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CHAPTER 1

INTRODUCTION

Mediation analysis estimates how much of an exposure’s effect on an outcome
is transmitted through variables along the causal pathway, which can be biological,
psychological, behavioral, or social constructs. Psychologists and social scientists con-
cerned with dynamic relations and causal mechanisms have been studying mediation
processes for decades (Woodworth 1928; Alwin and Hauser 1975; Baron and Kenny
1986). Modern scientific investigations, such as genetic pathway analysis and disease
prevention research, have led to widespread use of mediation analysis and the need
for methodological advancement. A variety of methods exist for conducting media-
tion analyses; the Baron-Kenny causal steps approach (Baron and Kenny 1986; Zhao
et al. 2010), the structural equation modeling approach (Gunzler et al. 2013), and the
potential outcomes approach (Robins and Greenland 1992; Pearl 2001; Imai, Keele
and Tingley 2010; VanderWeele 2015) are well-known frameworks.

In Chapter 2, we begin by proposing a classical regression framework for mediation
analysis with linear models that allows us to estimate the portion eliminated from
the fit of a single well-specified regression equation, rather than from the fit of several
equations. We introduce the essential mediation components (EMCs), a general form
for the difference in the exposure pathway coefficients between the marginal and full
outcome models. Using multivariate normal theory, we derive a single-model formula
for the EMCs. The portion eliminated, which is the difference between the total
effect and the controlled direct effect, is a function of the EMCs and can be obtained
without fitting any additional models. A closed-form expression for the model-based
variance of the portion eliminated follows directly.

The portion eliminated can be used to evaluate the reduction in the total effect
when indirect paths are blocked and is important for health policy research (Pearl
2012a; VanderWeele 2013; Naimi et al. 2014; VanderWeele 2015). For example, when
studying how an intervention can prevent adverse health outcomes, the portion elim-
inated measures the maximum preventive effect of said therapy on the mediating
pathways. If there is evidence of a strong portion eliminated, one could adapt poli-
cies to intervene on the mediator to limit harmful exposure effects. One can use our
simple formula to estimate mediation effects from the fit of only the full outcome
model, rather than having to fit a system of equations and aggregate coefficient es-
timates. Our formula for the portion eliminated incorporates an exposure-mediator
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relationship that is as flexible as the full model exposure effect (without having to
fit a separate mediator model). Furthermore, this approach extends to settings with
multiple mediators, interactions, and nonlinearities, and advanced regression tools
are more easily applied to a single model than to a system of equations. In a series
of examples using data from the BRAIN-ICU study (Pandharipande et al. 2013), we
illustrate our method and compare it to existing regression-based approaches.

Chapter 3 extends our single-model approach to non-nested mediation systems.
We present a way to visualize mediation effects and propose a measure of joint media-
tion. We highlight situations in which using the difference and product of coefficients
approaches do not yield the same estimate of the total exposure effect, which is sur-
prising in the linear model context. This finding suggests that discrepancies between
these two approaches’ estimates of mediation effects depends on the specification of
the marginal model and the estimation of the total effect. We conclude this chap-
ter with extensive examples to illustrate how the proposed approach can be used to
address complex behavioral research questions.

Chapter 4 considers the new framework’s extension to generalized linear models
and discusses its implications in the context of existing methods. We show how me-
diation effects can be defined on the outcome variable scale (in terms of changes in
expected values) or on the link function scale (in terms of changes in a transformed
space). Using a large-scale example from genetic epidemiology, we investigate whether
smoking mediates the effects of genetic variants on risk of lung cancer, and we compare
the results obtained using our formula to existing methods. The single-model frame-
work imparts substantial gains in computational efficiency and meaningful insight
into the formation and evaluation of complex mediation hypotheses. This chapter
concludes with our ideas for future research.
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CHAPTER 2

A CLASSICAL REGRESSION FRAMEWORK FOR CONDUCTING
MEDIATION ANALYSES: ESTIMATING THE ESSENTIAL MEDIATION

COMPONENTS FROM A SINGLE REGRESSION MODEL

2.1 Introduction
Mediators are behavioral, biological, psychological, or social constructs that trans-

mit the effect of one variable to another. Mediation analysis seeks to understand how
much of an exposure’s effect on an outcome is diverted through a mediating variable
(Woodworth 1928; Alwin and Hauser 1975; Baron and Kenny 1986). Background in-
formation on mediation analysis can be found in Baron and Kenny 1986; MacKinnon
2008; Hayes 2013; Preacher 2015; VanderWeele 2015. Modern scientific investiga-
tions, such as genetic pathway analysis and disease prevention research, require a
sophisticated framework for conducting mediation analysis.

The literature on mediation analysis is largely comprised of the approach pop-
ularized by Baron and Kenny (1986), the causal inference framework (Robins and
Greenland 1992; Pearl 2001; Imai, Keele and Tingley 2010; VanderWeele 2015), and
the structural equation modeling approach (Gunzler et al. 2013). Having been cited
over 70,000 times (Google Scholar), the Baron-Kenny causal steps approach is ubiq-
uitous in the social sciences and considered to be a cornerstone of mediation analysis.
However, a growing technical literature has pointed out its inability to handle complex
mediation hypotheses (MacKinnon et al. 2002; Fritz and MacKinnon 2007; Preacher
and Hayes 2008b; Zhao et al. 2010; Hayes 2013).

Here we propose a classical regression framework for conducting mediation analysis
with linear models. We introduce the essential mediation components (EMCs), a
general form for the difference in the exposure pathway coefficients. A formula for
the EMCs and their model-based variance are derived from the fit of a single well-
specified regression model. For the simple mediation model, the indirect effect for
a unit change in the exposure is mathematically equivalent to the EMC; in general,
however, causal mediation estimands (e.g., portion eliminated, natural indirect effect)
and their variance are functions of the EMCs, a critical distinction. A closed-form
expression for the variance is a welcome advance of the framework, eliminating the
need for delta method or resampling approximations.

This approach extends to settings with multiple mediators, interactions, and non-
linearities. Fitting a single model allows for a clean application of regression tools
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(e.g., imputation of missing data, cross-validation, and penalized likelihood methods)
that are not easily implemented in a system of three equations. In a series of examples
using data from the BRAIN-ICU study (Pandharipande et al. 2013), we illustrate our
method and compare it to existing regression-based approaches. This chapter focuses
on the setting of continuous outcomes (i.e. linear models).

2.2 Background and notation
2.2.1 The simple mediation model

Figure 2.1: Simple mediation model for exposure X, continuous mediator M , and continuous out-
come Y . The coefficients αX , βX , βM , and β∗X are estimated from the system of three regression
equations.

Mediation analyses generally seek to partition the total effect of an exposure into
its direct and indirect components. For exposure X, continuous mediator M , and
continuous outcome Y , the classic Baron-Kenny simple mediation model is illustrated
in Figure 2.1 and represented by the following three regression equations. Errors are
assumed to be normally distributed.

E[Y |X,M ] = β0 + βXX + βMM (2.1)

E[M |X] = α0 + αXX (2.2)

E[Y |X] = β∗0 + β∗XX (2.3)

The estimated total and direct effects for a unit change in X are β̂∗X and β̂X ,
respectively. The indirect effect of X is commonly estimated using the difference of
coefficients, β̂∗X − β̂X , or the product of coefficients, α̂X β̂M . For the simple mediation
model, the two approaches agree and the total effect of X on Y is the sum of the
direct and indirect effects: β̂∗X = β̂X + α̂X β̂M . To infer causality, one must assume the
relevant confounders (enumerated in Figure 2.2) have been accounted for (Vander-
Weele 2015). Although the original Baron-Kenny model did not include confounders,
we emphasize the importance of adjusting for confounders of the type listed in Figure
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2.2 so that mediation effects are identifiable. One can simply add the set of relevant
confounders to each model. Furthermore, the simple mediation model above assumes
linear relationships and no interaction among the variables, an assumption that can
be relaxed. As in any scientific investigation, the assumed causal relationships in a
mediation model rely on theory and empirical evidence.

Figure 2.2: Assumptions required for estimating causal mediation effects from a model with exposure
X, mediator M , and outcome Y . CXY represents confounding variables of the X → Y relationship,
CMY represents confounders of the M → Y relationship, and CXM represents confounders of the
X →M relationship. The researcher assumes that he has controlled for CXY , CMY , CXM and that
there are no M → Y confounders caused by X. Identifying controlled direct effects requires that
assumptions i) and ii) be met. Identifying natural direct and indirect effects requires that all four
assumptions be met. Figure adapted from VanderWeele (2015).

2.2.2 The difference of coefficients approach
There is disagreement as to whether the difference or product of coefficients ap-

proach is preferable (Alwin and Hauser 1975; Preacher and Hayes 2008b; Imai, Keele
and Tingley 2010). Although the two approaches agree for linear models, in general
they “represent legitimate intuitions in pursuit of two distinct causal quantities" and
are not equivalent (Pearl 2012b). In Section 2.3.1, we provide a general formula for the
difference of coefficients approach (i.e., the portion eliminated), which seeks to eval-
uate the reduction in the total effect if indirect paths were blocked. This approach
is recognized as being of great importance to public health policy research (Pearl
2012a; VanderWeele 2013; Naimi et al. 2014; VanderWeele 2015). For example, when
studying how an intervention can prevent adverse health outcomes, the difference of
coefficients measures the maximum preventive effect of any such intervention on the
mediating pathways (Pearl 2012a; VanderWeele 2015).
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2.2.3 The causal inference framework for mediation analysis
The causal inference framework for mediation analysis defines mediation effects as

contrasts in average potential outcomes (Holland 1986; Robins and Greenland 1992;
Pearl 2001). Let Y (x,m) be the potential outcome that would be observed if the
exposure X were equal to x and the mediator M were equal to m. Let Y (x,M(x◦))
be the potential outcome that would be observed if the exposure were equal to x

but the mediator M were equal to the value it would have been if the exposure were
equal to x◦. Note that the counterfactuals Y (x,M(x◦)) and Y (x◦,M(x)) can never
be observed. Table 2.1 provides the counterfactual definitions of causal mediation
effects. We use the (x, x◦) notation to make explicit that causal mediation effects are
defined for any two levels of the exposure. When X is a binary variable, the only
possible pair of values is (0, 1).

The causal mediation literature distinguishes between controlled and natural ef-
fects. The controlled direct effect (CDE) measures the effect of X on Y while holding
the mediator fixed at level m for everyone in the population. The natural direct
effect (NDE) measures the effect of the exposure on the outcome when each indi-
vidual’s mediator is fixed to M(x◦), what it would have been “naturally" had the
exposure been absent (or equal to some referent value). The natural indirect effect
(NIE) represents the difference in the outcome if one holds the exposure at level x and
changes the mediator from the value that would have been observed under the refer-
ent exposure, M(x◦), to the value that would have been observed under treatment,
M(x). The natural indirect effect is the difference between the total and natural
direct effects: NIE = TE − NDE. Another important quantity is the portion elim-
inated (PE), which is the difference between the total and controlled direct effects:
PE = TE− CDE (VanderWeele 2015).

Pearl’s mediation formula (see Appendix 2.9) is a generalization of the product
of coefficients approach and can be used to estimate causal mediation effects from
any type of model (Pearl 2001; Imai, Keele and Tingley 2010; Pearl 2012a). For
illustrative purposes, Table 2.1 displays the regression estimand obtained from ap-
plying the mediation formula to the simple mediation model: TE = β∗X(x − x◦),
NDE = βX(x− x◦) = CDE, and NIE = αXβM(x− x◦) = PE. In this simple case, the
estimated effects are identical to those obtained in the Baron-Kenny approach for a
unit change in the exposure.
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Causal Mediation Effects Simple Mediation Model
Causal Effect Potential Outcome Regression Estimand
CDE(x, x◦,m) E[Y (x,m)− Y (x◦,m)] βX(x− x◦)
NDE(x, x◦) E[Y (x,M(x◦))− Y (x◦,M(x◦))] βX(x− x◦)
TE(x, x◦) E[Y (x)− Y (x◦)] β∗X(x− x◦)
NIE(x, x◦) E[Y (x,M(x))− Y (x,M(x◦))] (β∗X − βX)(x− x◦)
PE(x, x◦) E[Y (x)− Y (x◦)− (Y (x,m)− Y (x◦,m))] (β∗X − βX)(x− x◦)

Table 2.1: Counterfactual definitions of causal mediation effects and the corresponding regression-
based estimands obtained from the simple mediation model.

2.2.4 Estimating the variance of mediation effects
Currently, estimating the variance of the indirect effect relies on approxima-

tions; a closed-form solution has not been discovered until now. Sobel’s (1982) delta
method approximation for the variance of the product of coefficients is V̂ar(α̂X β̂M) =
α̂2
Xs

2
βM

+ β̂2
Ms

2
αX

. Even though the sampling distribution of α̂X β̂M tends to be skewed
and highly leptokurtic, inference procedures rely on a large sample normal approxima-
tion; as a result, Sobel confidence intervals tend to lie to the left of the true value for
positive indirect effects and to the right for negative indirect effects (Stone and Sobel
1990; MacKinnon et al. 1995; MacKinnon et al. 2004). VanderWeele has derived delta
method variance approximations for more complex mediation models (2015). Boot-
strapping handles asymmetric sampling distributions better than the delta method
and thus improves the accuracy of confidence limits (Preacher and Hayes 2008b).
Monte Carlo methods estimate the variance by simulating the sampling distribution
of mediation effects (MacKinnon et al. 2004) and are implemented in the software by
Imai, Keele and Tingley (2010). Now that an analytical solution for the variance ex-
ists, it is of interest to re-examine the behavior of these approximations. Simulations
in Section 2.5.2 shed light on these considerations and the efficiency gains inherent in
avoiding conservative approximations.

2.3 A classical regression framework
We define an intermediate inferential target called the essential mediation compo-

nents (EMCs), which is the vector of changes in the exposure coefficients. Analytical
estimates of the EMCs and their model-based variance are derived from the fit of a
single regression model. Inference for causal mediation effects, which are functions
of the EMCs, follows naturally. Furthermore, because the fit of only one model is
required, it is straightforward to incorporate multiple mediators, exposure-exposure
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interactions, and mediator-mediator interactions.

2.3.1 The essential mediation components
Recall that the simple mediation model (2.1-2.3) assumes X is linearly related to

Y . A more general formulation allows the effect of X to be nonlinear: E[Y |X,M ] =
β0 + βXh(X) + βMM , where h(X) is a flexible function of X (e.g., log(X)). For p
exposures X and j mediators M , the full model and its implied reduced model are

E[Y |X,M ] = β0 + h(X)βX +MβM (2.4)

E[Y |X] = β∗0 + h(X)β∗
X (2.5)

where h(X) is a vector that captures the non-linear trends inX, such as a spline basis.
We call the vector of differences ∆ = β∗

X − βX the essential mediation components.
Using properties of the multivariate Gaussian distribution, we obtain estimates

of the EMCs and their variance using functionals from the fitted full model (2.4).
Under well-known conditions on the linear model,

√
n(β̂ − β) ∼ MVNk(0,Σ), where

k = p + j is the number of parameters in the full model. Without loss of generality,
we consider a model with no intercept. Partition β̂ = (β̂X , β̂M )T, where β̂X is the
p-vector of exposure coefficients and β̂M is the j-vector of mediator coefficients such
that β̂X

β̂M

 ∼ MVNk

βX

βM

 ,
 VX VXM

VMX VM


The conditional distribution of β̂X given β̂M = bM is (β̂X |β̂M = bM ) ∼

MVNp(βX|M ,VX|M ), where βX|M = βX +VXMV
−1

M (bM − βM ) and VX|M = VX −
VXMV

−1
M VMX . If bM = 0, we obtain (β̂X |β̂M = 0) ∼ MVNp(β∗

X ,V
∗
X), where

β∗
X = βX − VXMV

−1
M βM . Thus, a general formula for the difference in exposure

pathway coefficients β∗
X − βX , which we call the essential mediation components, is

∆ ≡ β∗
X − βX = −VXMV

−1
M βM (2.6)

This formula allows us to estimate multidimensional mediation effects (X andM
can be multivariate) from a single regression model (2.4), rather than fitting separate
models and aggregating effect estimates. Notice that for the simple mediation model
(2.1-2.3), ∆ = β∗X − βX is exactly equal to the portion eliminated for a unit change
in X (which equals the causal natural indirect effect and the Baron-Kenny product
of coefficients estimand). In general, when the exposure or mediator effects are non-
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scalar, the portion eliminated is a function of ∆:

PE(x, x◦) = [h(x)− h(x◦)]∆ (2.7)

Table 2.2 provides a list of commonly encountered mediation models for which
the controlled and natural direct effects are equivalent, and as a result the portion
eliminated and the natural indirect effect are the same. For these models, the natural
indirect effect can be estimated using our formula: NIE(x, x◦) = [h(x) − h(x◦)]∆.
We will consider the case of interactions in Section 2.3.5.

2.3.2 Illustration
To illustrate the relationship between the EMCs and causal mediation effects,

consider the full model with a quadratic effect of the exposure, h(X) = [X,X2],
so that the full model is given by E[Y |X,M ] = β0 + βXX + βX2X2 + βMM , the
model for M is E[M |X] = α0 + αXX, and the reduced model for the total effect of
X is E[Y |X] = β∗0 + β∗XX + β∗X2X2. The controlled and natural direct effects both
equal βX(x−x◦)+βX2(x−x◦)2, which are estimated from the full model. The EMCs

∆ =
 β∗X − βX
β∗X2 − βX2

 = −VXMV
−1

M βM and the natural indirect effect [h(x)−h(x◦)]∆ =

[x−x◦, x2−x2
◦]
 β∗X − βX
β∗X2 − βX2

 = (β∗X−βX)(x−x◦)+(β∗X2−βX2)(x2−x2
◦) are functionals

that can be estimated from components of the full model. Notice that the causal
mediation effects depend on the choice of (x, x◦), while if X is binary this reduces to
(β∗X + β∗X2)− (βX + βX2).

Now suppose the full model includes an exposure-mediator interaction so that the
full model is E[Y |X,M ] = β0 + βXX + βX2X2 + βMM + βXMXM . The implied

reduced model is E[Y |X] = γ0 + γXX + γX2X2. The EMCs ∆ =
 γX − βX
γX2 − βX2

 and

the NIE is [h(x)− h(x◦)]∆ = (γX − βX)(x− x◦) + (γX2 − βX2)(x2 − x2
◦). For a unit

change in X, this reduces to (γX + γX2)− (βX + βX2). Notice that in both examples,
the implied reduced model E[Y |X] has the same form. As a result, the total effects
TE1 = β∗X(x− x◦) + β∗X2(x2 − x2

◦) and TE2 = γX(x− x◦) + γX2(x2 − x2
◦) would have

the same empirical estimate even though the system of equations is different.
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Scenarios where PE = NIE Causal Mediation Models*

Simple mediation model E[Y |X,M ] = β0 + βXX + βMM
E[M |X] = α0 + αXX

Confounders E[Y |X,M,C] = β0 + βXX + βMM + βCC
E[M |X,C] = α0 + αXX + αCC

Exposure-confounder interaction E[Y |X,M,C] = β0 + βXX + βMM + βCC + βXCXC
E[M |X,C] = α0 + αXX + αCC + αXCXC

Multiple mediators
E[Y |X,M1,M2] = β0 + βXX + βM1M1 + βM2M2

E[M1|X] = α01 + α1X
E[M2|X] = α02 + α2X

Multiple mediators with confounders
E[Y |X,M1,M2,C] = β0 + βXX + βM1M1 + βM2M2 + βCC
E[M1|X,C] = α01 + α1X + αC1C
E[M2|X,C] = α02 + α2X + αC2C

Mediator-mediator interactions

E[Y |X,M1,M2] = β0 + βXX + βM1M1 + βM2M2 + βM1M2M1M2

E[M1|X] = α01 + α1X
E[M2|X] = α02 + α2X
E[M1M2|X] = α03 + α3X

* Bolded equation represents the fitted model used in the proposed framework

Table 2.2: Commonly encountered mediation models for exposure X, mediator M , outcome Y , confounders C where the portion eliminated (PE)
and the natural indirect effect (NIE) are equal. The models used to estimate mediation effects in the traditional causal framework are shown in the
second column. Using the proposed single model framework requires fitting only the first model listed under for each scenario, shown in bold. Unless
otherwise specified, the exposure can be any type of variable and the mediator and outcome are continuous variables.
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2.3.3 The conditional and the unconditional variance of the indirect effect
A closed form expression for the fully conditional variance of the EMCs follows

directly as Var(∆̂|X,M ) = VXMV
−1
M VMX . The variance of the natural indirect

effect (and more generally, the portion eliminated) is trivial to obtain using [h(x)−
h(x◦)]Var(∆̂|X,M )[h(x)−h(x◦)]T, which requires fitting only one model (2.4). From
properties of a regression model, for a scalar portion eliminated with a unit change
in the exposure we have P̂E−PE√

V̂ar(P̂E)
∼ t(df=n− k, scale = −1) and the 95% confidence

interval is P̂E± t.975,n−k × V̂XM V̂ −1
M

√
V̂ar(β̂M).

In equations (2.4) and (2.5), Y is a random variable and X and M are fixed
covariates. One may wish to treat the mediator as a random variable and marginalize
over M . The causal inference framework uses the marginal variance for inference
(VanderWeele 2015). Using the law of total probability,

Var(∆̂|X) = EM |X [Var(∆̂|X,M)] + VarM |X [E(∆̂|X,M)]

= EM |X
[
n2r2

XM σ̂
2
M σ̂

2
Y |X,M

|DTD|

]
+ β2

M

[
σ2
M |X

nσ̂2
X

]
(2.8)

where D = (1, X,M) is the n × 3 design matrix. This quantity can be estimated
by plugging in the sample correlation r, the maximum likelihood estimates of the
variances of X and M , estimates of the mean square error of Y from (2.1) and of M
from (2.2), and β̂M . Notice that the second term in (2.8) is an increasing function of
βM and a decreasing function of the sample size n. We used simulations to empirically
verify (2.8) under various sample sizes (n = 100, 200, 400, 1000) and magnitudes of
βM = 2, 4. Although the second term in Var(∆̂|X) requires estimating the variance
of the residuals from the regression of M on X, the contribution is of order 1/n and
becomes negligible in moderate sample sizes. The marginal variance of mediation
effects follows.

Because the mediator is (in theory) a consequent of the exposure, M cannot be
randomized and one could argue in favor of treating both X and M as fixed (Pearl
2012a). In classical regression settings, the conditional variance is frequently used
for inference even when the covariate changes in a population. As we note above,
the distinction between the two variances becomes semantic in large samples. Which
variance is to be preferred deserves consideration, but further discussion is beyond
the scope of this paper. Note that the nonparametric bootstrap, which samples with
replacement from pairs of X and M , approximates the fully unconditional variance
(marginalized over both predictor and mediator).
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2.3.4 Multiple mediators
Suppose the exposure’s effect on the outcome is transmitted through several me-

diators. Estimating the total indirect effect in a multiple mediator model aims to
determine if the set of j mediators M transmits the effect of X to Y . To identify
natural direct and indirect effects from multiple mediator models, all four no unmea-
sured confounding assumptions outlined in Figure 2.2 must hold with respect to M .
Existing approaches in the context of multiple mediators include the single-step mul-
tiple mediator model (MacKinnon 2008), also termed the parallel multiple mediator
model (Hayes 2013), and the serial multiple mediator model (Hayes 2013). The single-
step approach specifies a separate outcome model for each mediator in which they
independently affect the outcome (see panel C of Figure 2.3). The serial model relies
on assumptions about the directionality of the mediators, which can be unverifiable
with cross-sectional data (see panel B of Figure 2.3). VanderWeele and Vansteelandt
(2013) provide both regression-based and weighting approaches that allow mediators
to be interdependent (see panel A of Figure 2.3). The simulation-based approach by
Imai, Keele and Tingley (2010) handles multiple mediator models of all types, but
the software currently accommodates only two mediators and the user must specify
one mediator as “main" and the other as “alternative."

Within our framework, incorporating multiple mediators is simple and efficient.
Our formulation allows the mediators to covary, a more realistic assumption than
assuming the mediators do not affect each other (as is required for the single-step
models), or that we know the order in which they affect each other (as is required for
serial models). The advantage of using our approach is that it requires fitting only
one model to obtain causal mediation estimands (compared to three or more models
required by existing approaches), and it yields model-based variance estimates that
do not require the computation time of resampling methods.

If we posit j mediators such that the full mediation model is E[Y |X,M ] = β0 +
βXX + Σj

i=1βMi
Mi and the corresponding reduced model for the total effect of X

is E[Y |X] = β∗0 + β∗XX, then the total indirect effect through M is estimated by
[h(x)−h(x◦)]∆̂ = −V̂XM V̂

−1
M β̂M (x−x◦), and its variance by V̂ar([h(x)−h(x◦)]∆̂) =

(x − x◦)2V̂XM V̂
−1
M V̂MX . The mediator-specific indirect effect represents the ability

of Mi to mediate the effect of X on Y above and beyond the other j − 1 mediators.
The specific indirect effect through Mi′ is estimated using −V̂XMi′

V̂ −1
Mi′
β̂Mi′

(x − x◦).
The variance is estimated with V̂XMi′

V̂ −1
Mi′
V̂Mi′X

(x− x◦)2. Importantly, formula (2.6)
gives us these effects and their variances without having to fit any reduced models.

If two or more mediators share a role in transmitting the effect of X to Y , then
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the effect attributed to a specific mediator Mi may exclude this overlapping effect.
Additionally, specific indirect effects might have different signs, leading to inconsis-
tent mediation. As a result, the specific indirect effects attributed to each mediator
do not necessarily sum to the total indirect effect mediated by the set of mediators.
We emphasize that the estimated total indirect effect throughM comes from the full
model containing all of the mediators and does not suffer bias from the misspecifica-
tion of inter-mediator relationships. Thus, we recommend the researcher’s primary
interest lie in the total indirect effect, rather than the amount mediated by a specific
mediator. We present relevant examples in Section 2.6.

The regression-based approach by VanderWeele and Vansteelandt (2013) uses one
outcome model for all of the mediators but also requires a separate model for each
mediator and each mediator-mediator interaction. Including covariates C can lead
to compatibility issues between the models for Mi, Mk, and their product MiMk.
Their alternative inverse probability weighting approach circumvents this issue in
settings with mediator-mediator interactions. The weighting approach allows the
mediators to affect each other and does not require modeling the mediators, but it
does require fitting several logistic regression models to estimate P[X = x], P[X = x◦],
P[X = x|C = c], P[X = x◦|C = c] for the weights. It should be noted that the
weighting method performs best when the exposure has only a few levels (e.g., binary
or discrete) (VanderWeele and Vansteelandt 2013).

2.3.5 Interactions and moderated mediation
Our framework accommodates exposure-exposure and mediator-mediator interac-

tions, as well as interactions with confounders. Simply include the interaction terms
of interest in the full model and use formulas (2.6) and (2.7) to estimate the EMCs
and causal mediation effects. We now consider the more complex setting of exposure-
mediator interactions (so-called moderated mediation).

The causal mediation literature often considers exposure-mediator interactions
with binary X, such that the full model is E[Y |X,M ] = β0 +βXX+βMM+βXMXM

and the reduced model is E[Y |X] = β∗0 + β∗XX. The portion eliminated PE =
TE−CDE(m) = [β∗X−(βX+βXMm)](x−x◦) is estimated from the fit of the full model
using [∆− βXMm](x− x◦). One could plot the PE as a function of M or report the
PE for a point of interest m, such as the sample mean. Its variance follows by direct
calculation: (x− x◦)2

[
VXMV

−1
M VMX +m2Var(β̂XM) + 2mVXMV −1

M Cov(β̂M , β̂XM)
]
.

If the exposure is continuous, then the exposure-mediator interaction model above
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implies a marginal model that includes an X2 term. In this case, the marginal model
exposure coefficient cannot be estimated using formula (2.6) because it is not nested
within the full model. This formula requires that the full model also include an
X2 term (see Section 2.3.2 for an example), which can be viewed as relaxing the
assumption that all nonlinear effects of the exposure act through the mediator. In
this sense, a broader full model is desirable. Despite the non-nested reduced model,
it is possible to use the mediation formula to proceed with estimation in this setting.
Further thoughts are included in Remark D.

Notice that exposure-mediator interactions lead to mediation effects that are less
clearly defined. Because M acts simultaneously as a moderator and a mediator, both
the direct and indirect effects are affected by βXM . As a result, there is more than
one way to decompose the total effect depending on how the interaction effect is
accounted for (Robins and Greenland 1992; Pearl 2001). If one attributes βXM to
the indirect effect, then the total effect decomposes into the natural direct and total
indirect effects. Conversely, if one attributes βXM to the direct effect, then the total
effect decomposes into the total direct and pure indirect effects. Thus, mediation and
moderation are “inextricably intertwined and cannot be assessed separately" (Pearl
2012b).

With exposure-mediator interactions, the controlled and natural direct effects di-
verge: CDE(m) = (βX + βXMm)(x − x◦) and NDE = (βX + βXME[M |x◦])(x − x◦).
Because the controlled direct effect is a function of m, the portion eliminated and its
variance are functions of the mediator as well. The natural direct effect marginalizes
over E[M |x◦] and is a function of the exposure that can be defined for any levels of
(x, x◦) (Naimi et al. 2014). The portion eliminated does not depend on the choice
of decomposition because it is the portion of the total effect attributed to both in-
teraction and mediation. As such, the PE is a comprehensive estimate of moderated
mediation in these complex settings.

2.4 Impact of omitted covariates on estimating the indirect effect
What happens to ∆̂ when we omit an important covariate in the specification of

the full model? If the omitted covariate is orthogonal to X or to M , then ∆̂ does not
incur additional bias. To fix ideas, consider the simple setting in which we have one
exposure X, one mediator M , and a third omitted covariate W . Suppose the true
data generating mechanism is Y = γ0+γXX+γMM+γWW+ε, but we don’t knowW

so we incorrectly specify the full model as Y = β0 +βXX+βMM + ε and the reduced
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model as Y = β∗0 +β∗XX+ε. The estimates β̂X and β̂∗X will be biased estimates of γX ,
the “true" effect of X. The expected values of the parameters from the full model and

reduced model are


β̂0

β̂X

β̂M

→ Etrue


β̂0

β̂X

β̂M

 =


γ0

γX

γM

+


δ0

rWX.MσW/σX

rWM.XσW/σM

 γW and
 β̂∗0
β̂∗X

→
Etrue

 β̂∗0
β̂∗X

 =
γ0

γX

+
 α0

rXMσM/σX

 γM+
 κ0

rXWσW/σX

 γW , respectively. Thus, when

we omitW , the expected difference in the estimated total and direct effects for a unit
change in X is E[∆̂1] = Etrue[β̂∗X − β̂X ] = rXM

σM

σX
γM + (rXW − rXW.M)σW

σX
γW .

Next, suppose that Y does not depend on W and the true data generating mech-
anism is Y = γ0 + γXX + γMM + ε. If we correctly specify the full model as
Y = β0 + βXX + βMM + ε and the reduced model as Y = β∗0 + β∗XX + ε, then
E[∆̂2] = E[β̂∗X − β̂X ] = γX + (XTX)−1XTMγM − γX = rXM

σM

σX
γM . The bias in

the estimated indirect effect when the full model omits W is given by E[∆̂1 − ∆̂2] =
(rXW − rXW.M)σW

σX
γW . As a result, if W is orthogonal to X or M (rXW = rXW.M)

or γW = 0 (a trivial case), then the estimated indirect effect under the incorrectly
specified full model is robust to misspecification. That is, omittingW will not change
the estimate of the indirect effect.

Note that if W is not orthogonal to either X or M such that W is a confounder
of the exposure-mediator relationship, then assumption (iii) of the no-unmeasured
confounding assumptions is violated and natural direct and indirect effects are not
identifiable. Controlled direct effects are still identifiable in this setting, provided
there are no unmeasured confounders of the exposure-outcome and mediator-outcome
relationship (see Figure 2.2).

2.5 Simulations
2.5.1 Setup

We use simulations to provide empirical support for the proposed approach to
mediation analysis with a simple mediation model. We simulated 5,000 datasets
of sample size n ∈ {50, 100, 200} with a “true" indirect effect of 1.5. The “true"
full model was Y = β0 + βXX + βMM + εY where ε ∼ N(0, σ2

Y ). The exposure
X ∼ N(0, σ2

X) and mediator M = α0 + αXX + εM , where εM ∼ N(0, σ2
M). When

comparing methods, 10,000 bootstrap replications and 10,000 Monte Carlo draws were
used. For each replication, we computed each method’s estimated indirect effect and
estimated variance and compared these to the true effect and the empirical (“true")
variance. The bias of the estimated indirect effect was captured when X and M were
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both fixed and whenM was random. These simulations demonstrate the performance
of our formulas and are not intended to be exhaustive. Varying parameter values
impacted the magnitude of the results but not the general patterns.

2.5.2 How our variance measure compares to existing measures
The results of estimating the variance of the indirect effect using the analytical

regression-based formula, bootstrapping, Sobel’s formula, and Monte Carlo methods
are shown in Figure 2.4 and Table 2.3 in Appendix 2.9. The analytical variance
formula appears unbiased for the true variance. Sobel’s variance performs similarly
to the case bootstrap. As expected, the estimated variance from bootstrapping cases
is greater than that from the residual bootstrap (see Section 2.3.3). As the sample
size increases, the variances of the estimates of V̂ar([h(x) − h(x◦)]∆̂) from the cases
bootstrap, Sobel’s formula, and the MC methods decrease but remain biased.

2.5.3 The bias of indirect effect estimates depends on the conditioning set
Under the full model, the expectation of ∆̂ is E[β̂∗X−β̂X ] = (βX+PX.MβM)−βX =

PX.MβM , where PX.M is the projection of M onto X. For the simple mediation
model, PX.MβM = ρXM

(
ρMY −ρY XρXM

1−ρ2
XM

σY

σX

)
. To estimate ∆̂, we replace ρ and σ2 with

their sample estimates r and s2 to obtain rXM
(
rMY −rY XrXM

1−r2
XM

sY

sX

)
, which is biased per

Jensen’s inequality. This is not surprising because the sample correlation r is a biased
estimate of ρ, a result given by Fisher (1915): E[r] = ρ− ρ(1− ρ2)/2N . Since r → ρ

and s2 → σ2 as N → ∞, ∆̂ is biased but consistent for the true ∆ by the Law of
Large Numbers and the Continuous Mapping Theorem.

The distributions of ∆̂ when X and M are both fixed and when M varies are
shown in Figure 2.5 in Appendix 2.9 (note that ∆̂ equals the indirect effect for a unit
change in X from the simple mediation model). When X and M are both fixed, ∆̂
is biased as a function of the bias of rXM . If we allow M to vary, the bias is reduced
because rXM is no longer fixed and it tends to approximate ρXM better on average.
Therefore, because of the bias-variance tradeoff, coverage probability alone is not the
proper performance measure when rXM poorly approximates ρXM .

2.6 Examples with data from Vanderbilt ICU patients
We illustrate our method and existing approaches using data from a prospec-

tive cohort of 217 ICU patients at Vanderbilt University Medical Center with acute
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respiratory failure and/or cardiogenic or septic shock (Pandharipande et al. 2013).
The goal is to examine the cognitive effects of critical illness. We use measurements
of creatinine (mg/dL) and estimated glomerular filtration rate (eGFR) measured at
baseline, benzodiazepine dose (mg), Sequential Organ Failure Assessment (SOFA)
score, mental status (delirious or normal) assessed with the Confusion Assessment
Method for the ICU and Richmond Agitation-Sedation Scale, and Repeatable Bat-
tery for the Assessment of Neuropsychological Status (RBANS), a global cognitive
score measured three months post discharge. Biomarker S100B levels were measured
for 121 of these patients.

We present several simple examples of mediation models to illustrate the efficiency
and coherence of our proposed framework. We compare variance estimates obtained
from the model-based formula, Sobel’s formula, and percentiles of 10,000 bootstrap
replications. The first two examples assume there are no unmeasured confounders,
and the third assumes the covariate C sufficiently controls for confounding. We do
not intend for the examples and their results to be interpreted scientifically; rather,
they are meant to illustrate the methods discussed throughout the paper. All models
assume errors ε ∼ N(0, σ2). Unless otherwise specified, we compare unit changes in
the exposure so that (x− x◦) = 1.

Example 1 (Simple mediation model): Does severity of illness (SOFA) me-
diate the effect of creatinine on S100B levels? We specify the full model as S100B =
β0 +βXCr+βMSOFA+ε to estimate the EMC ∆̂ = −V̂XM V̂ −1

M β̂M , where X = Cr and
M = SOFA. The mediated effect of creatinine on S100B is ∆̂(x−x◦)=28.64 (SE=7.12)
with 95% CI 14.54 to 42.74. The residual bootstrap SE=7.06, Sobel’s SE=17.25, and
the case bootstrap SE=18.74. Importantly, the model-based variance is five times
smaller than Sobel’s and the case bootstrap, which yield 95% CIs that include zero.
Although the residual bootstrap variance gives essentially the same answer as the
model-based formula, the formula avoids the computation time and effort.

To allow for a quadratic relationship between creatinine and S100B, simply specify
the full model as S100B = β0 + βX1Cr + βX2Cr2 + βMSOFA + ε. The EMCs ∆̂=
-V̂XM V̂

−1
M β̂M = [28.33,−11.08]T is now a vector of the linear and quadratic effects

of creatinine. The portion eliminated (which equals the NIE) is 28.33(x − x◦) −
11.08(x2 − x2

◦) = 17.25. Using the mediation package gives an estimated NIE of
17.25 (exactly equal to our estimate, as expected) and requires 111.94 seconds of
computation time compared to 0.01 seconds using our approach. In the remaining
examples we consider only linear effects, but allowing for nonlinear relationships in
practice is strongly advised and easily implemented within the proposed framework.
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Example 2 (Simple mediation model where Sobel’s approximation holds):
It is not always true that we see such large efficiency gains. For instance, our method
yields similar results to standard approaches when we investigate whether the re-
lationship between creatinine and overall cognitive function (RBANS) is mediated
by severity of illness. The estimated indirect effect is 0.01 (SE=0.27), the residual
bootstrap SE=0.27, Sobel’s SE=0.27, and the case bootstrap SE=0.29.

Example 3 (Exposure-confounder interactions): Recall that identifying
mediation effects relies on a strict set of no unmeasured confounding assumptions
(outlined in Figure 2.2). To keep this example simple, we assume that adjusting
for C = Charlson score is sufficient to satisfy these assumptions. We also include
an exposure-confounder interaction so that the full model is RBANS = β0 + βXCr +
βMSOFA +βCCharlson +βXCCr:Charlson + ε. The indirect effect marginalized over
the confounder is E[h(x)−h(x◦)]∆|C] = (β∗X−βX)(x−x◦)+(β∗XC−βXC)(x−x◦)E[C].
The variance is estimated using (x − x◦)2Var(∆1) + (x − x◦)2E[C]2Var(∆2) + 2(x −
x◦)2E[C]Cov(∆1,∆2).

For a unit change in creatinine, the estimated indirect effect is 0.0028 (SE=0.22).
The regression-based approach by VanderWeele requires fitting the mediator model
SOFA = α0 + αXCr + αCCharlson + βXCCr:Charlson + ε in addition to the full
model. The mediation formula estimates the indirect effect using E[βM(E[M |x] −
E[M |x◦])|C] = βM(αX + αXCE[C])(x− x◦) = 0.0028 (SE=0.24).

To examine the indirect effect comparing the 75th percentile to the median value
of Cr, one simply plugs in these values for x and x◦. Using the single-model approach
took 0.02 seconds to estimate the total, direct, and indirect effects, and an additional
0.003 seconds to recalculate the indirect effect for the new pair of exposure values.
Using the simulation-based mediation package required 24.89 seconds, and a new
simulation must be run for each additional pair of exposure values. Although this
difference may seem inconsequential for this simple example, using (2.6) and (2.7) re-
duces the computation time by several orders of magnitude when applied to big data.
For example, with the current sample size (N=217), if one were to study mediation
across 10,000 SNPs and three different pairs of the exposure were of interest, the
simulation-based approach would require around 10, 000× 24.89× 3 seconds (over 8
days) to run. The proposed approach would take (10, 000× .02) + (0.003×3) seconds
(under 4 minutes).

Example 4 (Multiple mediator model): Is the effect of creatinine on cogni-
tive function mediated by severity of illness and benzodiazepine dose? The conceptual
diagrams in Figure 2.3 depict the single-model approach for multiple mediators, the
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Figure 2.3: Comparison of multiple mediator models. Model A depicts the proposed single-model
framework for assessing mediation with multiple mediators. Model B depicts the serial multiple
mediator model. Model C depicts the single-step or parallel multiple mediator model. The directions
of arrows indicate the assumed causal pathways.

serial multiple mediator model, and the parallel multiple mediator model. For all three
methods, the full model is RBANS = β0+βXCr+βM1SOFA+βM2Benz+ε and the reduced
model for the total effect of creatinine on cognitive function is RBANS = β∗0 +β∗XCr+ε.
Thus, the direct effect of creatinine is βX(x − x◦), the total effect of creatinine is
β∗X(x − x◦), and the total indirect effect of creatinine through SOFA and benzodi-
azepine is (β∗X − βX)(x− x◦), regardless of which method you use. It is important to
recognize that the total indirect effect does not depend on the order or directionality
of the mediators, whereas the amount of mediation attributed specifically to SOFA
or benzodiazepine will differ across methods due to their varying assumptions about
inter-mediator relationships.

We estimate how much severity of illness and benzodiazepine dose mediate the
relationship between creatinine and cognitive function using only the full model and
formula (2.7). For X = Cr and M = {SOFA, Benz}, the total indirect effect through
M is estimated using [h(x) − h(x◦)]∆̂ = −V̂XM V̂ −1

M β̂M (x − x◦) = -0.34 and its
empirical variance V̂XM V̂ −1

M V̂MX(x− x◦)2 = 0.139 (SE = 0.37).
Now suppose we are interested in mediator-specific effects. Since we have already

fit the full model, to estimate how much is mediated specifically through M1 = SOFA
we simply apply (2.6): −V̂XM1V̂

−1
M1 β̂M1(x−x◦) = -0.046. The variance follows directly:

V̂XM1V̂
−1
M1 V̂M1X(x − x◦)2 = 0.092 (SE=0.30). Similarly, to estimate how much the

effect of creatinine is mediated through M2 = Benz, use −V̂XM2V̂
−1
M2 β̂M2(x − x◦) =

-0.352 which has an estimated variance of V̂XM2V̂
−1
M2 V̂M2X(x − x◦)2 = 0.066 (SE =

0.26). Keeping in mind SOFA is correlated with benzodiazepine dose, notice that
the mediator-specific indirect effects sum to -0.398, which does not equal the total
indirect effect of -0.34.

The parallel approach (MacKinnon 2008; Hayes 2013) and the causal regression-
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based approach (VanderWeele and Vansteelandt 2013) specify the same full model as
above RBANS = β0 +βXCr +βM1SOFA +βM2Benz + ε and an additional model for each
mediator: SOFA = α01 + αX1Cr + ε and Benz = α02 + αX2Cr + ε. This specification
assumes the mediators “act in parallel" (see Figure 2.3 panel C). The estimated indi-
rect effect through SOFA is α̂X1β̂M1 = -0.042 (SE=0.27) and the estimated indirect
effect through benzodiazepine is α̂X2β̂M2 = -0.299 (SE=0.25), which sum to the total
indirect effect. Delta method approximations are used to estimate standard errors.
When the exposure is continuous and there are no mediator-mediator interactions,
the weighting approach is not recommended (VanderWeele and Vansteelandt 2013).

The serial model given by Hayes (2013) requires specifying the order in which
the mediators affect each other. Suppose we assume Cr → SOFA → Benz → RBANS
(see Figure 2.3 panel B1). The full model is specified as RBANS = β0 + βXCr +
β1SOFA + β2Benz + ε (the same as above), the first reduced model is Benz = α02 +
α2Cr + δ21SOFA + ε, and the second reduced model is SOFA = α01 + α1Cr + ε. There
are three estimated indirect effects: α̂1β̂1 = -0.04 (SE=0.27) is the indirect effect of
creatinine through SOFA to RBANS, α̂2β̂2 = -0.35 (SE=0.29) is the indirect effect
of creatinine through benzodiazepine to RBANS, and α̂1δ̂21β̂2 = 0.05 (SE=0.36) is
the indirect effect of creatinine through SOFA to benzodiazepine to RBANS. The
variances of α̂1β̂1 and α̂2β̂2 are estimated using Sobel’s formula and V̂ar(α̂1δ̂21β̂2) =
α̂2

1δ̂
2
21s

2
β2 + α̂2

1β̂
2
2s

2
δ21 + δ̂2

21β̂
2
2s

2
α1 (Hayes 2013).

To demonstrate how mediator-specific indirect effects depend on the specified
order in a serial model, suppose we change the order of mediation to Cr → Benz →
SOFA→ RBANS (see Figure 2.3 panel B2). The total indirect effect remains unchanged,
but now the indirect effect of creatinine through benzodiazepine to RBANS is -0.299,
the indirect effect of creatinine through SOFA to RBANS is -0.046, and the indirect
effect of creatinine through benzodiazepine to SOFA to RBANS is 0.0046. Notice
that in either case, the serially mediated indirect effects sum to the total indirect
effect. Estimating indirect effects from the serial model is analogous to examining
sequential sums of squares, whereas estimating effects from the proposed framework
is analogous to examining partial sums of squares. Just as partial sums of squares do
not necessarily sum to the total, mediator-specific indirect effects do not necessarily
sum to the total indirect effect. In contrast, the serial indirect effects do sum to the
total indirect effect, but their estimation depends heavily on the assumed order of
the mediators.
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2.7 Remarks
The statistical literature abounds with methods for estimating the indirect ef-

fect and its variance from the simple mediation model. For sophisticated mediation
analyses involving interactions, splines, and any combination of continuous, binary,
and categorical mediators, the proposed single-model approach is straightforward to
implement.
Remark A: Straightforward application of modeling tools
The proposed framework can be viewed as having two key steps: first, estimation of
a single fully-conditional model for the outcome and second, estimation of mediation
functionals from that model. As a result, this approach allows for mediation analysis
with a straightforward application of regression modeling tools - e.g., penalization
procedures such as the elastic net or lasso, multiple imputation, and cross-validation.
One simply applies these techniques to the single well-specified full model and their
impact is automatically incorporated in the mediation functionals.
Remark B: Advantage of using one outcome model in multiple mediator settings
As pointed out by VanderWeele and Vansteelandt (2013), the approach of using one
outcome model for all of the mediators is “robust to unmeasured common causes
[C] of two or more mediators," whereas having separate outcome models for each
mediator is not. When the outcome model contains all the mediators, C only affects
the outcome through the set of mediators, so C does not confound the joint effect
of M on Y . If, instead, one specifies a separate outcome model for each mediator,
C affects Mi and it affects Y through Mi′ 6=i, which leads to biased estimates of the
the effect Mi on Y . Thus, it is recommended to specify one full outcome model that
contains all of the mediators.
Remark C: Controlled indirect effect
“Controlled indirect effects are notably difficult to conceptualize, and instead are
defined as some contrast between the total and controlled direct effects in the absence
of exposure-mediator interactions" (Naimi et al. 2014). Our approach provides a
general formula for estimating the difference between the total and controlled direct
effect, i.e., the so-called controlled indirect effect. By contrast, the mediation formula
provides a general formula for estimating the natural indirect effect, the difference
between the total and natural direct effect (Pearl 2001).
Remark D: Non-nested reduced models
In order to use the formula for the EMCs, the implied reduced model must be
nested within the full model. The simple exposure-mediator interaction model is
a commonly encountered example of a marginal model that is not nested. The full
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model E[Y |X,M ] = β0 + βXX + βMM + βXMXM has the implied reduced model
E[Y |X] = β∗0 + β∗XX + β∗X2X2. This full model contains a linear term for X, which
implies the entire non-linear effect of the exposure is captured by the mediator (via
the interaction). This is an impactful assumption that we would prefer to relax by
including the nonlinear exposure effects h(X) in the full model.
Remark E: Fitted versus implied total effect
The standard approach in the causal inference literature is to use the implied total
effect that results from fitting the full outcome model and the model for the mediator.
We say “implied" here because the marginal model E[Y |X] is never actually fit to the
data. Instead, the sum of the estimated natural direct and indirect effects is used as
the total effect estimate (for instance, this is how the mediation package in R estimates
the total effect). In contrast, our approach estimates the total effect directly from
the fitted marginal model.

Importantly, the estimated total effect obtained from fitting the marginal model
E[Y |X] does not necessarily equal the sum of the estimated natural direct and indirect
effects, an unexpected finding. We found this to be the case when fitting the full model
E[Y |X,M ] = β0+βXX+βMM+βXMXM , the mediator model E[M |X] = α0+αXX,
and the implied marginal model E[Y |X] = γ0 + γXX + γ2

XX
2. To be clear, our

empirical estimate of the total effect γX(x− x◦) + γ2
X(x2− x2

◦) did not equal the sum
of the natural direct and indirect effects. We can only speculate that the maximum
likelihood fit of the reduced model is not equivalent to the implied reduced model
derived from the maximum likelihood fits of the first two models. One explanation
is that several different systems of equations will yield the same reduced model, but
only one reduced model is implied once the outcome model and mediator model are
fit. This is an interesting finding that merits further study.

2.8 Software
While the BRAIN-ICU data used for the examples is not publically available,

software in the form of R code and documentation is available at
https://github.com/trippcm/Biostatistics-Mediation-R-Code.
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2.9 Appendix
Pearl’s mediation formula is a generalization of the product of coefficients ap-

proach and can be used to estimate causal mediation effects from any type of model
Pearl (2001); Imai, Keele and Tingley (2010); Pearl (2012a).

NDE(x, x◦) = E[Y (x,M(x◦))− Y (x◦,M(x◦))]

= Σc,m (E[Y |x,m, c]− E[Y |x◦,m, c]) P[m|x◦, c]P[c]

NIE(x, x◦) = E[Y (x,M(x))− Y (x,M(x◦)]

= Σc,mE[Y |x,m, c] (P[m|x, c]− P[m|x◦, c]) P[c]

TE(x, x◦) = E[Y (x)− Y (x◦)]

= Σc (E[Y |x, c]− E[Y |x◦, c]) P[c]
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Table 2.3: Results of 5000 simulations (10,000 bootstrap and 10,000 Monte Carlo replications per
simulation) of the estimated indirect effect and its estimated variance under the simple mediation
model with a true indirect effect of 1.5 for sample sizes N = 50, 100, 200. Note that for the simple
mediation model, the (natural) indirect effect for a unit change in the exposure equals the essential
mediation component ∆. We use ÎDE as an acronym for the indirect effect.
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Figure 2.4: Results of simulating the estimated variance of indirect effect estimates from the simple
mediation model for sample sizes N = 50, 100, 200. Note that for the simple mediation model, the
(natural) indirect effect for a unit change in the exposure equals the essential mediation component
∆. We use ÎDE as an acronym for the indirect effect. We compare V̂ar(ÎDE) using the analytical
regression formula, bootstrapping residuals and cases, Sobel’s formula, and Monte Carlo methods
for the product and difference of coefficients. 25
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Figure 2.5: We use ÎDE as an acronym for the estimated (natural) indirect effect. Results of 5000
simulations of ÎDE from the simple mediation model for sample sizes N = 50, 100, 200. Note that
using the product of coefficients or difference of coefficients yields equivalent estimates of ÎDE for
this simple model. We compare the effect of treating both X and M as fixed covariates (i.e. at
every simulation a new Y is generated conditional on the same X and M) and treating X as fixed
and M as a random variable (i.e. at every simulation a new M and a new Y are generated). Notice
that when M is treated as a random variable, the bias of ÎDE is reduced. Intuitively, when we let
M vary, rXM varies and better approximates ρXM than the sample correlation from a single draw
from the distribution of M . We notice the bias-variance tradeoff since when M is random we also
see an increased variance in the distribution of ÎDE. For N = 50, cov(x,m) = 2.606, var(x) = 2.514,
var(m) = 6.740. For N = 100, cov(x,m) = 4.785, var(x) = 4.156, var(m) = 9.316. For N = 200,
cov(x,m) = 3.227, var(x) = 3.510, var(m) = 6.933.
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CHAPTER 3

EXTENSIONS, VISUALIZATIONS, AND APPLICATIONS TO BEHAVIORAL
SCIENCE

3.1 Introduction
Psychologists and social scientists concerned with dynamic relations and the mech-

anisms by which an exposure affects an outcome have been studying mediation pro-
cesses for decades (Woodworth 1928; Alwin and Hauser 1975). A large body of
literature and a variety of methods exist for conducting mediation analyses; the
Baron-Kenny causal steps approach (Baron and Kenny 1986; Zhao et al. 2010), the
structural equation modeling approach (Gunzler et al. 2013), and the potential out-
comes approach (Robins and Greenland 1992; Pearl 2001; Imai, Keele and Tingley
2010; VanderWeele 2015) are well-known frameworks. Additional background infor-
mation can be found in MacKinnon 2008; Gelfand et al. 2009; Preacher 2015 and in
Appendix 3.9.1.

This paper further develops our recently-proposed classical regression approach
to mediation analysis (Saunders and Blume 2017) and discusses its implications in
the context of existing methods. Instead of fitting a system of equations to estimate
the total, direct, and indirect effects, the classical regression approach uses a simple
formula to estimate mediation effects from the fit of only one model. It is essentially
a generalization of the difference of coefficients approach, which seeks to evaluate
the reduction in the total effect when indirect paths are blocked. The difference ap-
proach is recognized as being of great importance in health policy research (Pearl
2012a; VanderWeele 2013; Naimi et al. 2014; VanderWeele 2015). For example, when
studying how an intervention (such as seeing a psychologist for help with depression)
can prevent adverse mental health outcomes (such as suicide), the difference of co-
efficients measures the maximum preventive effect of said therapy on the mediating
pathways. Furthermore, this new approach yields a closed-form expression for the
model-based variance, an improvement over widely-used approximations (e.g., delta
method, bootstrap, Monte Carlo).

Our approach extends to settings with multiple mediators, interactions, and non-
linearities. Advanced regression tools are then easily applied to a single model rather
than to the system of equations. We illustrate the new approach and compare it to
existing methods in a series of detailed, reproducible examples.
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3.2 Background and notation
3.2.1 What is a mediator?

Several types of variables may be present when analyzing the relationship between
an exposure and some outcome of interest. A confounder is a variable related to two
factors of interest that falsely obscures or accentuates the relationship between them
(Meinert 1986). We want to adjust for appropriate confounders to obtain an unbiased
estimate of the relationship between the exposure and the outcome. By contrast,
a moderator (also known as “effect-modifier" in the epidemiologic literature) is a
variable that affects the direction or strength of the relationship between the exposure
and outcome (Baron and Kenny 1986). In regression analysis, we typically account for
moderators by including interaction terms in the model. Lastly, a mediator represents
“the generative mechanism through which the focal independent variable is able to
influence the dependent variable" (Baron and Kenny 1986) or “a variable that occurs
in a causal pathway from an independent variable to a dependent variable" (Last
1988). We will return to the importance of distinguishing between these types of
variables when we discuss the assumptions of mediation models. Next, we introduce
the simple mediation model.

3.2.2 The simple mediation model
By partitioning the total effect of an exposure into its direct and indirect com-

ponents, mediation analysis seeks to understand how much of an exposure’s effect
on an outcome is transmitted through intermediate pathways. The total effect (TE)
of the exposure variable X on the outcome Y represents how much a change in X

results in a change Y , irrespective of the mechanisms by which the change occurs;
the part of the total effect that is not transmitted through intervening variables is
called the direct effect (Alwin and Hauser 1975); the indirect effect is the part of a
variable’s total effect that is transmitted to the outcome via a mediating variable(s)
M . Suppose we have one exposure, one continuous mediator, and one continuous
outcome. The Baron-Kenny simple mediation model is illustrated in Figure 2.1 and
represented by the following three regression equations.

E[Y |X,M ] = β0 + βXX + βMM (3.1)

E[M |X] = α0 + αXX (3.2)

E[Y |X] = β∗0 + β∗XX (3.3)
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This model assumes linear relationships, no interaction among the variables, and
normally distributed errors. Although the original Baron-Kenny model did not in-
clude confounders, it is important to adjust for confounders of the type listed in
Figure 2.2 so that mediation effects are identifiable (simply add the set of relevant
confounders to each model).

3.2.3 Assumptions for causal inference
Critical assumptions concerning the relationships in a proposed mediation model

rely on theory and empirical support. To infer causality from a mediation analy-
sis, one must assume the confounders enumerated in Figure 2.2 have been accounted
for (VanderWeele 2015). In addition, mediation analysis assumes the temporal or-
der of the variables was correctly specified (Judd and Kenny 1981; Stone and Sobel
1990). A mediator must truly be a dependent variable relative to the exposure and
an independent variable relative to the outcome.

Figure 3.1: Statistically indistinguishable three-variable systems: The arrows represent the causal
direction of the effects between variables and dashed lines represent a spurious effect between X and
Y . The left panel represents the simple mediation model where Z mediates the effect of X on Y .
The middle panel shows Z confounding the relationship between X and Y . The right panel shows
X and Z as two covariates having a reciprocal relationship.

Mediation analysis also relies on correctly specified causal directions (McDonald
1997). Consider the diagrams in Figure 3.1 whereX is the exposure, Y is the outcome,
and Z is a third variable influencing the effect of X on Y . The dashed lines represent
a spurious X → Y effect. The first panel displays Z acting as a mediator; the
second panel shows Z influencing both X and Y , leading to a spurious X → Y effect;
the third panel shows a reciprocal relationship between X and Z, with Z affecting Y
without being causally intermediate. Although these models are conceptually distinct,
they are mathematically equivalent and cannot be empirically distinguished from one
another with cross-sectional data (Cole and Maxwell 2003).
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3.2.4 Intersection of existing frameworks
Many articles on mediation analysis tout the benefits of one framework over an-

other for making causal inferences. Social and behavioral scientists tend to adopt the
structural equation modeling (SEM) language, while statisticians more often use the
potential outcomes (PO) approach (and may even be unfamiliar with the basic tenets
of SEM). Although one framework may lend itself to a specific research question,
the SEM and PO frameworks are “logically equivalent," a result proven formally by
(Galles and Pearl 1998).

“The essential difference between the SEM and PO frameworks is that the
former encodes causal knowledge in the form of functional relationships
among ordinary variables, observable as well as latent, while the latter
encodes such knowledge in the form of statistical relationships among
hypothetical (or counterfactual) variables, whose value is determined only
after a treatment is enacted... A systematic analysis of the syntax and
semantics of the two notational systems reveals that they are logically
equivalent; a theorem in one is a theorem in the other, and an assumption
in one has a parallel interpretation in the other (Bollen and Pearl 2013)."

Providing definitions of causal mediation effects and their regression-based esti-
mands, Table 3.1 is a crosswalk between the SEM and PO nomenclature.

30



E[Y |X,M,C] =
E[M |X,C] =
E[Y |X,C]1 =

β0 + βXX + βMM + βXMXM + βCC
α0 + αXX + αCC
β∗0 + β∗XX + β∗X2X2 + β∗CC

SEM Name PO Name(s) PO Definition Regression-based estimand for continuous X for (0,1) X
Total Effect2 of X Y (x)− Y (x◦) (β∗X + β∗X2)(x− x◦) β∗X
Direct Effect of X (βX + βXMM)(x− x◦)
a) set M = m Controlled direct effect Y (x,m)− Y (x◦,m) (βX + βXMm)(x− x◦) (βX + βXMm)
b) set M = E[M |x◦, c] Natural direct effect †

Pure direct effect §
Average direct effect (control) ?

Y (x,M(x◦))− Y (x◦,M(x◦)) (βX + βXME[M |x◦, c])(x− x◦) = (βX + βXM(α0 + αXx◦ + αCc))(x− x◦) βX + βXM(α0 + αCc)

c) set M = E[M |x, c] Total direct effect §
Average direct effect (treatment) ? Y (x,M(x))− Y (x◦,M(x)) (βX + βXME[M |x, c])(x− x◦) = (βX + βXM(α0 + αXx+ αCc))(x− x◦) βX + βXM(α0 + αX + αCc)

Indirect Effect of X
a) set X = x◦ Pure indirect effect §

Average causal mediation effect (control) ? Y (x◦,M(x))− Y (x◦,M(x◦)) (βM + βXMx◦)(E[M |x, c]− E[M |x◦, c]) = (βM + βXMx◦)αX(x− x◦) βMαX

b) set X = x Natural indirect effect †
Total indirect effect §
Average causal mediation effect (treat) ?

Y (x,M(x))− Y (x,M(x◦)) (βM + βXMx)(E[M |x, c]− E[M |x◦, c]) = (βM + βXMx)αX(x− x◦) (βM + βXM)αX

Portion Eliminated PE = Total effect - controlled direct effect Y (x)− Y (x◦)− (Y (x,m)− Y (x◦,m)) (β∗X + β∗X2 − (βX + βXMm))(x− x◦) β∗X − (βX + βXMm)
1The marginal model E[Y |X,C] is obtained by EM |X,CE[Y |X,M,C]. Notice that the marginal model has an X2 term and the full model does not.
2The maximum likelihood fit of the total effect (β̂∗X + β̂∗X2)(x− x◦) does not always equal the sum of the estimated natural direct and indirect effects.
If X is a binary variable, then fitting the model E[Y |X,C] will drop the X2 term and the total effect estimate β̂∗X will equal the sum of the natural direct and indirect effects.
†VanderWeele
§Robins and Greenland
?Imai et al.

Table 3.1: Nomenclature and definitions of causal mediation effects for exposure X, mediator M , confounders C, and outcome Y . Effects compare
the value X = x to X = x◦ (the referent exposure).
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3.3 The recently proposed classical regression framework
Recall that the simple mediation model (3.1-3.3) assumes X is linearly related to

Y . A more general formulation allows the effect of the exposure to be nonlinear and
includes additional confounders C: E[Y |X,M,C] = β0 + βXh(X) + βMM + βCC,
where h(X) is a flexible function of X (e.g., log(X)). Consider p exposures X, j
mediators M , and l confounders C such that the full model and its implied reduced
model are

E[Y |X,M ,C] = β0 + βXh(X) + βMM + βCC (3.4)

E[Y |X,C] = β∗0 + β∗
Xh(X) + β∗

CC (3.5)

The vector h(X), such as [X,X2] or [X,XC], captures the non-linear trends in X.
In a recent paper (Saunders and Blume 2017), we named the difference in exposure
pathway coefficients ∆ = β∗

X−βX the essential mediation components (EMCs) ofX.
We derived analytical estimates of the EMCs and their model-based variance from the
fit of a single regression model. Because the fit of only one model is required, inference
for causal mediation effects (which are functions of the EMCs) follows naturally.

Our method uses the “full" outcome model (3.4) and the model for the total effect
of the exposure (3.5), in which the effect of the mediator is blocked. The general idea
of our approach is to use the sweep operator on the full model to obtain coefficients
from any nested reduced model, without having to actually fit said reduced model
(Goodnight 1979). This allows us to obtain the EMCs from the fit of the full model
alone. Saunders and Blume discuss the advantages that result from having to fit only
one model (e.g., simplified application of regression tools and reduced computation
time).

3.3.1 The essential mediation components
A general formula for estimating the EMCs from the fit of the full regression model

(3.4) is

∆̂ ≡ β̂∗
X − β̂X = −V̂XM V̂

−1
M β̂M

= −Ĉov(β̂X , β̂M )V̂ar(β̂M )−1β̂M ,
(3.6)

where β̂X and β̂M are the vectors of estimated exposure and mediator coefficients
from the full model, V̂XM is the covariance between β̂X and β̂M , and V̂ −1

M is the
inverse variance of β̂M . For the simple mediation model, −Ĉov(β̂X , β̂M)V̂ar(β̂M)−1β̂M
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equals the Baron-Kenny product of coefficients ab, where −Ĉov(β̂X , β̂M)V̂ar(β̂M)−1

equals a and β̂M equals b.
The distinction between changes in the exposure pathway coefficients (the EMCs)

and causal mediation estimands (e.g., portion eliminated, natural indirect effect)
is critical. For the simple mediation model (3.1-3.3), the EMC ∆̂ = β̂∗X − β̂X is
mathematically equivalent to the indirect effect for a unit change in the exposure;
more generally, causal mediation estimands are functions of the EMCs. To estimate
the portion eliminated comparing some referent level of the exposure x◦ to x, use

PE(x, x◦) = [h(x)− h(x◦)]∆ (3.7)

When the exposure or mediator effects are non-scalar, formulas (3.6) and (3.7)
allow for estimation of multidimensional mediation effects from the fit of a single fitted
regression model (3.4), rather than fitting separate models and aggregating effect
estimates. A list of commonly encountered mediation models for which the controlled
and natural direct effects are equivalent (and as a result the portion eliminated and
the natural indirect effect are the same) can be found in Table 2.2. For these models,
the natural indirect effect can be estimated using the formula: NIE(x, x◦) = [h(x)−
h(x◦)]∆.

3.3.2 The model-based variance
The closed-form expression for the fully conditional variance of the EMCs is

given by Var(∆̂|X,M) = VXMV
−1
M VMX . The model-based variance of the nat-

ural indirect effect (and more generally, the portion eliminated) is simply [h(x) −
h(x◦)]Var(∆̂|X,M )[h(x)−h(x◦)]T, which requires fitting only model (3.4). In classi-
cal regression settings, the standard conditional variance is used for inference and one
could argue in favor of treating both the exposure and the mediator as fixed since the
mediator is a theoretic consequent of the exposure (Pearl 2012a). Alternately, one can
marginalize overM as discussed in Section 2.3.3. A parametric (residual-based) boot-
strap approximates the conditional model-based variance, while the nonparametric
(case-based) bootstrap approximates the fully unconditional variance (marginalized
over both exposure and mediator). Information on commonly used approximations
to the variance is provided in Appendix 3.9.2.
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3.3.3 Extensions to non-nested mediation systems
A direct application of the EMC approach is not applicable to mediation models

in which the marginal model is not nested within the full model. Here we show
how a recursive sweep algorithm solves this problem. Simply specify a global model
under which (3.4) and (3.5) are nested, and use formula (3.6) to “sweep" from the
global model to the full model and also from the global model to the marginal model.
After this “double sweep", subtract the corresponding ∆s to get the proper EMCs.
This expands the applicability of the classical regression framework to all possible
mediation systems.

Suppose the outcome model, mediator model, and the implied marginal model are
E[Y |X,M ] = δ0 + δXX + δMM , E[M |X,C] = α0 + αXX + αCC, and E[Y |X,C] =
κ0 + κXX + κCC, respectively. Estimating the EMCs κX − δX using formula (3.6)
requires the marginal model to be a defacto submodel of the full model. However, by
fitting a global model E[Y |X,M,C] = λ0 + λXX + λMM + λCC and using (3.6) to
estimate κX − λX and δX − λX , we can estimate the EMCs using functionals of only
the global model: κX − δX = (κX − λX)− (δX − λX).

Now consider the model E[Y |X,M ] = β0 +βXX+βMM+βXMXM . If E[M |X] =
α0 + αXX, the marginal model for the total effect is E[Y |X] = β∗0 + β∗XX + β∗X2X2.
To estimate the EMCs ∆T = [β∗X − βX , β

∗
X2 − 0], fit a global model E[Y |X,M ] =

γ0 + γXX + γMM + γXMXM + γX2X2 and use (3.6) to estimate [β∗X − γX , β
∗
X2 −

γX2 ] − [βX − γX , 0 − γX2 ] = [β∗X − βX , β
∗
X2 − 0]. Thus, one can use the difference

of coefficients approach and fit only one model to estimate mediation effects from
systems where the marginal model is not a submodel of the full model.

It is simple to obtain the variance of the double sweep estimator. If ∆1 is the
change in exposure coefficients between the marginal model and the global model
and ∆2 is the change in exposure coefficients between the full model and the global
model, then Var(∆1 − ∆2) = Var(∆1) + Var(∆2) − 2Cov(∆1,∆2). In the first ex-
ample above, ∆1 = −VXMV −1

M λM to estimate κX − λX , the change in exposure
coefficients between the reduced model (excluding M) and the global model. Then,
we use ∆2 = −VXCV −1

C λC to estimate δX − λX , the change in exposure coefficients
between the full model (excluding C) and the global model. The variance is thus
(VXMV −1

M VMX) + (VXCV −1
C VCX)− VXMV −1

M VXCV
−1
C Cov(λM , λC), which can be esti-

mated using functionals of the fitted global model.
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3.3.4 Visualizing mediation effects
Mediation effects can be visualized as functions of the exposure and mediator

values. Recall that for the simple mediation model specified in (3.1-3.3), the EMC
∆ = β∗X −βX and the indirect effect [h(x)−h(x◦)]∆ = (β∗X −βX)(x−x◦). Figure 3.2
panel A shows the indirect effect as the distance between the line h(X)∆ evaluated
at x and x◦.

Now consider the full model with a quadratic exposure effect so that h(X) =
[X,X2], E[Y |X,M ] = λ0 +λXX +λX2X2 +λMM , and the reduced model E[Y |X] =
λ∗0 + λ∗XX + λ∗X2X2. The EMCs [∆1,∆2]T = [λ∗X − λX , λ∗X2 − λX2 ] and the indirect
effect is [h(x)−h(x◦)]∆ = [x−x◦x2−x2

◦]∆ = (λ∗X−λX)(x−x◦)+(λ∗X2−λX2)(x2−x2
◦).

The indirect effect is simply the distance between the parabola h(X)∆ = ∆1X +
∆2X

2 evaluated at x and x◦, as shown in Figure 3.2 panel B. This is a helpful way
to illustrate complex indirect effect behavior.

Figure 3.2: Visualizing the indirect effect as a function of the exposure values (x, x◦). Panel A shows
the indirect effect as the distance (arrow ↔) between the line h(X)∆ evaluated at x and x◦. Panel
B shows the indirect effect as the distance between the parabola h(X)∆ = ∆1X+ ∆2X

2 evaluated
at x and x◦.

3.3.5 Proposed measure of joint mediation
Until now, we have considered mediation of a single exposure through one me-

diator. Suppose the mediation model is more complex, such that we are interested
in the mediation of a set of p exposures X = (X1, . . . , Xp) by a set of j mediators
M = (M1, . . . ,Mj). One can fit the full model and obtain separate estimates of
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each exposure’s indirect effect using formula (3.6). However, summing separate indi-
rect effect estimates to measure total mediation may fail to account for overlapping
mediation effects when exposures are mediated jointly.

To address this problem, we propose a general measure of the joint mediation
effect (JME). This measure aims to capture the amount of mediation that a group of
exposure variables is responsible for as a whole, which is not necessarily the sum of
the indirect effects. Let R2

Y.XMC and R2
Y.XC be the coefficients of determination from

the full model E[Y |X,M ,C] = β0 + βXX + βMM + βCC and the reduced model
E[Y |X,C] = β∗0 +β∗

XX +β∗
CC, respectively. To measure the joint mediation effect

of multiple exposures through multiple mediators, it is helpful to scale the variables to
have unit variance. We define the JME as a linear combination of p individual EMCs
(which, when standardized, are on the same scale), where the EMC ∆̂i of exposure
Xi is multiplied by Xi’s correlation with the outcome Y :

rT
YX∆̂ =

p∑
i=1

rY Xi
(β̂∗Xi
−β̂Xi

) =
j∑

k=1
rYMk

β̂Mk
−(R2

Y.XMC−R2
Y.XC)−

l∑
h=1

rY Ch
(β̂∗Ch
−β̂Ch

)

The JME is unitless and will give the same numerical value whether the data are
standardized or unstandardized. Note that when the data are unscaled, the JME is∑p
i=1

Cov(Y,Xi)
Var(Y ) ∆̂i = ∑j

k=1
Cov(Y,Mk)

Var(Y ) β̂Mk
−(R2

Y.XMC−R2
Y.XC)−∑l

h=1
Cov(Y,Ch)

Var(Y ) (β̂∗Ch
−β̂Ch

),
which may appear incongruous with the unscaled ∆̂is because of the difference in units
among exposures. We can show this measure is bounded between (-2,2), although
there may be tighter achievable bounds.

MacKinnon provides an R2 measure “designed to localize the amount of vari-
ance in Y that is explained by M specific to the mediated effect... by identifying
the variance in Y explained by both M and X but not by X alone or M alone:"
R2

y.med = r2
YM − (R2

Y.XM − R2
Y.X) (MacKinnon 2008; Fairchild et al. 2009). de Heus

(2012) argues that R2
y.med assigns all overlap between the direct and indirect effects to

the indirect effect, which is problematic because they are “heavily interdependent."
For the simple mediation model, the JME replaces the correlation rYM with the semi-
partial correlation β̂M = rYM.X , giving rY X∆̂ = rYM β̂M − (R2

Y.XM −R2
Y.X). The first

term rYM β̂M will be less than r2
YM if rYM.X < rYM . Our R2 measure matches MacK-

innon’s in two rather extreme cases: β̂M = rYM if either X and M are uncorrelated
or the effect of X on Y adjusted for M in the full model is zero (in the Baron and
Kenny framework, this is the definition of “complete" mediation). The Venn diagrams
in Figure 3.3 help intuit the similarity between our measure of the joint mediation
effect and MacKinnon’s measure for the simple mediation model.
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Figure 3.3: A comparison of MacKinnon’s R2
y.med measure of mediation (panel A) to the joint

mediation effect (panel B) for the simple mediation model with exposure X, mediator M , and
outcome Y .

3.4 Estimating the total effect
The equations in a mediation model form an interdependent system and need to

be specified so that they remain congruous. For example, suppose one believes M
depends on X quadratically and writes the following model:

E[Y |X,M ] = β0 + βXX + βMM

E[M |X] = α0 + αXX + αX2X2

E[Y |X] = β∗0 + β∗XX

This system is not congruous because marginalizing over the full outcome model
EM |X [Y |X,M ] does not yield the specified marginal model E[Y |X]. A properly spec-
ified system of equations would include an X2 term in the third equation. System
congruency is important because the difference of coefficients approach relies on the
full model and the marginal model, while the product of coefficients approach relies
on the full model and the mediator model. When the specified system is not congru-
ent, the difference and product approaches are no longer comparable beccause they
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are actually using different systems to estimate mediation effects. Thus, discrepancies
between the two approaches may be due to differences in their underlying mediation
systems.

At its core, mediation analysis aims to decompose the total effect into direct and
indirect components. Our approach uses the maximum likelihood estimate of the
exposure’s total effect on the outcome from the marginal model. In contrast, the
product of coefficients approach and the potential outcomes approach estimate the
direct and indirect effects from fitting the full outcome model and the mediator model,
and then sum these to estimate the implied total effect. This estimate of the total
effect is “implied" because the marginal model E[Y |X] is never actually fit to the data.
The sum of the estimated natural direct and indirect effects is routinely used as the
total effect estimate in the potential outcomes approach (for instance, this is how the
R mediation package by Imai, Keele and Tingley (2010) estimates the total effect).
Identifying the portion eliminated as the difference between the total and controlled
direct effects relies on the first two assumptions in Figure 2.2, whereas estimating the
natural direct and indirect effects (and subsequently summing them to estimate the
total effect) requires all four assumptions be met (Robins and Greenland 1992). As
a result, assumptions about potential mediation pathways play an outsized role in
determining the implied total effect.

The difference and product approaches often yield the same conclusion. For the
simple mediation model (3.1-3.3), it is well-known that E[Y |X] = EM |XE[Y |X,M ] =
β0 +βXX+βM(α0 +αXX) = β∗0 +β∗XX, which proves β∗X = βX +αXβM . That is, the
estimated total effect β̂∗X obtained from fitting the marginal model E[Y |X] equals the
sum of the estimated natural direct and indirect effects. However, this is not always
the case. In our experience, the discrepancies present themselves in settings with
exposure-mediator interactions (exposure-covariate interactions do not present this
problem). When fitting the full model E[Y |X,M ] = β0 + βXX + βMM + βXMXM ,
the mediator model E[M |X] = α0 +αXX, and the implied marginal model E[Y |X] =
γ0 + γXX + γ2

XX
2, the empiric estimate of the total effect γ̂X(x− x◦) + γ̂2

X(x2 − x2
◦)

does not equal the sum of the estimated natural direct and indirect effects. Thus,
even when the marginal models are theoretically equivalent, the estimates of the total
effect can differ. This can lead to conflicting results since the total effect is used to
gauge the overall decomposition of the exposure effect.

Why does this happen? Once the full outcome model and the mediator model
are specified, there is one theoretical marginal model. However, there can be several
mediator models that imply the same form for the marginal model. For example,
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consider the full model E[Y |X,M,W ] = β0 + βXX + βMM + βWW + βXWXW and
two mediator models: (a) E[M |X,W ] = α0 + αXX + αWW and (b) E[M |X,W ] =
δ0 + δXX + δWW + δXWXW . Notice that model (b) includes an XW interaction
and model (a) does not. Marginalizing the full model over M |X,W using (a) gives
E[Y |X,W ] = EM |X,W [Y |X,M,W ] = (β0+α0βM)+(βX+αXβM)X+(βW+αWβM)W+
βXWXW . Marginalizing over M using (b) gives E[Y |X,W ] = (β0 + δ0βM) + (βX +
δXβM)X + (βW + δWβM)W + (βXW + δXWβM)XW . Both marginal models have the
form E[Y |X,W ] = γ0 + γXX + γWW + γXWXW . As a result, and importantly, the
fitted estimates of the marginal model effects γ̂ will be the same (even though the
implied coefficients from the two marginal models are different).

In a conditional process model meant to represent “moderation of only the direct
effect," Hayes (2013) (p 335) specifies the same full model as above and a mediator
model that omits W and XW : E[M |X] = α0 + αXX. If E[M |X,W ] = δ0 + δXX +
δWW + δXWXW , then E[M |X] = EW |X [E[M |X,W ]] = EW |X [δ0 + δXX + δWW +
δXWXW ] = δ0 + δXX + (δW + δXWX)E[W |X]. So writing E[M |X] = α0 + αXX

assumes δW = δXW = 0. From this example, we see that the “implied" total effect
(obtained from summing the estimated direct and indirect effects) may rely on hidden
assumptions about the mediation mechanism. Estimating the marginal model directly
can be used to assess the degree to which these assumptions are supported by the
data.

3.5 Multiple mediators
Multiple mediator models are useful when researchers hypothesize that the expo-

sure affects the outcome through several intermediate pathways. Consider the full
model that contains j mediators E[Y |X,M,C] = β0 + βXX + Σj

i=1βiMi + βCC and
the corresponding reduced model E[Y |X,C] = β∗0 +β∗XX+β∗CC. The total and direct
effects of X on Y are given by β∗X(x− x◦) and βX(x− x◦), respectively. To identify
mediation effects from multiple mediator models, all four no unmeasured confounding
assumptions outlined in Figure 2.2 must hold with respect to the set of mediatorsM .

Estimating the total indirect effect aims to determine if the set of j mediators
transmits the effect of X to Y . This is analogous to conducting a regression analysis
with several exposures, with the aim of determining if an overall effect exists. The
mediator-specific indirect effect represents the amount of the exposure’s effect on the
outcome that is mediated by Mi above and beyond the other j − 1 mediators and
adjusted for the confounders in the model. The mediator-specific effects are often
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attenuated due to collinearity among the mediators (Preacher and Hayes 2008a);
that is, if two or more mediators share a role in transmitting the effect of X to Y ,
then the effect attributed uniquely to mediatorMi may exclude this overlapping effect.
Additionally, specific indirect effects might have different signs, leading to inconsistent
mediation. As a result, mediator-specific indirect effects do not necessarily sum to
the total indirect effect.

A clear advantage of our approach in the presence of multiple mediators is that
it requires fitting only one model to obtain an estimate of the total indirect ef-
fect through M and estimates of mediator-specific indirect effects. It also yields
model-based variance estimates that do not require the computation time of re-
sampling methods. Using formula (3.7), the total indirect effect through M and
the mediator-specific indirect effect of X through Mi are easily estimated using
−V̂XM V̂

−1
M β̂M (x − x◦) and −V̂XMi

V̂ −1
MiMi

β̂Mi
(x − x◦), respectively. The correspond-

ing variances are estimated by V̂ar([h(x) − h(x◦)]∆̂) = (x − x◦)2V̂XM V̂
−1
M V̂MX and

(x− x◦)2V̂XMi
V̂ −1
Mi
V̂MiX . This approach does not assume the mediators act indepen-

dently nor does it assume a particular order of effects.

3.5.1 Comparison of multiple mediator models
Existing approaches in the context of multiple mediators include the single-step

multiple mediator model (MacKinnon 2008), also termed the parallel multiple medi-
ator model (Hayes 2013), and the serial multiple mediator model (Hayes 2013). The
single-step approach specifies a separate model for each mediator in which they in-
dependently affect the outcome (see panel A of Figure 3.4). The serial model relies
on assumptions about the directionality of the mediators (see panel B of Figure 3.4).
Our approach as well as regression-based and weighting approaches by 2013 allow
mediators to be interdependent (see panel C of Figure 3.4). Appendix 3.9.3 describes
these approaches to multiple mediators in more detail.

3.5.2 Advantages of estimating the total indirect effect through the set of mediators
We recommend the researcher’s primary interest lie in the total indirect effect

rather than the amount mediated by a specific mediator. Importantly, both our
framework and existing approaches to mediation with multiple mediators specify the
same full model for the outcome Y , and as a result yield the same estimate of the
direct effect of X and of the total indirect effect of X throughM . The estimated total
indirect effect through M comes from the full model containing all of the mediators
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Figure 3.4: Comparison of multiple mediator models. Panel A depicts the single-step or parallel
multiple mediator model. Panel B depicts the serial multiple mediator model. Panel C depicts our
framework for assessing mediation with multiple mediators. The directions of arrows indicate the
assumed causal pathways.

and does not suffer bias from the misspecification of inter-mediator relationships,
whereas estimates of mediator-specific indirect effects rely heavily on assumed inter-
mediator relationships (such as the order of causal effects in serial multiple mediator
models, which can be unverifiable with cross-sectional data). We present relevant
examples of this in Section 3.7.3.

3.6 Interactions and moderated mediation
To use the proposed framework with exposure-exposure, mediator-mediator inter-

actions, and exposure-confounder interactions, simply include the interaction terms
in the full model and use formulas (3.6) and (3.7) to estimate the EMCs and causal
mediation effects. We provide examples in Section 3.7.5.

Exposure-mediator interactions, on the other hand, lead to mediation effects that
are less clearly defined. Judd and Kenny (1981) used the term moderated mediation
to describe when X moderates its own indirect effect on Y throughM by moderating
the effect of M on Y . Although the causal-steps approach does not accommodate
interactions, Baron and Kenny suggested the indirect effect could be conditional on a
moderator in their 1986 paper. Preacher et al. (2007) addressed moderated mediation
by considering conditional indirect effects; Hayes (2013) calls models in which the
mediated effects are conditional on moderator variable(s) conditional process models.
The potential outcomes approach provides decompositions of the total effect into
mediated and moderated components. Figure 3.5 depicts the various two, three, and
four-way decompositions of the total effect (VanderWeele 2015).

Consider the full model E[Y |X,M ] = β0 +βXX+βMM +βXMXM . With binary
X, the reduced model is E[Y |X] = β∗0 + β∗XX. The controlled direct effect (βX +
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βXMm) and its variance Var(βX) + m2Var(βXM) + 2mCov(βX , βXM) are functions
of m. The portion eliminated and its variance are functions of the mediator as well.
The portion eliminated PE = TE−CDE(m) = [β∗X − (βX + βXMm)](x − x◦) can be
estimated using [∆̂ − β̂XMm](x − x◦). The variance follows by direct calculation:
(x − x◦)2

[
VXMV

−1
M VMX +m2Var(β̂XM) + 2mVXMV −1

M Cov(β̂M , β̂XM)
]
. We suggest

reporting mediation effects for meaningful values of the moderator, such as the sample
mean or quartiles.

Figure 3.5: The two, three, and four-way decompositions of the total effect (TE) into the con-
trolled direct effect (CDE), reference interaction (INTref), mediated interaction (INTmed), portion
attributable to interaction (PAI), pure indirect effect (PIE), pure direct effect (PDE), total direct
effect (TDE), total indirect effect (TIE), and the portion eliminated (PE). Formulas for these de-
compositions are provided and proven formally in VanderWeele (2015).

If the exposure is continuous, then the exposure-mediator interaction model above
implies a marginal model that includes an X2 term: E[Y |X] = λ0 + λXX + λX2X2.
To estimate the EMCs ∆T = [λX − βX , λX2 − 0], use the “double sweep" approach
described in Section 3.3.3. Alternatively, one can use the mediation formula (provided
in Appendix 2.9) to proceed with estimation in this setting. Recall that the estimate
of the total effect from fitting the marginal model may not equal the implied total
effect from summing the natural direct and indirect effects.

Notice that because M acts simultaneously as a moderator and a mediator, both
the direct and indirect effects are affected by the interaction term βXM . As a result,
there is more than one way to decompose the total effect. If one attributes βXM to
the indirect effect, then the total effect decomposes into the natural (or pure) direct
and total indirect effects; if one attributes βXM to the direct effect, then the total
effect decomposes into the total direct and pure indirect effects (Robins and Green-
land 1992; Pearl 2001). The portion eliminated does not depend on the choice of
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decomposition because it is the portion of the total effect attributed to both interac-
tion and mediation. Figure 3.6 shows how the pure indirect effect and the portion
eliminated measures account for the interaction effect βXM in the presence of an
exposure-mediator interaction.

Figure 3.6: Panel A provides a conceptual diagram of the mediation model with an exposure-
mediator interaction: E[Y |X,M ] = β0 + βXX + βMM + βXMXM . The interaction term βXM can
be attributed to either the moderated effect or the mediated effect. In order to obtain the so-called
pure indirect effect, one attributes the interaction term to the direct effect of the exposure X. The
pure indirect effect is depicted by the bolded lines in panel B. The portion eliminated, which is the
portion of the total effect attributed to both interaction and mediation, is depicted by the bolded
lines in panel C.

3.7 Examples using data from social science research
We provide several examples of mediation models to illustrate the efficiency and

coherence of the proposed framework. We compare variance estimates obtained from
the model-based formula and percentiles of 5000 bootstrap replications. We also
include results from the mediation software by 2014; in models with interactions, we
found that 5000 simulations were required to yield results matching the analytical
solution (the default is 1000). These examples do not cover all aspects of the analysis
process and the results are not meant to be interpreted scientifically. Rather, they are
intended to demonstrate how to use the methods discussed throughout the paper and
to aid researchers who want to implement the newly proposed approach to mediation
analysis. All models assume errors ε ∼ N(0, σ2). Unless otherwise specified, we
consider unit changes in continuous exposures so that (x− x◦) = 1.

3.7.1 Data accessibility
Section 3.7.2 uses a subset of data from the Jobs Search Intervention Study

(JOBS II) (Vinokur and Schul 1997) that can be downloaded using the R pack-
age mediation http://www.jstatsoft.org/v59/i05/ (Tingley et al. 2014). The remain-
ing examples use data from several studies described in 2017. The data is avail-
able for download at http://afhayes.com/introduction-to-mediation-moderation-and-
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conditional-process-analysis.html. My R code and documentation is available at
https://github.com/trippcm/Mediation-SocialScienceExamples-RCode.

3.7.2 Example: the simple mediation model
Consider N=899 subjects from the JOBS II study, an experiment that randomly

assigned unemployed workers to either treatment (job skills workshops) or control (a
booklet with job-search tips). Researchers hypothesized that the workshops would
lead to reduced depression score by enhancing unemployed workers’ confidence in
their ability to find a job. Let X = treat be an indicator of whether the patient was
randomized to receive treatment or control, M = job-seek be a continuous measure
of job search self-efficacy, and Y = depress2 be a continuous measure of depressive
symptoms. Baseline confounders include pre-treatment depression, age, gender, race,
education level, and level of economic hardship.

Does confidence in job-finding (job-seek) mediate the effect of job-skills work-
shops (treat) on depression levels (depress2)? Consider the simple mediation model
that includes baseline depression (depress1). The full model is depress2 = β0 +
βXtreat+βMjob-seek+βCdepress1+ε and the estimated EMC ∆̂ = −V̂XM V̂ −1

M β̂M

= −Ĉov(β̂X , β̂M)V̂ar(β̂M)−1β̂M . The mediated effect of treatment on depression is
[h(x) − h(x◦)]∆̂ = (x − x◦)∆̂ = −0.0103 (SE=0.0016) with 95% CI −0.0135 to
−0.0071. The residual bootstrap SE=0.0017, Sobel’s SE=0.0087, and the case boot-
strap SE=0.0088. Notice that the fully conditional standard error estimate aligns with
the residual bootstrap, whereas Sobel’s estimate aligns with the case-based bootstrap.

To strengthen the validity of the causal mediation analysis assumptions (outlined
in Figure 2.2), we include additional pre-treatment confounders: age, gender, race, ed-
ucation level, and economic hardship. The full model is now specified as depress2 =
γ0+γXtreat+γMjob-seek+γCdepress1+γC2age+γC3gender+γC4race+γC5educ+
γC6econ hard + ε. The new estimated indirect effect is (x − x◦)∆̂ = −0.0107 (SE
= 0.0016). The 95% CI is (-0.0138, -0.0075), compared to the residual bootstrap
(-0.0138, -0.0075), the case-based bootstrap (-0.0304, 0.0067), and the mediation
function (-0.0297, 0.0074).

3.7.3 Example: multiple mediators
We now consider data from the Media Influence Study, which analyzed subjects’

reactions to a newspaper article about a likely sugar shortage (Tal-Or et al. 2010).
Half of the subjects were told the article would be published on the front page and the

44

http://afhayes.com/introduction-to-mediation-moderation-and-conditional-process-analysis.html
http://afhayes.com/introduction-to-mediation-moderation-and-conditional-process-analysis.html
https://github.com/trippcm/Mediation-SocialScienceExamples-RCode


other half were told it would be published in an internal supplement. After reading
the article, researchers measured the subjects’ beliefs about the article’s influence and
importance. The presumed media influence (PMI) and the perceived issue importance
(import) were two beliefs hypothesized to mediate the relationship between the arti-
cle’s (location) and intentions to buy sugar (reaction). We fit a multiple mediator
model that adjusts for confounders C = {gender, age}.

The conceptual diagrams in Figure 3.7 depict the single-model approach for multi-
ple mediators, the serial multiple mediator model, and the parallel multiple mediator
model. For all three methods, the full model is reaction = β0 + βXlocation +
βM1import + βM2PMI + βCgender + βC2age + ε and the reduced model for the total
effect of article location is reaction = β∗0 + β∗Xlocation + β∗Cgender + β∗C2age + ε.
Thus, the direct effect of location is βX(x − x◦), the total effect is β∗X(x − x◦), and
the total indirect effect of location mediated through perceived importance and pre-
sumed media influence is (β∗X − βX)(x − x◦), regardless of whether the analyst uses
the single-model, parallel, or serial approach. Importantly, the total indirect effect
does not depend on the order or directionality of the mediators, whereas the amount
of mediation attributed specifically to perceived importance or PMI will differ across
methods due to their varying assumptions about inter-mediator relationships.

The single-model approach allows us to estimate how much perceived importance
and presumed media influence mediate the relationship between location and reaction
using only the full model and formulas (3.6) and (3.7). For X = location and
M = {import, PMI}, the EMCs are

∆ = −VXMV
−1

M βM

= −
[
Cov(βX , βM1) Cov(βX , βM2)

]  Var(βM1) Cov(βM1 , βM2)
Cov(βM2 , βM1) Var(βM2)

−1 βM1

βM2


The total indirect effect throughM is estimated by [h(x)−h(x◦)]∆̂ = 0.4053 and its
empirical variance V̂XM V̂ −1

M V̂MX(x− x◦)2 = 0.0031 (SE = 0.0553).
To estimate how much is mediated specifically through M1 = import, we again

apply formulas (3.6) and (3.7): −V̂XM1V̂
−1
M1 β̂M1(x−x◦) = 0.1643. The variance follows

directly: V̂XM1V̂
−1
M1 V̂M1X(x − x◦)2 = 0.0012 (SE=0.0350). Similarly, to estimate how

much the effect of location is mediated throughM2 = PMI, use −V̂XM2V̂
−1
M2 β̂M2(x−x◦)

= 0.1359, which has an estimated variance of V̂XM2V̂
−1
M2 V̂M2X(x − x◦)2 = 0.0010 (SE

= 0.0322). Notice that the mediator-specific indirect effects sum to 0.3002, which is
less than the total indirect effect of 0.4053 (perceived importance is correlated with
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presumed media influence, r = 0.28).
The parallel approach (MacKinnon 2008; Hayes 2013) and the causal regression-

based approach (VanderWeele and Vansteelandt 2013) specify the same full model as
above, reaction = β0 +βXlocation+βM1import+βM2PMI+βCgender+βC2age+ε,
and an additional model for each mediator: import = α01+α1location+αGgender+
αAage+ε and PMI = α02 +α2location+αG2gender+αA2age+ε. This specification
assumes the mediators “act in parallel" (see Figure 3.7 panel A). The delta method
is commonly used to estimate standard errors under this approach. The estimated
indirect effect through perceived importance is α̂1β̂M1 = 0.2184 (SE=0.1144) and the
estimated indirect effect through PMI is α̂2β̂M2 = 0.1869 (SE=0.1039), which sum to
the total indirect effect of 0.4053 (SE = 0.1510).

The serial model given by 2013 requires specifying the order in which the mediators
affect each other. Suppose we assume location→ import→ PMI→ reaction (see
Figure 3.7 panel B1). The full model is specified as reaction = β0 + βXlocation +
β1import + β2PMI + βCgender + βC2age + ε (the same as above), the first reduced
model is PMI = α02+α2location+δ21import+δCgender+δC2age+ε, and the second
reduced model is import = α01 + α1location + αCgender + αC2age + ε. There are
three estimated indirect effects: α̂1β̂1 = 0.2184 (SE=0.1144) is the indirect effect
of location through import to reaction, α̂2β̂2 = 0.1359 (SE=0.0982) is the indirect
effect of location through PMI to reaction, and α̂1δ̂21β̂2 = 0.0510 (SE=0.3235) is the
indirect effect of location through importance to PMI to reaction.

To demonstrate how mediator-specific indirect effects depend on the specified
order in a serial model, suppose we change the order of mediation to location →
PMI → import → reaction (see Figure 3.7 panel B2). The total indirect effect
remains unchanged, but now the indirect effect of location through PMI to reaction
is 0.1869, the indirect effect of location through importance to reaction is 0.1643, and
the indirect effect of location through PMI to importance to reaction is 0.0541. Notice
that in either case, the serially mediated indirect effects sum to the total indirect effect
of 0.4053.

Estimating mediator-specific indirect effects from the serial model is analogous to
examining sequential sums of squares. Although the amount of mediation attributed
to specific mediators depends heavily on their assumed order, the serially mediated
indirect effects always sum to the total indirect effect (as shown in the example
above). In contrast, estimating effects from our proposed framework is analogous to
examining partial sums of squares. Just as partial sums of squares do not necessarily
sum to the total, the mediator-specific indirect effects from our framework do not
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necessarily sum to the total indirect effect. If the mediators are in fact independent,
the mediator-specific indirect effects will sum to the total indirect effect.

3.7.4 Example: the joint mediation effect
In order to quantify how article location is jointly mediated through perceived im-

portance and presumed media influence, we look at the joint mediation effect (JME).
The standardized total indirect effect of article location through M is 0.131. The
joint mediation effect: rY X∆̂ = rT

YM β̂M − (R2
Y.XMZ − R2

Y.XZ) − rT
YZβ̂Z = 0.0210.

The fraction of the coefficient of determination from the full model (R2
Y.XMZ=0.3377)

accounted for by the JME is 0.0622. That is, the JME accounts for about 6% of the
total variation in Y explained by the full model. Notice that R2

Y.XMZ (the proportion
of variance in the outcome explained by the exposure, mediator, and confounders) is
small to begin with, as is the joint mediation effect.

3.7.5 Example: interactions
In this section we consider a study looking at how beliefs about sexism impact

women’s reactions to discriminatory treatment (Garcia et al. 2010). Female study
participants (N = 129) were told that a female attorney lost a promotion to a male
candidate who was less qualified due to discriminatory practices of the senior partners.
The participants were told either that the attorney confronted the partners or that
she did not take action. Researchers then measured how much participants “liked"
the attorney, their “perceived appropriateness of the response," and their belief about
how widespread sex discrimination is. The hypothesis is that whether or not the
attorney protested (X = protest) affected participants’ perceptions of her (Y =
liking), and that this association could be mediated by perceived appropriateness of
the response (M = appropriate). Furthermore, we’ll look at whether the mediated
effect is moderated by beliefs about the pervasiveness of sex discrimination (W =
sexism).

3.7.5.1 Exposure-moderator interaction
We include an exposure-moderator interaction so that the full model is liking =

β0 + βXprotest + βMappropriate + βWsexism + βXWprotest:sexism + ε. With
h(X) = [X,XW ], the controlled direct effect is conditional on sexism: (βX +
βXWw)(x− x◦) = (−2.8075 + 0.5426w)(x− x◦). The EMCs ∆T = [β∗X − βX , β∗XW −
βXW ] = −[Cov(βX , βM),Cov(βXW , βM)]TVar(βM)−1βM are estimated to be ∆̂T =
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[−0.9652, 0.2910] and the conditional indirect effect (x − x◦, xw − x◦w)∆ = (β∗X −
βX)(x−x◦)+(β∗XW−βXW )(xw−x◦w) is estimated to be−0.9652+0.2910w. Figure 3.8
shows the conditional mediation effects as a function of the moderator W = sexism.

The indirect effect marginalized over sexism is E[(x − x◦, xw − x◦w)∆|W ] =
(β∗X − βX)(x − x◦) + (β∗XW − βXW )(x − x◦)E[W ]. The variance is estimated using
(x− x◦)2Var(∆1) + (x− x◦)2E[W ]2Var(∆2) + 2(x− x◦)2E[W ]Cov(∆1,∆2). The esti-
mated indirect effect for W = w̄ is -0.9652 + 0.2910 * 5.1170 = 0.5238 (SE=0.1029).
The regression-based approach by VanderWeele requires fitting the mediator model
appropriate = α0 + αXprotest + αWsexism + βXWprotest:sexism + ε in addi-
tion to the full model. The mediation formula estimates the indirect effect using
E[β̂M(E[M |x]−E[M |x◦])|W ] = β̂M(α̂X + α̂XWE[W ])(x− x◦) = 0.5238 (SE=0.1295).

3.7.5.2 Exposure-mediator interaction
Now consider a model with an exposure-mediator interaction: liking = κ0 +

κXprotest + κMappropriate + κXMprotest:appropriate + ε. We estimate the
portion eliminated (the difference between the total and controlled direct effects)
using (∆̂− κ̂XMm)(x− x◦). Figure 3.9 shows a plot of CDE(m) = κX + κXMm and
PE(m) for a unit change in X. One could also report the mediation effects for specific
values of m, such as the sample mean or quartiles. The estimated controlled direct
effect for the 25th percentile (m = 4) is -0.1616 (SE = 0.2167), and the estimated
portion eliminated is 0.6402 (SE = 0.6469).

3.7.6 Example: nonlinear exposure effects
To demonstrate how to include nonlinear exposure effects, we use data from a

study on economic stress among N=262 entrepreneurs (Pollack et al. 2012). The
hypothesis is that economic stress stress leads to a depressed affect, which can
in turn lead business-persons to withdraw from “entrepreneurial activities." We ad-
just for subjects’ age, gender, business tenure, and a self-confidence measure called
entrepreneurial self-efficacy (ESE).

3.7.6.1 Quadratic exposure effect
To allow for a quadratic relationship between stress and withdrawal symptoms,

specify the full model as withdraw = β0 + βX1stress + βX2stress2 + βMaffect +
βZgender + βZ2age + βZ3ESE + βZ4tenure + ε. With h(X) = [X,X2], the EMCs
∆ = −VXMV

−1
M βM = −[Cov(βX , βM),Cov(β2

X , βM)]TVar(βM)−1βM . The EMCs are
estimated to be [−0.4620, 0.0651]T and the estimated portion eliminated (which equals
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the NIE) is [(x− x◦, x2 − x2
◦)]∆̂ = −0.4620(x− x◦)− 0.0651(x2 − x2

◦) = −0.3970 (SE
= 0.0616). Using the mediation package gives an estimated NIE of -0.3970 (exactly
equal to our estimate, as expected) with SE = 0.2023.

3.7.6.2 Splined exposure effect
Suppose instead we wish to model the effect of stress using restricted cubic splines

with 4 knots k1, k2, k3, k4 = (2.5, 4, 5.5, 7) at the 5th, 35th, 65th, and 95th percentiles
of stress. Consider the full model withdraw = β0 + h(stress)βX + βMaffect +
βZZ + ε and the marginal model withdraw = β∗0 + h(stress)β∗

X + β∗
ZZ + ε,

where Z is the vector of confounders specified in the previous example and h(X) =
[S1(X), S2(X), S3(X)] are the splined components of X given by (Harrell 2015):

S1(X) = X

S2(X) = (X − k1)3
+ −

(X − k3)3
+(k4 − k1)

k4 − k3
+ (X − k4)3

+(k3 − k1)
(k4 − k3)

S3(X) = (X − k2)3
+ −

(X − k3)3
+(k4 − k2)

k4 − k3
+ (X − k4)3

+(k3 − k2)
(k4 − k3)

To put all basis functions for X on the same scale, by default the R function divides
the terms Sj(X), (j > 1) by τ = (k4 − k1)2/3. The EMCs ∆ = β∗

X − βX = [β∗1 −
β1, β

∗
2−β2, β

∗
3−β3]T can be estimated from the fit of only the full model using formula

(3.6). Thus, the indirect effect is given by

[h(x)− h(x◦)]∆ = [S1(x)− S1(x◦), S2(x)− S2(x◦), S3(x)− S3(x◦)]


β∗1 − β1

β∗2 − β2

β∗3 − β3

 .

To estimate the indirect effect comparing x = the 75th quantile to x◦ = the median
of economic stress, we have [h(x)− h(x◦)]∆̂T = [5.5− 4.5, 1.3333− 0.3951, 0.1667−
0.0062][−0.0609, 0.3011,−0.1526]T = 0.1971. The standard error = 0.0266.

3.8 Summary
In this paper, we defined the essential mediation components, provided formulas

for estimating mediation effects and their variance from the fit of a single regression
model, showed how to visualize mediation effects, and presented a measure of joint
mediation. We highlighted situations in which using the difference and product of co-
efficients approaches do not yield the same estimate of the total effect of the exposure.
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This suggests that discrepancies between these two approaches’ estimates of media-
tion effects depends on the specification of the marginal model and the estimation
of the total effect. Last, we provided extensive examples to illustrate our approach
and how it can be applied to complex mediation hypotheses, including models with
multiple mediators, interactions, and nonlinearities.

The statistical literature abounds with methods for measuring mediation in the
simple setting of one exposure, one mediator, and one outcome. However, scientific
mediation hypotheses typically involve a more complicated interplay between several
variables. Rather than estimating the total, direct, and indirect effects from separate
regression equations, one can use our simple formulas to estimate mediation effects
and their variance. We recommend using our formula to obtain estimates of the
portion eliminated (and in several settings, the natural indirect effect). This approach
provides an analytical variance and reduces computation time. For estimating the
pathway decompositions displayed in Figure 3.5, we recommend using the formulas
given by 2015. When estimating mediation effects, one should thoughtfully consider
the plausibility of the assumptions required for causal inference.

3.9 Appendix
3.9.1 Approaches to estimating the indirect effect
3.9.1.1 Baron and Kenny’s causal steps

Baron and Kenny published their landmark paper on assessing mediation from
the simple mediation model using the causal steps approach in 1986. Their approach
says that before estimating the indirect effect and its variance, the variables must be
significant in a series of hypothesis tests: X must affect M in equation (3.2), X must
affect Y in equation (3.3), and M must affect Y in equation (3.1). If the causal steps
are established, one estimates the indirect effect and tests for its significance using the
Sobel test (Sobel 1982). If the exposure has no effect when the mediator is controlled
(if βX = 0), then there is “strong evidence for a single, dominant mediator," or so-
called perfect mediation. If βX 6= 0, this is termed partial mediation and indicates
“the operation of multiple mediating factors" (Baron and Kenny 1986).

Although Baron and Kenny’s 1986 paper is considered a cornerstone of mediation
analysis (three decades later, researchers have cited their method over 70,000 times),
flaws in the causal steps approach have been presented (MacKinnon et al. 2002; Fritz
and MacKinnon 2007; Preacher and Hayes 2008b; Gelfand et al. 2009; Hayes 2009;
Zhao et al. 2010; Hayes 2013; Vansteelandt et al. 2012). If an indirect effect exists
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and there is inconsistent mediation (the direct effect and indirect effects of X on
Y have similar magnitudes and opposite signs, leading to a total effect near zero),
using the causal steps approach would stop the analysis at the second step. Plus, a
nonzero association between X and Y reducing to zero when a third variable Z is
covaried does not necessarily mean that Z mediates the effect of X on Y . Further-
more, the terms “partial" and “complete" mediation are defined in terms of statistical
significance (Preacher and Hayes 2008b) and concluding “complete mediation" may
inhibit future research into other possible mediators. We recommend disregarding
the causal steps approach (because it places too much emphasis on statistical sig-
nificance); instead, one should carefully construct a mediation hypothesis, consider
the assumptions required for causal inference, and report mediation effects and their
confidence intervals.

3.9.1.2 The product and difference of coefficients approaches
For a unit change in the exposure, the estimated total effect of X is β̂∗X , the

coefficient for X in equation (3.3), and the estimated direct effect of X is β̂X , the
coefficient for X in equation (3.1). The difference of coefficients approach estimates
the indirect effect for a unit change in X by subtracting the direct effect from the
total effect: β̂∗X − β̂X . The product of coefficients approach estimates the indirect
effect by multiplying the coefficient for X in equation (3.2) by the coefficient for M
in equation (3.1): α̂X β̂M . For the simple mediation model with continuous M and
Y , the product and difference of coefficients approaches agree and β̂∗X − β̂X = α̂X β̂M .
This leads to a nice interpretation of β∗X = βX + αXβM : the total effect of X on Y
equals the sum of the direct and indirect effects. Although the product and difference
of coefficients approaches agree for linear models, in general the two approaches and
their interpretation may differ (Pearl 2012b) and there is disagreement as to which
approach is preferable (Alwin and Hauser 1975; Preacher and Hayes 2008b; Imai,
Keele and Tingley 2010).

3.9.1.3 The potential outcomes framework
A formal approach to mediation analysis based on the potential outcomes frame-

work has been developed (Holland 1986; Robins and Greenland 1992; Pearl 2001).
Causal mediation effects are defined as contrasts in average potential outcomes that
depend on both the exposure and mediator variables. Let Y (x,m) be the potential
outcome that would be observed if the exposure X were equal to x and the mediator
M were equal to m. Let Y (x,M(x◦)) be the potential outcome that would be ob-
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served if the exposure were equal to x but the mediator M were equal to the value it
would have been if the exposure were equal to x◦. Note that the potential outcomes
Y (x,M(x)) and Y (x◦,M(x◦)) are observable, but Y (x,M(x◦)) and Y (x◦,M(x)) can
never be observed, and thus are always counterfactual. The counterfactual definitions
of causal mediation effects are listed in Table 1. By using the (x, x◦) notation, we
make explicit that causal mediation effects are generally defined for any two levels of
the exposure. When X is a binary exposure, the only possible pair of values is (0, 1).

Until now, we have discussed total, direct, and indirect effects. However, the
causal mediation literature distinguishes between controlled and natural effects. The
controlled direct effect measures the effect of X on Y while holding the mediator fixed
at level m for everyone in the population: CDE(x, x◦,m) ≡ Y (x,m)−Y (x◦,m). The
natural direct effect measures the effect of the exposure on the outcome when each
individual’s mediator is fixed to M(x◦), what it would have been “naturally" had the
exposure been absent (or equal to some referent value): NDE(x, x◦) ≡ Y (x,M(x◦))−
Y (x◦,M(x◦)). The natural indirect effect represents the difference in the outcome
if one holds the exposure at level x and changes the mediator from the value that
would have been observed under the referent exposure,M(x◦), to the value that would
have been observed under treatment,M(x): NIE(x, x◦) ≡ Y (x,M(x))−Y (x,M(x◦)).
Regardless of how the direct and indirect effects are defined, the total effect of X on
Y is TE(x, x◦) ≡ Y (x)− Y (x◦). Causal effects cannot be estimated at the individual
level, but one may estimate average causal effects by taking the expectation of the
causal contrasts.

The controlled and natural direct effects diverge in the presence of exposure-
mediator interactions. From E[Y |X,M,C] = β0 + βXX + βMM + βXMXM +
βCC, the controlled direct effect of X is estimated by E[Y (x,m) − Y (x◦,m)|C] =
(βX + βXMm)(x − x◦). The natural direct effect is estimated by E[Y (x,M(x◦)) −
Y (x◦,M(x◦))|C] = (βX +βXME[M |x◦])(x−x◦) = (βX +βXM(α0 +αXx◦+αCC))(x−
x◦). To estimate the natural indirect effect, one usesE[Y (x,M(x))−Y (x,M(x◦))|C] =
αX(βM + βXMx)(x− x◦).

Because the total effect can always be broken down into the natural direct and
indirect effects, the natural indirect effect can be written as the difference between
the total and natural direct effects: NIE = TE−NDE. Another important quantity is
the portion eliminated (PE), which is the difference between the total and controlled
direct effects: PE = TE − CDE (VanderWeele 2015). For the simple mediation
model, the portion eliminated can be estimated using E[Y |x]−E[Y |x◦]−(E[Y |x,m]−
E[Y |x◦,m]) = (β∗X−βX)(x−x◦). In this case, ĈDE = N̂DE, so P̂E = N̂IE. In general,
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the difference between the total effect and the controlled direct effect is not equal to
the indirect effect. If the full model includes an exposure-mediator interaction, the
difference may be nonzero due to an interaction effect, not due to mediation. As
shown in Figure 3.5, the portion eliminated equals the PIE (pure indirect effect) +
PAI (portion attributable to interaction), or alternatively, TIE (total indirect effect)
+ INTref (reference interaction). Even if the exposure does not affect the mediator
(such that there is no mediation of X by M), there could be interaction effects that
the portion eliminated will capture.

3.9.1.4 The structural equation modeling framework
The language of structural equation modeling is often used by social scientists

for conducting mediation analysis. We briefly mention a few basic characteristics of
SEM; a thorough and technical treatment of using SEM for mediation analysis is
given in Bollen (1987).

SEMs distinguish between observed and latent (unobserved) variables, as well as
endogenous and exogenous variables. Endogenous variables are affected by other vari-
ables, whereas exogenous variables only affect other variables, without being affected
themselves. Furthermore, structural equation modeling makes use of a measurement
model and a structural model, from which effects are estimated simultaneously. The
measurement model specifies the relationship between latent variables and measured
indicator variables, and the structural model specifies the causal relationships among
the variables and their covariance structure.

SEM uses path diagrams to graphically display the theoretical causal relationships:
rectangles represent observed variables, ovals represent latent variables, straight uni-
directional arrows show causal effects between variables, and curved bidirectional
arrows represent covariance between two variables. The absence of a link between
two variables is important- it represents an assumed lack of a causal relationship. The
simple mediation model is an example of a structural equation model with observed
exposure, mediator, and outcome variables and uncorrelated errors. The exposure is
exogenous, the mediator is endogenous with respect to the exposure and exogenous
with respect to the outcome, and the outcome variable is endogenous.

3.9.2 Existing approaches to estimating the variance of mediation effects
The methods commonly used for approximating the variance of the estimated

indirect effect are based on the multivariate delta method, bootstrapping, and Monte
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Carlo simulation. Now that an analytical solution for the variance exists, it is of
interest to re-examine the behavior of these approximations. Simulations in Saunders
and Blume 2017 shed light on the efficiency gains inherent in avoiding conservative
approximations.

3.9.2.1 Delta method approximations
Sobel (1982) proposed the multivariate delta method (or first order Taylor series)

approximation to the variance of the indirect effect for the simple mediation model:
V̂ar(α̂X β̂M)Sobel = α̂2

Xs
2
βM

+ β̂2
Ms

2
αX

. The second order Taylor series approximation
is V̂ar(α̂X β̂M)Exact = α̂2

Xs
2
βM

+ β̂2
Ms

2
αX

+ s2
αX
s2
βM

, but the s2
αX
s2
βM

term tends to be
trivially small in practice and is often omitted from the standard error calculation
(MacKinnon et al. 1995). An unbiased variance estimator subtracts rather than adds
s2
αX
s2
βM

in the equation above (Goodman 1960) but can result in a negative value
for the standard error (so it is not recommended) (MacKinnon et al. 2002). The
derivation of these three methods assumes independence of αX and βM . VanderWeele
(2015) has derived delta method variance approximations for several more complex
mediation models.

A disadvantage of the above delta method approximations is their reliance on the
sampling distribution of α̂X β̂M being normal. In practice α̂X β̂M tends to be skewed
and highly leptokurtic (MacKinnon et al. 2002; MacKinnon et al. 2004). The Sobel
test of the indirect effect compares the statistic (α̂X β̂M)/SE(α̂X β̂M) to a standard
normal distribution. The Sobel confidence intervals tend to lie to the left of the
true value for positive indirect effects, and to the right for negative indirect effects
(MacKinnon et al. 1995; Stone and Sobel 1990). As a result, the Sobel test has less
power than expected to detect a true indirect effect because the 95% CI will often
improperly include zero (MacKinnon et al. 2004).

3.9.2.2 Distribution of the product method
Rather than assuming the product α̂X β̂M is normally distributed, the distribution

of the product method assumes α̂X ∼ N(αX , σ2
αX

) and β̂M ∼ N(βM , σ2
βM

), and uses the
analytical distribution of the product of two normal random variables (MacKinnon
et al. 2004). The assumption of normality of the sampling distributions of α̂X and
β̂M is arguably more realistic than the assumption of normality of the distribution of
their product. After all, the coefficient estimates properly scaled have a t-distribution.
The form of the distribution of the product is highly complex, but values of the
function under the null condition that α̂X = β̂M = 0 are tabulated in (Springer and
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Thompson 1966). Although there are tables that do not assume both α̂X and β̂M are
zero, for hypothesis testing their use still requires assumptions about their true value,
information that is not usually available. The distribution of the product approach
relies on large samples for accurate approximation.

3.9.2.3 Bootstrapping
The bootstrap method estimates the variance of mediation effects from the em-

pirical sampling distribution of the estimates. Bootstrapping handles asymmetric
sampling distributions better than the delta method and thus improves the accu-
racy of confidence limits (Preacher and Hayes 2008b). There are two approaches to
bootstrap resampling in regression, observation resampling and residual resampling.
Observation resampling is not model dependent and treats the design matrix as ran-
dom by resampling cases (i.e. the rows in a design matrix). By contrast, residual
resampling treats the design matrix as fixed, is model dependent, and does not main-
tain the (X,M ,Y ) association. Bootstrapping cases usually gives a larger estimate of
the variance since it allows for more sources of variation from the randomness in the
design matrix. As the sample size grows, both methods become similar, assuming the
model is correctly specified.

The case-based bootstrap approach to estimating the variance of the indirect
effect proceeds as follows. From the data (X, M , Y ) of sample size N , draw with
replacement N observations to create a bootstrap sample B∗ = (X∗,M∗, Y ∗). From
B∗, estimate the indirect effect using either the product or difference of coefficients
approach. Repeat this processM > 5000 times. The distribution of theM bootstrap
estimates of the indirect effect provides an empirical, nonparametric approximation
to the sampling distribution of the indirect effect. Obtain the point estimate and
the standard deviation of the indirect effect from the mean and standard error of the
M mediation effect estimates, respectively. A 95% percentile confidence interval is
constructed from the 2.5th and 97.5th percentiles of the empirical distribution.

Under the three-equation system of the simple mediation model, bootstrapping
residuals is complicated. Since there are three equations, one might think to bootstrap
the residuals from each model separately. This, however, leads to inconsistent results.
To bootstrap residuals, fit the full model and save the fitted values Ŷ and residuals e.
Sample with replacement from the residuals e to get e∗ and a new outcome variable
Y ∗ = Ŷ + e∗. To estimate the indirect effect using the difference of coefficients
approach, re-fit the full and reduced models as follows: Y ∗ = β0 + βXX + βMM and
Y ∗ = γ0 + γXX and store γx − βx. Use the distribution of γx − βx for inference.
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To estimate the indirect effect using the product of coefficients approach, fit M =
α0 + αXX and multiply αX by βM from the bootstrapped full model. For the simple
mediation model, the residual bootstrap distributions of the estimated indirect effect
will be identical under both approaches.

3.9.2.4 The Monte Carlo method
Monte Carlo methods estimate the variance by simulating the sampling distribu-

tion of mediation effects (MacKinnon et al. 2004). First, estimate the coefficients used
in calculating the indirect effect and their standard errors. For example, if using the
product of coefficients approach to estimate the indirect effect, obtain the estimates
α̂X , β̂M , s

2
αX

and s2
βM

. Next, generate S > 5000 random samples of the product α∗Xβ∗M
based on α∗X ∼ N(α̂X , s2

αX
) and β∗M ∼ N(β̂M , s2

βM
). To allow α̂X and β̂M to covary,

specify a bivariate normal distribution with some covariance. Obtain the lower and
upper confidence limits for the indirect effect from the percentiles of the simulated
sampling distribution of the indirect effect. The same general procedure holds for
the difference of coefficients approach. We do not recommend using the Monte Carlo
approach to estimate the variance unless one has the coefficient and standard error
estimates but the raw data are unavailable.

3.9.3 Existing approaches to multiple mediator models
3.9.3.1 Parallel (or single-step) models

The parallel multiple mediator model specifies a separate model for each mediator
in which they independently affect the outcome (see panel A of Figure 3.4):

E[Y |X,M ] = β0 + βXX + β1M1 + β2M2 + · · ·+ βjMj

E[Mi|X] = α0i + αiX, i = 1, . . . , j

E[Y |X] = β∗0 + β∗XX

Analagous to the simple mediation model, the total and direct effects for a unit change
in X are given by the coefficients β∗X and βX , respectively. This approach assumes
no mediators affect each other. The specific indirect effect of X on Y through Mi is
quantified as αiβi (MacKinnon 2008). If the independence of mediators assumption
holds, the total indirect effect of X on Y is the sum of the specific indirect effects,
Σi(αiβi), i = 1 . . . j, which equals β∗X − βX for ordinary least squares regression with
continuousM and Y . In this case, the total effect ofX on Y can be written as the sum
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of the direct effect and all j mediator-specific indirect effects: β∗X = βX +Σi(αiβi), i =
1 . . . j.

This approach traditionally uses delta method approximations to estimate the
variance of mediator-specific indirect effects and the total indirect effect. The formulas
for a two-mediator model are α̂2

1s
2
βM1

+β̂2
M1s

2
α1 , α̂

2
2s

2
βM2

+β̂2
M2s

2
α2 , and s

2
α1 β̂

2
M1 +s2

βM1
α̂2

1+
s2
α2 β̂

2
M2 + s2

βM2
α̂2

2 + 2α̂1α̂2sβM1βM2
, respectively.

2013 provide a regession-based approach for multiple mediators that is similar in
spirit to the single-step multiple mediator model. This approach specifies one regres-
sion for the outcome Y (regress Y on X, M , and Z), and a separate model for each
mediator and each mediator-mediator interaction. Both the natural and controlled
direct effects are given by the coefficient for the X in the full model. The natural indi-
rect effect is equal to the sum over the j mediators of the product of the coefficient for
the exposure in the model for the ith mediator and the coefficient for the ith mediator
in the full model. Including confounders C can lead to compatibility issues between
the models for Mi, Mk, and their product MiMk. Their alternative inverse proba-
bility weighting approach circumvents this issue in settings with mediator-mediator
interactions.

3.9.3.2 Weighting approach
The weighting approach does not require modeling the mediators, allows the me-

diators to affect each other, and can be used for essentially any type of outcome and
mediators, although it performs best when the exposure has only a few levels (e.g.,
binary or discrete) (VanderWeele and Vansteelandt 2013). Obtaining the weights
requires fitting several logistic regression models to estimate P[X = x], P[X = x◦],
P[X = x|C = c], P[X = x◦|C = c]. They recommend bootstrapping the variance for
both the regression-based and weight-based approaches.

3.9.3.3 Serial models
The serial multiple mediator model requires the researcher to specify the order

in which the mediators affect each other. Like the single-step multiple mediator
model, this approach specifies a separate model for each mediator, although now
each mediator depends on those that precede them temporally in the causal chain.
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The model is specified as

E[Y |X,M ] = β0 + βXX + β1M1 + β2M2 + · · ·+ βjMj

E[Mi|X] = α0i + αiX + Σi−1
k=1δikMk, i = 2, . . . , j

E[M1|X] = α01 + α1X

E[Y |X] = β∗0 + β∗XX

As before, the total indirect effect for a unit change in X is given by β∗X − βX .
The indirect effect through M1 is given by α1β1. For i = 2, . . . , j, the indirect effect
through Mi only is αiβi, and the indirect effect through M1 → · · · → Mi−1 in serial
is α1 × δ21 . . . δi−1,i−2δi,i−1 × βi. If these relationships are correctly specified, then
the total indirect effect can be written as the sum of the serially mediated indirect
effects. For the two-mediator example, we have β∗X−βX = α1β1 +α2β2 +α1δ21β2. The
variances of α̂1β̂1 and α̂2β̂2 are estimated using Sobel’s formula and V̂ar(α̂1δ̂21β̂2) =
α̂2

1δ̂
2
21s

2
β2 + α̂2

1β̂
2
2s

2
δ21 + δ̂2

21β̂
2
2s

2
α1 (Hayes 2013). When the ordering of the mediators

is known, 2013 provide a potential outcomes approach in which indirect effects are
estimated sequentially, similar to the serial multiple mediator model.
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Figure 3.7: Comparison of multiple mediator models. Model A depicts the single-step or parallel
multiple mediator model. Models B1 and B2 depict serial multiple mediator models. Model C
depicts the proposed framework for assessing mediation with multiple mediators from the fit of a
single model. The directions of arrows indicate the assumed causal pathways.
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Figure 3.8: Plot of the controlled direct effect (blue line), the indirect effect (green line), and the
total effect (black line) for a unit change in the exposure (x− x◦ = 1 since the exposure is binary)
from a mediation model with an exposure-moderator interaction. The solid lines show the mediation
effects conditional on the moderatorW and the dashed lines show the effects given the average value
of W = w̄. Notice that for any value of W , the conditional direct and indirect effects sum to the
total effect.

Figure 3.9: Plot of the controlled direct effect (blue line), the portion eliminated (green line), and
the total effect (black line) for a unit change in the exposure (x−x◦ = 1 since the exposure is binary)
from a mediation model with an exposure-mediator interaction. Notice that the portion eliminated
and controlled direct effects sum to the total effect even as they vary as functions of M .
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CHAPTER 4

EXTENSIONS TO GENERALIZED LINEAR MODELS

4.1 Introduction
Mediation hypotheses in clinical research, epidemiological studies, and social psy-

chology often involve mediator and outcome variables that are discrete, in which
case linear regression models may no longer be appropriate. This chapter extends
our single-model framework to generalized linear models (GLMs). Since estimated
regression coefficients are maximum likelihood estimates with an approximate nor-
mal distribution, our single-model estimator readily extends to GLMs on the link
scale. However, extensions to logistic regression require careful attention to issues
of collapsibility (Greenland et al. 1999). This chapter focuses on GLMs without
exposure-mediator interactions. We use an example from genetic epidemiology to
apply our single-model formula, and we compare our results to those obtained from
existing approaches.

4.2 Estimating causal mediation effects from GLMs
In this section, we introduce notation, define causal mediation effects for general-

ized linear models, and note the assumptions needed to make causal inferences. We
provide an approximation to and an approach to visualizing the portion eliminated
from generalized linear models. We then discuss the distinction between the reduced
outcome model and the true marginal model.

4.2.1 The generalized linear model set-up
Let X denote the exposure, M the mediator, C the confounders, and Y the

outcome variables of interest. Let g(·) be the link function (e.g., log, logit, probit) for
the “full" outcome model (4.1) and the “reduced" outcome model (4.2) which excludes
the mediator. Consider the following system:

g(E[Y |X,M,C]) = β0 + h(X)βX + βMM + βCC (4.1)

g(E[Y |X,C]) = β∗0 + h(X)β∗X + β∗CC (4.2)

Let ηF (X,M,C) = β0 +h(X)βX +βMM +βCC and ηR(X,C) = β∗0 +h(X)β∗X +β∗CC

be the corresponding linear predictors. Then E[Y |x,m, c] = g−1(ηF (x,m, c)) and
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E[Y |x, c] = g−1(ηR(x, c)). Note that h(X) can be a vector of exposure terms (e.g.,
[X,X2] or [X,XC]).

Causal mediation effects are defined on the link scale (Huang et al. 2004; Kohler
et al. 2011; Tchetgen Tchetgen 2014; VanderWeele 2015) and on the expected value
scale (Imai, Keele and Yamamoto 2010). Assuming equations (4.1) and (4.2) are
correctly specified, the total effect (TE) of X on the link scale of Y is g(E[Y |x, c])−
g(E[Y |x◦, c]) = [h(x)− h(x◦)]β∗X and the controlled direct effect (CDE) of X on the
link scale of Y is g(E[Y |x,m, c])− g(E[Y |x◦,m, c]) = [h(x)− h(x◦)]βX . The portion
eliminated (PE) is the difference between the total and the controlled direct effects of
X, and measures the reduction in the total effect if indirect paths were blocked. The
PE on the link scale is g(E[Y |x, c])−g(E[Y |x◦, c])−(g(E[Y |x,m, c])− g(E[Y |x◦,m, c]))
= [h(x)−h(x◦)](β∗X−βX). Without an exposure-mediator interaction, the controlled
direct effect is constant for all values of M and thus equals the natural direct effect
(NDE). In this setting, subtracting the controlled direct effect from the total effect
yields the natural indirect effect (NIE).

The average causal mediation effects from equations (4.1) and (4.2) with h(X) =
X are presented on both the link and expected value scales in Table 4.1 and Table
4.2, respectively. Often researchers are interested in reporting mediation effects in
terms of odds ratios or risk ratios, as presented in Table 4.1. To obtain the values
in Table 4.1, fit the corresponding regression models, take differences on the link
scale, then transform to get the association measure (e.g., odds ratio, risk ratio)
of interest. Notice that these mediation effects are functions of β∗X and βX . As a
result, the portion eliminated on the link scale can be estimated using a function
of the essential mediation components (EMCs). By contrast, mediation effects on
the probability scale are functions of the linear predictors ηF and ηR (and can’t be
written strictly in terms of the EMCs). To obtain the values in Table 4.2, fit the
corresponding regression models, use the transformations g−1(ηF ) and g−1(ηR), and
calculate differences in predicted values.

4.2.2 Assumptions
To infer causality from observed data requires the standard causal inference as-

sumptions: consistency, positivity, and exchangeability. Let Y (x,m) denote the po-
tential outcome given the exposure X = x and the mediator M = m, and let M(x)
denote the potential mediator given the exposure X = x. The consistency assump-
tion is that for an individual who actually has exposure X = x, the observed Y
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and M equal the potential outcomes Y (x) and M(x), respectively. Furthermore, we
assume for an individual with exposure X = x and mediator M = m, the observed
Y equals the potential outcome Y (x,m). The positivity assumption is that every-
one has a non-zero probability of having a particular exposure and mediator value:
0 < P(X = x|C = c) and 0 < P(M = m|X = x,C = c) for all x ∈ X, c ∈ C, and
m ∈M .

The exhangeability (no unmeasured confounding) assumptions depicted in Figure
2.2 can be written as i) Y (x,m) ⊥ X|C; ii) Y (x,m) ⊥M | {X,C}; iii) M(x) ⊥ X|C;
iv) Y (x,m) ⊥M(x◦)|C (VanderWeele 2015). When the exposure is randomized, the
assumptions of no unmeasured exposure-outcome or exposure-mediator confounders
(assumptions i and iii) are considered reasonable, but the possibility of unmeasured
mediator-outcome confounders still require consideration. Under assumptions i) and
ii), the average total effect and average controlled direct effects are identified. All four
assumptions are required to identify natural direct and indirect effects. VanderWeele
(2015) and Imai, Keele and Yamamoto (2010) provide sensitivity analysis techniques
to quantify how robust conclusions are to the potential violation of the exchangeability
assumption.
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Total Effect (TE) Controlled Direct Effect (CDE) Portion Eliminated (PE)

g(E[Y |x])− g(E[Y |x◦])
= g(ηR(x))− g(ηR(x◦))

g(E[Y |x,m])− g(E[Y |x◦,m])
= g(ηF (x,m))− g(ηF (x◦,m))

g(E[Y |x])− g(E[Y |x◦])
−(g(E[Y |x,m])− g(E[Y |x◦,m]))
= g(ηR(x))− g(ηR(x◦))
−(g(ηF (x,m))− g(ηF (x◦,m)))

g=identity E[Y |x]− E[Y |x◦]
= β∗X(x− x◦)

E[Y |x,m]− E[Y |x◦,m]
= βX(x− x◦)

E[Y |x]− E[Y |x◦]− (E[Y |x.m]− E[Y |x◦,m])
= (β∗X − βX)(x− x◦)

g=log RRTE =
E[Y |x]
E[Y |x◦]

= eβ
∗
X(x−x◦)

RRCDE =
E[Y |x,m]
E[Y |x◦,m]

= eβX(x−x◦)

RRPE =
RRTE

RRCDE

= e(β∗X−βX)(x−x◦)

g=logit ORTE =
E[Y |x]/(1− E[Y |x])
E[Y |x◦]/(1− E[Y |x◦])

= eβ
∗
X(x−x◦)

ORCDE =
E[Y |x,m]/(1− E[Y |x,m])
E[Y |x◦,m]/(1− E[Y |x◦,m])

= eβX(x−x◦)

ORPE =
ORTE

ORCDE

= e(β∗X−βX)(x−x◦)

Table 4.1: Average causal mediation effects from equations (4.1) and (4.2) defined on the link function scale for commonly used link functions (identity,
log, logit). Note that in the setting of no exposure-mediator interaction, the controlled direct effect (CDE) and the natural direct effect (NDE) are
eqivalent, so the portion eliminated (PE) and the natural indirect effect (NIE) are also equivalent. For notational simplicity, this table excludes
confounders C (without loss of generality).
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Total Effect (TE) Controlled Direct Effect (CDE) Portion Eliminated (PE)

E[Y |x]− E[Y |x◦]
= g−1(ηR(x))− g−1(ηR(x◦))

E[Y |x,m]− E[Y |x◦,m]
= g−1(ηF (x,m))− g−1(ηF (x◦,m))

E[Y |x]− E[Y |x◦]− (E[Y |x,m]− E[Y |x◦,m])
= g−1(ηR(x))− g−1(ηR(x◦))
−(g−1(ηF (x,m))− g−1(ηF (x◦,m)))

g=identity ηR(x)− ηR(x◦) = β∗X(x− x◦) ηF (x,m)− ηF (x◦,m) = βX(x− x◦)
ηR(x)− ηR(x◦)− (ηF (x,m)− ηF (x◦,m))
= (β∗X − βX)(x− x◦)

g=log eηR(x) − eηR(x◦) eηF (x,m) − eηF (x◦,m) eηR(x) − eηR(x◦) − (eηF (x,m) − eηF (x◦,m))

g=logit
eηR(x,c)

1 + eηR(x) −
eηR(x◦)

1 + eηR(x◦)
eηF (x,m)

1 + eηF (x,m) −
eηF (x◦,m)

1 + eηF (x◦,m)

eηR(x)

1 + eηR(x) −
eηR(x◦)

1 + eηR(x◦)

−
(

eηF (x,m)

1 + eηF (x,m) −
eηF (x◦,m)

1 + eηF (x◦,m)

)

Table 4.2: Average causal mediation effects from equations (4.1) and (4.2) defined on the expected value scale for commonly used link functions
(identity, log, logit). Note that in the setting of no exposure-mediator interaction, the controlled direct effect (CDE) and the natural direct effect
(NDE) are eqivalent, so the portion eliminated (PE) and the natural indirect effect (NIE) are also equivalent. For notational simplicity, this table
excludes confounders C (without loss of generality).
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4.2.3 Estimating the portion eliminated from a single regression equation
Recall that for linear models with normal errors, the exact distribution of the max-

imum likelihood estimates (MLEs) β̂ is multivariate normal: β̂ ∼ Np(β, (DTD)−1σ2)
where D is the n× p design matrix and σ2 is the error variance. We used properties
of the normal distribution to obtain an estimator of the change in the exposure coeffi-
cients ∆ = β∗X −βX (the “essential mediation components" or EMCs). Our estimator
of the EMCs is ∆̂ = −V̂XM V̂ −1

M β̂M , where V̂XM is the estimated covariance matrix
between β̂X and β̂M , and V̂M is the estimated covariance of the mediator coefficient(s)
β̂M . The product −V̂XM V̂ −1

M actually equals the vector of estimated exposure coeffi-
cients α̂X from the linear mediator model E[M |X,C] = α0 +h(X)αX +αCC. Impor-
tantly, our formula for the EMCs automatically incorporates a mediator model that
is as flexible as the full model; that is, the form of h(X) specified in the full model is
used to capture the exposure-mediator relationship. We showed that [h(x)−h(x◦)]∆̂
is an estimator of the portion eliminated that requires fitting only the full model.

Generalized linear models are fit using iteratively re-weighted least squares, an
algorithm which is equivalent to Fisher scoring and leads to maximum likelihood esti-
mates (McCullagh and Nelder 1989). The large sample distribution of the MLEs from
a GLM is multivariate normal: β̂∼̇Np(β, φ(DTWD)−1), where W is an n× n weight
matrix and φ is a dispersion parameter. For logistic regression, the estimated coeffi-
cients β̂ = (DTWD)−1DTWZ and Var(β̂) = (DTWD)−1, where Z is the fitted log
odds, log(π̂/(1− π̂)). The weight matrix W has diagonal elements π̂(1− π̂) inversely
proportional to the variance of the log-odds. For GLMs, the product −V̂XM V̂ −1

M is
now the weighted least squares estimator α̂WLS weighted by W , so −V̂XM V̂ −1

M β̂M =
α̂X.WLSβ̂M (Marshall et al. 2002). In other words, we are actually using the prod-
uct α̂X.WLSβ̂M to approximate the EMCs β̂∗X − β̂X . Thus, −V̂XM V̂ −1

M β̂M ≈ ∆̂ is
an approximation to the EMCs from generalized linear models, and an approximate
single-model estimator of the portion eliminated is [h(x)−h(x◦)][−V̂XM V̂ −1

M β̂M ]. Sim-
ply exponentiate to obtain the odds ratio ORPE or risk ratio RRPE.

4.2.4 Visualizing mediation effects from GLMs
For generalized linear models (4.1) and (4.2) with link function g(·) and h(X) = X,

the portion eliminated on the link scale is [h(x)−h(x◦)]∆ = (β∗X −βX)(x−x◦). This
can be visualized as the distance between the function h(X)∆ evaluated at x and
x◦. Figure 4.1 panel A shows the portion eliminated from a logistic regression on the
log-odds scale (which is a simple function of the EMCs ∆).
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The portion eliminated on the expected value scale is PE(x, x◦,m) = E[Y |x] −
E[Y |x◦] − (E[Y |x,m] − E[Y |x◦,m]) = g−1(ηR(x)) − g−1(ηR(x◦)) − (g−1(ηF (x,m)) −
g−1(ηF (x◦,m)). This function of predicted probabilities ηF and ηR can’t be written
strictly in terms of ∆, as it depends on the values of x and m. If we define a function
S(X,M) ≡ E[Y |X]−E[Y |X,M ] = g−1(ηR(X))−g−1(ηF (X,M)), then PE(x, x◦,m) =
S(x,m)−S(x◦,m). That is, the portion eliminated comparing exposure levels x and
x◦ for a fixed mediator value m can be visualized as is the difference between the
function S(X,M) evaluated at x, x◦, and m. Figure 4.1 panel B shows the PE from
a logistic regression on the probability scale. Figure 4.8 in Appendix 4.8 shows an
example of the portion eliminated on the probability scale for several quantiles of the
mediator.

Figure 4.1: Visualizing the portion eliminated as a function of the exposure values (x, x◦). Panel
A shows the portion eliminated on the log-odds (link) scale as the distance (arrow ↔) between the
line h(X)∆ evaluated at x and x◦. Panel B shows the portion eliminated on the probability scale
as the distance between the function S(X,M) evaluated at x and x◦ for a specified value m of the
mediator.

4.2.5 What is the true marginal model?
Using the full and reduced outcome models (4.1) and (4.2) to estimate mediation

effects requires that both be properly specified. This model specification assumes
the mediator is distributed such that the reduced model with mean E[Y |X,C] has
the same distribution as the full model with mean E[Y |X,M,C]. In other words, we

67



assume a distribution f(M |X,C) such that for link function g(·):

g−1(ηR) = EM |X,CE[Y |X,M,C]

=
∫
m

∫
y
Y f(Y |X,M,C)dydF (m|x, c)

=
∫
m
g−1(ηF (X,M,C))dF (m|x, c)

Marginalizing a conditional logistic distribution may lead to a distribution that is
no longer logistic.

EM |X,CE[Y |X,M,C]

=
∫
m

∫
y
Y f(Y |X,M,C)dydF (m|X,C)

=
∫
m

exp (β0 + h(X)βX + βMM + βCC)
1 + exp (β0 + h(X)βX + βMM + βCC)dF (m|X,C)

= exp(β0 + h(X)βX + βCC)
∫
m

exp(βMM)
1 + exp(β0 + h(X)βX + βMM + βCC)dF (m|X,C)

=
exp (β0 + h(X)βX + βCC + λ(X,C))

1 + exp (β0 + h(X)βX + βCC + λ(X,C)) (4.3)

where λ(X,C) is a function of X and C. However, analytical and numerical studies
by Lin et al. (1998) have shown that for rare events, the reduced logistic model for
the mean E[Y |X,C] written as (4.2) is a reasonable approximation to the marginal
model for EM |X,CE[Y |X,M,C] given in (4.3). Additionally, they suggest that for a
binary mediator, the reduced model will provide an adequate approximation even for
non-rare events. The forms of λ(X,C) for continuous and binary mediators are given
in Appendix 4.8.1 and 4.8.2, respectively.

4.3 Existing approaches
We briefly describe existing approaches to estimating mediation effects from gen-

eralized linear models. We focus on the setting in which logistic regression is used to
model a binary outcome and a linear model is used for a continuous mediator. We
describe methods by Karlson et al. (2012) (the so-called KHB method), the mediation
formula, the difference of coefficients, and an approach using the bridge distribution
for a logistic model.
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4.3.1 The KHB method
We present a latent variable formulation of the mediation system to introduce the

KHB method (Karlson et al. 2012). Suppose there is a latent continuous outcome
variable Y ′ and the mediation system is

Y ′ = γ0 + γXX + γMM + γCC + εF (4.4)

Y ′ = γ∗0 + γ∗XX + γ∗CC + εR (4.5)

To derive the logit models, assume εF = σFu and εR = σRν, where u and ν are
standard logistic random variables with mean zero and standard deviation π/

√
3.

Then sd(εF ) = σFπ/
√

3 and sd(εR) = σRπ/
√

3. The observed coefficients β and β∗

from the logit models are equal to the underlying latent variable model coefficients γ
and γ∗ divided by the scale parameters σF and σR, respectively (Winship and Mare
1983):

logit P[Y = 1|X,M,C] = β0 + βXX + βMM + βCC = γ0

σF
+ γX
σF
X + γM

σF
M + γC

σF
C

logit P[Y = 1|X,C] = β∗0 + β∗XX + β∗CC = γ∗0
σR

+ γ∗X
σR
X + γ∗C

σR
C

The observed coefficients are influenced by the magnitude of residual variance, so
the amount of mediation measured by the change β∗X −βX is masked by the different
scale parameters: β∗X − βX = γ∗X

σR
− γX

σF
6= γ∗X − γX . Thus, the change in exposure

coefficients across logit models with and without the mediator can be due to mediation
or to rescaling. Even if the posited mediator is orthogonal to the exposure (such that
there is no mediation), ifM explains variation in the outcome then the reduced model
will have a larger residual error variance (σR ≥ σF ) and the coefficient for X may
change simply due to rescaling.

Karlson et al. (2012) proposed a solution to this “cross-model coefficient compa-
rability problem" for nonlinear models that are linear in their parameters. The KHB
method reparameterizes the full latent variable model (4.4) as

Y ′ = γ̃0 + γ̃XX + γ̃MεM |X,C + γ̃CC + ε̃F (4.6)

where ε̃F = σ̃Fk, k ∼ logistic so that sd(ε̃F ) = σ̃Fπ/
√

3, and εM |X,C is the residual
vector from the linear regression E[M |X,C] = α0+αXX+αCC with mean zero. Note
that εM |X,C is orthogonal toX and the exposure coefficients and scale parameters from
equations (4.4) and (4.6) are equal (since the fitted values are the same, the residuals
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are the same), i.e., γ̃X = γ∗X and εF = ε̃F . Thus, fitting

logit P[Y = 1|X,M,C] = β̃0 + β̃XX + β̃MεM |X,C + β̃CC

= γ̃0

σ̃F
+ γ̃X
σ̃F
X + γ̃M

σ̃F
εM |X,C + γ̃C

σ̃F
C

allows one to measure a change in the exposure coefficients that holds the scale and
the fit of the error to the assumed distribution constant: β̃X−βX = γ̃x

σ̃F
− γX

σF
= γ∗X−γX

σF
.

This approach allows the total, direct, and indirect effects to be identified relative to
the scale σF . A scale-free measure of the proportion eliminated is (β̃x − βX)/β̃X =
(γ∗X−γX)/σF

γ∗X/σF
= (γ∗X − γX)/γ∗X .

4.3.2 The mediation formula
A generalization of the product of coefficients approach, the mediation formula

(Pearl 2001) can be used for estimating causal mediation effects from any type of
model and could be considered the gold standard. The mediation formula requires
specification of an outcome model and a mediator model:

g1(E[Y |X,M,C]) = β0 + βXX + βMM + βCC

g2(E[M |X,C]) = α0 + αXX + αcC

VanderWeele (2015) used the mediation formula to derive regression-based solutions
to mediation effects from several different combinations of link functions g1(·) and
g2(·), and Imai, Keele and Tingley (2010) provide R software for their simulation-
based approach. For binary outcome Y and continuous mediator M , VanderWeele
(2015) provides regression-based solutions from the system

logit P[Y = 1|X,M,C] = β0 + βXX + βMM + βCC

E[M |X,C] = α0 + αXX + αCC

He defines the average controlled direct effect as ORCDE = exp {βX(x− x◦)}, the
average natural direct effect ORNDE = exp {βX(x− x◦)}, and the average natural
indirect effect as ORNIE = exp {αXβM(x− x◦)}. He notes that these definitions
hold provided the outcome is rare; if logistic regression is used to model a common
outcome, these estimators will be biased.
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4.3.3 The difference of coefficients
The difference of coefficients approach fits the “full" and “reduced" outcome models

with the same link function. For logistic regression, the mediation system is

logit P[Y = 1|X,M,C] = β0 + βXX + βMM + βCC (4.7)

logit P[Y = 1|X,C] = β∗0 + β∗XX + β∗CC (4.8)

The total effect of X on the log odds of Y is β∗X(x− x◦); the controlled direct effect
of X on the log odds of Y is given by βX(x− x◦); the portion eliminated on the log
odds of Y is (β∗X − βX)(x − x◦). Exponentiating gives ORTE = exp {β∗X(x− x◦)},
ORCDE = exp {βX(x− x◦)}, and ORPE = exp {(β∗X − βX)(x− x◦)}. We include some
properties of the difference of coefficients approach and the circumstances under which
it provides a valid measure of mediation in the generalized linear model setting.

Non-collapsibility of the odds ratio: Because odds ratios are not collapsible, it is
possible for the exposure effect to differ between the full and reduced models but for
there to be no mediation (Greenland et al. 1999). As discussed in Section 4.3.1, the
exposure coefficient can change due to both rescaling and mediation.

Rare outcome assumption: Under the rare outcome assumption, the odds ratio
approximates a risk ratio (which is collapsible) so one can use the difference of coeffi-
cients from a logistic regression model to estimate the portion eliminated. When one
uses logistic regression to model a common binary outcome, the odds ratio does not
approximate a risk ratio and the aforementioned collapsibility issue arises. However,
the rare outcome assumption can be relaxed by using a log-linear regression instead,
and the formulas for mediation effects above will have a risk ratio interpretation
(VanderWeele 2015).

Conservative estimate of mediation effects: The difference method is conservative
for estimating the natural indirect effect, a result proven by Jiang and VanderWeele
(2015). Because of the noncollapsibility of odds ratios, including additional covariates
in a logistic model tends to increase the magnitude of the exposure coefficient (so β̂X
will overestimate the magnitude of the natural direct effect). Since β̂∗X is a consistent
estimator of the total effect, the difference β̂∗X − β̂X underestimates the NIE. If the
direct effect β̂X and difference β̂∗X − β̂X are both positive, then the NIE must be
positive and ORNIE > eβ̂

∗
X−β̂X (if β̂∗X − β̂X ≤ 0, the sign of the NIE is inconclusive).

Similarly, if β̂X and β̂∗X − β̂X are both negative, we can conclude the NIE must be
negative (but if β̂∗X − β̂X ≥ 0, we cannot draw any conclusions).
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4.3.4 The bridge distribution
To obtain closed-form expressions for mediation effects when the outcome is not

rare, Tchetgen Tchetgen (2014) replaces the assumption of a normally distributed
mediator and a rare outcome with the assumption that the mediator follows a bridge
distribution. Using the bridge distribution to marginalize over the full model with a
given link function yields a marginal model with the same link function and regression
coefficients scaled by φ and offset by k. Wang and Louis (2003) showed that for binary
outcomes, the necessary bridge density f(M) and constants k and φ are unknown but
identified as the solutions to the equation

E[Y |X,C] = g−1(φηR(X,C) + k) =
∫
g−1 (ηR(X,M,C)) f(M)dm

For binary outcomes, there is a unique bridge distribution for a given link function
(Molenberghs et al. 2013). When g=logit, the bridge density is the unique mediator
distribution under which marginalization of the full logistic model with respect to M
produces another logistic model, with coefficients scaled by an amount determined
by φ:

Blogit(0, φ) : f(d) = sin(πφ)
cos(πφ) + cosh(πd) ,−∞ < d <∞, 0 < φ < 1

where cosh(x) = 1
exp(x)+exp(−x) . Blogit(0, φ) is symmetric with variance of π2

3 (φ−2− 1).
Figure 4.2 shows the normal, logistic, and Blogit(0, φ) bridge distributions all scaled
to have unit variance. Using the result by Wang and Louis (2003), Tchetgen Tch-
etgen (2014) shows that if [εM |X,C] ∼ Blogit(0, φ), where εM = M − E[M |X,C],
then E[Y |X,C] = expit

(
φ̃ [β0 + βXX + βM(α0 + αXX + αCC) + βCC]

)
, where φ̃ =

(β2
M(φ−2 − 1) + 1)−1/2 is a rescaling parameter. It follows that logit P[Y = 1|X,C] =

β∗0 + β∗XX + β∗CC where β∗X = φ̃(βX + βMαX).
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Figure 4.2: Comparing the bridge, normal, and logistic probability density functions, all scaled to
have unit variance.

4.4 Comparison of approaches
We discuss the similarities and differences between the aforementioned approaches

and our single-model formula, particularly when the outcome is binary and the me-
diator is continuous. The key difference between using the mediation formula and
the difference of coefficients approach is whether or not the total effect is implied
or estimated explicitly. The mediation formula approach fits the full model and the
mediator model, and uses the sum of the estimated natural direct and indirect effects
as the estimated total effect. The difference of coefficients approach, in contrast, uses
the maximum likelihood estimate of the exposure effect from the reduced model as
the estimated total effect. Note that the rare outcome assumption is needed for both
the regression-based solutions given by VanderWeele and the difference of coefficients
approach.

For certain models, the difference of coefficients approach is known to coincide with
the mediation formula. For correctly-specified models without an exposure-mediator
interaction, the difference of coefficients and the mediation formula will agree for linear
and log-linear outcome models. For logistic outcome models (4.7) and (4.8), β∗X−βX ≈
αXβM provided the outcome is rare. Under the rare outcome assumption, logit P[Y =
1|X,M,C] ≈ log P[Y = 1|X,M,C] and logit P[Y = 1|X,C] ≈ log P[Y = 1|X,C].
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Thus, β∗X ≈ (βX + αXβM) so β∗X − βX ≈ αXβM :

exp {β∗0 + β∗XX + β∗CC}

≈ P(Y = 1|X,C)

= EM [P(Y = 1|X,C,M)|X,C]

≈ EM [exp {β0 + βXX + βMM + βCC} |X,C]

= exp {β0 + βXX + βCC}EM [exp {βMM} |X,C]

= exp {β0 + βXX + βCC} exp
{
βM(α0 + αXX + αCC) + 0.5β2

Mσ
2
}

= exp
{
β0 + 0.5β2

Mσ
2 + α0βM + (βX + αXβM)X + (βCC + αCβM)C

}
For the logistic outcome model with no exposure-mediator interaction, the KHB

difference of coefficients solution is equivalent to the product of coefficients, β̃x−βX =
γ̃x−γX

σF
= αXγM

σF
= αXβM , and an equivalent scale-free measure of the proportion

eliminated is αXβM

βX+αβM
. The difference between the KHB difference β̃X−βX = γ∗X

σF
− γX

σF

and the EMCs ∆ = β∗X − βX = γ∗X
σR
− γX

σF
is (β̃X − βX)− (β∗X − βX) = γ∗X

σF
− γ∗X

σR
. The

EMCs can be decomposed into the amount due to rescaling of the coefficient of X
and the amount due to mediation: β∗X − βX = (β∗X − β̃x) + (β̃x − βX). The ratio
β̃x

β∗X
= γ̃x/σ̃F

γ∗X/σR
= γ∗X/σF

γ∗X/σR
= σR/σF measures the impact of rescaling, net of mediation

(Karlson et al. 2012).
Table 4.3 shows the models that are fit to estimate the total effect, controlled

direct effect, and the portion eliminated using the difference of coefficients, the KHB
method, the mediation formula, and our formula. The portion eliminated from the
KHB method, the mediation formula, and our formula can each be written as some
product of coefficients. Our approximation to the EMCs β∗X − βX is −VXMV −1

M βM =
αX.WLSβM , where αX.WLS is the estimated effect of the exposure on the mediator from
a flexible weighted least squares regression of M on X. The mediation formula uses
the product (E[M |x, c]− E[M |x◦, c]) βM , which equals αXβM(x−x◦) for a continuous
mediator. If the mediator were binary and modeled with logistic regression, the me-
diation formula would give (expit(α0 + αXx+ αCc)− expit(α0 + αXx◦ + αCc)) βM .
The KHB method would still use a linear mediator model to obtain the residuals
εM |X,C even if the mediator were binary, so the KHB product αXβM would no longer
agree with the mediation formula. For a continuous mediator, the degree to which
αX.WLS differs from αX will determine the departure of our formula from the media-
tion formula and the KHB method.
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Fitted Models TE CDE PE=TE-CDE

Diff. of coefs logit E[Y |X,M ] = β0 + βXX + βMM
logit E[Y |X] = β∗0 + β∗XX

β∗X βX β∗X − βX

KHB method
logit E[Y |X,M ] = β0 + βXX + βMM
E[M |X] = α0 + αXX → εM |X
logit E[Y |X,M ] = β̃0 + β̃XX + β̃MεM |X

β̃X βX
β̃X − βX
= αXβM

Mediation formula logit E[Y |X,M ] = β0 + βXX + βMM
E[M |X] = α0 + αXX

βX + αXβM βX αXβM

Our formula logit E[Y |X,M ] = β0 + βXX + βMM
βX − VXMV −1

M βM
= βX + αX.WLSβM

βX
−VXMV −1

M βM
= αX.WLSβM

Table 4.3: Comparing mediation estimators for a binary outcome Y , continuous mediatorM , and a unit change in the exposure X (so that x−x◦ = 0)
using the difference of coefficients, the KHB method, the mediation formula, and our formula. The columns show the fitted models, the total effect
(TE), controlled direct effect (CDE), and the portion eliminated (TE-CDE). For notational simplicity, this table excludes confounders C (without
loss of generality).
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4.5 Application to genetic epidemiology
Background: Genetic variants on chromosome 15q25.1 have been associated with

lung cancer as well as smoking behavior in genome-wide association studies (Amos
et al. 2008). There has been discussion regarding whether the effect of genetic variants
on lung cancer is direct or if it operates through pathways related to smoking. To
investigate whether smoking mediates the relationship between genetics and risk of
lung cancer in African Americans, we analyze genotyping data on chromosome 15q25
from 4253 subjects in the African American Lung Cancer Consortium. Table 4.4
provides summary statistics of the dataset.

Table 4.4: Summary statistics of variables in the genetic epidemiology example

Assumptions: The exposure X is the number of copies of the minor allele at a
particular SNP on gene region 15q25, the mediator M is smoking measured in pack-
years, and the outcome Y is the presence or absence of lung cancer. We include
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subjects’ age, sex, study site, and estimated global African ancestry as confounding
variables C. The directed acyclic graph in Figure 4.3 presents the assumed causal
relationships. We assume that conditional on C, there is no unmeasured confounding
of the exposure-outcome, mediator-outcome, exposure-mediator relationships, and
that no effect of the exposure is itself a mediator-outcome confounder. Since the
exposure is a genetic variant among African Americans, assumptions i) and iii) are
believable. Global African ancestry can be associated with both the genetic marker
and disease frequency and has also been shown to be correlated with environmental
and biomedical covariates, so we consider it a surrogate for unmeasured environmental
exposures (Ziv and Burchard 2003). We assume adjusting for study site and global
African ancestry are sufficient surrogates for SES, neighborhood of residence, or other
smoking-lung cancer confounders, so that assumption ii) is met. We also assume the
genetic variants do not affect mediator-outcome confounders (like neighborhood of
residence). We use the following logistic regression model (age is splined and we use
the log(1+x) transformation for pack-years):

logit P(lung cancer|X,M,C) =β0 + βXSNP + βMpack-years + βC1age+

βC2sex + βC3site + βC4Afr

Figure 4.3: A directed acyclic graph for the genetic epidemiology example looking at whether the
effect of a genetic variant (X) on lung cancer (Y ) is mediated by smoking (M). We assume that
conditional on C = {age, sex, study site, and global African ancestry}, we have controlled for i)
exposure-outcome confounding (CXY ), ii) mediator-outcome confounding (CMY ), iii) exposure-
mediator confounding (CXM ), and iv) that no effect of the exposure is itself a mediator-outcome
confounder.

Interpretation at a particular SNP: Consider the effect of increasing copies of the
minor allele, such that x − x◦ = 1. The total effect ORTE = odds E[Y (1)|c]

odds E[Y (1)|c] is the odds
ratio for lung cancer comparing those with and without an additional copy of the

77



minor allele. The controlled direct effect ORCDE = odds E[Y (1,m)|c]
odds E[Y (0,m)|c] is the odds ratio

for lung cancer comparing those with and without an additional copy of the minor
allele if pack-years were fixed at a certain level m. The portion eliminated ORPE =
ORTE/ORCDE is the portion of the total effect of increasing copies of the minor allele
on lung cancer that would be eliminated if we were to fix pack-years to the same value
m for all persons. The natural direct effect ORNDE = odds E[Y (1,M(0))|c]

odds E[Y (0,M(0))|c] is the odds ratio
for lung cancer comparing those with and without an additional copy of the minor
allele if pack-years were what it would have been without an additional copy of the
minor allele. The natural indirect effect ORNIE = ORTE/ORNDE = odds E[Y (1,M(1))|c]

odds E[Y (1,M(0))|c]

is the odds ratio for lung cancer for those with an additional copy of the minor allele
comparing what would happen if pack-years were set to what it would have been with
and without the additional copy of the minor allele.

The natural indirect effect measures the reduction in the total effect of increasing
copies of the minor allele on risk of lung cancer that would occur if we were to disable
the pathway from SNP to smoking (i.e., setting pack-years to the value it would
have had without the additional copy of the minor allele). Although the natural
indirect effect has an interesting metaphysical interpretation, in this example it does
not correspond to an intervention that could actually be carried out in practice. The
portion eliminated, on the other hand, measures the reduction in the total effect that
would be obtained by intervening to fix smoking toM = m pack-years for all subjects.
The portion eliminated tells us how much of the exposure’s effect on lung cancer we
could block by intervening on smoking.

Results: We estimated the odds ratios for the controlled direct effect, the total
effect, and the portion eliminated at each SNP using the difference of coefficients,
the KHB method, the mediation formula, our formula, and a “simple" product of
coefficients. The simple product of coefficients estimates the exposure-mediator ef-
fect αX from a mediator model E[pack-years|X] = α0 + αXSNP that excludes the
confounders. The KHB method, the mediation formula, and our formula estimate αX
from the mediator model E[pack-years|X,C] = α0 +αXSNP +αCC; however, while
the KHB method and the mediation formula use the ordinary least squares estimate
of αX , our formula uses the weighted least squares estimate as described in Section
4.2.3.

The estimated controlled direct effect odds ratios shown in Figure 4.4 agree across
methods because they use the same full model. On the other hand, the portion
eliminated odds ratios shown in Figure 4.5 differ across methods. We do not include
the mediation formula results because they agree perfectly with the KHB results in
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this example. Figure 4.6 provides pairwise comparisons of the estimated ORPE.
To assess how each method performs compared to the mediation formula (which

could be considered the gold standard), it is equivalent to compare the results to
the KHB method. We present the estimated mediation effect odds ratios and the
estimated αX for four SNPs in Figure 4.7, and we interpret some of the mediation
effects with varying magnitudes and directions in Appendix 4.8.3. Notice that our
sweep formula appears to coincide with the difference of coefficients, which is not sur-
prising since this is what our formula is approximating. The simple product performs
similarly to the KHB method, which suggests that excluding confounders from the
mediator model did not significantly change the estimate of αX . Since the exposure is
increasing copies of the minor allele (which could be considered randomly assigned),
perhaps it is unlikely for there to be influential confounders of the genetic-smoking
relationship.

4.6 Future directions
It is of interest to further develop our single-model framework so that it provides

an appropriate estimator of the portion eliminated from generalized linear models.
For mediation analyses involving large datasets with multiple exposure variables of
interest, implementing the simulation-based approach by Imai, Keele and Yamamoto
(2010) can be computationally intensive, so a single-model framework is desirable.
Directions for future research include using simulations to assess the degree to which
our estimator −V̂XM V̂ −1

M β̂M approximates the EMCs β∗X − βX . We’d also like to
understand how the bias of the difference of coefficients estimator of the portion
eliminated compares to that of the mediation formula. Finally, we are exploring how
to extend our double-sweep approach to generalized linear models.
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4.8 Appendix
4.8.1 Form for λ(X,C) when M is normal

When the mediator M is normally distributed with conditional mean µM |X,C ,

λ(X,C) = βMµM |X,C + 0.5β2
M+

log
∫

(1 + exp(β0 + βXX + βMm+ βCC + β2
M))−1 exp(−(m− µM |X,C)2/2)dm∫

(1 + exp(β0 + βXX + βCC + βMm))−1 exp(−(m− µM |X,C)2/2)dm

For a normal mediator, if the event is rare or if the magnitude of βM is small,
λ(X,C) ≈ βMµM |X,C + 0.5β2

M and β∗X ≈ βX + αXβM :

logit E[Y |X,C] = β0 + h(X)βX + βCC + λ(X,C)

≈ β0 + h(X)βX + βCC + βMµM |X.C + 0.5β2
M

= β0 + h(X)βX + βCC + βM(α0 + h(X)αX + αCC) + 0.5β2
M

= (β0 + βMα0 + 0.5β2
M) + h(X)(βX + βMαX) + (βCC + βMαC)C

= β∗0 + h(X)β∗X + β∗CC

4.8.2 Form for λ(X,C) when M is binary
When the mediator M has a binomial distribution with conditional mean PM |X,C ,

λ(X,C) = log
eβM

(
1 + eβ0+βXX+βCC

)
PM |X,C +

(
1 + eβ0+βXX+βM +βCC

)
(1− PM |X,C)

(1 + eβ0+βXX+βCC)PM |X,C + (1 + eβ0+βXX+βM +βCC) (1− PM |X,C)

If the event is rare or if the magnitude of βM is small, λ(X,C) is approximately equal
to log

(
eβMPM |X,C + (1− PM |X,C)

)
and

logitE[Y |X,C] = β0 + h(X)βX + βCC + λ(X,C)

≈ β0 + h(X)βX + βCC + log
(
eβMPM |X,C + (1− PM |X,C)

)
= β0 + h(X)βX + βCC + log

1 +
eα0+h(X)αX+αCC

1 + eα0+h(X)αX+αCC
(eβM − 1)



4.8.3 Interpreting mediation effects from logistic regression
We interpret some of the results shown in Figure 4.7. These are not meant to

be interpreted scientifically, but rather to demonstrate how one would interpret me-
diation effect odds ratios with varying magnitudes and directions. The following
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inferences assume we’ve correctly specified our models and that the 95% confidence
intervals for these effects exclude the null OR=1.

For rs17184851, the estimated total effect odds ratios are greater than 1, and the
estimated controlled direct effects are greater than the estimated total effects. As
a result, the estimated portion eliminated odds ratios are less than 1. This implies
that increasing copies of the minor allele at rs17184851 directly increases risk of
lung cancer, but that increasing copies of the minor allele has a negative indirect
effect through smoking. Since we know that smoking is positively associated with
lung cancer, this suggests that increasing copies of the minor allele at rs17184851 is
associated with reduced pack-years. This is confirmed by the estimated odds ratios
for the exposure-mediator effect being less than 1.

For rs1509557, the directions of the results are not consistent across methods. The
difference of coefficients and our sweep formula give estimated TE and CDE odds
ratios less than 1, and the magnitudes of the estimated CDE odds ratios are larger
than the TE odds ratios. Thus, the estimated PE odds ratios are greater than 1. This
suggests that increasing copies of the minor allele at rs1509557 directly reduces risk
of lung cancer, but that increasing copies of the minor allele has a positive indirect
effect through smoking. Since smoking is positively associated with lung cancer, this
suggests that increasing copies of the minor allele at rs1509557 is associated with
increased pack-years. This is supported by the sweep estimate of the odds ratio
for the exposure-mediator effect being greater than 1. However, the magnitudes of
the negative CDEs are greater than the magnitudes of the positive PEs, leading to
estimated total effects of increasing copies of the minor allele that appear protective
for lung cancer.

Now we interpret the results at rs1509557 from the KHB method and the simple
product approach. The estimated TE and CDE odds ratios are still less than 1, but
now the magnitudes of the estimated TE odds ratios are larger than the CDE odds
ratios. As a result, the portion eliminated estimates are also less than 1, suggesting
that increasing copies of the minor allele are associated with reduced pack-years,
which is supported by the estimated odds ratios for the exposure-mediator effect
being less than 1. These results imply that both the direct and indirect effects of
increasing copies of the minor allele at rs1509557 are protective. Results for the other
two SNPs could be interpreted in a similar manner.
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Figure 4.4: The controlled direct effect odds ratios of SNPs on chromosome 15q25.

Figure 4.5: The portion eliminated odds ratios of SNPs on chromosome 15q25: comparing results
obtained using the sweep formula, the KHB method, and the difference of coefficients.
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Figure 4.6: Pairwise comparisons of the portion eliminated obtained using the KHB method, the
product of coefficients with a simple mediator model (excluding confounders), the difference of
coefficients, and our sweep formula.
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Figure 4.7: Comparison of mediation effect odds ratios (total effect, controlled direct effect, portion
eliminated). We compare the estimated odds ratios at four SNPs obtained using the difference
of coefficients, the KHB method, the simple product of coefficients, and our sweep formula. The
estimated odds ratios for the exposure-mediator effect are represented by α.
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Figure 4.8: The portion eliminated on the probability scale can be visualized as the distance between
the function S(X,M) evaluated at x and x◦. We show results for various values of the mediator
(the 5th, 25th, 50th, 75th, and 95th percentiles of M).
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CHAPTER 5

CONCLUSION

The statistical literature abounds with methods for measuring mediation in the
simple setting of one exposure, one mediator, and one outcome. Our proposed single-
model framework is straightforward to implement for simple and sophisticated me-
diation models that may involve nonlinearities, interactions, splines, and multiple
mediators. Rather than fitting several separate regression equations, one can use
our formula for the EMCs to estimate mediation effects and their variance from the
fit of the full regression equation. This approach allows for mediation analysis with
a straightforward application of regression modeling tools - e.g., penalization proce-
dures, multiple imputation, and cross-validation. One simply applies these techniques
to the full model and their impact is automatically incorporated in the mediation
functionals.

In addition to providing a useful formula for estimating the portion eliminated
and its variance, we drew connections between existing approaches, noting their sim-
ilarities and the settings in which they agree and diverge. The standard approach in
the causal inference literature is to use the implied total effect that results from fit-
ting the full outcome model and the mediator model. We say “implied" here because
the marginal outcome model is not actually fit to the data. Instead, the sum of the
estimated natural direct and indirect effects is used as an estimate of the total effect.
In contrast, our approach estimates the total effect that would be directly obtained
from fitting the marginal model. Importantly, the sum of the estimated natural direct
and indirect effects does not necessarily equal the estimated total effect from the fit-
ted marginal model, an unexpected finding. One explanation is that several different
systems of equations will yield the same reduced model, but a specific reduced model
is implied once the outcome model and mediator model are fit. This is an interesting
finding that merits further study.

We also showed how the proposed framework extends to generalized linear models.
We presented mediation effects defined on the link scale, using the essential mediation
components, and on the expected value scale, using a transformation of the linear
predictors. We discussed the distinguishing features of the difference of coefficients,
the KHB method, the mediation formula, and our formula. We compared results of
a mediation analysis applying each of these methods to genotyping data, noted the
ways in which the results are similar and dissimilar, and provided interpretations of
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the mediation effect odds ratios.
The proposed framework can be viewed as having two key steps: first, estimation

of one well-specified full outcome model and second, estimation of mediation function-
als from that model. For mediation analysis with large datasets, efficiency gains from
using our estimator of the portion eliminated and its variance can be substantial. The
single-model regression framework for mediation analysis imparts conceptual clarity
and provides practical and computational advantages. Our directions for future re-
search include further development of the single-model framework so that it provides
an appropriate estimator of the portion eliminated from generalized linear models.
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