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CHAPTER |

TEMPORALLY DISPERSIVE ION MOBILITY TECHNIQUES

I.1. Introduction and Historical Perspective

lon mobility spectrometry (IMS) is an analytical technique based on measurement of the
electrophoretic mobility of ions through a neutral gas. As will be discussed in Section 1.V, the
application of IMS was traditionally limited to analysis of vapors or gaseous samples mainly of
chemical warfare agents, drugs of abuse, and explosives. Contemporary IMS research has
expanded enormously to the analysis of gaseous, liquid, and solid samples in many fields including
biology, medicine, environmental studies, forensics, pharmaceuticals, and food research. The
ability of IMS in separating ions is based on collision cross section (CCS) or ion surface area. This
is directly related to ion shape or structure. Presently, this information is used for structural and
conformational studies in biomedical research, structural biology, and for separation of many types
of isomer species.

The popularity of IMS as an analytical technique is due to its excellent figures-of-merit
including low limits of detection (amol to pmol), fast separation times (s to ms), low cost for
handheld or standalone devices (20k to 100k USD), and high throughput (seconds per sample).
Simple standalone IMS devices can be hand-held instruments utilized in the field and high
performance IMS-mass spectrometer (IM-MS) platforms embody footprints dictated by the MS.
Operation is feasible at low, ambient, or high pressures, making it amendable to field monitoring.
Several excellent monographs address fundamental characteristics of ion mobility and its

applications. -/



In Section .1V, we will discuss how the IMS platform can be used as a stand-alone
instrument or as a detector for orthogonal separation techniques such as gas chromatography (GC),
high performance liquid chromatography (HPLC), and supercritical fluid chromatography (SFC).
The integration of IM-MS is considered one of the most significant developments in the field and
is a key feature for advances in biological and biomedical research.

There are five common types of IMS analyzers, based on temporal-dispersion or spatial-
dispersion of analyte ions. Analogous to analyses by MS, temporally-dispersive IMS
instrumentation provides near-simultaneous readout of all analytes in the sample. It is most
applicable for characterizing samples via untargeted analyses. Spatially-dispersive instruments
provide high selectivity for specific targeted analyses. The most common temporally-dispersive
devices differ in how electromigration of ions is achieved. The first type is electrostatic as utilized
in drift tube IMS (DTIMS), for which this chapter is primarily focused.® The second type is based
on electrodynamics, as in traveling wave IMS (TWIMS). Among the spatially-dispersive devices,
the most common are field asymmetric IMS (FAIMS) or differential mobility spectrometry
(DMS),>10 differential mobility analysis (DMA),*! and aspirator IMS (AIMS). These devices are
discussed in Section I.11.111.12

In the late 1990s, research using various types of IMS and IM-MS rapidly increased as
shown by the annual number of peer-reviewed publications (Figure 1.1).1 This growth coincides
with the commercial release of field-portable IMS platforms in the 1990s. The progress further
accelerates with the release of commercial IM-MS platforms beginning in the mid-2000s. Figure
1.2 illustrates the regional provenance of research publications for the top ten contributing
countries: United States, United Kingdom, Germany, Canada, China, Iran, France, Spain, Russian

Federation, and Finland, clearly underscoring the global adoption of IMS technologies.



Historical Developments in lon Mobility (IM) Technologies

lon Mobility
mmm |on Mobility-Mass Spectrometry
mmm Temporally-Dispersive IM-MS
=== Spatially-Dispersive IM-MS

300 150 0
Publications

1896 Thomson and Rutherford construct apparatus to study the mobility of
ions in various gases

1898 Zeleny constructs an IM spectrometer based on ions drifting against
a counterflowing gas stream

1911 Millikan develops apparatus for measuring the size-to-charge ratio of
oil droplets

1928 Tyndall constructs a precision ion mobility drift tube spectrometer
using a dual ion gate design

1930 Tyndall improves mobility measurements by using pure drift gases
1961 McDaniel couples ion mobility to a magnetic sector MS (IM-MS)

1963 McAfee and Edelson interface a drift tube orthogonally to a time-of-
flight mass spectrometer (IM-oTOF)

1964 Hasted and coworkers develop mass-selected ion mobility-mass
spectrometry (MS-IM-MS)

1968 Dole develops ESI with ion mobility measurements

1970 first commercial ion mobility spectrometer (Plasma Chromatograph)
1975 first commercial DMA (Thermo-Systems)

1982 Lubman couples laser ionization with ion mobility

1982 Hill develops gas chromatography coupled to ion mobility
1989 Blanchard describes tandem IM strategies (IM/IM)

1990 introduction of FAIMS and DMS

1990 commercial portable IM spectrometers (several vendors)
1995 Bowers develops MALDI-IM-MS and variable-temperature IM
1996 Jarrald constructs a high resolution drift tube IM spectrometer
1998 Smith develops the electrodynamic ion funnel

2006 commercial traveling-wave IM-MS (Waters)

2011 trapped ion mobility coupled to MS developed (Bruker)

2014 commercial drift tube IM-MS (Agilent)

Figure 1.1: (Left) Histogram of the number of publications published per year in ion mobility and

ion mobility-mass spectrometry. Note that the scale is truncated at 300 to highlight the number of

publications specifically utilizing IM-MS. Further distinction is made to discriminate the

frequency of publication for both time and space-dispersive IM-MS publications. (Right)

Historical milestones in the development of ion mobility and IM-MS instrumentation. Reprinted

with permission from J. C. May and J. A. McLean, Analytical Chemistry, 87, 1422-1436 (2015).

Copyright 2015 American Chemical Society.
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Figure 1.2: The number of peer-reviewed papers published through January 2015 using ion
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I.11. lon Mobility Instrumental Considerations

To frame the following discussion, the general components of IMS and IM-MS are shown
schematically in Figure 1.3. In Section L.11.1, we provide a description of common strategies used
for sample preparation prior to ionization into the IMS. Many methods of ionization have been
used to convert solid, liquid, or gaseous samples into gas-phase ions. The most common standalone
IMS instruments are presented in Section L.IL.1I. A survey of strategies for performing IMS
separations, on the basis of ion mobility, is then presented in Section LILIII. In Section LIII.1, we
present in greater details the fundamental footing of DTIMS technique for determining ion
structure via CCS measurement. Strategies for tailoring the separations are outlined in Section
I.1I11.11. The approaches rely on altering the conditions using gas phase kinetic theory and prevailing
physical chemical forces. In Section 1.1V, a survey is presented on combining chromatographic

separations with the IMS. In the final section (1.V), applications of cited techniques are presented.

I.11.1. Sample Preparation Strategies

All sample forms, gaseous, liquid, and solid, can be analyzed by IMS. In principle, all
sample ionization methods can be used for IMS or IM-MS as the separation only relies on ionized
analytes. In both IMS and IM-MS gaseous samples are directly introduced, liquids are nebulized,
and solids are evaporated, dispersed, or desorbed into the vapor phase for subsequent ionization.'*-
16 Examples of ion sources for direct coupling with IMS are electrospray ionization (ESI),” corona
spray,'® desorption electrospray ionization (DESI),'® matrix assisted laser desorption/ionization
(MALDI),? direct analysis in real time (DART),? and low-temperature plasma (LTP).2223

As a detector for chromatographic methods, such as GC, LC, or SFC, the column effluent

is directly introduced into the IMS using suitable manifolds to match the pressure of the IMS.
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Often, this involves flow splitting to match the solvent flow rates to the optimal pressure of the
IMS. For the analysis of complex samples such as those in biology, medicine, and materials
science, sample pretreatment may be required to separate the compounds of interest from
concomitant interferences to simplify the complex IMS analysis. The high peak capacity of the
MS as the detector, that is, following IMS-MS or LC-IMS-MS, offers the ability to deconvolute
complex IMS and LC-IMS spectra.?+2

The significance of sample pretreatment in IMS analyses is addressed in several recent
reviews.?830 The IMS sample preparation techniques include extractions by liquid—liquid (LLE),*
solid phase (SPE),**3* molecularly imprinted polymers (MIP),3+ stir—bar sorptive (SBSE),*"*
magnetic nanoparticle (MNP),*® and membrane (ME).***' Miniaturized sample pretreatment
techniques are currently used to reduce the amount of sample and solvent. Several microextraction
techniques have been developed, such as solid phase microextraction (SPME), 4246 aptamer-based
sorbent extraction,*’” microextraction in a packed syringe (MEPS),* and several types of liquid
phase microextraction (LPME) including single-drop microextraction (SDME),*** hollow fiber
liquid phase microextraction (HF-LPME)>** and dispersive liquid-liquid microextraction
(DLLME).*® The SPME approach is solvent free, simple, and rapid showing potential to overcome
several difficulties associated with conventional extraction methods.*® Aptamer-based extraction
exhibits high selectivity and recovery efficiency, making its combination with IMS ideal for
analysis of compounds like tetracycline in biological fluids.*” To avoid sample carry-over and fiber
degradation associated with SPME, single-drop SDME approaches were developed.®’ Extraction
of the analyte from an aqueous sample can be performed by LPME, in either a two-phase mode or
a three-phase mode. In two-phase LPME, the analyte is extracted into a water-immiscible organic

solvent that has been immobilized in the pores and lumen of the hollow fiber.%® In three—phase



LPME, the analyte is extracted through the water-immiscible organic solvent into another aqueous
phase, present in the lumen of the hollow fiber. To combine sample extraction and pre-
concentration in a single step, DLLME can be used.>® In each of these strategies the main aim is
to simplify the complexity of the sample to enhance selectivity and/or quantitation capabilities for

the species of interest.

I.11.11. lonization Sources

Several ionization sources have been developed for IMS analysis (Figure 1.4). They are
generally classified by the initial phase of the sample presented to the source. These sources date
back to the discovery of x-rays in 1895 and their subsequent utilization as an ionization source
described by Thompson and Rutherford starting in 1896 (Figure 1.1). Recent research in ion source
technology parallels that with MS based on applications such as in defense/security and
biology/medicine.®%-®3 Each source offers unique advantages and limitations for specific types of
compounds. In the following section, we only focus on common contemporary and emerging ion
sources for IMS: radioactive decay, electric fields, and light radiation.
I.1L.1L.1. lonization by Radioactivity

Several radioactive elements have been used to ionize molecules for IMS analysis
including tritium (®H), americium (**Am), and nickel (®3Ni).8*7° Tritium has lower radiation
hazards than ®3Ni sources and a high ionization efficiency.”® In 2015, a ®H source was utilized with
IMS to monitor undesirable flavors in food samples where temperature and light are the most
influential factors in degrading species such as lipids in linseed oil and milk samples.”> Americium
is present in small amounts in many smoke detectors as an alpha particle source.” It has been used

for detection of various chemical agents.”*" Radioactive Ni produces beta particles and used to
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be the preferred ionization source for most IMS experiments,® particularly for studies of aromatic
compounds, chlorocarbons, and chemical warfare agents, among others.”®8! One of the main
advantages of these sources is that they do not require an external power supply. They provide a
stable, continuous source of ionization for years, easing portability and utilization in the field. The
drawbacks of radioactive ion sources are the necessity of regulatory leak tests for safety purposes
and low ion currents relative to other sources.®? These inherent limitations have led to
nonradioactive ionization devices. Yet, one of the most common sources in stand-alone or field
portable IMS devices is the ®Ni foil source. When nitrogen or air is used as the IMS drift gas, the
following reactions prevail:®*
N,+B->Nif+p +e” (1.2)
Here, p represents the beta particles emitted from the ®3Ni source. The primary N2* ion
initiates a series of ion-molecule reactions with trace amounts of H>O, NHs, and NO. These
secondary ion clusters, or reactant ions, are (H20)aNH4*, (H20)sNO™, and (H20),H"*. When the
gas-phase sample containing the analyte is introduced into a region preceding the IMS drift cell,
its components are ionized via ion molecule reactions with the reactant ions. The dominant reaction
pathway of analyte ionization is through proton transfer which occurs when the analyte, M, has a
greater proton affinity than that of the reactant ions. Reactions (1.2)-(1.6) show processes that

occur to produce the various analyte ions observed in positive ionization mode.

(H,0),H* + M - MH* + nH,0 (1.2)
(H,0),NHj + M - MH* + NH; + nH,0 (1.3)
(H,0),NO* + M - M* + nH,0 + NO (1.4)
(H,0),NO* + M - MNO* + nH,0 (1.5)
(H,0),NO* + M - (M — H)* + HNO + nH,0 (1.6)

10



In negative ionization mode, the formation of reactant ions is much more complicated. If
the drift gas is pure nitrogen, thermalized electrons are produced. Electronegative analytes can
capture these electrons, becoming negatively charged ions. Yet, when the drift gas is air instead of
pure nitrogen, very diverse reactant ions are produced. Two groups identified reactant ions mainly
as O, and (H20)0z, with less prominent reactant ions including CI-, (H,O)OH™ and NO, 838
Also in some of these studies, hydrated oxygen ions, O~ and O>-O, were found to be the most
abundant ionic species. Moreover, significant quantities of CO3™ and O2-CO ions and trace
amount of NO2~ were observed. In the presence of oxygen, the following reactions can occur,

producing negative analyte ions via ion molecule reactions.

0,+ e > 05 1.7)

H,0 + 0; < 05 - H,0 (1.8)

H,0 + 05 - H,0 & 03 (H,0), (1.9

05 (H,0), + A< A~ +nH,0 + 0, (1.10)
05 (H,0),, + A< A0,” + nH,0 (1.11)
05 (H,0),, + A < (A— H)™ + neutral (1.12)

Importantly, it is possible to change reactant ions or ion molecule reactions by introducing
a dopant gas into the drift tube in either positive or negative ionization mode. This method can
enhance sensitivity and selectivity of IMS. Using reagent or dopant gas in IMS can suppress
background interferences, simplify IMS spectrum, and enhance resolution by controlling the
reactant ion composition.85-8
I.1L1L1I. lonization by an Applied Electric Field

Electric fields and currents can be applied in different ways to ionize molecules. This has

led to development of a wide variety of electric field-based ionization methods for IMS. A few
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common sources for operation at atmospheric pressure are corona discharge (CD), low temperature
plasma (LTP), and electrospray ionization (ESI). The reader is directed to several excellent
references for details on other common sources, including electron impact (El),%"# secondary
electrospray ionization (SESI),8 desorption electrospray ionization (DESI),'*%92 atmospheric
pressure chemical ionization (APCI),%* and direct analysis in real time (DART).2929697
Schematic diagrams for a selection of source arrangements operated at atmospheric pressure are
depicted in Figure 1.5. The characteristics of these techniques are dramatically different. For
instance, three approaches (i.e. CD, LTP, and ESI) are described here to illustrate the extent of
strategies where electric fields are utilized to achieve different functions in desorption/ionization
of samples: electrical breakdown, plasma formation (CD and LTP), charge separation (ESI).

Compared to radioactive ion sources, CD ionization provides better sensitivity, higher
signal-to-noise ratio, and a wider linear dynamic range. ® Yet, CD exhibits a time-dependence on
signal quality due to erosion at the discharge point.®® In negative ion mode, CD ionization is
challenging to use due to formation of NOx negative ions, which in particular instrumental
arrangements can be difficult for four reasons.

First, the NOx cluster ions have very high electron affinities (ca. 3.9 eV) that can quench
the formation of product ions for samples of halogenated compounds. In contrast, when %Ni is
used in negative mode, an ion peak corresponding to [(H20)nO2]" (electron affinity ca. 0.45 eV) is
the reactant ion peak that can mitigate this problem. Second, the high background of extrinsic NOx
ions arising from the ionization source precludes the analysis of NOx should these species be those
desired for analysis. Third, the high background of NOx species can result in spectral overlap of
other analytes of interest in the mobility spectrum. Finally, NOx ions can in some cases form

coordination complexes with analytes of interest resulting in complex spectra. To overcome these
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draw ions toward the drift region. A shutter grid is used to gate discrete ion packets to initialize
each separation event. The ring electrodes are connected via a resistor network, and an electric
potential is applied across the stack of ring electrodes. An aperture grid helps prevents bias of the
detector electrode, at which ions are terminated. (B) Corona discharge ionization source where
sample gas is introduced orthogonally to the discharge needle. (C) Corona discharge ionization
source where sample gas is introduced coaxially to the discharge needle. (D) Electrospray
ionization source in which a liquid sample flows through a charged needle. Coulombic repulsion
draws the liquid sample into a Taylor cone which then disintegrates into a highly charged aerosol.
(E) Atmospheric pressure chemical ionization source where a liquid sample is nebulized with
auxiliary gases and passed through a heater. In the corona discharge region, electrons are
transferred from solvent molecules to the corona electrode and undergo further secondary reactions

to ionize the neutral analyte species.
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challenges, a pulsed CD is used to coordinate the ion generation with the entrance shutter pulse to
the drift tube.'® Alternatively, a more recent point-in-cylinder geometry may be utilized to
establish a continuous CD, while suppressing the formation of NOx ions.%

As discussed earlier, an LTP may be modified for use as an ionization source for IMS.??
The LTP method utilizes dielectric barrier discharge to create a cooled plasma. It operates through
numerous microdischarges, which generate chemically active species such as high-energy
electrons, metastable neutrals, and radical ions. 1°2 The temperature of the surface area in contact
with the plasma plume is nearly 30°C, resulting in no surface damage due to heating. In addition,
the high voltage electrode is electrically isolated from the direct discharge region and therefore,
the sample is isolated from discharge arising from electrical breakdown. These features make the
LTP suitable for the analysis of surfaces, such as biological tissues, that would be negatively
impacted by heating or discharge. In one such application, an LTP was described for forensic
applications in characterizing illicit chemicals directly from skin.%

As a soft ionization method, ESI is able to ionize large molecules without
fragmentation.8%194-106 |n 2007, a design was developed for ESI-IMS in which a desolvating gas
was introduced as a means of solvent evaporation where the ESI needle was relocated outside of
the desolvation region, allowing for increased heating without causing clogging of the electrospray
needle in the analysis of environmental pollutants and drugs.'®” Collectively, these approaches
have been useful for environmental monitoring, biomedical diagnostics, and drug discovery.
Electrospray ionization is well suited for online integration of sample effluent from condensed
phase pre-separation methods such as LC, SFC, and capillary electrophoresis (CE) with IMS or
IM-MS. In ESI, samples are perfused through a conductive capillary where an aerosol is generated

through coulombic repulsion in a strong electric field. Ultimately, as the droplets evaporate, under
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ambient conditions or using a heated gas, intact ionized species are directed into the IMS or IM-
MS.
[.1LILIIL. lonization by Electromagnetic Radiation

The two most common means for desorption and/or ionization of analytes by
electromagnetic radiation are matrix assisted laser desorption/ionization (MALDI)!%113 and
photoionization (P1).11411" The former is a soft ionization technique for the analysis of large intact
molecules. In this respect, MALDI is similar to ESI. While ESI generates ions from the solution
phase, MALDI creates ions from the solid phase.

In MALDI, the analyte is co-crystalized with a matrix that serves to absorb the radiation
from a pulsed laser to heat the matrix. Importantly, the laser energy is not absorbed by the analyte,
thus avoiding analyte fragmentation. Following irradiation at a suitable wavelength, the heated
matrix rapidly expands from the surface carrying with it the analytes to create ions from the ejected
plume of material.

Since the first reports on the combination of MALDI with IM-MS, MALDI has been a key
source for biomolecular analysis using IMS.2%118-123 |n contrast with ESI, MALDI produces ions
of lower charges exhibiting narrower distribution. Importantly, MALDI-based strategies are highly
applicable to imaging intact biomolecules,*?*2" similar to laser ablation-inductively coupled
plasma MS (LA-ICP-MS) techniques. In more recent applications, datasets for both LA-ICP-MS
and MALDI-IM-MS have been integrated for a mouse model of Parkinson’s disease, providing
both quantitative maps of elemental distribution across brain slices with LA-ICP-MS with intact
biomolecular distribution across adjacent slices using MALDI-IM-MS.?’

Photoionization is less commonly used than MALDI, but this type of source has shown

utility in various studies of gaseous analytes over past decades.'411"128 Using lasers and/or
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discharge lamps, ion excitation at resonant wavelengths, corresponding with the ionization
potential of the molecules, provides excellent selectivity for the analyte directly in the ion source
itself. In one ambient pressure IMS study, several organic compounds were studied via
multiphoton ionization, with two photons absorbed per ionization event and a resulting spectrum
that included one-photon absorption information that could be used to uniquely identify
molecules.’* Dopants such as toluene, acetone, and benzene, among others, have been used to
improve sensitivity in IM studies through a combination of photoionization and subsequent

chemical reactions.!*>*1/

[.ILI11. lon Mobility Analyzers: Space-Dispersion and Time-Dispersion

There is a key difference between pressure regimes essential for IMS versus MS analyzers.
The MS analyzers often require mean free path lengths corresponding to collision-free-
environments (e.g. 10 to < 10 Torr). In contrast, short mean free path lengths and high collision
frequencies are essential to promote analyte separation in IMS (e.g. several Torr to atmospheric
pressure). Yet, IMS analyzer analogs exist now for virtually all MS analyzers.®® As noted in
Section L1, similar to MS techniques, IMS devices utilize space-dispersion (e.g. ion filtering in
quadrupoles) and time-dispersion (e.g. near-simultaneous detection in TOFMS). A brief overview
of space-dispersive techniques is presented here. A theoretical treatment for time-dispersive
approaches is presented in Section L111.

Spatially-dispersive IMS separation techniques include FAIMS, DMA, and AIMS. In
FAIMS, an asymmetric electric field is applied between two electrodes, typically at electric field
strengths of 10-30 kV/cm and frequencies of 0.2-2 MHz. The periodic asymmetric field is

perpendicular to the direction of ion travel and ions are separated based on the difference between
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their inherent mobility values at high and low electric field strengths.®2%130 Atmospheric pressure
FAIMS devices have generated considerable interest in combination with a variety of MS
instruments, because they offer both higher sensitivity, by focusing ions at the MS interface, and
increased structural selectivity. An excellent review article presents the historical development,
fundamentals, and applications of FAIMS-MS.®3! Still there is extensive research to identify the
central physical processes of ion separations in FAIMS.>132133 Consequently, it is not presently
possible to write a closed equation to predict the separation in FAIMS, as will be developed below
in Section LIl for electrostatic-field DTIMS. CCS measurements using FAIMS devices are
currently derived by calibration against literature values for the CCS obtained on uniform-field
DTIMS instruments.13

In addition to the asymmetric field in FAIMS, a direct current (DC) potential, termed the
DC compensation voltage (CV), is present between the electrodes. The DC voltage magnitude is
scanned during the experiment to obtain a CV spectrum. The operational principles of FAIMS are
illustrated in Figure 1.6, which shows CV spectra acquired from a CD-FAIMS-MS instrument.**®
A recent development in FAIMS technology is a new manifestation of the technique, the ultra
FAIMS microchip spectrometer, which forms an array of parallel channels (35 pm x 300 pum)
across which an asymmetric dispersion field is applied.'®® The ions are transmitted through the
chip by applying a CV. The separation of ions in FAIMS is orthogonal to LC or MS, therefore this
pre-separation gives the option of selecting ions of interest, allowing them to pass through the chip
while blocking unwanted interference ions.

In DMA, the electric field is applied perpendicular to the gas flow. At a condition specific
for a particular analyte mobility, the ion will travel a specific distance dependent on the gas flow

and mobility such that it will be transmitted through a slit. By scanning the gas flow rate or the
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Figure 1.6: (A) Shows the dependence on electric field strength for three ions of differing
mobility. As the electric field increases the (i) ions’ mobility also increases, the (ii) ions’ mobility
increases to a maximum then decreases at higher fields, and the (iii) ions’ mobility decreases. Kn
is the ion mobility at high voltage. (B) Shows a diagram of a FAIMS separation and an example
ion trajectory through the mobility region. A stream of gas carries an ion between two parallel
plates, where the lower plate is grounded and the upper plate has an asymmetric waveform applied,
V/(t). The time at low voltage is greater than the time at high voltage (tiow > thign). The trajectory
shown is that for an (i) ion from (A), for which Ky > K. The (ii) and (iii) ions will have different
trajectories, thus the FAIMS instrument functions as an ion filter. (C) A single ion monitoring,
corona discharge-FAIMS-MS compensation voltage spectrum of ethylamine, diethylamine, and

pyridine. The four primary peaks in the TIC are interpreted to be (H20)nH*, N2(H20)H™,
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C2H7NH", and CsH11NH*. (A) and (B) Adapted with permission from R. W. Purves and R.
Guevremont, Analytical Chemistry, 71, 2346-2357 (1999). Copyright 1999 American Chemical
Society. (C) Adapted with permission from R. W. Purves, R. Guevremont, S. Day, C. W. Pipich,

M. S. Matyjaszczyk, Rev. Sci. Inst. 69, 4094-4105 (1998). Copyright 1998, AIP Publishing LLC.
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electric field, different species can be brought to the entrance of the slit. In AIMS, an electric field
perpendicular to gas flow is applied on two series of parallel electrodes. These electrodes can
simultaneously detect positive and negative ions. An AIMS does not use a shutter grid and the
neutral gas flow rate is about 1-2 L/min.%® The ions are separated based on their mobility. High
mobility ions hit the first electrodes, ions with low mobility collide with the latter electrodes, and
the current in each electrode is measured to determine the abundance of each type of ions. The
limitations of AIMS are low resolution and limited dynamic range.

Temporally-dispersive methods of IMS include DTIMS and TWIMS.22 The key difference
between the two techniques is that electrostatic and electrodynamic fields are utilized for DTIMS
and TWIMS, respectively. Schematic diagrams of both DTIMS-MS and TWIMS-MS are provided
in Figure 1.7, which share many similarities in their instrumental implementation. While further
details on DTIMS are provided in Section I.111., a recent review of time-dispersive instrumentation

offers a treatment of TWIMS and future developments in instrumental architecture.*®

[.11.1V. lon Mobility-Mass Spectrometry

Although determination of mobility with IMS alone can be helpful in identifying well-
characterized compounds, definitive identification of complex sample components is enabled by
combining IMS with MS. Among the IMS hyphenated techniques, IM-MS, which was first
commercialized as plasma chromatography, is becoming a popular analytical technique in many
research fields, as seen in Figure 1.1,8:13:222:235,137-139

Since the mid-90s, several improvements and developments in IM-MS instrumentation
have resulted in extensive adoption of the technology in three key research areas, (i) structural

biology through interpreting ion structure (IM) and identification (MS) with computational
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tube (TWIMS) arrangement. In both arrangements, hypothetical time courses are shown to
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illustrate the temporal separation of smaller and larger collision cross section ions. Adapted with
permission from J. C. May and J. A. McLean, Analytical Chemistry, 87, 1422-1436 (2015).

Copyright 2015 American Chemical Society.
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approaches, (ii) rapid separations for complex sample analysis, and (iii) integrating broad scale
omics analyses.?426:123.137.139-160 Thoygh for decades IM-MS has been used mainly in academic
institutions for research, several commercial versions have become available in recent years,
including TWIMS-MS in 2006, trapped IM-MS in 2011, and DTIMS-MS in 2014.1%

The aim of this chapter is to highlight the potential avenues primarily for stand-alone IMS
platforms with broad applicability for ICP-related research, while IM-MS is discussed as it directly
pertains to the subject matter described. Throughout the chapter, the reader is referred to recent

manuscripts, reviews, and books to highlight advances in IM-MS.

I.111. Theory and Fundamentals of Time-Dispersive lon Mobility Spectrometry.

Several excellent books and reviews outline the theory of IMS and the derivation of ion-
neutral CCS measurements from IMS profiles using the kinetic theory of gases.!-347:161162 Thjs
section summarizes several key equations and practical considerations for determining ion-neutral
CCS values, or ion surface areas, in uniform electrostatic-field DTIMS experiments. This
treatment is based on a previous description utilizing the kinetic theory of gases for determining

and understanding DTIMS CCS measurements. 163

[.1I11.1. Transforming Drift Time to Collision Cross Section
The movement of ions in a weak electrostatic-field (E) is measured as the ion drift velocity
(va) and is related by the proportionality constant, K, which is the mobility of the ion in a particular

neutral gas:

Ve =KE (1.13)
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The drift cell is of a fixed length (L), and therefore the velocity of the ion packet is found by
measuring the drift time (tq) of the ions across the drift cell. In practice, the parameter that is
physically measured is the arrival time distribution (tatp) of the ion packet at the detector, which
is the sum of both the drift time (tq) of the ion packet through the IM cell and the time the ion
packet resides in other regions of the instrument (i.e. in the ion source, ion optics, and MS regions,
etc.). For example, the measured time in IM-MS typically constitutes both the time in the IM and
MS analyzers and is measured as a single time following both analyzer regions. In stand-alone
IMS instruments, a correction may not be necessary when grids are used at the entrance and exit
of the drift region, usually of Bradbury-Nielsen gate (BNG) design.%*

For IM-MS instruments, the evaluation of the amount of time the ion packet spends outside
of the drift cell is critical, and is usually empirically determined by performing the IM separation
at several electrostatic-field strengths by changing the potential (V) applied across the length of
the drift cell. As illustrated in Figure 1.8, the tarp for each of the separations is determined and
plotted as a function of the inverse of the IM electric field strength. Provided the separations are
performed using sufficiently weak electrostatic-fields (where K remains constant), the points can
be fitted by a linear regression where the y-intercept corresponds to the residence time that ions
spend outside the drift cell, that is, the limit of infinitely fast ion velocities across the 1M cell or tq
= 0. By subtracting this time from tarp, the measured times represent tq across the IM cell. For the
most accurate results, the drift time correction should be evaluated for each component in the IM
profile. The motivation for evaluating individual drift time corrections arises from additional ion-
neutral collisions in the differential pumping regions at the entrance and/or exit of the IM drift cell,
especially when additional gating such as BNG gates are not utilized in the IMS region. In the

extra-drift cell regions of IM-MS the gas dynamics typically transition from viscous to molecular
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Figure 1.8. Procedure for transforming tatp for ion mobility signals to tq. (left) The arrival time
distribution is measured sequentially at several increasing electric field strengths. By selecting the
time at the apex of the IMS profile, the tatps are plotted as a function of 1/V, where V is the strength
of the electric field applied across the drift cell (right). A linear best fit to these points indicates
that the separation is performed under low-field conditions, where the y-intercept represents the
time the ion packet resides in regions of the instrument outside of the drift cell (tarift time correction).
Adapted with permission from J. A. McLean, J. A. Shultz and A. S. Woods, Richard B. Cole, Ed.

John Wiley & Sons, 411-439 (2010). Copyright 2010, John Wiley & Sons.
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flow, e.g. at the exit aperture of the drift cell at 2-10 Torr to the high vacuum (ca. 10 Torr) of the
mass spectrometer.

In evaluating K, the drift velocity of the ion packet also depends on the pressure (p, Torr)
of the neutral drift gas and the temperature (T, Kelvin) of separation. The latter dictates the mean
free velocity of the drift gas, which influences the ion mean free path and hence collision frequency
of the ion-neutral pair. Thus, K is conventionally reported as the standard or reduced mobility (Ko),
which normalizes the measured mobility to standard temperature and pressure conditions (i.e. 0

°C and 760 Torr):

p 273

7760 T (1.14)

When IMS is used to obtain structural information about the ion, separations are performed
using low electrostatic-field conditions (relative to the ratio of electrostatic-field to neutral gas
density). If a Maxwellian distribution function of velocities in thermodynamic equilibrium is
assumed, then the mean thermal velocity (Vmean) Of a gas is:

1
(8ij2
Vmsan il
M

r

(1.15)

If the electrostatic-field is sufficiently low, the ion velocity in the gas will be the random
motion of ions at the temperature of the gas, over which a small velocity component in the direction
of the electrostatic-field is superimposed. Provided these conditions are met, the mobility
separation is achieved under so-called “low-field” conditions. At higher electrostatic fields, the
ion velocity distribution depends less strongly on the temperature of the separation, and the mean
ion energy increases as ions traverse the drift region. Consequently, K is no longer constant, i.e.

the plot in Figure 1.8(B) is no longer linear and is better modeled by the curves in Figure 1.6(A),
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and depends on the specific ratio of the electrostatic-field to the gas number density (E/N). This
forms the basis for FAIMS.

When the mobility separations are performed in low-field conditions, i.e. constant K, and
the collisions can be assumed to be purely elastic (e.g. billiard balls), then the mobility is related

to the CCS of the ion-neutral pair:

Ko =

(182)% ze [1 177760 T 11
p 273N, Q

16 (k,T)2lm m,

—+
m m
Where these parameters include the ion charge (ze), the number density of the drift gas at

n

(1.16)

STP (No, 2.69 x 10 cm™), the reduced mass of the ion-neutral collision pair (ion and neutral
masses of m; and mn, respectively), Boltzmann’s constant (kp), and the ion-neutral CCS (Q).
Inspection of Equation 1.16 shows that the mobility of an ion is inversely related to its CCS, or
apparent surface area/size, which provides the ability to interpret analyte ion structure. Substituting

for Ko in Equation 1.16 and rearranging to solve for the CCS yields:

o 8a): ze [1 1TiETR0 T 1
16 (kTYelm m, ] L p 273N,

This is the typical functional form of the equation to solve for CCS. These equations are

(1.17)

derived from classical electrodynamics, and as such, great care should be exercised in the
dimensionality of the units used. Specifically, the units for E are expressed in cgs Gaussian units
(i.e. statvolts cm™, where 1 statvolt equals 299.79 V). Note that statvolts cm™ is equivalent to
statcoulombs cm and that elementary charge, e, is 4.80 x 100 statcoulombs.

In both Equations 1.16 and 1.17, ion-neutral collisions are considered completely elastic
processes. Under these conditions, the CCS obtained is termed the “hard sphere” CCS. Only

momentum is transferred between the two collision partners, conserving Kinetic energy.
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Comparison of empirically-determined cross sections with computationally-obtained theoretical
results has shown the hard sphere approximation is best suited for analytes larger than ca. 1000
Da.159165-188 However, as the size of the analyte approaches the size scale of the drift gases used
for separation, long-range interaction potential between the ion and neutral must be considered for

accurate results.168-170

I.111.11. Factors Affecting Separation in lon Mobility
[.ILILI Influence of Gas Selection on Separations

As discussed above, for structural studies using the hard sphere approximation, the long-
range interaction between the ion and neutral should be minimized. Accordingly, helium gas is
typically used, when possible, for two primary reasons: (i) reduction of long-range interaction
potential from low polarizability (ca. 0.21 x 10%* ¢cmq), and (ii) enhancement of ion transmission
efficiency from relatively low mass (ca. 4 Da), i.e. lessening scattering losses. Nevertheless the
selection of the neutral drift gas composition in IMS can alter the ion separation selectivity and
absolute drift times, which is conceptually similar to the selection and tuning of mobile-phase
composition in HPLC separations. Alternatively, reactive gases can be used as a complementary
probe of analyte ion structure, or as reagents for probing the structural effects of ion-molecule
reactions.

As a separations tool, the drift gas composition used in an unreactive mode can be tuned to
serve several purposes including (i) changing the mobility of the analyte (i.e. for faster or slower
drift times), and (ii) altering selectivity for specific analytes on the basis of ion-induced dipole
interactions. Based on Equation 1.16, the mobility of an analyte decreases with increasing drift gas

mass, yielding larger drift times for more massive neutrals (ts, Ar > N2 > He, etc.). Markedly, this
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is beneficial at the limit of increasing analyte ion mass, as the reduced mass term more closely
approximates the mass of the neutral gas. For high throughput separations, faster drift times are
advantageous. However, for accurate determination of CCS measurements, slower drift times are
desirable because this minimizes the relative contribution of ion residence times outside of the
drift cell to the tatp. A further instrumental motive for changing the rate at which analytes elute
from the drift cell is to increase the number of time points sampled across each IM peak to enhance
the accuracy of the profiles.

In the separation of small molecules, the utility of tuning the selectivity of mobility
separations (elution order of analytes) has been explored on the basis of drift gas polarizability.1:-
174 By utilizing more polarizable drift gases, the long-range potential between the analyte ion and
drift gas is promoted in the form of ion-induced dipole interactions. The contribution of ion-
induced dipole interaction to Ko is defined as the polarization limit, or Kyo, which represents the
mobility of an ion, in a gas of particular polarizability, in the limit of diminishing energy and
temperature: 16117

13.853
(crg 1) (1.18)

Koot =Ko(E/N -0, T —0)=

Here, aq is the dipole polarizability of the neutral gas and W is the reduced mass of the ion-
neutral collision pair. For smaller analyte ions (e.g. < ~500 Da) ion-induced dipole interactions
can exhibit a marked effect on analyte elution order. For example, the IM-profiles in Figure 1.9,
for the separation of chloroaniline (M; = 128 Da) and iodoaniline (M, = 220) in increasing
polarizable gases (He, Ar, N2, and CO3), have gas-phase polarizabilities of 0.21, 1.64, 1.74, and
2.91 x 102* cm?, respectively.'”* Although iodoaniline is nearly twice the mass of chloroaniline,

its mobility serially increases with drift gas polarizability as indicated by the inversion of the IM-
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Figure 1.9. lon mobility spectra of chloroaniline and iodoaniline in each of the four drift gases.
As the polarizability increases, the velocity of the chloroaniline ion decreases relative to the
iodoaniline ion. This change allows one to use drift gas polarizability to change the long-range
interaction potential and hence separation order in IMS. Adapted with permission from G. R.
Asbury and H. H. Hill Jr., Anal. Chem. 72, 580-584 (2000). Copyright 2000 American Chemical

Society.
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profiles. Likewise, there is extensive value in modifying the drift gas to enhance reactive ion-
neutral collisions for tailoring the separation parameters.

Studies of reactions between gas-phase ions and neutrals are important in many areas such
as atmospheric, inorganic, and physical organic chemistry. Typically, such reactions occur by
adding a small amount of a reactive gas to an excess of inert drift gas. Assuming the collision
frequency with the reactive gas, or conjugate product species is sufficiently low, the reverse
reactions are considered to be negligible. Though there are many studies on atomic and small
molecule ions with reactive gases,>’ few studies utilize reactive collisions for the study of
biomolecules. The utility of H/D exchange in the drift cell has been used to explore the effect of
protein structure on the number of exchangeable hydrogen atoms.'’®"7 Importantly, H/D exchange
can provide complementary information regarding the analyte structure by changing the partial
pressure of D20 in the He drift gas. Measurements of H/D exchange following drift cell elution or
complementary to CCS determination have shown great utility in structural interpretation, 7818
[.ITLILIL Influence of Electrostatic Field-Strength on Separations

Independent of the gas type selected for ion mobility separations, the electrostatic-field
strength applied across the drift cell can be used to tailor: (i) ion drift velocity, (ii) IMS resolution,
and (iii) analyte selectivity. For a given K, the drift velocity is proportional to E as indicated by
Equation 1.13.

Typically the resolution in ion mobility separations (ta/Atg2) is limited by longitudinal
diffusion in the drift cell. For separations under low-field conditions, the diffusion-limited
resolution is described by Equation 1.19 for an initially narrow pulse of ions injected into the drift

tube: 161
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Where, as above, the parameters are ion drift time (tq), width of the mobility peak at half
maximum (4tq12), ion charge (ze), potential voltage drop across the drift cell (V), Boltzmann’s
constant (ks), and drift gas temperature (T). This indicates IMS resolution can be improved by
increasing the voltage applied across the drift cell, independent of E. Practically, one may increase
the drift cell length or use higher drift cell pressures to avoid breakdown of the gas at high voltages.
High resolution (ca. R ~ 100-200) IM-MS instruments have been developed for operation at high
pressure and high drift voltage.!%>8 If the ion injection pulse width is not sufficiently short,
relative to the resolution predicted at the diffusion limit, additional terms are incorporated to
account for it,182:183

As stated in Section LIIL.1 for Equation 1.17, we assume ion separations are achieved in
the low-field limit. This means the imparted energy to the ions by the electrostatic field is small

compared with the thermal energy of the system. This is qualitatively described by:?

[m” + ﬂJzeE/I << kgT
m m

I n

(20)
Here, 1 represents the mean free path of the ion in the direction of the electrostatic-field.

Furthermore, 4 is inversely proportional to the product of CCS and pressure. Therefore, specific

E/p ratios for maintaining ion separation increase in the low-field regime with Q. In the separation

of atomic ions, the E/p ratio should be maintained at < 2 VV cm™ Torr.2 Larger ions exhibit low-

field behavior even at E/p ratios up to 70 V cm™ Torr? or greater.18*

[.ILILIL Influence of Temperature on Separations

Structural features of mass-selected analyte ions can be studied by measuring CCS at
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varying temperatures to acquire structurally-resolved thermodynamic and kinetic information.18-
221 Although gas composition and electrostatics are in principle tailorable on all instruments, ion
mobility separations at reduced or elevated temperatures require specialized instrumental
platforms that are not currently commercially available. The reader is directed to several studies
that demonstrate the potential of utilizing variable temperature separations to elucidate
structurally-resolved information, expressly in four areas: (i) effects of desolvation and stepwise
hydration on molecular structure,8%1%! (ii) small molecule structure and reaction chemistry,92-2%8
(iii) biomolecular structural investigation,?%%-21> and (iv) electronic-state elucidation.2?1:216-221 The
concepts developed in the preceding sections are generally applicable for IMS and IM-MS
separations in uniform electrostatic-fields, i.e. for separations performed at constant K and in low

E-fields or at variable temperatures using DTIMS.

I.1V. Multidimensional Separation Techniques

In hyphenated techniques, an IMS can be used as a detection system after a
chromatographic separation or as a tool for pre-separation of ions before a mass spectrometer. To
date, various chromatographic systems such as LC, GC, and SFC have been combined with IMS.
One of the early challenges of stand-alone IMS instruments was matrix interference. Importantly,
the pre-separation of compounds achieved in chromatographic techniques decreases the number
of components present in the reaction region at a given time, simplifying the ion molecule reactions
in the ion source. Many chromatographic detectors do not offer additional analyte information,
beyond retention times, and can only separate compounds with certain properties. An IMS
detection system adds a dimension of separation (drift time) and can improve identification of

species.
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I.IV.1. Gas Chromatography-lon Mobility Spectrometry

Since its inception in the late-70s, IMS has also been considered as a potentially unique
detector for GC.137222 Unlike MS, no vacuum system is required in IMS, which offers the benefits
of simplicity, portability and reduction in size, weight, power, and cost. Consequently, IMS may
occupy a significant position as a sophisticated detector for portable gas chromatographs in field
analysis. These advantages have resulted in GC-IMS to be an acceptable analytical tool for the
analysis of samples in complex matrices and for use in the international space station.?23226 Many
GC-IMS systems utilize ®Ni as the preferred ion source, likely owing to the commensurate low
power and ease of use of the source. Since the early 1980s, the physical coupling of capillary
columns to ®Ni-IMS systems has been developed to correct for design complications and improve
system performance.’2%: 228229281 More recently, a CD-IMS with a novel sample inlet system,
similar to that shown in Figure 1.5(C), was introduced as a detector for capillary GC.2* Instead of
the commonly used solid needle for CD generation, a hollow needle was used, providing direct
axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in
reaction of effluents with reactant ions on the upstream side of the CD ionization source. This
scheme offered higher ionization efficiency. Additionally, the volume of the ionization region was
reduced to minimize the residence time of compounds in the ionization source for enhanced
chromatographic resolution.

In the multi-capillary column (MCC) technology, up to 1000 capillary columns with a
diameter of 40 pm are bundled into a single column of ~2 mm diameter. This arrangement offers

relatively high flow rate and sample capacity which are useful for GC-IMS. The combination
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MCC-GC-IMS offers higher resolution, faster separation, and lower detection limits (down to the

ng/L and pg/L range) relative to conventional capillary GC-IMS.233.234

[.IV.I1. Liquid Chromatography-lon Mobility Spectrometry

The LC-IMS technique was first introduced in the early-70s,2% but its use was complicated
by requirements of excessive volumes of effluent solvent. It was not until 1998 that HPLC-IMS
was first reported.?® In that design, the transfer line was connected between a split tee and a waste
bottle, directing only 10% of the effluent to the IMS. Reduced mobility constants were reported
for 21 carbohydrates including simple sugars, sugar alcohols, and amino sugars. The quantification
limits were 5.8x101* and 8.2x107! mol for D (+)-cellobiose and L-iditol, respectively. Two years
later, coronaspray IMS was used following reverse-phase liquid chromatographic separation to
obtain ion mobility spectra and chromatographic responses for para-hydroxy benzoic acid, isomers
of nitroaniline, and a mixture of acetaminophen, caffeine, and phenacetin.?*” Ultra-high pressure
liquid chromatography coupled with high-resolution nano-ESI-IMS has offered composite peak
capacities of 39 and 33 for benzodiazepine and triazine herbicide mixtures, respectively, in less
than 75 s. 2%

Currently, the most common interface is ESI-IMS combined with MS detection, first
reported in 2001.2° An LC-ESI-IM-MS schematic is shown in Figure 1.10. This system has
become a workhorse for multidimensional separations of complex peptide mixtures in many

laboratories for the broad scale analysis of complex biological samples.?40-242

[.IV.111. Supercritical Fluid Chromatography-lon Mobility Spectrometry

IMS has also been developed as a detector for SFC.2** Capillary SFC coupled to IMS has
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been used for the qualitative and quantitative detection of organic compounds.?*424 In these
studies, a ®®Ni ionization source was utilized without any modifier, CO2 functioned as both the
chromatographic mobile phase and the IMS drift gas and the amount of sample input was reduced
via a split restrictor.

The use of packed column SFC combined with IMS was proposed in 1991.24" It was found
that CO2 up to 40 mL min~t did not change the detector response. At higher flow rates, the intensity
of the reactant ions decreased, disappearing by 100 mL min~t. Conventional chromatographic
packed columns of 2-4 mm inner diameter are used at flow rates of several hundred milliliters per
minute, with only a small, split portion of effluent directed to the IMS. In 2013, a packed column
SFC was directly coupled to a continuous CD-IMS and used to determine testosterone,
medroxyprogesterone, caffeine, and theophylline.?*® This system incorporated design
modifications that offered the capability of introducing up to 2000 mL min~! CO; gas directly into

the IMS.

[.IV.1V. lon Mobility-Inductively Coupled Plasma-Mass Spectrometry

Recent years have seen an intense research effort focused on nanotechnology and, in
particular, the development of noble metal nanoparticles for a broad array of applications in
medicine, diagnostics, and drug delivery. In the synthesis of nanoparticles (NP), three critical
metrics define the efficacy of the NP constructs: (i) the core size of the NP, (ii) the surface
derivatization of the NP, and (iii) the concentration of NPs that are synthesized. IMS, IM-MS, and
ICP-MS each potentially play critical roles in evaluating these metrics, namely size and surface
characterization by IMS and IM-MS, and concentration of total metal in solution by ICP-MS.

Through characterization of size distribution and total metal concentration, the total NP
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concentration in solution can be calculated assuming a bonding configuration of the metal atoms
in the core of the particle and hence an average density.

Two strategies have incorporated IMS and IM-MS to provide detailed characterization of
NPs. These differ in whether ICP and IMS measurements are decoupled or are performed online.
248-260 |n a series of manuscripts, McLean and colleagues have described the use of IM-MS for
characterizing the surface derivatization of AuNPs through the selective use of MALDI-IM-MS
to probe the composition of thiolate-ligands decorating the surface of the particles.?®>2°® Using this
decoupled method, multivalent mixed-ligand AuNPs could be characterized on the extent to which
the ligand distribution on the surface was phase-segregated (e.g. Janus-like or presenting two
distinct faces), exhibited ligand domains, or was randomly distributed.?®

Pergantis and Coworkers have described online ESI-DMA-ICP-MS experiments, see
Figure 1.11, to analyze NP sizes.?®®%0 A condensation particle counter (CPC) determines the
number of each size NP. ICP-MS is used to assess the NP elemental composition. Using this
arrangement, online characterization of metals, metalloids, and halogens was performed for NPs
and for sizing proteins, DNA, and other inorganic NPs.?*® One of the technical challenges in the
online coupling of atmospheric pressure DMA was air introduction into the Ar ICP-MS. To detect
and size proteins and DNA using this approach, Csl was utilized to create molecular-Cs adducts,
yielding a linear response between protein concentration and Cs levels monitored by ICP-MS.
Importantly, this method offered a means for the quantitative analysis of large biomolecules.?®®
Hackley and colleagues extended these strategies by investigating loading of the chemotherapeutic
drug cisplatin on AuNP, where the IMS and ICP-MS approach provided both surface loading

information of the drug on the AuNPs and the stability of the drug-AuNP conjugate.?°
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I.V. Landscape of lon Mobility Spectrometry Applications

In the 1970s, IMS was introduced by Karasek under the name of “plasma chromatography”
for the trace detection of organic compounds.t®’ The technique was further developed by utilizing
a variety of sample preparation methods, chromatographic methods, and ionization sources in
combination with IMS. The coupling of IMS with MS has expanded the applications for analysis
of compounds in complex matrices in a variety of fields such as security, environmental
monitoring, biology, and medicine.’:85261-265

Currently, IMS is a common tool for detecting trace levels of explosives and chemical
warfare agents at airports, high security buildings, and other security check points. 26267 |MS is
one of the most widely used methods in military preparedness and commercial aviation security.?®8
As of 2004, over 50,000 handheld IMS analyzers had been distributed for chemical-weapons
monitoring within the armed forces of several nations, and more than 10,000 bench-top analyzers
were being utilized as explosives detectors in airports worldwide.?®® IMS is a powerful tool for
analysis, storage, processing, quality control, and characterization of foodstuffs.2%° This technique
has also been used for the determination of a broad range of chemical compounds in environmental
and industrial analysis.*® The combination of IMS with the different sample preparation techniques
provides suitable conditions for monitoring the chemical quality of water.?® A variety of aliphatic
and aromatic hydrocarbons, halocarbons, and oxygenated hydrocarbons in environmental and
industrial samples have been measured with IMS analyzers.®® Moreover, IMS is a widely used
diagnostic tool in analysis of drugs and volatile biomarkers.?’%-2"* For example, acetone is a
potential biomarker for identifying fat metabolism-related diseases using human and cow urine
samples.?”® Also, the combination of IMS and multi-capillary GC can be used for metabolic

profiling of human breath.?"
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lon mobility spectrometry is applied for diagnostic purposes and determination of drugs by
utilizing biological samples such as urine and serum.?>2’" In IMS, it is possible to enhance the
selectivity with dopant gases.®® Enzyme activity inhibition can be explored by IMS in cases such
as acetylcholinesterase inhibition by neostigmine and galanthamine.?’® In addition, IMS is an
efficient tool for studying enzyme reactions in drug screening and/or indirectly performing
enzymological studies.?’® This technique has been utilized for detecting and separating
ribonucleotides, ribonucleosides,?”® and analysis of bio—processes.?®? High resolution IM-MS is
used to determine metabolites in blood with the aim of gaining insight into many human diseases
and identifying diagnostic biomarkers.?8t With ESI-IMS, biomolecules having high molecular
mass and low volatility (such as amino acids, peptides, and proteins) can be separated and
identified.?®2 Separation and sequencing of proteins after digestion to peptides has also been
accomplished using IMS.?® Hill’s group has studied a number of peptides using atmospheric
pressure IM-MS.%* Clemmer’s group has made notable advances in LC-IM-MS instrumentation
including the development of tandem ion mobility spectrometry (IMS-IMS) for the analysis of
proteins and peptides in complex mixtures.?8>-287 Russell has designed and implemented MALDI-
IM-MS instrumentation for the analysis of peptide mixtures and protein digests.21:2¢8 Smith and
coworkers have also applied IM-MS for the analysis of complex proteomic mixtures,*® and made
a considerable improvement in the application of this technique.?® lon mobility has also been used
to resolve many different structural isomers widely ranging in size such as leucine and
isoleucine,?® as well as branching patterns in carbohydrates. %129

The coupling of LC-IM-MS offers an attractive approach for the rapid profiling of
hundreds of plasma proteins. A total of 731 unique peptide ions have been analyzed corresponding

to 438 unique proteins in plasma.?®® Using two dimensional LC separation, with strong cation
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exchange (SCX) and reverse phase LC, the protein profiling was achieved without separating high
abundant proteins in the plasma.?®® In a related study, plasma samples of five healthy humans were
analyzed with a preliminary identification of over 9000 proteins from more than 37000 unique
peptide assignments.?®* In this study, nearly 3000 proteins were identified with high confidence,

and, importantly, many were unigue,240:295-301

I.VI. Conclusions and Prospects

All of the main components of IMS instrumentation, including the ionization source,
analyzer, detector, and data processing, have been vastly improved upon in the past decades. The
combination of a variety of sample preparation techniques with stand-alone IMS instruments has
improved the selectivity of IMS for the analysis of complex samples. In addition, the coupling of
IMS with MS, and/or chromatographic techniques provides enhanced separation selectivity for
qualitative and quantitative analyses forever increasing sample complexity. We also envision that
the development of robust CCS databases would unite the community and increase confidence in
chemical identifications for users around the world. Furthermore, the ability of IMS to separate
isobaric analytes of differing mobilities empowers MS for broad scale analyses in biology,

medicine, and nanotechnology.
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CHAPTER II

THEORETICAL CONSIDERATIONS FOR SPATIAL MULTIPLEXING IN ION

MOBILITY SPECTROMETRY

[1.1. Abstract

Multiplexed strategies have been employed in genomics research and high-throughput
screening. Many studies, including in-situ analysis of environmental contaminants® and studies of
biological systems,? have recognized a need for improved figures-of-merit in ion mobility-mass
spectrometry (IM-MS). Temporally multiplexed IM-MS has been reported previously, but a
spatially multiplexed IM instrument has yet to be described.®>* A multi-channel IM-MS could
provide benefits in throughput, sensitivity, versatility, and temporal sampling resolution (for on-
line analyses), among others. The development of a novel multiplexed IM, which can be interfaced
with MS in the future, is therefore described to satisfy these needs. The spatially multiplexed IM
consists of arrays of eight ESI sources, resistive glass capillaries (RGC), tandem ion funnels, gated
apertures, drift tubes, and detectors, with all components housed in a single vacuum system,
utilizing one set of electronics, and supported by shared hardware, with analytical figures-of-merit
comparable with conventional single channel instruments in regards to IM resolving power,

sensitivity, and spectral reproducibility across each discrete channel.

IL.11. Introduction

I1.11.1. History
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lon mobility (IM) is a developing technique, though its roots go back to J. J. Thomson’s
work in 1895, when he observed the decomposition of neutral gases to ions, and the subsequent
migration of those charged molecules in an electric field.> In 1948, James Lovelock described a
device used to measure air currents, the ionization anemometer, which ionizes gas molecules by
irradiating a region of air between two electrodes with alpha particles. ® Lovelock observed that
current between the electrodes decreased proportionately to the velocity of the atmospheric gas
and that the mobility of ions was influenced by gas impurities, an early example of the possibility
of gas composition analysis via IM.

The development of the drift tube for IM measurements was pioneered by McDaniel and
coworkers in the 1960s.” Their drift tube apparatus consisted of 11 stainless steel electrodes
separated by Pyrex insulators and electrically connected via a resistor network, over which a direct
current (DC) voltage was applied. It was constructed primarily to study ion-molecule reactions,
but McDaniel recognized its potential for simultaneous IM and mass analyses. Before the close of
the decade, McDaniel redesigned his drift tube apparatus to mass-identify Hs" and H* ions and
measure their drift velocities in hydrogen gas.® In 1969, the method of measuring mobility was
commercialized as plasma chromatography,®° but this instrumentation somewhat discredited the
IM technique with poor performance and studies suggesting concentration-dependent results.!!
Research and development in IM faded in the following years with no refereed journal articles on
this technique published in 1980, but, fortunately for today’s IM community, this technology
would be revived.'> While the military found utility in developing handheld IM analyzers for
detection of drugs and explosives,*® the advent of novel ionization sources such as electrospray
ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) enabled generation of

macromolecular ions unprecedented in size, encouraging use of IM in studies of biomolecules.'**°
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[L11.11. Theory

Uniform field IM is a separation technique used to characterize a packet of gas-phase ions,
known as an ion swarm, based on their velocities under the influence of an electric field (E, V-cm
1y and in the presence of neutral gas molecules. Sample molecules are vaporized, ionized, and
pulsed into the analysis region, or drift tube. The drift tube consists of a stack of ring electrodes
electrically connected via a chain of resistors with a uniform DC electric field gradient applied
longitudinally. The drift tube is pressurized with a neutral buffer gas (i.e. helium, nitrogen, carbon
dioxide, etc.) to induce ion-neutral collisions as the sample ions traverse the tube. As shown in
Figure 2.1, larger ions experience more collisions, causing them to exit the drift tube later than the
smaller ions.

The velocity achieved by sample ions in the drift tube is termed the drift velocity (vq) and
is proportional to the magnitude of the electric field (E) via the ion mobility coefficient (K, cm?-V-
L.s71) as shown in Equation 2.1.1216

vy = KE (2.1)

This equation is a first approximation, applicable to the swarm but not to individual ions.
The ion mobility coefficient is constant at low electric fields where ions and buffer gas molecules
possess approximately equivalent thermal energies.'” High electric fields are not commonly used
because ions in them have significant energy between collisions, making K variable and the
relationship between vg and E nonlinear.

The vq of an ion is affected by both the temperature, T, and number density, n, of the drift
gas, so it is common to normalize the mobility coefficient to ambient temperature and pressure via

the following equation. 121°

Ko =K (273"01() (7601;07*1*) (2.2)
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Figure 2.1: Representation of an IMS separation. A) A packet of large (red spheres) and small
(blue spheres) ions is pulsed into the drift tube (brass cut rings), which is filled with a neutral buffer
gas (purple spheres). B) As the ions drift through the buffer gas, they are separated by their mobility
coefficients. C) The smaller ions will reach the end of the drift tube first, followed by the larger

10ns.
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Pressure, P, describes the drift tube buffer gas, and the reduced mobility, Ko, shares the
same units as K. The average gas-phase collision cross section of the swarm (CCS, Q, AZ), can
also be determined from measurement of the IM coefficient. This relation is described in Equation
2.3, from Chapman-Enskog kinetic theory, where q is ionic charge, u is the reduced mass based

on the ions and neutrals, and kg is the Boltzmann constant.’
1

Kzii( id )51 2.3)

8N \2ukg/ 0

[LI1.111. Motivation

In recent years, IM-MS has been applied across an increasingly broad range of technologies
and applications. High sensitivity, resolving power, and throughput have helped establish this
instrumentation in the analytical laboratory, and its popularity has been further bolstered by
technological advances that have enhanced its practicality for studying a wide range of biological
and medical samples. There is always demand for improvement, however, and one way to further
enhance the figures-of-merit for IM-MS instrumentation is via multiplexing strategies for IM.

Multiplexing can be performed temporally or spatially, with either technique increasing
the instrument throughput, or quantity of mobility separations performed within a single
acquisition cycle. Temporal multiplexing is a form of oversampling where overlapping, time-
dispersive ion pulses are introduced to the IMS, increasing sensitivity and throughput,18:19.2021.22.23
One of the fundamental limitations of temporal multiplexing is that the acquired signal must be
deconvoluted in post-processing, with data transformation introducing signal artifacts, though
algorithms are being developed to assist in detection and removal of these artifacts.?#?>% Spatial
multiplexing involves multiple physically disparate analysis channels utilized in parallel. This type

of analysis has been demonstrated with spatially dispersive IM including differential mobility
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spectrometry (DMS) and asymmetric high-field IM (FAIMS), 2728 and the first implementation of
spatial multiplexing with drift tube IM (DTIMS) is the subject of this work.

There are numerous benefits of spatially multiplexing IM instrumentation, as summarized
in Table 2.1. (1) The throughput of a spatially multiplexed IM is theoretically a multiple of the
throughput of a single channel instrument and the number of channels in the multiplexed IM, thus
a spatially multiplexed instrument would exhibit higher throughput. (2) The sensitivity is ideally
increased with the square root of the number of measurements. Therefore, if the same sample is
analyzed in each channel, the multiplexed instrument’s sensitivity would be higher than a single
channel instrument by a multiple of the square root of the number of channels. (3) Multiple
channels on one instrument platform offers greater versatility, enabling multiple experiments to be
performed simultaneously on that platform. (4) While there are new imprecisions introduced by
multiplexing an IM, calibrations can be made to correct for channel-to-channel variations
decreasing precision. Factors that would decrease precision in a single-channel instrument can also
be mitigated. For example, drift time deviation can occur over time for IM instrumentation due to
variations in experimental parameters (i.e. pressure, temperature, and voltage) inherent to
laboratory environments where temperature fluctuations occur. These temperature fluctuations
induce an instrumental response to alter certain variables (i.e. buffer gas’ number density) in order
to maintain constant pressure and voltage. Because IM separation depends on the number of ion-
neutral collisions in the drift tube, variation of the number density in the drift tube will alter drift
times. Performing multiple experiments simultaneously on one IM platform avoids variations in
laboratory parameters that can occur with time, such as temperature fluctuations or sample
degradation. (5) Spatially multiplexing an IM allows a sample and control to be run simultaneously

and, with channel-to-channel variation accounted for, higher accuracy can be attained by using the
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Improved

Figure-of-Merit Explanation

Multiple of the number of

Throughput operating channel, N = 8

Signal-to-noise ratio
Sensitivity improved by signal
averaging, V8 ~ 3.1

Analyze control and

Accuracy
sample concurrently
. . Average of larger number
Precision
of measurements
- Analyze various samples
Versatility y P

for comparison

Table 2.1: Summary of the improved figures-of-merit expected for spatially multiplexed IM

compared to single channel instrumentation.
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control data to compensate for variation caused by fluctuations in experimental parameters. (6)
Shared electronics and vacuum systems offer lower production costs and occupy less space than

multiple instruments.

[1.111. Materials and Methods

Unless otherwise noted, raw materials and components were purchased from McMaster-
Carr (GA, USA). Custom parts were fabricated from raw materials in the Vanderbilt Physics
Department Machine Shop. Machine drawings for custom components, assembly diagrams, and a
complete list of the commercial components used in this research, along with identifying
information and suppliers, can be found in Appendix B. Components related to the infrastructure
and vacuum system include: vented or coated nuts and bolts (UC Components, CA, USA), RGCs
for ion transfer (Photonis, MA, USA), electronics racks and micrometer translation stages
(Thorlabs Inc., NJ, USA), high capacity dry scroll pumps (Edwards, West Sussex, UK), vacuum
hardware (Duniway Stockroom Corp., CA, USA), stainless steel laser-drilled apertures, (Lenox
Laser, MD, USA), borosilicate glass viewing panes (Gray Glass, NY, USA), and extruded
aluminum framing, brackets, and linear bearings for the primary supporting infrastructure
(GatorJaw, CA, USA; and Futura Industries, UT, USA).

High voltage DC power supplies (Applied Kilovolts, UK) are controlled with a high
resolution analog output board (National Instruments, TX, USA). Radio frequency (RF) signals of
identical amplitude, 180 degrees out of phase, are generated, amplified, and manipulated by a
custom power supply with two remote RF oscillator high Q-heads (Ardara Technologies, PA,
USA). lon gating is accomplished by a transistor-transistor logic (TTL) signal sent from a

multifunction reconfigurable input/output (RIO) board (National Instruments) through a voltage
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pulser (lonWerks, TX, USA). Electric circuit components include 5 kV and 10 kV resistors
(Caddock Electronics, CA, USA), 100 pF ceramic capacitors (Vishay Intertechnology, PA, USA),
Kapton coated wire (Kurt J. Lesker Company, PA, USA), high voltage feedthroughs (Accu-Glass
Products, CA, USA), and printed circuit boards (PCB; Amitron, IL, USA). A PCB 8-channel
Faraday plate detector array, used for IMS signal acquisition, is connected to the multifunction
RIO board via a home-built amplifier, modeled after Intra and Tippayawong,? assembled on a
custom PCB (Advanced Circuits, CO, USA) from operational amplifiers (Analog Devices Inc.,
MA, USA; Texas Instruments, TX, USA) and passive components (Bourns Inc., CA, USA; TE
Connectivity, Switzerland; Vishay Intertechnology, PA, USA).

lon trajectory simulations are performed with SIMION, Version 8.1 (Scientific Instrument
Services, NJ, USA).%® User programs designed in-house are coded with Lua programming
language into SIMION to model the effects of RF fields, neutral gas flows, and ion collisions with
neutral gas molecules.®1323% Computational fluid dynamics (CFD) modeling was done with
COMSOL Multiphysics® software (COMSOL AB, Sweden)** and Simulation CFD software
(AutoDESK, CA, USA)® for analysis of neutral gas flow dynamics. AutoCAD 3D-modeling
software (AutoDESK, CA, USA)%* is utilized to design custom instrument components. PCB
schematics are designed with KiCad (open source software). LabVIEW software (National

Instruments)*” is used to control power supplies, gate ions, acquire signal, and visualize data.

I1.IV. Results and Discussion

IL.IV.1. Instrument Design Process

As with engineering, the design process for scientific instrument development relies on a
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complex feedback system where multiple parameters including simulation results, material
availability and cost, fabrication techniques, and laboratory conditions, among others, are juggled
simultaneously to optimize instrument figures-of-merit. Numerous iterations of performance
simulation and element design are executed in software before physical components are
commissioned for fabrication. Here, software for simulation of ion trajectories helps determine
appropriate electrode geometries to guide, focus, trap, or otherwise manipulate ions. Simulation
conditions are varied within real world boundaries for theoretical parameters including electric
field strength, gas pressure, channel dimensions, temperature, etc., to optimize various
performance parameters including, for example, transmission in funnels, trapping efficiency in
gating regions, and resolution in the drift tube. Preliminary geometries are evaluated with CFD
modeling, specifically at the entrance capillaries and ion funnels where differential pumping
causes significant neutral gas velocities that can impact ion transmission. Computer aided design
(CAD) modeling software is used to develop and visualize custom parts in three-dimensions for
fabrication. Consideration of first principles conductance calculations, machining capabilities,
commercially available components and raw materials, etc., influence subsequent design
iterations.

The 8-channel IMS instrument, shown in Figure 2.2A,38 consists of an 8-array ESI source;
RGCs (500 pum inner diameter, 140 mm length) mounted in a heated, stainless steel block; tandem,
differentially pumped, stacked PCB ion funnels; gated 500 pm stainless steel aperture array;
electrostatic, stacked brass ring electrode drift tube; and a Faraday plate array detector. The
instrument is mounted on a custom table designed to facilitate assembly, kinematic stability, and
routine maintenance within a compact design. lon channel electrodes are fixed in-line on threaded

rods shielded by high purity, precision cut ceramic tubes and are contained within custom-welded
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Figure 2.2: (A) Spatially multiplexed IM schematic consisting of (i) ESI source, (ii) RGCs
mounted in a heated desolvation block, (iii) tandem, differentially pumped ion funnels, (iv) gated
stainless steel aperture array, (v) electrostatic drift tube array, and (vi) Faraday plate array detector.
Instrument components are shown in black, simulated ion trajectories are shown in blue. (B) Graph
of operational DC voltage settings, predicted from ion trajectory simulation results, length scaled
to the schematic in (A). Ordinate axis is broken to show high voltage application to ESI needles.
RGCs’ atmospheric end and Faraday detector are held at ground voltage, and apertures at ca. 28

cm are pulsed between voltages for gating.



stainless steel vacuum chambers which are mounted on extruded aluminum cradles, galvanized
steel turntables, and a case-hardened steel rail system to facilitate multi-axis adjustment of the first
vacuum chamber (linear motion along x and z, and y-axis rotation) relative to the second chamber

for alignment and ease of maintenance.

I1.IV.1l. Modeling Electrode Geometries

While it can be tempting to first design and fabricate the vacuum chamber, the most visible
of the instrument components, it is advantageous to develop from the inside outward, i.e. taking a
bottom-up approach, relative to an ion’s perspective. This method of form following function
ensures a final structure best suited for preparation and measurement of ions. In addition, it
prevents circumstances of designing around or within previously fabricated components, which
can require compromise of function to save time and funds.

The innermost physical components, from an ion’s perspective, are the electrode surfaces
composing the ion channel and generating the electric fields used for ion manipulation. These
electric potentials are modeled in SIMION 8.1, which solves the Laplace equation with finite
difference methods and approximates ion behavior in the calculated electric fields. Simulation
CFD was used to model gas flow in regions of significant velocity, including the RGCs and
transition between the high pressure funnel and low pressure funnel. CFD results were coded into
in-house user programs for application in SIMION to investigate effects of neutral gas flow
velocity and direction on ion trajectories. For the multiplexed instrument, this combination of
simulations was performed both to aid in design of the electrodes and to evaluate the instrument’s
theoretical performance. Successful electrode geometries were reconstructed in AutoCAD with

added functionality for mounting and alignment within the vacuum system.
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[L.IV.IL1. lon Mobility Drift Tube

Initial simulations focused on the portion of the device crucial to the experimental
measurement, i.e. the IM drift tube. Performance parameters including sensitivity, resolution, and
mass bias were assessed for ions spanning a wide range of mobilities and masses. Several iterations
of simulations were performed and analyzed to optimize design variables of both longitudinal and
radial dimensions: electrode thickness and spacing, channel length and diameter, and applied RF
and DC voltages.

Figure 2.3 shows a summary of the drift tube ion trajectory simulations, which were
modeled with SIMION HS1, hard sphere, collision model.*® This collision model was selected for
the drift tube without the incorporation of external CFD modeling results because HS1 default
conditions approximate the expected experimental conditions; in HS1, elastic ion-neutral
collisions are simulated in an environment where gas velocities follow the Maxwell-Boltzmann
distribution and there is no net flow of the neutral gas. Simulation settings were comparable to
conditions in existing IM instrumentation, with nitrogen buffer gas modeled at 4.0 Torr (533 Pa)
and 298 K, and an ion gate pulse-width of 100 usec. Electric field strength is reported here as a
ratio of the electric field intensity (E, V/cm) to the drift gas number density (n, cm=) in Townsends
(E/n, Td), where 1 Td is equivalent to 10" VV-cm?. In Figure 2.3(A), for methane and Ceo fullerene
at low electric field conditions (5 Td), it is qualitatively shown that smaller ions (methane)
experience greater radial diffusion as they traverse the IM drift tube. In addition, low field
conditions are qualitatively shown to cause greater radial diffusion, as is observed when comparing
trajectories of Ceo fullerene at low field (5 Td) and high field (60 Td) conditions. Because of the
simulation results, mitigation of the worst-case scenario for diffusive ion loss (small ions at low

electric field strength) was found to require a ratio of drift length to internal diameter of less than
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Figure 2.3: (A) lon simulations direct the geometric design of the IM electrodes. Small ions at
low field (i) represent the worst case for radially diffusive ion losses. Mitigating ion losses under
these conditions requires a ratio of drift length to internal diameter to be less than ca. 50. (B)
Theoretical IM spectra based on histograms of the arrival time distributions for the simulation data.
Experimental parameters include drift tube length of 19.0 in (48.3 cm), pressure 4.0 Torr (533.3

Pa), temperature 298 K, and gate pulse width 100 psec.
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ca. 50. Simulated arrival time distributions for various molecules, representing a wide range of
mobilities, are shown in Figure 2.3(B) to approximate what actual spectra from the multichannel
instrument should look like.

lon simulations indicate that avoidance of destructive radial ion diffusion for highly diffuse
ions (mass-to-charge, m/z < 200) requires the drift tube inner diameter to be approximately 1.00 in
(2.54 cm) for the chosen drift length at low electric field strength (< 5 Td). Thickness and spacing
of electrodes were found to exhibit optimal performance when equivalent, though these parameters
were much less influential on IM performance than the ratio of the drift length to internal diameter.
Thus, electrode thickness and spacing were set at 0.080 in (2.0 mm) and 0.0625 in (1.59 mm) to
accommodate use of commonly available thicknesses for the raw materials from which the brass
electrodes and Delrin spacers were manufactured. These dimensions balance thinness for
establishing uniformity of the electric field with thickness for maintaining structural rigidity, while
keeping the electrode number (133) and corresponding electronic circuitry within a manageable
order of magnitude. A drift length of 19.0 in (48.3 cm) was modeled based on desired resolution
and voltage constraints for helium breakdown. The final internal diameter of the drift tube was
selected to be 1.00 in (2.54 cm), and its length was shortened to 14.62 in (37.13 cm, 103 electrodes)
for practical reasons with regard to installation in the existing vacuum chamber. The drift region
was later extended, however, by addition of a narrow drift tube (0.500 in (12.7 mm) diameter ion
channel) between the gating apertures and the full size drift tube, as described in Section
ILIV.IV.1V, with ion trajectory simulations indicating ion loss due to radial diffusion would not
increase due to the use of this narrower ion channel at the front of the drift tube.

Theoretical calculations suggest the drift tube array will perform with resolving powers

ranging from 30 to 90 for a broad range of ions (m/z 100-10,000), comparable to the performance
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of commercial instrumentation, with the capacity to resolve the protonated leucine/isoleucine (m/z
132) system. Figure 2.4 shows predicted conditional resolving power, calculated from the
equations presented by Kanu, et al., plotted as a function of drift voltage and reduced mobility for
various analytes, listed in Table 2.2, representing a wide range of sizes and chemical classes.*°
Simulations also predict near-lossless ion transmission across a wide range of mobilities and
masses.
[LIV.ILII. Tandem lon Funnels

Although the mobility measurement occurs solely in the drift tube, analyte preparation is
another important process that includes manipulation within the vacuum system with as little loss
as possible. Prior to introduction of the ion funnel in 1997, skimmer cones were commonly used
to transfer ions from high to low pressure regions.*! lon funnels have been increasingly utilized to
focus charged molecules into a narrow beam for transfer through a small, gas conductance-limiting
aperture, allowing much greater sensitivity than was previously attainable with skimmers,#24344
For the multichannel instrument, tandem ion funnels were utilized with differential pumping to
accommodate the increased gas load inherent to operating multiple atmospheric inlets (see Section
ILIV.I). This tandem ion funnel design was demonstrated previously by Richard Smith and
coworkers and has also been incorporated into commercial instrumentation.*>6

Simulations for the ion funnels were modeled with SIMION statistical diffusion simulation
(SDS), high pressure, collision model.3133 The hard-sphere model, HS1, is also appropriate for the
given conditions, and was used for simulations in which the pressure was modeled at less than 1
Torr.*® Both the SDS and HS1 models are user programs that simulate collisions of ions with
neutral gas molecules, but where the hard-sphere model calculates every collision for every ion,

the high pressure model applies an adjustment to ion motion at each time step to account for a
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Figure 2.4: (A) Conditional resolving power 3D surface plot for positive, singly-charged ions as
a function of reduced mobility and drift voltage for a single channel of the spatially multiplexed
IM with parameters: 4.0 Torr nitrogen, 298 K, 19.0 in (48.3 cm) drift tube length, 1.0 in (2.54 cm)
drift tube inner diameter, and 100 usec ion gate width. (B) Select resolving power curves taken

from the 3D plot in (A) for the analytes in Table 2.2.

86



Mass K Q* Maximum Resolving

0
Analyte [Da] [cm?/Vs] [A?] Power (Theoretical)

CATTAGCAC Nucleic Acid 2723.28 1.10 486.2 90

Bradykinin Cardiac Peptide 1060.21 2.21 242.0 70

Lacto-N-Fucopentoase Il Glycan 860.77 2.88 201.3 65

C¢, Fullerene 720.64 4.32 122.6 56

Lactose Disaccharide Sugar 365.30 5.15 121.1 53

Napthalene 128.17 8.80 61.9 44

Benzene 78.11 11.80 46.6 40

Carbon Dioxide 44.01 18.40 30.5 35

Methane 15.03 24.00 25.1 32

* Calculated from the Mason-Schamp equation. Small mass ion CCS values are largely governed by the
ion-helium interaction potential.

Table 2.2: Tabulated mobility data (reduced mobility, Ko and collision cross sections, Q) for
various analytes representing a wide range of gas-phase mobilities and chemical classes.

Conversion from Ko to CCS is described in Section I.111.1, Equation 2.16.
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statistically predicted set of collisions, which is a less computationally expensive method. Previous
research has found the SDS model to be applicable at least as low as 6 Torr,3! and preliminary
studies for the multichannel instrument tandem ion funnels indicated that either collision model
could be used effectively to predict ion transmission efficiency at least as low as 1 Torr.
Simulations were utilized to determine the operational voltage settings that optimize ion
transmission. Figure 2.5(A) shows example ion trajectories for 101 bradykinin [M]" ions through
the tandem ion funnels with near-lossless (~96%) ion transmission.

Fluid dynamics simulations were performed to investigate the behavior of neutral gas in
the ion funnels, and the results were incorporated into SIMION simulations to determine the effect
of neutral gas flow on ion transmission. Figure B.1.1 shows a three-dimensional perspective of the
results for the neutral gas velocity in the tandem ion funnel geometry with differential pumping.
The ion funnels had a keyhole geometry (Figure B.1.2) before the tandem ion funnel design (Figure
B.1.3), and CFD models were compared (Figure B.1.4) to evaluate each design. Isosurfaces for
velocity (Figure B.1.5(A)) and pressure (Figure B.1.5(B)) found from CFD modeling of the
keyhole design were approximated by equations for ellipsoids and parabaloids in the three-
dimensional Cartesian coordinate system (Figure B.1.5(C)). These equations, determined for
multiple velocity and pressure magnitudes, were written into a SIMION user program (Figure
B.1.6) for incorporation in the ion trajectory simulations. As described in Figure B.1.7, throughout
the stages of development for the ion funnels of the spatially multiplexed instrument, experimental
settings have been found such that the predicted ion transmission has always been near-lossless (>
96%), and the pressure and velocity magnitudes calculated by CFD modeling did not significantly
impact ion transmission, supporting implementation of the tandem ion funnel geometry.

After establishing the tandem ion funnel geometry, experimental parameters were
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Figure 2.5: (A) lon trajectory simulation for 101 bradykinin [M]" ions through tandem ion funnels.
Electrodes are shown in brown and ion trajectories in black. High pressure funnel is held at 10
Torr and 300 Vpp RF, and low pressure funnel is operated at 4 Torr and 130 V. Through both
funnels, electric fields are low at ~5 Td, there is no neutral gas flow, and calculated transmission
efficiency is 96.4 + 0.01%. (B) Simulation results for high pressure funnel at frequencies ranging
from 0.4-1.4 MHz and amplitudes ranging from 60-400 Vp, at 10 Torr and 20 Td. Maximum
transmission settings indicated by marker at 600 kHz and 200 Vyp for bradykinin [M]* ions. (C)
Simulation results for low pressure funnel at frequencies ranging from 0.2-1.6 MHz and
amplitudes ranging from 40-220 Vp, at 4 Torr. Maximum transmission settings indicated by
marker at 600 kHz and 120 Vp, for bradykinin [M]* ions. Higher amplitudes resulted in ion

trapping by the fields at the last low pressure funnel electrode, of the smallest channel diameter.
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optimized to determine appropriate RF power supply settings. As shown in Figure 2.5(B), although
changes in RF frequency were seen to have much less effect than changes in amplitude over the
range of simulated values, 600 MHz resulted in the highest transmission efficiency, and has shown
success previously in the literature, so this was the frequency selected for operation of both
funnels.*® The high pressure funnel was observed to transmit ions most efficiently at 200 Vpp, and
the low pressure funnel at 120 V. Higher RF amplitudes in the low pressure funnel were observed
to collapse the field, meaning the proportion of time that the voltage is favorable for ion
transmission in each RF cycle is decreased to the point that ions no longer have time to react to
the field and pass through the aperture, and they are trapped at the narrowest electrode of the
funnel. As a result of these simulations, a custom dual RF power supply was commissioned with
two remote RF oscillator high Q-heads, both operating at 600 kHz with amplitude variable to 400
Vop.

Funnel electrodes were fabricated from PCBS, rather than brass, because of their relatively
lower electrical conductance (beneficial in the funnels where an RF voltage is applied in
conjunction with the DC gradient) in addition to lower manufacturing costs and faster fabrication
times. Like the raw materials for the drift tube, PCBs are available in common, predetermined
dimensions that dictate the possible thicknesses for the electrode geometries. The standard PCB
thickness of 0.063 in (1.6 mm) is the most cost-effective, but constructing the funnel solely of this
PCB thickness was observed to reduce ion transmission. A thinner PCB of 0.02 in (0.5 mm) could
be employed to keep the funnel transmission near 100%, but the cost for a funnel of this
construction was exorbitant. According to ion trajectory simulations, the most crucial point of
funneling occurs at the narrowest portion of the funnel, across the last few electrodes (exact

number depends on various parameters), and the main function of the wider portion of the funnel
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is to entrain the ions in the field and allow the neutral gas jet to dissipate. As a compromise, by
constructing just the last few electrodes (four for the multichannel instrument) of each funnel from
thinner PCBs, and the remainder of the funnel from standard thicker PCBs minimizes cost without
sacrificing ion transmission.
ILIV.ILII. Gating Apertures

Simulations aided in determination of the orifice diameter of the apertures used to gate ions
into the IM drift tube from the low pressure ion funnel. As shown in Figure 2.6, ion transmission
was modeled for several commercially available aperture orifice sizes ranging from 200 pm to
1000 pum. As a result of these simulations, the aperture size was chosen to be 600 microns, a
balance between the increased gas flow from the drift tube and transmission increases observed
with larger orifices. The stainless steel apertures were adhered with conductive silver epoxy to a
stainless steel plate that serves as part of the hermetic seal between the low pressure ion funnel and

the IM drift tube.

[L1V.111. Vacuum System Requirements

Because of the eight ambient sampling inlets that impose a significant gas load, the
spatially multiplexed IM instrument has vacuum system requirements that are greater than those
of traditional instrumentation, although to increase analyte sensitivity, some single channel
instruments utilize multi-capillary inlets that also exhibit increased neutral gas conductance.*’8
Unlike those multi-capillary, single channel instruments, gas flow in the multichannel instrument
is also increased between subsequent pressure regions due to additional apertures accommodating
extra ion channels. Exploring first-principles calculations of conductance between vacuum

chambers assists in determination of which commercial pumps are capable of achieving desired
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Figure 2.6: Simulated ion transmission versus theoretically calculated conductance for various
aperture orifice inner diameters. Conductance was calculated at 100 um aperture inner diameter
intervals from the equations outlined in Section IL.IV.I1I for eight apertures with the drift tube
operating at 4.0 Torr nitrogen and the first vacuum chamber held at 3.8 Torr nitrogen. Only
aperture inner diameter (200 um, 400 pm, 600 pum, 800 pm, and 1000 pum) was varied in the
simulations. For each inner diameter, 5000 bradykinin [M]* ions were simulated in five groups of
1000 particles at optimized RF voltages (determined from Figure 2.5) and at DC voltages of
moderate field strength (20 Td). lons were generated 1.5 (38 mm) outside the second ion funnel
at 3.8 Torr with no neutral gas flow. The percentage of ions transmitted through each simulated
aperture inner diameter is plotted. The aperture inner diameter chosen for the instrument was 500
pm, because this size balances the benefit of high ion transmission with the detriment of increased

neutral gas conductance.

92



operational pressures.

The eight-channel instrument has four defined pressure regions, as indicated in Figure
2.2(A), including the atmospheric ESI source (PR1), high pressure ion funnel (PR2), low pressure
ion funnel (PR3), and drift tube (PR4). In order to calculate the pumping speeds required to achieve
desired pressures in each region, appropriate equations must be chosen based on the type of flow
between those regions. The flow regime is defined by the ratio of the mean free path length (1) to
the diameter (dp) of the path connecting two pressure regions.*® This ratio is calculated as the
Knudsen number (Kn, Equation 2.4), where Kn < 0.01 represents continuum (i.e. viscous) flow,
0.01 < K < 0.1 represents slip flow, 0.1 < K, < 10 is considered transitional flow, and K, > 10

denotes molecular flow.*°

Kn = a (24)

The equation for mean free path (Equation 2.7) can be derived from Equations 2.5 and 2.6.%!

1
T \2md?n

(2.5)
P =nkgT (2.6)
Here, d is molecular diameter, n signifies molecular number density, P is pressure, kg is
Boltzmann’s constant, and T is temperature. Recommended values for Van der Waals hard sphere

radii are available.>? By treating the molecules as hard spheres and implementing the ideal gas law

(Equation 2.6), Equation 2.7 can be derived.

_ kpT
~ VZmdzp

(2.7)

For the multichannel instrument, the calculated values of K, indicate all flows between
pressure regions to be continuum except for gas movement between the drift tube and low pressure
funnel (PR4—PR3), which is in the slip flow regime.

Neutral gas at atmospheric pressure near the ESI source is pulled into the vacuum system
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(PR1—-PR2) viaan RGC of 7.09 in (180 mm) length and 0.01 in (250 um) inner radius. Calculating
the conductance here requires an equation for viscous flow through a long tube, for which the

length is approximately 20 or more times longer than the diameter.>?

0.1962(P; +P;)r*
CTV == + (28)

where Crv is the conductance for viscous flow through the tube, Py is the greater inlet pressure, P>
is the lesser outlet pressure, r is the radius of the tube, n is the gas viscosity which can be found at
multiple references (1.8-10* poise for nitrogen),>** and L is the length of the tube. The original
reference requires specific units for each variable to correct for pressure in Torr, but here the
multiplicative factor (0.1962) is unitless, and an approach by dimensional analysis is appropriate.
An alternate method, based on a parameterization of the Knudsen equation to fit metal capillary

data, yields a similar result.>>’

4r3 [2mkgT [ 0.1472r 14350
Cry = — B ' + A 29
TV 3L m 2 1+5.]/:{7T ( )

In this equation, m represents the molecular weight of the neutral gas. Conductance (C) is

converted to throughput, or flow rate, (Q) via Equation 2.10.%
Q=C(P,—P) (2.10)

The required pumping speed from the high pressure funnel is also dependent on the channel
outlets to the low pressure funnel (PR2—PR3), for which a calculation of viscous flow through an
orifice (or aperture, where the thickness is approximately 20 or more times smaller than the
diameter) is appropriate. This flow rate can be approximated with Equation 2.13 after calculating
the mean particle speed (¢) and finding the dimensionless flow function (), as determined by the
ratio of inlet and outlet pressures.® For gas passing through an orifice, the abrupt change in the

diameter of the path causes the flow to be unguided, and the effective cross section of the opening
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behaves as if it was contracted, to a degree, based on the pressure differential.>® Due to this
behavior, Equation 2.13 has also been posited to describe viscous flow through a nozzle, with a
correction factor applied to the cross sectional area of the aperture (A) to account for the lessened

flow rate resulting from unguided flow.>®

o= |2 2.11)
|y [re\2Y p\+1D/y
vl - @] 12
0.60 if P~P
a = {0.86;fP§<P1* (2.14)

Here, R is the universal gas constant, Na is Avogadro’s number, y is the ratio of the specific
heat of a gas at constant pressure to that at constant volume (i.e. isentropic exponent, 1.400 for
diatomic gases including nitrogen), Qov represents the flow rate for viscous flow through an
orifice, () is the correction factor (in Roth’s work, o is omitted)>® and P” is the critical pressure
(P"=0.528-P; for nitrogen).>°°

In parallel, throughput is additive, so to account for the multiple channels and calculate the
required pumping speed (S) at the pump entrance of the high pressure funnel, the results of the
above equations are combined to total throughput (Qr) as shown in Equation 2.15, and then

converted to S via Equation 2.16.5361.62

Qry = 8Qry — 8Qpy (2-15)
s=-2r (2.16)
Ppump

Here, Qrn specifically represents the total throughput for the high pressure funnel and can

be substituted for Qr, Qtv has been converted from Crv via Equation 2.10, and Ppump is the desired
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pressure at the pump entrance. Although the flow rate from the high pressure funnel to the low
pressure funnel (PR2—PR3) has already been discussed (8-Qov), neutral gas from the pressurized
drift tube also contributes to the total throughput of the low pressure funnel (Qr.). Gas moving
through the apertures separating the drift tube and the low pressure funnel (PR4—PR3) is in the
slip flow regime. Santeler provides an equation applicable to transition flow (defined there as flows
between viscous and molecular, and thus applicable to slip flow) through an aperture that identifies

the empirical contribution to the total throughput from the viscous and molecular flow regimes.®63

Qor = 0Qom + (1 —60)Qoy (2.17)
PR
0= (2.18)

The variables Qot and Qowm represent throughput through an orifice for transition and
molecular flow, respectively, 6 is the fractional contribution of molecular flow, and Pr is a
reference pressure close to the point at which effects of molecular and viscous flow are equivalent.
Because in the molecular flow regime there are little to no collisions between molecules, they pass
through an orifice without influencing each other, and their movement in both directions must be
considered, as is done in Equation 2.19,535864

RT
2mmN 4

Qom = BA(P, — P) (2.19)

Hablanian employs the correction factor, g, (in Roth’s and Lafferty’s works, £ is omitted)
to correct for the ratio of the thickness of the orifice (0.00197 in, 50.0 pum) to its inner diameter
(0.0197 in, 500. pm).* The value of 4 (0.922 for the apertures used in this work) can be determined
from a lookup graph® or by Equation 2.20, which empirically approximates the data and is

applicable within the bounds of length-to-diameter ratios of 102 to 10° with an R? value of 0.99998.
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logpp = —0.002281og )5 +0.0139910g ( )4 +0.0068610g )3 — 0.21676log )2 -

L L L L
2r 2r 2r 2r
0.45050l0g (5-) — 0.28254 (2.20)
Equation 2.13 has already been introduced to approximate viscous flow through an orifice
and can be used to calculate Qov for PR4—PR3. Applying the throughputs calculated from
Equations 2.13 and 2.19 in Equation 2.17 gives the throughput for transition flow from the drift
tube to the low pressure funnel through a single aperture. Combining the calculated throughputs
as shown in Equation 2.21 yields Qr., which is converted to S via Equation 2.16.
QrL = 8Qoy + 8Qor (2.21)
To operate the spatially multiplexed instrument at pressures common to commercially
available mobility instrumentation, as detailed in Figure 2.2(A), calculations indicated a required
pumping speed in the high pressure funnel of approximately 24-32 L/s, and a required pumping

speed in the low pressure funnel of approximately 5-7 L/s. Calculation results are listed in Table

2.3. These speeds are accomplished via two high-capacity dry scroll pumps, listed in Table B.16.

I1.IV.IV. Hardware and Infrastructure

As discussed in Section IL.IV.1I, electrode geometries can be optimized through
simulations, but those models aid only in determining the shapes and sizes of conductive surfaces.
Design of additional infrastructure is necessary to mount and align electrodes in the real world,
and physical properties of available raw materials must be considered concerning performance at
operational pressure, temperature, and electrical conditions. Furthermore, vacuum chambers need
to be designed to maintain proper operating conditions, and the entire instrument needs to be
supported and stabilized on a structure, or table, with storage for electronics and adequate surface

area from which the user can work. The discussion of such hardware and infrastructure can
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P1 P2 P3 P4
Pressurel .65 | Flow— | 50 | Flow— | 38 | <Flow | 395
(Torr)
CondL_Jctance Limit 0.50 20 0.50
Diameter (mm)
Conductance 0.19-0.24 18-21 0.25-0.26
(C, Lls) S -
Throughput
Q. Torr-L/s) 150-180 Rllill 22-25 vyavisil 0.31-0.31
Required Pumping Gas Inlet Gas Inlet

Speed (S, L/s)

Table 2.3: Tabulated results from calculations of vacuum system requirements, finding a required

pumping speed of 24-32 L/s at the inner vacuum chamber and 5.7-6.7 L/s at the first vacuum

chamber.
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logically be organized by following the path of the analyte from the ionization source to the
detector. While most items are described here, further detail can be found in Appendix B, which
contains the machine drawings for custom pieces designed for this instrument and the list of
commercial components utilized in this research. Figure 2.7 displays a detailed, rendered cutaway
of the assembled instrument, which will be referenced throughout this section to provide clarity.
[1.IV.1V.]. lonization and Desolvation

The prepared sample is first loaded into a glass syringe and dispensed, for a single channel,
through a polyimide-coated, silica capillary (Ilength 25 cm) by a single-syringe infusion pump that
rests on the instrument table. PEEK fluidic fittings are used to couple the syringe to the silica
capillary, and a PEEK tee fitting joins the silica capillary, ESI capillary needle (length 30 mm),
and a 25 mm length of platinum wire, which is used to introduce high DC voltage to the liquid
sample. The eight needle ESI source indicated in Figure 2.7(A) (assembly and component
drawings in Figure B.2.1 through Figure B.2.10) was designed to mount on the same rail system
as the first vacuum chamber and allows grouped and individual multi-point adjustment (linearly
and rotationally) for ESI optimization of each channel by the use of slots, springs, XYZ
micrometer, and goniometer. A strong electric field (ca. 3 kV/cm) exists between the stainless steel
ESI capillary needle and the desolvation block (Figure 2.7(B) and Figure B.3.1), which is heated
to ca. 100°C and thermally isolated from the first chamber by a custom thermoplastic (Delrin)
flange (Figure B.3.2) and washers (Figure B.3.3). The heated desolvation block and atmospheric
ends of the RGCs are thermally and electrically linked via metal-to-metal connection and held at
earth ground with the instrument chassis, for safety. This connection also aligns the RGCs in the
center of each ion channel, with the desolvation block mounting directly to the top hat flange

(Figure B.3.4), fittingly named for its protruding shape.
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(A) ESI Source Assembly

(B) Atmospheric Inlet with
Desolvation

(C) First Vacuum Chamber

(D) Inner Vacuum Chamber
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Low Pressure lon Funnel (L) Drift Tube Infrastructure

Gated Aperture Array (M) Vacuum Chamber
Narrow Drift Tube Infrastructure
Full Size Drift Tube (N) Whole Instrument
Second Vacuum Chamber Infrastructure

Faraday Plate Detector Array

Figure 2.7: Rendered cutaway view of the assembled instrument.
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The opposite ends of the RGCs, situated inside the vacuum system, are held at the same
DC voltage as the first electrode of the high pressure funnel. The RGCs provide 1 GQ of resistance
across 180 mm, and ions, drawn by the pressure differential, climb the electric potential gradient
as they enter the vacuum system. A hermetically sealed electrical feedthrough (Figure B.3.6) is
used to apply the DC voltage to the vacuum side of the RGCs, with the connecting wire being held
in place by both by grooves cut in the funnel 1 mount block (Figure B.6.1) as well as to the
nichrome-coated surface of the RGC by a steel spring of similar inner diameter to the outer
diameter of the RGC. The feedthrough is mounted orthogonally to the axis of ion motion via a
piston seal on the extension collar (Figure B.3.5, 1.5” (3.8 cm) thick), which is of a thickness that
positions the ion exit of the RGC at the appropriate depth, just within the high pressure funnel.

An additional flange (34” flange, Figure B.3.7) serves as an intermediate, sealing to the first
vacuum chamber (Figure 2.7(C), assembly and component drawings in Figure B.4.1 through
Figure B.4.8) with the assistance of a custom floating nut (Figure B.4.10) and supporting the
contents of that chamber. An assembly support structure (assembly and component drawings in
Figure B.14.1 through Figure B.14.4) was designed to move those contents out of the first vacuum
chamber by 20 in (0.5 m) for easy installation and maintenance of the ion funnels, aperture array,
and narrow drift tube. The assembly support structure consists of a braced, extruded aluminum
frame set on a carriage-rail system with brackets on which to mount the four corners of the %4”
flange.
ILIV.IV.1I. Tandem lon Funnels

Figure 2.7(D) indicates the inner vacuum chamber (component drawings in Figure B.5.1
through Figure B.5.3) that establishes the pressure differential between the tandem ion funnels.

The inner vacuum chamber was fabricated from two blocks of Delrin thermoplastic, hermetically
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joined via compression of a Viton O-ring. Although fabrication of this component from a single
block of Delrin would have been a simpler design and easier to assemble, raw material of sufficient
magnitude was not commercially available. No gas leak has been detected at the junction of the
two sections of the inner vacuum chamber, indicating no compromise in function. Two ports were
designed on the larger section of the inner chamber, with a dedicated electrical feedthrough at the
top to supply RF and DC voltages to the funnel electrodes (described in Section I1.IV.V), and a
system of commercial vacuum bellows and flanges leading from the bottom port to a custom-
welded pumpout flange (Figure B.4.9). While space was incorporated above the funnel electrodes
to accommodate the resistor-capacitor (RC) circuit and electrical connections inside the inner
vacuum chamber, the wall below the funnel electrodes was raised to accommodate the vacuum
flanges by which the inner vacuum chamber is evacuated. Because the tapped mounting holes for
the inner vacuum chamber are blind, compression of its face seal to the % flange (Figure B.3.7)
represents one of several sites where vented bolts are required.

A set of ten threaded rods (Figure B.6.2) are used to mount and align the PCB electrodes
of both funnels. These rods attach to the aforementioned top hat flange, via the funnel 1 mount
block (Figure B.6.1), for consistent alignment with the RGCs. Each threaded rod is locked from
rotation by tightening a nut down against each tapped hole in the funnel 1 mount block, similar to
the two-nut locking method.®® Locking rotation of the threaded rods allows for tightening of
additional nuts further along the rods (after the inner vacuum chamber and after the aperture panel),
as described below. Delrin standoffs (Figure B.6.3 and Figure B.6.4) with counterbore holes to
house the locking nuts are used to position the high pressure funnel along the threaded rods,
opening the area near the vacuum end of the RGCs to assist pumpout of neutral molecules. The

opposite ends of the standoffs are counterbored to a depth of 0.500 in (1.27 cm) to center them on
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the ceramic tubes (Figure B.6.5 and Figure B.6.6) which are used to align the PCB funnel
electrodes precisely and shield the threaded rods electrically from the conductive PCB surfaces.
The inner vacuum chamber, previously described, also mounts along the ten threaded rods and has
counterbore holes (2 mm depth) to align the ion exits of the inner vacuum chamber (conically
shaped to prevent loss due to increased radial ion diffusion across the pressure decrease) with the
ion channels on the ion funnel electrodes and to tolerate compression of the stack of PCBs and
Delrin spacers (described below) without shattering the alumina ceramic tubes. Compression and
sealing of the high pressure funnel are achieved with polymer-coated washers and self-sealing nuts
on the ten threaded rods (at the low pressure side of the inner vacuum chamber). A modified dog
bone spacer (Figure B.5.4) is used to level progression across the ten threaded rods before
mounting the low pressure ion funnel. A second set of Delrin standoffs (Figure B.6.10 and Figure
B.6.11) and ceramic tubes (Figure B.6.12 and Figure B.6.13), similar to those previously described
for the high pressure funnel, are used to electrically isolate the threaded rods and incorporate space
before the low pressure funnel to assist pumpout of neutral molecules.

The dog-bone shaped PCB electrodes of the tandem ion funnels indicated in Figure 2.7(E)
and Figure 2.7(F) (component drawing in Figure B.6.7) differ only by the silkscreen label, board
thickness, and inner diameter of an array of eight vias that form the ion channels. The vias decrease
from 23.0 mm to 2.00 mm inner diameter across the electrodes of the high pressure funnel, and
from 18.5 mm to 2.00 mm across the low pressure funnel, as detailed in Figure B.6.8. lon channel
vias are linked by 1 oz copper traces of 0.0500 in (1.27 mm) width and are connected to smaller
vias on two tabs, located at the top and bottom of each electrode, where wires are soldered to
introduce the overlaid RF and DC voltages. Turns in traces are made at 45°, following the rule of

thumb for PCB development that persists despite reports claiming no detriment comes from
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sharper, right angle turns.5”-%9 While the majority of the funnel electrodes are 0.063 in (1.6 mm)
thick, a standard measurement for flame retardant-4 (FR-4), two-layer PCBs, the last four
electrodes of each funnel are 0.02 in (0.5 mm) thick to balance performance and cost, as described
in Section I1.1V.11.11. Delrin spacers (0.031 in (0.79 mm), Figure B.6.9) of similar, dog-bone shape
are used to electrically isolate adjacent PCBs, with two spacers separating thicker boards and one
spacer following thinner PCBs. The strength of the electric field is maintained by matching resistor
value with the electrode spacing, as described in Section I1.IV.V. The funnel electrodes each have
ten mounting holes (four corners 12.7 mm diameter, six inset 9.53 mm diameter) for the ceramic
tubes described above. An array of o-rings (Figure B.5.4) prevents the copper surface of the ion
channel vias of electrode 19 (smallest inner diameter of high pressure funnel) from pressing
directly against the back wall of the inner vacuum chamber.
ILIV.IV.1Il. Gated Aperture Array

An array of eight stainless steel apertures (Figure 2.7(G)) serve as the conductance limit
between the low pressure funnel in the first vacuum chamber and the drift tube in the second
vacuum chamber (assembly and component drawings in Figure B.7.1 through Figure B.7.8),
establishing the pressure differential. An aperture panel (assembly drawing in Figure B.8.1,
component drawing in Figure B.8.2) was designed with eight discrete holders (Figure B.8.3) to
allow replacement of individual faulty apertures, as needed. The aperture panel mounts in line with
the ion funnels along the set of ten threaded rods, and a hermetic seal, as well as compression of
the low pressure funnel, is achieved with self-sealing nuts on the drift tube side of the aperture
panel. Custom insulating washers (Figure B.8.4) with o-rings are used to isolate the aperture panel
electrically from the threaded rods and self-sealing nuts. The front of each stainless steel holder

has a shallow countersunk hole where an aperture is adhered, flush to the aperture panel surface,
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with conductive silver epoxy. Adhered apertures cover an opening on the aperture holders with
nearly eight times greater inner diameter that widens conically to the ion exit: designed to avoid
ion collisions with the channel edges. Each aperture holder has four countersunk mounting holes,
and because the complementary tapped holes in the aperture panel could not be made blind due to
thinness of the material, o-rings (1/32 in width) are used around the threads of the #2-56 mount
screws to seal the holes. A third set of o-rings are employed to seal the aperture panel, with
compression achieved against the outer edge of each aperture holder when mount screws are
installed. To seal the aperture panel with the walls separating the first and second vacuum
chambers while maintaining electrical isolation, a Delrin flange (aperture panel piston seal, Figure
B.8.5) is used with two o-rings to create a face seal to the aperture panel, mounting with a set of
16 tapped holes, and a piston seal to the back flange of the first chamber (Figure B.4.7). Seating
of the piston seal occurs during installation of the front assembly, when the %4 flange is mounted
to the first vacuum chamber.
ILIV.IV.1V. lon Mobility Drift Tube

The ion mobility drift tube of the spatially multiplexed instrument consists of two portions:
the narrow drift tube (Figure 2.7(H), component drawings in Figure B.9.1 through Figure B.9.6)
and the full size drift tube (Figure 2.7(l), component drawings in Figure B.10.1 through Figure
B.10.9). The narrow drift tube was incorporated after fabrication of the vacuum chambers, and it
was designed to connect the gated aperture array to the full size drift tube by protruding through
the narrow openings in the adjacent walls of the first and second vacuum chamber. A set of PEEK
columns (Figure B.9.1) with blind tapped holes at each end, vented to negate a need for vented
hardware, are used to align the electrodes and spacers of the narrow drift tube. A Delrin spacer

(Figure B.9.2), large relative to other spacers of the narrow drift tube, is used to shield the drift
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tube electrodes from the stainless steel aperture panel, and this spacer is the last component
designed to accommodate the set of ten threaded rods on which the tandem ion funnels are
mounted. The narrow drift tube is mounted to the aperture panel, rather than the full size drift tube,
by a set of four vented bolts and blind tapped holes that align with holes on the mounting tabs of
the narrow drift tube tabbed electrode (Figure B.9.3). The tabbed electrode also has five
countersunk holes for the screws that thread into the PEEK columns, along which custom spacers
(Figure B.9.4) are alternated with narrow drift tube middle electrodes (Figure B.9.5), terminating
with a final narrow drift tube electrode (Figure B.9.6) that has countersunk holes, similar to the
tabbed electrode, but no mounting tabs. All three variations of the narrow drift tube electrodes
have an array of eight holes, forming the ion channels that are 0.500 in (12.7 mm) inner diameter,
as discussed in Section I1.1V.11.1. These ion channels are half the diameter of the full size drift tube
to be accommodated on the smaller electrodes, designed to fit in the narrow opening between the
first and second vacuum chambers. All narrow drift tube electrode variations also have asymmetric
electrical tabs on the top and bottom, which are staggered across the top of the drift tube in
assembly, to which the DC voltage is applied. All spacers and electrodes of the narrow drift tube
have circular cutouts along the top and bottom edges permitting juxtaposition with the mounting
materials of the full size drift tube, described below.

The full size drift tube is mounted on the front mount block (Figure B.10.1), which has
counterbore holes to recess the nuts and washers used to compress the drift tube, and a central
cavity that accommodates the narrow drift tube and the line of resistors that chain together its
electrical tabs, with a tight tolerance that assures ion channel alignment upon installation. A second
set of ten threaded rods (Figure B.10.2), similar to those used in the first vacuum chamber, are

used to mount and align the full size drift tube, with electrodes being positioned by Delrin standoffs
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(Figure B.10.3 and Figure B.10.4) and electrically isolated by ceramic tubes (Figure B.10.5 and
Figure B.10.6). The electrodes and spacers of the full size drift tube (Figure B.10.7 and Figure
B.10.8), although thicker, share the dog-bone shape of the ion funnel electrodes, with an array of
eight 1.00 in (25.4 mm) holes forming the ion channels. Resistors are attached to the electrical
tabs, connecting adjacent electrodes as depicted in Figure 2.7. The back mount block (Figure
B.10.9) has through holes for mounting the ten threaded rods.

The support structure indicated in Figure 2.7(L) was built to cradle the full size drift tube
(assembly diagram in Figure B.11.1). The support cradle (Figure B.11.2) rests on a carriage and
rail system to allow the full size drift tube to slide along the axis of ion movement and to facilitate
installation. A system of bolts, shaft collars, and tapped holes (Figure B.11.3 through Figure
B.11.5) allow alignment and leveling of the drift tube.

I1.IV.IV.V. Faraday Detector

The Faraday detector (Figure 2.7(K), Figure B.10.12) is manufactured on a PCB with the
same dog-bone shape of the other instrument electrodes. Traces that encircle the detector pads and
connect to a tab at the bottom of the board are held at a higher DC voltage to reduce noise and
prevent crosstalk between ion channels at the detector. The detector board mounts on the same ten
threaded rods of the full size drift tube, between the last drift tube electrode and the back mount
block. Each exposed copper pad in the array of eight has a discrete connection to a tab at the top
of the board, at which a Kapton coated wire is soldered to transmit electrical current, originating
from the termination of ions, via the the Faraday feedthrough flange (Figure B.7.9) to the signal
acquisition system, as described in more detail in Section 11.1V.V. The feedthrough flange seals to

the back wall of the second vacuum chamber with a Viton o-ring, and an array of eight holes and
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blind, tapped bolt circles for bulkhead clamps facilitate the attachment and sealing of eight

electrical feedthroughs.

ILIV.IV.VI. Infrastructure

The first vacuum chamber, which was mentioned briefly in Section I1.IV.IV.1, houses the
tandem ion funnels, gating apertures, and a portion of the narrow drift tube. As shown in Figure
2.7, the inner vacuum chamber, which was thoroughly discussed in Section I1L.IV.IV.II, is housed
within the first vacuum chamber and contains the high pressure ion funnel. The second vacuum
chamber (Figure 2.7(J)), mentioned in Section I1.IV.IV.111, contains the ion mobility drift tube and
Faraday detector. The design of these vacuum chambers and supporting infrastructure is described
here.

The first and second vacuum chambers are similar in design. Both chambers consist of six
flanges (Figure B.4.2 through Figure B.4.7, and Figure B.7.2 through Figure B.7.8) and a glass
viewport (Figure B.4.8 and Figure B.7.8). The individual flanges were tack welded at the exterior
surface, and then the inner joints were fully welded to provide a gas-tight seal. After assembly,
each chamber was tested under vacuum to ascertain its ultimate pressure. Detection of leaks was
performed by monitoring the chamber pressure during localized application of methanol, and
discovered leaks were labelled, so that the welds could be improved. The borosilicate viewports
were designed for each chamber to display the contents for teaching purposes, even when the
instrument is in operation. When the instrument is pumped down, negative pressure inside the
chambers pulls on the borosilicate panes, compressing o-rings for a robust seal. The glass tops can
also be easily removed, when the instrument is vented to atmospheric pressure, for easy access and

maintenance in either chamber. The bottom flange of each chamber has a large port for pumping,
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although the port to the second chamber is closed with a valve after initial pump-down, and
remains closed during operation. The scroll pumps for the spatially multiplexed instrument rest on
a separate, shock-absorbing surface to isolate vibrational noise from the detection system.

Assembly diagrams for the support structures of the first and second vacuum chambers are
shown in Figure B.12.1 and Figure B.12.5 (Figure 2.7(M)). Both chambers rest on extruded
aluminum cradles (Figure B.12.2 and Figure B.12.3, Figure B.12.6 and Figure B.12.7) which are
designed to allow linear adjustment along a plane parallel to the table surface. The first vacuum
chamber is fixed, via an intermediate plate (Figure B.12.4), to a galvanized steel turntable and a
case-hardened steel rail system (Figure B.12.11 and Figure B.12.12) that facilitates multi-axis
adjustment (linear motion along x and z, and y-axis rotation), relative to the second chamber, for
alignment and ease of maintenance. The second vacuum chamber is securely mounted to the
instrument table via a set of low-profile, angled support beams and modified commercial brackets
(Figure B.12.8 through Figure B.12.10).

A custom table (Figure 2.7(N), assembly diagram in Figure B.13.1) was designed to
support the instrument hardware and electronics. A large cutout in the table top (Figure B.13.2)
allows for the lower pumping flanges of the first and second vacuum chambers. Two lines of mount
holes in the table top allow attachment of the rail support shafts, and holes along the perimeter
allow the aluminum surface to be secured to the table frame. The table’s sturdy, extruded
aluminum frame (component drawings in Figure B.13.3 through Figure B.13.7) is designed to
accommodate standard rack-mounted supplies, permitting installation of shelves, drawers, and
control and read-back units. Adapter plates (Figure B.13.8) are used to attach caster wheels that
allow the instrument to be relocated easily, which proved especially useful during multiple

laboratory expansions and renovations.
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I1.IV.V. Electronics
I1.1V.V.1. Power Supply Units

Details of the power supply units of the spatially multiplexed instrument are listed in Table
B.16. The ESI source is supplied by a 6 kV, 20 mA unit, with options to limit voltage or current,
as required. The ESI source supply is rack-mounted to the instrument chassis, and high voltage
from its output cable is introduced to the liquid sample by means of an alligator clip, which is
soldered to the cable and clamped on the platinum wire described in Section I1.1V.IV.I. Additional
DC voltages are supplied by nine high voltage modules. Each unit has reversible polarity through
zero and less than 65 mV (peak to peak) ripple at full load. Two linear AC to DC transformers,
rated to 4.8 A each, convert 120 V wall power to 24 VDC, required by the DC modules to amplify
a voltage control input of £ 10 V. The DC units are able to source or sink current up to 400 pA or
1 mA for the 2.5 kV or 1 kV supplies, respectively. Two 2.5 kV units supply DC to the vacuum
end of the RGC and the first and last electrodes of the high pressure ion funnel. Seven 1 kV units
supply DC to the low pressure ion funnel, gated aperture array, drift tube, and Faraday detector.
The nine DC modules are secured with custom brackets (Figure B.15.6 and Figure B.15.7) in rack-
mounted drawers. Output cables carry the DC voltages through safe high voltage (SHV)
connectors, mounted on panels at the back of each drawer, to the appropriate breakout box where
they are bundled in nine-conductor cables prior to crossing into the vacuum system (shown in
Figure 2.9). A dual RF power supply controller with two remote RF oscillator heads accepts wall
power and provides two 180° out of phase signals for each ion funnel circuit. Both heads are
manufactured to output 600 kHz, with one matched to the 750 pF load of the high pressure funnel,
and the other matched to the 660 pF load of the low pressure funnel. The dual RF supply is rack-

mounted to the instrument chassis, and bayonet Neill-Concelman (BNC) connectors carry RF
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signals to the breakout boxes to be bundled in the nine-conductor cables that lead into the vacuum
system. Wiring diagrams for power supplies are shown in Figure B.17.1 and Figure B.17.2.
I1.IV.V.II. Tandem lon Funnels

Theory and implementation of the ion funnel will not be discussed at length here, as they
have been previously described.*>#44® Diagrams for the RC circuits of the spatially multiplexed
instrument tandem ion funnels can be found in Figure 2.8. The DC gradient is established by
applying a DC voltage to the first and last electrode in each funnel and connecting each PCB
electrode via a chain of resistors. The chosen resistance magnitude of each ion funnel circuit keeps
current and power low (~1 mA and ~0.1 W) in weak electric fields (~10 Td), with 10 kQ resistors
across 1.6 mm spacing and 5 kQ resistors across 0.80 mm spacing (to maintain consistent electric
field), as indicated in Figure 2.8. Calculating power and current across each circuit with Ohm’s
Law’® determined the minimum rating required for each resistor to be less than 0.5 W. Additional
DC inputs are optional and offer versatility that can be incorporated in later experiments. RF
voltage applied to adjacent electrodes is 180° out of phase. Capacitance magnitude was chosen
such that the RF cycle would be greater than one time constant (a measure of capacitor
discharge),”® making 100 pF capacitors suitable to the 600 kHz frequency used in each ion funnel.

On the PCB circuit boards detailed in Figure B.15.1 and Figure B.15.2, passive components
are soldered along with terminal blocks that provide a means of connection to 15 cm Kapton coated
wires. Those Kapton-coated wires are soldered to the upper electrical tabs of the ion funnel PCB
electrodes, as shown in Figure 2.9(A). DC voltage inputs to the PCB circuit boards are carried to
the atmospheric side of the instrument by Kapton coated wires through 9-pin subminiature-C
connectors and feedthroughs on the first vacuum chamber feedthrough flange. As shown in Figure

2.9(B), the individual wires of the two nine-conductor cables are matched with appropriate RF and
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Figure 2.8: Electric circuits for tandem ion funnels. Funnel electrodes are represented by two-

dimensional cross sections, with ion motion proceeding from left to right within each funnel. (A)

Schematic for high pressure ion funnel. (B) Schematic for low pressure ion funnel
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Figure 2.9: Pictures of some electronic components and cables, displayed for clarity. (A) PCB
electrodes and circuit boards for the tandem ion funnels, brass electrodes for the narrow drift tube,
and a prototype PCB Faraday detector. (i) Atmospheric-side cables are shown with nine-pin
subminiature-C connectors on feedthrough flanges. (ii) A bundle of Kapton coated wires connects
to the detector and drift tube. (iii) The low pressure ion funnel is shown with its RC circuit board
and a bundle of Kapton coated wires. (iv) The first funnel is shown with Kapton coated wires
soldered to the electrical tabs that connect to terminal blocks on the RC circuit board. A bundle of
Kapton coated wires connects to the same feedthrough flange as the low pressure funnel via an
intermediate feedthrough mounted at the top of the inner vacuum chamber. (B) Breakout boxes
for (i) high pressure funnel, (ii) low pressure funnel, and (iii) drift tube. The gray cables at the right

are the same seen in (A) (i). More detail on cable connections can be found in Appendix B.17.
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DC voltages at custom breakout boxes (component drawings in Figure B.15.3 and Figure B.15.4).
Figure B.17.3 and Figure B.17.4 show details of the electronic connection for the tandem ion
funnels.
[L.IV.V.11I. Aperture Array

The aperture array is mounted on a conductive stainless steel plate, and apertures are
adhered to the plate with conductive silver epoxy. One of the Kapton coated wires is attached to
the aperture panel to apply the DC voltage to all apertures simultaneously. Currently, gating is not
employed, but means of incorporating this feature, necessary for initializing each ion packet, is
discussed in Chapter I11.
ILIV.V.IV. Drift Tube

The drift tube electronics are much simpler than those of the tandem ion funnels. The DC
gradient is established by applying a DC voltage to the first electrode of the narrow drift tube and
the last electrode of the full size drift tube and connecting each brass electrode via a chain of
resistors. DC voltage inputs are carried to the brass electrodes by Kapton coated wires from a nine-
pin subminiature-C connector on the feedthrough flange of the second vacuum chamber. The nine-
pin subminiature-C feedthrough connects to atmospheric-side nine-conductor cables that are
matched with appropriate DC voltages at a custom breakout box (component drawing in Figure
B.15.5), as shown in Figure 2.9. Figure B.17.5 shows details of the electronic connections for the
drift tube.
I1.1V.V.V. Detector

The Faraday plate detector array consists of eight copper pads on a PCB. A track connects
each detector pad to a discrete electronics tab at the top of the board. Kapton coated and shielded

wires are soldered to a via on each tab with vacuum-compatible silver solder. These wires pass
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through the Faraday feedthrough flange via safe high voltage (SHV) shielded feedthroughs to be
amplified and acquired by software. One DC voltage is applied to an electrical tab at the bottom
of the Faraday plate detector, with connecting traces encircling each pad to serve as barriers to
reduce noise and prevent cross talk between ion channels. At the time of this work, signal gathered
by one detector is fed to a single-channel picoammeter operational amplifier, built in-house, and
the voltage output can be read either by oscilloscope or software developed in LabVIEW,
described in Section I1.IV.VI. Circuit diagrams and calculations for the picoammeter (Figure

B.15.8), which models that described by Intra and Tippayawong, are shown in Figure B.17.6.%%"

I1.IV.VI. Control and Acquisition

National Instruments LabVIEW was selected as the development test bed for the control
and acquisition software of the spatially multiplexed instrument because of efficient development
times, compatibility across a broad range of hardware, data acquisition capabilities, and previous
deployment in IM-MS.”2" Programs in LabVIEW are produced via a graphical programming
technique, which can make software design accessible to more researchers.” LabVIEW
programming incorporates sub programs termed virtual instruments (V1s), each of which consist
of a front panel and block diagram. The executable program is built in the block diagram, and the
front panel serves as a user interface, communicating with the block diagram, with the user
supplying inputs via controls and the software displaying outputs via indicators.

Images of the front panel and block diagrams of the software developed for the spatially
multiplexed instrumentation can be found in Appendix B.18. A flow chart of movement of
information from the software to the instrument is shown in Figure 2.10. As shown in Figure

B.18.1, the front panel design is kept simple to make the software easier to use. The device status
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Figure 2.10: System block diagram showing flow of information. Control settings programmed
from the LabVIEW user interface go through analog and digital outputs to power supplies, and
DC and RF voltages are applied to appropriate instrument components. Voltage and current
monitors on power supply units are read back at the user interface via analog input. lon current at

the Faraday detector is amplified and read as voltage via an analog input.
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is indicated at the top of the screen, along with any error notifications. Graphs at the top show
signal acquisition and monitor instrument voltages during operation. The elapsed time is displayed
to notify the user of how long the program has been running. Controls to set voltages are aligned
across the top of an instrument schematic, with labels that identify where various voltage controls
are applied in the instrument. A list of optional operational voltages is shown to prompt the user
with possible starting inputs. Cases of the program behind the front panel are shown in Figure
B.18.2 through Figure B.18.4. Running the main program in LabVIEW will initialize the plots on
the front panel, according to the block diagram shown in Figure B.18.5, but the program will not
attempt to enter the running state until the user presses the start button from the front panel.
Pressing the stop button will terminate execution of the software at any time (Figure B.18.2). When
the start button is pressed, the voltage settings from the front panel are checked against safe
operational voltage values (Figure B.18.6). As Figure B.18.3 shows, if the set voltages exceed safe
values, an error message is displayed for the user and the device stays in the idle state. When the
voltages are found to be within safe limits, the device enters the running state (Figure B.18.4) and
sends the voltages, which are scaled down and offset to correct for variability in individual power
supply units, to PXI-6704 for communication with power supplies (Figure B.18.7). In addition,
while running, voltage monitors are retrieved from PXI-6224, scaled, and displayed to show the
user the actual voltage applied to the instrument (Figure B.18.8). Time is kept to show the user
how long the program has been executing (Figure B.18.9). A field-programmable gate array
(FPGA) is used to collect ion signal as voltage (Figure B.18.11). The collected ion signal is

averaged and normalized for display on the front panel plot (Figure B.18.10).
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I1.V. Conclusions

This work describes the theoretical considerations and development of a spatially
multiplexed ion mobility spectrometer that offers advances in throughput, sensitivity, and
versatility, among other benefits. The instrument consists of arrays of eight ESI sources, RGCs,
tandem ion funnels, gated apertures, drift tubes, and detectors, with all components housed in a
single vacuum system, utilizing one set of electronics, and supported by shared hardware. The ESI
source was designed allowing grouped and individual multi-point adjustment (linearly and
rotationally) for optimization of each channel. Electric potentials were modeled to determine
optimal electrode geometries based on simulated ion trajectories. Vacuum chambers were
developed and vacuum pumps were chosen based on first-principles pumping calculations and
CFD modeling results. Infrastructure was developed from suitable materials to provide proper
alignment and support of electrodes while isolating pressure regions and facilitating ease of
maintenance and assembly. Electronics were designed to safely deliver the appropriate electric
potentials modeled in initial simulations. Software was developed to provide a link between the
user and the instrument for control, feedback, and signal acquisition. Results from preliminary
testing, plans to incorporate gating electronics, and approaches to troubleshoot existing obstacles

are described in Chapter I11.

[1.VI. Supporting Information

Simulation results from CFD and ion trajectories, machine drawings of all custom
components, a table of components purchased commercially, electronic schematics, diagrams
showing logic for control and acquisition software, and photographs taken during the development

of the instrument described here can be found in Appendix B.
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CHAPTER IlI

PRELIMINARY RESULTS FOR AN EIGHT-CHANNEL SPATIALLY MULTIPLEXED ION

MOBILITY SPECTROMETER

[11.1. Introduction

Chapter 11 describes the motivation, simulates the performance, and establishes operational
parameters for a spatially multiplexed 1M spectrometer. Details of the simulations and calculations
that went into the theoretical design of the spatially multiplexed instrument, considerations of
software, geometries, and electronics contributing to its development, and explanations of
fabrication and assembly concerning materials, manufacturers, methods, and more are also
included in Chapter Il. The eight-channel IM is currently undergoing iterations of testing,
troubleshooting, modification, and optimization. This section expresses the current state of the

instrument, covering preliminary data, existing obstacles, and forthcoming endeavors.

I11.11. Preliminary Results

1111, Vacuum System

Prior to complete fabrication and assembly, initial testing was conducted on individual
instrument components and systems including investigation of vacuum chamber seals and scroll
pump gas displacement performance. The welded stainless steel vacuum chambers were
individually leak tested, with blank flanges installed to reduce the number of possible leak sources.

The scroll pump used in testing could achieve a minimum pressure of 0.020 Torr with no load. In
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initially testing, a leak was found in the first vacuum chamber, specifically at the junction of the
top flange and feedthrough flange, which limited the base pressure to above 3.0 Torr. Leak testing
involved monitoring the base pressure for an abrupt increase, while small aliquots of methanol
were sprayed along each seal to isolate the location of the leak, and the offending weld of the first
vacuum chamber was located and subsequently remade. After modification, the first vacuum
chamber achieved a pressure of 0.025 Torr after 30 minutes of pumping, and 0.018 Torr after two
hours. Testing the second vacuum chamber revealed robust welds, with a base pressure of 0.032
Torr measured after 30 minutes of pumping. These pressures are sufficiently low relative to the
operational pressures, which are greater by two orders of magnitude.

Results of another vacuum system test, evaluating the pumping speed of the Edwards
XDS35i scroll pump, are shown in Figure C.1. Pressure measurements were taken during pump
down of the first vacuum chamber, which has a calculated internal volume of 25 L. These results
indicated that pump down of the instrument from atmosphere should take at least six minutes, and

that the empirically tested pumping speed is comparable to that reported by the manufacturer.

I1.11.11. Electronics

Testing of electronic components and circuits was also performed to confirm safe
operational limits, diagnose faulty components, identify assembly errors, etc. Assessment of
cables, connectors, printed circuits, and soldered components involved measuring resistance
between conductors to ensure robust connections as desired and adequate insulation where
required. The linearity, gain, and drift of the DC power supply modules were evaluated by
comparing measurements of the input control voltages to measurements of the high voltage

outputs. With the instrument at atmospheric pressure, output voltages were measured at the
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electrodes comprising the ion channels. Results from these experiments (listed in Table C.1) are
subsequently programmed into the LabVIEW instrument control software to calibrate each
individual power supply to match the supply and readback voltages. Because the empirically-
measured voltage offsets are linear (R? values of 1.000), the calibration factors can be derived from
the slope-intercept equation, where the high voltage output (ordinate, y-axis) is plotted against the
input control voltage (abscissa, y-axis), with the slope and intercept representing the true gain and
the voltage drift from zero, respectively.

Confidence in safe bounds for passive electronic components was established by applying
voltage approximately 20% greater than operational values. Though useful in detecting errors,
testing can be destructive; for example, during high voltage testing, the high pressure ion funnel’s
resistor-capacitor (RC) circuit was found to have been wired incorrectly, so that an atypically high
voltage and current were applied across DC02 and DCO03 (as labeled in Figure B.15.1). This test
revealed the wiring error, but destroyed two 5 kQ resistors, as shown in Figure B.19.5, which had
to be replaced and retested. In proper operation, two DC supplies are linked by the RC circuit, and
the two supplies source and sink current up to 1 mA, which, over the full resistance of each funnel,
is well below the rated power maximums for the passive components used in the assembly.

In measuring the DC voltages applied to electrodes while the instrument was under
vacuum, erratic behavior was observed at higher voltages representing the upper voltage limits of
instrument operation as determined through ion simulations. This behavior, which manifested as
an abrupt voltage drop and subsequent fluctuation of the readback potential, was found to correlate
with the initiation of corona streamers and glow discharges within the vacuum chambers. By
inspecting the ion optics assembly through the upper borosilicate plate of each vacuum chamber,

these electrical discharges can be observed with the naked eye as purple glows and sparks of light.
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Photographs of these discharges occurring in the spatially multiplexed instrument are included in
Figure B.19.25. Investigation of the Paschen breakdown curve equation® indicates the minimum

breakdown voltage occurs near the operational pressures of the instrument.

Ve = BNZ'P'de
57 In(an, Pde)-In(in(1+-2))

(3.1)

Here, Vs is the breakdown voltage, Anz and Bz are experimentally determined coefficients that are
constants over a restricted range of E/P (E is electric field) for a given gas, P is pressure, de is the
distance between electrodes or conductive surfaces, and yse is the experimentally measured
secondary electron emission coefficient, which varies for different materials and gases. Values for
Anz (11.8 cm™-Torr?) and Bn2 (325 V-cm™-Torr?) are constant in the E/P range of 100 V-cm
MTorr?! to 600 V-cm™*Torr.! Values for ys, available from various sources, are specific to the
conductor material and gas, among other measurement-specific parameters, and range from 0.1 to
0.47 for N2 with Cu, stainless steel 304, or Al and from 0.81 to 1.65 for N with brass* (metals
common to the multiplexed instrument). Solving Equation 3.1 over these variable ranges yields
many solutions, and thus it is difficult to theoretically determine one specific breakdown voltage
for the instrument. However, the compilation of results indicate that lowest magnitude of the
breakdown voltage occurs in a pressure range of 1.4 to 7.0 Torr (assuming a value of 0.79 mm for
de, which is the minimum known spacing between conductive, unconnected surfaces).
Unfortunately, this range of pressures in which electrical breakdown is likely to occur corresponds
to the operational pressure range of the instrument. To mitigate this issue, coronas and discharges
within the instrument can be prevented by coating conductive surfaces at points of high E in
insulating material. In the multiplexed instrumentation, Super Corona Dope 4226 (MG Chemicals)
and Kapton sheets have been incorporated in multiple locations, with some applications shown in

Figure B.19.5, Figure B.19.6, Figure B.19.8, and Figure B.19.26. Although coronas and discharges
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are no longer visible during instrument operation, monitoring operational voltages for the abrupt,
erratic behavior previously seen indicates that they are still occurring at the upper range of
operational voltages, which are initially determined through ion simulation results. Another way
to prevent coronas and discharges is to operate the instrument parameters (i.e., pressures and
voltages) within limits of their occurrence. Figure 3.1 shows the results of the experiments to
empirically establish the limits of corona and/or discharge initiation, where the voltage was
increased until the phenomena were observed (corona initiating) and then decreased until the
behavior ceased (corona quenching). Note that once a discharge is initiated, a significantly lower
voltage is required to quench that discharge, since gaseous electron propagation is a self-sustaining
process. These results suggest that, for the expected operational voltages, the high pressure ion
funnel (750 V) should be operated at 10 Torr or higher, and the low pressure ion funnel (475 V)

should be operated at 3.9 Torr or higher to prevent coronas and/or discharges.

111111, Electrospray lonization Characterization

Sodium iodide (Nal) was chosen for initial tests evaluating the ESI source because it has
been shown to form clusters over a wide range of masses, providing a good case for ion
transmission even if the ion funnels were to exhibit an extreme mass bias.> The prepared solution
was first diluted to ca. 50 pM and analyzed with commercial instrumentation (Agilent 6560 1M-
MS), confirming ion generation and cluster formation. After exhaustive troubleshooting of the
detector circuit and source power supply (the discussion of which has been omitted for the sake of
brevity), ion signal was detected on the home-built Faraday plate and amplifier circuit. Using the
experimental setup shown in Figure 3.2(A), initial experiments were conducted to characterize and

optimize the ESI source in a stand-alone configuration. Figure 3.2(B) shows results from an
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Figure 3.1: Empirical testing of initiation and quenching of coronas and/or discharges in the
tandem ion funnels of the spatially multiplexed IM. These tests were performed after super corona
dope was applied to the RC circuit boards of each funnel, and after Kapton sheets were installed
to prevent coronas and/or discharge in locations they had previously been observed. Coronas
and/or discharges were not observed at the RC circuit boards in this experiment, but they were
observed at the inner via surfaces that comprise the ion channels. The high pressure ion funnel
(Funnel 1) is expected to operate near 750 V, at which the pressure must remain greater than 10
Torr to prevent coronas and/or discharges. The low pressure ion funnel (Funnel 2) is expected to
operate near 475 V, at which the pressure must remain greater than 3.9 Torr to prevent coronas
and/or discharges. Trendlines are third order polynomial equations and serve to visually connect

the data points for the reader.
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Figure 3.2: Tests of solvent ratios and sample concentration to optimize signal strength. (A)
Diagram of system setup, where Faraday plate is positioned approximately 5 mm from the ESI
needle. (B) Empirical data comparing 1:1, 2:1, 3:1, and 4:1 IPA:H20. Mean difference of 1 mM
Nal and a blank for each solvent system is plotted. Flow rate is 0.5 mL/hr. Error bars represent £
1 standard deviation from the mean of six measurements. No significant solvent bias was observed,
and 80% IPA was chosen for subsequent experiments. (C) Investigation of signal response with
respect to concentration of Nal. Mean difference of sample and blank at each concentration is
plotted. Flow rate is 0.5 mL/hr. Linear range extending to 7 mM is boxed and shown closer in (D).
lonization efficiency is decreased above 7 mM, and ion suppression may cause decrease at higher
concentrations. (D) Linear region of signal response to Nal concentration. Above this
concentration, no increase in ionization efficiency was observed. Subsequent experiments were
performed with 1 mM Nal. Error bars in (C) and (D) represent + 1 standard deviation from the

mean of nine measurements.
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investigation of the effect of IPA:H2O solvent ratio on detected ion signal with the detector
positioned 5 mm from the ESI needle using a 1 mM Nal solution at a flow rate of 0.5 mL/hr.
Although this study was by no means an exhaustive investigation of solvents, no significant bias
between solvent composition and detector response was observed in this experiment, indicating
that if a stable spray is observed as in Figure B.19.2, solvent composition should have no
significant effect. A ratio of 4:1 IPA:H20 was chosen for use in subsequent experiments. Figure
3.2(C) shows results from an investigation of signal response with respect to Nal concentration in
4:1 IPA:H20 at 0.5 mL/hr flow rate. A linear response in signal was observed up to 7 mM Nal
(Figure 3.2(D)), above which ionization efficiency was observed to decrease. Specifically, the
signal decreased between 50 mM Nal and 100 mM Nal, which may indicate the occurrence of ion
suppression at these high analyte concentrations. Because of the findings from this study,
combined with the observation of mineral deposits on the detector at high salt concentrations
(Figure B.19.14), a concentration of 1 mM Nal, corresponding to the lower end of the linear range,
was chosen for subsequent experiments. Figure 3.3(A) shows the experimental setup utilized in
characterization and optimization of the ESI source. Figure 3.3(B) displays findings of the effect
of E on ion generation, where the ESI voltage was held constant at 1500 V and the distance
between the needle and Faraday plate was varied between 1 mm and 7 mm. The flow rate for this
experiment was 0.2 mL/hr, a current limit of 120 pA was imposed on the SC power supply, and
the sample was prepared in 4:1 IPA:H20, as used in previous experiments. The sample was a
mixture of 1 mM Nal, chosen after previous concentration-dependent experiments, and 1 mM Csl,
which was added to expand mass coverage.® lon detection in these studies was achieved using a
digital oscilloscope, with an in-line variable resistor adjusted to 82.1 Q resistance. When the needle

was too far from the Faraday plate, at E values less than 4 kV/cm, the spray was unstable and the
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Figure 3.3: Empirical test evaluating signal at the detector for various electric field strength, E,
between the tip of the ESI needle and the Faraday plate. (A) Experimental setup with Faraday plate
in atmosphere, fixed in front of the ESI source. (B) Data showing dependence of E on ESI
initialization from 1 mm to 7 mm distance from needle to detector at 1500 V, a current limit of
120 pA on the SC power supply, and 82.1 Q resistance between the detector and voltage
measurement. Error bars indicate peak to peak noise corresponding to each measurement. Sample
was 1 mM Nal and 1 mM Csl in 4:1 IPA:H20 at a flow rate of 0.2 mL/hr. Under 4 kV/cm, the
field was not strong enough and the spray was unstable. Between 4 kV/cm and 10 kV/cm, ESI was
stable. Over 10 kV/cm, the needle was within 1.5 mm of the Faraday plate and the solvent droplet

closed the circuit.
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signal was low. Between 4 kV/cm and 10 kV/cm, a stable spray was observed and signal was
steady, increasing with E until the strength of the field destabilized the spray, causing sputtering
and a decrease in signal. Above 10 kV/cm, when the needle was within 1.5 mm of the Faraday
plate, the solvent droplet was close enough to touch the surface of the detector, closing the electric
circuit and corresponding to a large increase in the detected ion signal. These experiments indicate
that, at this voltage, the ESI is stable around 3 mm £ 1 mm distance from the counter electrode,

which represents the Faraday plate in these experiments.

I1.11.1V. Characterization of lon Signal in Vacuum

After the ESI parameters were characterized, the Faraday plate was repositioned and
installed ca. 25 mm from the vacuum end of the RGC to test ion transmission through the RGC
into vacuum. Although the noise observed on the oscilloscope was greatly decreased by moving
the detector into the vacuum system (shielded by the vacuum chamber), ion signal was
undetectably low when using the in-line variable resistor as the amplifier in the detector circuit. A
low-noise, dual operational amplifier (described in Chapter 1l and multiple revisions depicted in
Figure B.19.17), was subsequently constructed based on a previously reported design,”® and
incorporated into the detector circuit in order to detect picoamperes of current, enabling collection
of the data shown in Figure 3.4. The experimental setup is shown in Figure 3.4(A), where the
Faraday detector is situated in one of two locations: positioned immediately after the RGC or
positioned at the exit of the high pressure ion funnel. In testing ion transmission through the RGC,
the change in signal was observed when the ESI was either initialized or blocked. To block the
ESI, a Kapton sheet was physically placed between the ESI needle and the atmospheric end of the

RGC, destabilizing spray and preventing ion formation or entry into vacuum, but neutral gas

134



(A) p—— (C)

High Pressure ' MEASURE
Funnel LR 7 G e

e | NI

& 1 |:I:| 1l |(I) |

ESI Source Vacuum System

(B)
Tek Al O [ Scan

n
Peak Detect

fverage

Averages

Off On :
0 10 20 30 40 : " 50

“100 150 200 e
Time (Seconds) o Time (Seconds) 2

Figure 3.4: (A) Diagram showing position of Faraday plate detector during testing with (i)
representing testing of ion transmission through the RGC and (ii) representing testing of ion
transmission through the high pressure ion funnel. (B) and (C) show photographs of the
oscilloscope screen during ESI initialization experiments. (B) Results for test of ion transmission
through RGC, with Faraday plate detector in ((A), position (i)). ESI was initialized, “On,” and
quenched, “Off,” by physically blocking the needle from the RGC with a sheet of Kapton. Neutrals
were transmitted throughout the experiment, however, because the Kapton sheet did not prohibit
gas flow through the RGC, thus the pressure was unaffected. Voltage increase indicates
approximately 1.8 nA of ion current. (C) Results for two trials testing of ion transmission through

RGC and high pressure ion funnel, with Faraday plate detector in ((A), position (ii)). DC ramp
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across ion funnel was positive for regions marked “On,” DC ramp was negative for regions marked
“Negative,” and ESI was quenched in regions marked “Off.” Neutrals were transmitted throughout
the experiment, however, because the Kapton sheet did not prohibit gas flow through the RGC,
thus the pressure was unaffected. Voltage increase during ESI for this experiment was difficult to
determine, either quantitatively or qualitatively, but approximately 330 pA was measured for the

same setup in later experiments (not pictured). Pressure in vacuum was 11 Torr throughout.
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molecules were still permitted to enter the vacuum system, as the RGC entrance was not sealed by
the Kapton sheet, and the corresponding pressure remained stable at 11 Torr throughout the
experiment. The voltage increase seen in Figure 3.4(B) is indicative of approximately 1.8 nA of
ion current, calculated from the equations discussed in Chapter Il and shown in B.17.6, with a 100
kQ bridge resistor in the amplifier circuit and a signal to noise ratio of ca. 10:1. Evaluation of ion
transmission through the high pressure ion funnel yielded the results shown in Figure 3.4(C),
where the same Kapton sheet blocking method used in the previous experiment was employed.
Here, the DC gradient across the high pressure ion funnel was established either to transmit ions
(“On”) or to discourage ion transmission (“Neg”) as a null experiment in case ions were finding
their way through the RGC despite the Kapton blocking sheet. A voltage increase during
initialization of the ESI was difficult to determine, either quantitatively or qualitatively, for the
results shown. A subsequent reproduction of this experiment yielded a measured ion current of
approximately 330 pA.

Before further experiments were conducted, the LabVIEW control and acquisition software
was developed. Various roadblocks and troubleshooting methods led to the experiment depicted
in Figure 3.5(A), where a piece of aluminum foil molded to a piece of plastic (photograph in Figure
B.19.14) was substituted for the PCB Faraday array. Figure 3.5(B) shows successful transmission
of ions through the RGC, high pressure funnel, and conductance limit of the Delrin wall of the
inner vacuum chamber with detection by the NI PXI-7842R card and visualization in the
LabVIEW program written in-house. Because only one RGC is open to atmosphere, a pressure
differential between the inner vacuum chamber and first vacuum chamber is not established, and
pressure in both chambers was measured at 11 Torr. Here, 1 mM Nal and 1 mM Csl in 4:1 IPA:H20

were directly infused at 0.3 mL/hr with 1850 V on the ESI needle. The RGC and first electrode of
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Figure 3.5: ESI initialization experiment with signal acquisition by NI LabVIEW software.
Experimental setup of foil Faraday plate suspended after inner vacuum chamber, with ions
transmitted through RGC and high pressure funnel at 11 Torr. ESI was initialized, “On,” and
quenched, “Off,” by physically blocking the needle from the RGC with a sheet of Kapton. Neutrals
were transmitted throughout the experiment, however, because the Kapton sheet did not prohibit
gas flow through the RGC, thus the pressure was unaffected. Flow rate was 0.3 mL/hr for 1 mM
Nal and 1 mM Csl and ESI needle was held at 1850 V. For high pressure ion funnel, 180 VDC
was applied to the RGC and first electrode, 5 VDC was applied to the last electrode, and 100 Vpp
RF was applied across the funnel. Software loop duration was set at 25 ms and 40 iterations.

Voltage increase indicates approximately 110 pA of ion current (6.8 - 10* counts per 0.1 ms).
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the high pressure funnel are at 180 V, the last electrode of the high pressure funnel is at 5 V, and
100 Vpp RF is applied across the funnel as described in Chapter I1. Acquisition software was set to
acquire 40 iterations of 25 ms between screen updates, with signal averaging occurring every 32
samples. The voltage increase observed when ESI is initialized corresponds to 110 pA of ion

current without a bridge resistor in the picoammeter, or 6.8-10* ion counts per 0.1 ms.

[11.111. Current Obstacles

During the testing of the spatially multiplexed instrument, many obstacles have been
encountered. Troubleshooting has helped to overcome some of these, as described above. Others,
however, are persistent, and it is expected that many obstacles to commissioning the spatially
multiplexed IM have yet to be identified. For example, Chapter Il describes two source power
supplies, when only one is utilized, because of issues concerning the originally intended module.
Tests conducted in-house indicate the power supply unit is faulty, and interpretation of those
results (some of which were eventually attributed to a faulty multimeter) were corroborated by a
technician at the manufacturer, but when the unit was returned for repair, problems persisted with
the performance of the supply. Additionally, when this unit is in use, current flows to instrument
ground, causing the ESI micrometer stage and the table surface to be electrified, resulting in an
unsafe operational situation in which these surfaces conducted unwanted current to the user. Thus,
for reliability and safety, an alternate supply was utilized, which tests and performs as expected. .
Another issue of note involves electronic noise, detected by the Faraday plate, originating from
ESI auxiliary appliances including a television, video camera, heater, and lamp. Noise from these
units was observed most when the Faraday plate was positioned outside of vacuum (Figure

3.3(A)), and it is hoped that this noise will diminish as the detector is moved further from the ESI
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source to the end of the drift tube where the stainless steel vacuum system will act as a Faraday
cage.

Figure B.19.12 depicts the aperture panel, which is fabricated from a stainless steel plate.
There is a concern that the panel’s electrical capacitance is high enough to slow the response to
voltage changes, which will later be incorporated for ion gating. If the response is slow, the shape
of the initial ion packet will be affected, which will adversely affect the ion mobility resolution,
and redesign of the aperture panel may need to be considered.

Another obstacle was realized after preliminary testing with both ion funnels installed,
which has not yet successfully demonstrated detectable ion transmission. One suspicion is that
electric charge is accumulating on the surface of the Delrin that forms the conical ion exits of the
inner vacuum chamber (Figure B.19.7). Although ions have passed through this exit and been
detected within ca. 10 mm, the electric field may be deformed by the charged Delrin to an extent
that prevents them from traversing the 25 mm distance to the first electrode of the low pressure
ion funnel. Note that ion simulations do not account for these dielectric components, which may
contribute significantly to the electric fields that the ions ultimately experience. Attempts to
circumvent this suspected obstacle were made by first suspending a metal ring just outside the
inner vacuum chamber to serve as an intermediate electrode and second fabricating a conical metal
electrode to shield the Delrin surface, but neither of these efforts yielded detectable ion signal at
the exit of the low pressure ion funnel. Further attempted mitigation strategies included removal
of the inner vacuum chamber such that only the ESI, RGC, and high pressure ion funnel were
being tested, but signal in this configuration resulted only from neutral gas flow (tested by
alternately opening and sealing the RGC atmospheric end), with no significant detection of ions.

These results indicate an additional, undetermined obstacle exists preventing ion transmission
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through both ion funnel stages and into the drift tube region.

[11.1V. Conclusions and Future Directions

The flow chart in Figure 3.6 represents the design process for the spatially multiplexed IM
instrument. This project started with a novel concept of spatially multiplexing IM with the
motivation of increasing throughput, sensitivity, accuracy, precision, and versatility, as discussed
in Chapter 1I. Research in the field was conducted to determine novelty, ascertain demand, and
discover state-of-the-art methods and designs after which to model the new instrument. This was
the first step in the first iteration of the cyclical design process depicted in Figure 3.6(A).
Development of the spatially multiplexed IM is still undergoing iterations of this cycle of research
followed by theoretical design, development, fabrication, assembly, and evaluation leading to
more research. To date, the elements indicated in Figure 3.6(B) as “Complete” are considered well-
established facets in the development of this instrument, though aspects of these subjects may be
revisited to optimize instrument performance. Topics indicated as “In Progress” regard evaluation
of the instrument, with some topics included in the above discussion. lons have been successfully
generated at the ESI source, transferred into vacuum via a resistive glass capillary (RGC),
transmitted through the high pressure ion funnel, transported from the inner vacuum chamber to
the first vacuum chamber, and neutralized at a Faraday plate detector. Current generated by the
ion neutralization event has been effectively amplified, converted to a voltage measurement by a
home-built picoammeter, and displayed to a user via both an oscilloscope and the LabVIEW
software interface. Future work within the iteration loop of the design process includes further
testing, incorporation of ion gating, and benchmarking of performance. When the instrument has

been thoroughly evaluated and optimized, it will be commissioned for use.
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Figure 3.6: (A) Flow diagram for the design process. Note the cyclical process, representing
multiple design iterations prior to commissioning, in which current efforts are being focused. (B)
Details of the design process specific to the spatially multiplexed ion mobility spectrometer
described in Chapter Il. Note that work has been completed through assembly, and the instrument
is currently being evaluated. Future work includes further testing, incorporation of ion gating,

benchmarking of performance, and commissioning of the instrument.
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Chapter IV

CONFORMATIONAL ORDERING OF BIOMOLECULES IN THE GAS PHASE:
NITROGEN COLLISION CROSS SECTIONS MEASURED ON A PROTOTYPE HIGH

RESOLUTION DRIFT TUBE ION MOBILITY-MASS SPECTROMETER

IV.I. Abstract

lon mobility-mass spectrometry measurements which describe the gas-phase scaling of
molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such
measurements expand our understanding of intrinsic intramolecular folding forces in the absence
of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section
(CCS), are analytically useful metrics for identification and characterization purposes. Here, we
report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-
mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype
incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a
high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of
high experimental precision (£0.5% or better) and represent four chemically distinct classes of
molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables
structural comparisons to be made between molecules of different chemical compositions for the
rapid “omni-omic” characterization of complex biological samples. Comparisons made between
helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are
systematically larger than helium values; however, general separation trends between chemical

classes are retained regardless of the drift gas. These results underscore that, for the highest CCS
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accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate

measurements obtained in nitrogen, as is the common practice in the field.

IV.II. Introduction

With the rising demand for high-throughput analyses of increasingly complex samples, ion
mobility-mass spectrometry (IM-MS) has found broad application in the analysis of biological
systems, as this rapid 2D separation (ms and ps, respectively) provides comprehensive molecular
information regarding analyte size, mass, and relative abundance. In ion mobility, separation is
achieved by low-energy interactions of charged analytes with an inert buffer gas (conventionally
helium or nitrogen), where analyte size-to-charge ratio is measured as a function of the time
required to traverse the mobility region.! As a means of comparison with other laboratory
measurements, drift time values are either normalized to standard temperature and pressure as a
reduced mobility (Ko) or converted to a collision cross-section (CCS) value, the latter of which is
a size parameter related to the averaged momentum transfer impact area of the molecule.?
Structural information in the form of CCS values assists in the characterization of analytes by
biomolecular class, as these classes are known to separate in IM-MS space and adopt
conformational correlations due to prevailing class-specific structural folding in the gas-phase.3*
These class-specific mobility-mass correlations can be used as a predictor for molecule class,
demonstrating the potential value of IM-MS structural separations for life sciences research which
seek systems biology level information. Expanding upon this concept, CCS-based molecular
prediction has previously been explored for peptides, utilizing intrinsic size parameter
calculations®’ and machine learning algorithms® for sequence prediction, but no detailed study of

other biochemical classes has yet been undertaken.
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The separation and characterization of biological samples by IM-MS has been achieved
using both commercial and laboratory built instrumentation. Virtually all contemporary
commercial IM-MS instruments utilize nitrogen as the buffer gas for IM separations, motivated by
practical considerations of cost, availability, and technical considerations for pumping
requirements and electrical discharge. The most common commercial IM-MS platform utilizes an
electrodynamic field (i.e., a traveling wave potential) for mobility separation,®° and drift time
measurements must be calibrated against electrostatic drift tube data in order to convert these
measurements to CCS values.!*!2 Conversely, many independently constructed instruments
incorporate uniform electrostatic field mobility regions utilizing helium as the buffer gas. Uniform
field measurements serve as the benchmark for electrodynamic CCS value determination, as the
CCS obtained from a uniform field drift tube can be determined empirically through Kinetic
theory. 1314

One common practice among researchers utilizing IM-MS is calibration of nitrogen-based
traveling wave ion mobility measurements against helium-based CCS values reported in the
literature.®®>® The use of helium-based CCS values to calibrate nitrogen-based drift time
measurements results in calibrated “helium-equivalent” CCS values, which can be useful for
comparing with literature values and correlating measurements to theory.'®?2 There is, however,
concern that this practice introduces added experimental error, as nitrogen vs. helium mobility
measurements differ substantially in magnitude, and the success of calibration strategies relies
heavily on careful selection of calibrants that accurately describe the sample conditions, charge
state, mass range and chemical class of the system of interest.*1"2® Differences in CCS values in
helium versus nitrogen arise due to several factors including intrinsic size differences between the

buffer gases, mass effects which factor into the momentum transfer cross-section (the experimental
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CCS), and the over eight-fold difference in gas polarizability between helium and nitrogen (0.21
x 102 and 1.74 x 10%* cm?3, respectively).1424

Recently, a prototype IM-MS instrument utilizing nitrogen drift gas was developed
(Agilent Technologies, Santa Clara, CA). This instrument incorporates a uniform electrostatic field
ion mobility separator bracketed by electrodynamic focusing devices (ion funnels), which allows
for high sensitivity and direct measurements of CCS values in nitrogen.®? Presented in this report
IS an extensive and diverse database of empirically-derived nitrogen CCS measurements (594
values), which comprises four molecular classes and expands upon several previous databases for
the structural characterization of biological molecules.>"811.26-29 This affords the opportunity to
explore the fundamental considerations of buffer gas composition and the subsequent effects on

ion mobility parameters (reduced mobility and CCS) across different molecular classes.

IV.111. Experimental Methods

IV.111.1. Preparation of Standards
IV.ILLI Lipids

All solvents and buffers were purchased as HPLC grade from Sigma-Aldrich (St. Louis,
MO, USA). Dry lipid extracts were purchased from Avanti Lipids (Birmingham, AL, USA) and
constituted in chloroform prior to analysis. Lipid extracts include sphingomyelins (SM, porcine
brain), glycosphingolipids (GlcCer, porcine brain), phosphatidylcholines (PC, chicken egg),
phosphatidylserines (PS, porcine brain), and phosphatidylethanolamines (PE, chicken egg). For
analysis, lipid standards were diluted in 90% chloroform/10% methanol (v/v) with 10 mM sodium

acetate to a final concentration of 10 pg/mL. Putative identification of lipids was performed using
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the exact mass measurement through the Lipid Metabolites and Pathways Strategy (LIPID MAPS)
Structural Database (LMSD).*° A full list of identified lipids can be found in Section IV.VI.
IV.1ILILII. Carbohydrates

Carbohydrate dextrins (linear and cyclic) and sugar alcohol standards were purchased from
Sigma-Aldrich. Lacto-N-difucohexaose | and Il and lacto-N-fucopentaose I and 11 were purchased
from Dextra Laboratories (Reading, UK). All carbohydrate standards were prepared as received
and reconstituted in water with 10 mM ammonium acetate to final concentrations of 10 pg/mL.
For cationization, 10 mM NaCl, 10 mM LiCIl, 10 mM CsCl, 10 mM KCI, and 10 mM RbCI
solutions were prepared in water to a final concentration of ca. 10 uM. A full list of identified
carbohydrates can be found in Section IV.VI.
IV.ILLI. Peptides

Predigested peptide standards (MassPREP) were purchased from Waters (Milford, MA,
USA). Peptide standards (SDGRG and GRGDS) were purchased from Sigma-Aldrich. All peptide
standards were received as a lyophilized powder and reconstituted in 10 mM ammonium acetate
in water to a final concentration of 10 ug/mL. The MassPREP digestion standard mix contained
approximately equimolar concentrations of four tryptically digested proteins: Alcohol
Dehydrogenase (ADH, yeast), Serum Albumin (BSA, bovine), Phosphorylase B (PHOSPH,
Rabbit) and Enolase (ENOLASE, yeast). Peptide identifications were assigned on the basis of
exact mass of all possible tryptic peptides (no missed cleavages) produced by the Expert Protein
Analysis System (ExPASy) PeptideMass proteomics tool®! (Swiss Institute of Bioinformatics,
Lausanne, Switzerland) using the SWISS-PROT database entry number for each intact protein
(P0O0330, P02769, P00924, and P00489, respectively). A full list of identified peptides can be

found in Section IV.VI.
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VLIV, Quaternary Ammonium Salts

Tetraalkylammonium (TAA) salts with alkyl chain lengths between 3 and 18 carbons
(TAA3 to TAA18) were purchased from the following sources: TAA4, TAA6, TAA7, TAALOQ,
TAA12, and TAA16 from Sigma-Aldrich; TAA3, TAA5, and TAA8 from Acros Organics; and
TAA18 from Alfa Aesar. All TAA salts were supplied with a stated purity of greater than 98%
and were prepared as received. TAA3 to TAAS8 were prepared in 50% methanol/50% water, while
TAAL0, TAA12, TAAL6, and TAA18 were prepared in 50% methanol/50% isopropanol. Final
concentrations were ca. 1 pg/mL. A full list of primary TAA salt standards and concomitant ions

identified in the samples can be found in Section IV.VI.

IV.IILII Instrumentation

A schematic of the instrumentation used to obtain the cross-section measurements is shown
in Figure 4.1. The instrument used in this work is a commercial prototype IM-MS which
incorporates a drift tube coupled to a quadrupole time-of-flight mass spectrometer (IM-Q-TOFMS,
Agilent Technologies, Santa Clara, CA). For this work, an orthogonal electrospray ionization (ESI)
source (Agilent Jet Stream) was utilized which incorporates a heated sheath gas nebulizer to
aerodynamically focus and desolvate ions prior to introduction into the vacuum system. lons from
the ESI are introduced to a single-bore glass capillary tube which is resistively coated across its
length, allowing the nebulizer to be maintained at ground potential, while the exit end of the
capillary can be biased to around 2100 V.*? lons exiting the capillary are introduced into a tandem
ion funnel interface consisting of a high-pressure transmission ion funnel in the first stage,®
followed by a second stage trapping ion funnel which incorporates a dual-grid ion gate.3* The

second stage ion funnel trap operates as an ion focusing and accumulation region whereby
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Figure 4.1: Details of the prototype IM-MS instrumentation used in this study. (A) A picture of

the ion optical elements of the ion mobility component. (B) A representative schematic of the

instrumentation used with significant components annotated.
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temporally narrow (typically 100 to 150 ps) ion pulses are gated into the IM spectrometer. Mobility
separation occurs in a 78 cm uniform field drift tube comprised of a series (ca. 150) of 50 mm
internal diameter gold-plated ring electrodes. The buffer gas is high purity nitrogen. lons traverse
the drift tube under the influence of a weak electric field (10 to 20 V-cm™) and consequently drift
under low-field conditions. The combination of extended drift length, precision electronics, and
high drift voltages enables high resolution ion mobility separations in excess of 60 resolving power
(t/At, observed for a +1 ion, m/z 294). lons exiting the drift region are refocused axially using an
ion funnel and traverse a differential pressure interface region by means of a resistively-coated
hexapole ion guide. Following the hexapole, ions are introduced into a modified Q-TOFMS
(Agilent 6550), which incorporates a quadrupole mass filter and collision cell to enable mass-
selective ion fragmentation experiments. The TOFMS is capable of greater than 40,000 mass
resolving power and can acquire MS spectra at a rate of up to 8.3 kHz (120 us transients at m/z

1700). Additional instrumentation details are provided in Figure 4.1.

IV.I11L111. Experimental Parameters

All 2D IM-MS spectra were acquired via direct infusion using positive mode electrospray
ionization (Agilent Jet Stream Source) with a flow rate of ca. 10 uL/min. The Jet Stream source
was operated with a nitrogen sheath gas temperature between 400 and 600 K (solvent dependent)
at a flow rate of 12 L/min. Nitrogen drying gas applied at the source entrance was heated to ca.
570 K at a flow rate of 10 L/min. The source was operated in positive mode with the following
voltages: ground potential emitter, —4.5 kV capillary entrance, and —1.8 kV nozzle. The three ion
funnels were operated as follows: high-pressure funnel RF 100 Vp, (peak-to-peak) at 1.5 MHz,

150 V DC,; trapping funnel RF 100 Vpat 1.2 MHz, 180 V DC; rear funnel RF 100 Vppat 1.2 MHz,
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200 V DC. The IM drift gas pressure (nitrogen) was maintained at ca. 4 Torr and ca. 300 K, while
the drift potential varied from 750 to 1450 V, which represents an E/N ratio of 7 to 15 Td. In this
E/N range, the mobility operates under low field conditions as all analytes investigated exhibited
a linear change in drift times with respect to the electric field. Data was acquired with a modified
version of the MassHunter software (Agilent Technologies). The mass measurement was
calibrated externally using a series of homogeneously substituted fluorinated triazatriphosphorines
(Agilent tuning mixture, ca. 100 to 3000 m/z), which are characterized as being amphoteric and
nonreactive. Additionally, a mixture of tetraalkylammonium salts (TAA3 to TAA18) was added

to all samples as an internal mass and mobility calibration standard for positive mode analysis.

IV.I11.1V. Collision Cross-Section Calculations

Uncorrected drift times are extracted as centroid values using a beta version of the IM-MS
Browser (Agilent Technologies). This uncorrected drift time represents the total transit time of the
ions, including the mobility drift time and the flight time through the interfacing IM-MS ion optics
and MS. Because the non-mobility flight time component (the transit time of ions outside the drift
region) is independent of the drift voltage, this value can be determined from a plot of the measured
drift time versus the inverse drift voltage,®2® where a linear fit to the data will indicate the non-
mobility time component (y-intercept) in the limit of infinite electric field (1/V of zero). Time
measurements are obtained from a minimum of six different drift voltages, ranging from 750 V to
1450 V. The determined non-mobility time is subtracted from the uncorrected drift times in order
to obtain the corrected ion mobility drift time. Corrected drift times are used to determine the gas-
phase momentum transfer collision cross-section (CCS) using the Mason-Schamp relationship,*

incorporating the scaling terms for standard temperature and pressure. Based on a propagation-of-
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error analysis incorporating the limits of precision for individual experimental parameters, we

estimate the accuracy of all CCS values to be better than 2% (see Section IV.VI).

IV.IV. Results and Discussion

IV.IV.l. Database Description and General Cross-Section Trends in Nitrogen

A total of 594 nitrogen collision cross-section values were measured empirically in this
study, representing three biomolecular classes (lipids, carbohydrates, and peptides), and TAA
salts. This includes 92 peptides, 125 carbohydrates, 314 lipids, and 63 TAA salts and TAA salt
derivatives. The range of CCS values measured spans from 140-460 A2, covering a mass range of
130-2150 Da. Summary statistics regarding the CCS database are provided in Table 4.1. The
average RSD of all database values was 0.3% (+0.1%), with each CCS value representing an
average of 11 (x4) measurements. A complete list of all analytes and respective CCS
measurements is provided as supplemental material.

TAA salts ranging from tetraethylammonium (TAA2) to tetraoctadecylammonium
(TAAL18) were analyzed and their subsequent CCS values were compared with literature values in
order to estimate the CCS measurement accuracy.?! Results of this comparison are summarized in
Table 4.2. Where CCS literature values existed for nitrogen, the absolute differences were found
to be less than 2% and, in most cases, less than 1% deviation was observed. All TAA salts
investigated exhibited excellent CCS measurement reproducibility (less than 0.5% RSD). TAA2
was included in the sample, but ultimately did not appear in significant abundance in the IM-MS
spectra.

A scatter plot of CCS versus m/z for all database values is presented in Figure 4.2(A),
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separated into chemical classes. We refer to this type of 2D IM-MS projection as conformational
space analysis,**® as the differential scaling of mass (m/z) and size (CCS) between molecular

classes is indicative of differences in gas-phase packing efficiency.?

IV.IV.11. Description of the Fits to the Empirical Data

Several different equation functional forms were evaluated in order to determine which
expression best described molecular class correlations between CCS and m/z values, and, it was
found that the datasets were adequately described by a power-law relationship (y=Ax®), based
upon the coefficient of determination (R?). Conceptually, power-law equations are descriptors for
several phenomena related to mass-size scaling, including allometric scaling laws in biology,*
stellar velocity dispersion relative to black hole mass (M-sigma relation),*® and the well-known
square-cube law, first described by Galileo,*! which universally relates any shape’s increase in
volume relative to its surface area. Additionally, power-law relationships are scale-invariant such
that different power-law functions can be related by a simple scaling factor, which has implications
for describing universal relationships independent of the specific details of the measurement.

The resulting power-law fits to the empirical data are presented in Figure 4.2(B).
Coefficients and associated R? values are summarized in Table 4.1. The data inclusion bands
projected in Figure 4.2(B) representing £5% deviation from the line of best fit. Other inclusion
band sizes are summarized in Figure 4.2(B), inset, averaged across the four datasets. For all
datasets, a +5% inclusion band incorporated an average of 94% (+4%) of data. Decreasing the
band to +4% results in an average of 86% (+3%) of data being included (a decrease of ca. 8% data
inclusion), whereas increasing the band to £6% only incorporated an additional 3% (+2%) of data

on average. Thus, the +5% data inclusion band represents an optimal balance between specificity
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Figure 4.2: (A) A scatter plot of the CCS values measured in this study, separated by chemical
class. (B) Best fit lines of the data, separated into class and fit to a power-law function. Also shown
are data inclusion bands representing +5% deviation from the best fit line. The inset bar graph
represents the amount of data included within different sized inclusion bands. Fit equations and

their corresponding coefficients of determination (R?) can be found in Table 4.1.
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and data incorporation. Interestingly, the 5% band describes all datasets similarly, regardless of
chemical class.

Several observations can be made from the data contained in Figure 4.2. The TAA salts
were found to exhibit the highest CCS values relative to m/z, and were located in a region of 2D
IM-MS space, which was disparate from the biomolecules. Previously, TAA salts were
recommended as an ion mobility calibrant due to their low propensity for forming clusters, which
otherwise complicates the interpretation of mobility data.*? Here, it is found that in addition to the
lack of clustering, the TAA salts are useful mobility-mass calibrants as the complete series (1 to
18 carbons) span a wide range of CCS values (107 to 400 A?), m/z values (75 to 1027 Da), and
occupy a region of 2D IM-MS space where biomolecules are not predicted to occur. Carbohydrates
were observed to have the lowest CCS values relative to their mass, while peptides and lipids
occupy similar regions of conformational space. In general, all of the biochemical classes surveyed
were readily separated above a mass of ca. 1200 Da, indicating that differences in relative gas-

phase packing scale with molecular size and mass.

IV.IV.11I. Extraction of Sub-Trend Information from the Data

From a cursory analysis of the CCS database described in this report, it is evident that the
general chemical class information is retained through the specific mobility-mass correlation
trends in the 2D IM-MS projection. Such trends hold promise for conducting comprehensive omics
experiments whereby unknown analytes originating from a complex sample (e.g., blood, tissue,
whole cell lysate) can be prioritized based upon their likely chemical class. This biomolecular
filtering would allow for the sorting of unknown analytes into distinct identification workflows,

as lipid, peptide, metabolite, and glycan identification methods often warrant searching of specific
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databases. In order to determine the detail of class-specific information obtained from the
conformational space analysis, select coarse biomolecular classes were further categorized into
finer specific sub-classes. Figure 4.3 contains a detailed analysis of carbohydrates, which were
further delineated into glycans (human milk oligosaccharides), cyclic dextrins (cyclodextrins), and
linear dextrins (maltose polysaccharides). Figure 4.3(A) and Figure 4.3(B) illustrates the relative
location of each carbohydrate sub-class in conformational space, while Figure 4.3(C) describes the
data as a histogram relative to the best fit line. In general, there is no strong correlation between
the carbohydrate sub-classes, with all signals distributed in relatively the same locations with
respect to the power-law fit. This suggests that the carbohydrates surveyed do not adopt strong
structural differences which can be easily differentiated in the 2D analysis. On the other hand, the
sub-classes chosen here represent broad descriptors for carbohydrate structure, and as such are not
structurally-descriptive sub-classifications. For example, glycans can represent both linear and
branched oligosaccharides and thus occupy a broad region of the total carbohydrate
conformational trend. Interestingly, the cyclization of sugars (cyclodextrins) does not seem to
enhance gas-phase packing efficiency as compared with their linear analogues. A more
comprehensive carbohydrate dataset may engender sub-class differentiation, or differences may
bear out for more limited situations such as positional and structural isomers or various metal-
coordinated species.*®

Application of a similar sub-class analysis to the lipid dataset is illustrated in Figure 4.4.
In this case, the lipid dataset is substantially larger than the carbohydrate dataset (N=314 vs.
N=125, respectively), and measurements were obtained from five distinct lipid structural classes.
These lipid sub-classes can be broadly categorized into two structural classes as sphingolipids

(SM, GlcCer) and glycerophospholipids (PE, PC, PS). It is qualitatively evident in Figure 4.4(A)
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Figure 4.3: A subclass analysis of carbohydrates, with subclasses comprised of human mild

derived glycans, cyclic, and linear dextrins. (A) A scatter plot of the relative location of

carbohydrate subclasses in 2D IM-MS conformational space. (B) An expanded region of the

scatter plot where all three subclasses of carbohydrates are observed. (C) A histogram analysis for

carbohydrate subclass deviation in 2D IM-MS space relative to the best fit line. In general, the

carbohydrate subclasses do not differentiate into distinct regions of conformational space.
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Figure 4.4: (A) A subclass analysis of lipids comprised of PE, PC, PS, GlcCer, and SM lipids.
These lipids are further categorized into two general structural groups: glycerophospholipids (PE,
PC, PS) and sphingolipids (GlcCer, SM). (A) A scatter plot of the conformational ordering of each
subclass of lipid. (B) An expanded region of the scatter plot detailing a preferentially ordering of
the different lipid subclasses in conformational space. (C) A histogram analysis and locations of
general lipid structural groups relative to the best fit line. Unlike carbohydrates, individual lipid
subclasses partition into distinct regions of 2D IM-MS space, allowing finer structural information

to be extracted from the conformational space analysis.
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and Figure 4.4(B) that each class of lipid exists in a distinct region of conformational space. The
histogram distribution analysis in Figure 4.4(C) (right panel) indicates that sphingolipids fall
predominantly above the best fit line (97% in region 1), whereas glycerophospholipids (Figure
4.4(C), middle panel) are more broadly dispersed around the mobility-mass correlation (33% in
region 1, 65% in region 2), and adopt denser gas phase conformations than sphingolipids. These
results suggest that, with proper structural sub-class descriptors, conformational space analysis is

capable of differentiating finer structural detail beyond general biomolecular class.

IV.IV.IV. Comparisons between Helium and Nitrogen CCS Values

The diverse compilation of CCS values described in this report allows for direct
comparisons against helium-derived CCS values reported in the literature. Of the over 3000 singly-
charged helium CCS values surveyed from the literature, overlapping measurements exist for 121
nitrogen CCS values in the current database (8 TAA salts, 49 lipids, 40 peptides, and 24
carbohydrates; refer to IV.V1. Supporting Information). Differences between helium and nitrogen-
derived CCS measurements have been previously noted for atomic species,***’ small molecules
and peptides,*® and, more recently, proteins and large protein complexes.!? Here, we add the
differences observed for TAA salts, lipids, and carbohydrates, in addition to corroborating
previous peptide observations.

A scatter plot of the overlapping helium and nitrogen CCS values is provided in Figure
4.5(A). Vertical error bars representing +2% are also included, although this error is sufficiently
small such that most of the error bars are obscured within the scale of individual data points. Figure
4.5(B) contains the power fits to the data, which are useful in visualizing differences between

datasets. In general, gross separation trends between chemical classes are retained within the
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Figure 4.5: Comparisons between helium and nitrogen-derived CCS values. (A) A scatter plot of

class-specific subsets of CCS data measured in both helium and nitrogen. (B) Power fits to the

data projected in panel A. (C) Correlation plot of helium vs nitrogen CCS values. (D) Absolute

differences in CCS between helium and nitrogen measurements, plotted as a function of mass-to-

charge. In general, nitrogen CCS values are significantly larger than helium, with subtle

differences being observed between different chemical classes.
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helium and nitrogen-based datasets, with qualitatively similar conformational space ordering being
exhibited regardless of the drift gas (i.e. carbohydrate density > peptide density > lipid density >
TAA salt density). However, subtle differences exist with respect to the amount of average
separation observed between class-specific fits. For example, the lipids and peptides exhibit
slightly better average separation as a group in helium than in nitrogen, whereas the peptides and
carbohydrate are better separated in nitrogen than in helium. These trends can also be observed in
Figure 4.5(C), which contains the same overlap data as projected on a plot of nitrogen versus
helium CCS values. In Figure 4.5(C), all of the class-specific data reside within the same region
of the projection, indicating that overall differences between helium and nitrogen CCS are
systematic within this range, and thus can be accounted for to allow conversion of one dataset to
another, with some loss in precision associated with error propagation. This possibility of
generating effective helium-based CCS values from nitrogen measurements was previously noted
by Bush et al. for peptides and proteins.!?® Recently, Pagel and Harvey noted good correlation
(less than 1.5% error) between helium and nitrogen CCS measurements for singly-charged
carbohydrates, though significant error was introduced when multiply-charged values were
incorporated into the calibration.?® Here we confirm a strong correlation between singly-charged
helium and nitrogen CCS values for lipids, peptides, carbohydrates and TAA salts. It should be
cautioned, however, that the relationship between helium and nitrogen-based CCS values are both
charge-state and mass-dependent,*® and it is expected that any correlation between the two
measurements would deviate at the extremes of low and high mass. In fact, Bush et al. previously
noted that cross-calibration error from nitrogen to helium CCS is higher at lower masses (up to
15% error) where the magnitude of the CCS value is small, while at higher masses, the error can

be reduced to as low as 2.2% for predicting helium CCS from nitrogen measurements.!! It was
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also noted in this study and elsewhere that calibration across different chemical classes (e.g., using
literature peptide values to calibrate lipids!’) introduces additional and significant error (ca. 7%),
further underscoring the importance of compiling a chemically diverse set of empirical drift tube
CCS values. Figure 4.5(C), inset contains the linear best fits to the data, with the axes rescaled to
a region where data exists for all four chemical classes. Linear fits are extrapolated (dotted lines)
for visualization purposes. Here, the small but notable differences between chemical classes can
be observed as offset correlation lines, which corroborate with the absolute CCS differences
between helium and nitrogen noted previously for each chemical class. Specifically, peptides,
carbohydrates, and lipids fall along a similar helium-nitrogen CCS correlation trend, while the
TAA salts exhibit a slightly lower correlation. Interestingly, all class correlations exhibit similar
slopes (ca. 1), suggesting that the factors which give rise to the cross-sectional differences between
helium and nitrogen (buffer gas size, mass and polarizability) affect different chemical classes in
a similar manner across a broad range of both size and mass.

Absolute CCS differences between the helium and nitrogen datasets are plotted as a
function of mass in Figure 4.5(D), with error bars representing £2% CCS uncertainty. Average
absolute CCS differences are projected as a horizontal line through each class distribution, with
the following values: TAA salts, 58 (+3) AZ; lipids, 70 (+4) A?; carbohydrates, 74 (+8) A?; and
peptides, 73 (+5) A2 Cross-sectional differences are lowest for the TAA salts, while lipids,
carbohydrates and peptides differ by approximately the same amount. Overall, there is a small but
notable increase in the helium-nitrogen CCS difference with increasing mass for all classes except
lipids where a limited mass range is surveyed. This suggests that the nitrogen and helium CCS are
not increasing at the same rate relative to the mass of the analyte, with the greater CCS increase

occurring in nitrogen. Wyttenbach et al. recently noted that ion systems up to ca. 760 Da (sodiated
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PEG17) still exhibit strong contributions from the ion-neutral interaction potential in their measured
CCS.%%%1 From their atomic superposition argument, it would be expected that with nitrogen buffer
gas, the combined effect of each atomic potential for large polyatomic systems would give rise to
a steeper increase in CCS than with helium buffer gas, since the atom-nitrogen interaction potential
is stronger than the atom-helium interaction potential. In other words, the stronger interaction
potential of nitrogen would be expected to scale with the number of atoms in the ionic system
being measured, at least to a first approximation. lon systems with different heteroatom
compositions (e.g., lipids vs. peptides) would also be expected to exhibit different scaling of mass
to CCS between helium and nitrogen; this effect cannot be definitively observed in the relatively
narrow mass range surveyed in this work, though cursory effects of gas polarization seem to be
present in the enhanced high-mass separation of lipids and peptides in nitrogen vs. helium. Such
class-specific CCS differences may bear out as more overlapping measurements are obtained in

future studies.

IV.V. Conclusions

The large database of nitrogen-derived CCS values presented here offers a glimpse at the
intrinsic intermolecular packing forces of four chemically different molecular classes across a
relatively wide range of both size (ca. 150 to 450 A?) and mass (ca. 150 to 2200 Da). Four
molecular classes were investigated in this study, with relative gas-phase densities observed as
follows, from least to most efficient packing: TAA salts, lipids, peptides, and carbohydrates. The
biopolymers (carbohydrates and peptides) demonstrated the highest efficiency for gas-phase
packing, and among these, carbohydrates tend to adopt the most compact gas-phase CCS values.

This observation is somewhat intuitive in that carbohydrates have considerable degrees of freedom
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and can adopt both linear and branched primary structures. In contrast, lipids exhibit the largest
CCS values among the biomolecules investigated, and this observation appears to be intrinsic to
the inability of lipids for forming compact, self-solvated structures in the gas phase. Noteworthy
among these findings is that despite the significant differences between helium and nitrogen in
terms of mass, degrees-of-freedom (atomic vs diatomic), and polarization, the biomolecular class
trends observed here for the nitrogen-based ion mobility are qualitatively the same as those
previously observed in helium.3?® We do observe evidence that these qualitative trends between
the two drift gases are not retained at low mass, and a more detailed investigation of helium and
nitrogen-based ion mobility studies for low mass analytes (less than 200 Da) will be the subject of
future studies.

We emphasize that these studies are only possible by the remarkable advances made over
the past decade in the development of biological IM-MS instrumentation. The IM-MS described
in this report can achieve high resolving powers with high sensitivity, making it possible to observe
and characterize low abundance isomeric species in highly complex samples with unprecedented
scale and throughput. While we have purposely chosen to report only the highest abundant species,
we note that the observation of multiple ion mobility peak features (i.e., structural and positional
isomers) is routine with this instrumentation. As the analytical capabilities of distinguishing low-
abundance isomeric species become widely accessible, we begin to move toward a new paradigm
whereby it no longer becomes the question of if a particular isomer exists but rather how much of

it is present and in what context.

IV.VI. Supporting Information

Empirically measured transport properties for the analytes evaluated in this work (Tables
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D.1-D.4). A summary of the overlapping helium and nitrogen CCS measurements compared in

this study (Table D.5). This material is available in Appendix D.
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CHAPTER V

STRUCTURAL CONFORMATION ATLAS FOR HIGH CONFIDENCE LIPIDOMICS

V.1. Abstract

Lipids represent a wide array of diverse molecules, with structural dissimilarities
determining their biological function. Several analytical techniques including ion mobility-mass
spectrometry (IM-MS) have emerged over the past decade to elucidate these structural details. In
this study, measurements obtained from high precision IM-MS were used to compile a structural
database of 354 mass-resolved collision cross section (CCS) values within the sphingolipid and
glycerophospholipid categories, including sphingomyelin (SM), cerebroside (GlcCer), ceramide
(Cer) phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and
phosphatidic acid (PA) classes. Despite primary structural differences in head groups, all of the
lipids from the two lipid categories exhibited near equivalent increases in CCS (ca. 0.15 A?) per
mass unit, suggesting these lipids adopt general and predictable gas-phase conformations governed
by bond differences within the acyl tails. Primary differences observed were between the broad
lipid classes, with sphingolipids possessing a 4 to 5% larger CCS than glycerophospholipids of
Similar mass, interpreted to be a result of the sphingosine backbone’s restriction of the snl tail
length which in turn limits the gas-phase packing efficiency of this lipid class. Conformational
broadening of 0.19 to 0.20 A2 per mass was collectively observed for the sphingolipids, whereas
less CCS broadening (0.14 to 0.17 A? per mass) was observed for glycerophospholipids. Within
each of the seven lipid classes investigated, total acyl tail length and degree of unsaturation were

found to be primary structural descriptors that determined the magnitude of the CCS. In addition
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to the empirical CCS values supporting future lipid identification workflows, the quantitative
trends mapped in this study have broad utility for predicting the CCS of lipids not explicitly

observed.

V.11. Introduction

Lipids are an essential class of biomolecules, performing functions such as contributing to
cell membrane structure, regulating cell activities, and storing concentrated energy. Lipids
represent a wide array of structurally diverse, often isomeric, molecules because each lipid can
vary in headgroup type, acyl chain length, position of attachment, degree of unsaturation, and
stereochemistry.? The position of double bonds in lipids is important in the determination of their
biological function; for example, naturally occurring conjugated linoleic acid (CLA) isomers have
been revealed to play varied biological roles based on the positions of the double bonds.
Specifically, the effects of trans-10,cis-12 CLA on body composition and cis-9,trans-11 CLA on
growth/feed efficiency appear to be a result of separate biochemical mechanisms,® and only the
trans-10,cis-12 CLA isomer regulates human stearoyl-CoA desaturase in HepG2 cells.*

Lipid research from the 1960s and 70s contributed much of our current knowledge of lipid
biochemistry and metabolism,® though, in the past few decades, several new analytical techniques
have emerged to elucidate lipid structural details, specifically in the field of mass spectrometry
(MS). For example, structures of brain gangliosides have been investigated by tandem MS/MS
utilizing low-energy collision induced dissociation (CID) in both positive and negative ion mode
nano-electrospray ionization (nano-ESI),® as well as by a combination of nano-ESI, with Fourier-
transform MS, and chip-based nano-ESI with thin-layer chromatography (TLC).” Seamless post-

source decay fragment ion analysis has been utilized to assign the position and identity of fatty
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acid residues on the glycerol backbones of glycerophospholipids,® and gas-phase ozonolysis
reactions with MS detection have been developed to identify lipid double bond position.2%-11

Another emerging analytical technique that has found utility in lipid structural analysis is
ion mobility coupled to MS (IM-MS).1#18 The structural measurement in IM-MS is in the form of
a 2-dimensional collision cross section (CCS), which is an averaged measurement of the cross
sectional area of the analyte. Comprehensive reviews of developments with respect to lipid
analysis by IM-MS have been published.*?° Interfacing IM with MS results in a comprehensive
2D separation capable of differentiating isomers and delineating molecules into respective
biomolecular classes.??? IM-MS has been coupled with dual stage CID fragmentation to localize
sites of unsaturation in phosphatidylcholines.? Detailed IM-MS analyses have previously revealed
specific and reproducible mobility-mass correlations within each biomolecular class, related to
molecular structures and packing efficiencies.?*?® The majority of lipid IM-MS work has been
conducted using drift time measurements which are difficult to reproduce and compare across
different laboratories and instrumentation.

In this study we focus on the relationship between lipid structure and gas-phase
conformation via IM-MS analysis. Newly developed high precision IM-MS instrumentation based
on uniform field measurements has enabled the quantitation of trends which have been previously
observed in smaller data sets.}213192728 These trends manifest in each lipid class and relate to
varying conformational changes due to the degree of unsaturation or the acyl chain lengths. While
similar observations have been made using other IM-MS methods,?° this work represents the first
large scale study which quantifies trends directly between mass and empirical CCS values obtained

with uniform field ion mobility.
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V.I1l. Materials and Methods

V.111.1. Preparation of Lipid Samples

HPLC grade solvents and buffers were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Lipid standards including phosphatidylethanolamine (PE, chicken egg),
phosphatidylcholine (PC, chicken egg), phosphatidylserine (PS, porcine brain), sphingomyelin
(SM, porcine brain), and cerebroside (GlcCer, porcine brain), were purchased as purified TLC
fractions from Avanti Polar Lipids (Birmingham, AL, USA) and the dry extracts were
reconstituted in chloroform prior to analysis. Lipid standards were diluted in 90% chloroform/10%
methanol (v/v) to a final concentration of 10 pg/mL for analysis. Identification of lipids was based
on exact mass measurements and the Lipid Metabolites and Pathways Strategy (LIPID MAPS)
Structural Database (LMSD) and the Scripps Center for Metabolomics Metabolite Database

(METLIN).

V.11 Instrumentation

Two independent high resolution IM-MS instruments (Model 6560) from Agilent
Technologies, Inc. were utilized to acquire accurate mass and CCS measurements from lipid
samples. Instrumentation has been described in more detail in a previous work.?* Briefly, the
instrument consists of an orthogonal electrospray ionization (ESI) source and a tandem ion funnel
interface to create and direct ions into the uniform field IMS drift tube. An additional rear ion
funnel refocuses ions as they exit the drift tube, and ions pass through a quadrupole and collision
cell before mass measurement is performed in an orthogonal time-of-flight mass spectrometer

(TOFMS).
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V111111 Experimental Parameters

All 2D IM-MS spectra was obtained with direct infusion in positive mode ESI (Agilent Jet
Stream Source) at 10 pL/min flow rate. Nitrogen sheath gas at 12 L/min and 400-600 K and
nitrogen drying gas at 10 L/min and 570 K were used in the Jet Stream source. The source potential
emitter was held at ground voltage, the capillary entrance was biased to -4.5 kV, and the nozzle
was biased to -1.8 kV. The high-pressure ion funnel was operated at ca. 4.8 Torr with RF 100 Vpp
at 1.5 MHz and 150 V DC, the trapping ion funnel was operated at 3.8 Torr with RF 100 Vpp at
1.2 MHz and 180 V DC, and the rear funnel was operated at ca. 4.0 Torr with RF 100 Vpp at 1.2
MHz and 200 V DC. The IM was pressurized to ca. 4.0 Torr and ca. 300 K with ultrahigh purity
nitrogen, and the voltage was varied between 750 to 1450 V (E/N range of 7 to 15 Td). Data was
acquired and processed using modified MassHunter software (Data Acquisition and IMS Browser,

Agilent Technologies).

V.1IL1V. Calibration Methods

Mobility and mass calibration was applied externally using homogenously substituted
fluorinated triazatriphosphorines (Agilent tune mix, ca. 100 to 3000 mass). In addition,
tetraalkylammonium (TAA) salts, which fall outside the IM and MS range of lipids, were added
to all samples as internal standards for positive mode analysis. TAA salts of 98% purity or greater
and varying alkyl chain lengths were obtained from several sources: TAA4, TAA6, TAAY,
TAA10, TAA12, and TAAL6 were purchased from Sigma Aldrich, TAA3, TAAS5, and TAA8 were
purchased from Acros Organics (Morris Plains, New Jersey, USA), and TAA18 was purchased

from Alfa Aesar (Ward Hill, MA, USA). TAA3 to TAAS8 were prepared in 50% methanol/50%
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water. TAAL10, TAA12, TAA16, and TAA18 were prepared in 50% methanol/50% isopropanol.

Final concentrations for analyses were ca. 1 pg/mL.

V.1V. Results and Discussion

V.1V.1. Lipid Nomenclature

Lipid nomenclature in this study follows the classification system used in LIPIDMAPS
(http://www.lipidmaps.org) and developed by Fahy, et al.**3! where the first set of letters
represents the lipid class (head group), modifications are denoted by any following letters (h or
HETE for hydroxyl group presence and O for loss of a carboxyl group from one of the fatty acyl
chains), the number preceding the colon denotes the summed carbon chain lengths, and the number
following the colon refers to the total number of double bonds in the carbon chains. Although IM-
MS analysis for glycerophospholipids is often performed in negative ionization mode, this work
was done in positive ionization mode in order to explore lipid features of complex mixtures in the
more commonly used analysis mode for biological samples. Only singly-charged cations are
reported, and there is no evidence in the spectra of lipid monomers adopting higher charge states.
Although multiply charged multimers are observed in low abundance, the majority of these are
heteromultimers arising from combination of different lipids, which are difficult to assign an
identity to with single-stage IM-MS alone.

Lipids were analyzed from class-specific TLC fractions and identifications were assigned
primarily based on exact mass measurements. The CCS measurements were utilized when mass
data alone was inconclusive, i.e., when mass resolution is low the additional separation dimension

provided by IM can aid in lipid identification.
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V.IV.1I. Lipid Population Observations

This work presents CCS values for 354 uniquely identified lipid monomer features
representing 7 lipid classes (Figure 5.1(A), Table E.2) analyzed by uniform field, positive mode
IM-MS. 74 of these CCS values have been previously published.?* Lipid categories included
glycerophospholipid (PA, PE, PC, and PS) and sphingolipid (Cer, GlcCer, and SM) extracts from
chicken egg and porcine brain. The resulting lipid identification distributions are presented in
Figure 5.1(B). For glycerophospholipids, longer alkyl chain lengths allowed accommodation of
more sites of unsaturation, with PA and PC species containing as many as 6 sites of unsaturation,
and PE and PS including as many as 9 and 10 sites of unsaturation, respectively. Observed
sphingolipids had less sites of unsaturation, as is common in biological samples, with 5, 4, and 3
or less doubly bonded carbons for GlcCer, SM, and Cer, respectively. Maximum alkyl chain
lengths increased with the head group size for glycerophospholipids, with PA lipids found with
35-40 carbons, PE 32-42, PC 32-40, and PS 34-44. The sphingolipids exhibited a slightly wider
range of chain lengths than the glycerophospholipids, with GlcCer having 34-50 carbon atoms,

SM 34-44, and Cer 36-44. These observations are summarized in the histograms of Figure 5.1(D).

V.1V 111. Category and Class IM-MS Correlation

Previous IM-MS studies have demonstrated that biomolecules separate into distinctive
class-based trends in plots of CCS vs. mass,? and that different lipid categories, e.g.,
glycerophospholipids and sphingolipids, occupy unique space within these correlations.?* In this
work, all primary lipid classes exhibit a positive mobility-mass correlation in conformational space
analyses. Within the combined lipid trendline, unique lipid categories (sphingolipids and

glycerophospholipids) could be further differentiated, with little overlap, by their respective CCS
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Figure 5.1: (A) Lipids investigated in this work are classified by head group. Expected and
observed species are listed by the total number of carbons or double bonds in the fatty acid tails.
(B) The distribution of lipids observed in this work. The inner ring denotes lipid categories whereas
the outer ring details features observed in each lipid class. (C) The distribution of adducts observed
in this work. (D) Central graph represents population of lipid summed chain lengths (x-axis) and
degrees of unsaturation (y-axis) identified in this work, separated by class and excluding adduct
and modification information. Cer class lipids are included with GlcCer. Background shading
delineates lipid categories, with sphingolipids in red and glycerophospholipids in blue. Left
histogram displays distribution of degree of unsaturation, normalized to each category. Top

histogram shows summed chain length distribution, normalized to each category.
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information, as each category exhibited an average CCS increase of 0.15 A2 per mass unit, with
glycerophospholipids having CCS values 13 A? (4-5%) less than sphingolipids of equivalent mass
in the investigated mass range of 500 to 1000 Da (Figure 5.2(A)). This finding suggests that lipids
originating from complex mixtures can be readily classified into one of these two primary lipid
categories using CCS and mass information.

A closer examination of the IM-MS data (Figure 5.2(B)), shows a regular increase in size
(linear slopes) for individual lipid classes within the glycerophospholipid category with
corresponding slopes (CCS vs. mass) ranging from 0.14 to 0.17 A? per mass unit. Classes within
the sphingolipid category exhibit a slightly larger increase in size with mass, with an empirically
observed range in slope, from 0.19 to 0.20 A2 per mass unit. The larger conformations observed
for sphingolipids are likely related to the limited degrees of unsaturation due to the constraint of
the sphingosine backbone. Lipid class trends within each category are very similar, indicating that
while the acyl chain governs the change in CCS, the lipid head group dominates the overall
magnitude of the ion cross section. This observation is discussed later in the manuscript.

Although sphingomyelin is categorized as a sphingolipid due to the sphingosine backbone,
as a ceramide with phosphatidylcholine in the head group, it shares structural aspects with the PC
lipid class, whereas other lipid classes investigated in this work fall strictly into a single lipid
category by conventional definitions. Interestingly, though sphingomyelin contains structural
attributes of both the sphingolipid and glycerophospholipid categories, instead of falling between
PC and GlcCer, it exhibits larger than expected CCS values, being similar in size to GlcCer (Figure
5.2(B)). This is likely due to a combination of the sphingosine backbone constraining the sn1 tail
length and the choline head group conformation, which packs less efficiently than the GlcCer

monosacharride headgroup.
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V.IV.1V. Cation Forms

In positive ionization mode, multiple adducts are commonly formed for each lipid species.
Adduction of protons and sodium ions were predominantly observed in this study (Figure 5.1(C)).
Positive identifications with these common adducts prompted subsequent searches for the same
lipids with other adducts to deconvolute the spectra. For example, SM 36:01 was subsequently
found in the spectra as [M+H]", [M+Na-H20]", [M+Na]*, and [M+K]*, and both PC 34:01 and PE
34:01 were found as [M+H]", [M+Na]*, [M+K]", and [M+2Na-H]".

Commonly observed charged adducts varied slightly between the different lipid classes
with [M+Na]" being most common, followed by [M+H]" which was observed in all classes except
PA. [M+2Na-H]* adducts were identified in SM and all four glycerophospholipid classes, and
[M+K]* features were identified in SM, PC, PE, and PS. The lack of appearance of the [M+K]"
adduct in PA is likely due to the lower abundance of this class. Neutral water loss, though common
in the hydroxyl abundant sphingolipids, was not observed in glycerophospholipids: [M+H-H20]"
occurred in Cer, GlcCer, and SM, and [M+H-2H>0]" was observed in Cer and GlcCer. Whether
water loss occurs in solution or during ionization is unknown.

The nature of the charge carrier was found to influence the overall CCS of all lipids (Figure
5.3). In general, [M+Na]*, [M+K]*, and [M+2Na-H]" features increased CCS over [M+H]" by 2.5
+20A% 47+1.2A? and 5.6 + 1.4 A% in 43, 15, and 26 cases, respectively. Sphingomyelin data
is omitted from this analysis, as it exhibited significantly different behavior, with 15 cases of
[M+H]* all being larger than [M+Na]* by 1.9 + 1.1 A2, This unusual trend of smaller CCS values
for sodiated species compared to potassiated species is likely related to the larger gas-phase
conformations observed for sphingolipids, where the adduction of a metal does not add

significantly to the CCS.
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Figure 5.2: (A) Conformational space analysis of singly charged lipids including 7 classes from 2
lipid categories. (B) Expanded region from (A) highlighting occupancy of each lipid class by mass
and CCS. The gray bars highlight series of nominal mass isomers (1 Da). Note the largest CCS
difference for peaks of similar mass is between glycerophospholipids and sphingolipids. (C)
Primary structures of the five nominal mass isomeric lipids (809.6 to 810.7 Da) highlighted in
panel B. CCS values are all statistically different and largest for sphingolipids. Note structural
information is inferred from rules described by Voet, et al. with (i) lipids assembled as

concatenations of C units making even-numbered chains prevalent, (ii) the first unsaturation site
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preferably located between C9 and C10, (iii) subsequent unsaturation sites occurring every third
bond, and (iv) double bonds existing primarily in the cis- configuration.®®* Adducts are shown at

likely basic sites. Additionally, sphingolipids contain a sphingosine backbone.
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Figure 5.3: Histogram summarizing observed change in collision cross section (CCS) across the

different adducts.
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V.IV.V. Quantitative Mobility-Mass Correlations

Within each individual lipid class, highly linear mobility-mass correlations were observed
(Figure 5.4, and Figure E.1). With either the degree of unsaturation or the chain length held
constant, no secondary dependence on the modification type or adduct was found to influence
these mobility-mass correlation trends. For example, the correlation of protonated PE lipids with
asingle acyl double bond is nearly identical to correlations observed for lipids with either a sodium
adduct, hydroxylated beta carbon, or different number of double bonds. Thus, the lipid trends are
predominately a result of two primary structural features: the number of carbons in the acyl tail
and the degree of unsaturation.

For each lipid class, lipid features were grouped based on either the same numbers of
double bonds or acyl chain carbons, and linear functions were fitted to three or more lipid features
within each category. Across the 7 lipid classes investigated, this yielded linear fits for 56 sets of
lipids with varying degrees of unsaturation (Figure 5.4(A), Figure 5.4(C), and Figure E.1), and 44
sets of lipids with varying number of acyl chain carbons (Figure 5.4(B), Figure 5.4(D), and Figure
E.1). In agreement with findings from Zhang et al., a linear equation was found to best describe
the correlation between CCS and mass.®? Here, average R? values of 0.98 (0.89 minimum) for
common alkyl chain length and 0.99 (0.94 minimum) for common degree of unsaturation were
observed. Though size is inherently expected to increase with mass, structural changes affect
molecular density, and changes in the degree of unsaturation were found to be four times as
influential on CCS as changes in alkyl chain length across all lipid classes (Table E.1) with slopes
of 0.95 + 0.16 A? per mass unit and 0.23 + 0.03 A2 per mass unit, respectively.

The larger deviation in slopes observed for lipids with a common degree of unsaturation is
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Figure 5.4: Select plots of quantitative correlations observed within the PS and GlcCer lipid

classes. Colors correspond to either summed chain length or degree of unsaturation whereas shapes

correspond to cation type, as specified in the corresponding panel legends. Numerical annotations

within symbols correspond either to degree of unsaturation or carbon length, depending on the
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panel. Error bars for the CCS measurements are all within the size of the markers. (A) For the
same carbon chain length, GS lipids increase linearly in CCS with each loss of unsaturation. (B)
A regular increase in CCS is also observed as the GS acyl chain length increases, with linear trends
observed for the same degree of unsaturation. (C) GlcCer lipids exhibit longer chain lengths than
PS, however, the same linear trends are observed for both number of double bonds, and (D) for
carbon chain length within the same double bond category. (E) A closer inspection of the boxed
region highlighted in (C) demonstrates identification of the initially unknown lipid feature at
802.616 Da, 290.3 A2, (i) Based on the quantitative CCS trends, the lipid feature is lower in CCS
than the 295.8 A? predicted for GlcCer 38:00 + 2Na-H, while (ii) the predicted value of 293.1 A2
for GlcCer 42:06 + H is higher than the measured CCS of this feature. (iii) However, the CCS
predicted for GlcCer 40:03 + Na, 290.1 A2, aligns with the unknown feature, which provides high

confidence identification of this lipid based on the CCS information of neighboring species.
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attributed to a combination of mass overlap and poorly resolved drift times. Lipids of common
chain length tend to occur with multiple degrees of unsaturation, and the loss of one double bond
(equivalent to an addition of 2 hydrogen atoms, or 2.02 Da) overlaps the third isotope of the
smaller, more unsaturated lipid in mass, decreasing the measured CCS of the heavier species. In
addition to isotopic interference, mass overlap also occurs for lipids of varied structure and adduct.
For example, at nominal mass 874 corresponding to PS 40:09 + 2Na-H, PS 40:06 + K, and PS
42:01 + H (Figure 5.4(A); 874.46, 874.50, and 874.65, respectively), the latter nominal mass
isomer, PS 42:01 + H, has a larger CCS and is also more abundant in the spectra, which results in
PS 40:06 + K to be calculated at a CCS higher than predicted from trends in the data. In another
example, PS 42:09 + Na, PS 42:08 + Na, and PS 42:07 + Na have CCS values which are higher
than expected (Figure 5.4(A)) and which is attributed to spectral overlap with PS 40:03 + K, PS
40:02 + K, and PS 40:01 + K, respectively, although these potassium adducted species were not
able to be resolved as unique features. We present these examples to demonstrate the level of

complexity which is present even for class-purified lipid standards.

V.IV.VL. Identification by CCS

The quantitative trends which describe lipid chain length and number of unsaturation sites
can be used as an aid in identifying unknown lipids. For example, the peak at 802.62 Da, 290.3 A?
(Figure 5.4(C)) could be confidently mass-identified within 5 ppm as either GlcCer 42:06 + H,
GlcCer 40:03 + Na, or GlcCer 38:00 + 2Na-H, but addition of sub-trend information adds
confidence to the identification of the feature. In this case an [M+2Na-H]" lipid would be expected
to fall ~5.6 A2 higher in CCS than the corresponding [M+H]* peak, but GlcCer 38:00 + H had a

CCS of 290.2 A2, and, although this lipid’s mass is closest to the measured mass, the predicted

191



CCS, 295.8 A2, is significantly higher than the measured CCS. Likewise, the [M+H]* candidate,
aside from its uncommonly high degree of unsaturation for a sphingolipid, would be expected to
fall on the linear trend with GlcCer 42:00 + H, GlcCer 42:01 + H, and GlcCer 42:02 + H, but this
trend predicts a CCS of 293.1 A? for a peak at this mass, also significantly higher than the observed
CCS. The [M+Na]"* peak, on the other hand, aligns well with the trend corresponding to GlcCer
40:00 + Na, GlcCer 40:01 + Na, and GlcCer 40:02 + Na, which predicts a CCS of 290.1 A2, in

close agreement with the measured value (Figure 5.4(E)).

V.IV.VII. Lipid Mixture Analysis

Figure 5.5 contains the 2D IM-MS spectrum of a mixture of PE, PS, PC, SM, and GlcCer
lipids. While high resolution mass measurement is oftentimes enough to resolve and confidently
identify lipids by accurate mass, in cases where significant feature overlap is observed, mass
information alone is insufficient (Figure E.2). For example, three features are found at nominal
mass 834 within a 0.3 Da window (Figure 5.5(B)) and correspond to the first isotopes of GlcCer
42:01 + Na, PC 38:03 + Na, and PS 38:04 + Na. The two phospholipids are present in very low
relative abundance, which results in their peak features being challenging to resolve in either the
IM or MS dimension alone, with the integrated spectrum (black line) for each dimension exhibiting
only a single distribution. With the combined IM-MS information, however, three features are
readily observed and can be extracted to resolve each of the three lipids in both IM and MS space.
This in turn allows accurate mass and CCS information to be obtained. Using the CCS
information, more confident identifications of the components in this narrow mass window can be
made by correlating the two lower CCS features to PS and PC lipids, and the high CCS feature to

GlcCer.
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Figure 5.5: (A) A 2D IM-MS spectrum for a mixture of lipid extracts, with individual lipid classes
annotated. (B) Selected region demonstrated multiple lipid features fall within a narrow mass and
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V.V. Summary

In this work, 354 CCS measurements are presented for 4 classes of glycerophospholipids
(PA, PC, PE, PS) and 3 classes of sphingolipids (Cer, SM, GlcCer). In complex IM-MS spectra,
lipids can be observed in a region separate from other biomolecular classes and discerned within
this region by lipid category, trending uniquely relative to head group size. Multiple adducts of
each lipid species were observed in positive ionization mode, with, in general, relative CCS values
being commensurate with the relative size of the adducts, that is, [M+2Na-H]* > [M+K]" >
[M+Na]* > [M+H]". For lipids of common head group, changes in the degree of unsaturation were
found to be four times as influential on conformational broadening, as were changes in alkyl chain
length. We believe the trends determined from this data and the knowledge of their generalizability
to other lipid classes will aid in identifications of lipid features in future analyses, when mass

information alone is found to be insufficient.

V.VI. Supporting Information
Supporting information for this chapter including CCS vs. mass plots for PA, PE, PC, SM,
and GlcCer, a table of variables describing the linear fits, a sample mobility separation for a set of

lipid isomers, and a table of all CCS data obtained in this study is available in Appendix E.
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CHAPTER VI

PERSPECTIVES AND PROPOSED IMPROVEMENTS FOR ION MOBILITY

INSTRUMENTATION

VI.1. Introduction

The following points of discussion are meaningful endeavors that have the potential to
advance IM studies. The first topic of discussion concerns an adaptable instrument platform built
on interfacing printed circuit boards (PCBs) that will enable novel studies of numerous molecules
in both simple and complex samples with a design allowing modularity of the analytical platform
to be customized to best suit the system of interest. The second topic of discussion concerns the
outlook for future spatial multiplexing IM strategies. Pursuit of the described advancements will
facilitate versatility in future applications with improved figures-of-merit including high

throughput, sensitivity, and resolution.

VI.Il. A Highly Versatile Device for Mobility and Mass Analysis Based on a Printable Two-
Dimensional Planar Array
The first area of proposed research involves development of a highly versatile device on
two interfacing PCBs with three stages including one for mobility or mass selection, a second for
reaction or collision of selected ions, and a third stage for high resolution mobility and mass
analyses of products or fragments. In the past five years, two-dimensional ion conveyors, termed
“structures for lossless ion manipulation” (SLIM), and planar geometry ion optical devices such

as the rectilinear ion funnel (RIF) have been developed to facilitate complex sequences of gas-
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phase ion analyses. SLIM in particular is modular, low-cost, and forecast to comprise the next
generation of mass spectrometry instrumentation. This novel technology has demonstrated
potential for increasing analyses versatility by conducting IM separations within a small footprint.

The proposed research seeks to integrate prior research in PCB, quadrupole, collision
induced dissociation (CID), ion-molecule reactions (IMR), and IM designs in the development of
a single electrode geometry supporting variable electric fields, background gases, and pressures.
The proposed device is of a novel electrode geometry, consisting of two separation/reaction
regions, and will be interfaced with commercially available IM quadrupole time-of-flight (IM-
QTOF) instrumentation for highly dimensional (N>5) chemical analyses. Although commercial
instrumentation can perform CID post-mobility, supporting gas-phase collisions or reactions prior
to mobility analysis would allow collision cross section information to be collected on the products
or fragments, rather than the reactants. The proposed instrument configuration would facilitate
high versatility for analytical analyses, allowing pre-separation of ions by either mass or mobility
in the first region, followed by CID or IMR in the second region, and concluding with high-
resolution IM-QTOF analyses where additional mass-selected fragmentation (MS/MS)

experiments can be conducted.

VI.I1.1. Background and Significance

Over the last five years, developments have been made toward a class of novel ion optical
devices based on two-dimensional electrode arrays, fabricated on PCBs. These new PCB devices
typically have a smaller footprint, lower manufacturing costs, and are faster to prototype compared
to conventional stacked ring (radially symmetric) ion optics. Because of their modularity, PCB

devices facilitate complex sequences of single-platform, gas-phase ion analyses. Among the most
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significant PCB-based ion optics developed in the past few years are SLIM developed by Smith
and coworkers at Pacific Northwest National Labs.'™ Transport, trapping, focusing, and mobility
separation geometries in SLIM have been demonstrated successfully as interfaced with a
commercial time-of-flight (TOF) instrument (Figure 6.1). PCB ion optics afford a great advantage
over traditional stacked ring electrodes because designs can be rapidly fabricated and tested at low
production cost, permitting a large variety of geometries to be investigated. Intricate combinations
of radio frequency (RF) confinement and direct current (DC) electric fields have enabled near-
lossless ion transmission, even through multiple ion manipulations.®®

A key feature of interfacing, two-dimensional array, PCB technology is their ready
assembly into alternative geometries, with analogous arrangements to the ion funnel, IM drift tube,
gates, switches, traps, and turns having been demonstrated in previous studies, though further
development analogous to other traditional ion manipulation techniques has not yet been reported.
One geometry yet to be explored with printable two-dimensional arrays is the quadrupole,
classically used as both a dynamic mass analyzer and ion transfer device, with the latter supporting
additional ion-molecule experiments including CID and IMR.” A PCB-based quadrupole has been
previously designed using a flexible substrate that encircles the ion channel by being precisely
wrapped on a cylindrical mount. The prototype quadrupole, which was used to manipulate a low-
energy electron beam, has not been utilized for ion manipulations (Figure 6.2(A)).2° In a separate
study, a segmented quadrupole was developed in a single, highly-adaptable device for utilization
as either a high pressure quadrupole or an IM drift tube from an assembly of over 80 electrically-
isolated stacked metal cylinders forming the quadrupole rods (Figure 6.2(B)).1° Collectively, these
approaches to the quadrupole offer novel alternatives to traditional parallel rod geometry, and

combining their desirable attributes on a single, PCB-based platform has great potential to benefit
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Figure 6.1: Instrumental design of SLIM device with a rectilinear ion funnel (RIF). A commercial
TOF-MS is interfaced as a detector, as is also proposed here. (A) Representative schematic of
instrument used for overall system performance evaluation of RIF. (B) Photo showing RIF and

SLIM module. Figure reproduced from Chen et al., Analytical Chemistry 2015, 716-722.
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Figure 6.2: Previously demonstrated alternative quadrupole designs. (A) Photograph of flexible
PCB prototype quadrupole adhered onto the inner surface of a cylindrical mount. Figure
reproduced from Zhang et al., Phys. Rev. ST Accel. Beams 2000, 122401. (B) Diagram of a 20-
segment quadrupole/IMS cell, which allows precise tailoring of the electric field. Figure adapted

from Guo et al., Analytical Chemistry 2001, 266-275.
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analytical sciences.

The research proposed here seeks to integrate prior endeavors in PCB, IM, quadrupole, ion
activation, and ion reaction designs in the development of a singular electrode geometry supporting
variable electric fields, background gases, and pressures. Variation of these experimental
parameters across a single geometry provides a wide range of flexibility to adapt the instrument
configuration and perform the experiment(s) most needed for sample characterization. The
proposed instrument would consist of an ionization source, ion funnel, two selection/reaction
regions, and an interface to a commercially available IM-QTOF. Integrating the commercial IM-
QTOF will enable mass- or mobility-selected experiments to be conducted. Additionally, because
interfacing PCB technologies have previously been demonstrated successfully to trap ions, and
linear ion traps have previously been utilized for ion/ion reactions, the proposed device could also
be used for electron transfer dissociation (ETD).*! Thus, this proposed instrument would facilitate
high versatility for analytical analyses, allowing for pre-selection of ions in the first region by
either mass or mobility followed by CID, IMR, or ETD in the second region, and concluding with
high-resolution IM-QTOF analyses, where additional mass-selected fragmentation experiments
can be conducted.

One specific and potentially transformative application for the proposed device involves
the study of peptide post-translational modifications (PTMs). PTMs are important to cellular
processes of proteins including localization, function regulation, and complex formation, but these
numerous ubiquitous modifications complicate the study of these molecules and of their biological
function.'? It is challenging to isolate the site of modification using MS alone, due to low
abundance, instability, and decreased ionization efficiency. 1M approaches have previously been

shown to benefit PTM studies due to modified peptides exhibiting different gas-phase packing
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efficiencies observable with IM.*** A direct fragmentation method such as ETD, which fragments
peptides at each residue of the backbone without abstracting PTMs, is necessary for
comprehensive analyses.'>® Peptide studies of PTMs could benefit further from analysis with the
proposed device in MS-ETD mode, where peptides could be mass-selected, dissociated with the
modification intact, and then characterized with a high-resolution IM-QTOF.

A second specific and potentially transformative application for the proposed device
involves the study of lipids structure. Lipids represent a wide array of structurally diverse, often
isomeric, molecules as each lipid can vary in headgroup type, acyl chain length, position of
attachment, degree of unsaturation, and stereochemistry.!” The position of double bonds in lipids
is crucial in the regards to their biological function; for example, naturally occurring conjugated
linoleic acid (18:2) isomers have been found to play varied biological roles based on the positions
of the double bonds.®® While lipids have been studied by many methods, there is an ongoing
need for techniques to identify lipid molecules quickly and accurately. Performing comprehensive
lipid analyses in the gas phase would greatly increase the throughput of lipid identification studies.
For example, recent gas-phase ozonolysis reactions with MS detection have been developed to
identify lipid double bond position, even for polyunsaturated lipids.t”?%-2 By using the proposed
device in IM-IMR mode, lipid isomers could first be isolated from other components in a complex
sample, and subsequent ozonolysis reaction chemistry could be performed within the PCB device
prior to high resolution IM-MS to better define the molecular structures responsible for targeted

biological studies.

VLILIIL Preliminary Studies

The proposed adaptable circuit configuration to effect sample selection and reaction
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(ACCESSR), patent pending, will be composed of an electrospray ionization (ESI) source, ion
funnels for focusing ions at low pressure, and tandem segmented quadrupoles interfaced to a
commercial IM-QTOF for high-resolution CCS and m/z analyses (Figure 6.3). Preliminary
simulations have been conducted to investigate the efficacy of a segmented PCB electrode
geometry for the experiments described here. Each unit of the proposed ACCESSR platform is
approximately 200 mm in length with an inscribed electrode radius of 4.25 mm consisting of 42
sets of four electrodes. In the final configuration, each region will be capable of operation in
multiple modes including quadrupole mass selection, IM selection, trapping for ETD, and full
transmission to accommodate CID or IMR. The first, selection, region of the tandem segmented
devices will be held either in the 10~ Torr or 10° Torr range with nitrogen or another background
gas, depending on the selected mode of operation. The second, reaction, region will be operated in
the 107 Torr range with the background gas chosen to facilitate the mode of operation. For
example, electron transfer and collision studies can be performed in an inert gas, such as nitrogen
or argon, while ion molecule reactions require a reactive background gas, such as ozone. The
vacuum chamber for the selection and reaction regions will be built to accommodate these
pressures and gas types.

Due to the desire for a small instrument footprint, mobility experiments will be conducted
via traveling wave IM (TWIM),?4?° allowing separation to occur within a shorter distance, relative
to the drift tube length required for a comparable separation using uniform field IM. This
assessment is supported by simulations of the ACCESSR operating under a uniform field, where
observed separations were insignificant over 200 mm. TWIM, however, showed greater potential
as a mobility separation mechanism for this device. As shown in Figure 6.4, ions are radially

confined by an RF field and separated by traveling DC potential energy waves applied along the
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Figure 6.3: (A) Box diagram of general instrument layout in final configuration, with electrospray

introduction of ions, beam narrowing with an ion funnel (RIF), tandem segmented quadrupoles

capable of multiple combinations of modes of operation, and high resolution IM-QTOF analysis

via a commercially available instrument. (B) Diagram of possible modes of operation for the
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main axis. In these experiments, 9000 ions of 500 Da, varying in CCS (200, 300, and 400 A?) were
simulated, and the arrival times at the far side of the device were recorded. Simulation results
demonstrated over 75% transmission efficiency across all ions. lons resided in a diamond-shaped
region, as was observed when viewing ion trajectories down the main axis (Figure 6.4(A)), which
is a result of the electric field generated with PCB pads rather than the stacked ring electrodes used
in traditional TWIM devices. Resolution in these proof-of-concept simulations is rather low, but
separation is observed for same-mass ions (e.g., isomers) and improvement in resolution is
expected to transpire through exploration of alternative geometries, pressures, and electric field
settings in future developments that fell outside the scope of these preliminary studies.
Simulation results for the ACCESSR in operation as a mass selective quadrupole are shown
in Figure 6.5. Electrodes are paired cross-wise about the main axis, as in a traditional quadrupole,
with RF voltages 180° out of phase and superimposed upon an applied DC bias. When filtering
for a single mass, selected ions are confined along the main axis (green trajectories in Figure 6.5),
whereas low mass ions are rejected along the RF-dominated plane (blue trajectories in Figure 6.5),
and high mass ions are rejected along the orthogonal DC-dominated plane (red trajectories in
Figure 6.5). A wide-ranging combination of settings results in 100% ion transmission for multiple
masses (Figure 6.5(B)), but masses can also be filtered by using settings exclusive to transmission
of the desired mass (Figure 6.5(C)). While the modest resolution seen in these preliminary studies
can be improved with design modifications and changes to instrumental parameters including
pressure and electric fields, for the purposes of this proposal these preliminary results show great
promise for utilization of the proposed geometry as a quadrupole mass filter.
VILILIII. Research Design and Methods

The proposed instrument development is projected to span three years, and the timeline is

208



A C %
(A) (C)  100% | e
300 A2
(¢} L 2
S 7505 | m 400 A
= I
©
c
> n
K 50% H
B S~ - 2
) - o —— = L
o 25% T
P ) =t .'.-,-_-. R L Ry /
u.._,_,_::;" e . = - 0% 1\1.—.’ fl ‘/f | | [N
T S W e, 4 5 6 7 8 9
Tt Drift Time (ms)
(D)

Figure 6.4: Summary of proof-of-concept simulation results for the proposed PCB electrode
geometry operating as an IM separation device. (A) Example ion trajectories simulated in the
proposed instrument. Note the diamond-shaped trajectory profile resultant from operating with
four electrode pads, rather than conventional concentric ring electrodes. (B) Potential energy
diagrams for three sequential phases of the traveling wave, with arrows indicating the direction of
the voltage wave. RF fields have been omitted for clarity. (C) Three groups of 500 Da ions were
generated, differing only in CCS, and the arrival time distributions are shown for separation
simulated at 1.5 Torr. (D) Example trajectories for 500 Da, 200 A? ions displaying periodic radial
broadening as a result of the traveling waves and high percent transmission resultant of the

confining RF field.
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Figure 6.5: Summary of simulation results for the proposed device operating as a quadrupole mass
filter. (A) Example simulated ion trajectories, projected down the main axis of the device. Note
low mass ions (blue trajectories) are filtered orthogonally to high mass ions (red trajectories), as
in a traditional quadrupole. (B) Preliminary, proof-of-concept data from simulations of the
segmented PCB-based device functioning as a quadrupole mass selector. Marker size indicates
relative transmission for each mass. (C) Close-up of boxed region in (B), with triangular
boundaries indicating predicted transmission windows for each mass. Arrows and Roman
numerals refer to RF and DC settings used in the simulations shown in (D). (D) Example ion

trajectories for settings that filter for (i) 380 Da, (ii) 400 Da, and (iii) 420 Da ions.
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displayed in Figure 6.6. Initial simulations of electrode geometries and fluid dynamics would take
place in the first year, along with design of instrument infrastructure and electronics. In the second
year, most instrument components including PCBs, vacuum infrastructure, and electronics would
be fabricated and assembled. Work in the third year would focus first on testing of electronics,
vacuum system, and ion transmission, and then testing the multiple operational iterations of the
ACCESSR would occur.

The first aim is to theoretically evaluate the ACCESSR, a segmented quadrupole/IM
device, with the capability of varying operational pressures and voltages for mass selection or IM
separation within a single electrode geometry. Preliminary and proposed ion trajectory simulation
studies are performed with a gas collisional model (SIMION software with hard-sphere user
program), modified with custom in-house programming to account for variable electrode voltages
and ion-gas collisions, to computationally model electrodes and electric fields and predict ion
trajectories, in order to evaluate possible electrode geometries and optimize figures-of-merit
including transmission, selectivity, and resolution, among others. Preliminary progress has been
made toward rapid development of new simulation geometries. Foundational scripts have been
written in-house to allow large electrode geometries, which would have taken hours to generate
using the default user interface, to be defined by the user in minutes and generated by the software
in fractions of a second. This custom programming interface will allow more geometries to be
rapidly tested in the future, providing a greater opportunity for discovering a highly functioning
final geometry with improved transmission and ion selectivity. Computational fluid dynamics
(CFD) will be utilized to investigate gas flow within the vacuum chamber, and resultant velocity

and pressure gradients will be incorporated into the ion simulations with custom user programs to
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SIMION electrode geometry optimization

CAD infrastructure design

COMSOL fluid dynamics investigation

Electronics design and circuit layout

(2) Hardware Development

PCB/ion optics fabrication and assembly

Infrastructure construction

Vacuum system and gas manifold construction

Electronics fabrication and assembly

Experimental logic 1/0O development
(3) Interface and Testing
Circuit and vacuum/gas testing

Transmission testing with commercial IM-QTOF

Quadrupole selection testing

lon mobility separation testing

lon molecule reaction/CID testing
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Figure 6.6: The timeline for the proposed research is shown here. Initial simulation and design
work will be completed prior to fabrication of components. Following assembly, testing of the

device and benchmarking of figures-of-merit will be performed.

212



observe effects on ion trajectories, directing further development of the electrode geometries and
vacuum system.

The second aim is to develop hardware, electronics, vacuum system, and control software
for the ACCESSR compatible with interfacing to a commercial IM-QTOF. Electrode geometry
and component layouts will be developed in response to ion simulation results and optimized for
efficiency of size, cost, and maintenance. Instrument components will be computationally
designed (AutoCAD) in order to visualize the 3D instrument assembly and facilitate rapid
prototyping. Circuit boards will be developed in PCB-design software, commissioned for
production off-site, and assembled with high-quality electrical components in-house. Vacuum
system hardware will be conceptualized with CAD software to conform to CFD results and will
be assembled in-house from commercially available and custom pieces. Instrument control
software will be written in-house with the LabVIEW graphical programming language for
compatibility with all operational modes.

The third aim is to interface the ACCESSR on a commercial IM-QTOF platform and
benchmark analytical performance. An existing collaboration with Agilent Technologies will
assist the process of interfacing the proposed design with their commercial IM-QTOF (model
6560). Testing will include evaluation of the electronics, vacuum system, and ion source. Auxiliary
test equipment including pressure gauges, voltage read-back, and temperature monitors will be
installed to comprehensively evaluate important experimental parameters in response to specific
operational modes. Studied analyte systems will include isomers (leucine/isoleucine), fatty acids,
saccharide standards, peptides, etc. Benchmarking of instrument performance in each mode of
operation, including combinations of IM, CID, IMR, ETD, and quadrupole mass selection, will

include analyses of calibration in both the mass and mobility dimensions with biological standards
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for comparison to existing commercial instrumentation, with evaluation of important analytical

figures-of-merit including resolution, sensitivity, dynamic range, and selectivity.

VILILIV. Summary

The proposed research described here seeks to integrate printed two-dimensional ion optics
technology with prior research in quadrupole, CID, IMR, and IM designs in the development of a
single electrode geometry supporting all of these experiments using a combination of variable
electric fields, background gases, and pressures. Because two-dimensional devices are fabricated
from PCBs rather than stacked metal electrodes, they typically have a smaller footprint, lower
manufacturing costs, are developed faster, and are highly customizable compared to traditional
scientific instruments. Preliminary ion simulations have successfully shown proof-of- concept data
for operation of the proposed instrument as an IM separation device and as a quadrupole mass
filter with a single electrode geometry. The proposed research should provide a highly versatile
instrument platform, the ACCESSR, which will enable novel studies of numerous molecules in
both simple and complex samples, and the modularity of the design will allow the analytical

platform to be customized to best suit the system of interest.

VI.I11. Outlook for Spatial Multiplexing in lon Mobility Spectrometry

As discussed in Section V11, it is expected the next generation of ion manipulation devices
will be built on two-dimensional planar arrays. Modular PCB designs are highly versatile and are
quick and inexpensive to manufacture in comparison to conventional designs. Additionally,
because of their small footprint relative to traditional stacked-ring modules, PCBs are an excellent

candidate for higher orders of multiplexing in IM-MS devices. Higher channel numbers would
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offer increased throughput and versatility, which would benefit high throughput screening for early
stage drug discovery, condensed phase separations integrated with IM-MS, integrated microfluidic
devices coupled with IM-MS, and imaging mode IM-MS applications, among others. The eight-
channel IM described in Chapter Il is the first step toward a 96-channel instrument, which could
analyze every sample in a 96-well plate simultaneously. As we progress toward this end, the
amount of data acquired gets bigger and bigger, illuminating a corresponding need for advanced
computational methods capable of handling the big data from these experiments and comparing it

to reveal patterns and variants.

VI.1V. Conclusions and Perspectives

Throughout this work, the authors sought to make advances in the field of ion mobility
(IM), both through instrument development and via analytical studies. Chapter | laid the
foundation for this work by detailing previous applications and developments of IM. Chapter |1
described the development of a novel, spatially multiplexed IM instrument designed for high
throughput, sensitivity, and versatility, among other figures-of-merit. Chapter 11l examined
preliminary data from the spatially multiplexed IM. Chapter IV explored the difference in gas-
phase packing efficiencies of various biological classes, making them occupy dissimilar regions
conformational space in ion mobility-mass spectrometry (IM-MS) analyses. Chapter V
investigated sub-trends within the lipid biological class to enhance identification techniques with
the application of IM-MS. Chapter VI proposes a new, high versatility platform built on interfacing
PCBs. This work has significantly advanced the fields of IM instrument development via the
development and optimization of new instrument components, and biomolecule analyses,

especially of lipids, via the evaluation of mobility-mass correlations for identification strategies.
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Figure B.1.1: Velocity magnitude results for 3D CFD modeling for tandem ion funnel geometry
with differential pumping. Normalized arrows indicate direction of gas flow along the cut XY-
plane, which bisects the fourth ion channel. The XZ-plane is also projected, as a heat map,
intersecting all eight ion channels and a portion of the 90° elbow of the vacuum tubing
originating from the inner chamber and exiting at the edge of the first chamber. In this particular
solution, results vary between channels, with some RGC entrance jets being of higher magnitude

than others, but this is just one possible case predicted by the model.
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Figure B.1.2: Velocity magnitude results for 3D CFD modeling for a preliminary ion funnel
geometry (keyhole) with countering gas jets emitted from the capillary exit and drift tube

entrance. Normalized arrows indicate direction of gas flow along the cut plane.
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Figure B.1.3: Velocity magnitude results for 3D CFD modeling for tandem ion funnel geometry
with differential pumping. Normalized arrows indicate direction of gas flow along the cut plane.
High magnitude circle in lower portion of the chamber is where the plane intersects the pumping

tubing originating from inner chamber.
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(A) Velocity Magnitude

(i)

1

0 Velocity Magnitude

(B) Pressure Magnitude

(iii)

1

(iv)

0 Pressure Magnitude

Figure B.1.4: Simulation results showing cross-sections of a single ion channel from the ion
funnel array. Velocity and pressure magnitudes are shown on relative scales for qualitative
comparison. Normalized arrows in (A) indicate direction of gas flow along the cut plane. (i)
Velocity magnitude for a preliminary ion funnel geometry (keyhole) with countering gas jets
emitted from the capillary exit and drift tube entrance. (ii) Velocity magnitude for tandem ion
funnel geometry with differential pumping. (iii) Pressure magnitude for a preliminary ion
funnel geometry (keyhole) showing pressurized trapping region. (iv) Pressure magnitude for

tandem ion funnel geometry with delineated high and low pressure regions.
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|0 Pressure Magnitude 1|

Figure B.1.5: CFD modeling results for a preliminary ion funnel geometry (keyhole). (A) Near-

0.7 -0.7

XYZ Coordinates

isometric 3D view of velocity isosurfaces ranging from 1 m/s to 42 m/s in steps of 2 m/s. Note
the jets issuing from the RGC at the bottom left and the drift tube at the upper right. (B) Close-
up view of junction between two keyhole geometry funnel regions, oriented perpendicular to the
XZ-plane, with pressure isobars ranging from 1.000 Torr to 1.040 Torr in steps of 0.001 Torr. (C)
Example isosurface at 26 m/s X-component velocity where three equations for ellipsoids and
parabaloids (colored mesh) approximate the data points. Note ions would move along the
vertical axis. These equations, determined for multiple velocity and pressure magnitudes, are

written into a SIMION user program for incorporation in the ion trajectory simulations.
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1 —— CFD Results Applied -KLL 2012
2 —— funnel3.lpa - SIMION Lua workbench user program for ion funnel.
2 P
4 —— This is similar to funnel2.]lus but uses additional electrode
5 -- solution arrays to allow adjustable variables ( RF amplitude,
5] -- DC offset 1, DC offset 96, and DC offset 97) to be adjusted
7 —- during the Ely'm (without editing the .pat+ file and re-refining
] —— the array).
] R
10 —— D.Manura, 2009-08, based on funnell.]lua.
11  —- Modified by K. Leaphrob, 2012-11
12
13 simion.workbench program()
14
15 —— import standard HS1 collision model from this directory.IMPCRTING COLLISION SDS!
16 simion.import("collision sds.Jua™)
17
18 Hfunction SDS.pressure(x,v,z) -- Torr
19 local p
20 H if x < (0. 42=y*2=(z=0.2)"2)*0.54+135.74=131_2 then
21 p=_1.2
22 else
23 H if x < (0.522=(y=0.05)*2=(z=-0.2)*2)~0.54.30.66=-131.2 then
24 p=1.15
5 else
26 H if x < (0. 8752=(y=0.25)"2=(z+0.125)"2)~0. 54135 .575=-131 .2 then
7 p=1.10
8 else
29 H if x < ((-y*2-z*2)"0.54135.6=-.31.2 then
30 p=1.05
31 else
32 H if x < 182 or x < (2.22-y*2=-z*2)*0.54121.1-131.2 then
33 p=1
34 else
35 H if x € 256.9 or X <€ (2.22=(y+1.3)"2=(z+0.125)2)~0.54254 . 6=131.2 then
36 p= 1.05
37 else
38 p=_
39 end
40 r end
41 F end
42 r end
43 F end
44 - end
5 —-print ( ('DEBUG:x=%qg, y=%g, z=%g, P=%g"') : format (ion px mm,ion py mm,ion pz mm,p))
46 return p
7 lend

Figure B.1.6: SIMION user program in lua programming language incorporating equations for

functions approximating pressure and velocity isosurfaces for ion funnel simulations. pg 1 of 4
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return 2°5¢

~end
function 5D3.wvelocitv(x,v,z) -- (m/s) ¥x,¥¥,¥z in workbench coordinates

Hfunction SDS.temperature(x,v,z) — K

local wvx
if x < 140.2=131 2=(y+0. 0L)~2f (0. 1~2)=(z=0.01)"2/(0.222) and x > .0 then
v = 50
else
if x <€ 140.325=131 . 2=(y+0.01)"2 /(0. 13~2)=(2=0.01)~2/(0.2~2) and X > ©.41 then
v = 40
else

if x < 140.

=131 2= (y+0.02) 2/ (0. 1472)=(2=0.02)"2/(0.2~2) and x > 5.5 then
< 140 ET=131.2=(y+0.02)~2f(0.1c~2)=(z=0.01)~2/(0.15~2) and ¥ > ©.5 then
X < 140, 85=131. 2=(y+0.02)~2/(0.2"2)=(2z=0.01)"2/(0D.2.~2) and x > C£.C then

if x < ((I=(y+0.05) "2/ (0. 222)=(2=0)~2/ (0. 2"2))* (0. 4c"2))~(0.5)+140.52=131.2 o X <
140.67=131.2=y*2/(0.1622)=(2z=-0.01)22/(0.1042) and x > 0.0 then
VX = 20
else
if x < 140.7=-131.2=y22/(0.2342)=(2=0.01)*2/(0.27522) or x < ((l-(y+0.025)22/(0.242
y=zA2 /(0. 2542))* (0. 7221y A (0. 5)+140.8=131.2 and x > 5.5 then
v = 20
else
if x < ((I=(y+0.025)22/(0.322)=(2=0) "2/ (0 35223y * (1*2))*~(0.5)+141=131.2 and x >
© then
vE = ¢
else
if x <€ ((L=(y+0.025) 2/ /(0. 4522y =(z+0. 075) 2/ (0. 5~2) ) * (L. 75"2))~(0.5) 4141 .75~
131.2 or x < 140.8-131.2-(y=-0.01)*2/(0.3*2)=(z40.01)~2/(0.25*2) and ® > ©.0 then

vx = 11
else
if x o« ((I-(y+0.15) 22/ (0. 822) = (240 . 075) 2/ (0. T542) ) * (3. 7542) )~ (0.5)+142 5=
131.2 and ®x > 5.0 then
VE = ©
else

if x o< ((I={y+0 TSy A2/ (AA2) = (24 1) A2/ (4R (0T 5220 5)+157=1531 .7 and x
> 5.5 then
vE = |
else
if x> 170=131. 24y} 2/ (0. 502+ (240 002 (0. 4522) and x <€ ((l-y~I2-z"2)*(
3282y M(0.5) 4183221 .2 then

VE = =4
else
if x > 253 7-130 24 (v 24+ (z+0.1)~2) /(0. 4542))~(0.5) then
vy = =4
else
vy = [
end

Figure B.1.6: SIMION user program in lua programming language incorporating equations for

functions approximating pressure and velocity isosurfaces for ion funnel simulations. pg 2 of 4
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94 r end

95 r end

96 - end

97 - end

98 r end

99 r end

100 P end

101 - end

102 - end

103 r end

104 r end

105 - end

106 local vy =

107 local vz = C

108 return v,vy,vVz

105 ‘end

110

111 Hfunction 5DS.init ()

112 -— Plot gas flow.

113 local CON = simion.import 'contourlib8l.lua' -- [3][4]

114 CON.plot{func=5DS.velocity, npoints , z=U, mark=false, color=2} --[2]

115 CON.plot{func=3SDS.velocity, npoints=30, y=0, mark=false}

116 CON.plot{func=sDS.velocity, npoints=30, x=0, mark=false}

117 -end

118

119 -- adjustable during flight

120

121 adjustable temperature k = 298.0 —-— Background gas temperature (K)
122

123 - [OVERRIDE HS1]

124 adjustable sigma m2 = 2.27E-18 —— Collision-cross section (p~2),
125 - from experiment

126 - [OVERRIDE HS1]

127 adjustable _gas_mass_amu = 28.0 —— Mass of background gas particle
128 - (), (N2 gas)

129 — [OVERRIDE HS1]

130 adjustable mark collisions =0 —— Mark collisions (l=yes,0=no).
131 - [OVERRIDE HS1]

132 adjustable pe update each usec = 0.05 —-— PE display update period (in yzseg)
133

134 -- adjustable at beginning of flight

135

136 adjustable _fregency_hz = 5ES —— RF frequency of funnel (in Hz)
137 - CRREFUL: time-step sizes should
138 - be some fraction below period.
139 adjustable phase angle deg = 0.0 —— entry phase angle of ion (deg)

140 adjustable RF amplitude 20 -- RF peak-to-ground wvoltage (in V)
141 adjustable DC offset 1 0.00 - DC offset of electrode 1 (in V)

142 adjustable DC offset %6 -— DC offset of electrode 96 (in V)
143 adjustable DC offset 97 = -36.0 -— DC offset of electrodes 27 (in V),
144 - DC only electrode

Figure B.1.6: SIMION user program in lua programming language incorporating equations for

functions approximating pressure and velocity isosurfaces for ion funnel simulations. pg 3 of 4
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145 adjustable pressure pa = 1.0*¥133.208 —- Pressure (in Pa)

lde —— Note: 1 Torr = 133.28 Pa.
147 — [OVERRIDE HS1]
148
149 —— internal wvariables
150 local omega —— frequency in radians / useg
51 local theta —— phase offset in radians
52 local last pe update = 0.0 -- last potential energy surface update time (ysgg)
c 3
54 [Hfunction segment.fast_adjust{}
55 —— NOTE: This segment is the only code that differs from funnel2.]lug.
56
57 —— Initialize constants once.
58 H if not theta then
59 theta = phase angle deg * (3.14 10)
60 omega = fregency hz * €.263158E-¢6
61 E end
62
63 —— Lpply RF+DC to each electrode (ses README file for explanation).
64 adj elect0l = RF amplitude * sin(ion time of flight * omega + theta)
6 adj elect02 = DC offset 1

adj elect03
adj elect04

_DC offset %6 - DC offset 1
_DC offset 97

[=3)
=l o Wn

@

-end

-1
[ ERYs]

-]

-- This trick first runs the other actions segment defined previously
—— by the HS1 collision model and then runs our own code.
local previous other actions = segment.other actions
—-— copy previously defined segment.
Flfunection segment.other_actions{}
—— Run previously defined segment.
previous_other actions()
—-— Now run our own code...

|

] e

S I, |
=] o N od W

e I B |

—— Update PE surface display.

oo

e o
o
o

81 H if abs(ion time of flight - last pe update) >= pe update each usec then
82 last pe update = ion_ time of flight

83 sim update pe surface = . —— Request a PE surface display update.
84 - end

85 ‘“end

Figure B.1.6: SIMION user program in lua programming language incorporating equations for

functions approximating pressure and velocity isosurfaces for ion funnel simulations. pg 4 of 4
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(A) @) "“'i|l|””

e -

(B)

Figure B.1.7: SIMION ion trajectory simulations for four stages of development of the spatially
multiplexed instrument ion funnels. Background colors indicate pressure regions as described
below. (A) Previous keyhole geometry with brass electrodes where (i) is at 1 Torr and
transmission was estimated at 99.8% = 0.0% and (ii) has pressures ranging from 1 Torr to 1.2
Torr, neutral gas velocity from -4 m/s to 51 m/s along the axis of ion movement, and
transmission estimated at 99.6% * 0.0%. (B) Tandem geometry with brass electrodes, 0.5 in gap
between funnels, 10 Torr in first funnel, 3 Torr in second funnel, and transmission estimated at
96.4% + 0.0%. (C) Final PCB tandem geometry at 10 Torr in the first funnel and 3 Torr in the

second funnel with transmission estimated at 96.0% + 2.0%.
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(A) From 24 VDC

To Femg,lfol?:Q 9) _ SupplyoV: 3 — Supply
— Earth Gnd: nc
54301 - ———— 24VDC: {
[SRe) 0 O
O\9876, | O ) To NI
Male ) — Voltage monitor: 6
1 e Current monitor: 7 Breakout Board
|_| ————————————— *10V control input: 8
___________ Control input return: 9
Analog Signal Gnd: 5
(B)
From Male D9
1,3,5,7,9: 24V DC: 1,2— PCCTTTTPrr— T
2,16,18,20: nc: :
#=11,13,15,17,19: Supply 0 V:4,5~" 142 35,{150
" 12,14: Analog Signal Gnd: 5 O\s6789 [ O
4: Voltage monitor: 66— Female ?
6: 7 Il

\ Current monitor:
\\‘- 8: +10V control input: 8- —— —_~ P
=10: Control input return: 9-~

Figure B.17.1: Wiring diagrams for DC power supply inputs with (A) connections for the 20 pin
ribbon cables of the nine DC power modules to female 9 pin D-sub connectors and (B)
connections for the complementary male 9 pin D-sub connector to the 24 VDC supply and the

NI breakout board. Some wires have no connection (nc) and some pins are left open circuit (oc).
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(A)
To ESI Source Power Supply From 24 VDC

fm—————m = \ Supply 0 V: 5,6,7 = SUPPlY

I '"340c —mm——" W Earth Gnd: nc
— N\ \Y_—24VDC: 13,14,15=="

1&%3040506075?
\ nc
{O 901%11»120 13? 1‘% 1% 2 \\\ 35V control input: 15 To NI

- > -Compliance input: 2 Breakout Board

Voltage monitor: 11
\_core

Current monitor: 10/
TPolarity control: 8
Analog Signal Gnd:9,12
(B)
To RF Power Supply
RF 1 EXT CMD: 1 it
153 415 RF 2 EXT CMD: 2 \Breakout Board
(O 58786 10 RF 1 Readback: 4 e—
Female ogeo RF 2 Readback: 5
3,6,9 oc Analog Signal Gnd:7,8

Figure B.17.2: Wiring diagrams for ESI source and RF power supply inputs. Some wires have
no connection (nc) and some pins are left open circuit (oc). (A) Wiring for high voltage source
power supply (Exelis, SCOO8RCV050) to a 15 pin D-sub connector using a two-conductor cable
to supply 24 VDC, and a six-conductor cable for signal input and output. (B) Wiring for control

of RF power supplies external command (EXT CMD) and readback.
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Electronics Drawer 1 \

-
m=——
-

— SHV
SCPSU|] SHV
—J |\~ SHV
PSU 01 SHV__
(2.5 kV) 9 pin D-Sub
m 9 pin D-Sub
9 pin D-Sub
M‘ 9 gin D-ﬁub

Electronics Drawer 4 \

PXI1-6704
Connector

------- [ ESI Needle ]

L RGC
Feedthrough

Funnel 1 Breakout Box\

GND:1,2,3,5,8
PSUOI: 7
BNC F-psuoz2: o
BNC RF1+: 4
RF1 -: 6

N

9 Conductor

/

Figure B.17.3: Wiring diagrams for electronic components relating to ESI source, RGC, and the
high pressure ion funnel. SHV and 9 pin D-Sub connectors are mounted in panels at the back of
the electronics drawer. Cables leading to the fourth electronics drawer pass through strain reliet
grommets mounted in the panels at the back of the drawer. Connector blocks are connected to

respective NI cards with NI-supplied cables. Details for wiring in NI connector blocks are

provided in Table B.17.1 and Table B.17.2.

\ Block
PX1-6422
Connector —
I- Block PXle-1073 C
PX1-6224 omputer
~ PXI-6704 Interface

362

To Funnel 1 via
Feedthrough Flange



Electronics Drawer 2 \

———

—— SHV
PSU 03 SHV
_(1KkV) J SHV ~
PSU 04 SHV Funnel 2 Breakout Box
_(1kV) f\\ 9 pin D-Sub w Sggo 3_2,5,8,&73
PSU 05  pin D-Sub Pulsed | PSUO04:  1—39 Conductor
(1 kv) j——19pin D-Sub BNC | psu 05/06: 3
P— 9 pin D-Sub BNC RF 2 +: 4
PSU 06 j \ RF2 -: 6
(1 kV)

Electronics Drawer 4 \

PXI1-6704
| Connector
Block

( PXI1-6422

To Funnel 2 via
Feedthrough Flange

Connector
I' Block (PXle-1073

PXI-6224) ||Computer
~ PXI-6704 Interface

Figure B.17.4: Wiring diagrams for electronic components relating to the low pressure ion
funnel. SHV and 9 pin D-Sub connectors are mounted in panels at the back of the electronics
drawer. Cables leading to the fourth electronics drawer pass through strain relief grommets
mounted in the panels at the back of the drawer. Connector blocks are connected to respective
NI cards with NI-supplied cables. Details for wiring in NI connector blocks are provided in

Table B.17.1 and Table B.17.2.
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Electronics Drawer 3 \

— SHV
PSU 07 SHY
(1 KV) SHV N
(PSU 08 ) SHV Drift Tube Breakout Box
_(1kV) N\ H9 pin D-Sub w GND: 2643’59’
PSU 09 9 pin D-Sub PSU07: ’7%9 Conductor
(1 kV) 9 pin D-Sub PSU 08: 1
—_ 9 pin D-Sub :
4

Electronics Drawer 4 \

PXI1-6704
| Connector
Block

PXI-6422

To Drift Tube via
Feedthrough Flange

Connector
I' Block (PXle-107
PXI-6224) | |Computer

Interface

PXI-6704
J

Figure B.17.5: Wiring diagrams for electronic components relating to the drift tube. SHV and 9
pin D-Sub connectors are mounted in panels at the back of the electronics drawer. Cables
leading to the fourth electronics drawer pass through strain relief grommets mounted in the
panels at the back of the drawer. Connector blocks are connected to respective NI with NI-
supplied cables. Details for wiring in NI connector blocks are provided in Table B.17.1 and

Table B.17.2.
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(A)

Input
current

Rl
200k

(B)

Example input
current

Individual resistor
values

Total circuit
resistance

Calculated output
voltage

Detected output
voltage

Calculated input
current

R3
10M

R2
10M

L := 500pA = 0.5-nA
Ry = 200kS) Ry = 200
R, = 10MS) Rg = 20kQ2
R; == 10MQ Rg = 2kQ
R, +R; R
2+R3 Rg
Rige=s Ry st | = Bl e
Ry Rs
R, +R; R
2+R3 Rg
V, = LRy — =10V
Ry Rs
VOut =5V

vout

Frmm————
n
R, + Ry R
Ry | ———
Ry Rs

= 250-pA

(C)

R8  Output
2k voltage

HA'A'A'A 8 :
L e

-12V

Varied gain with bridge resistor

Bridge resistor RBridgc = 1IMQ)

1

Resistance across R - = = 0.952-MQ2
23Brid;
R2, R3, and RBridge neee L,
RBridge Ry +R3

Calculated output 5 i R23Bridge Rg = 0476V
voltage oBridge "= 17 R—IR_S R
Detected output VoutBridge 1= ISV
voltage

VoutBridge 3
Calculated input = 525x10"-pA

current
Ry

T s =
inBridge
8 |: [R23Bridge
Ry | ——

PC

A

/D
. converter

IO.IuF

|

Figure B.17.6: (A) Circuit diagram for picoammeter operational amplifier. Reproduced from

Intra, 2009. (B) Calculation for an example input current, showing expected output voltage at

the maximum detectable level for the PXI-7842R card and showing the calculation for

determining the input current from the measured voltage. (C) Calculations analogous to those in

(B) where a bridge resistor is connected across R2 and R3 to vary the gain of the amplifier.
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Figure B.19.1: ESI source assembly before and after anodization, without needle
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Figure B.19.2: ESI source spray in operation and disassembled fittings
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Figure B.19.3: Resistive glass capillary, held up to light and compared to home-built
capillary
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Figure B.19.4: Heated desolvation block disconnected from top hat flange, insulating flange
(later revision made from black Delrin), and early assembly of first chamber
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Figure B.19.5: High pressure ion funnel and blown resistor comparison on RC circuit board
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Figure B.19.6: RC circuit for high pressure funnel assembly
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Figure B.19.7: Inner vacuum chamber, smaller Delrin piece pictured is previous revision
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Figure B.19.8: Vacuum connection for inner vacuum chamber pumpout and low pressure
funnel RC circuit board
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Figure B.19.9: Extension collar and RGC electrical feedthrough piston seal
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Figure B.19.10: Top hat flange protruding through %.” flange with seven blank rods and one
home-built capillary, used prior to RGC installation, and funnel 1 mount block
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Figure B.19.11: Narrow drift tube mounted on aperture panel, with piston seal Delrin piece
installed, and assembled free and resting on table
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Figure B.19.12: Aperture panel assembly
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Figure B.19.13: Final drift tube electrode with grid and Faraday plate detector and stacks of
drift tube electrodes, disassembled for detector installation
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Figure B.19.14: Faraday plate array PCB, close up of pad with collected analyte and same
pad after cleaning, temporary foil electrode substituted in troubleshooting
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Figure B.19.15: Comparison of previous brass plate ion funnel electrode to current PCB ion
funnel electrode
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including ion funnel,

aperture panel, narrow drift tube, full size drift tube, and grid

Figure B.19.16: Multiple electrode components resting on table
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Figure B.19.17: Picoammeter first revision on multipurpose circuit board, amplifier
enclosure, and picoammeter fourth revision designed on PCB
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Figure B.19.18: Power supplies, 24 VDC
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Figure B.19.19: Breakout boxes for high pressure ion funnel (top in each image), low
pressure ion funnel (middle in each image), and drift tube (bottom in each image)
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Figure B.19.20: Organization of cables leading from PSUs in drawers to 24 VDC supply,
breakout boxes, and NI connector block which connects to NI chassis
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Figure B.19.20: Method using assembly support structure to install components in first
vacuum chamber (tilt required to clear chamber edge), and table frame
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Figure B.19.21: Full instrument assembly prior to electronics wiring
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Figure B.19.22: Instrument and user work area during troubleshooting session and bottom
pumping port for first vacuum chamber
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Figure B.19.24: Back view of instrument during troubleshooting session, showing
connections to scroll pumps
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Figure B.19.25: (Counterclockwise from top left) Corona and/or discharge in chamber at
aperture panel, drift tube, bottom tab of low pressure funnel, RC circuit board, and outside
vacuum between ESI source and RGC
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Figure B.19.26: Application of super corona dope to ion funnel RC board to prevent corona
and/or discharge
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APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER Il
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Figure C.1: Evaluation of Edwards XDS35i scroll pump and pump down of first vacuum chamber.
(A) Pump down curve over six minutes to approximately 0.07 Torr for first vacuum chamber with
error bars for three replicates. (B) Data comparison of empirical pump down of first vacuum

chamber with manufacturer reported pumping speed. Chamber volume was estimated at 25.15 L

for calculations.
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Slope Intercept R?

(Voutput/Vinput) (Voutput)
PSUO1 249.541 -0.547 1.000
PSU02 248.481 -0.034 1.000
PSUO3 100.419 -0.093 1.000
PSUO4 100.462 -0.462 1.000
PSUO05 100.550 -0.039 1.000
PSUO6 100.292 -0.214 1.000
PSUO7 100.546 -0.071 1.000
PSUO08 100.610 -0.271 1.000
PSUO09 100.346 -0.361 1.000
SC 600.332 -0.754 1.000

Table C.1: Calibration data for DC power supply units. PSU 01 through PSU09 amplify a + 10 V
input control voltage. PSUOL and PSUO02 are 2.5 kV supplies. PSU03 through PSUQ09 are 1 kV
supplies. SC is the 6 kV source power supply, which amplifies a + 5 V input control voltage. The
calibration slope and intercept are written into the LabVIEW software for the spatially multiplexed

IM to correct for variation of individual power supply modules.
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APPENDIX D

SUPPORTING INFORMATION FOR CHAPTER IV

D.1. Comments Regarding Limits of Precision for the CCS Measurements Presented in this Work

The experimental uncertainty is determined from technical replicates representing a
minimum of six measurements of CCS, obtained during separate instrument acquisitions. We
consider a parsimonious approach essential when compiling a database, and thus individual CCS
measurements which contributed to a percent relative standard deviation (RSD) beyond 0.5% were
generally found to be indicative of a poor centroid fit (i.e., multiple peak features or low ion
counting statistics) and ultimately were not included in the datasets reported in this manuscript.
While all CCS values reported are better than 0.5% in experimental uncertainty, the accuracy
associated with the result is a sum of this experimental reproducibility and the uncertainty
associated with measuring each experimental parameter. The CCS uncertainty for significant
experimental parameters is estimated as follows for the lowest CCS value measured in this work
(TAA3, 144 A?): Pressure +0.05 Torr (+1.3%), temperature +1 K (+0.3%), drift voltage +2.5 V
(£0.2%), and time centroid extraction £0.1 ms (+0.6%), resulting in a total uncertainty of +1.5%,
as propagated through the Mason-Schamp equation. There is good reason to believe that the
measurement precision is better than what is estimated in the above example. Thus, the accuracy

of all values within the database is estimated to be better than 2%.

D.2. Notes on Supplemental Tables
In many cases, lower abundance concomitant species were present in the analytical

standards, denoted as derivative signal in the tables. Analyte identities for the derivative signals
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are putative and based on the mass measurement. No special considerations were made to optimize
for accurate mass data, and so the measured mass and associated accuracies reported in the tables
are as obtained from the production prototype instrumentation using an offline calibration. CCS
and Ko measurement precision representing experimental reproducibility error (o) is reported
along with the number of measurements (N). The total accuracy of all transport property values

(CCS and Kop) is estimated to be better than 2% (refer to the above discussion).

D.3. Symbol Key, Definitions, and Associated Equations

Mass Accuracy — Mass accuracy (in ppm) is calculated from the following expression:

Exact Mass—Measured Mass

106 1)

Mass Accuracy = ——

Reduced Mobility — Ko, the mobility scaled to standard temperature and pressure, as

calculated from the following equation:

Ko =7, () (o) @

where L is the drift length (cm), V is the drift voltage (V), tq is the corrected drift times (s), T is the

drift gas temperature (K), and P is the drift gas pressure (Torr). This gives the units of Ko in V-cm’
1.s1. Reduced mobility values are classically reported for small mass ions, and provided in the
following tables for convenience.

CCS — The first approximation solution of the momentum transfer collision cross-section,
as calculated from the following equation (the expanded Mason-Schamp relationship, Mason &

Schamp 1958):

1

CcCS = (3-Z-ec) . ( 21T )E_ Mion+Mgqs
16°N kp'T Mion"Mgas

1
2

e I
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where Z is the integer charge state of the ion (unitless), ec is the constant for elementary charge
(1.60217657 x 102 C), N is the gas number density (determined from the kinetic form of the ideal
gas law, in units of molecules/m®), kg is the Boltzmann constant (1.3806488 x 102 J-K1), mion is
the ion mass (Da), and mgas is the neutral drift gas masses (N in this work, Da), respectively.

Note that here and by convention, the CCS is reported in units of A? (square angstroms).
In order to obtain square angstroms directly from the above calculation, it is necessary to multiply
the expression (in m?) by 10°%°, with consideration given for converting the above terms to the
proper units: ec (C), N (molecules/m®), ks (J-K™2), T (K), Mion and mgas (kg), V (V), td (s), L (m),
and P (Torr).

The CCS expression above is considered a first approximation due to the actual
dependency on the cross section on the effective ion temperature (two-temperature theory, Mason
& McDaniel 1988, Chapter 6-2-C), which is the gas temperature plus the field-induced ion
temperature. In the Agilent IM-MS instrument described in this manuscript, for the smallest ion
investigated (TAA3, m/z 186) at the highest drift field utilized (20 V-cm™ at 4 Torr, or ca. 15 Td)
the field-induced ion temperature is ca. 3 K greater than the gas temperature (Wannier 1953). This
affects the magnitude of the CCS by less than 0.5% for the ions investigated in this work and so
only the drift gas temperature is used for all CCS calculations. For low mass ions where the CCS
values are small, incorporating a higher-order (two- or three-temperature) scaling may be
significant.

RSD — Relative standard deviation represents the measurement precision (reported as a

unitless percentage) and is calculated as follows:

RSD =—2—-100 (4)

average

where o is the standard deviation from multiple measurements.
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Analyte Source — Can be either from a known analytical standard, or as a derivative signal
which represents a concomitant ion signal that appears in the samples, often at lower abundances
than the standard. For example, the TAA salts were analyzed as received with a reported purity of
98%. The instrument sensitivity was high enough to observe additional ions representing
differences of CH> (m/z 14), which is suggestive of low abundance impurities possessing various
alkyl chain lengths. Note that for the lipid samples, the analyte sources were biological extracts
purified into specific lipid classes, thus analyte identifications are putatively based on the mass

measurement and the expected mobility-mass correlation trends.
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