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Chapter 1

Introduction

1.1 Background and Motivation

Continuum robots allow deep access to the anatomy while providing an inherent safety

owing to their structural compliance. They have gained great interests from both academia

and industry for the past decade. However, until now, one of the biggest challenges that

limit the success of these robots has been the extra hurdles in achieving accurate control

and easy telemanipulation. Compared to traditional rigid laparoscopic surgical instruments,

additional difficulties stem from their counter-intuitive snake-like structure, modeling uncertainties

due to their compliant mechanisms that lead to control challenges, and the complex interaction

between the entire flexible robot body and the anatomy.

To overcome this barrier and to unlock the full potential of surgical continuum robots,

this dissertation introduces two ways to alleviate the aforementioned obstacles. First, an

intelligent assistive telemanipulation framework is proposed for surgeon-robot interaction,

where virtual fixture laws are used and updated based on sensory feedback during surgery.

Second, a rectified kinematics model that enables towards semi-automation is calibrated to

reduce the burden on surgeons in learning and compensating for robot modeling errors. We

believe that the potential success of surgical continuum robots benefits significantly future

surgical approaches such as single port access surgery and natural orifice transluminal

endoscopic surgery. We envision that these robots in the future will be able to provide

safe deep access with surgical sub-task semi-automation capabilities and accurate control

despite their complex mechanical architecture.

1.2 Continuum Robots for Surgery

Continuum robots have found increased applications in minimally invasive surgery

[11]. These applications currently rely on telemanipulation under visual supervision of

1



a user. Future applications of these robots may involve semi-automated or automated

task execution (e.g. automated suturing [83]). The success of such semi-automated and

automated tasks depends on the availability of exact kinematic and static models of these

robots.

There have been works aiming at improving the accuracy of the kinematic models of

continuum robots, investigating modeling approaches [17, 18, 111, 112, 33, 51, 62, 78, 75],

and calibration or experimental characterization [99, 12, 27, 64, 41]. A detailed literature

review can be found in Chapter 3, from which we observe that there are very sparse works

on calibration of continuum robots and that these works do not provide a generalizable

formalism that can account for a wide range of continuum robot architectures, or use highly

restrictive assumptions regarding bending shapes of these robots, or lack of torsional twist.

Furthermore, a formulation for the calibration identification Jacobians, which is critical for

the study of appropriate selection of calibration configurations and sensor placement, is

generally lacking from continuum robot literature. This work aims to fill this scientific gap

and uses the multi-backbone continuum robot architecture as an example to demonstrate

the strength of the calibration formulation presented in Chapter 3.

1.3 Technical Gaps and Key Contributions

Using surgical continuum robots as smart slave robots in an intelligent framework

can improve the surgical performance and provide safer interaction with environment.

This dissertation builds upon previous works on intelligent continuum robots including

the intrinsic force sensing in [102, 105], the contact detection and estimation [7, 8], the

compliant motion [34, 36] and the hybrid force position control [9]. This dissertation aims

to propose an intelligently-assisted framework for surgical continuum robots and to identify

and solve the technical challenges in integrating such robots to the framework. Hence we

aim to bridge the technical gaps summarized as below, and the specific technical merit and

significance are explained in details following the summary.
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1. Recent works have shown how robots may used for palpation and probing. However,

to date there are limited works using information from force-controlled exploration

to update the geometry of the pre-operative surgical plan or model. We will address

this gap by exploring methods of robotic force-controlled exploration. In chapter

2 we present a contribution in using robotic force-controlled exploration to update

virtual fixture geometry for model-mediated telemanipulation.

2. Within the context of using continuum robots for exploration and model update or

semi-automated task execution, the need for an accurate kinematic model of these

robots arises. The literature in this area lacks formulations for kinematic calibration

of continuum robots. Problems of observability and the proper way of carrying out

calibration (e.g. kinematic mapping between which spaces to use) are not investigated.

The effect of sensor placement and the number of sensors needed have also not been

explored. In chapter 3 we present a contribution in formulating and developing

a framework for geometric calibration relying on the identification Jacobians and

sensor kinematic measurements.

3. A recent work from our group [21] demonstrates that continuum robots can also

carry out micro-scale motions by modulating its equilibrium, which can be used for

applications involving imaging-based exploration of the environment (e.g. optical

coherence tomography of a patch of tissue). There is a lack of models for control of

continuum robots with equilibrium modulation. In this thesis we focus on formulating

a framework of simplified kinematics via coupling moment effects and model calibration.

In chapter 4 we present such kinematic framework.

1.3.1 Contribution I - Model-mediated Telemanipulation & Virtual Fixture Update using
Force-controlled Exploration

During robot-assisted and computer-aided surgery, surgeons attempting to carry out

path following tasks such as ablation or dissection along a desired anatomical path are

3



challenged by the flexibility of the underlying anatomy. Examples of this task can be

found in cardiac ablation for electrophysiology and in cholecystectomy where dissection to

expose the hepatic and cystic ducts are required. The introduction of image-guided surgery

assists surgeons in avoiding critical anatomical structures. In addition, robot assisted image-

guided surgery improves the coupling between surgical pre-planning and surgical execution.

The success of this coupling hinges on successful registration between the a-priori model

of the surgical plan and the anatomy as obtained from pre-operative imaging. One key

challenge to the paradigm of image-guided surgery is the fact that flexible organs are

susceptible to deformation due to gravitational forces or changes in their boundary conditions

when the connective tissues around the target organ are removed or displaced to gain access

to that organ.

As an initial demonstration of the intelligently-assisted framework, the problem is

designed as follows. Given an a-priori model and an associated telemanipulation virtual

fixture descriptor, the framework allows force-controlled slave robot exploration and correction

on the a-priori model for deformation and registration errors using the explored data.

Then the updated virtual fixture geometry is used in a model-mediated telemanipulation

for force-controlled ablation.

Two key contributions are presented in this part. First, a method for force-controlled

telemanipulated exploration is proposed to collect geometric data of the deformed environment.

With the exploration data, an a-priori model of the environment is registered and corrected

using deformable registration based on coherent point drift [65]. Using this approach, a

flexible environment model is updated for deformation and registration errors.

The second contribution is technical in nature and is the presentation of a highly modularized

framework of system integration using the cisst package and Simulink® Real-Time. This

framework provides assistive virtual fixtures on the master side while supporting model-

mediated telemanipulation. It also provides intelligent control behaviors on the slave side

to support force-controlled exploration and telemanipulation.
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1.3.2 Contribution II - Geometric Calibration of Continuum Robots

Continuum robots use flexible members to achieve complex three dimensional static

equilibrium shapes [74, 38]. The kinetostatic behavior of these robots depend on material

properties and structural characteristics such as friction, stress concentrations and cross-

sectional flexural rigidity. Continuum robots can be categorized into three mechanical

architectures: wire actuated single backbone robots (e.g., [37]), concentric tube single

backbone robots (e.g., [23, 100]) and multi-backbone continuum robots (e.g. [102]). Continuum

robots have found increased applications in minimally invasive surgery [11] and in field

robotics [93]. Most of these applications currently rely on telemanipulation under visual

supervision of a user. Future applications of these robots may involve semi-automated or

automated task execution (e.g. automated suturing [83]). Hence the problem of kinematic

calibration for such robots needs to be addressed in this dissertation. The problem of

kinematic calibration arises from the fact that future applications of these robots may

involve semi-automated or automated task execution (e.g. automated suturing [83]).

The contribution of this part is in presenting a kinematic modeling framework for multi-

backbone continuum robots that captures bending shape deviation and coupled twisting

and bending of these robots as a result of imperfect assembly. We put forth the concept

of bending shape homotopies as a means of parameterizing shape deviations using modal

representations inspired by [18] and we derive identification jacobian. Using a single port

access system as a validation platform, we validate the kinematic calibration framework

experimentally while augmenting these results with additional simulation validations.

1.3.3 Contribution III - Modeling of Continuum Robots with Equilibrium Modulation

Current robotic slave arms for minimally invasive surgery (MIS) offer excellent distal

dexterity for surgical tasks requiring large workspaces and position accuracy ranging between

0.5 to 1.5 mm. For example, Kwartowitz et al. [52, 54], experimentally determined the

root mean square (RMS) localization accuracy of the da-Vinci Classic and da-Vinci S
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to be 1.02 mm and 1.05 mm, respectively. Despite their accuracy errors, these robots

are able to perform well when telemanipulated since their repeatability usually exceeds

their accuracy and the users can use visual feedback to overcome accuracy errors. Despite

increases in precision, existing surgical systems are unable to traverse curved anatomical

passageways to perform micro-surgical interventions and also are not suitable for tasks

requiring accuracy below 1 mm.

Continuum Robot with Equilibrium Modulation (CREM) can be used to design a multitude

of flexible parallel robots and continuum robots with Multi Scale Motion (MSM) capabilities

benefiting microsurgery, micro-assembly, and inspection in tight spaces. This concept

was first introduced in [21] which includes parallel architecture robots having flexible legs

supporting a common load and snake-like robots with multiple backbones (termed parallel

robots with constrained continuum legs).

The contribution of this part is in presenting a simplified model for micro-motion

of robots with equilibrium modulation. The approach presented takes advantage of the

calibration framework to capture minute changes in the configuration-to-task space mapping

while avoiding the use of an exact solution to the minimum energy equilibrium. The

framework presented provides both instantaneous kinematics and error prorogation for

micro-scale motion, which can be used for calibration and control of the micro-scale motion.

The modeling approach along with the calibration method was validated experimentally on

a multi-backbone continuum robot.

1.4 Broader Implications of This Work

This dissertation has been part of a synergistic collaboration among research groups

at Vanderbilt University, Carnegie Mellon University, and Johns Hopkins University. As a

first attempt to use force sensing information during minimally invasive surgery, in Chapter

2, we present a method to update virtual fixture geometry using the contact locations

obtained from a force-controlled exploration.
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Extending the telemanipulation framework and the force-controlled exploration, there

are other collaborative efforts that investigate the use of force and stiffness information, as

well as more efficient strategies to explore an unknown environment (anatomy). Srivatsan

proposed a complementary model update (CMU) method as a more robust approach for

rigid registration using stiffness and geometry information to improve registration [91].

Chalasani used Gaussian processes to simultaneously estimate the stiffness and surface

of an organ using continuous palpation motion [13, 14]. Ayvali introduced a Bayesian

optimization framework to guide probing to maximize information gain, thus avoid probing

the entire organ, while registering the predicted stiffness to an a-priori geometric model

[5, 4].
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Chapter 2

Virtual Fixture Geometry Update

Using Force-Controlled Exploration

2.1 Related Work

Researchers have been investigating the use of contact information during interaction

with organs. Extraction of stiffness information using mechanical imaging via tactile sensor

arrays were demonstrated in [30, 47, 25]. Rolling mechanical imaging was obtained using

a force-sensitive probe in [59] and probing motion (indenting tissue in the depth direction)

was investigated in [105, 70]. Force controlled telemanipulation of continuum robots was

used in [9] to map the geometry and stiffness of the environment. Dynamic excitation

of tissue was applied to estimate impedance parameter in [35]. This work differs from

these previous works by attempting to use geometric information obtained through force-

controlled exploration to register and correct a pre-operative a-priori model of the surgical

plan.

In this chapter, the use of force-controlled scanning of tissue is explored as a means

of gathering information for registering and updating the pre-operative model. The most

relevant works on this topic include [81] where constrained Kalman filtering was employed

to use the contact and estimated stiffness information to obtain a rigid registration of the

model. Similarly, the complementary model update (CMU) method [91] was presented

as a more robust approach for rigid registration using stiffness and geometry information

to improve registration. In addition, Gaussian processes were used to simultaneously

estimate the stiffness and surface of an organ using continuous palpation motion [13,

14]. In [5, 4], a Bayesian optimization framework was introduced to guide probing to

maximize information gain, thus avoid probing the entire organ, while registering the

predicted stiffness to an a-priori geometric model. These works account for local deformation

induced during the probing process yet disregard a potential global deformation of the
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organ. Global deformation of a model is addressed in [65, 10]. This work complements

these efforts by testing a naive approach which relies on a force-controlled scan of the organ

and which is coupled with a deformable registration. The method is not time-efficient so we

anticipate using it to initialize our registration while subsequently achieving a continuous

model update using the other approaches listed above.

2.2 Telemanipulation Framework

High Level Controller

TeleOp

Master MLC

Slave Admittance 
Commands

Master Impedance 
Commands

Updated slave 
information

Updated 
Information

Model 
Information 

Updated master 
information

Modeler Behavior Selection

Prior Model

Optional 
Information

Mode 
Information

Master LLC

Slave MLC

Slave LLC

Vision 
and 

other 
external 
sensing

Display

Force 
Sensor Master 

Robots
Slave 

Robots

Figure 2.1: System Architecture

Our telemanipulation framework, as shown in Fig. 2.1, is based on the JHU “Surgical

Assistant Workstation (SAW)” software environment [42] and the da Vinci Research Toolkit

(dVRK) [16, 46]. This environment supports multiple telemanipulation hardware and

software components in a mix-and-match fashion. For our current research, we use dVRK

master tool manipulators (MTMs) and slave manipulators choosing from either dVRK

patient side manipulators (PSMs, as in Fig. 2.3) or a custom Cartesian robot seen in Fig.

2.2. Each slave system manipulates a force-sensing probe comprising either ATI Nano-17

or an ATI Gamma-SI-130-10 Force/Torque sensor with a ball probe finger for contacting

tissue, as in Fig. 2.2. In Fig. 2.3, the phantom model is equivalently mounted on an
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ATI Gamma Gamma-SI-130-10 Force/Torque sensor for implementation ease to verify the

framework of this chapter. The results reported in section 2.5 were obtained with both the

Cartesian robot and a dVRK PSM. The component-based SAW software is very modular

and its processes may be run on a highly distributed computing environment. Several key

processes are discussed below.

XYZ Robot

Camera

Phantom Model

Force Sensor

a

b

c

Figure 2.2: A custom Cartesian Slave Robot System: (a) Experiment setup, (b) Ball Probe
Finger ATI Force Torque Sensor, (c) A phantom model used in experiment

b

c

a

Figure 2.3: PSM Experiment Setup: (a) Experiment setup, (b) Ball probe finger adapter
integrated with EM tracker, (c) A phantom model mounted on a force plate
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The Master Controller process is responsible for the control of the Master manipulator

hardware. This process consists of two sub-processes: a Master Mid-Level Controller

(MLC) which communicates with the TeleOp process (described below) and a Master

Low-Level Controller (LLC) which communicates with the Master hardware and performs

basic joint-level servo control functions. The Master MLC runs as a clock-driven process

at a sampling rate of 500 Hz and the Master LLC runs at 1.5 kHz. The Master MLC

receives impedance specification commands from the TeleOp process and translates them

into an appropriate form for execution by the Master LLC. The Master MLC process also

returns state information to the TeleOp process, including joint and Cartesian positions and

velocities, Master gripper openings, and forces and torques exerted by the Master on the

surgeon’s hand.

The Slave Controller process is responsible for control of the Slave hardware. Like

the Master Controller, this process consists of a Slave Mid-Level Controller (MLC) which

communicates with the TeleOp process and a Slave Low-Level Controller (LLC) which

communicates with the Slave hardware. The Slave MLC runs as a clock-driven process

at a sampling rate of 500 Hz and the Slave LLC runs at 1000 Hz. The Slave Controller

also contains a force sensing component that reads the slave’s force sensor and computes

forces exerted on the finger probe. The Slave MLC receives admittance commands and

virtual fixture specifications from the TeleOp process and translates them into Cartesian

or joint position/velocity commands that are passed on to the Slave LLC. The Slave MLC

receives state information from the Slave LLC, combines this information with other Slave

Controller information (e.g., forces, contact information) and passes the combined state

information back to the TeleOp process.

The TeleOp process is the central control point for the system. This process runs as a

real-time, clock driven process (at 500 Hz). It is responsible for managing communications

among the Master Controller, Slave Controller, Modeler, and higher-level Behavior Selection

processes. It is also directly responsible for real-time telemanipulation behavior. The
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TeleOp process receives state information from the Master MLC and Slave MLC and passes

this information on to the Modeler and the Behavior Selection Process. Based on the entire

combined state information (Master, Slave, Model, etc.) and the current behavior mode,

the TeleOp component determines appropriate admittance commands and sends them to the

Slave Controller. Similarly, it also determines appropriate impedance commands and sends

them to the Master Controller. The TeleOp component also has a special “autonomous

scanning” behavior in which the slave is issued a series of admittance commands causing

the slave manipulator to move at a constant velocity across a surface while exerting regulated

force normal to the surface.

The Behavior Selection process runs in the background and communicates with the

TeleOp process to inform it of changes in desired behavior (e.g., simple position following

telemanipulation, model-mediated telemanipulation, telemanipulation with force bias, telemanipulation

with superimposed palpation motion, etc.). It receives state information from the TeleOp

process and the Modeler, as well as direct input from the user. It also will manage information

displays and other user interfaces not directly involving telemanipulation.

The Modeler process is responsible for maintaining a model of the manipulation environment.

In the current implementation, the model consists of a triangulated surface mesh representation

of an anatomic organ or phantom object. This mesh is augmented with a spline curve

representing a path on the surface that the robot is to follow. In future versions, the mesh

will also be annotated with stiffness information associated with each triangle in the mesh.

In our prior work [35] we demonstrated force-controlled estimation of flexible environment

constraints and impedances. In [92, 81] we adapted the constrained extended Kalman filter

to allow taking into account geometric and stiffness information to benefit registration

in flexible environments. In this work we are extending these results to demonstrate the

utility of force-controlled exploration for updating the model. The Modeler process also is

responsible for maintaining the registration between the slave robot and the model, based

on surface contact information provided by the Slave process.

12



2.2.1 Slave Robot Controllers

To enable hybrid force/motion capabilities, two slightly different versions of Mid-Level

Controllers are developed in Matlab Simulink® Real-Time™environment, for a dVRK

PSM and a custom Cartesian robot, shown as in Fig. 2.4 and Fig. 2.5, respectively. The

dVRK PSM MLC-LLC is implemented as an admittance type controller while the Cartesian

robot is implemented as a hybrid motion/force with dynamic compensation controller. The

motion/force projection mechanisms and the Cartesian robot controller are both motivated

by the works of Khatib [48] and Featherstone [28].

The MLC accepts commands from TeleOp in a format either of position, admittance, or

desired force. A velocity command ẋdes is generated based on a resolved rates algorithm[101],

given the desired position xdes and the current slave position. Another velocity command

ẋadm is generated given an admittance force command (or force error in PSM’s case) and

admittance gains. In the case of PSM controller (Fig. 2.4), ẋdes and ẋadm are decomposed

by the Motion Force Projection block, resulting in ẋdes⊥ and ẋadm⊥ respectively. The added

velocity command ẋcmd is then sent to the PSM LLC. In the case of Vanderbilt Cartesian

robot controller, ẋdes and ẋadm are first combined to be the motion command ẋcmd . This

motion command ẋcmd and the desired force fdes are decomposed by the Motion Force

Projection block. The projected velocity and force command ẋcmd⊥ and fcmd⊥ are then sent

to the LLC of the Cartesian robot. The projection matrices in Fig. (2.4, 2.5) are given as

follows [48, 28].

Ω = N(NT N)−1NT = I− Ω̄,

Ω̄ = T(TT T)−1TT = I−Ω,

N ∈ IRm×r,T ∈ IRm×(m−r)

(2.1)

where m is the total task space dimension and r is the force/torque controlled space dimension,

in our research m = 3,r = 1. As a result, N = nd = [nx,ny,nz]
T specifies the desired force
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control direction.
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Figure 2.5: Vanderbilt Slave MLC-LLC Controller

2.2.2 Master Impedance Controller

The MLC is implemented as an impedance type controller, which allows combining

different control goals by simply adding desired joint torques computed separately. As

shown in Fig. 2.6, gravity compensation is rendered at any time and an impedance type

virtual fixture controller is running in parallel, taking commands from the teleoperation

component.
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Virtual Fixture
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Robot
Dynamics

Virtual Fixture Set

Operator Input
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Figure 2.6: Master MLC Impedance Type Controller:
q - joint position; q̇ - joint velocity; x - cartesian position; ẋ - cartesian velocity; T - total
joint torque applied to robot; TVF - joint torque from virtual fixture controller Tgc - joint
torque from gravity compensation

To define the virtual fixture controller behavior, TeleOp sets force position compliance

frame Fc = [Rc,pc] defined in master base frame. The virtual fixture law also uses position

stiffness gain vectors k(+),k(−), position damping gain vectors b(+),b(−) and force bias

terms a(+),a(−). The pairs are used to distinguish between movement toward the virtual

fixture v.s. away from the virtual fixture boundary. Algorithm 1 shows how the desired

force applied on the master tip is computed.

One advantage of this design is that it permits very fast haptic rendering of discontinuous

impendence environments when the slave end effector is near the virtual fixture boundary,

such as encountered when one is palpating or following an organ surface. It also permits

very versatile descriptions of local virtual fixtures behavior, such as encountered in curve

following. Further, it permits simple combinations of virtual fixture elements, such as

combining surface following with curve following. It is simple to implement and provides

a versatile command interface between the TeleOp process and the Master Controller.
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Algorithm 1 Master Virtual Fixtures Controller
Given

F = [R,p]: current pose ṗ: current velocity . F ∈ SE(3)

Fc = [Rc,pc]: position compliance frame w.r.t master

k(+),k(−): stiffness gains b(+),b(−): damping gains

a(+),a(−): force bias terms . k,b,a ∈ IR3

Compute

1: if (Enabled) then

2: e = F−1
c p = Rc(p−pc) . position error

3: cv = R−1
c ṗ . velocity written in {C}

4: for i ∈ {x,y,z} do . each component

5: if (ei ≤ 0) then gi = a(−)i + k(−)i ei +b(−)i
cvi

6: else gi = a(+)
i + k(+)

i ei +b(+)
i

cvi

7: end if . gains selection depends on error sign

8: end for

9: g = [gx,gy,gz]
T . virtual fixture force in {C}

10: τ = Rcg . virtual fixture force in master base frame

11: end if

2.2.3 Model-based Virtual Fixtures for Surface Following, Palpation, and Surface Feature
Tracking

Although the Slave Controller is capable of implementing virtual fixtures incorporating

both positional and force constraints using the methods described in [44, 56], for the current

chapter, we rely on impedance commands to exert feedback forces on the surgeon’s hands

with Master manipulator, based on the current registered model. To simplify the discussion

we will treat the Master, Slave, and Model coordinate systems as equivalent, i.e., a position

~p in the Master manipulator coordinates corresponds to position ~p in the Slave and Model.

Thus, we will say that the Master is “in contact” with the Model if its current position ~p is

on or below the surface of the Model.

For surface following, our goal is to exert a constant force normal to the surface while
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permitting the surgeon to move the robot freely across it. In this mode, TeleOp determines

the closest point on the surface from the Master manipulator. This closest point is chosen as

the origin of the compliance reference frame, as shown in Fig. 2.7, along with the surface

normal at this point as positive Z axis with 0 positive gain and large negative gain. In the

mean while, the X and Y axes can be chosen freely, with 0 gains, since motion along the

surface is not limited.

Figure 2.7: Surface following frame with master robot tip and force feedback

For surface feature tracking our goal is to assist the surgeon in tracing a predefined

curve across the surface while still maintaining contact with the surface with a constant

normal force. Along with the surface following virtual fixture, a preregistered curve guidance

virtual fixture also starts rendering whenever the robot is close to the curve. Once started,

Teleop then determines the closest point on the curve and the tangent direction of the curve

at the closest point. Similarly, the surface normal at the closest point is picked as the

positive Z axis of the compliance reference frame. The tangent direction serves as the X

axis with zero gains. The Y axis is determined from the X and Z axes, with large gains

for positive and negative directions, as shown in Fig. 2.8. The use of the model-mediated

virtual fixture is demonstrated in Multimedia Extension I1.
1http://arma.vuse.vanderbilt.edu/images/stories/videos/long jmr mme1.mp4
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Figure 2.8: Curve following frame with master robot tip and force feedback

2.3 Force Controlled Exploration

Using hybrid force/motion controller of the slave robots described in section 2.2 we can

achieve a force-controlled exploration of the environment, i.e. a surface following function.

Our previous work [35] used a similar surface following function where a Cartesian robot

was controlled given a constant predefined force desired direction (i.e. nd in Fig. 2.5 is

constant and specified). In this work, the force desired direction is updated based on current

estimation of the environment and robots with wrist orientation control are considered. The

surface geometry is estimated and used as data for registration, which will be discussed

in section 2.4. The exploration control strategy is described in Fig. 2.9. The hybrid

force/motion slave controller accepts the position command xdes from either user command

or path planning and the force regulating direction n̂ is set to be the current estimated

contact surface normal.
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Figure 2.9: Force-controlled Exploration Strategy

2.3.1 Contact and Surface Normal Estimation

The contact location and surface normal estimation is shown in Fig. 2.10. The surface

normal is computed using a highly simplified model and the force sensed from the environment,

n̂ = fs/‖fs‖. The calculation of n̂ is obtained through a moving average filter with a

width of 30 samples obtained at a frequency of 1kHz. This model assumes negligible

contact friction. During experiments, Glycerin was used as a highly lubricious medium

to approximate this assumption. This is a reasonable approximation to lubricious tissue

covered with bodily fluids during surgery.

Robot 
End-effector 

𝐱𝐸𝐸

Contact 
Location
𝐱𝑐𝑜𝑛𝑡

Surface 
Normal

 𝐧
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Figure 2.10: Contact Location and Surface Norm Estimation

Because friction does not dominate, this assumption does not impede task execution.
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However, for a more robust/generalized formulation there are a number of options to

incorporate friction compensation for better surface normal execution in task completion. A

simple method is to remove force projections in the direction of the tool tip velocity [108].

Other methods include the estimation of a constraint jacobian [68], force and position

sensor fusion [107], or an adaptive learning controller for surface normal estimation [45].

These and similar methods can be adjusted and extended to fit the presented task of palpation

of a flexible environment with unknown geometry. However, a full exploration of this topic

is beyond the scope of this chapter.

The offset of the contact location with respect to the robot end-effector can be computed

as xcont = xEE − n̂r. As shown in Fig. 2.10, when the robot is in contact with environment

during the exploration, it is controlled such that its motion is constrained in the surface

tangential plane and its force projection onto the surface normal is regulated to a specified

magnitude by TeleOp.

2.3.2 Wrist Orientation Optimizer for Exploration

Different from the Cartesian robot in Fig. (2.2, 2.10) where only positions can be

controlled, in the case of PSM control, the wrist orientation may be optimized for exploration

advantage. As shown in Fig. 2.11, the robot base frame is denoted as {0}, the gripper

frame as {G} and the exploration environment frame as {E}. The ẑ axis of frame {E} is

determined by the surface normal direction n̂ while the x̂ axis is defined as the projection

of exploration moving direction onto the surface tangential plane.

We propose two criterions to optimize the wrist orientation while exploring the environment.

The first criterion is to align the force probe direction (gripper frame ẑg) with the surface

normal direction n̂. This is illustrated in Fig. 2.11(a), where the angle γ is marked as the

minimization goal. It is desired because it minimizes the chance of other area outside of

the probing ball touching the environment, which guarantees exploration contacts to be

accurately on the probe sphere surface. The second criterion is to align the highest wrist
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stiffness direction with the exploration moving direction, which is illustrated as minimizing

the angle φ in Fig. 2.11(b). The angle φ is defined between the axis ŷe and the projection

of the gripper frame axis x̂g onto the surface tangential plane. We formulate this as a

constrained optimization problem:

maximize
Rg

n̂T(−ẑg) + ŷT
e x̂g⊥

subject to ẋ = ẋdes

(2.2)

where x̂g⊥ = Ω̄x̂g and Ω̄ is defined in equation (2.1).

(a) (b)

Phantom

Phantom

model

model

{G}

{E}

x̂g
γ

φx̂g⊥

n̂e

n̂e

ẑg

{0}

ŷe

Figure 2.11: Orientation optimization for force-controlled exploration using a robot with
wrist.

2.3.3 Surface Exploration

Fig. 2.12a shows the path planning to explore the entire area of interest. The path can

be given in an arbitrary plane and in experiments to optimize the scan resolution we chose

a plane that was parallel to XY plane in the robot base. The user selected a starting point

location and several via points as the reference points, shown as a red point and several

green points in Fig. 2.12a. A 2D projection onto the robot base XY plane of these reference

points were used to automatically generate a raster scan pattern coordinates PXY ∈ IRNp×2

that enclosed several “patches” where Np is the number of reference points, e.g. in Fig.
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2.12a Np = 148. And PXY combined with the current Z coordinate of the robot in real-time

were sent as command positions to the slave MLC, which implements hybrid motion/force

control for the Cartesian slave robot and hybrid position/admittance control for the dVRK

PSM.

The 2D scan pattern PXY was executed at a constant velocity of 1 mm/sec in the

Cartesian robot case while the exploration speed in PSM was 4 mm/sec. Currently in the

Cartesian robot, without acceleration measurement feedback, a very slow execution speed

was selected to avoid pseudo force disturbance to contact and surface normal estimation

stemming from loading mass dynamics. In future work, an inexpensive accelerometer

may be installed to provide acceleration measurement. Hence the compensation of the

dynamic effect from the loading mass can be provided in real-time, enabling a much

faster scanning capability. Fig. 2.12 shows the actual estimated contact locations during

the force-controlled exploration using the Cartesian robot and Fig. D.2 shows the results

using dVRK PSM robot. Demonstrations of force-controlled explorations using Cartesian

robot and dVRK PSM are available in Multimedia Extension II2 and Multimedia Extension

III3 respectively.
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Figure 2.12: Force-controlled exploration using custom Cartesian Robot: (a) is the planned
scan pattern, (b) is the actual scanned point cloud.

2http://arma.vuse.vanderbilt.edu/images/stories/videos/long jmr mme2.mp4
3http://arma.vuse.vanderbilt.edu/images/stories/videos/long jmr mme3.mp4
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(a) (b)

Figure 2.13: Force-controlled exploration using dVRK PSM: (a) is the silicone phantom
organ, (b) is the actual collected point cloud from exploration.

2.4 Deformable Model Registration

Given the environment geometry based on force-controlled exploration data, this section

presents the use of this data to update a pre-planned VF descriptor. In this work, a 3D target

curve is used to describe a VF representing a pre-planned ablation path.

2.4.1 Incorporating the Virtual Fixture Target Curve to an a-priori Model

The following is a description of how the pre-planned VF target curve was incorporated

into an a-priori model. An STL file representing a non-deformed silicone phantom model

was obtained from a CAD model using Creo ParametricTM. This STL file will henceforth

be called the a-priori model having a corresponding point cloud (Pa). The non-deformed

silicone model was laser scanned using a Faro Arm Fusion® resulting in a point cloud

model (Pls). A VF curve (Cdig) denoting a mockup pre-operative plan was also marked

on the non-deformed silicone model and digitized using the Faro Arm. The laser scanned

point cloud (Pls) of the non-deformed silicone model and the the digitized VF curve points

(Cdig) are shown in Fig. 2.14.
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a b c

Figure 2.14: Creating an a-priori model of the silicone phantom
a) a-priori STL model (PA); b) digitizing the target curve (Cdig) using Faro Arm; c) laser
scan (Pls) and the digitized curve (Cdig) in red

A deformable registration method (denoted by DReg) based on Coherent Point Drift

[65] was used. Given two point clouds or models X1 and X2, this method produces a

deformable registration transformation T(·)← DReg(X1, X2), such that T(X2) ≈ X1. Using

this approach, the target curve was registered to the a-priori model using the laser scan

(Pls), by following three steps:

i) The laser scanned point cloud of the non deformed phantom (Pls) was registered to the

a-priori STL point cloud (Pa) using DReg. This step resulted in a transformation T1,

such that Pa = T1(Pls).

ii) T1 was used to transform the digitized target curve (Cdig), resulting in a registered

digitized target curve (Cdiga) in the frame of the a-priori model.

iii) A polynomial basis was used to fit a smooth target curve (Ca) to (Cdiga). The curve Ca

is represented by a high-density of points having constant arc-length spacing along the

smooth curve. The root mean square (RMS) error of target curve fitting process was

recorded.

Although in i) one could have used rigid-body point-cloud registration, it was easy to use

DReg because it also covers the special case of rigid point cloud registration while dealing

with the fact that the laser point cloud contains noisy data. The final output is the a-priori

model Ma including Pa and Ca registered in the a-priori model frame.
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2.4.2 Updating the Virtual Fixture Curve

The approach to registering and updating the surgical plan as represented by the target

curve (VF curve) is depicted graphically in Fig. 2.15. The deformed silicone model was

explored using the robot and a point cloud
(
P̃a
)

was obtained4. The same deformable

registration method (DReg ) was used between the a-priori model point cloud (Pa) and the

robot exploration data of the deformed phantom model (P̃a ):

[T2, Lcorr]← DReg
(
P̃a,Pa

)
(2.3)

where T2 is a deformable registration transformation and Lcorr is a list of point indices

relating points in Pa to their corresponding points in P̃a. Applying T2 to Pa and Ca results in

the model point cloud and the VF curve points (P̆a) and (C̆a), respectively5.

(a) (b) (c)

[T2, Lcorr]← DReg
(
P̃a, Pa

)
P̆a ← T2(Pa), C̆a ← T2(Ca)

Pa

Ca

P̃a
P̆a

C̆a

Figure 2.15: The process of updating the virtual fixture (VF) geometry: (a) the a-priori
model (pre-operative model) with a VF curve, (b) the deformed environment obtained from
exploration data, (c) using correspondence list to find the VF points in the exploration
data set that match the curve from a-priori data set, (d) the transformed and registered VF
geometry in the deformed environment

P̆a← T2(Pa), C̆a← T2(Ca) (2.4)

4The wave accent (˜) denotes data obtained from the deformed phantom model using either force-
controlled exploration or laser scanning

5The breve accent (˘) denotes the updated a-priori data.
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Figure 2.16 illustrates the deformable registration process using a data set from based on

dVRK PSM force-controlled exploration. The blue point cloud is the exploration data, the

red point cloud is the updated a-priori model and the green curve is the updated VF curve.

A sequence of the intermediate registered results from different iterations throughout the

process are presented, from which one can see the converging of the updated model to the

exploration data.

To evaluate the performance of the exploration and registration, the actual VF curve

on the deformed environment is digitized and a fitted ground truth curve C̃gt is obtained.

The ground truth VF curve fitting residual error εgt is defined as the least-squares curve

fitting residual, which is calculated as the root mean squares (RMS) error between the

digitized points and their corresponding closest points on C̃gt . The VF curve registration

error εo is captured between the updated VF curve C̆a and the ground truth fitted curve C̃gt

as the following:

εo ,

√
1
N ∑

N
i=1 ‖c̆ai− c̃∗gti‖2, c̃∗gti = argmin

n
‖c̃gtn− c̆ai‖ (2.5)

where N designates the number of sample points along the deformably registered VF curve

C̆a and c̃∗gti is a point along the ground truth VF curve C̃gt that is closest to the ith sample

point along the deformably registered VF curve C̆a.
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(a) Iteration 1 (b) Iteration 3

(c) Iteration 5 (d) Iteration 10

(e) Iteration 20 (f) Iteration 50

(g) Iteration 100 (h) Iteration 100 (laser data)

Figure 2.16: Deformable registration using exploration data from dVRK PSM robot and
ground truth: (a)-(g) show iterations of deformable registration using PSM robot data where
iteration numbers are {1, 3, 5, 10, 20, 50, 100}, (h) is the deformable registration result
using laser scan data.
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2.4.3 Validation of VF Update and Discussion

The VF update strategy was validated using a custom Cartesian robot and the da Vinci

research kit patient side manipulator (dVRK PSM). For both experiments we used two

similar silicone phantom models made using the same mold, but with slight variations

due to molding accuracy and placement/deformation of the phantom model when fixed to a

deformed base as seen in Fig. D.2. It was not possible to use the same exact phantom model

due to the degradation of the first silicone phantom model during the period of porting our

experiments to the dVRK PSM.

The Cartesian robot was used initially because it provides both high rigidity and positional

accuracy during force-controlled exploration. The force-controlled robot exploration strategy

was presented in section 2.3 and the data collection can be seen in Fig. 2.12 and in Multimedia

Extension II6. The same strategy was repeated on another robot - dVRK PSM, to test

feasibility of our approach on a clinically relevant setup and to test whether the compliance

of the dVRK PSM would prohibit the deployment of our approach for exploration-based

VF update. Multimedia Extension III7 shows the force-controlled exploration using the

dVRK PSM.

To determine whether the force-controlled exploration affects the registration due to

local deformation caused by the exploration probe, we carried out two other experiments

using non-contact laser scanning. These two laser scans of each phantom model were

carried out to provide comparison baselines for both of the Cartesian and PSM force-

controlled exploration of the deformed phantom models. Given the laser scanned model

and the force-controlled exploration data, the steps described above in equations (2.3)-(2.4)

were carried out. The resulting deformed VF curve C̆a based on the laser scan was then

used to calculate the registration error according to equation (2.5).

Using the Faro Arm Fusion®, the ground truth VF curve C̃gt was digitized for phantom

6http://arma.vuse.vanderbilt.edu/images/stories/videos/long jmr mme2.mp4
7http://arma.vuse.vanderbilt.edu/images/stories/videos/long jmr mme3.mp4
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Table 2.1: Deformable registration results for the Cartesian robot and dVRK PSM. For
each phantom model the first column shows VF update errors based on force-controlled
exploration and the second column shows the same based on laser scanning

Error
Types

RMS Errors for Different Registrations [mm]
Phantom #1 Phantom #2

Cartesian Laser PSM Laser
Overall εo 3.393 3.069 3.386 1.295

Ground Truth εgt 0.998 0.998 1.711 0.560

1. This was possible because the Cartesian robot was calibrated and its geometry allows

easy registration of its base frame to the base of the Faro arm. This was not the case for

phantom model 2 used with the dVRK PSM since it is an un-calibrated robot presenting

substantial difficulties in registering its base frame to the base frame of the Faro arm. We

therefore used the dVRK PSM as a digitizer to obtain the ground truth VF curve C̃gt .

Table 2.1 shows the comparison of the VF curve registration errors for both the Cartesian

and the dVRK PSM (also see Fig. 2.17). Since we used two similar - yet different -

phantom models we had to laser scan and digitize the VF curve on each phantom model.

Therefore, the table is split into left and right two-column blocks associated with each

phantom model. Phantom 1 was used with the Cartesian stage robot and Phantom 2 was

used with the dVRK PSM. The right and left columns of each of the two-column blocks

report the VF curve registration errors using non-contact laser scan and force-controlled

exploration, respectively.

The overall error εo for different experiments should be reviewed while considering the

ground truth digitization curve fitting error εgt . For example in the PSM exploration case,

εo has a value of 3.4 mm while εgt is 1.7 mm which contributes to the overall error. This

ground truth fitting error is also consistent with the finding in [52] which shows that PSM

has an approximate fiducial localization error of 1 mm. In the experiments associated with

Phantom 1, the similar registration errors between the the Cartesian robot and the laser scan

confirms that the effect of force-controlled exploration on the registration was negligible.
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However, comparing the PSM and its Laser baseline, we find that the errors when using

the PSM were significantly larger compared to when using the laser scanner. Two possible

sources of error that explain this phenomenon were noticable: 1) the dVRK PSM has lateral

compliance of its long and slender arms and these deflections are not observable by the

robot’s encoders when used as a digitizer and also when carrying out the force-controlled

exploration, 2) the dVRK PSM used a wrist which had some slack due to over-use. This

slack also contributes to positional error of the robot’s tip. Both of robots provide overall

VF update errors smaller than 3.5 mm, which is acceptable for the required registration

accuracy for many abdominal surgical applications [58, 50].

(a) (b) (c) (d)

Updated VF

Ground truth

10 mm10 mm 10 mm
10 mm

ǫo = 3.4
ǫo = 1.3

ǫo = 3.4 ǫo = 3.1

Figure 2.17: Errors between the updated VF curve and the digitized ground truth fitted
curve: (a) PSM robot case, (b) PSM laser comparison, (c) Cartesian robot case, (d)
Cartesian laser comparison.
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2.5 Evaluation of Updated Virtual Fixtures for Mockup Ablation

𝑥 [mm]

𝑦
[m

m
]

Fitted Curve

Collected Points

Figure 2.18: Ground truth digitization data points and the smooth curve fit

In addition to testing the feasibility of VF update using force-controlled exploration, we

tested the feasibility of using such updated VF in an assistive VF in which lateral deviation

from the desired VF path are resisted by applying a corrective force at the impedance master

of the dVRK. The motion of the slave robot along the local surface normal is regulated by a

force controller law that maintains a constant ablation force along the pre-planned ablation

path.

The experimental validation was carried out using the Cartesian robot with a dVRK

master. Three users participated the experiments: one user was experienced with the system

and the other two were not. All users were given 30 minutes each to warm up and get used

to telemanipulating the system with and without VF assistance. In both cases the hybrid

force/motion controller was used with a force reference command of 0.7 N normal to the

silicone phantom surface. Each user was instructed to follow a target curve back and forth

twice while not paying attention to stopping exactly at the ends of the curve but rather

trying to follow the curve the best they can with minimal time. Visualization was provided

through an HD camera. The package rosbag was used to record the time and slave pose
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Table 2.2: Trial completion time for each user (subject) with and without virtual fixture
assistance.

Trial Completion Time [sec]
Without virtual fixture With virtual fixture

Trial # User 1 User 2 User 3 User 1 User 2 User 3
1 18.21 22.53 36.24 17.37 14.19 28.81
2 15.68 19.37 38.01 17.20 9.32 20.67
3 13.65 15.34 32.21 15.13 11.47 25.79
4 12.14 17.33 38.69 14.52 10.39 27.12
5 11.90 14.86 29.69 10.94 10.58 26.93

Average 14.32 17.89 34.97 15.03 11.19 25.86

Table 2.3: RMS target curve tracking errors for each user (subject) with and without virtual
fixture assistance.

Average Trial RMS Error [mm]
Without virtual fixture With virtual fixture

Trial # User 1 User 2 User 3 User 1 User 2 User 3
1 5.40 5.87 5.06 4.54 4.51 6.37
2 4.98 5.63 5.13 4.45 4.85 4.21
3 5.32 5.30 5.00 4.56 4.47 4.40
4 5.22 5.56 4.63 4.61 4.51 4.32
5 5.11 4.85 4.73 4.61 4.71 4.42

Average 5.21 5.44 4.91 4.55 4.61 4.75

and slave command. Using the digitized data for the ground truth curve, we fitted a 10th

order Bernstein polynomial curve to have a smooth descriptor of the ground truth curve.

This fitting process is shown in Fig. 2.18. For each user, the distance from the actual

curve to the target curve was calculated after truncating the curve edges represented by the

x coordinate −5 < x < 65mm. This effectively eliminated the edge effects since the users

were not instructed to stop at the end of the curve. We also projected the data points onto a

plane that best fits the target data and calculated the average RMS error along the sampled

points of the curve.

The RMS tracking error and the completion time of each trial by every user is shown

in Table 2.2 and Table 2.3 respectively. A comparison of each user’s performance with

and without VF assistance is also presented in Fig. 2.19. These results show that all
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users benefited from reduced time for each trial and increased tracking accuracy when the

curve-following VF law was implemented. A paired t-test between both RMS error groups

resulted in a p score of 0.0031 thus rejecting the null hypothesis that both data sets come

from the same distribution. Similarly, the results for time resulted with a p score of 0.0033.
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(a) RMS Error and completion time of user 1.
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(b) RMS Error and completion time of user 2.
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Figure 2.19: Comparisons of the users’ performance with and without virtual fixture on
target curve tracing RMS errors and completion time.

33



2.6 Conclusions

The chapter presented a framework for updating the geometry of a virtual fixture in

a deformed environment by using information from a force-controlled exploration. A

modular telemanipulation framework was presented within the context of model-mediated

telemanipulation. The model update employed a deformable registration based on the

coherent point drift algorithm, registering an a-priori model of the environment and an

associated virtual fixture using the exploration data. The approach was successfully demonstrated

using a custom Cartesian slave robot and a da Vinci Research Kit Patient Side Manipulator

which were tele-manipulated using a da Vinci Research Kit Master Tool Manipulator. The

results show that the assistive behaviors after the model update benefit the users in both

speed and accuracy. We believe that this framework will benefit future surgical applications

where force-controlled ablation and dissection along anatomical paths is required. Future

work will include using stiffness information to drive the registration method and to update

the model of the environment.
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Chapter 3

Geometric Calibration of Continuum Robots

3.1 Related Work

The vast majority of works assume that the segments of continuum robots (CRs) bend

in constant curvature, [98]. This assumption can work if certain design conditions hold:

e.g. very close spacing between spacer disks of an MBCR and negligible gravitational

effects [102]. These assumptions limit the design space of continuum robots in favor

of computational and modeling simplicity. In practical implementation of such robots,

stress concentrations, internal friction and imperfect assembly can cause the non-circular

bending; therefore, introducing modeling errors and limiting the accuracy of these robots.

When calibrating continuum robots, there are two mappings to rectify: (i) configuration

space to task space, (ii) configuration space to joint space. Figure 3.1 shows an illustration

of the configuration space of a two-segment MBCR. The configuration space refers to

geometric variables characterizing the shape of the continuum segment (for example bending

angle θe and the angle of the plane in which the segment bends δ0 [88]). The configuration

space to task space mapping may have errors due to non-circular bending, coupling effects

between segments, and assembly errors (e.g. a snake segment that is assembled with a

slight twist along its backbone). The configuration to joint space mapping may have errors

due to geometric and joint home position uncertainties. For the shape modeling of hyper-

redundant robots, works such as [17, 18] suggested a modal representation while others like

[111] used a spline method. These approaches may be adapted to capture the kinematics

of continuum robots (e.g. [112, 33]). Also, recent works extended beyond the constant

curvature assumption by approximating the shape of a single continuum segment as a set of

constant curvature sub-segments (e.g. [51, 62]). Exact modeling approaches using elliptic

integrals for statics of MBCRs [103] and Cosserat rod theory for dynamics of wire-actuated

SBCRs [78, 75] have also been presented. These modeling approaches however cannot
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capture modeling errors due to joint homing uncertainty or twisted assembly.

Works on geometric calibration of CRs are sparse and design-specific. Webster [99]

calibrated the shape and torsion of concentric tubes using constant curvature assumption.

Camarillo [12] used vision to calibrate coupling effects in wire-actuated two-segment catheters.

Escande [27] formulated a calibration framework that also assumes constant curvature

for each continuum segment of an SBCR. Murphy [64] characterized the kinematics of a

flexure-based SBCR using image analysis and constrained optimization. Jang [41] presented

a generalized Jacobian for concentric tubes toward on-line parameter estimation using an

extended Kalman filter. Our previous work [95] where a parameterized modal approach

similar to [18] was used to formulate the kinematics and to investigate the error prorogation

in simulation base. This work was limited to considering only the derivation of the configuration-

to-joint space mapping for twisted configuration of these robots. This work builds on

and extends our prior work to include generalized treatment of geometric calibration of

MBCR’s.

3.2 Problem Statement, Nomenclature, and Assumptions

Figure 3.1 shows an example of a two segment MBCR. Each segment is comprised of

a central backbone that is surrounded by equidistant secondary backbones. All backbones

are generally made of superelastic NiTi and pass through as series of spacer disks or an

elastomeric sheath that maintains the radial distance between the backbones. The backbones

terminate and connect to an end disk. By actuating the secondary backbones, an MBCR

segment can be controllably bent in two degrees-of-freedom (DoF). In some recent embodiments

a design variation was presented to allow backbone extensibility (e.g. [69]), or unconstrained

backbones (e.g. [71]).
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Figure 3.1: An example of a 2-segment MBCR:
1 - End disk of 1st segment; 2 - End disk of 2nd segment

3.2.1 Problem Statement

The problem of manipulator calibration is accomplished by solving three sub-problems:

the parameterization of a kinematic model to include the calibration unknowns, the error

propagation from parameters to measurable variables, and an estimation approach to find

the calibration parameters.

The parameterization problem is: given an n-segment MBCR with x and R designating

the position and orientation of its end effector and ψi = [θei,δi]
T, i = 1 . . .n designating its

configuration vector, find the expressions of the configuration to task space mapping FT

and the configuration to joint space mapping Fq in a way that accounts for bending shape

deviation, joint space errors and twisting:

{
FFFq : (ψ,k)� q config. to joint space (3.1a)

FFFT : (ψ,k)� (x,R) config. to task space (3.1b)

where the joint space vector q , [q1,q2,q3]
T represents the displacements of push/pull

on the three secondary backbones, as defined in (3.52), and k represents the geometric

calibration parameters, as introduced in (3.53).
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The error propagation problem is: given the two mappings Fq and FT, investigate

the error propagation in these mappings as a function of small changes in the vector of

calibration parameters k. This results in identification Jacobians mapping a differential

change in calibration parameter space to a differential in kinematic variable space.

The Calibration problem statement is: given a set of identification Jacobians along

with measurements of kinematic variables (e.g. measurements of joint positions and end

effector positions/orientations provided by a motion sensor attached to the robot) find the

best estimate of the calibration parameters k that would best explain the deviation between

the uncalibrated model and the experimental data set in a least-squares sense.

We limit the scope of this work to consider calibration of motion subject to very small

or no loads (i.e. calibrating the statics/dynamics is excluded). Though this is a restrictive

assumption, there are several surgical applications of MBCR’s that involve no forceful

interaction with tissue. These applications include minimally invasive laser ablation/resection,

minimally invasive surveillance of bodily cavities and minimally invasive injection of therapeutic

agents (e.g. transnasal vocal fold injection mediatization). Furthermore, the calibration

framework presented herein can be used with a static model to calibrate a generalized

kinematics and statics model of MBCR’s subject to loading. The key limitation is that

the loading should not cause a yielding failure of the MBCR structure so as to violate the

geometric design constraints.

3.2.2 Kinematic Nomenclature

Figure 3.1 shows the key notation used in this chapter. Several frames are used to

facilitate the kinematic derivation. Frame {B} is the base disk frame1 having its z axis

perpendicular to the base disk and its x axis pointing from the central backbone to the first

backbone. Frame {1} has its origin and z axis in common with frame {B} and its x axis

pointing along the projection of axis zg onto the x-y plane of frame {B}, the axis zg being

1We use the notation {A} to refer to a right-handed frame with x̂a, ŷa, ẑa as its unit vector axes and a as
its origin
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the normal to the end disk2. This frame is used to characterize the plane in which the snake

segment bends (henceforth called bending plane).

We also define the end-disk frame {E} with its origin at the center of the end disk and

its z axis perpendicular to the end disk as shown in Figure 3.1. The axis x̂e is defined as the

intersection of the plane defined by the top surface of the end disk and the bending plane.

Finally, we define the end effector frame {G} to share its origin and z axis with frame {E}

and its x axis x̂g pointing from its origin to the first backbone. Frames {Es} and {Gs} are

defined in similar manner as {E} and {G}, but at an arc-length s that is measured along the

central backbone from the base disk.

The configuration of a continuum segment is designated by the vector ψ. The vector ψ

includes the angles δ0 and θe. The angle δ0 is defined according to the right hand rule about

ẑb from x̂1 to x̂b. The bending angle θe is given according to the right hand rule about −ŷ1

from x̂1 to ẑg. For simplicity of derivation, we later replace the use of θe with a parameter

t that parameterizes θe. The angle δe is defined according to the right hand rule about ẑe

from x̂e to x̂g.

The joint space vector for a given segment is designated by q where positive values

designate extension (pushing) of the secondary backbones.

The above nomenclature ignores the bending shape and the twist about the backbone of

the CR segment. The following sections will discuss these effects.

3.2.3 Shape Interpolation Assumption

When a CR segment is bent, its equilibrium shape is given as a solution to the minimal

energy problem. In [88] it was shown that the bending shape of a CR segment does not

affect the joint space mapping Fq. Therefore, relying on joint and configuration space

measurements of q and ψ is not sufficient for calibration. Since the task space mapping FT

is affected by the bending shape, a parameterizations of the bending shape is needed for

2If ẑg is perpendicular to the x−y plane of {B} then x̂1 is not defined. In this case, the segment is straight
and x̂1 is not needed
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Table 3.1: Nomenclature for kinematics

Symbol Description

Frame {F} designate a right-handed frame with unit vectors x̂ f , ŷ f , ẑ f and f as its
origin.

Frame
{B}

the base disk frame with b located at the center of the base disk, x̂b
passing through the first SB and ẑb perpendicular to the base disk.

Frame {1}
characterizes the plane in which the snake segment bends and it is
obtained by a rotation of (−δ ) about ẑb. Unit vector x̂1 is along the
projection of the PB on the plane of the base disk and ẑ1 = ẑb.

Frames
{E} &
{G}

Frame {E} is defined with ẑe as the normal to the end disk and x̂e is the
intersection of the bending plane and the end disk top surface. Frame
{G} is obtained by a rotation angle δe about ẑe which is the unit vector
normal to the end disk. This angle is given by δe = δ0 + γe.

Frames
{Es}(s) &
{Gs}(s)

associated with arc length s. These frames are defined in a manner similar
to the definition of frames {E} and {G} but for a specific value of s as
opposed to s= L. The origin of {Es} is located at point x(s) and obtained
by integration along the PB.

v(s) &
w(s)

a vector v(s) = rx̂gs which points from x(s) on the PB to the
corresponding point on the first SB. The location of the point on the first
SB that corresponds to point x(s) on the PB is designated by w(s). We
note that w(s) = x(s)+v(s).

enabling bending shape calibration.

We assume that the equilibrium shape is configuration-dependent and that this dependence

may be captured using a family of curvature profiles κ(s, t). The arc-length parameter s

is measured along the central backbone from the base disk and L is used to denote the

segment length. The interpolation parameter t ∈ [0,1] selects a specific bending shape that

is interpolated from two curvature profiles (shape generators) κa(s) and κb(s) describing

the limits of the bending workspace of the continuum segment:

κ(s, t) = t κb(s)+(1− t)κa(s) t ∈ [0,1],s ∈ [0,L] (3.2)

Referring to Fig. 3.2(a), the relationship between t and θe is:

θe = θ0 +
∫ L

0 κ(s, t)ds = θea + t (θeb−θea) (3.3)
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where θ0 is the tangent angle at s = 0 (in Fig. 3.2(a) θ0 =
π

2 ); θea and θeb are the tip bending

angles of the shape generators.

Henceforth, we will use a re-parametrization of the configuration space variables based

on Eq. (3.3) whereby the configuration space vector ψ is redefined as:

ψ , [t,δ0]
T (3.4)

The motivation for this re-parametrization lies in the linear relationship between the

bending shape κ (s, t) and the curve generator shapes, which is advantageous for calibration.

The shape generator functions κa(s) and κb(s) are described using a modal representation

inspired by [18]:

κa(s) = aTη, κb(s) = bTη, η(s) = [s0,s1, . . . ,sm]T (3.5)

where a and b are vectors of modal factors and η(s) is a vector of modal functions3.

Although the approach presented below holds for m > 1, we use m = 1 because our device

exhibits a small deviation from circular shape [103].

3.2.4 Twist Assumption

Twisting about the primary backbone (henceforth referred to as backbone twist) of

MBCRs is typically caused by inexact assembly of the spacer disks on the primary backbone

or by a wrong definition of the ”home” position of the joints controlling the length of the

secondary backbones. For example, imagine that the secondary backbones are assembled

such that they are almost equal in length but longer than the primary backbone; the continuum

robot segment will start from an almost straight configuration but with a helical twist of the

secondary backbones about the primary backbone.

3The Vandermonde matrtix corresponding with the monomial basis is not numerically stable for m> 6 [2].
Other better-conditioned modal bases could be used if higher orders are needed (e.g. Chebyshev polynomials)
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∆t = 0.05

κa = −0.05
L − 0.01
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κb = −0.3
L − −0.09
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θ2∆x

θ1 = θ2
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position error ∆x

Figure 3.2: Illustration of shape interpolation (a) and shape deviation from circular bending
(b).
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ŷb

ẑb
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x̂1

δ0
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Figure 3.3: A continuum segment (a) without twist, (b) twisted by angle γe, (c) the
definition of the configuration variables δ0 and θe for a continuum segment twisted by
γe
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It is next assumed that a CR segment has a configuration-dependent twist angle γe (ψ),

Fig. 3.3(a-b). The choice of configuration-dependent assumption comes from an equilibrium

and energy minimization point of view: a twisted snake segment experiences more twisting

when it is bent due to the larger loading forces on the backbones. This configuration-

dependence is captured by an assembly error offset γe0 at the base disk and two linear

constants kθ and kδ :

γe = γe0 + kθ t + kδ δ0 (3.6)

Fig. 3.3(c) illustrates this twist effect where δe|s=0 = δ0 and δe|s=L = (δ0 + γe). Assuming

a uniform torsional stiffness, the twist angle is linearly distributed along the arc length s:

δ (s), δ0 + γ(s), γ(s) = γe
s
L (3.7)

where δ (s) is tantamount to δ0 but defined for frame {Gs}(s). This frame describes the pose

of an imaginary end-effector at arc length s with ẑgs along the central backbone tangent and

x̂gs pointing to the first secondary backbone, Fig. 3.4.

x̂b

x̂b

ŷb

x̂g

ẑg

x̂e x̂gs

x̂gs

x̂es

x̂es

x̂1

x̂1

ẑes = ẑgs

x(s)
w(s)

v(s)

δ0

δ(s)

θs

Figure 3.4: Nomenclature illustrations for a twisted snake segment: (left) shows a twisted
continuum robot segment and (right) shows the vector loop to derive the secondary
backbone length calculation in section 3.4.
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3.3 Kinematic Error Propagation from Configuration to Task Space

We decompose the problem of formulating the configuration-to-task-space mapping FT

into two sub-tasks: the in-plane bending kinematics and the end effector orientation with

backbone twist. This formulation separates the calibration parameters into two groups:

group 1 characterizes the bending shape and it is represented by a shape characteristic

vector kκ . Group 2 characterizes the twist behavior and represented by a twist characteristic

vector kγ . These vectors are defined as:

kκ , [l,aT,bT]T (3.8)

kγ , [γe0,kθ ,kδ ]
T (3.9)

where l is the arc length where a motion sensor is attached, a,b are the modal factors in

(3.5) and kγ is defined in (3.6).

This section presents the kinematics and error propagation models leading to kinematic

identification Jacobians. The goal is to obtain the differential end-effector position and

orientation errors due to perturbations of δkκ and δkγ .

3.3.1 Single Segment In-Plane Kinematics with Backbone Twist

Since the CR segment is contained in the bending plane {x̂1− ẑ1}, we first derive its

in-plane bending kinematics. The end effector position and orientation are given by:

1x(s) =
∫ s

0
[cθs(τ),0,sθs(τ)]

T dτ s ∈ [0,L] (3.10)

θs(s) =
π

2
+
∫ s

0
κ(τ, t)dτ s ∈ [0,L] (3.11)

where 1x denotes the coordinates of the end-effector in frame {1}4 and c(·) and s(·) denote

the cosine and sine functions.
4we use the notation ax to designate a vector x described in frame {A}
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The end effector orientation completes the mapping FT . Referring to Fig. 3.4, the

orientation of {Gs}(s) is:

bRgs(s) = e−δ0 [e3
∧] e(

π

2−θs) [e2
∧] eδ (s) [e3

∧] s ∈ [0,L] (3.12)

where [a∧] represents a skew symmetric matrix generated from vector a, and ei denotes

the standard basis vectors for IR3 (e.g. e2 = [0,1,0]T). These equations indicate that the

orientation bRgs can be expressed as a function of {δ0,θs,γ(s)}.

To facilitate the derivation of kinematic identification Jacobians in the following sections,

we define xp as the combined in-plane position and tip angle for a sensor located at an

arbitrary location l ∈ [0,L]:

xp ,

[
1x(l) ,1z(l) ,θe (l)

]T

(3.13)

where 1x, and 1z designate the x and z coordinates of the modeled sensor position, and the

subscript p indicates ”in-plane”. In the framework defined in later sections, xp is measured

for calibration use.

Since xp is unaffected by kγ (i.e. it is unaffected by twist about the central backbone),

it may be expressed in a functional form as:

xp = fp(t,kκ) (3.14)

Finally, to facilitate the kinematic simulations, the instantaneous kinematics (geometric)

Jacobian is defined as:

Jxt ,
∂ fp

∂ t
=

[
∂ 1x(l)

∂ t
,
∂ 1z(l)

∂ t
,
∂θs|(s=l)

∂ t

]T

(3.15)

where details of its derivation are in Appendix B.1.
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We next define the vector of pose as a six-dimensional parametrization of position and

orientation ξ, [xT,µT]T where x and µ are the position and orientation vectors (e.g. µ can

be the axis-angle vector parametrizing the orientation). The following sections derive the

pose error propagation for a multi-segment continuum robot. The effects of δkκ and δkγ

are combined through superposition with a first-order error propagation model. Defining

kT and δkT for one segment as:

kT , [kκ
T,kγ

T]T, δkT , [δkκ
T,δkγ

T]T (3.16)

This allows the derivation of a combined pose error model:

b
δξ(δkT ) =

b
δξ(δkκ)+

b
δξ(δkγ) (3.17)

3.3.2 Pose Error due to Shape Deviation (δξ (δkκ))

An identification Jacobian, Jkκ
is derived to propagate δkκ to the small perturbation of

δxp:

δxp = Jkκ
δkκ , Jkκ

∈ IR3×5 (3.18)

Jkκ
,

∂ fp(t,kκ)

∂kκ

=

[
∂ fp

∂ l
,
∂ fp

∂a
,
∂ fp

∂b

]
(3.19)

where the expressions for ∂ fp
∂ l ,

∂ fp
∂a ,

∂ fp
∂b may be obtained by differentiating Eq. (3.14) as

detailed in Appendix B.2. For a single-segment continuum robot, the differential pose

change of the end effector frame due to δkκ is:

b
δξ(δkκ),

[
(b

δxκ)
T,(b

δµκ)
T
]T

, b
δξ ∈ IR6×1 (3.20)

where subscript κ indicates that the source of error is δkκ .

Referring back to the definition of xp in Eq. (3.13), we note that only the end effector
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coordinates along x̂1 and ẑ1 are affected by δkκ . Therefore, bδxκ may be expressed as:

b
δxκ = bR1 Sx δxp, Sx ,




1 0 0

0 0 0

0 1 0



, bR1 = e−δ0 [z∧] (3.21)

where Sx accounts for the fact that the end effector z-coordinate appears in the second

element of xp.

Also, δkκ affects the orientation of bRg by inducing δθe:

b
δµκ =−ŷ1Sµδxp, Sµ ,

[
0 0 1

]
(3.22)

where Sµ accounts for θe appearing in the last element of xp.

Substituting the error propagation of δxp = Jkκ
δkκ to Eq. (3.21) and Eq. (3.22), we

obtain the error propagation due to δkκ :

b
δξ(δkκ) =




bR1 Sx Jkκ

−ŷ1 Sµ Jkκ


 δkκ (3.23)

3.3.3 Pose Error due to Twist Deviation
(
δξ (δkγ)

)

The twist parameter kγ does not affect the end-effector position. Therefore, only the

gripper frame orientation bRgs(L) is considered. Using the definition of kγ and kκ in

Eq. (3.12) we obtain the functional relationship:

bRgs(s) = R(ψ,s,kκ ,kγ) (3.24)

The estimation of kκ is described in 3.5.1 using the identification Jacobian Jkκ
. With

kκ estimated and assumed fixed, we derive the identification Jacobian Jkγ
relating δkγ to

its corresponding differential rotation of {G}.
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To simplify notation, we will use the shorthand notation R, bRgs(s). Following [63],

the differentiation of the rotation matrix, R, given δkγ , is expressed as:

dR = ∂R
∂γe0

δγe0 +
∂R
∂kθ

δkθ +
∂R
∂kδ

δkδ (3.25)

Applying the differentiation chain rule, we arrive at:

dR = ∂R
∂γ(s)

(
∂γ(s)
∂γe0

δγe0 +
∂γ(s)
∂kθ

δkθ +
∂γ(s)
∂kδ

δkδ

)
(3.26)

where ∂R
∂γ(s) can be derived as (details see appendix B.3):

∂R
∂γ(s)

= R
[
e3
∧] ,

[
e3
∧]=




0 −1 0

1 0 0

0 0 0




(3.27)

We next express dR as a sequence of small rotations δαx, δαy and δαz about axes of the

gripper. Following [72] we obtain:

dR = RδR, δR =




0 −δαz δαy

δαz 0 −δαx

−δαy δαx 0




(3.28)

Substituting dR from Eq. (3.26) in Eq. (3.28) and solving for δR gives:

δR =




0 −
(

∂γ(s)
∂kγ

)T
δkγ 0

(
∂γ(s)
∂kγ

)T
δkγ 0 0

0 0 0




(3.29)

The skew symmetric matrix δR is expressed in the moving gripper frame and its corresponding

49



vector form is gδµγ :

g
δµγ ,




02×1(
∂γ(s)
∂kγ

)T
δkγ


=




02×3(
∂γ(s)
∂kγ

)T


δkγ (3.30)

Using bδµγ =
bRg

gδµγ to convert gδµγ to the base frame {B}, we obtain the twist

identification Jacobian as:

b
δµγ , Jkγ

(s)δkγ , Jkγ
(s) = bRg




02×3(
∂γ(s)
∂kγ

)T


 (3.31)

Finally, using the definition of differential pose vector as in Eq. (3.20), we express the

effect of δkγ on the end effector pose as:

b
δξ(δkγ) =




03×3

Jkγ


δkγ (3.32)

3.3.4 Kinematic Error Propagation for a Multi-segment Robot

The pose error model for a single segment is achieved by substituting Eq. (3.23) and

Eq. (3.32) in Eq. (3.17) and vectorizing:

b
δξ(δkT ) =




bR1 Sx Jkκ
03×3

−ŷ1 Sµ Jkκ
Jkγ







δkκ

δkγ


 (3.33)

Defining the task space segment identification Jacobian JkT such that bδξ(δkT ) =

JkT δkT , we obtain:

JkT =




bR1 Sx Jkκ
03×3

−ŷ1 Sµ Jkκ
Jkγ


,




Jkx

Jkµ


 (3.34)

We next consider the error propagation of an n-segment continuum robot. We use
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JkTi
and kTi to denote the identification Jacobian and the calibration parameters vector

and {Bi} and {Ei} as the base and end-effector frames of the ith segment. The error

propagation problem of a multi-segment continuum robot is equivalent to its geometric

Jacobian formulation [89]: one can think of the robot pose error δξ as the tip “twist”

vector due to “joint” speeds δkT .

The relative pose error of the ith segment, biδξei/bi , is only affected by its own parameters

δkTi and it is obtained as:

biδξei/bi = JkTi
δkTi (3.35)

To consider the absolute pose error of the ith segment, 0δξei/0, we have to account for

the translations and rotations of all segments proximal to the ith segment5. Using frame

transformation of twist, we obtain:

0
δξei/0 = ∑

i
j=1

(
S ji

b jδξe j/b j

)
(3.36)

S ji =




0Rb j

[
0xe j/ei

]∧
0Rb j

0 0Rb j


 , j ∈ [1, i] (3.37)

where
[

0xe j/ei

]∧
denotes the cross product matrix of the vector 0xe j/ei pointing from ei to

e j and expressed in {0}:
0xe j/ei ,

0xe j − 0xei, j ∈ [1, i] (3.38)

We note that if the calibration sensor of the ith segment is not at its end disk, but as a

known arc length, then the equations above still hold as long as one interprets ei to be the

location of the sensor on the ith segment.

Rewriting Eq. (3.36) in vector format to obtain the error propagation of the ith segment

5Frame{0} is the base of the 1st segment, i.e. {B1}
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results in:

0
δξei/0 =

[
S1iJkT1

. . . SiiJkTi

]



δkT1

...

δkTi




(3.39)

For the purpose of updating all the parameters of an n-segment continuum robot simultaneously,

we define an augmented6 parameter vector ÛkT as:

ÛkT ,
[
(kTi)

T, . . . ,(kTn)
T]T , ÛkT ∈ IR8n×1 (3.40)

We also define an augmented differential pose vector as δ Ûξ:

δ Ûξ , [0
δξT

e1/0, . . . ,
0
δξT

en/0

]T
, δ Ûξ ∈ IR6n×1 (3.41)

The augmented identification Jacobian is then obtained as:

δ Ûξ , ÛJkT δ ÛkT , ÛJkT ∈ IR6n×8n (3.42)

ÛJkT =




S11JkT1
0 . . . 0

S12JkT1
S22JkT2

. . . 0
...

... . . . 0

S1nJkT1
S2nJkT2

. . . SnnJkTn




(3.43)

The augmented identification Jacobian ÛJkT is used in section 3.5.4 to estimate the

parameter vector ÛkT .

3.4 Kinematic Error Propagation from Configuration to Joint Space

The inverse and direct kinematics problems for a continuum segment without twist

have closed-form solutions as presented in [88]. However, in the presence of twist and

6We will henceforth useı(·) to denote “augmented” vectors representing concatenated entities for a multi-
segment robot.
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shape deviation such solutions are attainable only via numerical methods. In this section,

we derive the inverse and direct kinematics and an associated identification Jacobian.

3.4.1 Inverse Kinematics

In addition to previously defined nomenclature, we define v(s) and w(s) to facilitate

the derivation of the kinematics mapping with backbone twist and bending shape deviation.

Figure 3.4 shows these two vectors. The vector v(s) denotes the radial vector pointing from

the central backbone at arc-length coordinate s to the first secondary backbone (it is aligned

with x̂gs). Vector w(s) is the position vector of the point on the first secondary backbone

relative to the origin of {B}. The inverse kinematics solves the required secondary backbone

lengths Li, i = 1,2,3 for a given configuration space vector ψ = (t,δ0). The length of the

ith secondary backbone, Li, can be calculated using the tangential vector dw(s)/ds.

Li =
∫ L

0

∥∥∥dw(s)
ds

∥∥∥ds, dw(s)
ds = dx(s)

ds + dv(s)
ds (3.44)

where x(s) is according to Eq. (3.10) and then dx(s)
ds is easily obtained. Using Eq. (3.11) and

Eq. (3.6), and referring to Fig. 3.4, we derive the angular velocity of frame {Gs} (denoted

ωgs) and the velocity of the tip of v as follows:

1(dv
ds

)
= 1Res (

esωgs× esv) (3.45)

esωgs = ẑdγ(s)
ds − ŷdθ(s)

ds =
[
0,−κ(s, t), γe

L

]T (3.46)

1Res = e(
π

2−θ(s)) [e2
∧], esv = r

[
cσi(s),sσi(s),0

]T (3.47)

where σi(s) designates the angular coordinate of the i’th backbone given by:

σi(s) = δ (s)+(i−1)β (3.48)

and r denotes the constant radial distance between the central and secondary backbones.
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By substituting the expressions of dx(s)
ds and dv(s)

ds into Eq. (3.44) we obtain the length of

the ith backbone:

Li =
∫ L

0
gi(s)ds, i ∈ [1,3] (3.50)

gi(s) =
√(

rκ(s, t)cσi(s)+1
)2

+
( rγe

L

)2 (3.51)

The joint space vector, q = [q1,q2,q3]
T, is the push/pull displacement of the backbones,

i.e. qi = Li−L. Defining the “home” position qh =
[
qh1,qh2,qh3

]T, for a straight segment

completes the formulation of the inverse kinematics problem:

q = fq(ψ,k), fqi = Li(ψ,k)−L+qhi, i ∈ [1,3] (3.52)

where k is a kinematic model parameter vector defined as:

k,
[
kT

κ ,k
T
γ ,k

T
q

]T
, kq , [qT

h ,r]
T (3.53)

The overall calibration parameter vector k includes a Joint Characteristic calibration

vector kq, which captures modeling errors in joint home positions and backbone radial

distance.

3.4.2 Direct Kinematics

Algorithm 2 presents an iterative solver for configuration space direct kinematics based

on Newton’s method. This method requires the configuration space kinematic Jacobian,

Jqψ, which relates infinitesimal δψ to δq, i.e. Jqψδψ= δq. This Jqψ can be derived from

Eqs. (3.52, 3.50, 3.51):

Jqψ =
∂ fq(ψ,k)

∂ψ
=
∫ L

0

∂g(s,ψ,k)
∂ψ

ds (3.54)
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where Jqψ and ∂gi
∂ψ j

is obtained by differentiation of Eq. (3.51).

Algorithm 2 does not guarantee convergence to a global minimum, but the two-dimensional

search space for a given continuum segment facilitates a multi-start computation to minimize

the chance of missing the global minimum. This algorithm is used only for kinematic

simulations for the purposes of visualization and evaluation of calibration results.

Algorithm 2 Configuration Space Direct Kinematics
Require: {qtg, k}

Require: ψ0, ε0 > 0, µ > 0

1: START Initialize: ψ←ψ0, eq← 100ε0

2: while eq > ε0 do

3: Compute q = f(ψ,k), Jqψ = Jqψ(ψ,k) using Eq. (3.52) and

Eq. (3.54).

4: Update {ψ}

J+qψ = (JT
qψWJqψ)

−1JT
qψW, ∆ψ =+J+

qψ∆q, (3.55)

5: ∆q← (qtg−q), ψ← (ψ+µ∆ψ), eq←‖∆q‖

6: end while

7: ψtg←ψ END

Ensure: ψtg

3.4.3 Joint Space Identification Jacobian

The multi-segment identification Jacobian in Eq. (3.42) relates shape and twist parameter

errors to task space errors and allows identification of kκ and kγ but it does not capture the

effect of homing and radial offsets or allow the identification of kq. We therefore present an

identification Jacobian Jk allowing for identifying the overall calibration parameter vector

k as defined in Eq. (3.53). In subsequent sections we evaluate the utility and limitations of

the use of this identification Jacobian.

We next define Jk relating errors in k to errors in joint variables q, i.e. δq= δ fq (ψ,k)=
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Jkδk. Referring to Eq. (3.52) and Eq. (3.50) and using the Leibniz rule results in:

Jk =
∂ fq(ψ,k)

∂k
=
∫ L

0

∂g(s,ψ,k)
∂k

ds

+g(L,ψ,k)
∂L
∂k
− ∂ [L,L,L]T

∂k

(3.56)

where Jk ∈ IR3×(8+2(m+1)), g(s,ψ,k) = [g1,g2,g3]
T , ∂gi

∂k j
is obtained by differentiating

Eq. (3.51) and m is the highest degree in η(s) defined in Eq. (3.5).

3.5 Estimation of Calibration Parameters

Sections (3.3, 3.4) presented the kinematic models from Configuration space to Task

space and from Configuration space to Joint along with associated identification Jacobians

relating errors in kinematic variables ( {δψ,δx,δq}) to errors in kinematic model parameters

({δkκ ,δkγ ,δkq}). Through this section we discuss the method and formulation to estimate/calibrate

these parameters.

Recall from sections ((3.3, 3.4) that the parameter vectors {kκ ,kγ ,kq} are dependent in

both of the configuration to task space kinematic model and the configuration to joint space

kinematic model, meaning that we can use either model formulation and the corresponding

measurements to estimate the parameter values. This provides different choices for methods,

algorithms and observations. Hence in this section, different types of observations/measurements,

different corresponding error functions, and different objective cost functions are discussed

for different cases. Despite these differences, all calibration/estimation algorithms used in

this section rely on nonlinear least-square estimation.

3.5.1 Capturing the Shape Characteristic Vector - kκ

In this case, six-axis position and orientation sensor(s) is(are) assumed to be installed

on the primary backbone. The position measurements7 will be directly used while the

7We will henceforth use ¯(·) to designate measured data.
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orientation measurements will be converted to a measurement t̄ using (3.2) as the following:

t̄ =
(
θ̄e− θ̄ea

)
/
(
θ̄eb− θ̄ea

)
(3.57)

where {θ̄eb, θ̄ea} denote the end-effector angles for the two shape generators as depicted in

Fig. 3.2(a) and defined in Eq. (3.3).

We next assume that N configurations are used for calibration. For each configuration,

we measure x̄p j , j ∈ [1,N] as defined in Eq. (3.13). At the jth pose and for an assumed

shape characteristic vector kκ , we define the error vector cp j :

cp j , x̄p j − fp j(t̄ j,kκ) = cp j(kκ), j=1,...,N (3.58)

We also define the aggregated8 error over all poses as:

c̃p(kκ), x̃p− f̃p(kκ), c̃p, x̃p, f̃p ∈ IR3N×1 (3.59)

x̃p ,
[
x̄p1

T, . . . , x̄pN
T]T , f̃p ,

[
fp1

T, . . . , fpN
T]T (3.60)

and define an objective function Mp quantifying the aggregated error over the calibration

workspace:

Mp(kκ) =
1

2N c̃p
T W c̃p (3.61)

where W is a diagonal positive definite weight matrix encoding relative confidence in the

measurement accuracy.

The first-order Taylor series approximation of Mp is:

Mp(kκ +δkκ)≈Mp(kκ)+JMpδkκ (3.62)

8We will henceforth use (̃·) to designate “aggregated” entities representing concatenated data from all
calibration poses.
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where the aggregated Jacobian JMp ∈ IR1×5 is given by:

JMp =
1
N (c̃p)

T W Jcp (3.63)

Jcp =
∂ c̃p

∂kκ

=−
[(

∂ fp1

∂kκ

)T

, . . . ,

(
∂ fpN

∂kκ

)T
]T

(3.64)

Equation (3.63) shows that minimizing Mp entails following the gradient descent direction

along ∂ c̃p
∂kκ

. In algorithm 3, H is the parameter scaling matrix discussed in section 3.5.5.

The task space variable scaling is achieved by adjusting W, [85].

Algorithm 3 Nonlinear LS Estimate
Require: D{(p j,ψ j)}, j=1,...,N ; kκ0 , (β ,η)> 0

1: START Initialize: ki← kκ0 , Mi−1← 1, Mi← 100

2: while ‖Mpi−Mpi−1‖
Mpi−1

≥ β do

3: Mpi−1←Mpi, c̃p = c̃p(ki), Mpi = Mpi(ki),
4: Jcp = Jcp(ki)

5: Update ki+1:

ki+1 = ki−H
(

η
(
Jcp

)+ c̃p

)
,η ∈ (0,1] (3.65)

(
Jcp

)+
=
(
(Jcp)

T WJcp

)−1
(Jcp)

T W (3.66)

6: end while
7: k∗← ki

Ensure: k∗

3.5.2 Capturing the Twist Characteristic Vector - kγ

In this case, the sensor is assumed to be placed either at the end-disk or at arc-length l ∈

(0,L] along the primary backbone. A measured sensor orientation R̄ j is assumed available,

where subscript j denotes the jth measurement. A measurement of the configuration space

is also assumed available ψ̄ j =
[
t̄ j, δ̄ j

]T
, where t̄ j can be recalled from Eq. (3.57) and δ̄

can be calculated from the sensor measurement. Using the kinematic model, and given

an estimate of the model parameter values {k̄κ , k̄γ}, the modeled sensor orientation, R j ,

bRgs(l), can be obtained from Eq. (3.24).

We next capture the orientation error between the measured orientation R̄ j and the
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model-predicted orientation R j . Using a fixed-frame rotation sequence, this error is calculated

as:

Re j , R̄ jR j
T = eαe j [m̂e j ]

∧
(3.67)

where αe j and m̂e j are the angle and axis parameterizing the orientation error Re j . These

parameters are given by:

αe j = cos−1
(

Tr(Re j)−1
2

)
(3.68)

m̂e j =
1

2sin(αe j)

(
Re j −Re j

T)∨ (3.69)

where the operator (·)∨ designates the vector of a skew-symmetric matrix.

For calibration formulation, we parameterize the orientation error using an orientation

error vector cγ j defined as:

cγ j = αe j m̂e j , cγ j ∈ IR3 (3.70)

As in the previous section, an aggregated error vector c̃γ is defined as c̃γ =
[
(cγ1)

T, . . . ,(cγN )
T]T

and the objective function Mγ is defined as:

Mγ(kκ ,kγ) =
1

2N c̃γ
T W c̃γ (3.71)

Following a similar derivation as in the previous section, we define an aggregated

Jacobian JMγ
= 1

N (c̃γ)
T W Jcγ

where Jcγ
is obtained using the relation δcγ j = −Jkγ

δkγ

as shown in Appendix C.1 and Jkγ
was defined in Eq. (3.31).

Jcγ
,

∂ c̃γ

∂kγ

=−
[(

Jkγ (ψ̄1)

)T
, . . . ,

(
Jkγ (ψ̄N)

)T
]T

(3.72)

Finally, kγ is estimated using nonlinear least squares.
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3.5.3 Capturing the Overall Characteristic Vector - k

In section 3.7.3 we evaluate the premise of directly estimating the overall kinematic

parameter vector k previously defined in Eq. (3.53). We therefore derive a method for

estimating k from N measurements
(
q̄ j,ψ̄ j

)
, j ∈ [1 . . .N]. We first define a joint-space

error vector based on the numerical inverse kinematics solution from section 3.4.1:

cq j(k) , q̄ j− fq j(ψ̄ j,k) (3.73)

where fq was defined in Eq. (3.52) irrespective of the pose j.

To capture the joint-space error over the calibration data set we define the aggregated

measured joint vector ˜̄q and the aggregated model-based joint vector f̃q as:

˜̄q,
[
q̄1

T, . . . , q̄N
T]T , f̃q ,

[
fq1

T, . . . , fqN
T]T (3.74)

The aggregated error vector c̃q(k) is then defined as:

c̃q(k), ˜̄q− f̃q(k), c̃q, ˜̄q, f̃q ∈ IR3N×1 (3.75)

To optimize k we define an objective function Mq capturing the weighted error over the

calibration data set:

Mq(k) = 1
2N c̃q

T Wc̃q (3.76)

Using the first-order Taylor series approximation of Mq and following a derivation as in

section 3.5.1, we obtain k via nonlinear least squares using the aggregated Jacobian Jcq .

Jcq ,
∂ c̃q

∂k
=

[(
∂cq1

∂k

)T

, . . . ,

(
∂cqN

∂k

)T
]T

(3.77)
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3.5.4 Capturing the Augmented Parameter Vector ÛkT

for a Multi-segment Continuum Robot

For a n-segment continuum robot, let us use x̄i j and R̄i j to denote the position and

orientation measured by a tracker attached to the end-effector of the ith segment at the jth

robot configuration. Also, let us assume that all the measurements are obtained in the base

of the 1th segment. Similarly, the symbols xi j and Ri j will denote the modeled position and

orientation using an extension of the single segment numerical direct kinematics (section

3.3.1) to a multi-segment case.

cTi j ,
[
(x̄i j−xi j)

T,(αei jm̂ei j)
T]T , cTi j ∈ IR6 (3.78)

where αei j and m̂ei j are defined, in a similar manner as in Eq. (4.60) while using Rei j ,

R̄i jRT
i j instead of Re j .

An augmented task space error vector ÛcTj is defined to capture the errors between the

measurements and modeled poses for all n segments of the jth robot configuration:

ÛcTj ,
[
(cT1 j)

T,(cT2 j)
T, . . . ,(cTn j)

T]T cTj ∈ IR6n (3.79)

Finally, an aggregated error c̃T for all calibration poses is defined as:

c̃T =
[
(ÛcT1)

T,(ÛcT2)
T, . . . ,(ÛcTN )

T]T c̃T ∈ IR6nN×1 (3.80)

Recall from Eq. (3.42), the error propagation of a multi-segment continuum robot can

simply be expressed using the augmented identification Jacobian matrix, ÛJkT , as:

δ Ûξ = ÛJkT δ ÛkT , δ ÛkT =
[
(δkT1)

T, . . . ,(δkTn)
T]T (3.81)

Applying this error propagation on the error vector δcTj =−δξ for one robot configuration,
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we obtain:

δcTj =−ÛJkT δ ÛkT (3.82)

For a given jth configurationψ1 j, . . . ,ψn j we define an augmented configuration vector

Ψ j defined as:

Ψ j =
[
(ψ1 j)

T,(ψ2 j)
T, . . . ,(ψn j)

T]T , Ψ j ∈ IR2n×1 (3.83)

To capture the error of the augmented parameters for all calibration poses we define the

aggregated identification Jacobian JcT ∈ IR6nN×8n:

JcT ,
∂ c̃T

∂ ÛkT
=−

[(ÛJkT (Ψ̄1)
)T

, . . . ,
(ÛJkT (Ψ̄N)

)T
]T

(3.84)

ÛkT can then be estimated using nonlinear least squares.

3.5.5 Parameter Scaling

The numerical nonlinear least squares algorithm for estimating the calibration parameters

relies on a numerical update step involving the inversion of the identification Jacobian (step

5 in Algorithm 3). Since the calibration parameters have different units they may have

significantly different numerical ranges for the estimated variables, which can contribute to

poor numerical conditioning. To overcome this problem, we adopt the column normalizing

method [55]9.

For brevity, we will use the two placeholders c̃x and kx to denote the various aggregated

error and parameter vectors defined previously10. We also use ˘(·) to denote “scaled” terms.

Parameter scaling is next introduced using an invertible weighting matrix H. Following

[40], we choose:

H, diag([h1,h2, . . . ,hm]), m = length(kx) (3.85)
9The column extremal scaling value method has some added advantages [82], but for simplicity we used

the column normalization method
10For instance, c̃ may be replaced with c̃p, with kx being replaced with kκ .
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The vector δkx is scaled along with the corresponding identification Jacobian Jcx such that:

δkx→H−1
δkx , δ k̆x, Jcx → JcxH, J̆cx (3.86)

The numerical update using the scaling matrix becomes:

δ c̃x = J̆cxδ k̆x → δ k̆x = J̆+cx
δ c̃x (3.87)

The matrix H is constructed using:

hi =




‖Ji

cx
‖−1 if ‖Ji

cx
‖ 6= 0 (3.88a)

1 if ‖Ji
cx
‖= 0 (3.88b)

where Ji
cx

is the ith column of the aggregated Jcx .

3.6 Simulations of Error Propagation on Geometric Parameters

Before we investigate parameter estimation (kinematic model calibration) via simulations,

in this section, we present a means of using error propagation to provide insights on

sensitivity of different parameters. We evaluate the effect of calibration errors in three

cases. In case I (3.6.1) we evaluate the effect of twist about the primary backbone on

the accuracy of the robot if this twist is not accounted for. In case II (3.6.2) we evaluate

the effect of errors in (kθ ,kδ ) on the accuracy of the robot. Finally, in case III (3.6.3) we

evaluate the effect of home position errors in qh on the accuracy of the robot. In this section

we used a single-segment robot with L = 60mm, r = 4mm, γe0 = 10◦, qh = [1,−2,3] mm.
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3.6.1 Effect of Twist about the Primary Backbone

6 Long Wang and Nabil Simaan

Jqψ =
∂ f(ψ ,k)

∂ψ
=

∫ L

0

∂g(s,ψ ,k)
∂ψ

ds, g(s,ψ ,k) = [g1,g2,g3]
T (12)

Jk =
∂ f(ψ ,k)

∂k
=

∫ L

0

∂g(s,ψ ,k)
∂k

ds+ g(L,ψ,k)
∂L
∂k
− ∂ [L,L,L]T

∂k
(13)

where ∂gi
∂ψ j

and ∂gi
∂kj

are obtained by differentiation of equation 9. UsingJqψ the

direct kinematics is solved using algorithm 1 based on Newton’s method.

Algorithm 1 fdir Configuration space direct kinematics
Input: {qtg, k} Output: ψ tg Adjust Parameters: ψ0, ε0 > 0, µ > 0
1: START Initialize: ψ ← ψ0, eq← 100ε0
2: while eq > ε0 do
3: Compute q = f(ψ ,k), Jqψ = Jqψ (ψ ,k) using equations 10 and 12.
4: Update{ψ}

J+qψ = (JT
qψ WJqψ)

−1JT
qψ W, ∆ψ = J+qψ ∆q, (14)

5: ∆q← (qtg−q), ψ ← (ψ +µ∆ψ), eq←‖∆q‖
6: end while
7: ψ tg← ψ END

4 Evaluating accuracy effects of geometric and calibration errors

We will evaluate the effect of calibration errors in three cases. Incase 1we eval-
uate the effect of twist about the PB on the accuracy of the robot if this twist is not
accounted for. Incase 2we evaluate the effect of errors in(kθ ,kδ ) on the accuracy
of the robot. Finally, incase 3we evaluate the effect of home position errors inqh

on the accuracy of the robot. In this section we used a single-segment robot with
L = 60mm, r = 4mm, γe0 = 10◦, qh = [1,−2,3] mm.

Case 1: effect of twist about PB.Figure 4 shows the flowchart of the simulation
for evaluating the effect of an unknown twist angleγe on the task and configura-
tion space errors. A joint actuationq is planned based on given desired configura-
tion ψd and an ideal modelk0 assuming non-twisted and circular bending shape.
This joint actuation is fed into the forward kinematics model using kactual which
includes twist errors but satisfies the circular bending assumption. The error∆ψ is
then propagated to the robot task space kinematics to evaluate the task space error.

ψd f(k0,ψ)
q

fdir(ka,q)
ψa ∆ψ+

−
Task space

xerr

Inverse
Kinematic Model

Direct
Kinematic Model

Fig. 4: Simulation flow chart

We assumed in this simula-
tion γe = 30◦, kθ = 0.2327,
kδ = 0.0185,a=−0.05/L, b=
−0.8/L. The errors between de-
sired and actual robot pose are
reported in configuration space and task space as shown in figure 5. For space limi-
tations and because the maximal error inθe was less than 0.5◦ we did not include a
separate for∆θe. Figure 5-a shows that the position error can be significant (almost
10% of L). Figure 5-b shows that the error in the bending planedirection can be as
high as 14.3◦.

Figure 3.5: Simulation flow chart

Figure 3.5 shows the flowchart of the simulation for evaluating the effect of an unknown

twist angle γe on the task and configuration space errors. A joint actuation q is planned

based on given desired configuration ψd and an ideal model k0 assuming non-twisted and

circular bending shape. This joint actuation is fed into the forward kinematics model using

kactual which includes twist errors but satisfies the circular bending assumption. The error

∆ψ is then propagated to the robot task space kinematics to evaluate the task space error.

We assumed in this simulation γemax = 30◦, kθ = 0.2327, kδ = 0.0185, a = −0.05/L,

b=−0.8/L. The errors between desired and actual robot pose are reported in configuration

space and task space as shown in figure 3.6. For space limitations and because the maximal

error in θe was less than 0.5◦ we did not include a separate for ∆θe. Figure 3.6(a) shows

that the position error can be significant (almost 10% of L). Figure 3.6(b) shows that the

error in the bending plane direction can be as high as 14.3◦.
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Case 2: effect of twist gains error.To evaluate the effect of errors inkθ andkδ we
assumed 10% error over their nominal values as in case 1. The jacobianJk was used
to calculate the propagation of errors using∆q = Jk∆k. The error∆ψ was bounded
using the singular value decomposition (SVD) ofJqψ :

1
σ1
≤ ∆ψ

∆q
≤ 1

σm
, [σ1,σ2, . . . ,σm] = SVD(Jqψ ) (15)

Figure 6-a shows the upper and lower bound for∆ψ .

Case 3: effect of error in joint values at home position:Figure 6-b shows the up-
per and lower bounds of the pose errors stemming from∆qh = [0.1,0.2,−0.3]T [mm].
We estimated∆q = Jk∆qh and used equation 15 to bound the error.
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Fig. 5:Pose errors due to twist error: (a) end disk position error, (b) error inδ
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Fig. 6:Configuration error bounds: (a) error due to∆kθ ,∆kδ (b) error due to∆qh

5 Conclusions

This paper presented a kinematic modeling framework that allows the derivation
of generalized identification and configuration space Jacobians of MBCR’s. The pa-
per assumed a configuration-dependant change in the twisting about the primary
backbone and in the characteristic bending shape throughout the workspace. A gen-
eralized model for the inverse and forward kinematics was used along with the iden-
tification and configuration Jacobians to study the potential effect of errors includ-
ing twisting about the primary backbone, error in the joint values at home position
and error in the coefficients characterizing configuration-dependent shape behavior.
A simulation study shows that these errors may be significant and emphasizes the
need for calibration algorithms for these robots. Future work will include calibration
of continuum robots using the identification Jacobian derived in this work.
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Investigation of Error Propagation in Multi-Backbone Continuum Robots 7

Case 2: effect of twist gains error.To evaluate the effect of errors inkθ andkδ we
assumed 10% error over their nominal values as in case 1. The jacobianJk was used
to calculate the propagation of errors using∆q = Jk∆k. The error∆ψ was bounded
using the singular value decomposition (SVD) ofJqψ :

1
σ1
≤ ∆ψ

∆q
≤ 1

σm
, [σ1,σ2, . . . ,σm] = SVD(Jqψ ) (15)

Figure 6-a shows the upper and lower bound for∆ψ .

Case 3: effect of error in joint values at home position:Figure 6-b shows the up-
per and lower bounds of the pose errors stemming from∆qh = [0.1,0.2,−0.3]T [mm].
We estimated∆q = Jk∆qh and used equation 15 to bound the error.

εp[mm]

δ [deg]
δ [deg] θe[deg]

θe[deg]

εδ [deg]

Fig. 5:Pose errors due to twist error: (a) end disk position error, (b) error inδ

εψ [deg]

εψ [deg]

δ [deg]
δ [deg]

θe[d
eg]

θe [deg]

(a) (b)

Fig. 6:Configuration error bounds: (a) error due to∆kθ ,∆kδ (b) error due to∆qh

5 Conclusions

This paper presented a kinematic modeling framework that allows the derivation
of generalized identification and configuration space Jacobians of MBCR’s. The pa-
per assumed a configuration-dependant change in the twisting about the primary
backbone and in the characteristic bending shape throughout the workspace. A gen-
eralized model for the inverse and forward kinematics was used along with the iden-
tification and configuration Jacobians to study the potential effect of errors includ-
ing twisting about the primary backbone, error in the joint values at home position
and error in the coefficients characterizing configuration-dependent shape behavior.
A simulation study shows that these errors may be significant and emphasizes the
need for calibration algorithms for these robots. Future work will include calibration
of continuum robots using the identification Jacobian derived in this work.

(b) end-disk rotation error

Figure 3.6: End-disk pose errors between twist-assumed model and non-twist-assumed
model
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3.6.2 Effect of Twist Coefficient Gain Errors

To further evaluate the sensitivity of the robot to twist we assume that the calibration

parameters kθ and kδ are contaminated with 10% error. The nominal kθ and kδ were the

same as in case 1. The jacobian Jk was used to calculate the propagation of errors using

∆q = Jk∆k. The configuration space error ∆ψ can be bounded using the singular value

decomposition of Jqψ:

1
σ1
≤
∥∥∥∆ψ

∆q

∥∥∥≤ 1
σm

, [σ1,σ2, . . . ,σm] = SVD(Jqψ) (3.89)

Figure 3.7 shows the upper and lower bound for
∥∥∥∆ψ

∥∥∥.
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Case 2: effect of twist gains error.To evaluate the effect of errors inkθ andkδ we
assumed 10% error over their nominal values as in case 1. The jacobianJk was used
to calculate the propagation of errors using∆q = Jk∆k. The error∆ψ was bounded
using the singular value decomposition (SVD) ofJqψ :

1
σ1
≤ ∆ψ

∆q
≤ 1

σm
, [σ1,σ2, . . . ,σm] = SVD(Jqψ ) (15)

Figure 6-a shows the upper and lower bound for∆ψ .

Case 3: effect of error in joint values at home position:Figure 6-b shows the up-
per and lower bounds of the pose errors stemming from∆qh = [0.1,0.2,−0.3]T [mm].
We estimated∆q = Jk∆qh and used equation 15 to bound the error.
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Fig. 6: Configuration error bounds: (a) error due to∆kθ ,∆kδ (b) error due to∆qh

5 Conclusions

This paper presented a kinematic modeling framework that allows the derivation
of generalized identification and configuration space Jacobians of MBCR’s. The pa-
per assumed a configuration-dependant change in the twisting about the primary
backbone and in the characteristic bending shape throughout the workspace. A gen-
eralized model for the inverse and forward kinematics was used along with the iden-
tification and configuration Jacobians to study the potential effect of errors includ-
ing twisting about the primary backbone, error in the joint values at home position
and error in the coefficients characterizing configuration-dependent shape behavior.
A simulation study shows that these errors may be significant and emphasizes the
need for calibration algorithms for these robots. Future work will include calibration
of continuum robots using the identification Jacobian derived in this work.

Figure 3.7: Configuration space error bounds calculated using error propagation - error due
to ∆kθ ,∆kδ .

3.6.3 Effect of Error in Joint Values at Home Position

We also evaluated the effect of ∆qh on the robot configuration. Figure 3.8 shows

the results for the upper and lower bounds of the error. We assumed an error of ∆qh =

[0.1,0.2,−0.3]T [mm], and estimated ∆q = Jk∆qh and used equation 3.89 to bound the

error.
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per and lower bounds of the pose errors stemming from∆qh = [0.1,0.2,−0.3]T [mm].
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5 Conclusions

This paper presented a kinematic modeling framework that allows the derivation
of generalized identification and configuration space Jacobians of MBCR’s. The pa-
per assumed a configuration-dependant change in the twisting about the primary
backbone and in the characteristic bending shape throughout the workspace. A gen-
eralized model for the inverse and forward kinematics was used along with the iden-
tification and configuration Jacobians to study the potential effect of errors includ-
ing twisting about the primary backbone, error in the joint values at home position
and error in the coefficients characterizing configuration-dependent shape behavior.
A simulation study shows that these errors may be significant and emphasizes the
need for calibration algorithms for these robots. Future work will include calibration
of continuum robots using the identification Jacobian derived in this work.

Figure 3.8: Configuration space error bounds calculated using error propagation - error due
to ∆qh.
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Figure 3.9: Work flow chart of all calibration simulation studies

Four conditions were used in simulations to investigate the sensitivity and feasibility

in identifying kκ , kγ , k and ÛkT , following the formulations as in sections 3.5.1-3.5.4,

respectively. All simulations follow a similar work-flow as in Fig. 3.9 where an example of

calibration using configuration to task space kinematic model (kκ calibration) is illustrated.

In the following discussion, we will use kx as a placeholder for the estimates of either

one of kκ , kγ , k and ÛkT and kxa as its actual value. Referring to Fig. 3.9, the parameter
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generation module generates a random offset ∆kx and applies it on a pre-defined nominal

parameter vector kx0 , resulting in the actual parameter vector kxa . This actual parameter

kxa is then used in the pose generation module to calculate simulated input data needed for

calibration algorithm, e.g. the position and orientation of the robot tip, the configuration

space vector, or the joint space vector. During pose generation, the workspace is sampled

uniformly, and sensor noises are simulated under different conditions as in Table 3.2 (denoted

as νx in Fig. 3.9).

The parameter estimation module uses nonlinear least-square methods to obtain the

parameter estimates kxest . Finally, in the evaluation module, the estimated parameter vector

is compared to the actual parameter vector via the same computational kinematic models,

where errors in both parameter values and in predicted poses are captured.

All simulation experiments in the following sections used nominal parameters: L0 =

60mm, r = 4mm, representing approximately the length and the radius of a continuum

robot segment. We also initialized11 the modal coefficients in Eq. (3.5) with the following

values:

a0 = [−0.05/L0,−0.01/L0]
T, b0 = [−0.5/L0,−0.15/L0]

T (3.90)

In addition, ten simulation trials were conducted for each condition listed in Table 3.2, in

which randomized zero mean Gaussian measurement noise was added with different noise

variance in position and orientation. Table 3.2 lists the root mean squared position and

orientation measurement noise assumed in each condition. In addition, we assumed ±25%

random offsets on the nominal values of a0,b0 to generate actual parameter values. For

conditions assuming a second sensor placed at approximately L0/2 arc length, we assumed

a uniform random noise with the range of ±25%L0/2. The simulation measurements were

uniformly distributed throughout the workspace with 10 values of t selected from 0-1 and

15 values of δ selected from 0◦ to 360◦, resulting in 150 calibration poses in total.

11We will henceforth use subscript zero to denote initialization of a variable that is updated during the
estimation process
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3.7.1 Estimation of the Shape Characteristic Parameter kκ

Condition

Simulation Conditions Simulation Results

Sensor at 
End-disk

Sensor in 
Middle

Position 
Noise
[mm]

Rotation 
Noise

[degree]

Avg. Pos. 
RMSE
[mm]

Avg. Rot. 
RMSE

[degree]

1 Yes No 0.5 1∘ 𝟎𝟎.𝟔𝟔𝟔𝟔 𝟎𝟎.𝟕𝟕𝟕𝟕∘

2 Yes Yes 0.5 1∘ 𝟎𝟎.𝟕𝟕𝟕𝟕 𝟎𝟎.𝟖𝟖𝟖𝟖∘

3 Yes No 2 3∘ 𝟐𝟐.𝟔𝟔𝟔𝟔 𝟐𝟐.𝟕𝟕𝟕𝟕∘

4 Yes Yes 2 3∘ 𝟑𝟑.𝟎𝟎𝟎𝟎 𝟐𝟐.𝟖𝟖𝟖𝟖∘

Table 3.2: Table of different conditions used in shape parameter estimation simulations.

Parameter values obtained from the parameter estimation module were evaluated for

each simulation trial: position root mean square errors (RMSEs) and bending angle RMSEs

were captured between the modeled poses and simulated pose measurements over all samples,

and the result is reported in Fig. 3.10. By comparing condition 1 with condition 2, and by

comparing condition 3 with condition 4, we observe that a redundant sensor in addition to

the one at the robot tip does not significantly help. Considering the different noises added

for different conditions, we also observe that the residual errors are similar to the noise

level when the algorithm converges.

3.7.2 Estimation of the Twist Characteristic Parameter kγ

Simulations of estimating kγ based on prior estimates of kκ facilitate investigating the

sensitivity and accuracy in identifying kγ independently. A more efficient alternative is to

estimate kκ and kγ simultaneously, even for a multi-segment robot, as illustrated later in

section 3.7.4.

Using the estimated kκ from trial 1 of simulation condition 1, five simulation trials were

done following Fig. 3.9 workflow. The nominal parameter values kγ0 were: γe0 = 10◦, kθ =

1, kδ = 0.1, on which ±20% randomized offsets were applied to generate actual parameter

kγa . The noise and sensor arrangement were consistent with condition 1 in Table 3.2.

Figure 3.11 shows the results of the five representative simulation trials out of ten
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(a) Position RMSE

(b) Bending angle (θe) RMSE

RMSE [mm]

RMSE [deg]

Trial #

Trial #

condition 1

condition 2

condition 3

condition 4

Figure 3.10: The RMSE of position and bending angle θe error after calibration of kκ .

conducted. Figure 3.11 (a) shows the rotation RMSEs for each iteration in the nonlinear

least-square estimation. Figure 3.11 (b) shows the percentage error of the estimates of

the parameters. The figure shows rapid convergence within less than 10 iterations and a

significant reduction in orientation error. After calibration, the average RMSE for orientation

was 1.0◦ and the averaged estimated errors of parameters γe0, kθ and kδ were 1.22%, 0.27%

and 0.44% respectively.

3.7.3 Estimation of the Overall Characteristic Vector k

An alternative approach to estimating kκ followed by estimating kγ is to directly estimate

the overall calibration characteristic k as defined in Eq. (3.53) using the method described

in 3.5.3. This simulation study was carried our to elucidate the advantages or pitfall of this

approach.

Figure 3.12 shows that for a large number (approximately 200) of calibration poses the

NLS algorithm converges to a low c̃q (joint position norm error defined in Eq. (3.75)) of

0.05 mm matching the measurement noise. However, the estimated overall characteristic k
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(a) Rotation RMSE

(b) Estimated Error

RMSE [deg]

Estimated Err. [%]

Iteration #

Trial #

Trial 2
Trial 4
Trial 6
Trial 8
Trial 10

γe0
kθ
kδ

Figure 3.11: Simulation results for twist characterization: rotational residual of different
iterations during nonlinear least-squared estimation and the resulted estimation errors.
Results show 5 simulation trials for reducing figure clutter.

RMSE [mm]Estimated Err. [%]

Number of poses

Joint RMSE

Estimated Error

Figure 3.12: Calibration error for different numbers of calibration poses: (right axis) joint
position RMSE in mm; (left axis) estimated percentage error in overall characteristic k
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exhibits poor calibration results averaging 35% norm error even if one uses 200 calibration

poses. The estimates of the curvature profile parameters were poor and the observability

indices calculated as in [67] and the noise amplification index was very low k.

The simulations show that the direct relationship between measurements in configuration

space and joint space is not sensitive enough to capture the kinematic parameters. This

difficulty stems from the use of parallel routing of backbones, which causes the length of

the ith secondary backbone to be independent from the bending shape [37, 88].

To verify the calibration algorithm computation, we investigate the calibration using

simulations assuming no noise added. The results from simulations without noise are

shown in Figure 3.13. Figure 3.14 shows the observability indices that are calculated

following [67]. From the results we can see that in ideal data cases, the number of poses

does not affect either estimated error or final residual and a small number of poses are

sufficient to achieve a good estimation. However the observability indices O2 and O4 are

very poor, which corresponds to noise amplification.

(a) estimated errors

(b) residual errors

Figure 3.13: Estimated error and residual in simulations without noise

71



O1

O2

O3

O4

Pose#
Pose#

Pose#Pose#

(a) O1

O1

O2

O3

O4

Pose#
Pose#

Pose#Pose#

(b) O2

O1

O2

O3

O4

Pose#
Pose#

Pose#Pose#

(c) O3

O1

O2

O3

O4

Pose#
Pose#

Pose#Pose#
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Figure 3.14: Observability indices in simulations without noise

3.7.4 Estimation of the Augmented ÛkT of a Multi-segment Robot

A simulation case study of a 3-segment continuum robot was used to verify our formulation

in section3.5.4. In total, 10 simulation trials were carried out under condition 1 in Table 3.2.
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In each simulation, each of the 3 segments was assigned with different shape and twist

characteristic parameters as their “actual” parameters, where random offsets up to 25%

were applied on the same nominal values as before. Simulated pose measurements, [x̄, R̄],

along with simulated configuration space measurements, Ψ̄, were generated as calibration

input based on the “actual” kinematic parameters. In each simulation, the robot was

simulated reaching 150 configurations, resulting in 450 end-disk pose measurements of

all segments and 150 configuration space variable measurements.

(a) Position RMSE

(b) Orientation RMSE

Avg. RMSE [mm]

Avg. RMSE [deg]
Iteration #

Iteration #

1th segment

1th segment

2nd segment

2nd segment

3rd segment

3rd segment

Figure 3.15: Simulation results of multi-segment robots: averaged position RMSE and
orientation RMSE of different iterations during nonlinear least-squared estimation.

The augmented parameter vector, ÛkT , was estimated using the iterative nonlinear least-

squares method as described in 3.5.4. For an iteration in one estimation, root mean square

errors (RMSEs) were captured between the measured and the modeled pose of each segment

end-disk. Positional and rotational RMSEs were reported for each segment individually

because the segments are serially stacked and the error accumulates. The averaged positional

and rotational RMSEs over the 10 simulation trials are reported in for all 3 segments in

Fig. 3.15 . The average RMSEs are reported for each iteration. The results show a rapid

convergence within less than 5 iterations to levels commensurate with the accumulated
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measurement noise. The averaged RMSE over all segments after calibration was 0.49 mm

in position and 0.97◦ in orientation.

3.8 Experimental Validation

3.8.1 Data Collection and Pre-processing for Calibration

In addition to simulation case studies, we also used the Insertable Robotic Effector

Platform (IREP) [6, 22] as an experimental evaluation platform. As shown in Fig. 3.16,

6-DoF electromagnetic (EM) sensors (NDI Ascension DriveBAY™) were attached to the

base, the 1th segment, and the 2nd segment (end-effector), respectively. In each experiment,

a continuum robot segment was controlled to bend (or straighten) in one direction. The

poses were recorded at a frequency of 125 Hz.

Sensor Arrangement

Base 1st segment 2nd segment

Figure 3.16: EM tracker experimental setup for data collection

To obtain the kinematic parameters, as in section 3.5 and 3.7, measurements of the

configuration space ψ and the in-plane position and bending angle are needed. These

measurements were obtained by processing the raw position and orientation tracked data

from EM trackers as shown in Fig. 3.17: in (a) each pose was measured as the frame of the

end-effector relative to the robot base using four EM trackers; in (b) the pose measurements

of one bending experiment were used to generate the bending plane; and by projecting the

poses onto the bending plane as in (c) we obtained the in-plane positions and bending

angles, as shown in (d).

The bending plane normal was obtained as the singular vector associated with the
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minimal singular value of the matrix containing the ẑ axes of all measured poses. Finding

the maximum and minimum in-plane bending angles of one experiment, we obtained the

value of the shape interpolation variable t as in Eq. (3.57).

(a) (b)

(c)

(d)
direction

position

sensor orientation

sensor position

EE frame

Base frame

measured

projected

robot bending

direction

Figure 3.17: Illustration of processing the robot pose measurements for calibration use.

3.8.2 Shape Characterization Results

Following section 3.5.1 and using the prepared data pairs {x̄p, t̄}, the shape kinematic

parameter estimation was done for multiple bending directions. Nonlinear least-squares

estimation was used to capture the parameters, starting with an initial guess of the shape

parameters - the length being the distance when the robot was least bent and the curvature

coefficients representing circular shapes.

To evaluate the performance of the proposed shape calibration method, a comparison

baseline was chosen as: a highly simplified calibration method assuming circular bending

shape. The circular assumption simplifies Eq. (3.10) to Eq. (C.6), and the shape calibration
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becomes a linear least-squared problem with only one parameter - length L.

pxz = [px, pz]
T = [1− sinθe, cosθe]

T L
θ0−θe

(3.91)

The results of the shape calibration of one bending direction is illustrated in Fig. 3.18,

where the circular-assumed method is compared to the proposed method.

In total, experiments were conducted for 15 bending directions, at an incremental δ

angle of 5.7◦ to cover δ ∈ [5◦,85◦]. In each bending group, 20 poses were collected for

calibration use. Using this calibration data, we obtained the calibrated shape parameters as:

L = 32.13mm, a0 = −1.07◦/mm, a1 = 0.04◦/mm2, b0 = −2.83◦/mm, b1 = 0.07◦/mm2,

in which the non-circular coefficients (a1 and b1) contributed bending angle offsets at the

tip to be 18.94◦ and 33.90◦ when the robot was least bent and was most bent respectively.

Position and bending orientation RMSE of each experiment were captured between the

modeled and the measured pose. Table 3.3 presents the RMSEs of the proposed method

(Proposed) and the circular-assumed method (Circ. Calib.).

Table 3.3: The RMSE comparison of the shape characterization experiments between
the proposed calibration method and the circular-assumed calibration method: in-plane
bending positions and orientations

Bending Direction  𝛿𝛿 = 5∘ 11∘ 16 22∘ 28∘ 34∘ 39∘ 45∘

Position
RMSE [mm]

Circ. Calib. 6.22 6.52 6.81 7.52 6.53 6.85 5.75 6.10

Proposed 1.35 1.13 1.17 1.00 0.98 0.95 0.91 1.07

Orientation
RMSE [deg]

Circ. Calib. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bending Direction  𝛿𝛿 = 51∘ 56∘ 62∘ 68∘ 74∘ 79∘ 85∘ Avg.

Position
RMSE [mm]

Circ. Calib. 5.15 5.24 5.04 4.17 3.33 3.04 2.05 5.36

Proposed 0.97 0.98 0.86 0.92 0.84 1.02 1.00 1.01

Orientation
RMSE [deg]

Circ. Calib. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Proposed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Data set: Quad4KinCalibT3 – D1 

From Table 3.3 we observe: (i) the averaged position RMSE result shows that the

proposed calibration method significantly improves the positional error over the circular-
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assumed method, reducing error from 5.36 to 1.01 mm.

(a) (b)

Calibrated

this paper
Calibrated

circular assump.

direction

position

estimated

shape

Figure 3.18: The result of one shape characterization experiment to illustrate: (a) bending
shapes calibrated using circular assumption; (b) bending shapes calibrated using the
proposed method.

To validate the shape characterization results intuitively, an HD camera was used to

capture images of the robot bending. The ground truth shape of the robot bending was

manually segmented as illustrated in Fig. 3.19. A series of continuous snapshots of the

same bending experiment is shown in Fig. 3.20, overlayed with the modeled shape using

the calibrated kinematic parameters.

3.8.3 Twist Characterization Results

Using the same experimental data collection and pre-processing procedure, the twist

characterization algorithm was evaluated. In total, 450 robot pose measurements were

collected while the robot was controlled to bend and to straighten in 15 different directions.

For each of the bending group, a set of shape parameters was rapidly captured. A nonlinear

least-square estimation, as discussed in 3.7.2, was performed to capture the twist kinematic

parameters kγ = [γe0 ,kθ ,kδ ]
T. The estimation was initialized without twist i.e. kγ0 =
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Robot
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Manual

Annotation

Calculated

Results

Comparison
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5
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33

4

Figure 3.19: An image validation example of the shape characterization: (a) continuum
robot segment; (b) manual annotation, including two boxes of the robot base and end-
effector and two edges of the bending segment; (c) the calculated central backbone and end
effector frame; (d) comparison of the processed image, overlayed with the characterized
shape. 1, 4 - the fitted rectangles and frames of the base and end-effector using, [3] 2,
3 - the fitted 3rd order polynomial curves representing the segment edge and centerline
respectively, 5 - the estimated shape from calibration, 6 - the EM tracker reading rewritten
in the image frame.

[0,0,0]T.

Figure 3.21 shows that after 35 iterations, the root mean squared (RMS) rotational

error converged from 12◦ to 2◦. The estimation converged at a parameter result of γe0 =

−13.56◦,kθ = 0.062,kδ = −0.025. The result indicates that, for this particular robot

assembly, a constant twist offset, γe0 , has more influence than bending angle or bending

plane angle.

Fig. 3.22 illustrates the rotation errors between the modeled and the measured pose by

plotting one sample in an experiment: the calibrated model and the model without twist are

shown for visual comparison.

Root mean square errors were captured between modeled and measured orientations

for each bending direction, and this evaluation was performed on the model including twist

and model without twist. Results of this comparison are reported in Table 3.4.
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Figure 3.20: The validation snapshots of a continuous bending motion were captured while
the estimated shapes calculated using the calibration algorithm were overlayed to compare.
1, 2 - the fitted rectangles and frames of the robot base and end-effector that are obtained
from the annotated images, 3 - the fitted shape obtained from the annotated images, 4 - the
estimated shape from calibration, 5 - the EM tracker reading rewritten in the image frame.

Table 3.4: The RMSE comparison of modeling the orientation between using the proposed
method and using the non-twist model

Bending Direction  𝛿 = 5∘ 11∘ 16 22∘ 28∘ 34∘ 39∘ 45∘

Orientation

RMSE

[deg]

Non-twist 12.75 14.18 11.84 12.78 14.71 12.20 12.77 14.71

Proposed 0.66 1.88 2.09 0.86 2.43 2.73 0.77 2.24

Bending Direction  𝛿 = 51∘ 56∘ 62∘ 68∘ 74∘ 79∘ 85∘ Avg.

Orientation

RMSE

[deg]

Non-twist 12.30 12.93 14.91 12.55 13.09 14.83 12.69 13.32

Proposed 2.48 0.78 1.81 1.90 0.97 1.64 1.58 1.79

Data set: Quad4KinCalibT1 – D13.8.4 Integration and Evaluation of the Calibrated Model

To further investigate the feasibility of the proposed calibrated model, we next discuss

the integration and evaluation of the calibrated model in a rectified real-time control framework

[6]. The real-time control model operates without the use of magnetic tracker data, which

was used to provide the shape interpolation variable t when formulating and solving the

calibration problem.

For the evaluation, we used the IREP’s twi-segment arms with the setup shown in

Fig. 3.16. A real-time control code was implemented using Matlab® Simulink Real-Time™

79



Orientation Root Mean Square ErrorRMSE [deg]

Initial guess, assuming no twist
γe0 = 0, kθ = 0, kδ = 0

Iteration #

Converged result
γe0 = −13.56◦, kθ = 0.062, kδ = −0.025

Figure 3.21: Orientation RMSE of iterations from the nonlinear least-square estimation to
capture twist characterization using data from one bending experiment.

Calibrated model Un-calibrated model
(assuming no twist)

EE poses EE poses

BaseBase

Zoom-inZoom-in

errorerror

angleangle

Figure 3.22: An illustration of rotational errors between the modeled poses and the
measured poses.

at 1 kHz cycle frequency. An actuation compensation scheme based on [77], which compensates

for actuation transmission motion losses due to extension of the actuation lines was used.

The control code also used a resolved rates algorithm using an updated Jacobian Jxψ

based on the calibrated bending shape. The resolved rates algorithm provides a means

for calculating the current ψ given a desired end-effector pose (position and orientation).

Solving Eq. (3.3) for t for a given θe provides the input to our calibrated model control

code without use of real-time tracking of the end effector pose for control purpose. Instead,

the magnetic tracking was used for evaluating the accuracy of trajectory following. For

trajectory following, a path plan was generated offline in configuration space and a resolved-
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rates method was used in real-time control. The end effector was tracked using the magnetic

tracker with position/orientation RMSE tracking of 1.5mm/0.5◦. The real-time calibrated

model is integrated with the actuation compensation mentioned above, as shown in Fig. 3.23.

ψides

δides

θ̇ides Kin. Parameters

Interpolated
Kin. Parameters

δ = 0◦, sgn(θ̇) > 0

δ = 0◦, sgn(θ̇) < 0

δ = 5◦, sgn(θ̇) > 0

. . .

δ = δdes, sgn(θ̇des)

[θdes, δdes]
T [t, δcomp]T

Actuation Comp.

Actuation Compensation

Segment Kin. Model

Shape Torsional twist

[pi,Ri]

Multi-segment Kin. Model
Tip position

Figure 3.23: Real-time system integration solution of the calibrated kinematic model,
combined with the actuation compensation.

To evaluate the performance of the calibrated model, the two-segment continuum arm of

the IREP was commanded to follow a desired 3-dimensional ‘V’ trajectory as depicted by

the dashed line in Fig. 3.24. The IREP arms include 7 degrees of freedom, but we used only

four degrees of freedom since we wanted to valuate only the performance of the continuum

portion of the robot in order to evaluate the effect of our calibration model. Therefore, we
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specified a task of path following without orientation specification. When the calibrated

non-circular bending model with twist was used, the robot tracked the v shape depicted in

solid red line in Figure 3.24(a). The robot exhibited a position RMSE of 3.22mm. When

a circular bending model was used based on measurement of segment lengths, the robot

tracked the solid red line shown in Fig. 3.24(b) with an RMSE of 9.85mm. We also note

that when a calibrated model using circular assumption to adjust the segment lengths was

used the error was very high thereby we aborted evaluation. This was expected due to the

constraint of matching the tip orientation to the measured tip angle while using circular

bending model, which does not reflect the actual bending model (see for example the case

of a single segment in Fig. 3.18(a)).

Though our method led to 305% improvement in tracking error, the tracking error

RMSE was still high (3.22mm). This result can be explained by two factors: our calibration

data includes the tracking RMSE of 1.5mm/0.5◦, which stack serially. In addition, our

calibration model does not extend to calibrating our assumed model of actuation compensation

based on [77].

(a) Calibrated Non-Circular bending with Twist (b) Uncalibrated Circular Bending

RMSE = 3.22 [mm] RMSE = 9.85 [mm]

x̂b x̂b

ŷb ŷb

ẑb ẑb

[mm]

[mm]

desired
measured
error

Figure 3.24: A “V” shape spatial trajectory following using (a) the proposed calibration
and (b) an uncalibrated circular bending model based on measurement of segment length.
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3.9 Conclusion

Current continuum robot modeling frameworks are not sufficiently accurate for autonomous

tasks. To overcome these challenges, this paper presented a kinematic framework aiming

at deriving calibration identification Jacobians of multi-backbone continuum robots. Two

kinematic mappings, the configuration-to-task mapping, and the configuration-to-joint mapping,

are derived for error prorogation and calibration. Errors in the configuration-to-task space

mapping are captured through the use of bending shape homotopy, which introduces modal

factors for calibrating the bending shape. Errors due to assembly are captured through

modeling of twist along the central backbone. Errors in the joint-to-configuration mapping

account also for errors in joint home values.

Several calibration alternatives are considered, including direct calibration of the resultant

joint-to-task space mapping. It is shown that such direct calibration is not advisable due

to its poor observability. Instead, a calibration of the configuration-to-task space mapping

should be carried out independently. Also, it was shown that adding a larger number of

sensors along the length of a continuum segment has little effect on improving the results

of calibration - especially if one considers direct calibration of the joint-to-task space

mapping. Simulation studies for multi-segment continuum robots validate our models and

experimental results on a continuum robot for single port access surgery show a drastic

improvement in the accuracy of the model.

In this work we assumed that a calibration of joint-space motion losses due to extension

of the actuation lines has been carried out as a pre-requisite (e.g. such as the approach

presented in [77]. While carrying out the calibration, we used the desired configuration

space variablesψdes to allow the calibration of configuration-to-joint space mapping. Residual

errors of the joint-to-configuration space mapping affect the subsequent configuration-to-

task space mapping and therefore one should first attempt to create as accurate a model as

possible for compensating motion losses in these robots. A future expansion of our work

would be the extension of the kinematic model to incorporate actuation line motion losses.
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We however believe that such an approach should be investigated in detail since the two

mappings (joint-to-configuration and configuration-to-task space) are not easily decoupled

in the calibration process. Observability of the identification Jacobians for an extended

model that also includes joint-to-configuration space mapping should be investigated.

Additional future improvements to overcome the limitations of this work include investigating

calibration methods for continuum robots under loading. Such methods could benefit from

the method presented here by producing multiple calibration maps for different loading,

but such extension is not trivial and deserves further research. In addition, extension of

the calibration method to include calibration of the actuation compensation models could

possibly lead to additional improvements and will be the subject of future research.

We believe that the approach presented in this chapter can enable surgical continuum

robots to accurately carry out semi-autonomous tasks involving small or no forceful interaction

with the anatomy (e.g. laser ablation). In addition, this framework may be used in the

future to initialize a kinetostatic model that takes into account deflections. To demonstrate

the utility of our calibration approach, we have applied it to solving the calibration and

modeling of several different flavors of continuum robots. In addition to first demonstrating

it for the insertable robotic effectors platform (IREP) in [95, 97], we have applied our

calibration approach to rectifying the kinematic model of a pneumatically-actuated continuum

endoscope [31, 32] and to the modeling and calibration of a new type of continuum robots

capable of micro-scale and macro-scale motion [21, 94].
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Chapter 4

Simplified Kinematics of Continuum Robot Equilibrium Modulation via Moment

Coupling Effects and Model Calibration

4.1 Concept of Continuum Robots with Equilibrium Modulation (CREM)

Current robotic manipulators for minimally invasive surgery (MIS) are capable of dexterous

motion for surgical tasks requiring large workspace and position accuracy ranging from 0.5

to 1.5 mm. For example, the root mean square (RMS) localization accuracy of the da-Vinci

Classic and da-Vinci S was evaluated experimentally as 1.02 mm and 1.05 mm respectively

by Kwartowitz et al. [53, 54]. Despite recent increases in precision, current commercial

surgical systems are unable to support micro-surgical precision (less than 0.1mm precision),

and such precision can benefit micro-surgical tasks (e.g. micro-anastomosis and micro-

vascular reconstruction [43, 90, 15, 60]).

This chapter is motivated by a need for increased motion resolution at a micro-surgical

scale and during deep surgical access minimally invasive surgery. In addition, the paper

is equally motivated by the potential benefits of a new class of surgical devices capable

of multi-scale motion. Such devices promise to provide a large workspace for traversal of

deep passageways and for gross surgical manipulation while offering micro-scale motion

suitable for cellular-level surgery. We refer to devices capable of macro and micro-scale

motion as Multi Scale Motion (MSM) devices. With the advent of new devices with

integrated optical coherence tomography imaging and confocal endo-microscopy (e.g. [109,

113]), the use of MSM can allow future image-based biopsy with imaging resolutions

at cellular size [29, 61]. Such devices can in the future support surgical decisions on

continued tumor excision, which can minimize the need for repeat follow-up surgeries due

to incomplete resection of tumors.
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1

2

3

µ-motion

Figure 4.1: Continuum robots with equilibrium modulation (CREM): 1 secondary tubular
backbones, 2 spacer disks, 3 equilibrium modulation backbones. The thick bi-directional
arrows designate direct actuation of pushing and pulling on the secondary backbones while
the thin bi-directional arrows designate the indirect actuation of the equilibrium modulation
backbone insertion.

To achieve MSM capabilities, this paper adopts the new design concept for Continuum

Robot Equilibrium Modulation (CREM), which was first presented in [21]. CREM robots

use a continuum structure that is primarily based on flexible elements to achieve large

scale manipulation (i.e. robots without hinges and pin joints [74]). They also use fine

adjustments to their static equilibrium pose in order to achieve micro-scale motion. The

design concept for these robots is presented in Figure 4.1. This design is modified from

a multi-backbone continuum robot presented in [86]. Each segment of a multi-segment

continuum robot (MBCR) includes superelastic NiTi backbones. A single central backbone

is surrounded by secondary backbones that are radially constrained by spacer disks and

equidistantly distributed circumferentially around the central backbone. Macro motion of

the robot tip is achieved by pushing and pulling on the secondary backbones (designated

by the thick arrows in Fig. 4.1), which causes a deformation of the continuum robot body.

We call this method of actuation direct actuation where the robot actuators directly change

the length of the secondary backbones. In addition, CREM robots use indirect actuation

whereby the equilibrium pose of the end effector is indirectly altered through a change of

internal force distribution or by a change in material distribution altering cross sectional
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stiffness. For example, by inserting superelastic Ni-Ti beams (henceforth referred to as

the Equilibrium Modulation Backbones (EMBs)) inside the secondary backbones (see thin

arrows in Fig. 4.1), the static equilibrium of the robot is altered (modulated) by minute

amounts.

4.2 Related Work

Compared to prior designs, CREM robots possess a unique capability to allow MSM

using a single design. Most prior works in the area of MSM rely on serial stacking of a

macro-scale motion robot and a micro-scale robot, and such examples include Egeland’s

pioneering work [24] and followed by several other works such as [20, 39, 26, 1, 19, 49,

66]. Other researchers investigated a variety of actuation methods and mechanisms to

achieve micro motion capabilities, including a Steward/Gough parallel robot driven by

hydraulic micro-actuators [73], twisted wire actuators for a planar parallel robot [84], a

micromanipulation tool using shape memory alloy [80], and a piezo-electrically actuated

parallel platform [110]. Although these works achieved micro-scale motion resolution,

they are not suitable for MSM in confined spaces, in which continuum robots in general

have advantages.

Within the context of continuum robots, the most relevant modeling works are [104]

where a solution framework based on constraints of geometric compatibility and static

equilibrium was derived using elliptic integrals for multi-backbone continuum robots and

[76, 79] where Cosserat rod theory was used for dynamics modeling of wire-actuated

continuum robots. One could use these methods to model the tip micro motion, however,

due to the formulation complexity and the solutions of equilibrium direct kinematics based

on energy minimization or boundary value problem solution it is hard to obtain an updated

differential kinematics model that accounts for the exact bending shape curvatures. Also,

due to uncertainties in material properties and friction, using an exact modeling method

does not add value since a model calibration step has to be carried out anyhow when
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attempting to control a physical robot.

Another work is Li et al. [57], where the authors presented a constrained wire-driven

flexible mechanism which used a constraint rod to selectively adjust its workspace by

altering the length of its distal bending portion. The work showed that the constraint rod

can change the workspace. The design however does not lend itself to easily allowing

MSM and the work did not consider methods for achieving or modeling CREM.

Finally, our proposed design differs substantially from concentric tube robots [23, 100]

in that the equilibrium modulation that creates the tip micro-motion is still governed by the

strong geometric constraints employed by the parallel-backbone structure. Concentric tube

continuum robots achieve their workspace through antagonistic bending of tube pairs and

therefore they can theoretically be used for micro-scale equilibrium modulation. However

to achieve micro-scale motion the designers are forced to use stiffness matched tube pairs

with a very small difference in free curvature. The attainment of micro-scale motion by

concentric tube robots therefore comes at the expense of sacrificing the macro-scale motion

capabilities.

In contrast to the above-mentioned works, this paper takes a different approach. Instead

of focusing on a high fidelity model, we present a simplified model that can be readily

used to obtain the differential micro-motion kinematics Jacobian and is readily amenable

to formulating a model calibration problem. This micro motion Jacobian is essential for

control purpose, and an associated identification Jacobian is needed for calibration purposes.

Therefore, the paper focuses on the derivation of the micro-motion kinematics and its

associated identification Jacobian for calibration and error prorogation.

This work is built upon our previous work [21], in which we presented the concept

of CREM and provided a visual measurement solution to observe micro-motion. The

work in [21] lacked a modeling approach that can explain the experimental observations

and that can be used for control and identification purposes. The contribution of this

work is in presenting a simplified kinematic modeling framework that captures the micro-
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motion achieved by the equilibrium modulation of continuum robots, and in developing

a calibration approach to capture the model parameters. We put forth the concept of

moment coupling effect as a simplified approach to describe the equilibrium modulation

behavior, and thereby, both direct kinematics and instantaneous kinematics are formulated

for control purposes. To account for errors potentially caused by the simplistic modeling

assumptions, a modeling uncertainty term is introduced, and the identification Jacobian

along with a calibration framework to capture the parameterization is developed. Using

the multi-backbone continuum robot design in [21] as a validation platform, we validate

the kinematic model and model calibration experimentally while augmenting these results

with additional simulation validations.

4.3 Equilibrium Modulation Backbone Insertion to Create Micro Scale Motion

This section presents the bending shape equilibrium modeling in the case where the

Equilibrium Modulation Backbone (EMB) insertion is at a given depth qs. To motivate

the modeling approach taken we will first refer the readers to [86] where the simplified

kinematics of multi-backbone continuum robots was presented. When the EMBs are not

inserted and for proper design parameters (e.g. small spacing between the spacer disks)

the continuum segment bends in a constant curvature [102]. We use this assumption to

create a simplistic equilibrium model which lends itself to fast real-time computation.

Since we have to account for modeling uncertainties due to friction and material parameter

uncertainties, we later lump the error of the simplified model in an uncertainty term λ that

will be used to produce an updated CREM model.

4.3.1 Simplistic Equilibrium Model

Figure 4.2 shows the free body diagram of a continuum segment with and without

an inserted EMB. In Fig. 4.2(b), a separation plane is defined at the insertion depth qs,

dividing the segment into two subsegment - Inserted and Empty. Though not accurate, the
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Figure 4.2: Example of a bent snake segment inserted with an equilibrium modulation
backbone (EMB). For clarity, the spacer disks are not shown. 1 End-disk, 2 Empty
subsegment, 3 Separation plane at EMB insertion depth qs, 4 Inserted subsegment, 5

Base-disk.

two subsegments are both assumed to have constant but different curvatures. The angles θ ′

and θs denote the bending angles of the end-disk and at the insertion depth, respectively,

when the EMB is inserted. The angle θ denotes the nominal bending angle when the EMB

is not inserted. The angle θ0 = π/2 denotes the angle at the base of the segment.

We first consider the resultant moment m1 that the backbones apply on any imaginary

cross section of the continuum segment when no EMB is inserted (Fig. 4.2(a)):

m1 = EpIp
θ −θ0

L
+∑i EiIi

θ −θ0

Li
(4.1)

Where Ep, Ei and Ip, Ii denote the Young’s moduli and cross-sectional bending moments

of inertia of the central backbone and the ith secondary backbone, respectively. Also L and

Li denote the lengths of the central backbone and the ith secondary backbone.

We also consider the moment m1
′ along the empty subsegment in the case of EMB
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being inserted (Fig. 4.2(b)):

m1
′ = EpIp

θ ′−θs

L−qs
+∑i EiIi

θ ′−θs

Lεi

(4.2)

Where Lεi denotes the ith backbone length portion that belongs to the empty subsegment

(this is the arc-length from the separation plane until the end-disk).

We next use key definitions from [87]. The radial distance between the secondary

backbones and the primary backbone is denoted r. When r is projected onto the plane in

which a segment bends, we obtain the projected radial distance ∆i:

∆i = r cos(σi), σi = δ +(i−1)β (4.3)

where σi designates the angular coordinate of the i th backbone relative to the bending

plane. The angular coordinate of the first backbone relative to the bending plane is δ and

the angular separation between secondary backbones is β = 2π

n where n is the number of

secondary backbones.

The length of the i th backbone, Li is derived using the fixed radial offset between the

backbones:

Li = L+∆i(θ −θ0) (4.4)

Using similar rationale, we calculate the empty length portion Lεi and the inserted length

portion of the i th secondary backbone Lsi:

Lsi = qs +∆i(θs−θ0) (4.5)

Lεi = (L−qs)+∆i(θ
′−θs) = Li−Lsi (4.6)

In both Fig. 4.2(a) and (b), the static equilibrium at the end-disk is determined by

the geometric constraints and the backbone loading forces at the end-disk. For example,

coordinated pulling and pushing on all secondary backbones are assumed to form a force
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couple that generates only a moment at the end-disk.

We next use a simplifying assumption that the effect of EMB wire insertion on changes

in the bending curvatures of the un-inserted subsegment backbones is negligible, hence:

m1 = m1
′ (4.7)

Next, we consider m2 and ms, the moments that the secondary backbones and the EMB

apply on the separation plane as shown in Fig. 4.2(b):

m2 = −
(

EpIp
θs−θ0

qs
+∑i EiIi

θs−θ0

Lsi

)
(4.8)

ms = −EsIs
θs−θ0

qs
(4.9)

Where Es and Is denote the Young’s modulus and cross-sectional bending moment of inertia

of the EMB.

Substituting equations (4.1, 4.2) into (4.7), results in one equation having two unknowns

θ ′ and θs as illustrated in Fig. 4.2(b). To obtain the second equation necessary for solving

for these two unknowns, we use the moment balance on the separation plane:

m1
′+m2 +ms = 0 (4.10)

To solve equations (4.10) and (4.7) for the unknowns θ ′ and θs we explicitly express the

backbone moments using the beam equation m = EIκ where κ designates the radius of

curvature and EI designates the bending cross sectional stiffness of a beam. In doing so,

we note that the curvature of a beam bent in a circular shape satisfies κ = θ

L where θ is the

deflection angle and L is the beam length. Since the backbone lengths are a function of the

unknowns, we will rewrite the moment equation for a beam as m = EI
L θ and, by defining

the beam angular deflection stiffness kθ ,
EI
L we obtain a simple equation for the moment

m = kθ θ .
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Using the above definition for beam angular deflection stiffness, we rewrite the moment

equations for each beam as:

m1 = kθ0 (θ −θ0), kθ0 =
EpIp

L
+∑i

EiIi

Li
(4.11)

m1
′ = kθ1 (θ

′−θs), kθ1 =
EpIp

L−qs
+∑i

EiIi

Lεi

(4.12)

m2 =−kθ2 (θs−θ0), kθ2 =
EpIp

qs
+∑i

EiIi

Lsi

(4.13)

ms =−kθs (θs−θ0), kθs =
EsIs

qs
(4.14)

Substituting Eq. (4.12)-(4.14) in Eq. (4.10) results in:

θs =
kθ1θ ′+ kθ2θ0 + kθsθ0

kθ1 + kθ2 + kθs

(4.15)

Substituting equations (4.11) and (4.12) in Eq. (4.7) results in:

θ
′ =

k0

k1
(θ −θ0)+θs = fθ ′(θs) (4.16)

As a final step in the solution, we substitute the result in Eq. (4.16) in Eq. (4.15), thereby

obtaining θs and subsequently θ ′.

4.3.2 Updated CREM Model

Equations (4.15) and (4.16) present the solution to the simplistic modeling approach

that is fundamentally based on Eq. (4.7) and Eq. (4.10). In addition to the simplified

assumption, the current model also neglects modeling uncertainties due to frictional effects

and material property uncertainties. Prior works in [36, 77] show that these uncertainties

include friction and strain along the actuation lines, non-uniformly distributed load on

backbones that causes shape deviations from constant-curvature bending, deviations in the

cross section of the backbones during bending, and uncertainties in the properties of the
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NiTi backbones.

To account for the modeling uncertainties caused by friction, material uncertainty1, and

our simplistic model, we introduce an uncertainty term λ to Eq. (4.10):

m1
′+m2 +ms = λ (qs,θ ,kλ ) (4.17)

The uncertainty term λ captures effects of EMB insertion offset, bending angle uncertainty

and a fixed offset:

λ (qs,θ ,kλ ) = kλ0 + kλθ
θ + kλq qs; kλ , [kλ0,kλq ,kλθ

]T (4.18)

The solution in Eq. (4.15) is also updated to:

θs =
k1θ ′+ k2θ0 + ksθ0−λ

k1 + k2 + ks
(4.19)

Having obtained the solutions to the equilibrium tip bending angle θ ′ and the bending

angle at the separation plane θs, we introduce an equilibrium configuration space variable

vector φ to combine them. With the purpose of preparing for kinematic derivations in later

sections when we break a single continuum segment down to two subsegments, the vector

φ is defined as:

φ, [θs,θε ]
T, θε , θ

′+
(

π

2 −θs
)

(4.20)

Where θε represents the bending angle of the empty subsegment.

We define the configuration space variable ψ as the nominal bending angle θ and the

bending plane angle δ :

ψ , [θ ,δ ]T (4.21)

Finally, the solution to equilibrium modeling problem is presented as a mapping FFFeqm

1Manufacturer-specified Young’s modulus for superelastic NiTi is typically provided with a wide range
of 40-70 GPa

96



which is used in deriving the Jacobian matrices in the following sections:

φ=FFFeqm(ψ,qs,kλ ), φ ∈ IR2,ψ ∈ IR2,kλ ∈ IR3 (4.22)

Equation (4.22) provides the end disk equilibrium angle for a combination of any given

EMB insertion length qs, nominal bending angle θ , and bending plane angle δ .

4.4 Kinematic Modeling

Kinematic modeling of CREM includes the mapping of configuration space to task

space and its differential kinematics. The differential kinematics include the instantaneous

kinematics and the error propagation.

The instantaneous kinematics is derived for control purpose, and it includes two motion

Jacobian matrices that both relate actuation speeds to the robot tip velocity. The macro

motion Jacobian JM is associated with the joint velocities of push/pull on backbones (direct

actuation) while the micro motion Jacobian Jµ is related to the EMB insertion velocity

(indirect actuation).

The kinematic error propagation investigates how errors in parameters contribute to

errors in kinematic measurements of task space (e.g. measured positions). In this work, we

focus on the vector kλ that parameterizes the modeling uncertainty. Other robot geometric

kinematic parameters can be calibrated following [96]. An identification Jacobian Jk is

derived and used in section 4.5 to estimate kλ with experimental measurements.

4.4.1 Kinematic Modeling Using Mapping FFFeqm

With the mapping FFFeqm in Eq. (4.22) derived as the result of static equilibrium, the

kinematic mapping can be formulated by considering a single continuum segment as two

concatenated subsegments - the inserted and the empty, divided at the insertion depth qs.

Figure 4.3 illustrates our approach to analyzing the two concatenated subsegments. The

bending angles of both subsegments were introduced in Eq. (4.20), denoted as θs and θε ,
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ẑb = ẑ1
ŷc

x̂c

x̂p
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Figure 4.3: A single segment treated as two concatenated subsegments for a given micro-
motion wire insertion depth. 1 Empty subsegment, 2 Inserted subsegment.

for the inserted and the empty subsegment. Since the whole segment is assumed to bend in

plane, both subsegments have the equal bending plane angles:

δs = δε = δ (4.23)

The kinematic nomenclature used in this paper refers to Table 4.1 (shown in Fig. 4.3).

Recalling the direct kinematics of a single segment [36] having length Lx and an end

disk angle θx, the end disk pose (position and orientation) relative to the base are given by:

base p end-disk / base =
Lx

θx−π/2




cosδx (sinθx−1)

−sinδx (sinθx−1)

−cosθx




(4.24)

base R end-disk = e−δx [z∧] e(
π

2−θx) [y∧] eδx [z∧] (4.25)
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Where δx designates the angle of the bending plane (analogous to δ in Fig. 4.3), [v∧]

represents the cross-product matrix of vector v and the matrix exponential e α[v∧] represents

a rotation matrix about the axis v by an angle α .

To obtain the pose of the end disk of the inserted segment is given by bpc/b and bRc we

substitute Lx = qs,θx = θs,δx = δ in Eqs. (4.24, 4.25). Similarly, the pose of the end disk of

the empty segment relative to its base is obtained by substituting Lx = L−qs,θx = θε ,δx = δ

in Eqs. (4.24, 4.25) to result in cpg/c and cRg.

The pose of the free subsegment end disk relative to the segment base is given by:

bpg/b =
bpc/b +

bRc
cpg/c ,FFFg(φ,δ ,qs) (4.26)

bRg =
bRc

cRb = Rg(φ,δ ) (4.27)

Casting the above two equations in a homogeneous transform format yields:

bTg =




bRg
bpg/b

0 1


,FFFT (φ,δ ,qs) (4.28)

With φ expressed using mapping FFFeqm(ψ,qs,kλ ), the forward kinematics is determined,

which can be also written as:

bTg ,FFFT (ψ,qs,kλ ) (4.29)

4.4.2 Differential Kinematics

The total differential of a homogenous transformation T ∈ SE(3), may be represented

as:

dξ ,
[
(dx)T,(dµ)T]T , dξ ∈ IR6×1 (4.30)

dx, d(bpg/b), dµ, [dµx,dµy,dµz]
T (4.31)
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Where dx and dµ represent translational and rotational differentials in the base frame2. The

vector µ ∈ IR3×1 represents a chosen orientation parametrization (e.g. Euler angles).

The total differential of bTg is obtained by considering differentials on all variables, i.e.

dφ, dδ , and dqs:

dξ =
∂ξ

∂φ
dφ +

∂ξ

∂δ
dδ +

∂ξ

∂qs
dqs (4.32)

Using the nomenclature of a Jacobian Jab such that δa = Jabδb, we define the following

Jacobian matrices:

∂ξ
∂φ , Jξφ ∈ IR6×2, ∂ξ

∂δ
, Jξδ ∈ IR6, ∂ξ

∂qs
, Jξqs ∈ IR6 (4.33)

The Jacobian matrices Jξφ, Jξδ , and Jξqs , respectively, relate the differential on equilibrium

configuration space variable dφ = [dθs,dθε ]
T, the differential on bending plane angle dδ ,

and differential on EMB insertion depth dqs, to the corresponding differential contributions

on the pose vector dξ.

Both Jξφ and Jξδ can be obtained by treating the inserted and empty subsegments as a

concatenated two-segment robot, which is explained in section 4.4.3.

The third Jacobian, Jξqs , defined as the partial derivative, ∂ξ/∂qs, is derived with

the other variables (φ and δ ) held constant. The end-effector orientation, given by bRg

in Eq. (4.27) is not a function of qs. Therefore, by considering only the translational

differential due to dqs, we have:

Jξqs =




∂ bpc/b

∂qs
+ bRc

∂ cpg/c

∂qs

03×1


 (4.34)

Where
∂ bpc/b

∂qs
and

∂ cpg/c
∂qs

are derived from Eq. (4.24). It is important to note that Jξqs

differs from the micro motion Jacobian Jµ derived later in that Jξqs is a contributing part of

2A differential rotation is a sequence of rotations of small angles.
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Table 4.1: Nomenclature for Kinematic Modeling

Symbol Description
Frame
{F}

designates a right-handed frame with unit vectors x̂ f , ŷ f , ẑ f and point f as
its origin.

Frame
{B}

the base disk frame with b located at the center of the base disk, x̂b passing
through the first secondary backbone and ẑb perpendicular to the base disk.

Frame
{1}

Frame of the bending plane having ẑ1 = ẑb and x̂1 passing through with
the project point of the end disk center. The angle δ is defined as from x̂1
to x̂b about ẑb according to right hand rule.

Frames
{E}
&
{G}

Frame {E} is defined with ẑe as the normal to the end disk and x̂e is the
intersection of the bending plane and the end disk top surface. Frame {G}
is the gripper frame that has the same ẑ as {E}, i.e. ẑg = ẑe, but x̂g is
passing through the first secondary backbone. It can be obtained by a
rotation angle (−σ1e) about ẑe.

Frames
{P} &
{C}

These frames are defined in a manner similar to the definition of frames
{E} and {G} but for a specific arc insertion length qs as opposed to the full
length of the robot segment L. The x̂c− ŷc plane is the insertion plane as
in shown in the planar case in Fig. 4.2.

Frame
{I}

designates the microscope image frame having the origin at the corner
of the image and having its x-y axes aligned with the width and height
directions

(
Fig. 4.8(a, c)

)
.

Frame
{M}

designates the marker frame that is determined by segmentation of the
microscope image

(
Fig. 4.8(c)

)
.

Vector
xpa/b

designates the position of point a relative to point b that is expressed in
frame {X}.

Jµ - the length ‘tangential’ contribution, while dqs also propagates to dφ that also causes

change on dξ.

Having derived the above three Jacobian matrices, Jξφ, Jξδ , and Jξqs , we obtain the

pose total differential dξ expressed using differentials dφ, dδ , and dqs. Further, the differential

dφ is a result of multiple other differentials, which can be seen from mappingFFFeqm(ψ,qs,kλ ).

To fully investigate and decouple the contributions of direct (macro) and indirect (micro)

actuation, we express dφ using differentials on (ψ,qs,kλ ). This differentiation is also

motivated by Eq. (4.29), where the variables are decoupled as ψ for macro motion, qs for
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micro motion, and kλ for micro motion parameters. Such differentiation is derived as:

dφ=
∂φ

∂ψ
dψ+

∂φ

∂qs
dqs +

∂φ

∂kλ

dkλ (4.35)

∂φ

∂ψ
=
[

∂φ
∂θ

, ∂φ
∂δ

]
,

∂φ

∂kλ

=

[
∂φ

∂kλ0
, ∂φ

∂kλθ

, ∂φ
∂kλq

]
(4.36)

Where the gradient terms are derived in Appendix E.1 as:

∂φ

∂θ
= (AS0−ΓθsS1)

−1 Γθ , Jφθ (4.37)

∂φ

∂δ
= (AS0−ΓθsS1)

−1 Γδ , Jφδ (4.38)

∂φ

∂qs
= (AS0−ΓθsS1)

−1 Γqs , Jφqs (4.39)

∂φ

∂kλi

= (AS0−ΓθsS1)
−1 B′kλi

, Jφkλi
,

∂φ

∂kλ

, Jφkλ
(4.40)

Cφ , S0φ−C0, Γx = B′x−A′xCφ (4.41)

Matrices A′x,B′x are partial derivative matrices with respect to variable ‘x’, and A,S0,B,C0,S1

are defined as:

A =




k1 + k2 + ks −k1

k1 −k1


 , S0 =




1 0

1 1


 (4.42)

B =




(k2 + ks)θ0−λ

k0(θ0−θ)


 , C0 =




0

θ0


 , S1 =

[
1 0

]
(4.43)

Using Eq. (4.37-4.43), dφ is fully expressed as Eq. (4.35). Substituting dφ into the original

differentiation in Eq. (4.32), we obtain the full differential kinematics that relates differentials

on {ψ,qs,kλ} to the pose total differential dξ:

dξ =
∂ξ

∂φ

∂φ

∂θ
dθ +

∂ξ

∂φ

∂φ

∂δ
dδ +

∂ξ

∂φ

∂φ

∂qs
dqs +

∂ξ

∂φ

∂φ

∂kλ

dkλ +
∂ξ

∂δ
dδ +

∂ξ

∂qs
dqs

(4.44)
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Rewriting Eq. (4.45) using the Jacobian definitions:

dξ = Jξφ Jφθ dθ + Jξφ Jφδ dδ + Jξδ dδ +

Jξφ Jφqs dqs +Jξqs dqs +Jξφ Jφkλ
dkλ

(4.45)

Collecting like terms of dψ, dqs, and dkλ , we obtain a differentiation that decouples

differentials of the macro motion, the micro motion, and the parameters:

dξ =
[

Jξφ Jφθ Jξφ Jφδ +Jξδ

]

︸ ︷︷ ︸
, JMψ

dψ +

[
Jξφ Jφqs +Jξqs

]
︸ ︷︷ ︸

, Jµ

dqs + Jξφ Jφkλ︸ ︷︷ ︸
, Jk

dkλ

(4.46)

The above result completes the mapping from configuration to task space. It clearly delineates

the effects of EDM insertion and direct actuation to achieving macro and micro motion.

For control purposes, a complete mapping from joint to task space is needed. We therefore

consider next the mapping from direct (macro) actuation joint space q to task space ξ. Since

three secondary backbones are used in our experimental setup as illustrated in Figure 4.3,

we will define q, [q1,q2,q3]
T where:

qi , Li−L (4.47)

When obtaining this mapping, we consider the nominal segment kinematics for multi-

backbone continuum robots as in [86].

The Jacobian that relates the differential dq to the differential dψ was reported in [102]

as:

dq, Jqψ dψ, Jqψ = r




cδ (θ0−θ) sδ

c(δ+β ) (θ0−θ) s(δ+β )

c(δ+2β ) (θ0−θ) s(δ+2β )




(4.48)
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Where r denotes the constant radial distance between the central and surrounding backbones,

and β = 2π/3 denotes the backbone separation angle. Using Eq. (4.48), we substitute dψ

into Eq. (4.46), arriving at the final differential kinematics:

dξ = JM dq + Jµ dqs + Jk dkλ (4.49)

Equation (4.49) fully decouples the end-effector pose differential to contributions of the

direct (macro) actuation dq, the indirect (micro) actuation dqs, and the modeling uncertainty

dkλ . The three Jacobian matrices are obtained from Eq. (4.49) as an important finding of

this paper: JM defined as the Macro motion Jacobian, Jµ defined as the Micro motion

Jacobian, and Jk defined as the Identification Jacobian.

JM =

[
Jξφ Jφθ Jξφ Jφδ +Jξδ

]
(Jqψ)

†, JM ∈ IR6×2 (4.50)

Jµ = Jξφ Jφqs +Jξqs, Jµ ∈ IR6×1 (4.51)

Jk = Jξφ Jφkλ
, Jk ∈ IR6×nk (4.52)

Where (·)† is the Moore-Penrose pseudo inverse.

4.4.3 Deriving Jξ φ and Jξ δ

The result in Eq. (4.49) builds on knowing the Jacobians Jξφ ∈ IR6×2 and Jξδ ∈

IR6×1 as mentioned in Eqs. (4.32, 4.33). We now provide a derivation to these two

Jacobians. Considering a single-segment CREM as two concatenated subsegments (inserted

and empty), we apply the Jacobian formulation for a two-segment multi-backbone continuum

robot (MBCR) while assuming that both subsegments share the bending plane angle δ . For

the ease of adapting formulations from [102], we introduce a vector notation:

δv ,




δs

δε


=




1

1


δ , dδv ,




dδs

dδε


=




1

1


dδ (4.53)
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We next use the notation of i−1ξi/i−1 to denote the pose of the ith subsegment relative to the

(i−1)th subsegment where i∈{s,ε}. Using v andω to denote linear and angular velocities,

we define the corresponding four Jacobian matrices corresponding with the contributions

of dθi,dδi where i ∈ {s,ε} to the end-effector twist:

∂ i−1ξi/i−1

∂ ([θi,δi]T)
,




Jvθi Jvδi

Jωθi Jωδi


 ∈ IR6×2, i ∈ {s,ε} (4.54)

Details of the derivations of the Jacobians are provided in Appendix E.2.

Following [103], the serial composition of two subsegments using twist transformation

results in the end effector twist:

Jξφ =
∂ξ

∂φ
=




Jvθs−
[bRc

cpg/c
]∧ Jωθs

bRcJvθε

Jωθs
bRcJωθε


 (4.55)

Jξδv =
∂ξ

∂δv
=




Jvδs−
[bRc

cpg/c
]∧ Jωδs

bRcJvδε

Jωδs
bRcJωδε


 (4.56)

These definitions of Jξφ and Jξδv complete the two missing terms needed in Eq. (4.49), but

with a slight formulation modification. The Jacobian matrix Jξδ is slightly different from

Jξδv in Eq. (4.56), and using the differentiation chain rule it becomes:

Jξδ ,
∂ξ

∂δ
=

∂ξ

∂δv

dδv

dδ
= Jξδv




1

1


 (4.57)

4.5 Calibration of Micro Motion Parameters

To calibrate the model uncertainty parameters kλ , we extract from Eq. (4.49) the following

relation:

δξ(δkλ ) = Jkδkλ (4.58)
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Using this error propagation model, we construct an estimation method to estimate kλ .

Let ξ j ↔
[
x̄ j, R̄ j

]
designate the measured end-effector pose at the jth robot configuration

(insertion depth) where x̄ j and R̄ j designate the measured position and orientation. Let x j

and R j denote the modeled pose using the direct kinematics as presented in section 4.4.1

for a given kλ . The error between the measured and modeled poses are then defined as:

c j ,
[
(x̄ j−x j)

T,(αe jm̂e j)
T]T , c j ∈ IR6 (4.59)

where αe j and m̂e j are the angle and axis parameterizing the orientation error Re j . These

parameters are given by:

Re j , R̄ jR j
T = eαe j [m̂e j ]

∧
(4.60)

αe j = cos−1
(

Tr(Re j )−1
2

)
(4.61)

m̂e j =
1

2sin(αe)

(
Re j −Re j

T)∨ (4.62)

where the operator (·)∨ designates the vector form of a skew-symmetric matrix.

An aggregated error vector c̃λ is defined to include errors of all N robot configurations:

c̃λ =
[
(c1)

T, . . . ,(cN)
T]T (4.63)

The optimization objective function Mλ is then defined as:

Mλ (kλ ) =
1

2N
c̃λ

T W c̃λ (4.64)

Where W is a weight matrix encoding confidence in the measurements and the measurement

unit scaling factors.
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The first-order Taylor series approximation of Mλ is given:

Mλ (kκ +δkκ)≈Mλ (kλ )+JMλ
δkλ (4.65)

where the aggregated Jacobian JMλ
∈ IR1×5 is given by:

JMλ
=

1
N
(c̃λ )

T W Jcλ
(4.66)

Jcλ
=

∂ c̃λ

∂kλ

=−
[
(Jk1)

T , . . . ,(JkN )
T
]T

(4.67)

Equation (4.66) shows that minimizing Mλ entails following the gradient descent direction

along (∂ c̃λ/∂kλ ). The parameter kλ is then obtained using an iterative nonlinear least

squares estimation shown in Algorithm 4.

Algorithm 4 Nonlinear LS Estimate
Require: D{(x̄ j,ψ j,qs j)}, j=1,...,N ; kλ0 , (β ,η)> 0

1: START Initialize: ki← kλ0 , Mi−1← 1, Mi← 100

2: while ‖Mλ i−Mλ i−1‖
Mλ i−1

≥ β do

3: Mλ i−1←Mλ i, c̃p = c̃λ (ki), Mλ i = Mλ i(ki),
4: Jcλ

= Jcλ
(ki)

5: Update ki+1:

ki+1 = ki−H
(

η
(
Jcλ

)+ c̃λ

)
,η ∈ (0,1] (4.68)

(
Jcλ

)+
=
(
(Jcλ

)T WJcλ

)−1
(Jcλ

)T W (4.69)

6: end while
7: k∗← ki

Ensure: k∗

In the algorithm, H is the parameter scaling matrix and the task space variable scaling

is achieved by adjusting W, both of witch are discussed in details in [85].

4.6 Simulation Study of Direct Kinematics and Differential Kinematics

In this section, we present simulations to demonstrate the direct kinematics and differential

kinematics. We also verify the differential kinematics through finite-difference simulations.
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We also carry out simulations to verify the differential kinematics model. In all simulations,

we assumed the robot points vertically down at its home (straight) configuration.

4.6.1 Position Analysis of Micro Motion

(b) (c)
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(a) calculations of the equilibrium configuration

space variables {θ ′,θs}
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(c) zoom-in view of the tip positions that

corresponds to the EMB insertion sample depths

Figure 4.4: Simulations of robot equilibrium modulation backbone (EMB) insertion - (b)
and (c) together show the correspondence between the EMB insertion locations and the tip
positions in a zoom-view
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ẑb

ŷb
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image frames

Figure 4.5: Simulations of continuum robot micro motion created by EMB insertion.

Using the model in section 4.4.1, we present the simulated position analysis of the micro

motion created by the EMB insertion. In both simulations and the experimental model

validations, we use the parameters as in Table 4.2. They include the Young’s modulus of

the superelastic NiTi material used for backbone tubes and EMBs (Ep, Ei, Es), the diameters

of backbones (dp, di, ds), and the cross-sectional moment of inertia (Ip, Ii, Is).

Figure 4.5 shows the simulation results of the micro motion created by EMB insertion.

Figure 4.5(a) shows the continuum segment at its initial bending angle θ = 30◦ . During
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Table 4.2: Robot Parameters Used in Simulations and Experiments

L r Ep,Ei,Es dp,di ds Ip, Ii Is

44.3 mm 3 mm 41 GPa 0.90 mm 0.38 mm 0.0312 mm4 0.0010 mm4

simulations, the equilibrium bending angles {θ ′,θs} were computed at different EMB

insertion depths, shown as Fig. 4.4(a). Figure 4.4 (b) and (c) show the correspondence

between the given EMB insertion depths and the computed tip positions at a µ−scale.

The resulting tip micro-motion is shown in Fig. 4.5(b) for the naı̈ve kinematic model

(i.e. λ = 0). Figure 4.5(c) shows the tip motion for an updated model assuming λ =

0.2+ 0.06qs. We note that, as expected, in both cases the robot straightens with EMB

insertion since the robot body straightens. However, the updated model exhibits a turning

point behavior which relates to the combined effect of straightening and change in the end

effector angle θ ′. This same phenomenon was observed experimentally in section 4.7.

4.6.2 Instantaneous Kinematics and Error Propagation

To verify the derivations of instantaneous kinematics and error propagation, we compute

Jacobians following section 4.4.2. Since the simulation case represents the robot motion

within a bending plane, the columns of the Jacobians represent 2× 1 vectors of induced

velocities for unit change in the variables associated with each Jacobian. The following

simulations verify the macro motion Jacobian JM, the micro motion Jacobian Jµ , and the

identification Jacobian Jk by plotting the Jacobian columns. The verification is carried

out visually by verifying that the Jacobian columns induce tip velocity tangent to the

trajectory generated by direct kinematics. In addition, each Jacobian has been also verified

numerically via finite difference computations.

To verify JM, the EMB insertion depth qs was fixed and direct actuation of backbones

was assumed. Sample tip positions along the trajectory were obtained via direct kinematics

and the corresponding Jacobian JM was computed. Figure 4.6 shows the simulation results.
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These results verify that the computed JM is tangent to the macro motion trajectory.

ŷb

ẑb

Insertion
depth

5 mm

2 mm

JM

positions

Figure 4.6: The macro motion simulation and the micro motion Jacobian computed during
the simulation (red indicates inserted portion, blue indicates empty portion). The Jacobian
JM is shown in brown arrows representing induced tip velocities.

To verify Jµ , the secondary backbones were assumed locked and the EMB insertion

depth qs was varied. The Jacobian Jµ was computed and plotted for each EMB depth. Two

different scenarios of modeling uncertainty were considered: λ = 0 and λ = 0.2+0.06qs.

The results in Figure 4.7 (a) and (b) verify that Jµ is tangent to the micro scale trajectory

generated by direct kinematics.

Figure 4.7(c) shows the plots of the identification Jacobian Jk for the simulation scenario

where λ 6= 0, revealing how the parameter errors of modeling uncertainty affect the tip

positions and hence the shape of the trajectory.
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ŷI ŷIŷI
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Figure 4.7: Simulations verifying derivations of Jacobians.

4.7 Experimental Validations

In [21] the feasibility of micro motion through equilibrium modulation was demonstrated.

The following experiments evaluate the ability of our simplified kinematic model to capture

the micro-motion behavior, validate the calibration framework in section 4.5, and assess the

accuracy of the updated kinematic model in reflecting the experimental data.
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4.7.1 Experimental Setup & Ground Truth Data

{B}

Marker

{G}

{I} {I}

Camera

Microscope

Robot

{M}

{M}

Marker under
Microscope(a)

(b)

(c)

200µm

Figure 4.8: Experimental Setup: (a) a single-segment continuum robot whose motion is
captured by two cameras; (b) the side view of the setup; (c) the segmented marker under
the microscope view.

A single-segment continuum robot with EMB insertion actuation was used as the experimental

platform, Figure 4.8. The platform was presented in [21], and it was modified from an

earlier multi-backbone continuum robot design [102]. To observe the robot tip motion

at different scales, one HD camera (FLIR Dragonfly II®) was used to capture the macro

motion and the bending shape while an identical camera mounted on a 22.5× microscope

lens to capture the micro motion. Custom “multi-circled” marker was used to track the

tip motion under microscope while multiple custom “X” markers were attached to the

continuum robot body to observe the bending shape. The vision measurement methods

used were presented in [21] with the micro motion tracking accuracy being reported better

than 2 µm.

Fig. 4.8 shows the frames used and also previously referred to in Fig. 4.5. The microscope

is fixed at a known offset relative to the robot base, and such offset is represented as a
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constant transformation from the image frame {I} to the robot base frame {B}. The tracked

marker frame {M} is placed at a known offset relative to the end disk (gripper frame {G}),

and the transformation is represented as a constant transformation between {M} and {G}.

The marker position and orientation in the image frame is obtained by the segmentation of

the three circles that construct an asymmetric pattern, as shown in Fig. 4.8(c).

{I} x̂I

ŷI

10 µm

Measured
Filtered

Figure 4.9: Image-segmented tip positions under microscope

Figure 4.9 shows a sample marker frame trajectory during EMB insertion. The marker

positions were segmented from microscope images collected at 30 frames per second and

were reported in camera frame {I}. Applying a butterworth infinite impulse response filter

with the 3-dB frequency as 30 Hz, provided a smooth trajectory for calibration.

4.7.2 Model Calibration

Using calibration method in section 4.5, we calibrated the modeling uncertainty parameter

vector kλ . The parameter vector kλ in Eq. (4.18) consists of three elements, a bias term kλ0 ,

a coefficient gain kλθ
that is associated with the nominal bending angle θ , and a coefficient

gain kλq that relates to the EMB insertion depth qs. As a preliminary study, in this paper,

we focus on investigating and calibrating kλ0 and kλq . Once the characterization of kλ0 and

kλq is achieved, one can exhaust the choices of θ to investigate the effect of kλθ
.
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Algorithm 4 was initialized with kλ0 = 0, kλq = 0, meaning no modeling uncertainty

considered. In each iteration, the modeled positions were computed using the current

estimates of the parameters. The aggregated error vector was then calculated between the

modeled and experimental positions. For each iteration, both of the current estimates of the

parameters and the position root-mean squared errors (RMSE) of all insertion samples (382

in total) were reported. A relative convergence threshold of 0.1% was used to determine

the convergence.

For the particular experimental data collection, the parameter estimation (model calibration)

went through 46 iterations before converging, where a step size of η = 0.1 was selected (η

as introduced in Algorithm 4). Figure 4.10 shows selected iterations during the estimation,

and the details of the iterations are reported in Table 4.3. The estimation started with an

initial position RMSE of 44.27 µm, and after its convergence, the position RMSE was

reduced to 5.82 µm, showing an improvement of 86.8% in model errors.

Table 4.3: Calibration using full micro motion trajectory

Iteration 0 5 10 20 30 45 46

kλ0

100
0 4.22 6.72 9.06 9.88 10.23 10.24

kλq

1000
0 2.7 4.3 5.7 6.3 6.5 6.5

RMSE [µm] 42.27 15.71 25.40 7.72 6.07 5.82 5.82

Further investigating this calibration result, by dividing the tip trajectory into two segments,

we observe that the current simplistic modeling approach produced bigger errors after the

turning point: the RMSEs were reported as 4.87µm and 6.63µm for the two segments

before and after turning point that had the lengths of 48.11µm and 38.82µm, respectively.

In practice, once the turning point location is identified, if one wishes to further improve

the model accuracy, a model that only predicts the trajectory before the turning point may

be considered. We therefore considered another calibration where only the partial micro

motion trajectory before the turning point was used. With the same iteration step size
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and convergence criterion, the estimation went through 59 iterations to converge, and the

updated results were reported in Table 4.4 and plotted in Fig. 4.11. The position RMSE

was then further improved to 4.76µm.

Table 4.4: Calibration using partial micro motion trajectory

Iteration 0 5 10 20 30 58 59

kλ0

100
0 4.22 6.72 9.06 9.88 10.30 10.30

kλq

1000
0 2.7 4.3 5.7 6.3 6.5 6.5

RMSE [µm] 19.51 13.01 9.30 6.12 5.17 4.76 4.76
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Figure 4.10: Experimental data and model iterations during the parameter estimation
(model calibration) - using full micro motion trajectory.

117



{I}

{I}

{I}

x̂I

x̂I

x̂I

ŷI
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Figure 4.11: Experimental data and model iterations during the parameter estimation
(model calibration) - using partial micro motion trajectory

4.7.3 Discussion

This work focused on creating a simplistic, yet fast model for equilibrium modulation

control implementation. The kinematic model traded accurate mechanics modeling (which

typically leads to solving nonlinear boundary value problems) with simplicity and speed of

computation. Our experimental data showed an unexpected motion behavior manifested by

a turning point along the micro-motion trajectory. The model presented in this paper does

not offer a physical explanation to this behavior, but can capture this behavior for a given

robot. The model calibration results indicate that there is still a potential to improve the
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model performance by further investigating alternative modeling assumptions and different

descriptions of modeling uncertainties. One of the limitations of our approach can be

inferred from the simulation shown in Fig. 4.7, where both columns of the identification

Jacobian are almost aligned with the tangent to the direct kinematics trajectory. The

attainable correction directions that the column-space of Jk affords is therefore limited in

reshaping the model trajectory. This was also observed from the experimental validation.

Shown from the iterations in Fig. 4.10 and Fig. 4.11, it is difficult to reshape the modeled

tip trajectory in the direction that is perpendicular to the trajectory. The other limitation is

potentially caused by the choice of linearity in expressing the modeling uncertainty, which

may not be descriptive enough.

4.8 Conclusion

This work presented the first modeling attempt for a new class of continuum robots

capable of multi-scale motion. These robots achieve macro-scale and micro-scale motions

through direct and indirect actuation (equilibrium modulation). Instead of focusing on a

high-fidelity mechanics-based model, which typically leads to non-linear boundary value

problems not easy to adopt for real-time control or parameter identification. Instead the

paper presented a simplified mechanics-based model utilizing moment coupling effects

between sub-segments of the continuum robot. This approach generates a differential

kinematics model that covers both macro and micro-motion. As a result of unavoidable

parameter uncertainty, we presented a model-calibration approach that can compensate

for parameter inaccuracy, friction effects and modeling inaccuracies due to the simplistic

modeling assumptions. The modeling approach along with the calibration framework was

validated experimentally on a multi-backbone continuum robot. The calibrated model

reported a positional root-mean-squared error as 5.83 µm if one wishes to use the model

for the entire motion profile with the turning point. If one chooses to exclude motions past

the turning point, the calibrated model fit the experimental data with an accuracy of 4.76
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µm. Future work will focus on investigations on a more sophisticated models capable of

incorporating geometric constraints as well as minimizing mechanical energy for improved

model accuracy. In addition, effects of direction reversal of EMB insertion can manifest in

hysteresis, which has not been explored in this work, but still remains the topic of ongoing

research.

4.9 Relevant Published Work

Publications and manuscripts planned for future include:

J.1 Wang, L., Del Giudice, G., and Simaan, N., “Simplified Kinematics of Continuum
Robot Equilibrium Modulation via Moment Coupling Effects and Model Calibration”,
submitted to ASME Journal of Mechanisms and Robotics, 2018, under revision.

C.1 Del Giudice, G., Wang, L., Shen, J., Joos, K. and Simaan, N., “Continuum Robots
for Multi-Scale Motion: Micro-Scale Motion Through Equilibrium Modulation”,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’), Vancouver,
Canada, 2017, pp. 2537-2542.
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Chapter 5

Conclusions

5.1 Summary of Findings

Continuum robots for surgical applications can support complex surgical tasks within

deep confined spaces of the body. Such surgical paradigms often present surgeons with

sensory and surgical scene interpretation challenges that diminish situational awareness.

These robots can reach deep into the body and, in some scenarios, using them in a semi-

automated mode of operation may alleviate the cognitive burden of the surgeons. Additionally,

these robots have been recently shown to be able to support two modes of operation including

macro-scale and micro-scale motion; thereby possibly enabling in-vivo microsurgical execution

and image-based biopsy. These exciting capabilities of continuum robots are unattainable

without the availability of accurate kinematic models of these robots. Furthermore, situational

awareness augmentation requires methods for reconciling preoperative imaging information

with the surgical scene in a way that helps the surgeon in executing surgical tasks safely.

The above-listed needs and opportunities guide the scope of this dissertation in two

broad themes: 1) the augmentation of situational awareness through the use of force-

controlled exploration as a means for updating the geometry of a virtual fixture despite

possible organ shift/deformation, 2) an exploration of mathematical frameworks for modeling

and calibration of continuum robots when moving in free space at a macro and micro-scale.

The key contributions of this dissertation lie in addressing the scientific gaps and application

needs within each one of the two themes listed above. Current methods for updating the

geometry of assistive telemanipulation virtual fixtures are predominantly limited to use

of intraoperative imaging. In Chapter 2, we explore the utility of using force-controlled

exploration as a means for updating the registration of an organ to a pre-operative model.

Such methods may in the future be used as a means of augmenting other sources of

information such as stereo-vision or organ laser scanning for the purpose of improving
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registration. To achieve this goal, we present a model-mediated telemanipulation framework

and force-controlled exploration for model update. Force-controlled ablation along a desired

path with an assistive virtual fixture is demonstrated using the proposed telemanipulation

framework. The method is validated on both a custom-made cartesian robot and a da Vinci

Research Kit robot and the preliminary results suggest the feasibility of updating virtual

fixtures based on force-controlled scans of organs.

In Chapter 3, we focus on presenting a mathematical framework for calibrating the

kinematic model of continuum robots. An investigation of observability/sensitivity of

kinematic mappings shows that direct calibration of the joint-to-task space mapping is not

advisable for these robots. Instead, a two-staged approach where a mapping between joint

and configuration space is calibrated and then the mapping from configuration space to

task space is calibrated. The derivation of the identification Jacobians for calibration of

continuum robots advances the literature, which has been limited to ad-hoc methods that

work for limited architectures, but result in limited model update (e.g. look-up tables).

In Chapter 4, we investigate methods along the lines of extending calibration modeling

to account for cases where continuum robots are used in micro-scale motion generation

through equilibrium modulation. These robots present a new concept in continuum robotics,

and we develop a simplified kinematic model based on moment coupling effect which

lays the foundation to enabling future applications such as image-based biopsy and micro-

surgery.

5.2 Future Research Directions

This dissertation complements previous theoretical works in continuum robots which

supports them to be platforms with sensory and surgical intervention capabilities. Simaan

et al. [87] proposed a novel design, the kinematics, and the statics of a multi-backbone

continuum robot. Xu presented the intrinsic force sensing capabilities of multi-backbone

continuum robots, along with the validity of the circular bending-shape assumption and
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model-based actuation compensation. Goldman investigated algorithms for shape and

stiffness estimation in compliant environments and a method for compliant motion of

multi-backbone continuum robots. Bajo developed a collision detection algorithm that was

paired with a constrained Extended Kalman filter for registering surgical continuum robots

to compliant environments, and demonstrated hybrid motion/force control based stiffness

imaging of compliant environments.

The method of force-controlled exploration for updating virtual fixture was demonstrated

on continuum robots [106]. Future work will investigate methods of augmenting additional

source of information to further improve the registration robustness and will develop frameworks

of updating virtual fixture in real-time to support telemanipulation more responsively.

The calibration of continuum robots obtains an accurate kinematic model, enabling

future work on semi-automated surgical tasks using such robots (e.g. ablation, suturing and

needle insertion). The current geometric calibration framework (as presented in Chapter 3)

assumes a prerequisite of obtaining an actuation compensation for the joint-to-configuration

space mapping using the estimation methods in [77]. In the future, a unified framework

that estimates the parameters of geometric calibration and actuation compensation in one

step is more desirable. In addition, the current geometric calibration assumes non-forceful

robot/environment interaction. Future work will investigate calibrating robots under forceful

interaction condition considering the statics and equilibrium of the robots.

The simplified kinematics of continuum robot equilibrium modulation provides the first

attempt of predicting and explaining the CREM micro motion. Future work will investigate

more sophisticate and more generalized modeling approaches to further improve the accuracy,

and will implement control strategies for image-based biopsy applications.
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Appendix A

Differential of a Homogeneous Transformation

The topic of kinematic error model for robot calibration was addressed in chapters 2.4

and 2.5 of Mooring [63]. This model relates small error in nominal manipulator kinematics

to end effector (EE) position and orientation errors and this approach was illustrated using

a standard Denavit Hartenberg kinematic model representation.

The final goal of this strategy is to achieve a differential model describing the relationship

between changes in the calibration parameters and the end-effector pose as described by

DH direct kinematics parametrization. Let T ∈ IR4×4 be the homogenous transformation

describing the end effector pose. Let k be the vector of calibration parameters (this would

be the vector containing the DH parameters if we use DH parametrization). The complete

differential of T is given by 2.43 in [63]:

dT = ∑
p
i=1

∂T
∂ki

∆ki = TδT, k = (k1, . . . ,kp)
T (A.1)

The matrix dT∈ IR4×4 is the total differential of T. The matrix δT∈ IR4×4 is the differential

transformation matrix which only contains first order variations of the kinematic parameters.

Here are some observations about equation (A.1):

(a) The derivative of a transformation can be written in a form of itself post-multiplied

with a special matrix δT;

(b) This δT is in se(3) group, and it is constructed by a 3×3 skew symmetric matrix and

a 3×1 vector; this result was earlier obtained by Richard Paul (equation 4.28 in [72]).

(c) Later this special matrix δT will be partitioned to define the translational and rotational

errors on end-effector error at configuration T.

As illustrated in [63], using the DH representation of link transformation as an example

and denoting the DH parameters θn,αn,rn, ln for link n, the DH transformation An is given
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by equation (A.2) (2.12 in [63]).

An =




cosθn −sinθn cosαn sinθn sinαn ln cosθn

sinθn cosθn cosαn −cosθn sinαn ln sinθn

0 sinαn cosαn rn

0 0 0 1




(A.2)

In the following paragraphs we solve for δAn. First let us derive the derivative dAn as

below (equation (2.16) in [63]):

dAn =
∂An

∂θn
∆θn +

∂An

∂αn
∆αn +

∂An

∂ rn
∆rn +

∂An

∂ ln
∆ln (A.3)

Then dAn may be rewritten or decomposed in a format of AnδAn. This step is not trivial

and this particular example is done in chapter 2.4 in [63]. The result of δAn is obtained as

below (2.30 in [63]),

δAn =




0 −cαn∆θn sαn∆θn ∆ln

cαn∆θn 0 −∆αn lncαn∆θn + sαn∆rn

−sαn∆θn ∆αn 0 −lnsαn∆θn + cαn∆rn

0 0 0 0




(A.4)

Let us verify the result in this example: the variation of the first element An1,1 is

δ (cos(θn)) = −sin(θn)δθn. This same result is obtained by multiplying the first row of

An with the first column of δAn. This example demonstrates that by introducing small

errors in the joint and parameters (∆θn,∆αn,∆rn,∆ln), we can propagate the resulting pose

error of the end-effector δAn.

We will henceforth use ∆X to denote the vector representation of the differential δX

for matrix X ∈ IR4×4. Because of the skew symmetry of the top left 3× 3 sub-matrix of

δT (or δAn), we can partition this 4×4 matrix into two 3×1 vectors which are defined in
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equation (2.49) in [63].

∆T,




d

δ


 (A.5)

If we apply the notation of equation (A.5) in the above example, we have the following

results as presented in (2.31, 2.32) of [63],





dn =




∆ln

lncαn∆θn + sαn∆rn

−lnsαn∆θn + cαn∆rn



=




0

lncαn

−lnsαn




∆θn +




0

sαn

cαn




∆rn +




1

0

0




∆ln

δn =




∆αn

sαn∆θn

cαn∆θn



=




0

sαn

cαn




∆θn +




1

0

0




∆αn

(A.6)

By defining the following vectors

ρ1
n = [0, lncαn ,−lnsαn]

T ,ρ2
n = [0,sαn,cαn ]

T ,ρ3
n = [1,0,0]T (A.7)

We can rewrite equation (A.6) as the result for kinematic error model for single link DH

representation:

∆An ,




dn

δn


=



ρ1

n∆θn +ρ
2
n∆rn +ρ

3
n∆ln

ρ2
n∆θn +ρ

3
n∆αn


 (A.8)

With the vector representation of equation (A.5), equation (A.1) can be formulated as a

conventional geometric Jacobian as in (2.57)

∆T = JK∆k (A.9)
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Observations on equation (A.9):

(a) if we separate the joint variables off the parameter vector k, we obtain a more rigorous

treatment of ∆T. Then we call this particular conventional Jacobian Jk the Identification

Jacobian. This definition is given in (4.6) in [63].

(b) ∆T is defined as the differential translation and rotation vector

For the example we started in this section, we can formulate the Jacobian using the vectors

defined in equation (A.7),

∆T = JKδk =



ρ1

n ρ2
n ρ3

n 0

ρ2
n 0 0 ρ3

n


δk =




0 0 1 0

lncαn sαn 0 0

−lnsαn cαn 0 0

0 0 0 1

sαn 0 0 0

cαn 0 0 0







∆θn

∆rn

∆ln

∆αn




(A.10)

Equation (A.10) expressed the kinematic error model which relates the joint and parameter

error to EE error. Notice that the example only formulated one link. We thereby summarize

the definition of kinematic error model as the following.

Given a 4× 4 transformation matrix T, its first-order Taylor expansion dT can be

decomposed as the following,

dT = ∑
p
i=1

∂T
∂ki

∆ki = TδT, k = (k1, . . . ,kp)
T (A.11)

where δT ∈ se(3) and it is partitioned into into two 3× 1 vectors which are defined as

differential translation and rotation vectors.

δT4×4⇒ ∆T6×1 =




d

δ


 (A.12)
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Then writing (A.12) in Jacobian format, results in:

∆T = Jk∆k (A.13)

Without joint variables in k, Jk is defined as the Identification Jacobian

The definition of error propagation above is important and it is used as the preferable

definition of Identification Jacobian. Another popular Identification Jacobian definition

associated with the use of loop closure equations is used in Nahvi & Hollerbach [67] and

Hollerbach & Wampler [40]:

fi = gi(k,ηi)≈ 0 (A.14)

where fi is a residual function of ith pose loop closure equation, gi is the loop closure

equation, x is a vector of robot parameters to be calibrated and ηi is the joint transducer

reading.

Combining equation (A.14) for all end effector poses results in a vector representation:

f = g(k,η) (A.15)

where f = [f1T
. . . fmT

]T and g = [g1T
. . .gmT

]T . Linearizing equation (A.15),

∆f =
∂g
∂x

∆k = C∆k (A.16)

where is ∆f the error between measured and computed residual function, C is the identification

Jacobian, and ∆x is the correction to be applied to the current parameter estimate.
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Appendix B

Differential Kinematics for Geometric Calibration of Multi-backbone Continuum Robots

B.1 Deriving Jxt and Jxδ

The geometric Jacobian, Jxpt , that was first introduced in equation (3.15), relates the

infinitesimal (δ t) to the in-plane kinematic variable (δxp), and is derived as below:

∂ 1pxz

∂ t
=
∫ l

0






−sinθs(s)

cosθs(s)


 ∂

∂ t
θs(s)


ds (B.1)

∂

∂ t
θs(s) =

∫ s

0
[κb(τ)−κa(τ)]dτ (B.2)

For the purpose of completeness, another geometric Jacobian, Jxt , that relates the

infinitesimal (δ t) to the instantaneous twist δξ ∈ IR6, is also derived here following similar

methodology as in 3.3.2. First, we partition the translation and rotation partitions as:

b
δξ(δ t),

[
(b

δx)T,(b
δµ)T

]T
, b

δξ ∈ IR6×1 (B.3)

The segment-end translational and angular velocities are both obtained using chain rule:

b
δxκ = bR1 Sx δxp, Sx ,




1 0 0

0 0 0

0 1 0



, bR1 = e−δ0 [z∧] (B.4)

b
δµκ =−ŷ1Sµδxp, Sµ ,

[
0 0 1

]
(B.5)

Then the geometric Jacobian Jxt is given as:

b
δξ(δ t) =




bR1 Sx Jxpt

−ŷ1 Sµ Jxpt


 δ t , Jxtδ t (B.6)
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B.2 Deriving Jkκ

The bending shape identification Jacobian, Jkκ
, first introduced in equation (3.18) and

then defined in equation (3.19), relates bending shape parameter errors δkκ to in-plane task

space errors δxp. The derivation is shown as follows:

Jkκ
=

∂ fp(t,kκ)

∂kκ

= [
∂ fp

∂ l
,
∂ fp

∂a
,
∂ fp

∂b
] (B.7)

∂ fp

∂ l
= [cθs(l),sθs(l),κ(l)]

T (B.8)

∂ fp

∂a
= (1− t)

∫ l

0




[−sθs,cθs]
T νT

ηT


 ds (B.9)

∂ fp

∂b
= t

∫ l

0




[−sθs,cθs]
TνT

ηT


 ds (B.10)

ν(s) =
∫ s

0
η(τ)dτ =

[s
s
2

]
η(s), η(s) = [1,s1]T (B.11)

B.3 Derivation of Equation (3.27)

As shown in equation (3.26), to obtain the full derivative dR of the rotation matrix

that represents the orientation of the end-effector, an intermediate derivative matrix, ∂R
∂γ(s) ,

is needed. The following shows the steps in obtaining the expression of ∂R
∂γ(s) , and the

resulted expression is given in equation (3.27).

Using (3.12) and (3.7), we have

R(ψ,s,kκ ,kγ) = e−δ0 [e3
∧] e(

π

2−θe) [e2
∧] eδ (s) [e3

∧] (B.12)

∂R
∂γ(s)

= e−δ0 [e3
∧] e(

π

2−θs) [e2
∧]
(

∂

∂γ(s)
eδ (s) [e3

∧]
)

(B.13)
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Deriving the differentiation of eδ (s) [e3
∧] results in ∂R

∂γ(s) as:

∂

∂γe
eδ (s) [e3

∧] =
(

eδ (s) [e3
∧]
)

∂

∂γe
δ (s) [e3

∧]

=
(

eδ (s) [e3
∧]
)
[e3
∧]

(B.14)

∂R
∂γ(s)

= e−δ0 [e3
∧] e(

π

2−θe) [e2
∧] eδ (s) [e3

∧] [e3
∧] (B.15)
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Appendix C

Algorithms & Simulations for Geometric Calibration Multi-backbone Continuum Robots

C.1 Deriving
∂cγ j
∂kγ

Recall from Eqs. (3.70, 4.61, 4.62) that cγ j is the vector representation of the rotation

matrix Re = R̄ jRT
j , meaning that ∆cγ j may be derived from dRe. Following the same

process as (3.28), we have:

dRej = R̄ j d
(
RT

j
)
= R̄ jRT

j δ
(
RT

j
)

= Re j δ
(
RT

j
) (C.1)

If using the process in Eq. (3.28) directly on Re, one may write dRe = ReδRe, which leads

to δRe = δ

(
RT

j

)
, or

δRe =−δR j (C.2)

Note that δcγ j is a vector that represents the skew-symmetric matrix δRe while δµγ in

Eq. (3.30) may represent δR j in this case. Using Eqs. (3.30, 3.31), we arrive at:

δcγ j =−δµγ =−Jkγ
δkγ (C.3)
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C.2 Nonlinear least-squared estimation to capture ÛkT

Algorithm 5 Nonlinear LS Estimate
Require: D{(p j,Ψ j)}, j=1,...,N ; kT0 , (β ,η)> 0

1: START Initialize: ki← kκ0 , Mi−1← 1, Mi← 1+aβ ,a > 1

2: while ‖Mpi−Mpi−1‖
Mpi−1

≥ β do

3: Mpi−1←Mpi, c̃p = c̃p(ki), Mpi = Mpi(ki),

4: JcT = JcT (ki)

5: Update ki+1:

ki+1 = ki−H
(

η (JcT )
+ c̃T

)
,η ∈ (0,1] (C.4)

(JcT )
+ =

(
(JcT )

T WJcT

)−1
(JcT )

T W (C.5)

6: end while

7: k∗← ki

Ensure: k∗

C.3 Shape parameter calibration assuming circular bending

An alternative simplified calibration method is applied on the same experimental data

sets as comparison baselines, where the circular assumption of the bending shape is used.

The calibration problem is simplified significantly to be a linear least-square problem where

the only parameter needs calibrating is the length.

pxz = [px, pz]
T = [1− sinθe, cosθe]

T L
π/2−θe

(C.6)

C.4 Details of Simulation Results of Shape Characterization

In chapter 3.7.1, simulation results of shape characterization is presented. A summary is

presented in Table 3.2 while data of each simulation condition forms a group and is plotted

in Figure 3.10. The data sample points plotted in Figure 3.10 is detailed in the following

four tables that correspond to different groups varying simulation condition. In addition,
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in the end of this appendix, different noise levels used in simulations are illustrated in

Figure C.1.

Table C.1: Simulation results of group 1

Group1
Trials

Pos. Res. Ang. Res. Pos. Tar. Ang.Tar.

1 0.4429 1.9137 0.1143 0.8480
2 0.5532 2.1715 0.1483 0.6360
3 0.5090 1.5298 0.1089 0.4469
4 0.5028 1.0943 0.1742 0.6073
5 0.4987 1.4095 0.0706 0.2750

Average 0.5013 1.6238 0.1233 0.5626
STD 0.0351 0.3792 0.0354 0.1923

Table C.2: Simulation results of group 2

Group 2
Trials

Pos. Res. Ang. Res. Pos. Tar. Ang.Tar.

1 0.4681 1.2662 0.1563 0.6245
2 0.4256 2.1772 0.1194 0.9855
3 0.5023 0.9053 0.0823 0.2292
4 0.4446 0.9511 0.1212 0.3266
5 0.5492 1.5986 0.2380 0.3380

Average 0.4780 1.3797 0.1434 0.5008
STD 0.0439 0.4702 0.0528 0.2760

Table C.3: Simulation results of group 3

Group 2
Trials

Pos. Res. Ang. Res. Pos. Tar. Ang.Tar.

1 2.0728 5.6494 0.3607 1.1459
2 1.6506 5.2655 0.3746 0.9855
3 2.1880 11.0753 1.1446 4.4748
4 2.1608 6.0218 0.7619 2.5439
5 1.8454 1.7762 0.1860 0.4698

Average 1.9835 5.9576 0.5656 1.9240
STD 0.2055 2.9750 0.3454 1.4486
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Table C.4: Simulation results of group 4

Group 3
Trials

Pos. Res. Ang. Res. Pos. Tar. Ang.Tar.

1 2.0110 5.8785 0.4153 1.9710
2 1.7096 7.2078 0.3704 3.2315
3 1.9181 5.1509 0.4463 2.9622
4 2.0620 6.6463 0.8688 2.4694
5 1.8127 3.3002 0.1731 0.4125

Average 1.9027 5.6368 0.4548 2.2093
STD 0.1286 1.3595 0.2278 0.9964

Simulated robot shape

Measured tip orientation

Measured position

Introduced position noises

Group 1: low noise Group 3: high noise

Figure C.1: The pose generation examples from condition 1 and condition 3
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Appendix D

Force-Controlled Exploration

D.1 Surface normal estimation using friction estimation

fs f⊥
f̂n

v̂EnvironmentT
ra

je
ct

or
y

fτ = µf⊥
fv = fs − f⊥

Figure D.1: Surface normal estimation with compensation for environment friction.

This appendix illustrates a potential method to estimate surface normal taking into

consideration of the friction effect. The code was implemented in the PSM (Patient Side

Manipulator) xPC Simulink model. However the current implementation does not provide

satisfactory performance. The online estimated friction keeps overshooting for there is

no convergence enforcement. Further investigation including tuning the parameters of the

algorithm and adding convergence enforcement may provide significant improvement.

The approach updates the surface normal estimation during the force-controlled exploration

and the force controller takes the updated normal direction for control purpose. A simple

algorithm is implemented to correct the surface normal force by compensating the environment

friction effect.

As illustrated in Fig. D.1 and as detailed in Algorithm 6, a feed-forward coulomb

friction fτ is calculated based on a projection force f⊥ and µ̄ , a weighted moving averaged

estimation of the friction coefficient. This f⊥ is the projection of sensed force fs onto the

null space of robot velocity v̂, and the corrected surface normal force f̂n is obtained by

subtracting fτ from fs. The algorithm is executed at 1 KHz, and in each time step (kth), an

updated measurement µk is calculated using two orthogonal components f⊥, fv and is fed
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into the weighted moving average filter. The estimated surface normal direction is obtained

by normalizing f̂n, i.e. n̂ = f̂n/‖f̂n‖.

Algorithm 6 Surface Normal Estimation with Friction Compensation
Given

fs ∈ IR3 . force sensor reading

v̂ ∈ IR3 . estimated velocity based on previous trajectory

M̂a = [µ̂k−1, . . . , µ̂k−m]
T . previous m estimations of friction coefficient

w = [w1, . . . ,wm]
T . moving average weights

Compute f̂n

1: if ‖v̂‖> vε then . if the robot is moving, vε - velocity threshold

2: µ̄ = 1
m ∑

m
1 wi µ̂k−i . weighted moving average on M̂a

3: f⊥ = (I−Ωv) fs, Ωv = v̂(v̂Tv̂)−1v̂T . projection onto null space of v̂

4: fτ =−µ̄ ‖f⊥‖
v̂
‖v̂‖ . compute friction

5: f̂n = fs− fτ . obtain surface normal force by subtracting friction

6: else f̂n = fs

7: end if

Update µk

8: if ‖v̂‖> vε then

9: fv =Ωvfs . projection onto v̂ direction

10: µk =
‖fv‖
‖f⊥‖

. update current friction coefficient estimation

11: else µk = µk−1

12: end if

Output f̂n, µk

D.2 PSM Force-controlled exploration map

The following figure shows the pre-planned raster scan partitions of the PSM exploration.
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Zone 1

Zone 2

Zone 3

Zone 4

Figure D.2: Raster scan generation partitions of the PSM exploration map
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Appendix E

Derivations for Modeling of Continuum Robots with Equilibrium Modulation

E.1 Deriving ∂φ

∂θ
, ∂φ

∂δ
, ∂φ

∂qs
& ∂φ

∂kλ

Rewriting Eq. (4.19) and Eq. (4.16) in a matrix form yields:




k1 + k2 + ks −k1

k1 −k1




︸ ︷︷ ︸
, A(ψ,qs,θs)




θs

θ ′


 =




(k2 + ks)θ0−λ

k0(θ0−θ)




︸ ︷︷ ︸
, B(ψ,qs,kλ ,θs)

(E.1)

where A and B are defined as functions of {ψ,qs,θs} and {ψ,qs,kλ ,θs} respectively.

Using the definition of φ, yields:

A







1 0

1 1




︸ ︷︷ ︸
, S0




θs

θε




︸ ︷︷ ︸
φ

−




0

θ0




︸ ︷︷ ︸
, C0




= B (E.2)

By introducing two constant matrices in the above equation, S0 and C0, we have obtained

the equation to differentiate:

A (S0 φ−C0) = B, A ∈ IR2×2,B ∈ IR2,C0 ∈ IR2 (E.3)

The full differentiation may be expressed as:

(dA) (S0φ−C0)+(AS0) dφ= dB (E.4)
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Using X′a to denote the partial derivative of matrix X w.r.t the scalar variable a, i.e. X′a, ∂X
∂a ,

then dA and dB may be written as:

dA = A′θ dθ +A′
δ

dδ +A′qs
dqs +A′θs

dθs (E.5)

dB = B′θ dθ +B′
δ

dδ +B′qs
dqs +B′θs

dθs +∑
nk
i B′kλi

dkλi (E.6)

Let us define Cφ and Γa to provide ease in the derivations:

Cφ , S0φ−C0, Γa = B′a−A′aCφ (E.7)

where the letter a ∈ {θ ,δ ,qs,θs}.

By substituting Eq. (E.5) and Eq. (E.6) into Eq. (E.4), and by using the definitions of

Cφ and Γa, we have:

(AS0)




dθs

dθε


−

[
Γθs 0

]



dθs

dθε


=

Γθ dθ +Γδ dδ +Γqs dqs +∑
nk
i B′kλi

dkλi

(E.8)

This equation shows the full differentiation of Eq. (4.35) and all the Jacobians can be

obtained directly by their definitions, i.e., the expressions of
{

∂φ
∂θ

, ∂φ
∂δ

, ∂φ
∂qs

, ∂φ
∂kλi
∈ IR2×1

}

may be written as:

∂φ

∂θ
= (AS0−ΓθsS1)

−1 Γθ (E.9)

∂φ

∂δ
= (AS0−ΓθsS1)

−1 Γδ (E.10)

∂φ

∂qs
= (AS0−ΓθsS1)

−1 Γqs (E.11)

∂φ

∂kλi

= (AS0−ΓθsS1)
−1 B′kλi

(E.12)
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where S1 = [1,0] is just a selection matrix.

E.2 Derivation of The Jacobian Partitions for the Multi-segment case

Equations (4.54), (4.55) and (4.56) refer to the Jacobian matrix partitions for the two-

segment case where the first segment is the inserted subsegment (indicated vby superscript

s) and the second segment is the empty subsegment (indicated by subscript ε). The Jacobian

partitions represent the effects of differentials on θi and δi that contribute to the end-

effector’s translational and rotational differential, labeled by subscripts ‘v’ and ‘ω’, indicating

‘velocity’ and ‘angular velocity’, respectively. The expressions of {Jvθi , Jωθi , Jvδi , Jωδi}

are extracted from [103] as:

Jvθi = Di




cδi χai

−sδi χai

χbi



, Jωθi =




−sδi

−cδi

0




(E.13)

Jvδi = Di




sδi χci

cδi χci

0



, Jωδi =




cδisθi

−sδicθi

−1+ sθi




(E.14)

Where c(·) and s(·) denote the cosine and sine functions, and Di represents the length of

the subsegment. For the inserted subsegment, Ds = qs; and for the empty subsegment,

Dr = L−qs. In addition, the following shorthanded notations are used:

χai =
(θi−θ0)cθi− sθi +1

(θi−θ0)2 (E.15)

χbi =
(θi−θ0)cθi + cθi

(θi−θ0)2 , χci =
sθi−1
θ0−θi

(E.16)
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