterinen, & Ansari, 

2007; Szkudlarek & Brannon, 2017). However, despite widespread correlational findings, a detailed 

mechanistic understanding of the link between processing of numerical magnitudes, individual 

differences in the neural substrates of the ANS, and mathematical competency remains lacking.  

In recent years, several studies have indicated that measures of individual differences in 

numerical magnitude processing may not be measuring ANS acuity alone (Gebuis & Reynvoet, 2012; 

Dénes Szűcs, Nobes, Devine, Gabriel, & Gebuis, 2013). For example, behavioral measures of ANS acuity 

relate to mathematics achievement across development and levels of math achievement (Chen & Li, 

2014; Schneider et al., 2017), but recent findings indicate that those same measures of ANS acuity, and 

their subsequent relation to mathematics, are heavily influenced by the presence of non-numerical visual 
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cues of the task stimuli that increase executive function demands (Fuhs & McNeil, 2013; Gilmore et al., 

2013; Szűcs et al., 2013). Therefore, the relation between task performance and math may depend on 

executive function demands rather than ANS acuity. This interpretation would support a long history of 

research relating deficits in domain-general mechanisms such as inhibitory control (Blair & Razza, 2007; 

Espy et al., 2004; Szűcs et al., 2013), verbal and visuospatial working memory (Bull & Scerif, 2001; 

Geary, 2004), and attention (Ashkenazi, Rubinsten, & Henik, 2009; Hannula, Lepola, & Lehtinen, 2010) 

to the development of mathematical skills and deficits in mathematics.  

In light of findings showing the involvement of executive function in tasks designed to measure 

ANS acuity, the potential confound in stimulus design may also be viewed as the opportunity to explore 

the relation between magnitude processing and executive function. Rather than an investigation of the 

modular account of magnitude processing, whereby typical and atypical development are thought of in 

terms of the acuity of the ANS, the problem of congruency in the nonsymbolic number comparison task 

can be used to explore magnitude processing as a more dynamic system that is recruited under a variety of 

conditions, including heightened attentional load and cognitive control. Therefore, to investigate this 

issue, the current collection of three studies examines the neurobiological mechanisms underlying 

numerical magnitude processing and executive function that are critical for the development of 

competence in mathematics. In the course of a large-scale behavioral study of middle school children that 

includes a DD sample, a neuroimaging study of typically developing high school adolescents, and a 

neuroimaging study of typically developing 3rd and 4th graders, three studies provide evidence that the 

biological interplay of magnitude processing mechanisms and attention mechanisms, which can be 

described as domain-specific attention, or attention to number, represents a neurocognitive construct 

related to the development of mathematical competence.  

 

1.1 Numerical Magnitude Processing Efficiency and Mathematical Competence 

The perception of numerical magnitudes is ubiquitous across humans and appears to function 

similarly across a wide range of animal species (for a review, see Nieder, 2016), and infants as young as 6 
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months old are able to discriminate sets of objects on the basis of numerosity (Starkey, Spelke, & 

Gelman, 1990; Xu & Spelke, 2000). Early evidence for specific impairment of numerical magnitude 

processing mechanisms comes originally from neurological case studies of math deficits originating from 

individuals with parietal lesions who exhibited specific calculation deficits for approximation, addition, 

and subtraction (Delazer & Benke, 1997; Warrington, 1982). Often, these deficits were dissociable from 

memorized arithmetic factual knowledge such as access to multiplication tables (Dehaene & Cohen, 

1997; Lemer, Dehaene, Spelke, & Cohen, 2003). Since then, electrophysiological recordings in 

nonhuman primates have identified populations of neurons in the lateral prefrontal cortex and ventral 

intraparietal sulcus (IPS) that code for numerosity irrespective of the sensory modality of stimuli (i.e. 

auditory or visual) (Nieder, 2012; Nieder & Miller, 2004; Viswanathan & Nieder, 2013), indicating that 

the ability to perceive and process numerical magnitude has identifiable neural substrates.  

Most neural models of numerical magnitude perception begin with object identification that then 

feeds into a summation code, which abstracts number of objects over object position (see Nieder, 2016, 

for a review). The summation code then feeds into a number-selective code where populations of neurons 

in the superior parietal lobe have Gaussian response functions with peaks tuned to specific magnitudes 

(Nieder & Dehaene, 2009; Verguts & Fias, 2004). This number-selective code forms the basis of the so-

called approximate number system or number sense (Dehaene, 1997). Accordingly, numbers that are 

closer together in magnitude have more overlapping neural representation compared to numbers that are 

further apart, which are thought to be more distinct in neural representation. As a result, people are slower 

and less accurate when discriminating between numbers that are closer together in numerical magnitude 

versus those that are further apart. This so-called ‘ratio effect’ can be modeled as a function of the 

numerical ratio between number pairs (Moyer & Landauer, 1967). Therefore, in principle, to measure 

individual differences in ANS acuity, one need only measure the degree of overlap in the distribution of 

neighboring magnitude response functions. The nonsymbolic number comparison task attempts to do this 

by measuring accuracy rates and response times as participants judge which of two groups of objects (e.g. 

dots or squares) is more numerous. In general, a smaller effect of ratio on accuracy and reaction time, or 
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even simply higher accuracy rates and lower response times, are thought to indicate increased precision of 

numerical representation in the brain (Halberda et al., 2008) 

 As mentioned, there is considerable support for a relation between numerical representation 

efficiency and mathematics achievement, both across the full range of mathematics achievement (for 

meta-analyses, see Chen & Li, 2014; Schneider et al., 2017) and as a marker for DD (for reviews, see 

Iuculano, 2016; Szkudlarek & Brannon, 2017). Beginning with a retrospective study by Halberda, 

Mazzocco, & Feigenson (s2008) that linked performance on the nonsymbolic number comparison task in 

9th grade to math achievement in Kindergarten through 6th grade, a number of studies have supported the 

claim that ANS acuity is related to math abilities ranging from counting to arithmetic to algebra (Chen & 

Li, 2014; Schneider et al., 2016) and that reduced ANS acuity may represent a core deficit in DD 

(Mazzocco, Feigenson, & Halberda, 2011; Piazza et al., 2010).  

 Further, just as behavioral performance on the number comparison task has become a widely used 

metric of ANS acuity, neural activity during nonsymbolic number comparison has frequently been 

employed to measure individual and group differences in the neural substrates of the ANS. Ansari & 

Dhital (2006) showed that adults exhibited a greater effect of numerical distance (akin to the ratio effect, 

but calculated as a linear distance between two numerical stimuli rather than a ratio) in the left 

intraparietal sulcus (IPS) than children. Though behavioral performance on the task was similar between 

children and adults, this pattern of greater modulation in response to numerical difficulty was interpreted 

as indicating ontogenetic development of magnitude processing mechanisms. With a similar logic, Price 

et al. (2007) demonstrated that, in DD children, the right IPS was not modulated by numerical distance, 

while their typically developing peers demonstrated patterns more similar to the children of Ansari & 

Dhital’s study, with greater response to more difficult number comparison trials. Further, this pattern of 

results has even been demonstrated with symbolic number during a number comparison task with Arabic 

digits, where arithmetic competence correlated with a greater neural ratio effect in the left IPS (Bugden, 

Price, McLean, & Ansari, 2012). These studies together would indicate that greater modulation of the IPS 

in response to numerical magnitude should correlate with enhanced mathematical abilities. In line with 
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these functional findings, structural analyses have also demonstrated that development of the IPS is 

related to mathematical competence. For example, analyses of cortical volume have linked greater grey 

matter volume in the left IPS to enhanced mathematical competence in typically developing 1st and 2nd 

grade children (Price, Wilkey, Yeo, & Cutting, 2016), reduced grey matter volume in the right IPS to the 

presence of DD (Rotzer et al., 2008), and both reduced cortical thickness and white matter volume in 

fronto-parietal structures to DD (Ranpura et al., 2013). Given this evidence, many researchers suggest that 

deficits in symbolic number processing, arithmetic fluency, and higher order mathematical thinking stem 

from a core deficit in the ANS, subserved by neural correlates in the IPS (Butterworth et al., 2011; 

Iuculano, Tang, Hall, & Butterworth, 2008; Wilson & Dehaene, 2007). 

 However, heterogeneity of findings that correlate functional activation during number processing 

to mathematical competency is more common than convergence. For example, in the only study relating 

neural correlates of nonsymbolic number comparison processing to mathematics achievement in typically 

developing adults, Gullick et al. (2011) found that the neural ratio effect in a nonsymbolic number 

comparison task is negatively correlated with mathematics achievement (i.e. greater response for more 

difficult trials correlated with low math performance) in bilateral perisylvian structures. And, atypical 

activation patterns in other brain regions during nonsymbolic number comparison have also been 

associated with DD including parieto-occipital regions (Dinkel, Willmes, Krinzinger, Konrad, & Koten, 

2013), supplementary motor area and fusiform gyrus (Kucian, Loenneker, Martin, & von Aster, 2011), 

and inferior parietal regions (Kaufmann et al., 2009). In short, though there is some consensus that 

numerical magnitude processing relates to the development of mathematical competence, there is much 

disagreement as to the true mechanistic nature of this relation (Dénes Szűcs & Goswami, 2013), its causal 

role in DD (Mazzocco & Räsänen, 2013), and whether associated deficits are isolated to numerical 

magnitude processing or may be concomitant with deficits in symbolic representation of number or issues 

related to executive functions (Fias, Menon, & Szűcs, 2013; Rousselle & Noël, 2007; Szűcs, Devine, 

Soltesz, Nobes, & Gabriel, 2013). Therefore, despite some convergence of findings relating the function 

and structure of the IPS to ANS function and mathematical abilities, the biological nature of what 
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produces the neural ratio effect is poorly understood, as is the logic of why a more efficient or accurate 

ANS would demonstrate a greater ratio-dependent response. Without a solid mechanistic account of these 

effects grounded in the biology of magnitude processing mechanisms, heterogeneity of findings may 

continue to be more common than convergence.  

In the current literature, most researchers draw a link between the ANS model and the neural 

distance effect observed during number comparison tasks, attributing this observed effect to either (1)  

increased overlap in underlying magnitude representations for numbers that are closer together (Ansari, 

2008; Pinel, Dehaene, Rivière, & LeBihan, 2001) or (2) attention/response selection demands (Göbel, 

Johansen-Berg, Behrens, & Rushworth, 2004). However, under careful scrutiny of their physiological 

underpinnings, neither of these accounts is sufficient on their own. In the case of the first explanation, 

representational overlap, the link between increased neural response and smaller distances between 

stimuli is unclear. The traditional argument has been that the recruitment of overlapping neural 

populations recruits more neural activity, and thus, a greater BOLD response in a set of voxels (Ansari, 

2008). However, the only plausible explanation for increased BOLD response due strictly to underlying 

magnitude representation would be an increase in activity in the neurons shared by each numerical 

representation that is greater than the sum of their involvement in either representation independently. 

Otherwise, there would be no increase in neural activity with near distances. This is physiologically 

possible, but this scenario would result in increased neural activity in the populations of neurons shared 

between the two numerical magnitudes. If this were true, the neural system would be more likely to 

confuse the two numbers as a function of distance, which is physiologically unviable and out of step with 

findings that suggest a greater neural response to close numbers is indicative of greater maturation 

(Ansari & Dhital, 2006). In fact, the reverse could present a more parsimonious argument. That is, one 

might expect that if stimuli are close together in numerical value, if they are represented by neural 

populations that overlap, one would expect less BOLD activity in the IPS, if only because fewer neurons 

are active due to the magnitude-selective neurons having tighter tuning curves. In the case of the second 

explanation for the neural distance effect, that of attention/response selection, the account does not 
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explain the large quantity of studies that tie activity in the IPS directly to magnitude encoding.  Though 

models of ANS acuity likely explain certain properties of frontal and parietal neurons that code for 

magnitude, the link between their function and mathematical competence is still unclear. 

 

1.2 Measurement of Magnitude Perception and Control of Visual Stimuli 

 One problem undermining our understanding of the link between magnitude processing and 

mathematics development is the reliance on nonsymbolic number comparison as a measure of numerical 

acuity. Conventionally, nonsymbolic number comparison performance has been interpreted as a measure 

of numerical magnitude processing efficiency (De Smedt, Noël, Gilmore, & Ansari, 2013). However, 

recent research suggests that the task may be measuring more than number processing alone. Specifically, 

several studies have shown that nonsymbolic number comparison performance is highly influenced by the 

visual parameters of task stimuli (Gebuis & Reynvoet, 2011, 2012; Leibovich & Henik, 2013; Dénes 

Szűcs et al., 2013). In general, visual properties such as surface area and object size covary with 

numerosity. If these properties are not controlled when creating stimuli, participants can rely on non-

numerical cues to select the more numerous array. Thus, to ensure participants employ a strategy focused 

on numerosity, stimuli are designed such that, in some trials, the more numerous dot set has a greater 

surface area or dot size (congruent trials), and in other trials a lesser surface area or dot size (incongruent 

trials) (e.g. Dehaene, Izard, & Piazza, 2005).  

Recent studies suggest that performance on incongruent trials may drive the relation between 

nonsymbolic number comparison and mathematics performance (Bugden & Ansari, 2015; Clayton, 

Gilmore, & Inglis, 2015; Cragg, Keeble, Richardson, Roome, & Gilmore, 2017; Fuhs & McNeil, 2013; 

Gilmore et al., 2013; Keller & Libertus, 2015). For example, Gilmore et al. (2013) and Fuhs and McNeil 

(2013) found that only performance on incongruent trials of the nonsymbolic number comparison task 

was related to mathematics performance across a wide range of mathematics achievement in primary 

school and preschoolers respectively. To explain this specific relation, the authors of those studies suggest 

that incongruent, non-numerical visual cues in the comparison task require participants to inhibit their 
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visually-based response before making a quantity-based judgment, thus engaging inhibitory control 

mechanisms. Accordingly, both Gilmore et al. and Fuchs and McNeil posit that inhibitory control and 

selective attention demands of incongruent trials, rather than numerical acuity, drive the relation between 

nonsymbolic comparison performance and mathematics. Indeed, after controlling for inhibitory control, 

the relation between mathematics performance and nonsymbolic comparison was no longer statistically 

significant in both studies. Similarly, in a study comparing performance of children with DD versus their 

typically developing (TD) peers, Bugden and Ansari (2015) found that children with DD only differed on 

incongruent trials. A follow-up analysis showed that children’s visuo-spatial working memory predicted 

numerical acuity on incongruent trials, indicating that visuo-spatial working memory may be an important 

cognitive process utilized for extraction of numerosity in the presence of other visually salient 

information. The results of these studies indicate that the link between performance on nonsymbolic 

comparison tasks and math achievement may be explained by cognitive processes used to extract 

numerical magnitude from stimuli in the face of conflicting visual information rather than simply an 

individual’s acuity of the representation of numerical magnitudes. However, it should be noted that at 

least two studies continue to find a relation between number comparison performance and mathematics 

achievement, even after controlling for executive function abilities (Gilmore, Keeble, Richardson, & 

Cragg, 2015; Keller & Libertus, 2015) 

Neuroimaging research using the nonsymbolic comparison task indicates that recruitment of 

neural resources also differs as a function of congruency condition. In a study of typically developing 

adults, Leibovich, Vogel, Henik, and Ansari (2015) showed that incongruent trials are associated with 

greater activity in the superior frontal gyrus and left inferior/middle frontal gyri, but less activity in the 

right middle temporal and posterior cingulate gyri, than congruent trials. However, Leibovich et al (2015) 

examined activation during numerical versus non-numerical processing as a function of congruency, as 

opposed to examining the effect of congruency on ratio-dependent task activity. In order to investigate 

how differences in congruency specifically relate to processing of numerical information, the effect of 

congruency on numerical magnitude-specific activation must be evaluated. Just as a behavioral ratio 
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effect has become a hallmark measure of ANS acuity, ratio-dependent blood-oxygen-level dependent 

(BOLD) response has become a neural proxy (i.e. the neural ratio effect)(Bugden et al., 2012). However, 

prior to the current work, no study has investigated whether the neural ratio effect during nonsymbolic 

numerical magnitude processing is affected by the congruency of visual cues, and consequently, whether 

these potential differences in neural activity relate to math achievement. Understanding how differences 

in congruency require the recruitment of unique neural resources or how they differentially recruit known 

magnitude processing mechanisms may shed light on why numerical magnitude encoding appears to be 

related to math competency only in the face of conflicting visual cues, as well as elucidating the precise 

role of neural mechanisms that support processing of numerical information.  

 

1.3 Attention as a Factor for the Development of Mathematical Competence 

When selecting a participant pool for “pure dyscalculia”, participants with ADHD, dyslexia, or 

other neurological condition are often excluded in order avoid confounds. However, it should be noted 

that nearly 40% of individuals with DD also have dyslexia (Lewis, Hitch, & Walker, 1994). Comorbidity 

between the two is likely an important facet of DD itself and this exclusion criteria leaves an important 

issue under-explored. Several researchers have argued that domain-general cognitive deficits are the 

underlying cause of poor arithmetic performance in DD individuals and the disorder has been linked to 

deficits in phonological ability (Swanson & Sachse-Lee, 2001), inhibitory control (Blair & Razza, 2007; 

Espy et al., 2004; Szűcs et al., 2013), spatial processing (Rourke & Conway, 1997), verbal and 

visuospatial working memory (Bull & Scerif, 2001; Geary et al. 2004), and attention (Ashkenazi et al., 

2009; Hannula et al., 2010). Furthermore, working memory and spatial processing are two cognitive 

domains that frequently correlate with math ability and DD diagnosis. In a study of 12 students in 3rd and 

4th grade who performed poorly on a test of arithmetic and age-matched peers, researchers administered a 

battery of 10 working memory tasks (McLean & Hitch, 1999). Executive and spatial aspects of working 

memory were determined to be important indicators of poor arithmetic attainment. Further, neuroimaging 

experiments have also linked working memory deficits and DD. For example, Dumontheil and Klingberg 



11 

 

 

(2012) demonstrated that activity in the left IPS correlated with working memory capacity and predicted 

poor arithmetic achievement two years later.  Therefore, based on both behavioral and neuroimaging 

evidence, individual differences in attention mechanisms relate directly to measures of mathematics 

achievement. 

In addition to the presence of a direct relation between attention mechanisms and math, attention 

mechanisms may influencing the relation between ANS measures and math. Evidence that congruency 

factors drive the correlation between nonsymbolic number comparison task performance and 

mathematical competency raises the possibility that the link to mathematics achievement is actually 

related to individual differences in attention rather than ANS acuity (Fuhs & McNeil, 2013; Gilmore et 

al., 2013). For example, during the number comparison process, attentional mechanisms are called upon 

to resolve competing visual cues, inhibiting irrelevant stimulus dimensions, thereby prioritizing 

numerosity as the salient visual feature for response selection. With this explanation, a cohort of 

individuals could possess the exact same numerical acuity but vary widely in their ability to inhibit 

competing stimulus features, resulting in a wide array of accuracy rates and response times in the number 

comparison task. And, because it has been well established that various components of executive function 

correlate with mathematics (Blair & Razza, 2007; Bull & Scerif, 2001; Espy et al., 2004), it would not be 

surprising that these metrics correlate with achievement. This account would explain why several studies 

have found that only performance on incongruent trials of the number comparison task relates to math 

achievement (Gilmore et al., 2013, 2015) or the presence of a math learning disability (Bugden & Ansari, 

2015). In this explanation, no actual relation to numerical acuity is necessary. Further, an explanation 

based on individual differences in attention may provide an alternate interpretation of neuroimaging 

findings in humans. Attention mechanisms and magnitude processing mechanisms largely converge in 

both frontal and parietal regions (Petersen & Posner, 2012; Sokolowski et al., 2016), including the 

bilateral intraparietal sulcus (IPS) and inferior frontal gyrus (IFG), making it difficult to disentangle their 

respective contributions to task-related activity without strict controls and additional analyses. Differences 

in neural activation in the IPS or frontal regions in response to numerical stimuli may equally be driven 
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by attentional demands that depend on task difficulty, response selection (Göbel et al., 2004), or 

resolution of conflicting visual cues. 

 

1.4 Attention to Number 

To summarize, evidence from behavioral studies that index acuity of the ANS indicate that task 

performance correlates with mathematics achievement, both in typically developing populations, and as a 

marker of DD. However, it has now come to light that attention and executive function demands heavily 

influence measures of ANS acuity. Furthermore, a large body of research demonstrates a link between 

individual differences in domain-general general mechanisms of attention and the development of 

mathematical competence. From this research, the question follows, how, then, are attentional 

mechanisms of executive function related to the processing of numerical magnitudes? And second, what 

are the neurocognitive mechanisms underlying the relation between nonsymbolic number comparison and 

math? Is it ANS acuity, attention, or a biological interplay of the two? 

Executive function components of attention, such as inhibitory control or working memory, are 

often cited as domain-general mechanisms. However, if we apply this concept to a specific scenario, such 

as an arithmetic word problem, it becomes apparent that the content of attentional focus and inhibitory 

control is inextricably linked with the given domain-specific mechanism. In practice, the distinguishable 

components of cognitive theory give way to the physical reality that maintaining information in one’s 

consciousness for the duration of an arithmetic problem, and shifting attention among numerical values, is 

likely to involve the interaction of a host of neural mechanisms within the frontal-parietal network. 

Magnitude encoding neurons in the IPS or lPFC (Nieder, 2016) will likely receive input signals to sustain 

activity, or will become synchronized in rhythm with other parts of the network, to accomplish this task. 

To solve the arithmetic problem, one must maintain this magnitude information while simultaneously 

encoding new information so that they may be integrated in the process of doing arithmetic. This 

integration of domain-specific processing with so-called domain-general mechanisms may be another 

potential source of impairments that manifest as deficits specific to mathematical content. 
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 Therefore, while both magnitude processing and attentional mechanisms provide plausible paths 

for individual differences in math competency, and potential sources of difficulty associated with DD, one 

further possibility is a form of domain-specific attention, or attention to number. Rather than a 

generalized attentional component across domains, it may be that the way executive function mechanisms 

interact with magnitude processing mechanisms is a critical factor for acquiring mathematical 

competency. In regards to number comparison tasks, it may explain why performance on number 

comparison tasks relates to math achievement beyond non-numeric measures of executive function 

(Keller & Libertus, 2015) and also why congruent trials are less related to achievement than incongruent 

trials. However, within the construct of attention to number, there are multiple neural mechanisms that 

may be at work. On the one hand, increased attention can be achieved by increasing the saliency of a 

particular percept, or in other words, turning up the gain for neural activity related to a particular stimulus 

dimension, such as number. This type of response has been demonstrated in multiple modalities, from 

hearing (Kerlin, Shahin, & Miller, 2010) to vision (Bisley, 2011; Hillyard, Vogel, & Luck, 1998). For 

example, covert attention to the left side of a fixation cross (i.e. no movement of the eyes) will increase 

neural response in the right extrastriate visual cortex, which corresponds to the left visual field (Mangun, 

Hopfinger, Kussmaul, Fletcher, & Heinze, 1997). On the other hand, increased attention to number could 

be achieved by suppressing competing perceptual information. For example, cell recordings in the lateral 

intraparietal area in monkeys show that ignoring a pop-out distractor cue suppresses neural response in 

areas of the brain that control visual salience (Ipata, Gee, Gottlieb, Bisley, & Goldberg, 2006). These two 

mechanisms, that of increased gain and suppression of competing information, are likely to work in 

concert to enable attention to number in the context of a number comparison task. Less efficacy of their 

action may result in a deficit of attention to number. 

 One point of clarification is warranted regarding the current study’s intentionally broad use of the 

construct of attention. The principal form of attention investigated in the current study, whereby a child 

was directed to respond to a choice in stimuli by isolating the correct visual dimension (i.e. number of 

dots or arrow orientation), is known by several names. A long history in cognitive neuroscience, espoused 
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by Posner and Peterson (Petersen & Posner, 2012; Posner & Petersen, 1990), has delineated attention 

systems of the human brain based on anatomical organization, associated neurotransmitters, and their 

dissociable cognitive functions. In their model, the focus of the current tasks fall principally under the 

control of fronto-parietal “executive attention” and “orienting” networks. Psychologists, on the other 

hand, tend to use the term “executive function” to refer broadly to an array of top-down, effortful mental 

processes needed for concentration and paying attention that are a subset of attention more broadly 

(Diamond, 2014), which is further broken down into inhibition, working memory, and cognitive 

flexibility (Miyake et al., 2000). Thus far, research on the effect of congruency in number comparison 

tasks has mainly focused on inhibitory control components of executive function without much discussion 

of their underlying neural mechanisms (Clayton & Gilmore, 2014; Fuhs, Kelley, O’Rear, & Villano, 

2016). However, we hypothesize that attention to number is likely to involve both increased focus of 

cognitive resources to numerical information and the inhibition of irrelevant information. Therefore, 

attention to number is a term we use to begin to investigate domain-specific attention while leaving open 

the possibility that multiple neural mechanisms are captured by the paradigm utilized in the current study. 

 

1.5 Outstanding Questions 

 Already, diagnostic tools for math learning disability (Brian Butterworth & Laurillard, 2010; 

Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013) and early learning interventions (Park & 

Brannon, 2014, 2016; Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009; Szűcs & Myers, 2016) are 

being developed which target measurement of and training of the nonsymbolic number system. However, 

in light of the research described above, these efforts may be premature. In order to understand the link 

between the influence of attentional factors in the nonsymbolic comparison task, the basic systems that 

encode numerical magnitude in the brain, and their link to math achievement, a detailed understanding of 

the neural mechanisms underlying the influence of visual cues on the perception of numerical magnitudes 

is essential. With this understanding, diagnostic tools and interventions may target specific 

neurocognitive mechanisms underlying math skills. Without it, they are at risk of targeting behaviors that 
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merely correlate with math achievement but do not reflect cognitive mechanisms fundamental to its 

development. 

 Therefore, the current collection of three studies aims to better understand the attentional factors 

that interact with numerical magnitude processing mechanisms by asking three basic questions. First, is 

attention to number a factor related to math achievement beyond either acuity of the ANS or domain-

general executive function? Second, how are numerical magnitude processing mechanisms affected by 

issues of interfering stimulus dimensions such as congruency of visual cues? And third, do individual 

differences in attention to number relate to the development of mathematical competence? 

 

1.6 Overview of Experiments 

 To address the above questions, three independent studies were completed investigating the 

influence of congruency/incongruency of visual parameters in the nonsymbolic number comparison task 

and their relation to measures of attention and mathematical competence. The first study (Chapter 2) is a 

longitudinal, behavioral study exploring the relation among congruent and incongruent trials on the 

nonsymbolic number comparison task as it relates to group differences in middle school math 

achievement (i.e. DD, low math achievement, and typical achievement) while controlling for other non-

numerical components of executive function. The large-scale and longitudinal nature of this data, 

composed of math achievement measures dating from Pre-K to 7th grade, allowed for the creation of 

achievement group based on sustained achievement levels. Further, the designation of a DD group was 

not formed on the basis of a discrepancy criteria (i.e. discrepancy between IQ or expected achievement 

and mathematics achievement), but rather very low math achievement from beginning of formal 

schooling through middle school. This DD designation criteria allowed for the investigation of attention 

to number as a factor related to math achievement while controlling for other non-numerical measures of 

executive function, without excluding individuals with comorbid deficits, which may be critical to 

understanding the development of math skills and of DD itself. Therefore, the focus of this study was to 

investigate the relation between number specific executive function, as indexed by incongruent trials on 
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the nonsymbolic number comparison task, and mathematics achievement, both as a factor related to DD 

and also across the full range of achievement.  

 The second study (Chapter 3) is an fMRI study of high-school aged students who participated in a 

larger study of arithmetic, symbolic, and nonsymbolic number processing. This analysis investigated the 

issue of congruency and its influence on the neural mechanisms supporting numerical magnitude 

perceptions and subsequent relation to mathematics achievement as measured by the preliminary 

scholastic aptitude test (PSAT). It first investigates whether the frequently-used metric, the neural ratio 

effect, differs as a function of congruency in order to compares neural substrates of the ANS in differing 

attentional states. Further, it is the first study to separate neural response by congruency condition in the 

nonsymbolic number comparison task to investigate their relation to mathematics achievement 

independently. In light of the suspected difference in attentional demands of each condition, neural 

correlates of the task are likely to differ as well.  

 The third study (Chapter 4) again utilizes fMRI measures of neural activity during the 

nonsymbolic number comparison task split by congruency. However, Study 3 differs in two principal 

ways from Study 2. First, participants are children in 3rd and 4th grade rather than high school students. 

Second, the children also completed an Erickson flanker task while scanning, designed to closely mirror 

the attentional demands of congruency issues in the nonsymbolic number comparison task, but in a non-

numeric domain. This allows for the cognitive subtraction of increased attentional demand in a numerical 

task minus increased attentional demand in a non-numerical task, resulting in a more stringently 

controlled evaluation of neural activity related to attention to number, and a principled approach to our 

third question regarding the biological interplay of the neurocognitive systems dedicated to magnitude 

processing and attentional allocation? 

Together, these three studies investigate the biological interplay of magnitude processing 

mechanisms and attention mechanisms that represented a form of domain-specific attention, or attention 

to number, that may provide further insight into current theories about the relation between ANS acuity 

and math development, as well as an additional mechanism that may be the source of difficulties in 
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learning mathematical skills.
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CHAPTER 2 

 

DYSCALCULIA AND TYPICAL MATH ACHIEVEMENT ARE ASSOCIATED WITH INDIVIDUAL 

DIFFERENCES IN NUMBER-SPECIFIC EXECUTIVE FUNCTION 

 

 

2.1 Introduction 

Mathematical thinking pervades nearly all aspects of modern life, from personal accounting to 

understanding important information about one’s health. Accordingly, individuals with poor 

mathematical skills are less likely to graduate high school, go to college, have steady employment 

(Bynner et al., 2006; Rivera-Batiz, 1992), and are at a higher physical and mental health risk (Duncan et 

al., 2007; Hibbard et al., 2007; Parsons & Bynner, 2005). The development of mathematical skills can be 

affected by a range of factors including education, home environment, and reading ability. However, a 

substantial body of research indicates that individual differences in the cognitive system used to perceive 

and manipulate numerical magnitudes, often labeled the Approximate Number System (ANS) (Feigenson, 

Dehaene, & Spelke, 2004), play a foundational role in mathematics development (Chen & Li, 2014; 

Schneider et al., 2017; Schwenk et al., 2017). Further, an estimated 3-6% of the population is affected by 

the specific mathematics learning disability developmental dyscalculia (DD) (Shalev, Auerbach, Manor, 

& Gross-Tsur, 2000; Szűcs & Goswami, 2013). Individuals with DD display difficulties with 

fundamental aspects of numerical processing from very early ages and continue to struggle with math, 

even when given the same schooling opportunities as their peers. However, the nature of these numerical 

deficits and their relation to the abilities of typically developing populations remains poorly understood.  

 

The ANS, Mathematics Achievement, and Dyscalculia 

The most commonly used behavioral measure of ANS function is the nonsymbolic number comparison 

task. In this task, participants judge which of two groups of objects, such as dots or squares, is more 

numerous. Higher accuracy rates and faster response times are thought to indicate higher acuity and 

enhanced efficiency of the ANS (Inglis & Gilmore, 2014). There is considerable support for a relation 

between efficiency of the ANS and mathematics achievement, both as a marker for DD (for reviews, see 
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Iuculano, 2016; Szkudlarek & Brannon, 2017), and across the full range of mathematics achievement (for 

meta-analyses, see Chen & Li, 2014; Schneider et al., 2017).  

Accordingly, the dominant theory regarding a core deficit in DD proposes an impairment of the 

ANS, in part because individuals with DD have been shown to perform more poorly in tasks designed to 

measure the ANS, such as the nonsymbolic number comparison task (Mazzocco, Feigenson, & Halberda, 

2011; Mejias, Mussolin, Rousselle, Grégoire, & Noël, 2012). Further, neuroimaging research suggests 

that individuals with DD have atypical structure and function of proposed neural substrates of the ANS, 

such as the intraparietal sulcus (Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013; Dinkel et al., 2013; 

Kaufmann et al., 2009; Christophe Mussolin et al., 2010; Gavin R. Price et al., 2007; Rosenberg-Lee et 

al., 2015; Rotzer et al., 2008; Rykhlevskaia, Uddin, Kondos, & Menon, 2009). Given this evidence, many 

researchers suggest that deficits in symbolic number processing, arithmetic fluency, and higher order 

mathematical thinking stem from a core deficit in the ANS (Butterworth et al., 2011; Iuculano, Tang, 

Hall, & Butterworth, 2008; Wilson & Dehaene, 2007). Though there is some consensus that the ANS is 

atypical in individuals with DD, there is much disagreement as to the true mechanistic nature of this 

deficit (Dénes Szűcs & Goswami, 2013), its causal role in DD (Mazzocco & Räsänen, 2013), and whether 

the deficit is isolated to the ANS or may be concomitant with deficits in symbolic representation of 

number or issues related to executive functions (Fias, Menon, & Szűcs, 2013; Rousselle & Noël, 2007; 

Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2013). Adding to this complication, individual differences in 

ANS acuity consistently correlate with mathematics across the full range of achievement (Justin Halberda 

et al., 2008; Keller & Libertus, 2015; Schneider et al., 2017), suggesting the relation is not isolated to 

group differences that identify severe mathematics deficits, but rather extends broadly across achievement 

levels. As a result, it remains unclear as to whether DD represents a qualitatively distinct subgroup with 

distinct cognitive deficits or is the lowest extreme of a continuous distribution. This distinction is 

important for developing appropriate intervention strategies to remediate low mathematics skills 

(Butterworth & Kovas, 2013; Henik, Rubinsten, & Ashkenazi, 2011). 
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Nonsymbolic number comparison as a measure of the ANS? 

One problem undermining the link between ANS function and mathematics development is the reliance 

on nonsymbolic number comparison as a measure of ANS acuity. Conventionally, nonsymbolic number 

comparison performance has been interpreted as a measure of ANS function (De Smedt et al., 2013). 

However, recent research suggests that the task may be measuring more than ANS acuity alone. 

Specifically, several studies have shown that nonsymbolic number comparison is highly influenced by the 

visual parameters of task stimuli (Gebuis & Reynvoet, 2011, 2012; Leibovich & Henik, 2013; Dénes 

Szűcs et al., 2013). In general, visual properties such as surface area and object size covary with 

numerosity. If these properties are not controlled when creating stimuli, participants can rely on non-

numerical cues to select the more numerous array. Thus, to ensure participants employ a strategy focused 

on numerosity, stimuli are designed such that, in some trials, the more numerous dot set has a greater 

surface area or dot size (congruent trials), and in other trials a lesser surface area or dot size (incongruent 

trials) (e.g. Dehaene, Izard, & Piazza, 2005).  

Recent studies suggest that performance on incongruent trials may drive the relation between 

nonsymbolic number comparison and mathematics performance (Bugden & Ansari, 2015; Clayton, 

Gilmore, & Inglis, 2015; Cragg, Keeble, Richardson, Roome, & Gilmore, 2017; Fuhs & McNeil, 2013; 

Gilmore et al., 2013; Keller & Libertus, 2015). For example, in a study comparing nonsymbolic number 

comparison performance in children with DD versus typically developing (TD) peers, Bugden and Ansari 

(2015) found that children with DD only differed on incongruent trials. A follow-up analysis showed that 

children’s visuo-spatial working memory predicted ANS acuity on incongruent trials, indicating that 

visuo-spatial working memory may be an important cognitive process utilized for extraction of 

numerosity in the presence of other visually salient information. Similarly, studies by Gilmore et al. 

(2013) and Fuhs and McNeil (2013) found that only performance on incongruent trials of the 

nonsymbolic number comparison task was related to mathematics performance across a wide range of 

mathematics achievement in primary school and preschoolers respectively. To explain this specific 

relation, the authors of those studies suggest that incongruent, non-numerical visual cues in the 
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comparison task require participants to inhibit their visually-based response before making a quantity-

based judgment, thus engaging inhibitory control mechanisms. Accordingly, both Gilmore et al. and 

Fuchs and McNeil posit that inhibitory control and selective attention demands of incongruent trials, 

rather than ANS acuity, drive the relation between nonsymbolic comparison performance and 

mathematics. Indeed, after controlling for inhibitory control, the relation between mathematics 

performance and nonsymbolic comparison was no longer statistically significant in both studies. 

Still, the contribution of executive function to the relation between nonsymbolic number 

comparison and mathematics performance remains unclear. In contrast to Gilmore et al. (2013) and Fuhs 

and McNeil (2013), both Keller and Libertus (2015) and Gilmore et al. (2015) found that the relation 

between accuracy in the number comparison task and mathematics persisted when controlling for 

inhibitory control. Further, all four of these studies focused on inhibitory control in a TD sample, while 

Bugden et al.’s (2015) findings related performance on incongruent trials of the nonsymbolic comparison 

task to group differences between DD and TD children. In addition to the group differences versus 

individual differences distinction between studies, Bugden et al. investigated the role of visuo-spatial 

working memory as opposed to inhibitory control. While dominant models indicate that executive 

function can be divided into the broad categories of working memory/updating, inhibitory control, and 

attention shifting (Rebecca Bull & Scerif, 2001; Miyake et al., 2000), most prior studies on nonsymbolic 

comparison and mathematics achievement have controlled for only one aspect of executive function, 

either working memory or inhibitory control. As a result, the more fine-grained mechanistic relations 

between executive function deficits and ANS deficits have been difficult to determine. To address these 

issues, the current study focuses on two outstanding questions regarding the relation among the ANS, 

executive function, and mathematics achievement in typically and atypically developing individuals. 

 First, what are the mechanisms underlying the relation between performance on incongruent 

trials of the nonsymbolic comparison task and mathematics achievement as compared to congruent trials? 

Previous studies have framed the correlation between nonsymbolic comparison performance and 

mathematics achievement as attributable to either individual differences in the ANS or executive 
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function. However, an additional possibility is that incongruent trials on the nonsymbolic number 

comparison task represent an interaction of executive function and the ANS, or in other words, a number-

specific executive function. Consistent with this suggestion, experimental studies have demonstrated a 

distinction between executive function related to numerical and non-numerical content. In a study of DD 

adults, individuals with DD had difficulty recruiting attention to numerical information but not non-

numerical information under heightened cognitive load (Ashkenazi et al., 2009). In children, Bull & 

Scerif (2001) demonstrated that inhibitory control and working memory of numerical information 

accounts for significant variance in individual differences of mathematics ability beyond similar non-

numerical measures of executive function. Therefore, to appropriately account for the possibility of an 

interaction between executive function and the ANS, executive function must be measured in both non-

numerical and numerical contexts.  

Second, is the relation among executive function, nonsymbolic number comparison, and 

mathematics achievement a specific facet of atypical development, comprising a specific characteristic of 

DD that sets the disorder qualitatively apart from typical developmental trajectories, or is the relation a 

characteristic of a broad range of typical mathematics skill development? Previous research appears to 

suggest that measurements of the ANS correlate with mathematics across the full range of mathematics 

achievement (Schneider et al., 2017). At the same time, studies suggest that the ANS of individuals with 

DD is neurobiologically atypical and functions differently than that of their TD peers (Mazzocco et al. 

2011; Price et al. 2007). Distinguishing between these alternatives may provide meaningful implications 

for intervention strategies. 

 

The Current Study  

To address the questions above, the current study investigates the relations among ANS function, 

executive function, and DD by examining performance on the nonsymbolic comparison task, separately 

for congruent and incongruent trials, while controlling for multiple aspects of executive function. 

Importantly, executive function here is measured in a non-numerical context. To build directly on 
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previous work, we take a similar approach as Mazzocco et al.  (2011). We first compare performance in 

the nonsymbolic comparison task across multiple mathematics achievement groups (DD, low achieving, 

and typically achieving) defined through multiple years of consistent achievement, including the first 

three years of school entry. Second, we consider the relation between performance on the nonsymbolic 

comparison task and mathematics achievement more broadly through a regression analysis with a large 

sample that includes the full range of mathematics achievement. In the first analysis, if DD is 

characterized by a distinct core deficit of the ANS, performance on both congruent and incongruent trials 

of the task should distinguish among achievement groups. If, on the other hand, DD is characterized by 

deficits specific to inhibitory control, performance on only the incongruent trials of the nonsymbolic 

comparison task should account for achievement group differences, but not after controlling for measures 

of non-numerical executive function. However, if impaired number-specific executive function underlies 

DD, we would expect group differences between the DD group and the other achievement groups on 

incongruent trials, but not congruent trials, after controlling for non-numerical, domain-general executive 

functioning. Similarly, in the second analysis, if number-specific executive function is related to 

individual differences in mathematics achievement across a wide range of achievement, not only a 

distinction between DD and the other achievement groups, performance on incongruent trials should 

predict mathematics achievement beyond what can be accounted for by congruent trials and multiple 

components of non-numerical executive function.  

 

2.2 Method 

Participants 

The current sample was drawn from a study of students who participated in an earlier longitudinal study 

of early mathematical skills (Pre-K to 1st grade) (Hofer, Lipsey, Dong, & Farran, 2013). The analytic 

sample for the original study included 771 children. In the follow-up study, we were able to locate 628 

students attending public school in the 2013-14 year in the same district as they attended in Pre-K (16 had 

withdrawn from the study in 1st grade and were not contacted for further participation, 29 had moved out 
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of the state, 53 had moved out of the district, and 45 were not located despite all efforts). Of those 628, 

we obtained parental consent and assessed 506 children in the 2014-2015 school year. English language 

learners (n = 43) were excluded because non-native language of mathematics instruction could lead to 

low mathematics achievement for reasons other than the cognitive factors investigated in the current 

study. 

Our final sample comprised 448 students for whom we had measures of mathematics 

achievement from 2 of the 3 early time points (spring of Preschool, Kindergarten, and 1st grade) and from 

2 of the 3 later time points (5th, 6th, and 7th grades), reading achievement measured at the end of 

Kindergarten, executive function measured at 6th or 7th grade, and working memory measured at 5th or 6th 

grade. The final sample was 56.5 % female, 9.6% white, 87.1% black, 0.7% Hispanic, 1.1% Middle 

Eastern, 0.2% Asian or Pacific Islander, and 1.3% other races (no further distinction of race was 

available). Of the 448 students who should have been in 6th grade in the 2014-15 school year if they had 

not been retained or promoted early at any point, 78 (17.4%) were still in 5th grade and 1 (0.2%) had been 

promoted to 7th grade. Students were located in 76 schools in the first year of the follow-up study (5th 

grade), including 31 elementary schools, 27 middle schools, 11 charter schools, and 7 Innovation Cluster 

schools (i.e., schools that had been targeted for additional resources to boost low student achievement). 

Family income level was inferred on the basis of whether participants qualified for free or reduced 

lunches (i.e., family income less than 1.85 times the U.S. Federal income poverty guideline). In the 

current sample, 88.6% of participants qualified for free and reduced lunch, 10.3% did not, and 1.1% 

individuals were missing economic status data. Pre-K through 1st grade and 5th through 7th grade waves of 

data collection were used for defining mathematics achievement groups, and nonsymbolic comparison 

performance was utilized from 6th grade because concurrent measures of working memory and executive 

function were available for children in that year. Mean age at the end of pre-K, the first data point in the 

current analysis, was 5.1 years (SD = 0.3, range = 4.5-6.4). See Supplementary Table 2.3 for full table of 

descriptive statistics. 
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Achievement Groups  

Our first set of analyses asked whether performance on congruent or incongruent trials of nonsymbolic 

number comparison distinguished children with DD from their low achieving and typically achieving 

peers. Previous research investigating deficits of the ANS in both behavioral and neuroimaging studies 

has largely used mathematics achievement scores below a certain threshold as a diagnostic criterion for 

DD. One commonly used threshold for defining DD is performance in the lowest 10th percentile of 

standardized mathematics achievement tests (Dinkel et al., 2013; Mazzocco et al., 2011). In addition, 

previous research has distinguished between individuals with mathematics learning disability 

(dyscalculia) from individuals with mathematics learning difficulties (i.e. less severe mathematics 

impairments). Whereas individuals with DD are hypothesized to have neurobiologically mediated 

cognitive deficits specific to magnitude processing, the etiological basis for individuals with mathematics 

learning difficulties may be broader in scope. Several studies comparing groups of student achieving in 

the lowest 10th percentile to those in the 11th – 25th percentiles reveal important qualitative differences in 

cognitive profiles (Geary, Hoard, Byrd-Craven, & Nugent, 2007; Mazzocco & Myers, 2003), notably 

indicating that the lowest achievement group had an impairment in nonsymbolic magnitude processing 

compared to all other achievement groups (Mazzocco et al., 2011). Therefore, in the current study, we 

assigned participants to three different mathematics achievement groups, dyscalculic individuals (DD: ≤ 

10th percentile), low achieving individuals (LA: 10th - 25th percentile), and typically achieving individuals 

(TA: 25th - 95th percentile). With these grouping criteria, 22 children met the criteria for DD, 12 for LA, 

and 188 for TA. Only one individual consistently scored > 95th percentile, a commonly used criterion for 

school placement in gifted and talented programs, and a common threshold for designating high achieving 

groups in research (e.g. Hoard, Geary, Byrd-Craven, & Nugent, 2008; Mazzocco et al., 2011). This 

individual was removed from further analysis. Analyses were replicated with another commonly used 

threshold for determining DD (achievement < 1.5 SD below population mean) and included in Appendix 

A. Using this alternative threshold did not alter any results. 

Individuals were placed in achievement groups if their mathematics achievement scores were 
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consistently in the designated achievement range at two of the three early assessments (PreK-1st grade) 

AND two of the three later assessments (5th-7th grades). Given these criteria, 222 children fit into 

consistent achievement groups across early and later assessment periods, thus excluding 226 children 

respectively from the full sample of 448 whose achievement level varied beyond the defined threshold 

across time points. Descriptive statistics for the achievement group sample (n = 222) are broken down by 

achievement group in Table 2.1. 

 Many previous studies have attempted to isolate the neurocognitive mechanisms of DD by 

studying a group of individuals with pure developmental dyscalculia compared to a control group 

(Landerl, Bevan, & Butterworth, 2004; Mussolin et al., 2009; Rotzer et al., 2008), meaning that both DD 

and control groups are matched on IQ and other cognitive abilities. The current study does not take this 

approach for two reasons. First, research suggests that defining learning disability groups through 

discrepancy criteria excludes many individuals with dyscalculia who suffer from comorbid learning 

disabilities or other developmental issues. Most estimates suggest that 20-40% of individuals with DD 

also have dyslexia (Shalev, 2004; Willcutt et al., 2013; Wilson et al., 2015) and around 25% also have 

attention deficits (Landerl, Göbel, & Moll, 2013; Shalev et al., 1995; Shalev, 2004). This suggests that 

DD is inherently heterogeneous and would better be characterized by a framework whereby individuals 

are designated as DD through proof of consistent, low mathematics achievement over time with the 

presence of adequate educational opportunity (Fuchs, Morgan, Young, & Rise, 2003). Therefore, rather 

than exclude non-discrepant individuals, the current study follows previous literature (Mazzocco et al., 

2011) and investigates differences in the ANS while controlling for reading achievement and domain-

general executive function. Second, the current study examines the intersection of attention mechanisms 

and magnitude processing mechanisms. Any attempt to define groups as a function of broader measures 

of achievement would impede investigation of individual differences in executive function, which is 

known to correlate with academic achievement.  
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Table 2.1. Descriptive statistics for achievement subgroups. 

* z-scores presented based on full sample of 448 individuals.  

WCJ-III = Woodcock Johnson III. KM-3 = KeyMath-3. 

 

Procedure 

All students assented and students’ families consented to participate, and the study was approved by the 

IRB. Assessments were conducted by trained members of the research staff. The nonsymbolic number 

comparison task and executive function tasks were administered during the Spring semester of the 

students’ 6th grade year via tablet computer. Testing for mathematics achievement was completed in a 

quiet location at the students’ school with one-to-one assistance from trained staff during the student’s 

Pre-K, Kindergarten, 1st grade, 5th grade, 6th grade, and 7th grade years. Reading achievement was 

assessed at the end of Kindergarten. 

 

Cognitive Tasks 

Nonsymbolic number comparison. Participants were presented with two sets of dots 

simultaneously and asked to indicate via button press which set was more numerous (i.e., which set 

contained more dots). The set on the left side of the screen contained yellow dots and the set on the right 

side contained blue dots, which corresponded to color-coded left and right buttons. Response sides were 

fully counterbalanced. Trials consisted of 1200 ms stimulus presentation followed by 1800 ms of fixation. 

Achievement Group 

Sample 

DD  

(n = 22, 7 females) 
LA  

(n = 12, 6 females) 
TA 

(n = 188, 106 females) 

Mean SD Range Mean SD Range Mean SD Range 

Age (years), Pre-K 5.1 0.5 4.5-6.4 5.0 0.3 4.7-5.5 5.1 0.3 4.5-5.6 

Age (years), 6th grade 12.2 0.5 11.4-13.4 12.0 0.3 11.6-12.5 12.0 0.3 11.4-12.6 

Nonsymbolic Comparison  

(accuracy, %) 
71.5 5.3 62.9-81.4 78.2 6.4 70.0-87.1 75.8 5.0 58.6-91.4 

Backward Corsi* 

(z-score of max span) 
-1.21 1.22 -2.4-0.95 0.03 0.57 -0.75-0.95 0.37 0.85 -2.44-2.65 

Hearts and Flowers*  

(z-score of accuracy, %) 
-1.29 0.79 -2.33-0.82 -0.16 0.83 -1.90-1.83 0.40 0.83 -1.90-1.83 

Letter-Word Identification 

(WCJ-III, standard score) 
91.4 9.90 75-113 97.4 11.9 73-113 115.1 11.9 85-144 
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Seven ratios were presented, ranging from .33 (5 vs. 15) to .9 (9 vs. 10). See Figure 2.1 for a task diagram 

and Supplementary Table 2.4 for a list of all ratios. The number of dots in each stimulus ranged from 5 to 

15. Each ratio was presented 10 times for a total of 70 trials, which were preceded by 6 practice trials of 

the easiest two ratios. If individuals did not correctly respond to at least 4 of the 6 practice trials, practice 

trials were repeated up to two times. If participants did not answer 4 out 6 correctly on any practice run, 

they did not proceed to the experimental trials. Ratios, stimulus presentation times, and order of 

presentation were modeled after Odic, Hock and Halberda (2014). To control for the possibility that 

participants might utilize a strategy based on visual cues rather than number of dots, the following visual 

properties of dot sets were varied using a modified version of the MATLAB code recommended by 

Gebuis & Reynvoet (2011): convex hull (area extended by a stimulus), total surface area (aggregate value 

of dot surfaces), average dot diameter, total circumference, and density (convex hull divided by total 

surface area). In approximately one quarter of the trials (22 of 70) all four visual properties were 

congruent with greater numerosity (i.e. the greater number of dots had a greater convex hull, surface area, 

etc.). In another approximate quarter of the trials (18 of 70), all four visual properties were incongruent 

with greater numerosity. In the remaining trials, visual properties were mixed congruent and incongruent.  

Analyses of task effects include all trials. Analyses directly addressing the research questions 

include trials that were either fully congruent (22 trials) or incongruent (18 trials) on all five visual 

parameters. Mixed congruency trials were excluded. Performance was calculated as mean number of 

items correct and as a weber fraction. Weber fractions were calculated  
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Figure 2.1. Nonsymbolic number comparison stimuli and paradigm timing. (A) Incongruent trial example 

of ratio 0.67 (smaller number dot set/larger number dot set, 6/9 = 0.67). (B) Congruent trial example, also 

of ratio 0.67. 

 

according to the method utilized by Halberda et al. (2008). Of the sample of 448 individuals, 446 had 

weber fraction models that fit when modeling all trials at the 6th grade year. Correlations with weber 

fractions are reported in the analyses of tasks effects to facilitate comparison with previously published 

research. However, the model implementing Levenberg–Marquardt least squares fit used to calculate 

weber fractions did not provide a sufficient fit with the few number of trials available within congruency 

conditions (as indicated by whether the model predicted a significant amount of variance, p < .05). 

Further, a growing body of literature suggests that mean accuracy is strongly correlated with and possibly 

more reliable than ratio dependent metrics such as the weber fraction (Gilmore, Attridge, & Inglis, 2011; 

Inglis & Gilmore, 2014). Therefore, in the current study, mean accuracy percentages were used instead of 

weber fractions to index performance on each of our number comparison tasks. 

Working memory. The backward Corsi block-tapping test (Corsi, 1972) provided a measure of 

visuo-spatial working memory. In this computerized task, children first viewed squares that lit up in a 

sequence on the screen, and then the students were asked to tap the squares in the reverse order in which 

they lit up. The task consisted of 16 total possible trials, including two practice trials. The student was 

given 2 attempts to correctly repeat the reverse sequence per sequence length. The sequence length of 
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squares increased from 2 to 8 across the task. If the student correctly answered at least 1 of the 2 attempts 

correctly, the student then proceeded on to the longer (more difficult) sequence. The score of interest was 

the highest span with a correctly repeated sequence. At the 6th grade assessment, 22 children (of n = 448) 

did not proceed from instruction in the backward Corsi to successful completion of a trial, indicating 

noncompliance with the task or a failure to understand instructions. Scores on outcome measures and 

covariates of interest for these children were different, on average, from those children who successfully 

completed the task (nonsymbolic accuracy t(446) = 3.728, p < .001, Cohen’s d = 0.794; Hearts and 

Flowers mean accuracy t(446) = 3.508, p < .001, Cohen’s d = 0.716; 6th grade mathematics achievement 

t(446) = 2.587, p = .010, Cohen’s d = 0.613). Therefore, to avoid nonrandom missing data and include 

these children in our analyses, backward Corsi max span from the 5th grade was used, where available. To 

maintain the relative position of children’s scores in the 5th grade among other children’s 6th grade scores 

(5th grade mean max span = 4.52, 6th grade mean span = 4.88), both years of backward Corsi max spans 

were z-scored and 5th grade z-scores of the 22 children were used instead of 6th grade z-scores, which 

were used for the other 426 children.  

Inhibitory control and task switching. The Hearts and Flowers task (Wright & Diamond, 2014) 

was used as measure of students’ task switching and inhibitory control. In this task, the child was first 

presented with a heart on either side of the screen and instructed to press the button that corresponds to 

the side of the screen with the heart. This first block comprised 12 trials. In the second block of trials (also 

12 trials), the child was presented with flowers and asked to press the button that is opposite the side of 

the flower. In the third set of trials, the child was randomly presented with either a heart or a flower and 

asked to follow the rule that corresponds to hearts and flowers respectively. The third block comprised 48 

trials. To index executive function we used mean accuracy from the third, mixed-condition block of trials, 

and as such, our measure captures both task switching and inhibitory control (Diamond, 2014). One child 

was not assessed at 6th grade for Hearts and Flowers, but a score from 7th grade was available. The same 

z-score method described above was utilized to create a score for this child and z-scores were utilized for 

all subsequent analyses. 
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Academic Achievement 

Reading achievement: Woodcock Johnson III (WCJ-III) – Letter-Word Identification. The 

WCJ-III (Woodcock, McGrew, & Mather, 2001) is a standard assessment of a range of skills, designed to 

be used with people ages 2 to 90+. The letter-word identification subtest assesses children’s letter and 

sight word identification ability with the correct pronunciation. Items include identifying and pronouncing 

letters and words presented to the child (e.g. “A” or “dog”). Age-normed standard scores were calculated 

as an early measure of reading achievement measured at the end of Kindergarten and then converted to 

percentile ranks. 

Mathematics achievement.  

WCJ-III – Quantitative Concepts and Applied Problems. Quantitative Concepts and Applied 

problems subtests were administered at the end of each school year during Pre-K, Kindergarten, and 1st 

grade. Individually-administered, Quantitative Concepts has two parts and assesses students’ knowledge 

of mathematical concepts, symbols, and vocabulary, including numbers, shapes, and sequences; it 

measures aspects of quantitative mathematics knowledge and recognition of patterns in a series of 

numbers. The Applied Problems subtest is an untimed verbal and picture-based measure of a student’s 

ability to analyze and solve mathematics problems, beginning with the application of basic number 

concepts. At each early time point, age-normed standard scores were calculated for each subtest and 

averaged together to create a composite measure of mathematics competence representing a broad range 

of mathematics skills. These scores were subsequently converted to percentile ranks. 

KeyMath 3. The KeyMath 3 Diagnostic Assessment (Connolly, 2007) is a comprehensive, norm-

referenced measure of essential mathematical concepts and skills. It was administered at the end of each 

school year during 5th, 6th, and 7th grades. We used three subscales out of the five subscales in the Basic 

Concepts area. (1) Numeration: The Numeration subtest measures an individual's understanding of whole 

and rational numbers. It covers topics such as identifying, representing, comparing, and rounding one-, 

two-, and three-digit numbers as well as fractions, decimal values, and percentages. It also covers 
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advanced numeration concepts such as exponents, scientific notation, and square roots. (2) Algebra: The 

Algebra subtest measures an individual's understanding of pre-algebraic and algebraic concepts. It covers 

topics such as sorting, classifying, and ordering by a variety of attributes; recognizing and describing 

patterns and functions; working with number sentences, operational properties, variables, expressions, 

equations, proportions, and functions; and representing mathematical relations. (3) Geometry: The 

Geometry subtest measures an individual's ability to analyze, describe, compare, and classify two-and 

three-dimensional shapes. It also covers topics such as spatial relations and reasoning, coordinates, 

symmetry, and geometric modeling. In order to index a broad range of mathematics achievement, we 

averaged scale scores from the three subscales into a composite measure (KM Composite). Scale scores in 

the KeyMath 3 are age-normed to reflect population means of 10 and a standard deviation of 3 for each 

subtest. Mathematics competence was indexed using a composite score calculated as the mean of the age-

scaled scores of the three KeyMath 3 subtests administered to capture performance in a wide range of 

mathematical skills. This score was then converted to a percentile rank to compose mathematics 

achievement groups across measures of mathematics achievement in the early grades (PreK-1st grade) and 

late measures of mathematics achievement (5th grade to 7th grade). The relation between KeyMath 3 

scores and other measures was not linear, so when conducting analysis that assumed a linear relation (e.g. 

bivariate correlation, partial correlation, or regression), we instead used the cube root of KeyMath 3 

percentile rank. 

2.3 Results 

Task Effects 

Nonsymbolic comparison task performance profiles were consistent with previously published findings 

(e.g., Lyons, Nuerk, & Ansari, 2015), showing a significant effect of ratio on mean accuracy for all trials 

[F(6, 447) = 1255.22, p < .001, partial η2 = 0.737], and within congruency conditions [F(6, 447) = 339.01, 

p < .001, partial η2 = 0.431 for congruent trials; F(6, 447) = 401.17, p < .001, partial η2 = 0.473 for 

incongruent trials]. Further, both mean accuracy and weber fraction were correlated with mathematics 

achievement at 6th grade (mean accuracy Pearson r(446) = .191, p < .001; weber fraction Pearson r(446) = 
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-.244, p < .001), which is in line with a recent meta-analysis reporting an average correlation of r = .241 

(k = 195) between nonsymbolic comparison and a broad range of mathematics achievement measures 

across multiple age groups (Schneider et al., 2017). Mean accuracy and weber fractions were highly 

correlated (Pearson r(446) = -.919, p < .001). 

 

Achievement Group Comparison Results 

To investigate group differences among DD, LA, and TA groups on nonsymbolic comparison on both 

congruent and incongruent trials, we conducted a two-way (3 x 2), mixed effects ANOVA with 

achievement group as a between-subject factor, congruency condition of nonsymbolic comparison as a 

within-subjects factor, and accuracy rate on the nonsymbolic comparison task at 6th grade as the 

dependent variable. One-way post-hoc t-tests were conducted to examine simple main effects and 

pairwise differences where appropriate. Bonferroni-corrected p-values are reported to correct for multiple 

comparisons for all subsequent analyses and to ensure tests were robust against violations of homogeneity 

of variances between groups. Because clustering of students within schools did not account for a 

significant proportion of variation in 6th grade nonsymbolic number comparison accuracy (𝜌̂ = .009, p = 

.74), a multi-level modeling approach to account for the clustering of students within schools was not 

needed.  

 Results of the two-way ANOVA indicated a main effect of achievement group [F(2, 219) = 

6.694, p = .002, partial η2 = 0.058], a main effect of congruency [F(1, 219) = 27.570, p < .001, partial η2 = 

0.112] whereby individuals were more accurate on congruent trials, and an interaction [F(2, 219) = 4.816, 

p = .009, partial η2 = 0.042]. To characterize the main effect of achievement group, we conducted 

between-subjects t-tests comparing accuracy on the combined congruent and incongruent trials. There 

was an effect of achievement group between the DD and LA groups [t(32) = -3.119, p = .006, Cohen’s d 

= 1.62] and between the DD and TA groups [t(208) = -3.287, p = .002, Cohen’s d = 0.769], with the DD 

group performing worse than both LA and TA. There was no significant difference between the LA and 

TA groups [t(198) = 1.429, p = .233, Cohen’s d = 0.379]. Further post-hoc tests were conducted to 
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characterize the interaction. 

 The effect of congruency. Pairwise comparisons were conducted to characterize the simple 

effect of congruency within achievement groups. There was an effect of congruency in the DD and TA 

groups [t(21) = 6.076, p < .001, Cohen’s d = 10.362 for DD; t(187) = 6.795, p < .001, Cohen’s d = 0.844 

for TA], but not in the LA group [t(11) = 0.716, p = .489, Cohen’s d = 0.359 for LA] (see Figure 2.2 for 

means).  

 The effect of achievement group. To characterize the simple effects of achievement group, one-

way ANOVAs were conducted within congruency conditions, followed by pairwise comparisons of 

achievement groups. Results from the ANOVA on accuracy for congruent trials showed no effect of 

achievement group [F(2, 219) = .476, p = .622, η2 = 0.004] (Figure 2.2). Levene’s test of equality of 

variances showed no significant differences in variance across groups for mean accuracy of congruent 

trials (Levene’s statistic = .383, p = .682). To further investigate achievement group differences after 

controlling for domain-general factors, analyses were repeated as a one-way ANCOVA with the 

covariates of max span achieved on the backward Corsi, mean accuracy during mixed trials of the Hearts 

and Flowers task, age at time of testing, and percentile rank on the WCJ-III letter-word identification at 

the end of Kindergarten. Results from the ANCOVA again indicated there was no effect of achievement 

group on number comparison performance for congruent trials [F(2, 215) = .068, p = .935, partial η2 = 

0.001].  

In contrast, results from the ANOVA on incongruent trials showed a significant effect of 

achievement group on accuracy [Welch’s F(2, 219) = 8.345, p = .002, η2 = 0.070]. Levene’s test indicated 

that there were significant differences in variance across groups for mean accuracy of incongruent trials 

(Levene’s statistic = 4.317, p = .014), however variance only differed between groups by a factor of 2.56 

at most, so Welch’s adjusted F was used for the ANOVA. After adjusting for multiple comparisons, post-

hoc tests of incongruent trials indicated lower accuracy rates for the DD group than the TA group (p < 

.001, Hedge’s g = 0.870), lower accuracy rates for DD than LA (p = .002, Hedge’s g = 1.046), and no 

difference between LA and TA groups (p = .344, Hedge’s g = .356). When controlling for the same non-
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numerical, domain-general factors as above in an ANCOVA, there was still a significant effect for 

accuracy on incongruent trials [F(2, 215) = 4.658, p = .010, partial η2 = 0.042]. Post-hoc tests indicated 

lower accuracy rates for the DD group than the TA group (p = .045, Hedge’s g = 0.823 for adjusted 

means), lower accuracy rates for the DD group than the LA group (p = .005, Hedge’s g = 0.912 for 

adjusted means), and no difference between LA and TA groups (p = .231, Hedge’s g = 0.585 for adjusted 

means). These results replicate the pattern observed in the ANOVA. 

In sum, all ANOVAs and ANCOVAs conducted show the same pattern of results whereby: (1) no 

group differences are observed for congruent trials of the nonsymbolic comparison task, (2) the DD group 

performs significantly below LA and TA groups on incongruent trials even when controlling for other 

cognitive factors and early reading achievement, and (3) no group differences are present between LA and 

TA groups on incongruent trials. 

 
Figure 2.2. Nonsymbolic number comparison accuracy rates by achievement group. LA = low achieving. 

TA = typically achieving. Error bars represent standard errors. P-values are indicated for differences in 

accuracy between congruent and incongruent trials (*** p < .001). 

 

 

Full Range of Achievement Results 

The last set of analyses examined whether individual differences in nonsymbolic number comparison 

performance related to standardized mathematics achievement across a wide range of achievement. 

Specifically, we examined whether 6th graders’ accuracy on nonsymbolic number comparison for 

incongruent and congruent trials predicted concurrent mathematics achievement for the full sample of 
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students (n = 448), and whether the relation changed when controlling for early reading achievement and 

domain-general executive functioning. For bivariate correlations among measures, see Supplementary 

Table 2.5. Of note is a moderate, negative bivariate correlation between accuracy rates for congruent and 

incongruent trials (r(446) = - .447, p < .001 ). 

Multi-level regression model predicting mathematics achievement. In addition to group 

comparisons, we used random-effects multi-level models to predict 6th grade mathematics achievement 

from concurrent experimental measures. Multi-level modeling accounts for the clustering of students 

within schools, as approximately 23% of the variation in 6th grade mathematics achievement was due to 

school membership (𝜌̂ = .225, p < .0001). Equation (1) illustrates the modeling approach, in which 

MATHij represents 6th grade mathematics achievement for each student i in school j. The predictors 

INCONij and CONij represent student-level accuracy on nonsymbolic number comparison for incongruent 

and congruent trials, respectively; HAFij represents student-level standardized scores on the Hearts and 

Flowers task; CORSIij represents student-level standardized backward Corsi max span scores; READij 

represents student-level age-normed standard scores on the letter-word ID test; and Xij represents a vector 

of potential student-level covariates, such as gender or age at testing. Due to non-linearity in the relation 

between mathematics scores and the predictors, models were fit using a transformed outcome (i.e., cubed 

root).  

√𝑀𝐴𝑇𝐻𝑖𝑗
3 = 𝛽0+𝛽1𝐼𝑁𝐶𝑂𝑁𝑖𝑗 + 𝛽2𝐶𝑂𝑁𝑖𝑗 + 𝛽3𝐻𝐴𝐹𝑖𝑗 + 𝛽4𝐶𝑂𝑅𝑆𝐼𝑖𝑗 + 𝛽5𝑅𝐸𝐴𝐷𝑖𝑗 + 𝛽6𝑿𝑖𝑗+ (𝑒𝑖𝑗 + 𝑢𝑗) 

 (1) 

Table 2.2 presents parameter estimates, standard errors, significance levels, random effects, and 

goodness-of-fit statistics for a taxonomy of fitted models describing the relation between mathematics 

achievement and nonsymbolic number comparison, domain-general executive functioning, early reading 

achievement, and age at testing in 6th grade. The first model (i.e., M1) displays the grand mean of 6th 

grade mathematics achievement, across all students and schools, and the intra-class correlation (𝜌̂ = .225, 

p < .0001) that motivates the multi-level modeling approach. Model M2 shows the relations between 
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accuracy on congruent and incongruent conditions of the nonsymbolic number comparison task and 

transformed 6th grade mathematics achievement. There is a statistically significant relation between 

accuracy on incongruent nonsymbolic number comparison and transformed 6th grade mathematics 

achievement (z = 4.88, p < .0001), but accuracy on congruent trials is not a statistically significant 

predictor of mathematics achievement (z = 1.16, p = .25). Accordingly, accuracy on congruent trials was 

excluded from subsequent models.  

Subsequent models (M3-M5) show that the relation between accuracy on incongruent trials of the 

nonsymbolic number comparison task and transformed 6th grade mathematics achievement persists after 

controlling for additional predictors of mathematics achievement. Model M3 shows the relation between 

accuracy on incongruent nonsymbolic number comparison trials and transformed mathematics 

achievement, controlling for domain-general executive functioning. Hearts and Flowers and backward 

Corsi performance have a statistically significant relation with mathematics achievement (z = 7.71, p < 

.0001 and z = 7.12, p < .0001, respectively), controlling for nonsymbolic number comparison. Parameter 

estimates and statistical significance of relations remain stable when controlling for reading performance 

in Kindergarten (see Table 2.2, M4) and age of mathematics testing in 6th grade (see Table 2.2, M5), 

though the magnitudes decrease slightly. Additional models were fit testing demographic variables (e.g., 

gender) and interaction terms among the nonsymbolic comparison and executive function predictors, 

however, none were statistically significant (p’s ranged from .06 to .98). Further, we conducted a 

sensitivity analysis to examine whether students with DD may be driving the relationship between 

performance on incongruent trials and mathematics achievement. To do so, we refit model M5 without 

the DD subgroup (n = 22). Results were unchanged. Taken together, the analysis suggests that student 

performance on incongruent trials of nonsymbolic number comparison is predictive of concurrent 

mathematics achievement, above and beyond non-numerical, domain-general executive functioning, early 

reading achievement, and age at testing in 6th grade. For detailed explanation of the model fit, see 

Appendix B. 



38 

 

 

Table 2.2. Taxonomy of fitted multi-level models describing the relation between the cubed root of 6th 

grade mathematics achievement and accuracy on nonsymbolic number comparison, separately for 

incongruent and congruent trials, controlling for working memory, inhibitory control, reading 

achievement, and age of testing in 6th grade (nschools = 75; nstudents = 448).  

 

 
6th grade mathematics achievement (cubed root) 

 M1 M2 M3 M4 M5 

Intercept 0.562*** 0.286** 0.480*** 0.011 -1.084** 

(0.015) (0.091) (0.036) (0.072) (0.337) 

Nonsymbolic Comparison, 

incongruent trials, acc. 

 0.321*** 0.144** 0.141** 0.126* 

 (0.066) (0.053) (0.051) (0.050) 

Nonsymbolic Comparison, 

congruent trials, acc. 

 0.097    

 (0.083)    

Backward Corsi,  

max span 

  0.054*** 0.051*** 0.050*** 

  (0.008) (0.007) (0.007) 

Hearts and Flowers,  

mixed trials, acc. 

  0.060*** 0.053*** 0.051*** 

  (0.008) (0.007) (0.007) 

Reading achievement, 

LWID, end of Kindergarten 

   0.004*** 0.005*** 

   (0.001) (0.001) 

Age of KeyMath testing,  

6th grade 

    0.007*** 

    (0.002) 

𝜎̂𝑢 
0.094*** 0.091*** 0.073*** 0.057*** 0.051*** 

(0.014) (0.014) (0.011) (0.010) (0.010) 

𝜎̂𝑒 
0.174*** 0.170*** 0.150*** 0.144*** 0.143*** 

(0.006) (0.006) (0.005) (0.005) (0.005) 

𝜌̂ 
0.225*** 0.223*** 0.190*** 0.134*** 0.112** 

(0.057) (0.057) (0.050) (0.043) (.040) 

Log-likelihood  114.559 126.743 185.816 211.721 217.176 

*p < .05, **p < .01, ***p < .001. Acc. = accuracy, LWID = letter-word identification, 𝜎̂𝑢 = School-level 

residual standard deviation, 𝜎̂𝑒= Student-level residual standard deviation, 𝜌̂ = Intra-class correlation. 

Standard errors are in parentheses. 
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2.4 Discussion 

The current study investigated the relation among ANS function, executive function, and mathematics 

achievement by examining performance on the nonsymbolic comparison task, separately for congruent 

and incongruent trials, while controlling for multiple components of executive function measured in non-

numerical contexts. We investigated this relation first as it relates to group differences among DD, LA, 

and TA students and then as a factor related to mathematics achievement across a full range of 

achievement. Results indicated that an interaction of the ANS and executive function mechanisms, 

beyond either mechanism alone, represents a deficit specific to DD and is also factor related to 

mathematics achievement across a full range of mathematics achievement levels.  

 In the first analysis, we compared accuracy rates in the nonsymbolic comparison task across three 

mathematics achievement levels (i.e. DD, LA, and TA) defined through six years of consistent 

achievement, including the first three years of school entry (Pre-K-1st grade) and three later years of entry 

to middle school (5th-7th grade). Our results showed that accuracy on incongruent trials, and not congruent 

trials, was significantly lower for DD (defined at two different thresholds) compared to LA and TA 

groups, even after controlling for early reading achievement, visuo-spatial working, inhibitory control, 

and task shifting. LA and TA groups, on the other hand, did not differ from one another, thus supporting 

the hypothesis that an impairment in the interaction between executive function and the ANS is 

characteristic of individuals with DD. 

Explanations of the link between ANS and mathematics achievement that involve a dynamic 

interaction between the ANS and executive function have considerable support from a large body of 

research linking low mathematics performance with various executive function impairments. These 

include associations between low mathematics achievement and inhibitory control (Blair & Razza, 2007; 

Espy et al., 2004; Dénes Szűcs et al., 2013), spatial processing (Rourke & Conway, 1997), verbal and 

visuospatial working memory (Rebecca Bull & Scerif, 2001; David C Geary, 2004), set shifting (Willcutt 

et al., 2013), sustained visual attention (Anobile, Stievano, & Burr, 2013), and inattentive behaviors (Fias 

et al., 2013; Shalev et al., 1995). Further, DD has a high rate of comorbidity with attention-
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deficit/hyperactivity disorder (Czamara et al., 2013). Though the link is often made between general 

measures of executive function and mathematics achievement, there is evidence that the relation is 

specific to measures of executive function involving numerically relevant information. For example, 

Siegel and Ryan (1989) found that individuals with DD have impairments of working memory related to 

processing numerical information and not language. Experimental studies have also demonstrated a 

distinction between executive function to numerical and non-numerical content. Ashkenazi et al. (2009) 

found that individuals with DD had more difficulty recruiting attention to numerical information but not 

non-numerical information under heightened cognitive load compared to TD peers. This array of findings 

has led some to suggest that DD may involve a domain-specific executive function problem (e.g. Bull & 

Scerif, 2001). In other words, individuals with DD may not have a generally impaired ANS system, but 

rather have difficulty working with numerical magnitudes under additional executive function demands. 

Results from the current study showing mathematics achievement group differences in nonsymbolic 

comparison performance only during incongruent trials, after controlling for non-numerical executive 

function, lend further support to this hypothesis. Whether this deficit is driven by a failure to upregulate 

numerical information above competing information, or perhaps a failure to disengage attention from 

non-numerical information remains an open empirical question. 

The current study results contrast with some previous studies using an alternative method for 

controlling visual parameters of dot stimuli which have not found an effect of congruency on response 

behaviors (Odic et al., 2014; Odic, Libertus, Feigenson, & Halberda, 2013). However, in those studies, 

the effect of congruency may be confounded by the fact that degree of visual congruency (and 

incongruency) is linearly related to trial ratio. This means that in difficult ratio trials, which capture the 

most variance related to individual differences in ANS acuity, each dot set is very similar in terms of 

surface area, thus decreasing the likelihood of finding a congruency effect. Although this method may be 

appropriate for measurement of general ANS acuity, the effects of congruency are difficult to separate 

from the effects of numerical ratio, since the two are linked so tightly. The current study uses a method of 

controlling congruency that is more balanced across ratios and controls for a greater number of stimulus 
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properties beyond dot size and surface area (for a detailed discussion, see Clayton et al., 2015). Therefore, 

the effects of congruency and ANS function are more clearly disentangled in the current study. 

One unexpected result from the first, group-wise analysis is that DD and TA groups showed 

congruency effects, as expected, but LA children did not. Despite this lack of a congruency effect in the 

current findings for this achievement group, we caution against any strong interpretation of this result. 

There is a trend in the expected direction for each of the LA children groupings (10th percentile and 6.7th 

percentiles cutoffs), in which children are more accurate on congruent trials than incongruent trials. 

Despite the lack of a significant effect, the effect sizes are relatively large (Cohen’s d = 0.36 and d = 

0.71) and mean differences are 6 accuracy points and 10 accuracy points for each sample respectively. It 

is likely that the absence of a statistically significant congruency effect for LA children is due to high 

variance in accuracy on incongruent trials and a lack of adequate power for this comparison, since the 

group is relatively small. 

In the second analysis, we examined whether 6th graders’ accuracy on nonsymbolic number 

comparison for incongruent and congruent trials predicted concurrent mathematics achievement for the 

full sample of students, and whether the relation changed when controlling for early reading achievement 

and non-numerical, domain-general executive functioning. The sample for this analysis included a wide 

range of mathematics achievement levels that included all participants from the first analysis and 

participants in the broader study that did not consistently achieve in the same level year-to-year. Similar 

to the logic of the first analysis, if number-specific executive function is related to individual differences 

in mathematics achievement across a wide range of achievement, performance on incongruent trials 

should predict mathematics achievement beyond what can be accounted for by congruent trials and early 

reading achievement, visuo-spatial working, inhibitory control, and task shifting. Indeed, results showed 

that accuracy on incongruent trials predicted concurrent mathematics achievement even after controlling 

for early reading achievement, visuo-spatial working, inhibitory control, and task shifting, thus supporting 

the hypothesis that number-specific executive function relates to individual differences in mathematics 

achievement across a wide range of achievement levels. Further, the relation remained unchanged when 
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we excluded individuals with DD from the regression. These findings build on previous research that has 

shown other number-specific measures of executive function relate to mathematics achievement in 

typically developing and high achieving groups. For example, Dark and Benbow (1994) found that 

working memory tasks with numerical stimuli were more closely related to mathematical precocity than 

non-numerical stimuli across a range of tasks in adults. Similarly, studies of children have demonstrated 

that inhibitory control and working memory of numerical information accounts for significant variance in 

individual differences of mathematics ability and early numeracy beyond similar non-numerical measures 

of executive function (Rebecca Bull & Scerif, 2001; Merkley, Thompson, & Scerif, 2016).  

 Interestingly, bivariate correlations indicated that children with high accuracy on incongruent 

trials tended to have low accuracy on congruent trials (and vice versa), even though congruent trials were 

not related to mathematics achievement. This may be important for two reasons. First, if only incongruent 

trials are related to mathematics achievement, researchers may be tempted to design measures consisting 

exclusively of incongruent trials. However, this inverse relation may indicate that incongruent trials are 

inherently related to congruent trials such that removing congruent trials would change the nature of the 

task demands for incongruent trials. Second, speculation about inhibitory control has dominated the 

conversation about the cognitive mechanisms underlying the difference between incongruent trials and 

congruent trials of the nonsymbolic comparison task (Cragg et al., 2017; Gilmore et al., 2015). While 

inhibitory control may be a factor, the inverse correlation between congruency conditions may indicate 

that some individuals are unable to switch between strategies that capitalize on visual cues during 

congruent trials and ignore these cues otherwise. In addition to working memory and inhibitory control, 

task shifting may contribute to differences in performance between incongruent and congruent trials. 

 Further, in the current study, accuracy on congruent trials was unrelated to mathematics 

achievement, either as a factor distinguishing between achievement groups or as a predictor of 

mathematics achievement. This was true even before controlling for other academic or cognitive factors. 

Since current theory suggests engagement of the ANS for successful completion of congruent and 

incongruent trials, we expected a relation, albeit weaker, between mathematics achievement and accuracy 
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rate on congruent trials. However, neither analysis showed a statistically significant relationship between 

performance on congruent trials and mathematics achievement. Further, the magnitude of this relationship 

in both analyses was close to zero, showing no trend in the expected direction. This calls into question 

whether ANS function alone, not measured under high executive function demands, is an important factor 

related to DD and mathematics achievement more generally. Previous neuroimaging research has shown 

that congruent and incongruent trials of the nonsymbolic number comparison task recruit different neural 

mechanisms, with incongruent trials recruiting large portions of the fronto-parietal attention network 

(Leibovich et al., 2015). Recruitment of additional neurocognitive mechanisms during incongruent trials 

may be an integral component of the previously assumed direct relation between ANS and mathematics 

achievement. 

 Several factors should be taken into account when interpreting the results of the current study. 

First, participants were recruited from an urban public school system and were mostly from low-income 

households. Low household income often impedes access to high-quality early mathematics experiences 

(Ramani & Siegler, 2008), so factors driving mathematics achievement or the relation between 

nonsymbolic comparison and mathematics achievement may differ across students with differing 

household incomes. Further, the relation between nonsymbolic number comparison and mathematics 

achievement in low-income samples has been reportedly lower than middle- and high-income samples 

(Fuhs et al., 2016; Fuhs & McNeil, 2013). However, effect sizes of the relation between nonsymbolic 

comparison and mathematics achievement from the current study are in line with previous meta-analyses 

(Chen & Li, 2014; Schneider et al., 2017). Additionally, the lack of relation between mathematics 

achievement and congruent trials, and significant relation between mathematics achievement and 

incongruent trials has been previously reported in low-income (Fuhs & McNeil, 2013) and middle-to-high 

income individuals (Keller & Libertus, 2015). Further, Price and Wilkey (2017) showed that the 

mediating relation among nonsymbolic comparison accuracy rates and mathematics achievement in the 

same group of children as the current study follows the same patterns as previously reported literature 

from wider SES samples (Lyons & Beilock, 2011), further suggesting the current sample does not diverge 
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from trends found at other income levels. 

 Second, alternative explanations of the current results are possible. For example, rather than our 

hypothesis about domain-specific executive function, the current results could indicate that individuals 

who utilize an appropriate strategy for incongruent trials, whether consciously or not, are better at 

mathematics. If framed as a task strategy, then strategy selection does not necessarily equate to number-

specific executive function. Another alternative is that individual differences in task performance are 

based not on cognitive efficiencies, but rather a predisposition to focus on one aspect of the visual stimuli. 

A deficit of number-specific executive function is different than the failure to utilize it. Prior research has 

documented that individuals with a tendency to spontaneously focus on exact quantities have higher 

arithmetic abilities (Batchelor, Inglis, & Gilmore, 2015; Hannula et al., 2010). Recently, this line of 

research has been expanded to incorporate spontaneous orientation to conflicting or irrelevant dimensions 

of non-numerical magnitude similar to those of the current study (Viarouge et al., 2017). Some evidence 

indicates that intentional processing of numerical magnitudes is more related to mathematics achievement 

than automatic processing (Bugden & Ansari, 2011), but further research is needed that directly 

manipulates numerical information in both nonsymbolic and symbolic formats under differing executive 

function loads. Research on the underlying neurocognitive mechanisms can also help to distill the root of 

the differences observed in the current results.  

In sum, the two sets of analyses presented here suggest that performance on incongruent trials 

alone relates to the presence of severe mathematics learning deficits as well as individual differences in 

mathematics across a wider range of achievement. Results suggest that number-specific executive 

function is a unique predictor of mathematics achievement beyond measures that target the ANS or 

executive function independently. In order to understand how the intersection of these multiple cognitive 

mechanisms relates to the acquisition of mathematics skills, future studies should move from a domain-

specific vs. domain-general approach to experiments that deconstruct this framework. In so doing, future 

hypotheses can more closely address the integration of cognitive mechanisms required to complete a 

complex task such as mathematical thought.  
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Appendix A. Detailed Results from 6.7th Percentile cutoff sample achievement group analysis. 

 

To make current results more easily comparable to previous literature that used differing cutoff 

thresholds for determining DD groups, the current study also examined whether there were differences 

between two commonly used thresholds for determining a dyscalculic sample. This threshold has varied 

widely across studies, and has likely contributed to disagreement among findings (Mazzocco & Myers, 

2003). Another commonly used threshold is mathematics achievement scores 1.5 standard deviations 

below the nationally normed means, which is equivalent to performance below the 6.7th percentile 

(Kaufmann et al., 2013; Gavin R. Price et al., 2007; Rotzer et al., 2009). This threshold resulted in the 

following achievement groupings: DD,  ≤ 6.7th percentile; LA, 6.7th – 25th percentile; TA, 25th – 95th 

percentile. Again, individuals were placed in achievement groups if their mathematics achievement scores 

were consistently in the designated achievement range at two of the three early assessments (PreK-1st 

grade) AND two of the three later assessments (5th-7th grades).  Given these criteria, 221 children fit into 

consistent achievement groups across early and later assessment periods, 11 children met the criteria for 

DD, 22 for LA, and the same 188 children were TA. Descriptive statistics in Table 2.3. 

Results 

As in the first achievement group sample, there were no differences according to gender 

distribution percentages of mathematics achievement groups with the 6.7th percentile cutoff grouping 

(Pearson χ2(2) = 4.045, p = .132, Cramer’s V = .132), nor in mathematics achievement (t(446) = 1.182, p 

= .238, Cohen’s d = 0.112) or in nonsymbolic comparison accuracy (t(446) = 0.780, p = .436, Cohen’s d 

= 0.074) at 6th grade, the outcome year of interest for the second set of primary analyses. 
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Supplementary Table 2.3. Descriptive statistics for experimental and standardized measures. 

* Raw scores reported here for year available. See sections 2.4.2 and 2.4.3 for a detailed description of 

scores used for analyses. WCJ-III = Woodcock Johnson III. KM-3 = KeyMath-3. 

 

 

Detailed Results from 6.7th Percentile cutoff sample achievement group analysis. For the 6.7th 

percentile cutoff sample, there was an effect of congruency in the DD and TA groups [t(10) = 3.855, p = 

.003, Cohen’s d = 1.968 for DD; t (187) = 6.795, p < .001, Cohen’s d = 0.844 for TA], but not in the LA 

group [t (21) = .705, p = .068, Cohen’s d = 0.705]. The right panel of Figure 2.3 shows the congruency 

effect for DD and TA groups in the 6.7 percentile cutoff sample. Levene’s test of equality of variances 

 
10th Percentile Cutoff 

Sample 

(n = 222, 116 females) 

6.7th Percentile Cutoff 

Sample 

(n = 221, 115 females) 

Entire Sample  

(n = 448, 250 females) 

 Mean SD Range Mean SD Range Mean SD Range 

Age (years),  Pre-K 5.1 0.3 4.5-6.4 5.1 0.3 4.5-6.4    

Age (years), 6th grade 12.0 0.3 11.4-13.4 12.0 0.3 11.4-13.4 12.0 .32 11.4-13.4 

Nonsymbolic Comparison  

(accuracy, %) 
75.5 5.29 58.6-91.4 75.6 5.3 58.6-91.4 74.8 5.48 48.6-91.4 

Backward Corsi * 

(max span) 
5.1 1.2 2-8 5.2 1.1 2-8 4.81 1.22 2-8 

Hearts and Flowers*  

(accuracy, %) 
76.4 14.4 40-100 76.8 13.9 44-100 73.4 14.5 35-100 

Letter-word ID – WCJ-III  

(K, percentile rank) 
111.8 14.1 73-144 111.8 14.2 73-144 109.7 12.7 73-144 

Math Achievement- WCJ-III 

(Pre-K, percentile rank) 
51.3 24.9 1.0-95.0 52.4 23.8 1.0-95.0    

Math Achievement- WCJ-III 

(K, percentile rank) 
52.1 24.7 0.0-93.0 52.7 23.8 0.0-93.0    

Math Achievement- WCJ-III 

(1st grade, percentile rank) 
48.1 24.6 0.4-95.5 48.6 24.1 0.4-95.5    

Math Achievement – KM-3 

(5th grade, percentile rank) 
39.2 23.5 0.5-96.2 39.6 23.1 0.7-96.2    

Math Achievement – KM-3 

(6th grade, percentile rank) 
42.1 22.7 0.5-92.5 42.4 22.3 1.0-92.5 27.0 23.1 0.5-92.5 

Math Achievement – KM-3 

(7th grade, percentile rank) 
42.6 22.9 0.5-94.1 42.9 22.5 0.5-94.1    
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showed no significant differences in variance across groups for mean accuracy of congruent trials or 

incongruent trials. Results from the ANOVA showed that there was no effect of achievement group on 

number comparison performance for congruent trials [F(2, 218) = .389, p = .679., η2 = 0.003], but there 

was a significant effect of achievement group on number comparison performance for incongruent trials 

[F(2, 218) = 4.947, p = .008, η2 = 0.043]. After adjusting for multiple comparisons, one-tailed post-hoc 

tests indicated lower accuracy rates for DD than TA children (Bonferroni adjusted p = .003, Hedge’s g = 

0.997), lower accuracy rates for DD than LA children (Bonferroni adjusted p = .011, Hedge’s g = 0.821), 

and no difference between LA and TA groups (Bonferroni adjusted p = .500, Hedge’s g = 0.028).  

Results from the ANCOVAs with the covariates of mean accuracy on the Hearts and Flowers 

mixed trials, max span on the backward Corsi block-tapping test, age at grade 6 testing, and letter-word 

identification at the end of Kindergarten indicated there was no effect of achievement group on number 

comparison performance for congruent trials [F(2, 214) = .208, p = .812, partial η2 = 0.002], but there was 

a significant effect for incongruent trials [F(2, 214) = 3.356, p = .037, partial η2 = 0.030]. After adjusting 

for multiple comparisons, one-tailed post-hoc tests indicated lower accuracy rates for DD than TA 

children (Bonferroni adjusted p = .034, Hedge’s g = 0.895 lower accuracy rates for DD than LA 

(Bonferroni adjusted p = .017, Hedge’s g = 0.893), and no difference between LA and TA groups 

(Bonferroni adjusted p = .500, Hedge’s g = 0.112). These results replicate the pattern observed in the 

ANOVA. 

The same ANOVAs and ANCOVA’s were conducted on groups formed with the 6.7th percentile 

cutoff threshold for both congruent and incongruent trials and results fit the same pattern as those of the 

10th percentile cutoff. In sum, all ANOVAs and ANCOVA’s conducted on both the 10th and 6.7th 

percentile cutoff samples show the same pattern of results whereby: (1) no group differences are observed 

for congruent trials of the nonsymbolic comparison task, (2) the DD group performs significantly below 

LA and TA groups on incongruent trials even when controlling for other cognitive factors and early 

reading achievement, and (3) no group differences are present between LA and TA groups on incongruent 

trials. 
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Figure 2.3. Nonsymbolic number comparison accuracy rates for the sample with developmental 

dyscalculia (DD) defined as achievement below the 10th percentile (left) and 6.7th percentile (right) split 

by congruency. LA = low achieving. TA = typically achieving. Error bars represent standard errors. P-

values are indicated for differences in accuracy between congruent and incongruent trials (*** p < .001). 
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Supplementary Table 2.4. Task details for number comparison tasks of all formats. 

 

  
Nonsymbolic 

trials 70 (10 per ratio) 

ratio (numerosities) 0.33 (5 v 15) 

 0.5  (5 v 10) 

 0.67 (6 v 9) 

 0.8 (8 v 10) 

 0.86 (12 v 14) 

 0.88 (7 v 8) 

  0.9 (9 v 10) 
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Supplementary Table 2.5. Pearson r values for bivariate correlations between measures included in 

regression model predicting 6th grade mathematics achievement. 

Measure  (n = 448) 1 2 3 4 5 

1. Nonsymbolic Comparison, 

congruent trials, acc. 
     

2. Nonsymbolic Comparison, 

incongruent trials, acc. 
-.447***     

3. Backward Corsi, max span -.051 .193***    

4. Hearts and Flowers,  

mixed trials, acc. 
.017 .186*** .242***   

5. Reading achievement, LWID, 

end of Kindergarten 
-.010 .071 .130** .172***  

6. Mathematics achievement, 

composite, grade 6 
-.067 .226*** .396*** .411*** .412*** 

* p < .05, **p<.01, *** p < .001. Acc. = accuracy; LWID = letter-word identification (WCJ-III). The 

mathematics achievement composite score is cube-root transformed as described below.  
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Appendix B. Exploration of the model fit. 

 In order to better interpret the non-linear relation between accuracy on incongruent trials of the 

nonsymbolic number comparison task and mathematics achievement, we plot this relation in Figure 2.4. 

This figure shows the fitted relation between untransformed 6th grade mathematics achievement and 

nonsymbolic number comparison accuracy on incongruent trials for Model M5, holding Hearts and 

Flowers accuracy, backward Corsi span, early reading achievement, and age at testing in 6th grade at their 

sample means. As Figure 2.4 shows, the magnitude of the relation between accuracy on incongruent trials 

and mathematics achievement is greater for students with higher accuracy, on average. For example, the 

estimated difference between students with 30% and 40% accuracy on nonsymbolic number comparison 

is associated with a difference of 1.0 percentile rank points in 6th grade mathematics achievement, on 

average. The difference between students with 75% and 85% accuracy on nonsymbolic number 

comparison is associated with a difference of 1.3 percentile rank points in 6th grade mathematics 

achievement, on average.  

 
Figure 2.4. Predicted 6th grade mathematics achievement as a function of accuracy on incongruent trials 

of nonsymbolic number comparison, for students with average domain-general executive functioning and 

early reading achievement, and of average age at testing in 6th grade.  
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CHAPTER 3 

 

THE EFFECTS OF VISUAL PARAMETERS ON NEURAL ACTIVATION  

DURING NONSYMBOLIC NUMBER COMPARISON AND ITS RELATION TO MATH 

COMPETENCY 

 

 

3.1 Introduction 

Recent neuroimaging evidence of the nonsymbolic comparison task indicates that recruitment of 

neural resources also differs as a function of congruency condition. In a study of typically developing 

adults, Leibovich, Vogel, Henik, and Ansari (2015) showed that incongruent trials are associated with 

greater activity in the superior frontal gyrus and left inferior/middle frontal gyri, but less activity in the 

right middle temporal and posterior cingulate gyri, than congruent trials. However, Leibovich et al (2015) 

examined activation during numerical versus non-numerical processing as a function of congruency, as 

opposed to examining the effect of congruency on ratio-dependent task activity. In order to investigate 

how differences in congruency specifically relate to processing of numerical information, the effect of 

congruency on numerical magnitude-specific activation must be evaluated. Just as a behavioral ratio 

effect has become a hallmark measure of ANS acuity, ratio-dependent activation in the superior parietal 

lobe has become a neural proxy (i.e. the neural ratio effect)(Bugden et al., 2012). However, no study to 

date has investigated if the neural ratio effect during nonsymbolic numerical magnitude processing is 

affected by the congruency of visual cues, and consequently, whether these potential differences in neural 

activity relate to math achievement. Understanding how differences in congruency require the recruitment 

of unique neural resources or how they differentially recruit known magnitude processing mechanisms 

may shed light on why numerical magnitude encoding appears to be related to math competency only in 

the face of conflicting visual cues, as well as elucidating the precise role of parietal mechanisms in 

nonsymbolic numerical magnitude processing. 

 To investigate this issue, we conducted a series of whole-brain analyses using functional 

magnetic resonance imaging (fMRI) data from a nonsymbolic comparison paradigm run on a typically 

developing sample (n = 38) of twelfth grade students. First, in order to build on previous research, we 
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investigated the degree to which neural activity is modulated by the ratio of nonsymbolic comparison 

trials. Second, we investigated differences in neural activity during the task according to visual control 

condition (i.e. congruent vs. incongruent). Lastly, we correlated the neural ratio effect across the whole 

brain with math achievement, as measured by the math section of the preliminary scholastic aptitude test 

(PSAT) and assessed whether correlations between the neural ratio effect and math achievement differed 

as a function of congruency. In regards to our first analysis, we expected to see increased task-related 

activity in the intraparietal sulcus and superior parietal regions and the inferior frontal gyrus, likely as a 

result of greater engagement of numerical magnitude processing, and also increased activity in the 

anterior cingulate, motor, and motor planning areas as a result of increased task difficulty with more 

difficult ratios. For our second series of analyses, we hypothesized that there would be greater overall 

activation and a stronger neural ratio effect during incongruent as compared to congruent trials in the 

inferior frontal gyrus and superior parietal lobule. For our last set of analyses, which correlated the neural 

ratio effect with math achievement, we hypothesized that individual differences in the neural ratio effect 

would correlate with math achievement in the superior parietal lobule and inferior frontal gyrus, but also 

in regions known to be important for higher-level mathematical processing such as the angular gyrus and 

the supramarginal gyrus for arithmetic (Grabner, Ansari, Koschutnig, Reishofer, & Ebner, 2013; Gavin R 

Price, Mazzocco, & Ansari, 2013; Rivera, Reiss, Eckert, & Menon, 2005; Zamarian, Ischebeck, & 

Delazer, 2009). Further, because recent studies have indicated that the correlation between behavioral 

performance in the nonsymbolic comparison and math achievement is driven by incongruent trials 

(Bugden & Ansari, 2015; Fuhs & McNeil, 2013; Gilmore et al., 2013), we hypothesized that the same 

may be true of the neural ratio effect and math achievement.  
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3.2 Method 

Participants 

Participants were 12th grade students who had participated in a large scale longitudinal study (Michèle M 

M Mazzocco & Myers, 2003). A total of 43 participants took part in the fMRI experiment. Three 

participants were excluded due to excessive head motion (> 3 mm total displacement per run), one student 

was removed due to low performance in the scanner (56% accuracy rate, not different from chance), and 

one participant’s data was lost due to an error in data storage. Two additional students with PSAT math 

scores more than 1.5 standard deviation below the national mean (< 7th percentile) were removed from the 

sample. This criteria has previously been used to classify individuals as having math learning disability 

and has been linked to atypical neurobiological development of number processing mechanisms (Kovas et 

al., 2009; Gavin R. Price et al., 2007). The final imaging sample thus included 36 individuals (14 females; 

mean age = 17.99 years, range = 17.36-18.79 years). FMRI task analyses include the entire 36-participant 

sample. For two individuals, Grade 10 PSAT tests scores were not available and standard scores were 

prorated from 9th grade (n = 1) and 11th grade (n = 1) based on percentile rank. For three additional 

individuals, PSAT scores were not available at any time and thus were excluded from the PSAT analysis. 

They were not excluded from the first portion of our analyses because earlier standardized math measures 

indicated they were in the typically developing range. Thus, the remaining sample for the PSAT analysis 

(n = 33) represents a wide range of typically developing individuals (PSAT math mean percentile rank = 

72st, range = 22-99; PSAT reading mean percentile rank = 62nd, range = 12-99). Little’s multivariate test 

for data missing completely at random (MCAR) indicated that there were not systematic differences 

according to gender or performance on the nonsymbolic comparison task (RT & accuracy) in groups with 

or without PSAT scores (Little’s MCAR test, chi-square = 2.08, p = .556). 

Tasks 

Multiple tasks were performed during one scanning session including arithmetic verification, digit-

matching, and non-symbolic number comparison (results from the arithmetic verification and digit 

matching paradigms are reported in Price et al., 2013). Only the results of the nonsymbolic number 
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comparison task are analyzed and reported in this study. 

 

Nonsymbolic Number Comparison 

The non-symbolic comparison paradigm used in the present study was based on that reported by 

Halberda, Mazzocco, and Feigenson (2008). Participants were presented with a single array of blue and 

yellow dots in intermixed locations (Figure 3.1) and required to select, via button press, whether there 

were more blue or more yellow dots in the array. Trials varied according to the ratio between the dot sets 

(ratio calculated as the larger number divided by the smaller number, so that in a trial with 17 yellow dots 

and 13 blue dots, the ratio was 1.308). A total of 160 trials was presented across two runs, with the 

number of dots per color ranging from 5 to 21, and ratios ranging from 1.182 to 4.2. For behavioral and 

fMRI analyses, trials were categorized by ratio into 4 ratio bins (mean ratios = 1.21, 1.32, 1.99, 3.21) to 

ensure each ratio was represented by the same number of trials. Ranges for each bin were 1.18-1.25, 1.3-

1.322, 1.67-2.38, and 2.6-4.2 respectively. Each bin had 40 trials and the mean ratio of each bin was used 

for analyses. In half the trials, the yellow dots were more numerous, and in the other half the blue dots 

were more numerous. Trial presentation order was randomized with respect to ratio, but fixed across 

participants.  Stimuli were presented for 500ms, with average inter-stimulus interval (ISI) of 6s. ISIs were 

varied between trials to improve deconvolution of the hemodynamic response function (HRF). Thus, an 

ISI could be 4, 5, 6, 7 or 8s with a mean ISI across the run of 6s. ISI length and ratio were balanced such 

that no ISI length was more frequently associated with a given trial type. Following the method described 

by Halberda et al. (2008) to limit the influence of non-numerical continuous visual parameters, the 

following controls were utilized. For each ratio, half the trials were dot-size controlled, meaning that the 

size of the average blue dot was equal to the size of the average yellow dot. On these trials, the set with 

more dots necessarily also had a larger total area on the screen, thus surface area was visually congruent 

with the more numerous dot set (Figure 3.1, top). The other half of the trials were area controlled, 

meaning that the total number of pixels for blue and yellow dots was equal, resulting in an equivalent 

total surface area for both sets of dots, and thus the surface area was not visually congruent with the more 
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numerous dot set and the more numerous dot set had a smaller average dot size. These trials are referred 

to as incongruent (Figure 3.1, bottom).  

 
Figure 3.1. Nonsymbolic number comparison stimuli and paradigm timing. (top) Incongruent trial 

example of ratio 3.6 (larger number dot set/smaller number dot set, 18/5 = 3.6). (bottom) Congruent trial 

example, also of ratio 3.6. 

 

Preliminary Scholastic Aptitude Test (PSAT) 

As our measure of mathematical competence, we used standard scores from the PSAT math 

subtest sat during grade 10. The PSAT math subtest is part of a nationally administered test taken by over 

3.5 million high school students in the USA each year as reported by “College Board” (“College Board,” 

2017). It is designed to reliably predict college entrance exam scores and serves as the qualifying test for 

the U.S. Merit-Based Scholarship Program, and it is thus also known at the National Merit Scholarship 

Qualifying Test (PSAT/NMSQT). Therefore, performance on the PSAT is highly relevant to higher 

education success among students in the U.S. Most individuals who take the PSAT are 10th graders, and 

in most states (including Maryland, where most of the participants resided) 10th graders are enrolled in a 

mathematics course. Beginning in 11th grade, some students choose not to pursue elective coursework 

(Updegraff, Eccles, Barber, & O’brien, 1996). Thus, 10th grade PSAT math subtest was chosen as a 

measure of broad achievement outcomes at the latest school grade during which all participants were 
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receiving ongoing math instruction.  

The PSAT math subtest contains 38 items, including word problems, geometry, algebraic 

equations, and complex arithmetic (no single-digit simple calculations), and it therefore represents a 

broad test of mathematical competence of significant importance to an individual’s academic success. As 

a control measure for broad academic achievement, we used standard scores from the Grade 10 PSAT 

critical reading subtest. The PSAT reading subtest includes reading comprehension, questions about full-

length and paragraph-length passages, such as speculating on the origin of the passage, as well as 

questions requiring students to fill in missing words from a range of sentences. Standard scores were used 

for all analyses, but percentile ranks are reported to characterize the sample since they are more readily 

interpretable. PSAT math and reading scores were correlated at r (31) = .54 (p = .001, n = 33). 

 

MRI Acquisition Parameters 

All MR imaging was acquired with a 3T Phillips MRI scanner using an 8-channel head coil with parallel 

imaging capability. Using multi-slice 2D SENSE T2* gradient-echo, echo planar imaging (EPI) pulse 

sequence, functional images were obtained in the axial plane. Higher order shimming was applied to the 

static magnetic field (B0). The EPI parameters were as follows: echo time, 30ms; TR, 2000ms; flip angle, 

75°; acquisition matrix, 80 X 80 voxels; field of view, 240mm; SENSE factor of 2. This protocol acquired 

34 axial brain slices per TR (3mm thickness with 1 mm slice gap, achieving a resolution of 3mm 

isotropic) and a time course of 176 temporal whole brain image volumes after discarding the first five 

volumes to ensure steady state. Anatomical scan parameters were performed using an 8-channel head coil, 

240 mm field of view, and a 1 mm isotropic MP-RAGE (magnetization-prepared rapid acquisition with 

gradient echo), which takes 6 minutes with SENSE factor 2.  

 

fMRI Analyses 

Images were analyzed using Brainvoyager QX 2.8 (Goebel, Esposito, & Formisano, 2006). Functional 

images were corrected for differences in slice time acquisition, head motion, and linear trends, spatially 
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smoothed with a 6mm FWHM Gaussian kernel, and aligned to T1 structural images, manually fine-tuned 

and then transformed into Talairach space (Talairach, J., & Tournoux, 1988). Functional data were 

analyzed using a random effects general linear model covering the whole brain and corrected for serial 

correlations using the AR(2) model implemented in BrainVoyager. Analyses were masked based on a 

group-level anatomical image to include all cortical grey matter (including the cerebellum), excluding 

white matter, ventricles, subcortical, and midbrain structures, as the theoretical focus of the current 

analysis was limited to cortical structures directly related to higher level semantic/representational 

processing and to reduce the number voxel-wise comparisons not relevant for the current level of 

analysis. Experimental events were convolved with a standard two-gamma HRF to model the expected 

BOLD signal (Friston, Josephs, Rees, & Turner, 1998) corresponding to regressors of interest. All 

analyses were run as whole-brain contrasts modeling correct trials from each of the 4 ratio bins. Baseline 

was modeled as fixation time between trials. Incorrect trials were modeled as separate predictors and 

excluded from further analyses. Additionally, a parametric regressor was created to model the relationship 

between ratio and BOLD response by weighting trials with the log-transformed ratio values (i.e. the 

neural ratio effect). Log-transformed ratio weights were utilized because previous studies of nonsymbolic 

number paradigms indicate that both behavioral responses (i.e. response time and accuracy rates) and 

fMRI % signal change in number-sensitive regions of the brain display a relationship to numerical ratio 

that is logarithmically compressed (Halberda et al., 2008; Jacob & Nieder, 2009; Piazza et al., 2004). 

Non-transformed ratios accounted for 49% of the variance in accuracy rates and 22% of the variance in 

response times in the current data. Log-transformed ratios predicted 55% and 25% respectively. Further, 

using log-transformed ratio predictors, residual standard errors of each model decreased from .57 to .26 

for accuracy rates and from .70 to .34 for response times, indicating an overall improvement in the model 

fits for task behaviors. Parametric weights were de-meaned in order to orthogonalize regressors in the 

GLM and avoid multi-collinearity since main effects and parametric effects are inherently related. A 

negative relationship was modeled between ratio and BOLD activity because previous research indicates 

that brain regions processing numerical information increase in activity with ratios that are closer together 



61 

 

 

(i.e. more difficult to compare). In this study, ratio is calculated as ratio = larger number / smaller 

number. Therefore, the smaller ratio trials are generally more difficult and are expected to elicit a greater 

BOLD response. Modeled linearly, we expected a negative parametric relationship between ratio and 

BOLD response in several brain regions and thus reverse-coded the results such that a ratio effect in the 

expected direction (i.e. greater activity with more difficult ratios being compared) would result in a 

positive β-weight and thus a positive t-statistic would indicate a better fit for the expected ratio effect. 

This reverse-coding practice was utilized for all results associated with the parametric regressor in the 

current study. All statistical results were thresholded at p < .005 and corrected for multiple comparisons at 

p < .05 using the cluster-level correction toolbox in Brainvoyager (Goebel et al., 2006), which estimates a 

cluster-level, false-positive rate based on a Monte Carlo simulation of 1,000 trials. Anatomical labels of 

results were defined by manually entering MNI converted peak coordinates into Jülich atlas’ probability 

maps within the Anatomy Toolbox v2.0 in SPM8 (Eickhoff et al., 2005) and using the Talairach Daemon 

(Lancaster et al., 1997; Lancaster et al., 2000), prioritizing the method that allowed for greater specificity 

of anatomical label. 

Nonsymbolic number comparison and the effect of congruency. To investigate differences in 

neural activity during nonsymbolic numerical comparison related to visual control conditions (i.e. 

congruent vs. incongruent), we first tested for a ratio effect across the whole-brain by performing a 

conjunction of random effects analysis of (a) a main effect of task vs. baseline and (b) a ratio effect (using 

the parametrically modeled ratio effect regressor). The conjunction revealed regions in which task-related 

activity was above baseline, but also increased proportional to the ratio-related difficulty of the trials (i.e. 

the ratio effect). Beta weights, separated by congruency condition, were then extracted from regions 

showing significant ratio effects and compared using within-subject t-tests to assess whether ratio-

dependent activity within these regions differed according to congruency condition. A second, whole-

brain random effects analysis was conducted directly comparing the parametric ratio effect between 

congruency conditions to reveal differential ratio effects that may not have shown a parametric ratio 
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effect averaged across all task trials, but only within a congruency condition. Third, we investigated 

differences in activation according to congruency condition by contrasting congruent trials and 

incongruent trials irrespective of a ratio effect by performing a conjunction of random effects analysis of 

(a) a main effect of task vs. baseline and (b) a main effect of congruency (i.e. congruent > incongruent). 

The neural ratio effect and math achievement. To assess the relation between the neural 

mechanisms underlying numerical magnitude processing and math achievement, we extracted mean beta 

weights of the ratio effect from clusters resulting from the previous conjunction of (a) a main effect of 

task vs. baseline and (b) a ratio effect and correlated participant beta weights with PSAT math scores. A 

subsequent correlation between the parametric ratio regressor and PSAT math scores was run at the 

whole-brain level to test for correlations that did not satisfy the conditions of the conjunction. It is 

possible that, in areas of the brain other than the four clusters resulting from the conjunction, some 

individuals demonstrated a parametric neural ratio effect and others did not, leading to null results for the 

conjunction, despite the presence of individual differences in beta weights potentially relevant for the 

correlation with math achievement. This whole-brain correlation was intended to test for individual 

differences in areas that were not significant for the conjunction at the group level. Subsequently, to 

control for domain-general academic achievement factors driving the behavioral correlation, the same 

analyses were repeated while controlling for reading achievement. To do this, PSAT math scores were 

entered into a linear regression with PSAT reading scores and the resulting unstandardized residuals were 

used for further analysis, thus removing variance associated with reading achievement. These scores are 

referred to as residualized PSAT math scores when utilized in an analysis and PSAT math scores 

otherwise. 

The neural ratio effect and math achievement by congruency. To explore the relationship 

between the neural ratio effect and math achievement as a function of congruency condition, we ran 

whole-brain correlations between the parametric ratio regressor and math scores independently for each 

congruency condition with both PSAT math scores and residualized PSAT math scores.  
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3.3 Results 

Behavioral Results 

The two behavioral variables of interest from the fMRI task were response time (ms) for correct responses 

and percent accuracy across all trials. To assess the effect of ratio on each of these variables we conducted 

two repeated-measures ANOVA with ratio (4 levels) and congruency (2 levels) as factors.  To correct for 

multiple hypothesis testing, the critical p-values for each set of correlations were adjusted using the 

Benjamini-Hochberg’s (B-H) False Discovery Rate method with 𝛼𝐹𝐷𝑅 = .05 (Benjamini & Hochberg, 

1995), which provides a good balance between controlling for false positives and power for detecting 

weaker, but significant relationships. Raw p-values are reported, but significance is interpreted in terms of 

Benjamini-Hochberg corrected p-values. Results for accuracy revealed a main effect of ratio [F(3, 105) = 

208.73,  p < .001, partial-η2 = 0.856], a main effect of congruency [F(1, 35) = 10.33,  p = .0003, partial-η2 

= 0.228], and a ratio x congruency interaction [F(3, 105) = 5.46,  p = .002, partial-η2 = 0.135]. Greater 

ratios and congruent trials were each associated with more accurate performance (Figure 3.2A). 

Individuals were more accurate during congruent trials only during ratio bins 1.32 [t(35) = 3.59, p = .001, 

Cohen’s d = 0.74] and 1.99 [t (35) = 3.60, p = .001, Cohen’s d = 0.67], but not during the smallest ratio 

bin, 1.21 [t(35) = -0.59, p = .558, Cohen’s d = -0.13], or largest ratio bin, 3.21 [t(35) = 1.64, p = .110, 

Cohen’s d = 0.21], after adjusting for multiple comparisons. Results for response time revealed a main 

effect of ratio [F(3, 105) = 94.45,  p < .001, partial-η2 = 0.730], a main effect of congruency [F(1, 35) = 

99.61  p < .001, partial-η2 = 0.359], and a ratio x congruency interaction [F(3, 105) = 3.72,  p = .014, 

partial-η2 = 0.096]. Response times were faster for larger ratios than smaller ratios and for congruent vs. 

incongruent trials (Figure 3.2B). Individuals responded faster during congruent trials only during larger 

ratio bins 1.99 [t(35) = 5.08, p < .001, Cohen’s d = 0.46] and 3.2 [t (35) = 4.45, p < .001, Cohen’s d = 

0.84], but not during the smallest ratio bins, 1.21 [t(35) = 0.47, p = .558, Cohen’s d = 0.05] and 1.32 

[t(35) = 1.01, p = .320 Cohen’s d = 0.09], after adjusting for multiple comparisons.  

To assess the relation between number comparison performance and math competence, we 

correlated PSAT math scores and residualized PSAT math scores with mean accuracy and response time, 
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as well as the slopes of accuracy and response time by ratio. Mean accuracy rate did not correlate with 

PSAT math [r(31) = .18, p =.524]. When split by congruency condition, mean accuracy on congruent 

trials was not correlated with PSAT math [r(31) = .11, p = .524] nor was mean accuracy for incongruent 

trials [r(31) = .18, p = .321]. Mean accuracy rate did not correlate with residualized PSAT math scores 

[r(31) = .07, p = .711], nor did the accuracy rate for congruent [r(31) = -.06, p = .739] or incongruent 

trials [r(31) = .16, p = .374]. Mean response time did not correlate with PSAT math across all trials [r(31) 

= -.35, p = .049], during congruent trials [r(31) = -.35, p = .048], or incongruent trials [r(31) = -.34, p = 

.056], after correcting for multiple comparisons, though the effect size was very similar to previously 

reported effect sizes from meta-analyses (Chen & Li, 2014; Schneider et al., 2017). Mean response times 

correlated with residualized PSAT math scores across all trials [r(31) = -.48 (p = .005)], congruent trials 

[r(31) = -.49, p = .001], and incongruent trials [r(31) = -.46, p = .008] after controlling for multiple 

comparisons, indicating that slower response time overall, and within congruency conditions, was 

correlated with lower PSAT math scores after controlling for PSAT reading. The slopes for mean 

accuracy and reaction time did not correlate with either PSAT math or residualized PSAT math scores (all 

p-values’s > .11). 

 

Figure 3.2. Nonsymbolic comparison behavioral data from fMRI task showing (A) accuracy rate (total % 

correct) split by congruency condition (B) and response time (RT) split by congruency condition, by ratio.  
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fMRI Results 

Nonsymbolic number comparison and the effect of congruency. The conjunction of the main 

effect of task and parametric effect of ratio revealed four clusters that showed a parametric increase with 

increasingly difficult ratios, including the anterior cingulate cortex (ACC) extending into the 

supplementary motor area (SMA), the left precentral gyrus, the left intraparietal sulcus (hIP1), and a 

superior/medial portion of the right superior parietal lobule (SPL) with peak activation in the precuneus, 

which sits superior and medial to the IPS (Figure 3.3, Table 3.1).  A comparison of mean beta weights for 

the parametric ratio predictor extracted from these four regions did not show any differences according to 

congruency condition (results of all within-sample t-tests p > .258), indicating that in areas demonstrating 

a ratio effect at the whole-brain level, the ratio effect did not differ as a function of congruency condition. 

It is possible, however, that areas of the brain in which the parametric ratio effect was significant in only 

the congruent or incongruent visual control condition were not revealed when the neural ratio effect was 

modeled as an average of the two conditions. Therefore, we directly contrasted the parametric effect of 

ratio between the two congruency conditions at the whole-brain level. Results revealed that there were no 

brain regions showing a significant difference between the congruent and incongruent ratio effects. 

 
Figure 3.3. Results from the whole brain conjunction analysis of main effect of task and ratio effect. 

Analysis was performed on de-meaned ratios but is presented here as above baseline for visualization 

purposes.  Slices labeled in Talairach space. Lettered labels of clusters correspond to beta weight plots in 

line graph. Images are presented in neurological convention, whereby right is right. 
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Table 3.1. Significant clusters for conjunction of task effect (main effect) and parametric ratio 
effect. 

Cluster Peak TAL 

(x    y     z) 

Voxels Peak 

t 

BA Anatomical Description 

A (-2    8    49) 4210 5.94 32 L/R Anterior Cingulate 

B (-24 -10  52) 619 5.08 6 L Precentral Gyrus  

C (-39 -37  34) 663 4.84 40 L Intraparietal Sulcus (hIP1) 

D (18 -67  40) 836 4.42 7 R Superior Parietal Lobule (Precuneus) 

Note. n = 36. All results cluster corrected at p <0.05, uncorrected p <0.005 (clusters > 391 voxels, 1mm 

iso). TAL = talairach coordinates; BA = Brodmann area. 

 

The comparison of overall activation (i.e. main effects as opposed to ratio effects) between 

congruency conditions revealed four regions where activity is greater for incongruent trials (Figure 3.4, 

Table 3.2), suggesting that incongruent trials generally recruit more neural resources in the rAG, right 

inferior frontal gyrus (IFG), right fusiform gyrus (rFG), and right parahippocampal gyrus. No regions 

were more active for congruent trials. 

 

 
 

Figure 3.4. Results from the whole brain conjunction analysis of main effect of task and a main effect of 

congruency condition. Negative t-statistics indicate BOLD response for incongruent trials is greater than 

for congruent trials. Slices labeled in Talairach space. Lettered labels of clusters correspond Table 3.2. 

Images are presented in neurological convention, whereby right is right. 
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Table 3.2. Significant clusters for conjunction analysis of main effect of task and a main effect of 

congruency condition. 

Cluster Peak TAL 

(x   y   z) 

Voxels Peak 

t 

CON 

β 

CON 

se 

INC 

β 

INC 

se 

BA Anatomical Description 

A (30  -67  22) 1621 6.24 7.62 0.23 8.32 0.23 39 R Angular Gyrus 

B (51  -46  -8) 1250 4.80 3.62 0.24 4.58 0.24 37 R Fusiform Gyrus 

C (27 -25 -20) 708 4.60 3.09 0.27 3.98 0.27 35 R Parahippocampal Gyrus 

D (45  14  31) 864 4.29 3.50 0.23 4.31 0.23 9 R Inferior Frontal Gyrus 

*All results cluster corrected at p <.05, uncorrected p <.005 (clusters > 339 voxels, 1mm iso). TAL = 

talairach coordinates; CON = congruent; INC = incongruent; BA = Brodmann area. 

The neural ratio effect and math achievement.  To assess the relation between the ratio effect 

and math competence, we first correlated PSAT math scores and residualized PSAT math scores with the 

parametric ratio effect beta weights from the four regions reported in our whole-brain ratio effect analysis. 

These analyses revealed no significant associations. We subsequently correlated the neural ratio effect 

with PSAT math scores and residualized PSAT math scores across the whole brain. Before controlling for 

reading, this analysis revealed two significant associations in the left and right insula whereby a greater 

ratio effect was associated with lower math competency (Table 3.3). When controlling for reading, this 

association was present in the left insula at the same corrected threshold (p < .05) but not in the right 

insula. 

The neural ratio effect and math achievement by congruency. To assess the relation between 

the ratio effect and math competence when congruent and incongruent trials were considered separately, 

independent whole-brain correlations between PSAT math scores and the ratio effect were run for each 

congruency condition, followed by the same analysis run with residualized scores. Before controlling for 

reading, the ratio effect correlated negatively with PSAT math scores in a left-lateralized portion of the 

insula during congruent trials (Table 3.3). For incongruent trials, the ratio effect was negatively correlated 

with PSAT math in the left precuneus, right insula, and the right culmen of the cerebellum. Both of these 

results indicated lower PSAT math scores were associated with a greater ratio effect. When controlling 

for reading, residualized PSAT math scores correlated positively with the ratio effect during congruent 
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trials in the right supramarginal gyrus extending into the superior temporal gyrus (Figure 3.5, Table 3.3). 

However, during incongruent trials, residualized PSAT math scores correlated negatively with the ratio 

effect in the left angular gyrus extending into the superior temporal gyrus and the left precuneus 

extending into the posterior cingulate cortex (Figure 3.6, Table 3.3). 

Table 3.3. Clusters showing a significant correlation between the ratio effect and PSAT math scores 
or residualized PSAT math scores. 

Condition Math 

 

Peak TAL 

(x    y     z) 

Voxels Peak 

r 

Mean 

r 

BA Anatomical Description 

CON & INC PSAT math (45   8    1) 392 -.59 -.51 13 R Insula 

  (-42  -7  1) 1924 -.78 -.56 13 L Insula 

        

CON & INC res. PSAT math (-42  -7  4) 608 -.62 -.54 13 L Insula 

        

CON PSAT math (-45   -1   7) 917 -.61 -.52 13 L Insula 

        

INC PSAT math (-12 -52 43) 769 -.65 -.53 7 L Precuneus 

  (45   8   10) 454 -.62 -.52 44 R Insula 

  (-27 -52 -26) 421 -.62 -.51 - L Cerebellum, Culmen 

        

CON res. PSAT math (54  -37  19) 649 .60 .51  40, 22 R SMG / STG  

        

INC res. PSAT math (-60 -37  22) 1548 -.61 -.51 39, 22 L AG / STG 

  (-9   -49   40) 1101 -.67 -.53 7, 31 
L Precuneus /  

Posterior Cingulate 

Note. n = 33. All results cluster corrected at p <0.05, uncorrected p <0.005. TAL = talairach coordinates; 

CON = congruent; INC = incongruent; BA = Brodmann area; R = right; L = Left; SMG = supramarginal 

gyrus; STG = superior temporal gyrus; AG = angular gyrus; res. = residualized. 

 

 
Figure 3.5. Supramarginal gyrus / superior temporal gyrus cluster resulting from whole-brain correlation 

with residualized PSAT math scores for congruent trials. Images are presented in neurological 

convention, whereby right is right.  
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Figure 3.6. (Left) (A) Left angular gyrus / superior temporal gyrus and (B) left precuneus / posterior 

cingulate cluster resulting from whole-brain correlation with residualized PSAT math scores for 

incongruent trials. Images are presented in neurological convention, whereby right is right.  

 

 

3.4 Discussion 

A growing body of recent research indicates that performance on the nonsymbolic comparison 

task is heavily influenced by visual control parameters such that the relationship between math 

achievement and nonsymbolic comparison is driven by performance on trials with incongruent visual 

cues in preschoolers (Fuhs & McNeil, 2013), children in primary school (Gilmore et al., 2013), and in 

individuals with dyscalculia (Bugden & Ansari, 2015). Further, the one neuroimaging study to investigate 

this issue thus far indicates that recruitment of neural resources also differs as a function of congruency 

condition (Leibovich et al., 2015). This earlier work suggests that the relation between nonsymbolic 

comparison performance and math achievement may not be driven solely by domain-specific numerical 

processing mechanisms. Furthermore, only a handful of neuroimaging studies have demonstrated a link 

between BOLD activation during nonsymbolic number processing and math achievement, and almost 

exclusively by way of comparison between typically developing and dyscalculic populations (Dinkel et 

al., 2013; Kovas et al., 2009; Kucian et al., 2011; Moeller, Neuburger, Kaufmann, Landerl, & Nuerk, 

2009; Price et al., 2007). Among those studies, there is little consensus about which cognitive 

mechanisms drive the relationship between the neural system used to encode numerical magnitudes (i.e. 

the ANS) and math skills. Only one study to date has investigated this question in a typically developing 



70 

 

 

population with nonsymbolic stimuli (Gullick et al., 2011). That study did not, however, examine the 

influence of non-numerical visual control parameters on the observed relation. Thus, the question of 

whether the neural correlates of nonsymbolic magnitude processing and their relation to math competency 

are influenced by visual parameters in a manner similar to recent behavioral studies remains open. The 

present study is the first to empirically investigate this question.  

Our results indicate that BOLD response was modulated by ratio in brain regions previously 

shown to exhibit a neural ratio effect when calculated from the average of congruent and incongruent 

trials, as it is in most studies, and that the ratio effect within those regions did not differ as a function of 

congruency condition. In other words, the effect was not driven by either condition. Further confirmation 

that regions of the brain sensitive to changes in numerical magnitude did not differ as a function of 

congruency came from the whole-brain direct contrast of the incongruent and congruent ratio effects, 

which did not reveal any regions that differed. This lends support to the idea that regions of the brain 

previously found to encode numerical magnitude, such as the IPS and SPL, do so consistently when other 

visual cues are congruent or incongruent with judgement about numerical magnitudes. In other words, the 

ratio-dependent activation during nonsymbolic number comparison does not appear to be the product of 

cognitive processes specific to either congruent or incongruent task conditions. In contrast, there were 

significant differences in overall task-related activation according to congruency condition when 

compared at the whole-brain level in fronto-parietal areas known to be important for encoding numerical 

magnitude and other mathematical computations. The neural ratio effect correlated with PSAT math in 

the left insula before and after controlling for reading achievement. When the relationship between the 

neural ratio effect and PSAT math scores was investigated independently for congruent and incongruent 

trials separately, results indicated a left-lateralized correlation in the insula during congruent trials and 

right-lateralized correlation in the insula during incongruent trials. The whole-brain correlation 

controlling for reading, and thus specific to math, resulted in correlations that were again in opposite 

hemispheres, but also opposite in the directionality of their relationship to math. 

The first steps in our analysis largely confirmed previous results of nonsymbolic number tasks. 
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Our findings of a neural ratio effect in several frontal and parietal regions replicates existing evidence 

from fMRI studies showing increased activity with increasingly difficult magnitude comparisons (Ansari 

& Dhital, 2006; Gullick et al., 2011; Price et al., 2007), and is in line with the results of previous meta-

analyses showing nonsymbolic number processing is subserved by the intraparietal sulcus and regions 

extending into superior parietal lobule (Arsalidou & Taylor, 2011; Sokolowski et al., 2016). The increase 

in activity of the anterior cingulate cortex and supplementary motor areas are likely a result of increasing 

task difficulty that covaries with ratio, as this trend is a frequently observed consequence of increased 

cognitive demand across a wide range of tasks (for a review, see Paus, 2001). In contrast, the same pattern 

of activity in the right superior parietal lobules (SPL) and the anterior portion of the left IPS (hIP1) are 

likely to represent the encoding of numerical information. Electrocorticography studies of both 

experimental and naturalistic settings (Daitch et al., 2016; Dastjerdi, Ozker, Foster, Rangarajan, & 

Parvizi, 2013), fMRI adaptation studies of numeric versus non-numeric stimuli (Cantlon, Brannon, 

Carter, & Pelphrey, 2006;  Piazza, Izard, Pinel, Bihan, & Dehaene, 2004) and multi-modal numerical 

stimuli (Vogel et al., 2017), neurological case studies of superior parietal lesions (McCloskey, 1992; 

Takayama, Sugishita, Akiguchi, & Kimura, 1994), and other fMRI studies demonstrating numerical ratio 

effects (Gullick et al., 2011; Vogel, Goffin, & Ansari, 2015) all indicate that a bilateral region extending 

from the IPS to the superior parietal lobule is involved in numerical magnitude processing.  There is 

considerable variability in the literature in regards to the anatomical labeling of the IPS, likely due to the 

fact that the shape of the IPS varies greatly among individuals and that it is a large structure that extends 

from the occipital lobe to the postcentral sulcus. Despite this variability, the lIPS (hIPS) and rSPL 

structures from the current results overlap with regions identified in a large meta-analysis of number-

related fMRI studies, indicating their likely involvement in magnitude-related processing. However, the 

increase in parietal activation may also reflect a response to the increased attention demands of more 

difficult trials. Several studies show that numerical magnitude encoding, visuo-spatial attention, and 

working memory function converge in the superior parietal lobe (Dumontheil & Klingberg, 2012; Zago et 

al., 2008; Zago & Tzourio-Mazoyer, 2002). Given the limited degree of control over visual factors in 
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stimulus design and the degree of anatomical overlap in attentional mechanisms in the parietal lobe, 

future studies should utilize multivariate techniques together with analyses of nuanced visual parameters 

in order to further investigate whether there are indeed differences not captured by the current analysis. 

Comparison of task-related, non-ratio-specific neural response according to congruency condition 

revealed four regions that were more active for incongruent than congruent trials, including the rAG, rFG, 

rIFG, and right parahippocampal gyrus. By nature of the contrast, the same ratios are involved in 

congruent and incongruent trials, and therefore necessarily reflect differences in neural recruitment that 

are not dependent on the dimension of numerical magnitude. Nonetheless, several of these regions have 

been frequently implicated in research of numerical magnitude encoding and magnitude processing. The 

IFG is thought to work with parietal regions to encode numerical magnitude but has been shown to 

respond differentially under various working memory and inhibitory control demands (Dumontheil & 

Klingberg, 2012; Eiselt & Nieder, 2013). With single-cell recordings in primates, Jacob and Nieder 

(2014) showed that the lateral prefrontal cortex, a potential homologue of the IFG and MFG in humans, 

was a selection stage for goal-directed number processing that represented behaviorally relevant as well 

as transiently irrelevant numerical information, whereas distractor-resistant working memory 

representations were maintained in the parietal cortex. If both discrete and continuous quantity are 

processed in superior parietal regions, parietal magnitude neurons may rely on their connection to the 

IFG, which acts as part of a global neuronal workspace, to resolve competition among representations for 

selecting an appropriate rule-based response. Comparing competing aspects of the stimuli (i.e. numerical 

magnitude and visual cues) would increase both working memory and inhibitory control demands. If this 

is the case, it would stand to reason that the IFG would be more active during cases of conflict. The 

source of this same pattern of results in the AG is less clear since the AG is widely active in a variety of 

tasks, serving to integrate multisensory information and reorient attention to relevant information 

(Seghier, 2012). One possible explanation is that the AG may be involved in integrating stimulus 

information from the SPL and IFG/MFG, since it is known that the AG serves as a hub that connects to 

the SPL with the superior, middle, and inferior frontal gyri (Seghier, 2012). Similarly, as part of the 
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orienting network (S.E Petersen & Posner, 2012), the AG may be involved in orienting attentional 

resources from parietal systems involved in object size to parietal systems involved in numerical 

magnitude representation. Though the AG has often been implicated in arithmetic fact retrieval (Simon, 

Mangin, Cohen, Le Bihan, & Dehaene, 2002; Yang et al., 2017), this activity is usually left-lateralized 

and specific to symbolic representation of number (Holloway, Price, & Ansari, 2010; Gavin R. Price & 

Ansari, 2011). Therefore, it is likely that the present right-lateralized AG finding is more related to 

attention than magnitude perception. Interpretation of increased activity in the right parahippocampal 

gyrus and rFG is more speculative, but may be related to the increased need during incongruent trials for 

a detailed and complete processing of the visual scene (for a review, see Aminoff, Kveraga, & Bar, 2013). 

There is evidence that these regions are associated with processing scenes with high spatial frequency 

(Rajimehr, Devaney, Bilenko, Young, & Tootell, 2011). Given the short stimulus duration of the task and 

complexity of the dot arrays, participants are unlikely to foveate on each object, and processing the 

stimulus as a whole is necessary for a successful response. Given that the visual association between 

numerical quantity and many visual cues is reversed during incongruent trials, a more detail processing of 

visual associations is likely required. In sum, the present study provides evidence that congruent and 

incongruent trials differentially recruit neural resources in regions that support stimulus processing but are 

not directly involved in the encoding magnitudes. 

A further aim of the current study was to investigate the relationship between patterns of activity 

associated with the processing of numerical magnitude and individual differences in math achievement. 

Our hypotheses were limited due to inconsistent findings in previous studies of dyscalculic populations 

and there being only one study of typically developing individuals. To date, two studies have found 

greater activation in various parietal areas for children with dyscalculia compared to controls (Dinkel et 

al., 2013; Kaufmann et al., 2009), two found weaker parietal activity in dyscalculic children (Kucian et 

al., 2006, 2011), another found no group differences in parietal regions (Kovas et al., 2009), and one 

study found less ratio-dependent modulation in dyscalculic individuals compared to controls (Price et al., 

2007). Gullick et al. (2011) showed a negative correlation between the neural distance effect in bilateral 
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perisylvian areas and math achievement in college-aged adults. Results from the current study revealed 

very similar findings to the study by Gullick and colleagues (2011), showing an inverse correlation 

between PSAT math scores and the neural ratio effect, such that individuals with a weaker ratio effect in 

the left insula and right insula had higher math scores. It is important to note that individual beta weights 

within this region ranged from negative to positive indicating that some people had greater activity for 

“easier” ratios and thus a negative beta or “inverse ratio effect”. It was these individuals who scored 

highest in math competency. Though left and right insular activity correlated with math performance, 

only activity in the right insula remained significant after controlling for PSAT reading. This suggests that 

ratio-dependent activity in the left insula did not specifically relate to math skills but reflected task-related 

processes relevant for domain-general academic achievement., A decrease in the neural ratio effect has 

been suggested to indicate an increase in task-related processing efficiency (Gullick et al., 2011). If more 

difficult trials elicit a higher BOLD response, then it would follow that individuals with better 

performance (those who found difficult trials less difficult) would not show as large of a ratio-dependent 

increase.  The current results appear to support this interpretation, albeit in regions of the brain not 

typically associated with magnitude processing. Further, it should be noted that the ratio effect in areas of 

the brain previously associated with the encoding of numerical magnitudes did not correlate with math 

achievement as we hypothesized. This calls into question the idea that magnitude processing efficiency, 

as measured by the neural ratio effect in the parietal lobe, relates to math achievement in typically 

developing populations of the age of participants in the present study. Indeed, the weak relationship of the 

behaviors measured in the current study, r  = .18 for accuracy rates and r = -.35 for response times across 

all ratios, is supported by recent meta-analyses that estimate the strength of this behavioral relationship to 

be r = .20 and r = .241 (Chen & Li, 2014; Schneider et al., 2017) compared to a correlation of r = .302 

with symbolic stimuli (Schneider et al., 2017). 

As discussed, recent research has suggested that performance on incongruent trials during 

nonsymbolic number comparison tasks is more strongly related to math ability than performance on 

congruent trials. Therefore, the final aim of this study was to explore whether the relation between the 
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neural ratio effect and math competency differed as a function of congruency condition. After controlling 

for general academic achievement, results revealed diverging patterns of association such that the ratio 

effect positively correlated with math competency in the rSMG during congruent trials (greater BOLD 

response for more difficult ratios correlated with higher math scores), but negatively correlated with math 

competency in the lAG during incongruent trials (greater BOLD response for easier ratios correlated with 

higher math scores). Interpretation of this finding should be tempered by the fact that these two 

correlations were not significant before controlling for reading. Though multicollinearity among PSAT 

reading and PSAT math is not a likely factor (r = .54) the relation between reading and math does factor 

into the relationship in the current findings and may be less generalizable than the right insula correlation, 

which was significant before and after controlling for reading. Increases in activity with increased trial 

difficulty likely reflect increased recruitment of cognitive resources for discrimination between and 

manipulation of numerical magnitude information that work in cooperation with brain regions that 

directly encode numerical magnitudes under differing congruency conditions. Increased activity of the 

SMG has been reported in response to magnitude perception even in the absence of response selection 

(Ansari, Dhital, & Siong, 2006). Further, children with dyscalculia have shown reduced modulation due 

to task-complexity during arithmetic problems in the SMG compared to typically developing peers 

(Ashkenazi, Rosenberg-Lee, Tenison, & Menon, 2012). Therefore, this positive correlation between the 

ratio effect and math competency may indicate that increased recruitment of the SMG during comparison 

is important for efficient processing of numerical information when multiple dimensions of magnitude are 

aligned with numerical magnitude. The negative correlation between math competency and the neural 

ratio effect in the left angular gyrus may represent a trend in the processing of numerical information, 

however, it may also reflect the processing of conflicting visual information. The angular gyrus is 

activated by a large variety of tasks with the common themes of combining and integrating information, 

manipulating mental representations, and reorienting attention to relevant information (Seghier, 2012). 

Differences in the correlation between math competency and activation according to congruency may be 

due to the fact that for incongruent trials, the degree of visual conflict increases as ratios become easier to 
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compare. This feature is a product of the way visual controls and trials ratios are necessarily linked. For 

incongruent trials, the surface area of each dot set within a trial is matched. Therefore, a numerically 

larger dot set necessarily has smaller dots. For example, when comparing 18 dots and 5 dots in the 

incongruent condition, as exemplified in Figure 3.1, dots belonging to the 18 dot set are smaller than the 

dots of the 5 dots set. Further, across trials, the degree of the difference in dot size covaries with ratio 

such that the greater the ratio is, the more visually incongruent the visual information. For example, if 40 

dots compared to 5 dots in the incongruent condition, the 40 dots would need to be even smaller than the 

18 dots in Figure 3.1 in order to equate surface area. Given these two examples, the second example 40 vs 

5 is an easier numerical ratio to compare than 18 vs 5, but the degree of visual conflict in average dot size 

is more extreme. Therefore, it may be that individuals with higher math competency are appropriately 

engaging mechanisms in the angular gyrus to resolve conflicting visual cues as ratios get easier (i.e. but 

more visually incongruent). 

Further, although both the left AG and right SMG have been more commonly associated with 

symbolic number and verbally mediated numerical information (Sokolowski et al., 2016), the current 

findings relating their activity during a nonsymbolic number comparison task to math competency 

suggests that their role is not limited to symbolic magnitude processing and requires further investigation. 

For example, it is well established that acquisition of exact, verbal number representation enhances acuity 

of nonsymbolic number representation (Manuela Piazza, Pica, Izard, Spelke, & Dehaene, 2013; Pica, 

Lemer, Izard, & Dehaene, 2004). And, an emerging body of literature suggests that symbolic number 

processing may mediate the influence of nonsymbolic magnitude processing on math development 

(Fazio, Bailey, Thompson, & Siegler, 2014; Lyons, Ansari, & Beilock, 2012; Gavin R. Price & Fuchs, 

2016). The current results demonstrating a relationship between ratio-dependent activity in the lAG and 

rSMG and PSAT math score may reflect the increased relation between symbolic and verbal magnitude 

systems with nonsymbolic magnitude systems towards the end of math development in the current 

sample. However, only developmental imaging studies following the link between nonsymbolic 

magnitude representation and math skills over the course of acquiring symbolic math skills will be able to 
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disentangle the feedback mechanisms responsible for such findings. 

 

Future Directions 

Several limitations exist in the current study that should be noted. First, the current study used the 

most frequently utilized method for controlling for visual parameters of dot sets in order to make results 

relevant to an existing body of behavioral literature. However, this method of control is not ideal for the 

long-term project of understanding the interaction of congruency of visual parameters and perception of 

numerical magnitude, and their relation to math. Behavioral studies have provided in-depth analyses of 

more extensive visual properties of dot sets than those mentioned in the current study (Gebuis & 

Reynvoet, 2012; Leibovich & Henik, 2013). Though it is impossible to rid the nonsymbolic comparison 

task of the influence of visual cue congruency, two practices may be employed in future studies to further 

elucidate the nuanced effects presented by controlling congruency of stimulus properties. First, stimuli in 

future studies should tightly control as many visual parameters as possible, including surface area, 

density, convex hull, dot size, and luminance. Secondly, since degree of congruency and ratio are 

inherently related in the visual control method used in the present study, the two cannot be separated in 

any analysis. Future studies should provide the opportunity to analyze degree of congruency as ratio is 

held constant as well as the converse by designing stimuli with such properties. 

Secondly, performance on the nonsymbolic comparison task is not related to all math measures 

equally. This may be true of neural correlate results as well. Meta-analyses indicate that the correlation 

for nonsymbolic comparison to early math abilities, such as mental arithmetic, has an effect size of r = 

.454 compared to an effect size of r = .288 for written arithmetic and curriculum-based measures 

(Schneider et al., 2016), such as the one used in the current study. Importantly, all three of the studies that 

show a difference between incongruent and congruent trials on the nonsymbolic comparison task and 

math achievement utilize measures of math mostly targeting mental arithmetic (Bugden & Ansari, 2015; 

Fuhs & McNeil, 2013; Gilmore et al., 2013). Given that the current task shows robust differences in 

neural activation according to visual control condition only for overall task activity, and not the neural 
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ratio effect, the current preliminary findings about their relation to math achievement should not be 

considered conclusive and further studies are needed with a larger sample size and various measures of 

math achievement, including mental arithmetic. It may be the case that various aspects of mathematical 

competencies are differentially associated with number processing. Investigating these nuances may 

provide insight to the heterogeneity of individuals differences associated with math difficulties. 

Moreover, developmental differences are also likely, particularly as proficiency of mental calculations has 

a protracted and varied trajectory in the early school years. 

Lastly, task difficulty has been shown to greatly influence the neuroimaging results of studies 

measuring individual differences in task-related competency. Often, more proficient individuals show 

lower task-related brain activation (Dunst et al., 2014). In the current study, where we found a negative 

correlation between the neural ratio effect and math achievement, accuracy rate was approximately 10 

percent lower than in the studies of Ansari & Dhital (2006) (decreased ratio effect in children compared 

to adults) or of Price et al. (Gavin R. Price et al., 2007) (decreased rIPS modulation in dyscalculic 

children compared to control children). Unfortunately, difficulty and ratio are inextricably linked, making 

their comparison difficult. Future studies will need to explore paradigms that control for subject-level 

difficulty while allowing for a wide enough range in ratio to investigate both dimensions, ratio and 

subject-level difficulty. 

 

Conclusion 

In sum, the present results show that visual control parameters often utilized in the nonsymbolic 

comparison task, originally intended to serve as a control against non-numeric task strategies, 

significantly influence the degree of general task-related neural activity in multiple brain regions but do 

not influence neural activity modeled according to the ratio of number comparisons. There was a 

consistent neural ratio effect in the right superior parietal lobule and left IPS that did not differ by 

congruency, suggesting that parietal results from previous studies collapsing across congruent and 

incongruent trials likely captured activity related to numerical encoding mechanisms rather than 
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inhibitory control. Incongruent trials elicited a greater overall response in several regions implicated in 

previous literature focused on magnitude perception, including the right inferior frontal gyrus. Further, 

response time in this task correlated with PSAT math scores while controlling for reading (but did not 

reach significance before controlling) as did neural activation modeled according to trial ratios. This 

finding aligns with previous research. Additionally, the directionality of the neural ratio effect related to 

higher math scores was opposite for congruent and incongruent trials when controlling for reading 

achievement. Together, these findings support the idea that performance on the nonsymbolic comparison 

task relates to math competency, that traditionally cited parietal mechanisms used for numerosity 

extraction do not differ as a function of congruency condition, but that congruent and incongruent trials 

generally recruit different neural mechanisms. Further, results from the current study show that the 

correlation between ratio-sensitive neural activation and math achievement differs as a function of the 

congruency of non-numeric visual cues. This suggests that behavioral measures aimed at capturing math-

relevant magnitude perception deficits should attend to, rather than simply control for, individual 

differences related to the influence of non-numeric visual information. Further, interventions aimed at 

training this approximate number system, should they prove successful, may find greater efficacy by 

intentionally manipulating the congruency of non-numeric visual cues. 
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CHAPTER 4 

 

 

ATTENTION TO NUMBER: A NEUROCOGNITIVE FOUNDATION FOR 

MATHEMATICAL COMPETENCE 

 

 

4.1 Introduction 

 The current study aims to investigate the relation between three neural mechanisms (i.e. 

numerical magnitude processing, attention, and attention to number) and mathematical competence. 

Based on the behavioral literature to date, it is clear that magnitude processing tasks relate to 

mathematical competence (Chen & Li, 2014; Schneider et al., 2017), but it is unclear what underlying 

neural mechanisms are responsible for this relation. To investigate this question, neural activity was 

measured via functional MRI while children 8 to 11 years of age completed a nonsymbolic number 

comparison task and an Eriksen flanker task. Contrasts were designed to capture magnitude processing 

(i.e. ratio effect) and attention to number during the number comparison task (i.e. numerical congruency 

effect) and attention in a non-numerical context during the flanker task (i.e. flanker congruency effect). 

Providing a neural measure of response to increased attentional demand in a numerical (number 

comparison) and non-numerical context (Flanker) allowed us to separate attentional components that have 

previously been considered principally as a singular, domain-general neurocognitive construct. Therefore, 

we specified a fourth contrast corresponding to the double subtraction of attention to number minus 

attention in a non-numeric context. Individual differences in neural measures of each construct were then 

related to mathematics achievement.  

All three neurocognitive mechanisms specified in the current study may contribute to the 

acquisition of mathematical skills. Accordingly, fMRI measures of all three constructs may correlate with 

math achievement. However, if numerical magnitude processing acuity alone predicts mathematics 

achievement, we expect to see individual differences in the neural ratio effect alone correlate with 

achievement. If differences in non-numerical, domain-general attention mechanisms alone predict 

mathematics achievement, we expect to see a correlation of achievement with individual differences in 
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the flanker congruency effect alone. However, behavioral research investigating the issue of congruency 

in number comparison tasks would suggest that attentional mechanisms are a critical component of the 

relation between numerical acuity and mathematics. Therefore, we hypothesized a strong relationship 

between attention to number as captured by neural measures of the numerical congruency effect and 

mathematics in fronto-parietal attention and magnitude processing mechanisms. Comparing each of the 

three constructs may provide and understanding of their unique contribution to individual differences in 

handling numerical information, a critical step in identifying the origins of math learning deficits.   

 

4.2 Method 

Participants 

Fifty-two typically developing children completed the current study. Of those, seven children were 

excluded from all analyses based on MRI quality assessment techniques (i.e. motion and signal artifacts, 

see fMRI Analyses below for details), two due to unavailable behavioral data during MRI acquisition, two 

due to accuracy on fMRI tasks below chance, and one was excluded due to misalignment of the bounding 

box which resulted in missing slices. The final sample thus consisted of 40 children (8.02-10.76 years, M 

= 9.27, 19 female). All participants were either in 3rd or 4th grade with the youngest participants beginning 

the summer after completing 2nd grade. The following exclusionary criteria were applied during the initial 

recruitment phase: 1) parent report of major health concerns, 2) parent report of developmental disability, 

3) known existing neurological or psychiatric problems including seizures and migraines, 4) known, 

uncorrected visual impairment, and 5) language other than English learned as primary language. 

Individuals with reported diagnoses of ADHD (n = 2) were not excluded from participation and were 

instructed to maintain typical schedule of medications. All procedures conducted in this experiment were 

approved by the Institutional Review Board.  
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Procedure 

The study consisted of two testing sessions, a behavioral testing session with a mock scan and an MRI 

session. In the first, behavioral session we assessed performance on a range of academic, intelligence, and 

cognitive measures (Table 4.1) and concluded with a 20-min training session in the mock scanner to 

familiarize children with the scanner environment and experimental tasks. They then returned for the MRI 

scans on a second visit. Scans included a structural scan, three task-based fMRI scans, resting state, and a 

diffusion-weighted scan if time allowed. 

Behavioral Assessment 

 Mathematics achievement. Mathematical achievement was assessed using the Applied 

Problems, Math Fluency, and Calculation subtests of the Woodcock-Johnson III Tests of Achievement 

(WCJ-III) (Woodcock et al., 2001). The Applied Problems subtest is an untimed verbal and picture-based 

measure of a student’s ability to analyze and solve math problems, beginning with the application of basic 

number concepts. The Math Fluency subtest requires participants to answer as many simple addition, 

subtraction, and multiplication problems as possible within a 3-minute period. The Calculation subtest, on 

the other hand, is untimed, and requires participants to complete as many calculation items as possible 

that increase in difficulty, ranging from simple arithmetic to calculus. Grade-normed standard scores were 

used for all analyses. A composite mathematics achievement scores was created by taking the mean of the 

three grade-normed standard scores to capture a wide range of mathematics skills. Kolmogorov-Smirnov 

test of normality with Lilliefors significance correction demonstrated that all the math measures were 

normally distributed (all p-values > 0.072). 

 IQ. Nonverbal IQ, Verbal IQ, and Composite IQ estimates were obtained for each participant 

based on the Kaufman Brief Intelligence Test, second edition (Kaufman & Kaufman, 2004). The KBIT-II 

Verbal IQ is a comprised of a picture vocabulary section and a riddles section, while the nonverbal IQ 

includes a single section of matrix reasoning questions. Composite IQ is used to describe the sample and 

Verbal IQ is used as a control measure of domain-general intelligence theoretically unrelated to the 

spatial reasoning factors measured during the nonsymbolic comparison and flanker task.  
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Table 4.1. Sample descriptive statistics, n = 40 

 Mean SD Range 

Age (years) 9.3 0.66 (8.0 – 10.8) 

WCJ-III Calculation (grade-normed) 111.7 16.1 (81 – 145) 

WCJ-III Math Fluency (grade-normed) 100.8 14.5 (75 – 145) 

WCJ-III Applied Problems (grade-normed) 112.4 13.8 (78 – 137) 

Mathematics Achievement  

(average of WCJ-III math measures) 

108.3 12.6 (84 – 142) 

Verbal IQ (KBIT-2) 114.1 13.6 (80 – 137) 

WCJ-III = Woodcock Johnson III; KBIT-2 = Kaufman Brief Intelligence Test, 2nd edition. 

 

 

MRI Session  

On the second visit, children were rebriefed on MRI procedures and practiced the in-scanner tasks for 10 

minutes before their MRI. During scanning, children’s head were stabilized with headphones, foam 

padding, and medical tape. A research assistant, present during the first testing session, accompanied the 

child into the scan room for the duration of each imaging session. During each MRI session, children 

completed reference and anatomical scans, followed by two functional runs each of a symbolic number 

comparison task, a nonsymbolic number comparison task, and a flanker task with event-related designs. 

The order of tasks was counterbalanced across participants with all six possible task orders. Stimuli order 

within tasks were consistent across participants. Only data from the nonsymbolic comparison task and the 

flanker task are analyzed in the current study. All tasks utilized left and right thumb buttons for responses. 

fMRI tasks.  

 Nonsymbolic Number Comparison. Participants were presented with two sets of dots 

simultaneously and asked to indicate via button press which set was more numerous (i.e., which set 

contained more dots)(Figure 4.1). A button box was placed on each hand and participants responded with 

the thumb button of each box. Light grey dots (RGB value of 50, 50, 50) were presented on a dark grey 

background (RGB value of 230, 230, 230) divided by a vertical, black fixation line for a duration of 
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1250ms followed by a screen with just the fixation line for inter-stimulus intervals of 3250, 4250, 5250, 

or 6250ms (M = 4750ms). Two ranges of ratios were presented, small and large (ratio = smaller number 

of dots divided by larger number). Small (easier) ratios ranged from 0.286 to 0.375 and large (more 

difficult) ratios ranged from 0.625 to 0.714. The number of dots in a given set ranged from 5 to 21. 40 

small ratio and 40 large ratio trials were presented for a total of 80 trials. Response side, inter-stimulus 

interval, ratio, and congruency were counterbalanced. To control for the possibility that participants might 

choose a response based on visual cues rather than number of dots, the following visual properties of dot 

sets were varied using a modified version of the MATLAB code recommended by Gebuis & Reynvoet 

(2011) to generate stimuli: convex hull (area extended by a stimulus), total surface area (aggregate value 

of dot surfaces), average dot diameter, and density (convex hull divided by total surface area). In half of 

all trials convex hull, total surface area, and dot diameter were greater for the greater of the two 

numerosities presented (i.e. congruent), with the same parameters being incongruent for incongruent 

trials. Convex hull and surface area have demonstrated the greatest effect on behaviors (Clayton et al., 

2015; Gilmore, Cragg, Hogan, & Inglis, 2016). Across the two runs, there were 20 trials of each of the 

following conditions: (1) congruent large ratio, (2) incongruent large ratio, (3) congruent small ratio, (4) 

incongruent small ratio. 

 Flanker Task. Participants were presented with a horizontal array of five arrows with the middle 

arrow pointing either in the same direction as the flanking arrows (i.e. congruent condition) or in the 

opposite direction as the flanking arrows (i.e. incongruent condition) and asked to indicate via button 

press which direction the middle arrow was pointed (Figure 4.1). Arrows were presented in the same light 

grey as the dots in the number comparison task against a background of dark grey for a duration of 1250 

ms followed by a blank dark grey screen for inters-stimulus intervals of 3250, 4250, 5250, or 6250 ms. 40 

incongruent and 40 congruent trials were presented for a total of 80 trials. Response side, inter-stimulus 

interval, and congruency were counterbalanced across trials. In order to encourage saccadic eye 

movement similar to the number comparison tasks and prevent focusing only on the center of the screen, 

the array of arrows pseud-randomly appeared centered on either the left or right side of the screen. 
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Arrows were preceded by 200ms by a fixation box that encompassed the arrows, allowing time for the 

children to orient to the stimulus with enough remaining time to successfully complete the task. 

Luminance across Flanker stimuli (the same for each trial) was equated with mean luminance across the 

nonsymbolic comparison task (different across trials). 

     
Figure 4.1. Example stimuli from the nonsymbolic number comparison (left and center) and flanker 

(right) tasks. Number comparison stimuli on the left are large ratio trials (i.e. more difficult ratios) and 

number comparison stimuli in the center are small ratio trials (i.e. easier ratios). Congruent trials from 

each task and condition are in the top row. 

 

 

MRI acquisition parameters. All MR imaging was acquired with a Phillips Achieva 3T MR 

scanner using an 32-channel head coil. Using multislice 2D SENSE T2* gradient-echo, echo planar 

imaging (EPI) pulse sequence. Functional images were obtained in the axial plane with the following 

parameters: Repetition time (TR) = 2000ms; Echo Time (TE) = 25ms; inter-slice gap = 0.25 mm; voxel 

size = 2.5 × 2.5 x 3 mm with an inter-slice gap of 0.25mm; field of view = 240 × 129.75 × 240 mm; 

imaging matrix = 96 x 96; flip angle = 90°; SENSE factor = 2.5. The whole brain was acquired in 40 

slices with a slice thickness of 3mm isotropic. To allow for steady-state magnetization to be reached 

before acquiring the functional data, 5 dummy volumes were added at the beginning of each scan, which 

were subsequently discarded. For the two nonsymbolic comparison runs, 133 volumes were collected for 

each run and each run had a duration of 279.9 seconds. For the two flanker task runs, 137 volumes were 

collected for each run and each run had a duration of 288.4 seconds. Inter-stimulus intervals were set at 

3.25, 4.25, 5.25, or 6.25 seconds (mean = 4.75) for all runs. In the same session, a high-resolution T1-
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weighted, three-dimensional Magnetization Prepared Rapid Gradient Recalled Echo (MP-Rage) sequence 

was also acquired according to the following specifications: TR = 8.929 s; TE = 4.61 ms; flip angle = 8°; 

170 sagittal slices with no inter-slice gap; voxel size = 1 x 1 x 1 mm; imaging matrix = 256 × 256; 

acquisition time = 264.8s. Scans were oriented in the anterior-posterior commissure plane. 

 fMRI Preprocessing. Images were analyzed using BrainVoyager Version 20.6.2.3266 (Goebel et 

al., 2006) with preprocessing steps performed in BrainVoyager and outlying volume detection using the 

Artifact Detection Tools (ART) toolbox as implemented in CONN toolbox (v17, 

www.nitrc.org/projects/conn, RRID:SCR_009550) (Whitfield-Gabrieli & Nieto-Castanon, 2012). 

Structural images were skull-stripped, corrected for inhomogeneities, and then normalized to MNI space 

(MNI-ICBM 152). Preprocessing of functional images consisted of slice scan time correction (cubic 

splice interpolation), motion correction with respect to the first volume in each run (tri-linear/sinc 

interpolation), and linear trend removal in the temporal domain (cutoff: 3 cycles). Functional images were 

aligned to T1 structural images using gradient-driven affine transformation in native space, with manual 

adjustments when needed, normalized into MNI space using transformation matrices based on the 

transformation of structural images, and them spatially smoothed with a 6mm FWHM Gaussian kernel. 

 fMRI Analyses. Functional data were analyzed using a general linear model (GLM) and a 

random effect analysis for the group-level data. Experimental events were convolved with a standard two-

gamma hemodynamic response function (HRF). Baseline was implicitly modeled as fixation time 

between trials. The GLM included 6 regressors of no interest that corresponded to the six motion 

parameters obtained during preprocessing. An additional covariate of no interest was created to account 

for variance associated with outlying volumes with volume-to- volume motion exceeding 1.5mm or a 

mean volume intensity of 4 SD’s beyond the z-normalized global signal across runs as determined by the 

ART toolbox. Individuals with greater than 25% of volumes flagged as outliers across both runs of each 

task (n = 6) were excluded from further analysis. One additional individual was excluded due to a large 

wraparound artifact identified through visual inspection of data. Incorrect trials in all tasks were modeled 

as separate predictors and excluded from subsequent analyses. Anatomical labels of results were defined 
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by manually entering MNI converted peak coordinates into Jülich atlas probability maps within the 

Anatomy Toolbox v2.2b in SPM12 (Eickhoff et al., 2005). 

Number, attention to number, and attention. The first set of analyses consisted of three whole-

brain statistical contrasts of experimental conditions designed to capture neural activity related to (1) 

numerical magnitude processing, (2) attention to numerical magnitude, and (3) attention in a non-

numerical context. First, to investigate neural activity related to the processing of numerical magnitudes, 

we contrasted large ratio trials with small ratio trials of the number comparison task. Second, to 

investigate neural activity related to attentional demands in a numerical context, we contrasted 

incongruent trials with congruent trials of the number comparison task. Third, to investigate activity 

related to attentional demands in a non-numerical context, we contrasted incongruent trials with 

congruent trials in the flanker task. All statistical results were thresholded at p < .005 and corrected for 

multiple comparisons at p < .05 using the cluster-level correction toolbox in BrainVoyager (Goebel et al., 

2006), which estimates a cluster-level, false-positive rate based on a Monte Carlo simulation of 1,000 

iterations.  

Attention to number, controlling for non-numeric attention. To further investigate attention 

mechanisms specifically associated with numerical magnitude processing, a double subtraction was 

performed whereby the congruency effect in the flanker task was subtracted from the congruency effect in 

the number comparison task [(incongruent number comparison > congruent number comparison) - 

(incongruent flanker > congruent flanker)]. Incongruent trials on both tasks are thought to engage top-

down, fronto-parietal inhibitory control mechanisms in order to direct attention to the relevant stimulus 

dimension, numerical magnitudes and orientation of the arrows respectively (Amso & Scerif, 2015; 

Gilmore et al., 2013). Therefore, this subtraction should capture neural activity specifically involved in 

attending to numerical magnitudes beyond activity related to attentional demands in a similar, but non-

numerical task.  

Relation to Mathematics Achievement. To investigate how individual differences in neural 

measures of each construct related to mathematical competence, average β-weights from significant 
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clusters in each of the three single contrasts were extracted at the subject level and correlated with the 

composite measure of mathematics achievement, controlling for verbal IQ utilizing partial correlations. 

Additionally, to investigate the relation of attention to number while controlling for non-numerical 

attention, beta weights from the double-subtraction were extracted and then correlated with mathematics 

achievement across the whole brain, controlling for verbal IQ and performance in the flanker task. To 

investigate if other regions of the brain demonstrated individual differences in this specific contrast that 

were not significant at the group level, correlation was run with mathematics achievement as the covariate 

in a whole-brain ANCOVA. Similar to single contrast controls, Verbal IQ was controlled for by entering 

mathematics scores into a linear regression as the dependent variable with verbal IQ as a predictor and 

using unstandardized residuals as the covariate in a whole-brain ANCOVA. To control for verbal IQ and 

flanker performance simultaneously, both measures were included in the regression to compute residuals. 

To correct for multiple comparisons, correlations use the Bonferroni method adjusting for the number of 

tests within in each set of neural contrasts (i.e. alpha for 4 cluster’s = .05/4 = .0125). Corrected and 

adjusted p-values are presented. 
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4.3 Results 

Behavioral Performance in MRI Tasks 

Effects of ratio and congruency. Behavioral variables of interest from the fMRI tasks were 

response time (ms) for correct responses and percent accuracy across all trials in both the nonsymbolic 

comparison task and the flanker task. In line with previous results from similar nonsymbolic comparison 

tasks (Inglis & Gilmore, 2014; Merkley & Ansari, 2010; Price, Palmer, Battista, & Ansari, 2012; Price & 

Wilkey, 2017), individuals were more accurate for small ratio trials than large ratio trials [t(39) = 11.35, p 

< .001, Cohen’s d = 1.98] and for congruent trials than incongruent trials [t (39) = 6.25, p < .001, Cohen’s 

d = 1.02]. Response times were greater for small ratios than large ratios [t (39) = 8.08, p < .001, Cohen’s 

d = 1.34] and greater for incongruent trials than congruent trials [t (39) = 9.34, p < .001, Cohen’s d = 

1.71] (within-subject adjusted Cohen’s d; Morris & DeShon, 2002). In the flanker task, children were also 

more accurate for congruent trials [t (39) = 7.25, p < .001, Cohen’s d = 1.26] and had greater response 

times for incongruent trials [t (39) = 12.38, p < .001, Cohen’s d = 2.02]. Effect sizes indicate that the size 

of the behavioral congruency effect was similar, but slightly larger for the flanker task as compared to the 

number comparison task.  

  

Figure 4.2.  Nonsymbolic comparison and flanker behavioral data from fMRI tasks showing (left) 

accuracy rate (total % correct) and (right) response time, split by ratio bin (left/right) and congruency 

condition (light/dark blue). 
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 Task performance and mathematics achievement correlations. Bivariate correlations were 

computed to assess the relation between fMRI task performance, mathematics achievement, and verbal IQ 

(Table 4.2).  Of note, mathematics achievement was significantly correlated with verbal IQ, accuracy on 

number comparison, and accuracy on the flanker task. However, when separated by congruency, only the 

relationship between incongruent trials on the number comparison task and mathematics achievement 

reached significance. In contrast, performance on congruent trials in the flanker task, and not incongruent 

trials, was significantly related to mathematics achievement. For significant bivariate correlations, partial 

correlations were also computed between mathematics achievement and task performance while 

controlling for Verbal IQ. All four task performance measures remained significant [number comparison, 

all trials r(37) = .375, p = .019; number comparison, incongruent trials r(37) = .328, p = .042; flanker, all 

trials r(37) = .338, p = .035; flanker, congruent trials r(37) = .397, p = .012]. Behavioral ratio effects (e.g. 

large ratio accuracy – small ratio accuracy) and congruency effects (incongruent mean accuracy – 

congruent mean accuracy) were also computed for both accuracy and response times in both tasks and 

correlated with mathematics achievement. No ratio effect or congruency effect correlations with 

mathematics were significant [all p’s > .277]. 

Table 4.2. Correlations between behavioral measures and MRI task performance. 

Measure  (n = 40) 1 2 3 4 5 6 7 

7. Mathematics Achievement        

8. Verbal IQ (KBIT-2) .331*       

9. Number Comparison 

(all trials, accuracy) 
.366* .038      

10. Number Comparison 

(incongruent trials, accuracy) 
.324* .045 .876***     

11. Number Comparison 

(congruent trials, accuracy) 
.237 .007 .662*** .219    

12. Flanker 

(all trials, accuracy) 
.378* .196 .526*** .429* .398*   

13. Flanker 

(incongruent trials, accuracy) 
.279 .126 .505** .413* .380* .946***  

14. Flanker 

(congruent trials, accuracy) 
.447** .259 .447** .363* .341* .869*** .662*** 

* p < .05, **p <.01, *** p < .001.  
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fMRI Results  

Number comparison ratio effect. The contrast of large ratio trials (i.e. more difficult ratios) 

compared to small ratio trials revealed four regions with significantly greater activity for large ratio trials 

including the right middle frontal gyrus (rMFG), right inferior frontal gyrus pars trangularis (rIFG), right 

IPS, and right superior medial gyrus (Figure 4.3a, Table 4.3). All four of these regions were task-positive 

(i.e. above the implicit baseline activation level) on average. Three regions showed significantly greater 

activity for small ratio trials, including the right angular gyrus (rAG), left middle temporal gyrus (lMTG), 

and left supramarginal gyrus (lSMG). The rAG was below baseline across conditions, but the lMTG and 

lSMG were below baseline in large trials and slight above baseline during small ratio trials. 

Table 4.3. Significant clusters for contrast of large ratio > small ratio trials in number comparison task.  

Cluster 

 

Peak MNI 

(x, y, z) 

Voxels Peak t  

(Mean t) 

Large 

β 

Large 

se 

Small 

β 

Small 

se 

BA Anatomical 

Description 

positive effects = (large ratio > small ratio) 

A (48, 38, 19) 902 4.74 

(3.43) 

1.16 0.19 0.51 0.21 46 R MFG 

B (42, 20, 4) 2,298 4.55 

(3.54) 

1.44 0.19 0.69 0.20 45 R IFG 

(p. Triangularis) 

C (3, 23, 46) 1,480 4.08 

(3.23) 

1.36 0.24 0.72 0.23 8 R Sup. Med. 

Gyrus 

D (27, -49, 3) 1,160 3.88 

(3.19) 

1.77 0.27 1.14 0.23 7 R IPS  

(hIP1) 

negative effects = (small ratio > large ratio) 

E (51, -67,  2) 808 -4.22 

(-3.28) 

-0.51 0.17 -0.16 0.19 39 R AG  

(PGp) 

- (-60, -58, 4) 1,177 -4.38 

(-3.43) 

-0.45 0.21 0.07 0.19 39 L MTG 

- (-69, -31, 8) 1,143 -3.93 

(-3.24) 

-0.10 0.19 0.43 0.18 40 L SMG 

(PF) 

*All results cluster corrected at p <.05, uncorrected p <.005 (clusters > 740 voxels, 1mm iso). MNI = 

peak coordinates in MNI-ICBM 152; Large = large ratio (more difficult) trials; Small = small ratio 

(easier) trials; BA = Brodmann area. β values are means extracted at the cluster level. R = right; L = left. 

Clusters with letters are represented in Figure 4.3. Anatomical description abbreviations in italics refer to 

Juelich atlas labels. 

 

Number comparison congruency effect. The contrast of incongruent trials in the number 

comparison task (i.e. those where visual parameters conflicted with greater numerosity) compared to 
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congruent trials revealed one region with greater activity for incongruent trials, the rIFG, and three 

regions with greater activity for congruent trials, in the bilateral fusiform gyrus and right primary visual 

cortex (Figure 4.3b, Table 4.4). Activity was above baseline in all regions, on average, but showed below 

baseline activity for congruent trials in the rIFG, as indicated by mean β-weights. 

Table 4.4. Significant clusters for contrast of incongruent > congruent trials in number comparison task. 

Cluster Peak MNI 

(x, y, z) 

Voxel

s 

Peak t 

(Mean t) 

INC 

β 

INC 

se 

CON 

β 

CON 

se 

BA Anatomical 

Description 

positive effects = (incongruent > congruent) 

A (45, 23, 10) 1,216 5.25 

(3.49) 

0.37 0.18 -0.26 0.18 45 R IFG 

(p. Triangularis) 

negative effects = (congruent > incongruent) 

- (11, -103, -

2) 

1,169 -4.87 

(-3.43) 

1.83 0.25 2.31 0.25 17 R Primary 

Visual  

(V1, hOc1) 

B (24, -46, -

17) 

725 -4.20 

(-3.33) 

0.63 0.21 1.04 0.18 37, 

20 

R Fusiform 

Gyrus  

(FG3) 

C (-21, -49, -

14) 

2,128 -4.23 

(-3.33) 

0.85 0.22 1.38 0.19 37, 

20 

L Fusiform 

Gyrus  

(FG3) 

*All results cluster corrected at p <.05, uncorrected p <.005 (clusters > 598 voxels, 1mm iso). MNI = 

peak coordinates in MNI-ICBM 152; INC= incongruent trials; CON = congruent trials; BA = Brodmann 

area. R = right; L = left. β values are means extracted at the cluster level. Clusters with letters are 

represented in Figure 4.3. Anatomical description abbreviations in italics refer to Juelich atlas labels. 

 

Flanker congruency effect. The contrast of incongruent trials in the flanker task (i.e. trials with 

flanking arrows in opposite directions from the central arrow) compared to congruent trials revealed 

seven regions with greater activity for incongruent trials (Figure 4.3b, Table 4.5). These regions included 

large portions of the bilateral superior parietal lobe (SPL) centered in each hemisphere’s IPS, bilateral 

early visual processing areas in the occipital lobe, the right insula, right middle frontal gyrus (rMFG), and 

the right inferior temporal gyrus (rITG). Of note, the cluster in the right anterior insula is medial to both 

rIFG clusters resulting from the number comparison ratio effect and congruency effect contrasts. 

However, the flanker congruency effect does partially overlap with the number comparison congruency 

effect where the rIFG and right insula meet. There is no overlap between the flanker congruency effect 

with the ratio effect contrast in the rIFG.  
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Table 4.5. Significant clusters for contrast of incongruent > congruent trials in flanker task. 

Cluste

r 

Peak MNI 

(x, y, z) 

Voxel

s 

Peak t 

(Mean t) 

INC 

β 

INC 

se 

CON 

β 

CON 

se 

BA Anatomical Description 

A (39, -82, -5) 3,364 5.77 

(3.58) 

3.99 0.36 3.53 0.35 19 R Inferior Occipital 

Gyrus (hOc4lp) 

B (30, 17, 10) 1,420 5.52 

(3.67) 

1.12 0.19 0.61 0.20 13 R Insula 

C (30, -64, 55) 8,230 5.38 

(3.52) 

2.02 0.21 1.39 0.18 7 R SPL 

(7A, hIP3) 

D (-33, -91, 7) 3,805 5.33 

(3.48) 

3.91 0.31 3.42 0.28 18 L Middle Occipital 

Gyrus (hOc4lp) 

E (-24, -61, 

37) 

1,291 4.44 

(3.36) 

1.52 0.22 1.02 0.20 7 L IPS 

 (hIP3, hIP1) 

F (36, 2, 55) 1,288 4.40 

(3.34) 

1.87 0.21 1.41 0.20 6 R MFG 

G (45, -55, -

11) 

1,988 4.37 

(3.35) 

2.34 0.20 1.79 0.17 37, 

20 

R ITG 

 (FG4) 

*All results cluster corrected at p <.05, uncorrected p <.005 (clusters > 740 voxels, 1mm iso). MNI = 

peak coordinates in MNI-ICBM 152; INC= incongruent trials; CON = congruent trials; BA = Brodmann 

area. R = right; L = left. β values are means extracted at the cluster level. Clusters with letters are 

represented in Figure 4.3. Anatomical description abbreviations in italics refer to Juelich atlas labels. 
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Figure 4.3. Results from contrasts of (a) number comparison large ratios > small ratios, (b) number 

comparison incongruent > congruent, and (c) flanker incongruent > congruent. All maps are cluster 

corrected at p <.05, uncorrected p <.005. Cluster details are presented in Tables 4.3, 4.4, and 4.5 

respectively. Slices labeled in MNI space and presented in neurological convention. 
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Number comparison congruency effect minus flanker congruency effect. The double 

subtraction of the congruency effect in the number comparison task minus the congruency effect in the 

flanker task, designed to capture neural activity relate to attending to numerical magnitudes beyond non-

numerical attentional demands, revealed five regions with a significant effect (Figure 4.4, Table 4.6). 

Three of the regions were similar to (i.e. largely overlapping with) those present in the single subtraction 

of incongruent compared to congruent conditions of the number comparison task (i.e. also present in 

Table 4.4): the right IFG [mean t = 3.60, voxels = 1,000], the right primary visual cortex [mean t = -4.89, 

voxels = 2,110], and left fusiform gyrus [mean t = -3.82, voxels = 587]. As in the single subtraction, the 

resulting t-statistic in each of these three regions continued to be positive for the rIFG and negative for the 

right fusiform and occipital regions. One region, the left inferior occipital gyrus (V2) [mean t = -3.46, 

voxels = 1,399], largely overlaps with the left middle occipital gyrus of the congruency effect in the 

flanker task, with the double subtraction resulting in a negative t-statistic. Further, one region in the 

precentral gyrus [mean t = -3.16, voxels = 583] was unique to the double subtraction.  

Table 4.6. Significant clusters for double subtraction of congruency effect in number comparison > 

congruency effect in flanker task. 

Cluster 

 

Peak MNI 

(x, y, z) 

Voxels Peak  

t 

Mean  

t 

BA Anatomical Description 

positive effects 

B (45, 23, 10) 1,000 5.58 3.60 45 R IFG  

(p. Triangularis) 

positive effects  

C (21, -100, 1) 2,110 -4.89 -3.53 17 R Primary Visual 

(V1) 

D (-24, -100, -11) 1,399 -4.82 -3.46 18 L Inferior Occipital Gyrus  

(V2) 

- (-27, -49, -14) 587 -3.82 -3.22 37, 20 L FG  

(FG3) 

A (45, -22, 58) 583 -3.69 -3.16 4 R Postcentral Gyrus  

*All results cluster corrected at p <.05, uncorrected p <.005 (clusters > 598 voxels, 1mm iso). MNI = 

peak coordinates in MNI-ICBM 152; BA = Brodmann area. R = right; L = left. Clusters with letters are 

represented in Figure 4.4. Anatomical description abbreviations in italics refer to Juelich atlas labels. 
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Figure 4.4. Results from double subtraction contrast of congruency effect in number comparison > 

congruency effect in flanker task. All maps are cluster corrected at p <.05, uncorrected p <.005. Cluster 

details are presented in Table 4.6. Slices labeled in MNI space and presented in neurological convention. 

  

 Correlation of single contrasts with mathematics achievement. To investigate the relation 

between individuals differences in neural measures of (1) numerical magnitude processing (i.e. ratio 

effect), (2) attention to numerical magnitude (i.e. number comparison congruency effect), and (3) 

attention in a non-numerical context (i.e. flanker congruency effect) and mathematics achievement, 

cluster-level β-weights from the significant regions in each of the contrasts were extracted for each 

subject and correlated with the composite mathematics achievement score. Results indicated that 

individual differences in each of the seven regions in Table 4.3 showing a significant ratio effect did not 

correlate with mathematics achievement before controlling for verbal IQ [all p’s > .453] or after [all p’s > 

0.279], even before controlling for multiple comparisons. For the four regions demonstrating a significant 

congruency effect in the number comparison task in Table 4.4, only the rIFG demonstrated a significant 

correlation with mathematics achievement [r(38) = -.468, p = .002, Bonferroni-adjusted p = .008; all other 

p’s > .292, unadjusted]. The correlation with activity in the rIFG was negative, meaning that higher 

mathematics scores correlated with less difference in neural activation between incongruent and 

congruent trials of the number comparison task. The relation in the rIFG remained essentially unchanged 

[r(37) = -.474, p = .002, Bonferonni-adjusted p = .008)] after controlling for verbal IQ and stronger after 

controlling for both verbal IQ and mean accuracy on the flanker task [r(36) = -.537, p = .001, Bonferonni-
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adjusted p = .004]. Regarding the last neural contrast, the flanker congruency effect, correlation results 

indicated that individual differences in one of the seven clusters in Table 4.5, the middle occipital gyrus, 

significantly related to mathematics achievement. Similar to the congruency effect in the number 

comparison task, a lesser difference between incongruent and congruent β-weights correlated with higher 

mathematics scores [r(38) = -.450, p = .004, Bonferroni-adjusted p = .028] which remained significant 

after controlling for verbal IQ [r(37) = -.450, p = .004, Bonferroni-adjusted p = .028]. The flanker effect 

in one other region, the right middle frontal gryus, showed a marginal correlation with mathematics 

achievement, but did not survive correction for multiple comparisons before controlling for verbal IQ 

[r(38) = -.315, p = .048, Bonferroni-adjusted p = .336] or after [r(37) = -.360, p = .025, Bonferroni-

adjusted p = .175]. All other regions showed uncorrected correlation p’s > .061, unadjusted]. 

 Correlation of attention to number with mathematics achievement. To investigate the relation 

between individual differences in neural measures of attention to numerical magnitude while controlling 

for the neural response to attentional demands in a similar, but non-numeric task, cluster-level β-weights 

from the significant regions in the double subtraction of the number comparison congruency effect minus 

the flanker congruency effect were extracted for each subject and correlated with the composite 

mathematics achievement score. Of the five regions showing a significant group-level effect in Table 4.6, 

only activity in the rIFG showed a correlation that approached significance [r(38) = -.369, p = .019, 

Bonferroni-adjusted p = .095; all other p’s > .528 unadjusted]. The correlation had a similar effect size 

after controlling for verbal IQ [r(37) = -.370, p = .020, Bonferroni-adjusted p = .10] and for verbal IQ and 

flanker accuracy rate [r(36) = -.365, p = .024, Bonferroni-adjusted p = .12]. Considering the single 

contrast of the numerical congruency effect correlated with mathematics achievement at r = -.468, we 

interpret the current effect size of r = -.370 to continue to indicate a meaningful relation while 

acknowledging that the conservatively corrected p-value does not reach significance.  

 Further, to test if individual differences in the construct of attention to number correlated with 

mathematics achievement in regions that may not have demonstrated a group-level effect, a whole-brain 

correlation was run with the double subtraction as the neural contrast of interest and the composite 
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measure of mathematics achievement as the behavioral measure of interest. This analysis was repeated 

while controlling for verbal IQ, and then again controlling for verbal IQ and accuracy rate on the flanker 

task, in an effort to control for factors related to general academic achievement unspecific to mathematics. 

Results indicate a significant negative correlation in another region of the rIFG, pars orbitalis (Table 4.7, 

top section), which remains significant after controlling for verbal IQ and also mean accuracy on the 

flanker task (Table 4.6, middle and bottom sections). Figure 4.5 displays results from the correlation 

controlling for verbal IQ in order to display all regions present in the correlation. The resulting region in 

the rIFG, pars orbitalis, does not overlap with rIFG clusters demonstrating a neural ratio effect and 

numerical congruency effect though a smaller cluster in the pars triangularis does, but does not survive 

cluster correction (overlay of maps detailed in Supp. Figure 4.6. at uncorrected p < .005). 

 

Table 4.7. Correlation of double subtraction of congruency effect in number comparison greater than 

congruency effect in flanker task with composite mathematics achievement score. 

Cluster Peak MNI 

(x, y, z) 

Voxels Peak  

r 

Mean 

r 

BA Anatomical Description 

correlation with math achievement 

- (30, 35, -14) 1,034 -0.55 -0.48 47 R Inferior Frontal Gyrus (p. Orbitalis) 

correlation with math achievement controlling for verbal IQ 

A (39, 35, -8) 1,471 -0.61 -0.49 47 R Inferior Frontal Gyrus (p. Orbitalis)  

B (-12, 38, 1) 1,025 -0.52 -0.46 33 L Anterior Cingulate Cortex 

C (-36, 35, 34) 1,291 -0.58 -0.48 9 L Middle Frontal Gyrus 

correlation with math achievement controlling for verbal IQ and flanker accuracy 

- (39, 35, -11) 1,356 -0.60 -0.48 47 R Inferior Frontal Gyrus (p. Orbitalis) 

- (-36, 35, 34) 1,706 -0.62 -0.49 9 L Middle Frontal Gyrus 

*All results cluster corrected at p <.05, uncorrected p <.005 (clusters > 598 voxels, 1mm iso). MNI = 

peak coordinates in MNI-ICBM 152. BA = Brodmann area. R = right; L = left. Anatomical description 

abbreviations in italics refer to Juelich atlas labels. 
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Figure 4.5. Results from contrasts of correlation of mathematics achievement composite score with 

double subtraction of congruency effect in number comparison greater than congruency effect in flanker 

task. All maps are cluster corrected at p <.05, uncorrected p <.005. Cluster details are presented in Table 

4.6. Slices labeled in MNI space and presented in neurological convention. 

 

4.4 Discussion 

Deficits in attention and the processing of numerical magnitudes have both been linked to 

difficulties in acquiring numeracy (Fias, Menon, & Szucs, 2013; Geary, Hoard, Nugent, & Bailey, 2013; 

Mazzocco et al., 2011; Mazzocco & Thompson, 2005; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013). 

However, little is known about the neural mechanisms that support their integration and how they relate 

to mathematical behaviors. The current study tested the hypothesis that attention to number, a construct 

representing this integration, achieved through the biological interaction of attentional mechanisms with 

numerical magnitude processing mechanisms, is a source of individual differences important for the 

development of mathematical skills. As previous studies have reported, accuracy rates on incongruent 

trials of the nonsymbolic number comparison task correlated with mathematics achievement, while 

accuracy rates on congruent trials did not. Further, while the neural ratio effect, a potential measure of 

magnitude processing efficiency, did not relate to mathematical achievement, the numerical congruency 

effect negatively correlated with achievement in the right IFG after controlling for verbal IQ and 

performance on the flanker task. This relation continued to show a moderate to small correlation after 

subtracting out activation related to the congruency effect in the flanker task. Therefore, behavioral and 

neuroimaging results support our hypothesis that there are specific neural substrates associated with 

attention to number, the activity of which relates to math competence over and above numerical acuity or 
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domain-general attention alone. These finding calls into question previously held assumptions about the 

relation between magnitude processing mechanisms and mathematical competence, detail an alternative 

explanation for the relation between nonsymbolic number comparison task performance and mathematics 

achievement, and build the groundwork for future research investigating neural mechanisms related to 

attention to number as a potential source of difficulties related to math-specific learning disabilities. 

 

Attention to Number and Spontaneous Focusing on Number 

Before further discussion, it should be noted that a substantial body of research originating with 

Hannula-Sormunen and colleagues has identified the spontaneous, self-initiated attentional focus on 

numerosity (SFON) as a strong predictor of math development (for a review, see Rathé, Torbeyns, 

Hannula-Sormunen, De Smedt, & Verschaffel, 2016). However, the construct of attention to number 

differs from SFON in several regards. For example, while attention to number refers to the neurocognitive 

mechanisms controlling attention to numerosity, SFON may be thought of a disposition towards exact 

number that an individual carries into any given scenario. Accordingly, any measure of SFON must be 

taken in the absence of explicitly numerical task demands (Rathé et al., 2016). In contrast, neurocognitive 

mechanisms underlying attention to number may be utilized spontaneously or under explicit instruction. 

To measure the efficacy of these mechanisms, the current study does explicitly instruct participants to 

attend to numerosity. As a second point of difference, SFON research focuses on smaller numerosities 

that children are capable of counting quickly and exactly (Hannula et al., 2010) whereas numerical 

magnitude processing often requires approximation of larger quantities. In other words, SFON refers to 

the tendency of an individual to notice numerical features of a given scene, while attention to number to 

refers to an individual’s ability to upregulate number specific neural processes, or inhibit non-numerical 

neural representations, in order to extract numerical information from a specific stimulus, especially in the 

case of competing information.  

Numerical Magnitude Processing, Attention to Number, and Attention 

Results from the three single contrasts of interest in the current results largely support previously 
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published results. Areas of the ventrolateral prefrontal cortex, medial anterior cortex, and rIPS 

demonstrated task-positive ratio effects, similar to meta-analyses of number processing tasks (Sokolowski 

et al., 2016), indicating their functional role in numerical magnitude perception. Results for incongruent > 

congruent trials are similar to the only two previous studies to execute a comparable contrast with the 

nonsymbolic number comparison task (Leibovich, Vogel, Henik, & Ansari, 2015; and Study 2 from the 

current work: Wilkey, Barone, Mazzocco, Vogel, & Price, 2017) in that all three showed significantly 

greater activity during incongruent trials in the rIFG and Wilkey et al. (2017) also showed similar effects 

in the fusiform gyrus, although those previous studies involved adults and adolescents respectively. A 

large body of work supports the notion that a right-lateralized portion of the inferior frontal cortex is 

critical for inhibiting response tendencies more generally and orienting to behaviorally relevant stimuli 

(reviewed in Aron & Poldrack, 2005; Aron, Robbins, & Poldrack, 2014; for meta-analysis see Levy & 

Wagner, 2011). However, in the current results, the numerical congruency effect in the rIFG is significant 

in the single contrast and continues to be significant at the group level when subtracting out activity 

related to the flanker effect in the double subtraction. The flanker task was designed to elicit response 

inhibition and task interference effects similar to the numerical congruency effect, but in a non-numerical 

context. Therefore, if modulation of the rIFG were a generalizeable effect of inhibition, we would expect 

the effect to significantly diminish or disappear. Results report a similar, but slightly greater peak and 

mean t-values in the rIFG, indicating that the relation is specific to the number comparison task. Further, 

the contrasts of large > small ratio and incongruent > congruent trials of the number comparison task 

overlap in the rIFG, pars triangularis, suggesting the location is involved in numerical magnitude 

encoding. This interpretation fits with previous studies reporting a numerical ratio effect in both symbolic 

and nonsymbolic numerical formats (Ansari & Dhital, 2006; Cantlon et al., 2009) in the rIFG, particularly 

in children. Therefore, increased activity in the rIFG, par triangularis, during incongruent trials may 

reflect the allocation of more attentional resources, and therefore greater BOLD response, to a region of 

the cortex encoding numerical information. Alternatively, this increase in rIFG may also be representative 

of the increased allocation to numerical magnitudes itself. In other words, this region may be involved in 
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the upregulation of neural representations of numerical magnitude elsewhere in the cortex or it may be the 

region encoding numerical magnitudes. In either case, we would expect a significant ratio effect and 

congruency effect. In contrast, decreased activity to the bilateral fusiform gyri and primary visual cortex 

may represent a suppression of activity related to non-numerical visual factors of the stimuli such as 

overall surface area and convex hull. 

Lastly, results for the congruency effect in the flanker task showed similar results to three 

previous analyses of the flanker effect in children, which demonstrated greater activity for incongruent 

than neutral trials in the rIPS (Bunge, Dudukovic, Thomason, Vaidya, & Gabrieli, 2002; Vaidya et al., 

2005) and bilateral occipital gyri (Konrad et al., 2005), though a similar lateralization in the lIFG and left 

insula to Bunge et al. (2002) was not replicated. As in all three studies of the flanker effect in children 

compared to adults, the anterior cingulate in the current study did not show a significant congruency 

effect, which is typical of response interference tasks in adults (Houdé, Rossi, Lubin, & Joliot, 2010; van 

Veen, Cohen, Botvinick, Stenger, & Carter, 2001). In short, results indicate a strong congruency effect 

consistent with previous studies, and therefore provide justification for the use of this contrast as a 

method of controlling for non-numerical attentional allocation associated with inhibition and interference 

control. 

Relations to Mathematical Competence 

 Most studies relating neural correlates of numerical magnitude processing to mathematical 

competence have focused on group comparisons between typically developing children or adults and 

individuals with dyscalculia (Dinkel, Willmes, Krinzinger, Konrad, & Koten, 2013; Kovas et al., 2009; 

Kucian, Loenneker, Martin, & von Aster, 2011; Price et al., 2007), and provide little consensus about 

which neurocognitive mechanisms drive the number comparison task’s relation to mathematics. The two 

studies relating a similar neural contrast to math achievement in typically developing young adults and 

high school students (Gullick, Sprute, & Temple, 2011; Wilkey et al., 2017) found inverse ratio effects 

correlated with math achievement in bilateral insula, and inferior parietal regions, regions not canonically 
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associated with the processing of numerical information. With the recent array of behavioral data 

indicating that incongruent trials drive the relation between task performance and mathematics 

achievement (Bugden & Ansari, 2015; Fuhs & McNeil, 2013; Gilmore et al., 2013; Prager, Sera, & 

Carlson, 2016), evidence is mounting in favor of the importance of executive function mechanisms and 

their interaction with magnitude processing mechanisms as a foundation for mathematical competence. 

The current results lend support to this interpretation in that none of the neural contrasts associated with 

magnitude processing alone (i.e. balanced for congruency) correlate with mathematics achievement, while 

the numerical congruency effect in the rIFG, pars triangularis, an area which demonstrated a significant 

ratio effect and numerical congruency effect, does correlate with mathematics achievement. The negative 

correlation, showing individuals with a lesser congruency effect are better at mathematics, could indicate 

a more effortful response in the inhibition process or protracted development of inhibitory control 

mechanisms.  

 The whole-brain correlation of mathematics achievement with the double-subtraction of the 

numerical congruency effect minus the flanker congruency effect similarly indicated the importance of 

attentional components of the task. However, the strongest correlation at the whole-brain level was an 

inverse correlation between a more inferior and anterior portion of the rIFG, the pars orbitalis, which did 

not overlap with the pars triangularis region displaying a significant ratio and congruency effect. The 

presence of two regions in the rIFG with a numerical congruency effect that negatively correlated with 

mathematics achievement, one of which demonstrates a ratio effect, may indicate that the rIFG is 

responsible for an array of mathematically relevant inhibition functions. Multiple aspects of executive 

function are thought to be orchestrated by the rIFG and its cortico-thalamic connections. A meta-analysis 

of neuroimaging data of cognitive control tasks by Levy and Wagner (2011) suggests that specific forms 

of cognitive control, such as the detection of relevant stimulus parameters and decision uncertainty, are 

subserved by distinct subregions of the rIFG. The current results, at the ROI level and in the whole-brain 

analysis, show that neural response of attention to number relates to mathematical competence in two 

regions of the rIFG, both the pars triangularis and pars orbitalis. Therefore, it may be that multiple 
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attentional components dedicated to numerical magnitude processing are subserved by distinct subregions 

of the rIFG. 

Future Directions 

 The current study utilizes a contrast based on numerical ratio in the number comparison task to 

identify areas of the brain associated with magnitude processing and then assumes that individual 

differences in this contrast would capture individual differences the associated neural substrate. However, 

little evidence exists that neural measures at standard resolutions of fMRI during the number comparison 

task are capable of indexing a neural measure of numerical acuity that is thought to be captured by 

behavioral indices of numerical acuity, such as accuracy or weber fraction. A greater neural ratio effect 

has been argued to indicate greater efficiency (Bugden et al., 2012) and also lesser efficiency (Gullick et 

al., 2011) of numerical magnitude processing mechanisms, but the underlying biological origin of each of 

these effects remains poorly understood. Only one study to date has related acuity of neural representation 

(i.e. neural tuning curves in the IPS) to behaviors measuring perceptual sensitivity, but this study did not 

include a measure of math achievement and largely avoided the confound of inhibitory control with the 

use of an adaptation paradigm with sequential presentation of stimuli (Kersey & Cantlon, 2016). 

However, the approach taken by Kersey and Cantlon may provide more information for a detailed 

account of numerical acuity in the future. 

 Two further issues should be taken into account in future studies of this topic. First, an 

exploration of both structural and functional connectivity between neural structures that support executive 

function and magnitude processing may provide an explanation of the role of subregions in the IFG. This 

may elucidate the actual role of the IFG pars triangularis as either a substrate for direct encoding of 

numerical information or as a region involved in the regulation of regions that encode numerical 

information. Second, executive function and numerical magnitude processing are both known to undergo 

substantial development during the early elementary school years (Ansari, Garcia, Lucas, Hamon, & 

Dhital, 2005; Davidson, Amso, Anderson, & Diamond, 2006). Executive function is known to 

increasingly involve the integration of a fronto-parietal and cingulo-opercular network (Fair et al., 2007, 
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2009). Therefore, in the current study, individual differences may be a result of naturally varying neural 

development or the development of mathematical skills. More research across development is needed to 

draw the link between differences in neural signatures and biologically plausible accounts of their 

corresponding behavioral significance. 

Conclusions 

The present findings support previous behavioral studies suggesting that attentional components 

of the nonsymbolic number comparison task are an important factor for its relation to mathematical 

competence (Bugden, & Ansari, 2015; Fuhs & McNeil, 2013; Gilmore et al., 2015), as indicated by a 

stronger correlation between mathematics achievement and performance on incongruent trials of the 

number comparison task than congruent trials. Further, fMRI results suggest that individual differences in 

neural activity in the rIFG specifically involved in numerical magnitude processing measured during 

incongruent versus congruent trials of the number comparison task, our construct of attention to number, 

correlate with mathematics achievement. In contrast, neural activity in frontal and parietal regions 

associated with differences in ratio difficulty, our construct for numerical magnitude processing, does not 

correlate with mathematics achievement. Therefore, behavioral and neuroimaging evidence from the 

current study suggest that attention to number, or the ability to upregulate number specific neural 

representations or inhibit non-numerical neural representations, are an important predictor of 

mathematical competence, over and above numerical magnitude processing or domain-general attention 

alone.  
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Supplementary Figure 4.6. Overlay of results from the congruency contrast in the number comparison 

task (teal), the ratio effect contrast (red), and the whole-brain correlation of math with the double 

subtraction of the congruency effect during number comparison minus the congruency effect in the 

flanker task (yellow). Voxels from the math correlation with no control, verbal IQ, and verbal IQ + 

flanker performance are all pictured as yellow voxels. All maps are uncorrected at  p < .005. Cluster-

corrected details are presented in Table 4.3, 4.4, and 4.6. Slices labeled in MNI space and presented in 

neurological convention. 
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CHAPTER 5 

 

DISCUSSION AND INTEGRATION OF FINDINGS 

 

 

 

5.1 Introduction 

 

 A lack of competence in basic mathematics increases an individual’s risk for unemployment 

(Parsons & Bynner, 2005; Rivera-Batiz, 1992), poverty (Gross et al., 2009), and negative health outcomes 

(Duncan et al., 2007; Hibbard et al., 2007). For many, even with adequate resources, becoming numerate 

is extremely difficult (Butterworth & Laurillard, 2010). It requires mastery of a large range of skills over 

the course of years of schooling. As their foundation, mathematical skills require the training and 

cooperation of a range of neurocognitive mechanisms that may also be the source of learning difficulties 

or, in atypical development, the source of a math specific learning disability. One such proposed 

mechanism used for the processing of numerical magnitudes, often referred to as the approximate number 

system (ANS) (Halberda et al., 2008) or number sense (Dehaene, 2011) has been the focus of a 

substantial body of research. Behavioral measures of ANS acuity relate to mathematics achievement 

across development and levels of mathematics achievement (Chen & Li, 2014; Schneider et al., 2017) and 

neural measures of magnitude processing substrates have also been associated with mathematical learning 

disabilities (Iuculano, Tang, Hall, & Butterworth, 2008; Mazzocco, Feigenson, & Halberda, 2011; 

Mazzocco, Feigenson, & Halberda, 2011; Mejias, Mussolin, Rousselle, Grégoire, & Noël, 2012; 

Mussolin, Mejias, Noël, & Noel, 2010; Price, Holloway, Räsänen, Vesterinen, & Ansari, 2007; 

Szkudlarek & Brannon, 2017; Wilson & Dehaene, 2007).  

 However, despite this large confluence of evidence, recent findings indicate that those same 

measures of numerical acuity, and their subsequent relation to mathematics, may not be driven by 

magnitude processing mechanisms alone. Rather, the relation may depend on executive function demands 

introduced via visual properties of numerical stimuli, such as surface area or object size, that compete 

with discrete quantity for visual saliency (Gilmore et al., 2013) in the dot arrays being compared. 

Specifically, inhibitory control has been shown to either account for a significant amount of variance in 
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the relation between number comparison performance and mathematics achievement (Gilmore et al., 

2015; Keller & Libertus, 2015) or explain the relation altogether (Fuhs & McNeil, 2013; Gilmore et al., 

2013). As a result, the influence of visual parameter congruency may be acting as a confound that 

invalidates theoretical accounts of the relation between the nonsymbolic number comparison task and 

ANS theory and their subsequent relation to mathematical competence. Therefore, the studies presented 

in Chapters 2-4 investigated the attentional factors that interact with numerical magnitude processing 

mechanisms by asking three basic questions. First, does attention to number relate to mathematics 

development beyond acuity of magnitude representation and domain-general executive function factors? 

Second, how are neural substrates of numerical magnitude processing affected by incongruent visual cues 

in the nonsymbolic number comparison tasks? And third, how do individual differences in attention to 

number, as indexed by neural activity related to the numerical congruency effect, relate to the 

development of mathematical competence? 

5.2 Summary of findings 

 In Study 1, we investigated the relations between performance on congruent and incongruent 

trials of the nonsymbolic number comparison task and mathematics achievement, both as a continuous 

variable related to mathematics across the full spectrum of achievement and in terms of how it relates to 

group differences in mathematics achievement groups (i.e. DD, low achievement, and typical 

achievement). The major contribution from this study was the inclusion of measures of different 

components of executive function in non-numerical contexts, including visuo-spatial working memory, 

inhibitory control, and shifting behaviors. Previous research had investigated the intersection of 

magnitude processing mechanisms with inhibitory control or visuo-spatial working memory, but no study 

to date had included both measures, along with the third major component of executive function (Miyake 

et al., 2000), task-switching. Where most previous studies have framed the correlation between 

performance in nonsymbolic number comparison tasks as being driven by either executive function OR 

magnitude processing acuity (with the exception of Gilmore (2013, 2015) and Prager et al. (2016)), the 

inclusion of these additional measures in our first study allowed for a detailed analysis of attentional 
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components of magnitude processing beyond what is associated with either construct alone. Further, the 

large-scale and longitudinal nature of this data allowed for the classification of mathematics achievement 

groups based on six continuous years of stable math achievement, including three years at school entry 

and three years at the beginning of middle school (5th to 7th grade). Defining a DD group based on stable 

low achievement rather than a discrepancy criterion allowed for an analysis that controlled for executive 

function factors issues rather than exclude them. As hypothesized, both the regression results in the full 

sample and the achievement group comparison results indicated that performance on incongruent trials of 

the number comparison task correlate with mathematics achievement after controlling for inhibitory 

control, task switching, visuospatial working memory, and reading achievement. In contrast, congruent 

trials did not relate to achievement group differences or math achievement more broadly, even before 

controlling for additional factors. These results indicate that behavioral correlates of number-specific 

attention mechanisms, or attention to number, are related to mathematics while behavioral correlates of 

ANS acuity with low attentional demands were not.  

 Study 2 used fMRI in a typically developing high school sample to investigate two principal 

issues: (1) the influence of congruency of non-numerical visual cues during the nonsymbolic number 

comparison task on the neural mechanisms supporting numerical magnitude perceptions, and (2) the 

influence of congruency on the relation between mathematics achievement, as measured by the 

preliminary scholastic aptitude test (PSAT), and the neural ratio effect, a neural proxy for acuity of the 

ANS. The task elicited ratio-dependent activity in canonical fronto-parietal brain regions (Sokolowski et 

al., 2016), but a comparison of the ratio effect during congruent versus incongruent trials within those 

regions showed no significant differences. A whole-brain contrast of these effects also found no 

differences, supporting the idea that regions of the brain previously found to encode numerical magnitude, 

such as the IPS and SPL, do so consistently when non-numerical visual cues are congruent or incongruent 

with numerical magnitudes. Therefore, ratio-dependent activation during nonsymbolic number 

comparison does not appear to be the product of cognitive processes specific to either congruent or 

incongruent task conditions. The main effect of congruency, which was not ratio-dependent, did show 
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that four regions had significantly greater activity for incongruent trials, including the right IFG, right 

angular gyrus, right fusiform gyrus, and right parahippocampal gyrus. Congruency also affected the tasks 

relation to math, but not in canonical magnitude processing regions. The neural ratio effect did not 

correlate with math in any regions showing a ratio effect. However, in the whole-brain analysis an inverse 

correlation between PSAT math and the neural ratio effect appeared consistently in the left insula for both 

congruency conditions considered together, even after controlling for reading achievement. However, 

when the correlation was split by congruency condition, different patterns emerged, whereby a positive 

correlation was found between PSAT math scores and the neural ratio effect in the right supramarginal 

gyrus and a negative correlation in the left angular gyrus and left precuneus. First, the lack of any 

correlation between the neural ratio effect and math achievement in regions showing a ratio effect calls 

into question whether the relation between nonsymbolic number comparison performance and 

mathematics achievement is driven by ANS acuity. Second, a divergence in correlation patterns by 

congruency condition indicates that the task’s relation to math is more complicated than magnitude 

perception alone. Instead, correlations between task-related activation and mathematical competence in 

non-ANS substrates suggests the involvement of alternative, or at least complementary, neural 

mechanisms. 

 Finally, Study 3 used fMRI to examine whether neural correlates of attention to number could be 

isolated, and whether they correlate with math competence in children. Study 3 built upon the findings of 

Study 2 in that participants again completed a nonsymbolic number comparison task which was analyzed 

by congruency condition, but also completed an Erickson flanker task. The Flanker task was designed to 

mirror the attentional demands of the congruency effect in the nonsymbolic number comparison task, but 

in a non-numeric domain. As in Study 1, accuracy rates on the incongruent trials, but not congruent trials, 

correlated with mathematics achievement.  Neural contrasts of interest included the neural ratio effect and 

congruency effect in the nonsymbolic comparison task and the flanker congruency effect. Each of these 

contrasts elicited activity in line with previously published results, engaging a network of fronto-parietal 

regions commonly associated with both number-specific number processing substrates and generalized 
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attentional allocation and cognitive control networks. However, the neural ratio effect in regions resulting 

from those contrasts did not correlate with math scores in any region. In contrast, there was a strong, 

inverse correlation between the numerical congruency effect (incongruent – congruent trials of 

nonsymbolic number comparison) in the right IFG that strengthened after controlling for Verbal IQ and 

performance on the flanker task (i.e. accuracy rate) and continued to show a moderate correlation after 

subtracting out neural response in the right IFG cluster (incongruent – congruent trials of flanker task). 

Since this region in the right IFG overlapped with a region with a significant ratio effect, results indicate 

that activity associated with numerical magnitude processing and attentional allocation converge in the 

inferior frontal gyrus, and further, that individual differences in the activity of this region during 

nonsymbolic magnitude comparison correlate specifically with a mathematics achievement. 

 

5.3 Behavioral correlations between nonsymbolic comparison and mathematics achievement 

Across studies, behavioral results from the nonsymbolic number comparison task in Studies 1 and 

3 lend support for both the concept attention to number and its role in the relation between nonsymbolic 

number comparison performance and mathematics achievement. Results from Study 1 resemble the 

behavioral results in Study 3 in that accuracy rates on incongruent trials of the in-scanner version of the 

nonsymbolic number comparison task correlate with mathematics achievement, while performance on 

congruent trials does not. However, both of these correlations differ from Study 2, where response times 

in the nonsymbolic comparison task correlated with PSAT math scores across congruency condition, but 

accuracy rates did not. These differences across studies could be due to at least two principal factors. 

First, each sample is a different age. Study 3 has the youngest children (ages 8-11 yo), followed by Study 

1 (11-13 yo) and Study 2 (17-19 yo). Effect sizes of the correlation between incongruent trials of the 

nonsymbolic number comparison task and mathematics achievement decrease with age of the samples 

from r = .324 in Study 3 to r = .226 in Study 1 to r = .180 in Study 2. This decrease of the effect size with 

age could be driven by developmental differences in the coupling between executive function and 

mathematics achievement. It may be that early in development, there are widespread differences in 
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children’s ability to up-regulate relevant, numerical information and suppress irrelevant distractors but 

that by high school, the neurocognitive systems that regulate this behavior could be fully developed for all 

typically developing individuals. In step with this account, age has been shown to be a mediating factor 

between nonsymbolic number comparison tasks and mathematics achievement across congruency 

conditions (Schneider et al., 2017). Secondly, differences in measures of mathematics may account for 

differences across studies. Meta-analyses also show that nonsymbolic number comparison performance is 

more highly correlated with measures of mathematics achievement that index mathematical fluency in 

basic arithmetic rather than higher-level mathematics achievement (Chen & Li, 2014; Schneider et al., 

2017). Our composite measure of mathematics achievement in Study 3, the study with the youngest 

participants, includes mostly measures of basic numeracy and applied arithmetic, including a timed 

measure of math fluency. In Study 1, the outcome measure of mathematics achievement, the KeyMath3, 

involved basic algebra, geometry, and principles of numeracy commensurate with a 6th-grade 

mathematics curriculum, which builds on arithmetic fluency but is several steps abstracted from more 

basic mathematical operations. Study 2 included the oldest sample and also utilized a measure of 

mathematics achievement, the PSAT, that involved trigonometry, more advanced geometry, and high 

school algebra. As a result, mathematics achievement as measured by the PSAT is the furthest measure 

from arithmetic fluency across studies, and therefore least likely to show a strong relation to nonsymbolic 

number comparison performance based on the moderator analysis presented in Schneider et al.’s meta-

analysis (2017). Unfortunately, the current set of studies cannot make a distinction between the influence 

of developmental age and type of mathematics achievement measure. To do so, future studies will need to 

measure both arithmetic fluency as well as more advanced mathematics in the same sample across 

multiple age groups. 

 

5.4 The neural ratio effect 

 Just as behavioral performance during the nonsymbolic number comparison task has been used in 

previous research to measure acuity of the ANS, the neural ratio effect has been used as a measure of 
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individual differences in neural mechanisms related to magnitude processing of the ANS (Ansari et al., 

2006; Gullick et al., 2011; Price et al., 2007). However, before the current studies, it was unknown how 

the ratio effect was influenced by executive function demands due to interference from incongruent visual 

cues.  Therefore, Studies 2 and 3 investigated this issue as well as how the neural ratio effect’s relation to 

math was influenced by congruency of visual stimulus parameters. Results indicated that number 

comparison in both studies elicited ratio effects at the group-level in regions previously reported in meta-

analyses  of number processing tasks (Sokolowski et al., 2016), including the IPS (left IPS for Study 2 

and right IPS for Study 3) and superior medial gyrus extending into the anterior cingulate cortex. One 

difference between Study 2 and Study 3 was that children in Study 3 (3rd to 4th grade) showed ratio effects 

in the rIFG and rMFG, indicating a greater reliance on frontal regions compared to the high school 

students in Study 2, who showed a ratio effect in one additional cluster in the right superior parietal lobule 

bordering the precuneus. Previous research utilizing a mental arithmetic task has shown increasing 

reliance on parietal structures over the course of development coupled with a decrease in frontal 

activation (Ansari et al., 2005; Rivera et al., 2005). The current findings from Study 2 and Study 3 may 

reflect this developmental shift. However, it should be noted that a main effect for congruency (i.e. not 

ratio-dependent) was reported in the rIFG in Study 2, indicating increased reliance on the rIFG for 

incongruent trials of the number comparison task. Therefore, taken together, the younger children in 

Study 3 showed significant group-level ratio effects in frontal regions as well as group-level congruency 

effect, while adolescents in Study 2 group-level congruency effect in frontal regions only for congruency 

effects. This indicates that the proposed developmental shift is specific to the processing of numerical 

information, but not inhibitory control mechanisms, an interpretation that fits well with prior studies 

which have reported a fronto-parietal shift in both nonsymbolic number comparison (Ansari & Dhital, 

2006) and symbolic number comparison tasks (Ansari et al., 2005; Kaufmann et al., 2006). 

 Given the similarities between Study 2 and 3, it should also be noted that they took slightly 

different approaches to the correlation between the neural ratio effect and mathematics achievement. In 

Study 2, beta-weights were extracted from regions showing a group-level ratio effect and then correlated 
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with math. None of those correlations were significant, but to check for correlations with the ratio effect 

in regions that did not show a group-level effect, the correlation was conducted at the whole brain, which 

results in correlations that differed by congruency outside of canonical ANS substrates. In Study 3, again, 

no regions showed a correlation between the neural ratio effect and mathematics achievement in regions 

showing a group-level ratio effect. However, in Study 3, the cluster-level analysis was not followed by a 

whole-brain analysis in order to investigate the influence of congruency manipulations in a specific set of 

neural substrates. Therefore, it should be underscored that no region showing a group-level ratio effect in 

either study had subject-level beta values that correlated with mathematics achievement. This provides 

support against the argument that individual differences in neural mechanisms supporting nonsymbolic 

numerical magnitude processing relate to mathematics competence, insofar as they are captured by the 

neural ratio effect. Further, it calls into question the broader, dominant theoretical view that ANS acuity is 

a major factor predicting math achievement (Justin Halberda & Feigenson, 2008) that has initiated a host 

of interventions (Fuhs et al., 2016; Park & Brannon, 2014; Wang, Odic, Halberda, & Feigenson, 2016) 

and diagnostic tools (Butterworth, 2012; Nosworthy et al., 2013) that target ANS acuity. 

One further aspect of the results from Study 2 that should be made explicit is the lack of 

difference between congruent and incongruent neural ratio effects in any of these regions showing a 

group-level ratio effect. In other words, the neural ratio effect was not driven by either congruency 

condition alone. This is important for the interpretation of previous results in the field, which draw 

implications from their findings from analyses that collapse across congruency conditions in the 

nonsymbolic number comparison task. This lack of difference means that the confound of visual cue 

congruency does not necessarily invalidate inference drawn from previous studies that rely on this task to 

measure numerical magnitude processing mechanisms. The fact that activation in those same regions does 

not correlate with math, however, does call into question what drives the relation nonsymbolic number 

comparison performance and mathematics achievement. For example, Gullick et al. (2011) report an 

inverse correlation between the distance effect and SAT scores in bilateral perisylvian structures, peaking 

in the insula. This relation, collapsed across congruency conditions, may very well be driven by number-
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specific attentional demands, even if the result is derived from a magnitude specific neural contrast. 

Correlations between the neural ratio effect and PSAT math scores in Study 2 underscore this point, 

showing that inverse ratio effects in the left and right insula have the strongest relationship to PSAT math, 

areas not previously considered as principle components of any magnitude processing network. 

 

5.5 Differing methods of controlling for visual parameters of nonsymbolic stimuli 

 One important difference in design among the current collection of studies is the method used for 

controlling visual parameters of the dot arrays. Studies 1 and 3 utilized a code generated by Gebuis and 

Reynvoet (2011), which allow for the control of four visual properties: (1) area extended by the entire dot 

array (convex hull), (2) total surface area (aggregate of dot surfaces), (3) item size, and (4) density (area 

extended/surface area). In this way, it is ensured that visual properties are not significant predictors of 

numerosity. Further, the degree of incongruency/congruency is not tightly related to trial ratio. Most 

previous studies before the publication of Gebuis & Reynvoet (2011) have utilized a method whereby 

extrinsic variable were equated (e.g. total surface area of the dot sets) and intrinsic variables varied 

randomly (e.g., the diameter and size of each dot) in half the trials, with the reverse on the other half of 

trials (Ansari & Dhital, 2006;  Halberda et al., 2008; Manuela Piazza et al., 2010; Price et al., 2007) using 

the method detailed by Dehaene et al. (2005). However, in the method suggested by Dehaene, the issue of 

congruency is inextricably linked to trial ratio. For example, consider two trials of differing ratios, 3.2 (5 

vs. 16) and 1.2 (5 vs. 6). For the congruent version of these ratios, average dot size is equated and thus the 

surface area of the more numerous dot set is greater in each trial (i.e. surface area is visually congruent 

with the larger numerosity). However, the degree of the difference in surface area also covaries with ratio; 

the greater the ratio, the greater the difference in surface area, and thus, more visually congruent 

information. Conversely, for the incongruent trials, the surface area of each dot set within each trial is 

equivalent and the numerically larger dot set necessarily has smaller dots. Further, the degree of the 

difference in dot size between dot sets covaries with ratio such that the greater the ratio is, the more 

visually incongruent the visual information. In the present example, the degree of dot size difference is 
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more exaggerated in the 5 vs. 16 than 5 vs. 6 ratio, and thus, there is greater conflicting visual information 

in the larger ratio trial. As a result, the degree of congruent and incongruent visual information may be 

driving the differing trends in the neural ratio effect and behavioral ratio effects. 

 These two control methods also lead to differing hypotheses about ratio x congruency interactions 

that were born out in differences between Study 2 and Study 3, which were not the principle focus of our 

analyses but are important to mention nonetheless. For example, if the degree of incongruency decreases 

with increasing ratio difficulty, as the Dehaene method specifies, one would expect to see a greater 

congruency effect for easier trials. And, in fact, easier ratios show a greater ratio effect and there is no 

significant difference in response time or accuracy rates between congruent and incongruent trials of the 

most difficult ratio in Study 2. However, if ratio and degree of congruency are not linearly related, we 

would expect the effect of congruency to either be equal across ratios, or perhaps increase as ratios 

become more difficult (i.e. compounding the difficulty of comparing numerosities with interfering visual 

cues). In line with this hypothesis, Study 3 does show a greater congruency effect for more difficult ratios. 

For this reason, the effects of congruency and ratio are more separable in Study 3 than in Study 2. In 

effect, Study 3 utilizes a superior, but less common way of controlling for the influence of visual 

parameters. Therefore, the influence of ratio difficulty and congruency are confounded in a majority of 

the literature to date in a way that does not allow for an investigation of their respective contributions for 

behavioral performance on the nonsymbolic number comparison task or associated neural activation. 

As such, a more nuanced distinction across all visual parameters and their interaction with ratio would be 

a ripe area for future research. 

 

5.6 Neural mechanisms associated with attention to number 

 While Study 1 indicated the relevance of attention to number as a construct of interest for the 

development of mathematical competence through behavioral data, Studies 2 and 3 lend support for a 

specific set of neural substrates related to attention to number. Study 2 indicated that individual 

differences in canonical numerical magnitude processing substrates do not relate to math achievement in 
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high school, a similar finding to previous results (Gullick et al., 2011). Instead, a smaller ratio effect in 

the left insula, left posterior cingulate, and left angular gyrus, as well as a greater ratio effect in the right 

supramarginal gyrus correlated with math. In particular, the left posterior cingulate correlation was 

specific to incongruent trials of the nonsymbolic number comparison task before and after controlling for 

PSAT reading scores. Though these results are difficult to interpret due to their lack of group-level task 

effect, it is evident that congruency manipulations affect what individual differences in neural response 

correlate with mathematics achievement. 

 Study 3, with 3rd and 4th grade children, included tighter controls of visual parameters, a more 

comprehensive measure of mathematics achievement, and a comparable non-numerical response 

inhibition/task interference task (i.e. the flanker task). Results from Study 3 largely mirrored the 

numerical congruency effects from Study 2, demonstrating an effect of congruency in the right fusiform 

gyri and rIFG. However, Study 2 had no way of indicating if these results were magnitude-specific or 

merely related to shifts in attention more broadly. In contrast, Study 3 indicated that these regions 

demonstrated a congruency effect specific to attentional demands in a numerical context by subtracting 

out the flanker congruency effect. Specifically, three findings in Study 3 indicate of the importance of the 

rIFG as a locus of individual differences in attention to number. First, this region demonstrates a group-

level ratio effect and a numerical congruency effect, even with the double-subtraction. Second, individual 

differences in this effect correlate with mathematics achievement, even after controlling for verbal IQ and 

performance in the flanker task (indicating a highly specific relation). And third, the whole-brain 

correlation of the double subtraction [(incongruent number comparison – congruent number comparison) 

> (incongruent flanker – congruent flanker)] revealed another region of the rIFG, the pars orbitalis, that 

correlated with mathematics achievement with the same control variables. The pars orbitalis is anterior 

and inferior to the pars triangularis, but their functions are not well-differentiated, especially in regards to 

their role in inhibition (Aron et al., 2014; Levy & Wagner, 2011). The three most probable roles for either 

of these regions are their involvement in (a) the upregulation of areas of the cortex dedicated to numerical 

magnitude processing, (b) the suppression of non-numerical, incongruent visual cues, or (c) magnitude 
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processing itself. Since attention to number is likely to involve the upregulation in processing numerical 

information to increase saliency as well as the suppression of non-numerical, visual cue information, 

activation in these areas of the cortex may be either the cause or of effect attention to number. Future 

dynamic causal modeling or psycho-psychological interaction modeling analyses should be performed to 

evaluate the role of the IFG in attention to number. 

 

5.7 Future Directions 

 In many ways, the current collection of studies represent a move away from a domain-specific vs 

domain-general framing of cognitive mechanisms linked to math development and math specific learning 

disabilities. Instead, building a more complex model of the biological interaction between numerical 

magnitude processing and executive function mechanisms should provide additional theoretical support to 

integrate seemingly disparate findings common across current neuroimaging studies of the foundations of 

math competence. In regards to attention and the mathematics learning disability DD, much of the 

conversation has been dominated by whether DD is caused by a core domain-specific deficit such as 

numerical magnitude processing and symbolic number mapping or domain-general deficits such as 

attention deficits or working memory deficits (e.g., Butterworth, Varma, & Laurillard, 2011; Geary & 

Moore, 2016; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013). From a biological standpoint, attention 

necessarily involves attending to something and working memory involves the maintaining of something. 

Manifestations of DD are heterogeneous, sometimes presenting as comorbid with attention deficits and 

reading disabilities, and sometimes being isolated to mathematics. Research into the interaction of 

attention mechanisms or working memory mechanisms with perceptual information relevant for particular 

types of academic skills (and relevant for specific learning disabilities) may provide a framework for 

understanding the biological framework for these heterogeneous deficits and their comorbidities. 

Therefore, the current collection of studies should not be taken to advocate for the study of attention to 

number as another core deficit associated with DD or the one neurocognitive mechanism educators need 

to train in order to improve math abilities, but rather a step in framing specific cognitive deficits in a more 
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dynamic framework that involves the interaction of multiple biological mechanisms. 

 In addition to the general framework of the current collection, two points should be made about 

the scope of the experiments. First, the current studies rely exclusively on visual information to study a 

multi-modal perceptual phenomenon. To be functionally numerate is to interact with number successfully 

in a variety of contexts, often through spoken word or in other physical forms. Some work has been done 

on the multi-modal nature of numerical magnitude representations in IPS substrates (Abboud, 

Maidenbaum, Dehaene, & Amedi, 2015; Arrighi, Togoli, & Burr, 2014; Damarla, Cherkassky, & Just, 

2016; Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003), but currently the field is dominated by visual 

experiments. The current collection is no exception. Second, most numerical information we encounter in 

modern society is symbolic and exact in nature. Whether it be through Arabic digits or spoken number 

words, most behaviorally relevant interactions with number beyond early childhood are not with 

nonsymbolic numerical stimuli of the type presented in the current collection of studies, but rather 

number in a symbolic form. Further, a growing body of research suggests that processing of symbolic 

number is a greater predictor of mathematics achievement than processing of number in its nonsymbolic 

form (De Smedt et al., 2013; Price & Wilkey, 2017). Therefore, stemming from these two points, natural 

next steps from the current studies would be to expand attention to number to incorporate more 

complicated representation of number that involve multiple sensory modalities and also symbolic 

frameworks.   

 

5.8 Conclusion 

 Studies 1 through 3 investigated the neurocognitive mechanisms associated with ANS acuity, 

executive function, and attention to number. On the whole, they provide little evidence that individual 

differences in ANS acuity relate to competence in mathematics, either at the behavioral or neural level. In 

contrast, executive function is an important element of math competence across age ranges and types of 

measures. The current studies provide evidence that attention to number, which can be described as the 

dynamic interplay of executive function and magnitude processing mechanisms, is a foundation of math 
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competence appearing at least as early as second grade and having a measurable relation to mathematics 

achievement through middle and high school.  Together, these findings suggest a need to reframe existing 

models of the relation between basic number processing and math competence and that educational 

interventions built on those models are premature and may be misdirected. 
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