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CHAPTER 1 

Introduction 

1.1 Motivation 

 Breast cancer is the most common cancer in women, with over 250,000 estimated new 

cases in the US in 2018 (1). Pancreatic cancer has one of the lowest 5-year survival rates of all 

cancer types (8%) (2), and is projected to be the second leading cause of cancer death by 2030 (3). 

An estimated 2.5 million new cases of breast and pancreatic cancer were diagnosed in 2018 

worldwide (4). Standard of care for both cancer types often involves surgical tumor resection, with 

the option for chemotherapy and radiation either before surgery, to make a tumor more easily 

resectable, or after surgery, to prevent future recurrence and increase long-term survival. 

Unfortunately, each individual patient’s tumor is unique, and there are no reliable methods to 

determine how they will respond to a particular treatment option. Current precision medicine 

approaches use the molecular profile of an individual tumor to guide treatment choices, but this 

often fails (5). Treatment response is identified by tracking tumor size or by monitoring tumor 

recurrence after surgery, which can take months to determine. At that point, alternative drugs can 

be given, but the tumor may have progressed on the ineffective treatment, and the patient likely 

experienced significant side effects. One major cause for this cancer treatment failure is intratumor 

heterogeneity, as drug-resistant cell subpopulations continue to proliferate even when a majority 

of the tumor appears to be drug-responsive (6, 7). 

Patient-derived tumor organoids offer the ability to screen drugs directly on a patient’s 

cells in vitro to determine drug effectiveness and guide therapeutic decisions in pancreatic (8, 9) 

and breast cancer (10, 11). Many organoids can be cultured from a single patient biopsy, enabling 

high-throughput studies of many treatment options. Unlike patient-derived xenograft (PDX) 
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models, which can take months to establish, organoids can be used for drug screening within days. 

However, we currently lack the tools to evaluate cellular subpopulations of response within 

organoids. Current methods to measure overall response, including cell viability assays, organoid 

diameter tracking, or pooling of proteins or genetic material from many organoids, ignore cellular 

heterogeneity. Methods to measure response in individual cells such as flow cytometry, single-cell 

sequencing, or immunolabeling require destruction of the organoid. Therefore, technology to guide 

cancer treatment decisions by non-invasively evaluating subpopulations of drug response in patient 

organoids is needed. 

Optical metabolic imaging (OMI) leverages the intrinsic autofluorescence intensities and 

lifetimes of the metabolic coenzymes NAD(P)H and FAD to quantify the metabolic state of cells 

and tissues, and non-invasively provides single-cell resolution using two-photon excitation (12, 

13). OMI-organoid technology has been validated as an accurate predictor of in vivo drug response 

in xenograft models generated from human breast cancer cell lines (11) and a mouse model of 

pancreatic cancer (9), but it is unclear whether OMI of primary human tumor organoids can be 

used to predict patient outcome. Furthermore, it has not been determined whether in vitro organoid 

heterogeneity accurately captures in vivo heterogeneity, and whether OMI endpoints are sensitive 

to certain key metabolic pathways that can drive treatment resistance. 

The goal of this dissertation is to develop OMI for measuring drug-induced changes in 

metabolic heterogeneity in pancreatic and breast cancer organoids. This will provide novel insights 

into how individual patients respond to intervention at the single-cell level. The development of 

this technology will enable optimal treatment decisions for individual patients that minimize 

toxicity, while killing all subpopulations of cells within heterogeneous tumors. 
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1.2 Specific Aims 

Aim 1: Validate the sensitivity of the fluorescence lifetime of NAD(P)H to shifts in 

flux through key metabolic pathways. Fluorescence imaging of NAD(P)H is useful for probing 

the metabolism of living cells because it is non-damaging and does not require exogenous labeling. 

However it remains unclear whether NAD(P)H FLIM can be used to detect metabolic alterations 

at other key enzymatic steps that control the path of carbon from glucose uptake to ETC activity. 

For the first time, NAD(P)H FLIM was used to accurately quantify the relative concentrations of 

two enzyme species in solution. FLIM of NAD(P)H was also performed on breast epithelial cells 

and pancreatic duct epithelial cells treated with metabolic inhibitors. Finally, NAD(P)H FLIM was 

measured in cells forced to metabolize lactate or pyruvate, thus modulating carbon flux through 

lactate dehydrogenase. This aim tested the hypothesis that NAD(P)H 𝜏2 offers the ability to non-

invasively quantify diversions of carbon away from the TCA cycle and electron transport chain. 

This sensitivity could be harnessed in order to identify the mechanisms that allow drug-resistant 

cell subpopulations to evade treatment, and to determine viable alternative drug targets in these 

subpopulations. 

Aim 2: Test the ability of OMI of in vitro breast tumor organoids to accurately 

quantify in vivo heterogeneous response to treatment. This aim tested the hypothesis that OMI 

of primary breast cancer organoids can accurately represent in vivo changes in tumor heterogeneity 

in response to treatment, as well as predict overall tumor response in an immunocompetent model 

of breast cancer. FVB mice bearing orthotopic allografts of polyomavirus middle-T (PyVmT) 

tumors were treated with a combination of clinically-relevant anti-cancer drugs, and imaged using 

intravital OMI. In parallel, in vitro organoids were generated from the PyVmT model and treated 

with the same drugs. A novel weighted heterogeneity index (wH-index) was used to quantify the 



 

 

4 

 

degree of heterogeneity in organoid treatment groups and in vivo tumors, and test whether OMI of 

primary breast tumor organoids can re-capitulate treatment-induced in vivo changes in cell-level 

metabolic heterogeneity. Additionally, OMI predictions of global tumor response were validated 

using standard in vivo tumor volume in a separate cohort of mice over 14 days. Histology was used 

to evaluate potential causes behind divergent cell subpopulations in both tumors and organoids.  

Aim 3: Characterize OMI of drug response heterogeneity in human pancreatic cancer 

organoids. Currently, oncologists must select drugs for individual pancreatic cancer patients 

without a dependable method for predicting response. This aim tested the hypothesis that OMI of 

pancreatic tumor organoids can be used to evaluate patient-specific response to treatment at the 

single-cell level. Organoids were generated from fresh patient tissue samples acquired during 

surgical tumor resection. These organoids were treated with the same drugs that the patient 

received following surgery, and OMI was used to measure cellular metabolic heterogeneity in 

response to this treatment. The degree of OMI-measured heterogeneity in drug-treated organoids 

were compared to patient recurrence-free survival, suggesting a high level of agreement.  

 

1.3 Dissertation Outline 

 This dissertation has been organized in the following manner: 

 Chapter 1 includes the motivation behind the dissertation, as well as an outline of the 

specific aims.  

 Chapter 2 provides background information on the current state of breast and pancreatic 

cancer treatment, along with challenges associated with tumor heterogeneity. Background is also 

provided on the tools used to address these challenges, including organoid culture and optical 

imaging. 
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 Chapter 3 describes experiments in both solutions and cells demonstrating that the 

fluorescence lifetime of enzyme-bound NAD(P)H is sensitive to alternative fates of glucose carbon 

before entry into the TCA cycle. This work offers a novel biochemical interpretation for changes 

in the fluorescence lifetime of NAD(P)H, connecting OMI measurements with shifts in flux 

through specific metabolic pathways which may contribute to anti-cancer drug resistance. This 

work was published in 2018 in Scientific Reports (14). 

 Chapter 4 contains a novel demonstration that metabolic heterogeneity in tumor-derived 

organoids accurately recapitulates that of the original tumor. OMI was performed in vivo in an 

immunocompetent mouse model of breast cancer, and also in organoids derived from the same 

tumor model. A novel weighted heterogeneity index was used to quantify and compare 

measurements in both settings. This work validates OMI of tumor-derived organoids as a platform 

to study tumor heterogeneity, when direct measurement in vivo is not feasible.  

 Chapter 5 characterizes OMI of heterogeneous drug responses in pancreatic cancer patient-

derived organoids. First, interpatient variability in terms of overall treatment response to a panel 

of pancreatic cancer therapies was demonstrated across patient-derived organoids. Next, metabolic 

heterogeneity at the cellular level in patient organoids in response to treatment was compared to 

long-term patient outcome. This study demonstrates the feasibility of OMI of organoids as a high-

throughput drug screening technology to quickly optimize treatment plans for individual 

pancreatic cancer patients.  

 Chapter 6 first provides a summary of the dissertation and its conclusions. This is followed 

by a discussion of potential future directions for this research. Finally, the scientific contributions 

of this dissertation and its broader impacts on society are outlined. 
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 Appendices A, B, and C contain supplementary figures and tables from Chapters 3, 4, and 

5, respectively. 
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CHAPTER 2 

Background 

2.1 Breast and pancreatic cancer personalized medicine 

2.1.1 Breast cancer and treatment strategies 

Breast cancer accounts for about 30% of all cancers in women globally (1). It has been 

estimated that about 266,000 women and 2,600 men will be diagnosed with invasive breast cancer 

in the United States in 2018, and 40,920 women and 480 men will die of the disease. The absolute 

number of women being diagnosed continues to increase as the “baby boomers” generation 

approaches the median age of breast cancer diagnosis, which is 62 years of age (2). Breast cancer 

confined to the breast or nearby lymph nodes does not cause mortalities; it is the metastatic spread 

of the disease to vital organs such as the liver, brain, or lungs that causes death (3). From 1989 to 

2015, the female breast cancer death rate decreased by 39%, largely due to improvements in 

awareness and screening leading to earlier detection, yet breast cancer remains the second leading 

cause of cancer death in women (Fig. 2.1) (1). 

         

Figure 2.1. Breast cancer incidence rates in the US by age. Breast cancer incidence rates in the 

United States, stratified by patient age at diagnosis (2). 

 

Most cases of breast cancer will require surgery to remove the tumor. Breast-conserving 

strategies include lumpectomy, in which only a small amount of normal tissue around the tumor 
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is removed along with the tumor, and partial mastectomy, in which more normal tissue is removed, 

possibly including the lining of the chest wall (4). A total mastectomy refers to the removal of the 

entire afflicted breast and some lymph nodes. Neoadjuvant therapy, or treatment before surgery 

with chemotherapy and/or other drugs to shrink the size of the tumor, is often given in hopes of 

making the operation less extensive. 

 Chemotherapy is used as a breast cancer treatment both before and after surgery, and also 

for treating metastatic lesions. Chemotherapy targets and kills cells that are dividing rapidly, which 

is true of most cancer cells. The most common chemotherapy drugs for breast cancer include the 

anthracyclines (doxorubicin and epirubicin) and the taxanes (docetaxel and paclitaxel), which can 

be combined with other chemotherapeutics such as cisplatin, carboplatin, or gemcitabine. 

Unfortunately, chemotherapy generally attacks healthy cells of the body, resulting in side effects 

that include hair loss, fatigue, nausea, susceptibility to infection, peripheral nerve damage, and 

permanent cardiomyopathy (5). Because of these toxic side effects, chemotherapy is often given 

in cycles of 2-3 weeks for a total of 3-6 months, depending on the drug and side effects experienced 

(5).  

 Hormone therapy is usually used in the adjuvant setting but can also be used in the 

neoadjuvant setting. This treatment is only useful for patients that have been classified as hormone 

receptor positive, which is true for 2 out of 3 breast cancers (5). Most types of hormone therapy 

lower estrogen levels or block the ability of estrogen to activate cancer cell growth. For example, 

tamoxifen is an antagonist of the estrogen receptor and is commonly given to women with early 

stage breast cancer that have not gone through menopause. Also, tamoxifen is frequently given to 

patients adjuvantly for up to 10 years following surgery. Tamoxifen use can have serious side 

effects including uterine cancer, blood clots, stroke, heart attacks, and bone thinning. Fulvestrant 
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is a hormone therapy used to treat late-stage breast cancer after other hormone therapies have lost 

efficacy. Fulvestrant is an estrogen receptor antagonist that also causes temporary receptor 

degradation, which also has significant side effects including bone thinning. Finally, aromatase 

inhibitors can be given to post-menopausal women to block the remaining production of estrogen 

in fatty tissue. These inhibitors generally have less side effects than tamoxifen and fulvestrant, but 

can still cause joint pain and bone thinning (5).  

 Therapies that target the HER2 receptor are prescribed for patients whose cancer over-

expresses this protein. Trastuzumab is a monoclonal antibody which targets the human HER2 

receptor to help slow the growth of these cancers and stimulate the immune system. Trastuzumab 

can be combined with chemotherapy in the neoadjuvant and adjuvant settings, and the combination 

tends to show more efficacy than chemotherapy alone (5). Pertuzumab is another monoclonal 

antibody that targets the HER2 receptor, and can be combined with trastuzumab and 

chemotherapy. It binds to a different location on the HER2 receptor than trastuzumab and prevents 

dimerization of the receptor. A major side effect of these antibodies is heart damage due to the 

presence of these receptors in the heart, which can lead to congestive heart failure. If chemotherapy 

and anti-HER2 antibodies have stopped working, lapatinib is a small molecule inhibitor of both 

the HER2 and epidermal growth factor receptor (EGFR) pathways that can be used as treatment, 

but can cause severe diarrhea and hand-foot syndrome (6). Everolimus is an inhibitor of the mTOR 

signaling pathway in cells, which is important in cell growth and survival. It is approved for use 

in hormone receptor-positive, HER2-negative post-menopausal women that are also taking an 

aromatase inhibitor, but can cause nausea, diarrhea, shortness of breath, and infection (5). 

 New targeted therapies are regularly being developed to treat breast cancer. Another 

therapeutic target being researched by drug developers are the PARP enzymes, which are involved 
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in the DNA repair mechanism known as base excision repair (BER). PARP enzymes bind to single-

strand DNA breaks and recruit DNA repair proteins to fix the damage (7). PARP inhibitors block 

BER, but normal cells have other pathways to repair this damage. In cells that already have a 

separate DNA repair defect, cell death occurs. BRCA1 and BRCA2 mutations are examples of these 

defects, and PARP inhibitors are currently in clinical trials for these patients.  

 Clearly, there exist a large number of drug choices for patients undergoing neoadjuvant 

treatment, all of which can cause significant long-term side effects. A quick and reliable method 

for determining the optimal treatment plan for an individual patient’s cancer would reduce the 

unnecessary toxicity, cost, and time associated with ineffective therapies.  

 

2.1.2 Methods for predicting therapy response in breast cancer 

The current standard of care involves testing for the expression of hormone receptors (ER 

and PR) as well as HER2 (Fig. 2.2). Hormone therapy drugs target these hormone receptors, and 

drugs such as trastuzumab and lapatinib target HER2. A number of additional methods have been 

investigated for predicting how an individual patient will respond to a neoadjuvant treatment 

regimen. While evaluation of tumor size change using MRI is not sensitive enough for evaluating 

treatment response until several doses of neoadjuvant therapy have taken place, dynamic contrast-

enhanced MRI measurements of tumor permeability after one cycle of chemotherapy have been 

found to correlate with treatment response to further cycles of chemotherapy (8). While techniques 

such as this one may greatly reduce the treatment time required to determine whether a neoadjuvant 

treatment is having an effect, it requires an entire cycle of treatment to take place before evaluation, 

can only evaluate one treatment regimen at a time, and is expensive.  
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Figure 2.2. HER2 immunohistochemistry of breast cancer. Examples of HER2 staining in 

HER2 negative, equivocal, and amplified tumors. Breast cancer patients are routinely tested for 

HER2 to determine whether HER2-targeted therapy is recommended. Scale bar = 25μm. Re-

printed with permission from Springer Nature Modern Pathology (9). Copyright 2010. 

 

The rate of washout of 99mTc-sestamibi radiotracer in a tumor as measured by 

scintimammography before treatment was found to predict tumor response to chemotherapy with 

100% sensitivity and 80% specificity (10), but requires the intravenous injection of a radioactive 

substance and is also expensive. Other studies have aimed to find genetic biomarkers to predict 

response in patients, with limited success (11). For example, Chang et al. investigated a gene 

expression profile that could predict response to neoadjuvant docetaxel in breast cancer with 85% 

sensitivity and 90% specificity (12). Genetic tests such as these can only predict the success of 

treatment regimens for which a genetic predictor profile has been developed and can require 

significant time and money. Profiling of metabolites in serum has also been studied as a predictor 

of response to neoadjuvant chemotherapy. For example, the amounts of four metabolites 

(threonine, glutamine, isoleucine, and linolenic acid) were found to distinguish breast cancer 

patients that responded to neoadjuvant chemotherapy from those that did not (13). This method 
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along with all other aforementioned methods do not take into account the heterogeneous nature of 

breast tumors, which may allow for subclones within an otherwise drug-responsive tumor to evade 

treatment and cause eventual recurrence. Clearly, the need still exists for a quick, reliable, and 

cost-effective method to determine the optimal treatment plan for an individual breast cancer 

patient. 

 

2.1.3 Pancreatic cancer and treatment strategies 

Pancreatic cancer has one of the lowest 5-year survival rates of all cancer types (8%) (14), 

and is projected to be the second leading cause of cancer death by 2030 (15). Pancreatic cancer 

mortality has not improved over the last 25 years (Fig. 2.3). Even for those patients that are able 

to be diagnosed with local disease, the 5-year survival rate is still only 32%. A majority of patients 

are diagnosed at a distant stage, where the cancer has spread beyond the pancreas (1). 

 

Figure 2.3. Pancreatic cancer incidence and death rate trends in the US (2). 

 One reason that pancreatic cancer is most often diagnosed at an advanced stage is the lack 

of symptoms associated with localized disease. Generally, patients do not experience symptoms 

until other organs are affected (16). Due to the location of the pancreas in the body (Fig. 2.4), early 

stage tumors are also generally not discovered during routine physical exams.  
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Figure 2.4. Anatomical diagram of pancreatic cancer. Most pancreatic cancers form in the cells 

that line pancreatic ducts. This is referred to as pancreatic adenocarcinoma (PDAC) (17). Used 

with permission of Mayo Foundation for Medical Education and Research, all rights reserved. 

 

If the cancer is discovered prior to metastasis and is determined to be resectable, surgery 

may offer a chance at cure, but this only comprises 5-10% of cases (18). Surgical procedures for 

pancreatic cancer include the pancreaticoduodenectomy (Whipple procedure), and the less 

common distal pancreatectomy (16). The Whipple procedure involves removing part or all of the 

pancreas, along with surrounding portions of the small intestine, gall bladder, and stomach. Distal 

pancreatectomy, which is the partial removal of pancreas, can be performed when the tumor is 

confined to the tail segment. 

Chemotherapy can be prescribed in the adjuvant setting to enhance survival, as well as in 

the neoadjuvant setting in order to shrink borderline resectable localized tumors and enhance the 

chance at successful surgery. Standard treatments in the adjuvant setting include gemcitabine and 

gemcitabine combined with capecitabine (5-fluorouracil (5-FU) pro-drug) (19). Additional 

promising adjuvant treatments include gemcitabine combined with abraxane (paclitaxel albumin-
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stabilized nanoparticles), and FOLFIRINOX, the combination of folinic acid, 5-FU, irinotecan, 

and oxaliplatin (20). Side effects caused by these chemotherapy drugs are similar to those used for 

breast cancer, including nausea, diarrhea, increased risk of infection, bleeding, fatigue, and kidney 

damage. FOLFIRINOX can also cause liver and heart damage, problems swallowing, and allergic 

reactions. Chemotherapy can also be combined with radiation therapy, but brings additional side 

effects.  

The stromal microenvironment of pancreatic cancer plays a major role in therapeutic 

response. Tumors are characterized by a very dense stroma containing stellate cells, collagen, and 

other ECM components. This fibrous stroma causes reduced blood flow and high interstitial 

pressure, which can impair drug delivery to tumor cells (21-23). The stroma can also promote 

tumorigenesis by preventing the surveillance and destruction of abnormal cells by the immune 

system (22). 

 

2.1.4 Methods for predicting therapy response in pancreatic cancer 

 Currently, there are no dependable methods for predicting how an individual pancreatic 

cancer patient will respond to a particular drug or combination. Doctors weigh a number of factors 

when making treatment options, such as the patient’s ability to withstand the associated side 

effects. They may also weigh the patient’s expected life span, the stage and resectability of the 

tumor, and complications from the patient’s other health issues. For example, the doctor may 

choose to prescribe more aggressive chemotherapy regimens such as FOLFIRINOX to certain 

patients simply because they are otherwise in better health and can endure the associated side 

effects (16).  
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Pancreatic tumor biopsies can be genetically sequenced with significant detail, but tailoring 

treatment based on genomic analysis alone has not shown success in pancreatic cancer. Despite 

being less genetically diverse than most cancers, targeted approaches to treating pancreatic cancer 

have failed in clinical trials. Most pancreatic tumors do not express a specific therapeutic target 

(24), and the driver mutations present in a patient’s cancer usually do not predict their response to 

chemotherapy. One exception is in the case of the BRCA1/2 driver mutations, which show an 

improved response to platinum-based chemotherapy (25). Using deep molecular genomics and 

transcriptomics, predictive gene signatures have been used to identify patients that may respond 

better to certain chemotherapies, but these signatures have not been evaluated in large numbers of 

patients (26). 

 

2.2 Tumor heterogeneity 

 Not only do individual tumors have unique genetic expression patterns and resulting 

clinical outcomes (intertumor heterogeneity) (27), but there is also significant variability among 

the cancer cells that make up a tumor (intratumor heterogeneity) (28). These cells can vary in 

sensitivity to chemotherapy, gene expression, proliferation rate, metastatic potential, and 

morphology (29). The presence of multiple distinct clones poses a major challenge in both 

determining a prognosis as well as identifying an effective treatment plan (Fig. 2.5) (30). Pre-

existing subpopulations of cells that are resistant to a certain drug can be selected for by that drug, 

which can lead to expansion of that resistant subpopulation and treatment failure. For this reason, 

predictive biomarkers of tumor treatment response that do not account for intratumor heterogeneity 

underestimate the importance of small yet dangerous drug-resistant subpopulations.  
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Figure 2.5. The challenge of tumor heterogeneity. In order to optimize therapies for individual 

patients with heterogeneous tumors, personalized medicine tools are needed to measure the drug 

sensitivity of each individual cell subpopulation. Reprinted from (31) with permission from 

AACR.  

 

Tumor subpopulations can often be distinguished by their unique metabolic states. Single-

cell genetic sequencing can identify mutant subclones within a tumor (32-36), and the number of 

subclonal driver mutations has predictive value for a patient’s overall survival (37). However, 

additional factors affect drug sensitivity, which is a complex combination of both genetic and non-

genetic factors (38). Each tumor subclone is also phenotypically heterogeneous itself due to non-

genetic factors, including cellular metabolism. Cancer cells must reprogram their metabolism to 

fuel abnormally high proliferation rates, even in the absence of growth factor signals (39, 40). 

Individual cells adapt appropriately to maximize their survival in response to unique nutrients and 

signals in their microenvironment (41, 42). Metabolic adaptation also affect cell resistance to 

cytotoxic drugs and immunotherapies (43, 44), resulting in subpopulations of tumor cells with 

differing sensitivities to treatment. This highlights the need for personalized medicine tools which 

incorporate metabolic heterogeneity. 
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2.3 Patient-Derived Organoids 

Organoid culture refers to the digestion and growth of tumor tissue in a 3D extracellular 

matrix. Organoids maintain the genetic profile, surface markers, and 3-dimensional organizational 

characteristics of breast tumors (Fig. 2.6) (45-48) and pancreatic tumors (26, 49), and contain all 

of the cell types present in the tissue sample, including the tumor cells, immune cells, and 

fibroblasts. The inclusion of non-tumor cells in the culture system improves the accuracy of 

treatment response because these cells are known to have effects on therapeutic resistance and 

tumor heterogeneity (50, 51). Additionally, 3D cell culture techniques are known to more 

accurately mimic in vivo tumor growth than 2D cell cultures (52, 53). This is partly due to the 

presence of oxygen, metabolites, nutrients, and pH gradients that mimic those in the in vivo tumor 

and cause cells in different regions of the organoid to experience very different microenvironment 

conditions. Gradients also form with regards to drug penetration throughout the organoid, which 

captures the heterogeneous drug delivery that occurs in bulk tumors. 3D cultures also allow for 

cell-to-cell contacts and signaling to occur between cells of different types in the same manner in 

which it would occur in the bulk tumor.  

Organoids offer the ability to perform high-throughput drug screens directly on patient 

cells, and study single-cell metabolic responses (54). While PDX models also allow drug screening 

on patient cells in a relevant 3D microenvironment, they have not been routinely adopted due to 

the time and animal burden required for their establishment (55). A significant number of 

organoids can be established in hours to days, allowing for drug screening in a clinically relevant 

time frame. 

In general, methods for measuring drug response in organoids have either involved tracking 

changes in organoid diameter, assays of overall cell viability, or pooling of proteins, DNA, and/or 
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RNA from many organoids. These methods ignore cellular heterogeneity and may overlook the 

influence of lethal drug-resistant cells. Other methods such as flow cytometry, 

immunofluorescence, or immunohistochemistry can be used to characterize individual cells within 

organoids, but required fixing or dissociating samples. New technologies are needed that can 

measure the response of individual cells within organoids, non-destructively. 

 

Figure 2.6. Breast cancer organoids conserve the properties of the original tumor. 

Immunohistochemistry demonstrates that the ER, PR, and HER2 status of breast cancers can be 

preserved in organoid lines. H&E staining shows similar epithelial structures and cell organization 

between tumors and organoids. Reprinted from (48) with permission from Elsevier. Copyright 

2018. 

 

2.4 Multiphoton microscopy 

Imaging with multiphoton microscopy involves exciting a fluorophore with two or more 

photons simultaneously. This requires the absorbance of two photons that each have half the 
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energy, or twice the wavelength, of a photon required for single photon excitation (56). Since this 

simultaneous absorbance of two half-energy photons is required for fluorescence excitation, the 

amount of photon flux needed only occurs at the focal point of the microscope objective (Fig. 2.7). 

This eliminates excitation of fluorophores outside of the focal plane and provides very precise 

optical sectioning. Most endogenous fluorophores, including NAD(P)H and FAD, are excited by 

one photon of ultraviolet to visible light, or two photons of near-infrared light. Near-infrared light 

exhibits less scattering and absorption in tissue, and therefore two-photon excitation allows for 

deeper imaging penetration (57, 58). Two-photon excitation also allows for imaging and 

quantification of weaker fluorophores with subcellular resolution, and thus can be used in optical 

metabolic imaging to characterize metabolic changes at the single-cell level. 

 

Figure 2.7. Two-photon vs. one-photon fluorescence microscopy. (a) Jablonski diagram of 

energy states involved in single-photon excitation. Single-photon fluorescence from blue light is 

emitted along the entire laser beam path. (b) Jablonski diagram of energy states involved in two-

photon excitation. Light is only emitted at the focus of the NIR laser beam. Reprinted from (59) 

with permission from Springer Nature Reviews Immunology. Copyright 2002. 

 

2.5 Cellular metabolism and autofluorescence 

Nicotinamide adenine dinucleotide (NADH) and its phosphorylated form NADPH 

(together referred to as NAD(P)H) are metabolic coenzymes that donate electrons to reactions. 

They bind to at least 334 known proteins in cells (60). NAD(P)H, which is the reduced form of the 

coenzyme, is fluorescent, while the oxidized form, NAD(P)+, is not. Flavin adenine dinucleotide 

(FAD) is another important metabolic coenzyme which is fluorescent in its oxidized form but not 



 

 

21 

 

in its reduced form (FADH2). During cellular glycolysis, NAD+ is reduced to NADH. In oxidative 

phosphorylation, NADH is oxidized to NAD+, and FADH2 is oxidized to FAD. By probing 

endogenous fluorophores such as NAD(P)H and FAD, biochemical and structural information 

about cells and tissues can be collected without the need for exogenous dyes or contrast agents 

(61).  

The optical redox ratio, which is defined as the ratio of the fluorescence intensity of 

NAD(P)H to FAD, reflects the redox state of the cell (62-64). Due to the Warburg effect, the 

preference for glycolysis exhibited by many cancer cells (65), the optical redox ratio is a 

particularly useful tool for exploiting intrinsic contrast to study cancer metabolism, distinguishing 

cancer subtypes, monitoring cancer treatment response, and distinguishing precancerous cells from 

normal cells (63, 64, 66). Additionally, the optical redox ratio is correlated with oxygen 

consumption, a key metabolic process, in breast cancer cells (Fig. 2.8) (67, 68). 

 

Figure 2.8. The optical redox ratio is sensitive to changes in oxygen consumption. (Left) The 

optical redox ratio in 4T1 breast cancer cells after sequential addition of indicated mitochondrial 

inhibitors. (Right) Quantification of the normalized oxygen consumption rate (n-OCR) in response 

to the same drugs as measured using a Seahorse XFp analyzer. The optical redox ratio reports 

dynamic changes in cellular oxygen consumption. Reprinted with permission from (67). Copyright 

2016 Optical Society of America. 

 

2.6 Fluorescence lifetime imaging 

Fluorescence lifetime imaging microscopy (FLIM) is a technique which probes the amount 

of time that a fluorophore remains in the excited state before relaxing to the ground state and 

emitting a photon (58, 69). FLIM is sensitive to factors in the molecular environment of 
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fluorophores, such as oxygen, pH, temperature, and binding to other molecules. One method of 

measuring the fluorescence lifetime of molecules is through time-correlated single photon 

counting (TCSPC), in which individual lifetime events (in the picosecond to nanosecond range) 

are timed, plotted as a histogram, and fit with an exponential curve (Fig. 2.9) (70). This exponential 

curve is comprised of multiple decay components, each of which corresponds to an individual 

molecular species or binding configuration of the fluorophore. TCSPC fitting determines the 

relative abundance of each configuration in each pixel, as well as their individual lifetimes. 

 

Figure 2.9. TCSPC fluorescence lifetime decay curve. The fluorescence lifetime in a pixel is 

calculated by fitting a histogram of measured lifetime events (blue) to an exponential decay 

function (red), after deconvolving the instrument response function (green). The chi-square value 

quantifies the goodness of fit. 

 

FLIM of the metabolic coenzymes NAD(P)H and FAD in particular exploit endogenous 

autofluorescence to provide complimentary information to the optical redox ratio. NAD(P)H and 

FAD exist in free and protein-bound states which have distinct fluorescence lifetimes (represented 

as 𝜏1 and 𝜏2) (58). Free NAD(P)H and bound FAD (𝜏1) have short lifetimes due to dynamic self-

quenching, while bound NAD(P)H and free FAD (𝜏2) have longer lifetimes (58, 71). Thus, FLIM 

can be used to quantify the relative abundance of each species within a cell (represented as 𝛼1 and 

𝛼2, respectively, where 𝛼1 + 𝛼2 = 1), and probe changes in cell metabolism that affect coenzyme 

binding. This cannot be done with intensity measurements alone, due to the similar absorption and 

emission spectra of free and protein-bound NAD(P)H and free and protein-bound FAD. The 
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lifetime of protein-bound NAD(P)H also depends on which enzyme it is bound to (72), suggesting 

that NAD(P)H FLIM is sensitive to changes in cell metabolism that affect the distribution of 

NAD(P)H binding to various enzymes. For example, many studies have shown that NAD(P)H 

FLIM can detect changes in flux through glycolysis, the tricarboxylic acid (TCA) cycle and 

electron transport chain (ETC) (63, 73-81). The wide-ranging applications of NAD(P)H FLIM 

have been demonstrated in cell culture (63, 73, 82, 83), in animal models of cancer (66, 84, 85), 

and in pilot studies in human tissues in vivo (86-88) and ex vivo (89-91). Probing endogenous 

fluorophores using FLIM and high-resolution multiphoton microscopy allows cellular metabolic 

information to be quantified at the single-cell level, enabling studies of tumor heterogeneity. 
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CHAPTER 3 

Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon 

Sharick, J.T., Favreau, P.F., Gillette, A.A., Sdao, S.M., Merrins, M.J., Skala, M.C. “Protein-bound 

NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon”. Scientific Reports, 8(1), 

5456. (2018). 

 

3.1 Abstract 

While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through 

the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is 

sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by 

the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate 

production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via 

pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we 

demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations 

of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell 

lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the 

directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the 

parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (𝜏2) was sensitive 

to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H 

lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H 𝜏2 offers the 

ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may 

support mechanisms of drug resistance. 

 

3.2 Introduction 

Reduced nicotinamide adenine dinucleotide (NADH) is a fluorescent electron donor that 
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binds to metabolic enzymes in the cytoplasm and mitochondria. The spectral properties of NADH 

and its phosphorylated form, NADPH, overlap, thus their combined fluorescence is denoted 

NAD(P)H. NADH has a vital role in glycolysis, the tricarboxylic acid (TCA) cycle, and the 

electron transport chain (ETC) (1, 2). NADH and NADPH bind at least 334 known proteins in 

cells (3), including enzymes that are up-regulated in cancer such as lactate dehydrogenase (LDH) 

(4), pyruvate dehydrogenase (PDH) (5), and glucose 6-phosphate dehydrogenase (G6PDH) (6). 

Multiphoton fluorescence imaging of NAD(P)H is useful for probing the metabolism of living 

cells because it is non-damaging and does not require exogenous labeling.  

Flavin adenine dinucleotide (FAD) is an electron acceptor in the cell, and is also 

fluorescent. The optical redox ratio, defined as the fluorescence intensity of NAD(P)H to that of 

FAD, reflects the redox balance of the cell (8). The optical redox ratio has been used to distinguish 

cancer subtypes, monitor cancer treatment response, distinguish pre-cancerous cells from normal 

cells, and detect stem cell differentiation (9-16). Changes in the optical redox ratio to specific 

metabolic perturbations have been studied as well (9, 16-19). For example, the optical redox ratio 

is correlated with oxygen consumption, a key metabolic process, in breast cancer cells (18, 19). 

There are benefits to using a ratiometric measurement versus separate NAD(P)H and FAD 

intensity measurements. Both noise and spatial variation in excitation light intensity common in 

both NAD(P)H and FAD intensity are mitigated by using the ratio of the two fluorophores. While 

powerful, ratiometric intensity-based measurements, such as the optical redox ratio, can be 

difficult to compare between samples with different optical properties. Additionally, intensity 

measurements cannot distinguish free from protein-bound NAD(P)H due to their similar 

absorption and emission spectra. 

Fluorescence lifetime imaging microscopy (FLIM) probes an additional dimension of 
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NAD(P)H activity. The fluorescence lifetime is the time that a fluorophore remains in the excited 

state before returning to the ground state through photon emission. The fluorescence lifetime is 

sensitive to changes in the microenvironment of a fluorophore, including molecular conformation, 

binding, pH, temperature, and the presence of quenchers (20). On average, the fluorescence 

lifetime of free NAD(P)H is distinctly shorter than that of protein-bound NAD(P)H (represented 

as 𝜏1 and 𝜏2, respectively). This difference is likely due to the degree of motion of the excited 

nicotinamide ring, which is more restricted when NAD(P)H is enzyme-bound than when it is free 

(21). Due to these distinct lifetimes, FLIM can quantify the relative fractions of free and protein-

bound NAD(P)H in the cell (represented as 𝛼1 and 𝛼2, respectively, where 𝛼1 + 𝛼2 = 1) (22). 

These parameters are measured by fitting a time-resolved fluorescence decay curve to a two-

component exponential decay according to Equation 3.3 (see methods). FLIM of endogenous 

fluorophores including NAD(P)H has been used to study metabolism in disease pathology and 

progression (23), to monitor metabolic response to therapy (24, 25), and to distinguish cancerous 

from normal cells and tissues (9, 11, 26). FLIM of NAD(P)H has been applied to cell culture (9, 

27-29), to animal models of disease progression (11, 30, 31), and in pilot studies in human tissues 

in vivo (32) and ex vivo (33-35).  

Many studies have shown that NAD(P)H FLIM can detect changes in flux through 

glycolysis, the TCA cycle and ETC (9, 25, 27, 36-41). However, it remains unclear whether 

NAD(P)H FLIM can be used to detect metabolic alterations at other key enzymatic steps that 

control the path of carbon from glucose uptake to ETC activity. These carbon-diverting steps 

include the pentose phosphate pathway (PPP) via G6PDH, lactate production via LDH, and 

inhibited entry into the TCA cycle via pyruvate dehydrogenase kinase (PDK) (PDK inhibits PDH 

activity). These pathways can be upregulated in cancer to support tumor progression and drug 
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resistance (4-6, 42, 43). Additionally, it remains unclear which NAD(P)H FLIM variables are most 

sensitive to these carbon-diverting steps. 

In this study, we tested whether multiphoton NAD(P)H FLIM is sensitive to key enzymatic 

steps that control the path of carbon from glucose uptake to ETC activity.  Experiments in solutions 

characterized NAD(P)H lifetimes under controlled titrations of two enzymes. To determine 

whether NAD(P)H lifetime is sensitive to diversions of carbon away from mitochondria, FLIM of 

NAD(P)H was performed on breast epithelial cells and pancreatic duct epithelial cells treated with 

metabolic inhibitors. These inhibitors include FX11, which inhibits LDH (44, 45), and 

dichloroacetate (DCA), which allows carbon to enter the TCA cycle by relieving PDK inhibition 

on PDH (46). FX11 and DCA are under investigation as cancer therapies because LDH and PDH 

activities are dysregulated in cancer (4, 42, 44-47). In addition, NAD(P)H FLIM was measured in 

cells forced to metabolize lactate or pyruvate, thus modulating carbon flux through LDH. Our 

results indicate that the fluorescence lifetime of protein-bound NAD(P)H is more sensitive to these 

key enzymatic steps than the NAD(P)H intensity, free NAD(P)H lifetime, or relative amounts of 

free and protein-bound NAD(P)H.  

 

3.3 Results 

3.3.1 FLIM of NAD(P)H bound to enzymes in solution 

Solutions of NAD(P)H and metabolic enzymes were generated to determine whether FLIM 

could accurately recover relative enzyme concentrations. First, separate solutions of 50 μM NADH 

and 50 μM NADPH were imaged to determine their free fluorescence lifetime. No difference in 

lifetime was found between the two species (Fig. 3.1A). Next, solutions of NADH or NADPH 

with varying concentrations of enzymes, MDH, LDH, and G6PDH, were generated and imaged. 
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As expected, the fraction of protein-bound NADH, 𝛼2, reflected the relative concentration of 

malate dehydrogenase (MDH) and LDH in solution (Fig. 3.1B-C). NADPH 𝛼2 reflected the 

relative concentration of G6PDH in solution (Fig. 3.1D). The measured value for the lifetime of 

NADH bound to MDH or LDH (𝜏2) was consistent between NADH-to-enzyme ratios (p>0.05), 

with an average lifetime of 1.2 ns or 1.6 ns, respectively (Fig. 3.1E-F). Likewise, the lifetime of 

NADPH bound to G6PDH (𝜏2) did not change between solutions (p>0.05), and had an average 

value of about 2.5 ns (Fig. 3.1G). Appendix A Fig. A.1 shows representative decay curves and the 

corresponding multi-exponential fits that were used to calculate the NAD(P)H lifetimes. Appendix 

A Fig. A.2 shows representative images of these solutions, demonstrating their homogeneity.  

 

Figure 3.1. FLIM of NADH bound to metabolic enzymes in solution. (a) Mean and standard 

deviations of the fluorescence lifetime of 50 μM NADH and 50 μM NADPH from 3-5 

experiments. ns = p>0.05. (b-c) Mean and standard deviations of the fraction of protein-bound 

NADH, or 𝛼2, measured in mixtures of 50 μM NADH with varied concentrations of (b) MDH or 

(c) LDH across triplicate experiments. * p<0.05. (d) Mean and standard deviations of NADPH 𝛼2 

measured in mixtures of 50 μM NADPH with varied concentrations of G6PDH across triplicate 

experiments. (e-g) Mean and standard deviations of the protein-bound lifetime of NAD(P)H, or 

𝜏2, measured in the same solutions of NADH with MDH (e), NADH with LDH (f), and NADPH 

with G6PDH (g) across triplicate experiments.  

 

 Solutions containing a fixed concentration of 50 μM NADH and both LDH and MDH were 

generated to determine if FLIM could quantify the relative amounts NADH bound to two different 
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enzymes. The FLIM-measured proportion of protein-bound NADH attributed to LDH was 

compared to the actual proportion of LDH added to each mixture (Fig. 3.2). The R2 was 0.95 

(p<0.0001), indicating a strong correlation between FLIM-measured enzyme proportions and the 

actual enzyme proportions. Table 3.1 shows the concentrations of enzymes used to generate the 

mixtures shown in Figure 3.2, along with the proportion of free NADH (𝛼𝑁𝐴𝐷𝐻−𝐹𝑟𝑒𝑒, Eq. 3.4) 

measured in each solution. Examples of the three-exponential fits (Eq. 3.4) that were used to 

calculate these proportions are shown in Appendix A Fig. A.3. 

 

Figure 3.2. FLIM of NADH quantifies a mixture of enzymes in solution. The relationship 

between the relative concentration of LDH in a solution of NADH, LDH, and MDH, and the 

measured 𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻 value (Eq. 3.4). Error bars represent the standard deviation across triplicate 

experiments, and the dotted line represents the 95% confidence interval for the regression line. 

Error bars on one of the points is too small to display (SD = ±0.004). The linear regression is forced 

through 0,0, and the slope of the line is given as m. [LDH], concentration of LDH in the solution; 

[LDH+MDH], concentration of LDH plus MDH in the solution. 𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻 and 𝛼𝑁𝐴𝐷𝐻−𝑀𝐷𝐻 from 

Eq. 3.4. 

 

Table 3.1. NADH-MDH-LDH solution parameters. 

 Mixture 1 Mixture 2 Mixture 3 Mixture 4 

[LDH] (μM) 4.9 14.2 1.4 10.0 

[MDH] (μM) 13.0 2.6 13.0 8.0 

[LDH]/([LDH]+[MDH]) 0.27 0.85 0.10 0.56 

Total Enzyme (μM) 17.9 16.8 14.4 18.0 

Measured 𝜶𝑵𝑨𝑫𝑯−𝑭𝒓𝒆𝒆 (%) 60.5 48.0 68.9 42.6 
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3.3.2 Effects of inhibitors on cell enzyme activities 

 Standard measures of enzyme activity after FX11 treatment confirmed a significant 

decrease in LDH activity (p<0.05, Fig. 3.3A), while DCA treatment caused a significant increase 

in PDH activity (p<0.005, Fig. 3.3A) compared to control in MCF10A breast epithelial cells. In 

HPDE6 pancreatic duct epithelial cells, FX11 had no effect on LDH activity (Fig. 3.3B), while 

DCA caused a significant increase in PDH activity (p<0.05, Fig. 3.3B). The absolute activity rates 

of LDH and PDH are shown in Appendix A Fig. A.4. The absolute activity of LDH at baseline 

was over one order of magnitude higher than PDH in both MCF10A and HPDE6 cells. Appendix 

A Fig. A.5 gives examples of the time-dependent enzyme reaction that was used to calculate the 

enzyme activity rates. The established mechanisms and targets of these metabolic inhibitors are 

diagrammed in Figure 3.4. 

 

Figure 3.3. Relative activities of LDH and PDH with FX11 and DCA treatment in cells. Mean 

and standard deviations of the percent change in LDH and PDH activity after 48 hours of FX11 or 

48 hours of DCA treatment, respectively in MCF10A cells (a) and HPDE6 cells (b) vs. vehicle. 

Dashed line represents enzyme activity level in vehicle-treated cells. * p<0.05 vs. control. n = 3-5 

experiments. 
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Figure 3.4. Metabolic diagram of enzyme inhibition with DCA and FX11 treatment. 

Summary of cellular metabolic pathways investigated using metabolic inhibitors DCA and FX11 

(diamonds). Red arrows indicate a decrease in activity, while green arrows indicate an increase, 

and black arrows indicate no change. Enzymes are shown in boxes, enzyme-containing pathways 

such as glycolysis and oxidative phosphorylation are circled, while enzyme products and substrates 

are unboxed. Both FX11 and DCA result in an overall increase in oxygen consumption, but by 

acting on different enzymes. DCA inhibits PDK to increase the activity of PDH, allowing pyruvate 

to enter the mitochondria and fuel oxidative phosphorylation. FX11 has a similar effect, but acts 

by inhibiting the ability of LDH to convert pyruvate into lactate. 

 

3.3.3 Optical redox ratio in cells with enzyme inhibitors 

 Multiphoton FLIM visualizes autofluorescence changes on an individual cell level in 

MCF10A cells (Fig. 3.5A,B). No changes in cell morphology were noted with drug treatment. 

Both FX11 and DCA significantly (p<0.05) decreased the optical redox ratio in MCF10A cells 

compared to control (Fig. 3.5C,D). The fluorescence intensities of NAD(P)H (Fig. 3.5E,F) and 

FAD (Fig. 3.5G,H) alone do not significantly change with treatment in MCF10A cells except for 

an increase in FAD intensity with FX11 treatment (p<0.05). 
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Figure 3.5. Effects of FX11 and DCA on the optical redox ratio in MCF10A cells. (a-c) 

Representative images of MCF10A cells after 48 hours of 10 μM FX11 (a) and 48 hours of 50mM 

DCA (b) treatment vs. vehicle, color-coded for the redox ratio. Scale bar = 50 μm. (c-d) Mean and 

standard deviations of the normalized redox ratio in MCF10A cells after 48 hours of 10 μM FX11 

(c) and 48 hours of 50 mM DCA (d) treatment vs. vehicle. * p<0.05 vs. control. n = 3 experiments. 

(e-f) Mean and standard deviations of NAD(P)H fluorescence intensity in MCF10A cells after 48 

hours of 10 μM FX11 (e) and 48 hours of 50 mM DCA (f) treatment vs. vehicle. ns = p>0.05 vs. 

control. n = 3 experiments. (g-h) Mean and standard deviations of FAD fluorescence intensity in 

MCF10A cells after 48 hours of 10 μM FX11 (g) and 48 hours of 50 mM DCA (h) treatment vs. 

vehicle. n = 3 experiments. 

 

No changes in cell morphology were noted with drug treatment in HPDE6 cells (Fig. 

3.6A,B). Additionally, neither FX11 nor DCA caused significant changes to the optical redox ratio 

(Fig. 3.6C,D), NAD(P)H fluorescence intensity (Fig. 3.6E,F), or FAD intensity (Fig. 3.6G,H) in 

HPDE6 cells.  

 

Figure 3.6. Effects of FX11 and DCA on the optical redox ratio in HPDE6 cells. (a-b) 

Representative images of HPDE6 cells after 48 hours of 10 μM FX11 (a) and 48 hours of 50 mM 

DCA (b) treatment vs. vehicle, color-coded for the redox ratio. Scale bar = 50 μm. (c-d) Mean and 

standard deviations of the normalized redox ratio in HPDE6 cells after 48 hours of 10 μM FX11 

(c) and 48 hours of 50 mM DCA (d) treatment vs. vehicle. ns = p>0.05 vs. control. n = 3 
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experiments. (e-f) Mean and standard deviations of NAD(P)H fluorescence intensity in HPDE6 

cells after 48 hours of 10 μM FX11 (e) and 48 hours of 50 mM DCA (f) treatment vs. vehicle. n = 

3 experiments. (g-h) Mean and standard deviations of FAD fluorescence intensity in HPDE6 cells 

after 48 hours of 10 μM FX11 (g) and 48 hours of 50 mM DCA (h) treatment vs. vehicle. n = 3 

experiments. 

 

3.3.4 NAD(P)H fluorescence lifetime in cells with enzyme inhibitors 

FX11 treatment significantly decreased NAD(P)H 𝜏2 in MCF10A cells (p<0.0001, Fig. 

3.7A,B). Conversely, DCA treatment significantly increased NAD(P)H 𝜏2 (p<0.01, Fig. 3.7C,D). 

FX11 treatment did not have a significant effect on NAD(P)H 𝜏2 in HPDE6 cells (Fig. 3.8A,B). 

DCA treatment significantly increased NAD(P)H 𝜏2 in HPDE6 cells (p<0.05, Fig. 3.8C,D). 

 

Figure 3.7. Effects of FX11 and DCA on the fluorescence lifetime of protein-bound NAD(P)H 

in MCF10A cells. (a) Representative images of MCF10A cells after 48 hours of 10 μM FX11 

treatment vs. vehicle, color-coded for NAD(P)H 𝜏2. Scale bar = 50 μm. (b) Mean and standard 

deviations of NAD(P)H 𝜏2 in MCF10A cells after 48 hours of 10 μM FX11 treatment vs. vehicle. 

* p<0.05 vs. control. n = 3 experiments. (c) Representative images of MCF10A cells after 48 hours 

of 50 mM DCA treatment vs. vehicle color-coded for NAD(P)H 𝜏2. (d) Mean and standard 

deviations of NAD(P)H 𝜏2 in MCF10A cells after 48 hours of 50 mM DCA treatment vs. vehicle. 

n = 3 experiments. 
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Figure 3.8. Effects of FX11 and DCA on the fluorescence lifetime of protein-bound NAD(P)H 

in HPDE6 cells. (a) Representative images of HPDE6 cells after 48 hours of 10 μM FX11 

treatment vs. vehicle, color-coded for NAD(P)H 𝜏2. Scale bar = 50 μm. (b) Mean and standard 

deviations of NAD(P)H 𝜏2 in HPDE6 cells after 48 hours of 10 μM FX11 treatment vs. vehicle. * 

p<0.05 vs. control. n = 4 experiments. (c) Representative images of HPDE6 cells after 48 hours of 

50 mM DCA treatment vs. vehicle color-coded for NAD(P)H 𝜏2. (d) Mean and standard deviations 

of NAD(P)H 𝜏2 in HPDE6 cells after 48 hours of 50 mM DCA treatment vs. vehicle. n = 4 

experiments. 

 

The effects of these inhibitors on the additional NAD(P)H lifetime parameters, 𝛼1, 𝜏1, or 

𝜏𝑚, were analyzed. Neither inhibitor had a significant effect on NAD(P)H 𝛼1, 𝜏1, or 𝜏𝑚 in 

MCF10A cells (Fig. 3.9A,B). Most of these lifetime parameters did not change with inhibitor 

treatment in HPDE6 cells, other than a significant decrease in the proportion of free NAD(P)H and 

a significant increase in NAD(P)H 𝜏𝑚 with DCA treatment (Fig. 3.9C-D). Unlike NAD(P)H 𝜏2, 

these additional NAD(P)H lifetime parameters do not consistently reflect changes in enzyme 

activity across both cell types and inhibitors. Representative decay curves and the corresponding 

multi-exponential fits that were used to calculate these NAD(P)H lifetime parameters are in 

Appendix A Fig. A.6. 
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Figure 3.9. Sensitivity of additional NAD(P)H fluorescence lifetime components to FX11 and 

DCA treatment in cells. (a) Mean and standard deviations of NAD(P)H 𝛼1, 𝜏1, and 𝜏𝑚 in 

MCF10A cells after 48 hours of 10 μM FX11 treatment vs. vehicle. (b) Mean and standard 

deviations of NAD(P)H 𝛼1, 𝜏1, and 𝜏𝑚 in MCF10A cells after 48 hours of 50 mM DCA treatment 

vs. vehicle. (c) Mean and standard deviations of NAD(P)H 𝛼1, 𝜏1, and 𝜏𝑚 in HPDE6 cells after 48 

hours of 10 μM FX11 treatment vs. vehicle. (d) Mean and standard deviations of NAD(P)H 𝛼1, 

𝜏1, and 𝜏𝑚 in HPDE6 cells after 48 hours of 50 mM DCA treatment vs. vehicle. n = 3-4 

experiments each. 

 

3.3.5 Autofluorescence in cells with varying fuel sources 

Like enzyme inhibitors, the fuel source available to the cell also alters carbon flux. 

Therefore, the effect of fuel source on autofluorescence in MCF10A cells was tested to 

complement the above enzyme inhibitor experiments. Specifically, the diversion of carbon from 

mitochondria can be modulated by forcing starved cells to use lactate versus pyruvate as a primary 

fuel source (Fig. 3.4). NAD(P)H 𝜏2 increased significantly after MCF10A cells were supplied with 

an excess of pyruvate (p<0.05, Fig. 3.10A), while the optical redox ratio, NAD(P)H fluorescence 

intensity, 𝛼1, 𝜏1, and 𝜏𝑚 did not change (Fig. 3.10B-F). When the cells were supplied with excess 

lactate, NAD(P)H 𝜏2 decreased (p<0.05, Fig. 3.10G), while the optical redox ratio and NAD(P)H 

𝜏𝑚 remained unchanged (Fig. 3.10H, L). The NAD(P)H fluorescence intensity and 𝛼1 decreased 
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slightly with lactate (p<0.05, Fig. 3.10I-J), while 𝜏1 increased (p<0.05, Fig. 3.10K). NAD(P)H 

𝜏2 more robustly distinguishes the use of pyruvate or lactate as fuel sources in cells than the optical 

redox ratio, NAD(P)H 𝜏1, 𝛼1, 𝜏𝑚 or intensity. Representative decay curves and the corresponding 

multi-exponential fits that were used to calculate these NAD(P)H lifetime parameters can be found 

in Appendix A Fig. A.7. 

 

Figure 3.10. NAD(P)H 𝝉2 is sensitive to cellular fuel source. (a-f) Mean and standard deviations 

of NAD(P)H 𝜏2 (a), optical redox ratio (b), NAD(P)H intensity (c), NAD(P)H 𝛼1 (d), NAD(P)H 

𝜏1 (e), and NAD(P)H 𝜏𝑚 (f) of fuel-starved MCF10A cells before and after addition of 10mM 

sodium pyruvate. (g-l) Mean and standard deviations of NAD(P)H 𝜏2 (g), optical redox ratio (h), 

NAD(P)H intensity (i), NAD(P)H 𝛼1 (j), NAD(P)H 𝜏1 (k), and NAD(P)H 𝜏𝑚 (l) of fuel-starved 

MCF10A cells before and after addition of 10mM sodium lactate. ns = p>0.05 vs. control. * p<0.05 

vs. control. n = 3 experiments each. 

 

3.4 Discussion 

 FLIM of NAD(P)H can non-destructively measure changes in cellular metabolism, but 

these changes are difficult to interpret. In this study, we used NAD(P)H-enzyme solutions, 

metabolic inhibitors in cells, and alternate fuel sources for cells to determine if NAD(P)H FLIM 

is sensitive to key enzymatic steps that control the path of carbon from glucose uptake to ETC 

activity. This information will aid in the interpretation of changes in NAD(P)H lifetimes. 

 The measured lifetimes of NADH bound to LDH and MDH in solution were distinct from 

each other (Fig. 3.1) and only slightly different than previously reported values (22, 36). 

Deviations from previous values are likely due to differences in buffer conditions, different 
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fluorescence emission filter wavelengths, different numbers of exponential decays used for fitting, 

or differences in temporal resolution between previous single-point lifetime measurements and our 

FLIM measurements. Previous studies show that LDH and MDH have distinct effects on the 

fluorescence spectrum of NADH, which suggests unique molecular conformations and/or 

environments (48). We also found that the fluorescence lifetime of NADPH bound to the NADPH-

dependent enzyme G6PDH was independent of enzyme concentration, and was distinct from the 

lifetimes of NADH bound to MDH or LDH. This agrees with the previous report that FLIM can 

be used to distinguish protein-bound NADH from protein-bound NADPH (49). The consistent 

protein-bound NADH lifetime across enzyme concentration within a single-enzyme solution (Fig. 

3.1F-H) was expected because fluorescence lifetimes are independent of the fluorophore 

concentration (20, 50). Small differences in protein-bound NAD(P)H lifetime between enzyme 

concentrations within a single enzyme solution are likely due to time-correlated single photon 

counting (TCSPC) noise and fitting error (51). MDH, LDH, and G6PDH were chosen for this 

study because they are readily available in isolated form, can be dissolved in vitro in the same 

buffers as NADH, and have well-characterized binding affinities for NADH (52-54). Additionally, 

these experiments tested whether an enzyme in the TCA cycle (MDH) could be distinguished from 

key enzymes that modify the flow of carbon into the TCA cycle (LDH and G6PDH). 

 This is the first study to demonstrate that NAD(P)H 𝜏2 can distinguish NADH bound to 

two different metabolic enzymes in a single solution, and thus quantify changes in the relative 

activities of two enzymes. We found a strong linear correlation between the relative amounts of 

LDH and MDH added to a solution of NADH, and the measured values of 𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻 and 

𝛼𝑁𝐴𝐷𝐻−𝑀𝐷𝐻 (Fig. 3.2). Without further characterization, we cannot obtain the absolute ratio of 

NADH molecules bound to LDH vs. MDH using FLIM, but these results do indicate that 𝛼 values 
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were sensitive to changes in this ratio. While it is doubtful that FLIM can distinguish all 334 known 

binding partners of NAD(P)H in cells (3),  the summation of protein-bound NAD(P)H lifetimes 

within distinct metabolic pathways may differ. Thus, changes in protein-bound NAD(P)H lifetimes 

could be related back to groups of metabolic reactions, including those that divert carbon away 

from the mitochondria.  

Decreases in the optical redox ratio with both DCA and FX11 treatment in MCF10A cells 

(Fig. 3.5) agree with previous reports that these inhibitors increase oxygen consumption in other 

cell types (18, 19, 44, 45). However, the redox ratio did not distinguish the different mechanisms 

of DCA and FX11 treatment in MCF10A cells. FX11 has been shown to increase the 

NADH/NAD+ ratio in human lymphoma cells (44), but an increase in NAD(P)H intensity was not 

observed in our studies. An increase in the NADH/NAD+ ratio does not necessarily result in a 

significant increase in NAD(P)H fluorescence intensity, because the total NAD pool may have 

decreased following FX11 treatment. Additionally, the effects of FX11 on NAD(P)H levels in 

MCF10A and HPDE6 cells have not been previously reported, and could differ from the effects 

on lymphoma cells. FX11 has also been shown to reduce the mitochondrial membrane potential 

of lymphoma cells (44), which could affect NAD(P)H FLIM values (20).  

There was no change in the optical redox ratio for FX11 treatment in HPDE6 cells (Fig. 

3.6C), which agrees with independent measurements of sustained LDH activity with FX11 

treatment in HPDE6 cells (Fig. 3.3B). However, there was no change in the optical redox ratio 

with DCA treatment (Fig. 3.6D), which does not agree with independent measurements of 

significant changes in PDH activity with DCA treatment in HPDE6 cells (Fig. 3.3B). Like the 

MCF10A results, the insensitivity of the optical redox ratio to DCA treatment in HPDE6 cells 

suggests that the optical redox ratio is not robustly sensitive to changes in the activity of enzymes 
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such as PDH and LDH, which control the path of carbon from glucose uptake to the TCA cycle. 

The optical redox ratio is affected by changes in the concentrations of NAD(P)H and FAD, and by 

changes in the lifetimes of NAD(P)H and FAD (due to differences in quantum yield (20, 21, 55)). 

 Unlike the optical redox ratio, NAD(P)H 𝜏2 distinguished between DCA and FX11 

treatment in MCF10A cells (Fig. 3.7). This was expected because these inhibitors altered the 

activity of two different NADH-binding enzymes that influence the fate of cellular carbon (PDH 

and LDH) (Fig. 3.3A). We speculate that FX11 decreased 𝜏2 because the lifetime of NADH bound 

to LDH is longer than the overall NAD(P)H 𝜏2 (FX11 inhibits NADH-LDH binding). Similarly, 

we speculate that DCA increased 𝜏2 because the lifetime of NAD(P)H bound to PDH is much 

longer than the overall NAD(P)H 𝜏2 (DCA activates NADH-PDH binding). However, future work 

is needed to interpret the direction of these changes. While NADH bound to LDH in solution was 

found to have a much shorter lifetime (~1.6 ns, Fig. 3.1G) than cellular NAD(P)H 𝜏2 (~2.4-2.9 ns, 

Figs. 3.7B,D & 3.8B,D), it is likely that the molecular environment of the cell cytoplasm (pO2, 

pH, viscosity) significantly alters the lifetime of NADH bound to LDH (20). LDH inhibition and 

PDH activation cause opposite changes in NAD(P)H 𝜏2, but both promote downstream TCA cycle 

and ETC activation. This suggests that the change in 𝜏2 is due to distinct shifts in the activities of 

NAD(P)H-binding enzymes that control the flow of carbon to the TCA cycle, in addition to 

downstream activation of the TCA cycle and ETC.  

 FX11 and DCA treatment in HPDE6 cells provide further evidence that NAD(P)H 𝜏2 is 

sensitive to changes in the activities NAD(P)H-binding enzymes that control the fate of carbon 

(Fig. 3.8). FX11 did not affect the activity of its target enzyme, LDH (Fig. 3.3B). There was also 

no change in NAD(P)H 𝜏2 in HPDE6 cells treated with FX11 (Fig. 3.8B), which provides a 

negative control consistent with no change in LDH activity (Fig. 3.3B). Furthermore, DCA 
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increased PDH activity (Fig. 3.3), and caused a significant increase in NAD(P)H 𝜏2 in both cell 

types (Figs. 3.7D & 3.8D). Other components of the NAD(P)H fluorescence lifetime (NAD(P)H 

intensity, 𝛼1, 𝜏1, and 𝜏𝑚) were not consistently sensitive to changes in metabolic enzyme activities 

caused by inhibitors across both cell types (Fig. 3.9). This suggests that NAD(P)H 𝜏2 is more 

sensitive to the NADH-binding activity of LDH and PDH than other NAD(P)H fluorescence 

intensity and lifetime parameters.  

Finally, we tested whether NAD(P)H 𝜏2 is sensitive to the fuel source of the cell. Like the 

enzyme inhibitor experiments, feeding starved cells pyruvate versus lactate can also alter the flow 

of cellular carbon into the mitochondria. For example, LDH is more active with lactate versus 

pyruvate as a fuel source because LDH must convert lactate to pyruvate. The protein-bound 

lifetime of NAD(P)H increased when starved cells were given pyruvate, but decreased when 

starved cells were given lactate (Fig. 3.10). Note that the baseline conditions for the enzyme 

inhibitor experiments (non-starved cells) are different from these fuel source experiments (starved 

cells). Thus, changes in enzyme activities in the two conditions are not directly comparable. For 

example, adding lactate to starved cells would not reduce glycolysis because glycolysis is already 

at a minimum. All other autofluorescence measurements including the optical redox ratio and 

NAD(P)H 𝜏𝑚 either showed no change with lactate or pyruvate as a fuel source, or only changed 

with lactate. Further work is needed to interpret changes in NAD(P)H 𝛼1, 𝜏1 and intensity with 

lactate, but could be due to changes in quenchers such as H+ and pO2 (20). While NAD(P)H 𝜏1 

increased significantly with the addition of lactate, the relatively small magnitude of the change 

combined with a significant decrease in its fractional contribution (𝛼1) to the overall fluorescence 

signal resulted in a non-significant increase in NAD(P)H 𝜏𝑚. Overall, Fig. 3.10 supports the 

conclusion that NAD(P)H 𝜏2 is more sensitive to enzymes that control the flow of carbon into the 
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mitochondria, compared to other NAD(P)H fluorescence intensity and lifetime parameters. 

Forcing starved cells to use lactate versus pyruvate as fuel caused opposite changes in NAD(P)H 

𝜏2,  like LDH inhibition and PDH activation. This is further evidence that changes in 𝜏2 are not 

simply due to downstream TCA cycle and ETC activation. 

There are additional methods to analyze TCSPC FLIM data, such as phasor analysis (56). 

For this study, we chose to fit our fluorescence decay data to the sum of exponentials. There are 

limitations to this method, such as the selection of the number of fit components and computational 

time. While the fit-free phasor approach eliminates the need for a priori knowledge of the number 

of lifetime components and simplifies FLIM analysis, we were specifically interested in measuring 

small changes in NAD(P)H 𝜏2, which is not easily quantified from phasor plots of TCSPC data. 

This study demonstrates that the fluorescence lifetime of protein-bound NAD(P)H is 

sensitive to alternative fates of glucose carbon before entry into the TCA cycle. While the optical 

redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or relative amounts of free and 

protein-bound NAD(P)H can provide valuable information on changes in metabolic cofactors in 

the cell, NAD(P)H 𝜏2 is most useful to quantify changes in the activity of enzymes that control the 

path of carbon into the TCA cycle. This is likely because NAD(P)H has unique lifetimes when 

bound to different enzymes (22, 36, 50) (Fig. 3.1). The results of this study confirm that a shift in 

the fluorescence lifetime of NAD(P)H cannot simply be interpreted as a change in glycolysis or 

oxidative phosphorylation rate, because pathways that control other fates of carbon must also be 

incorporated. 

Currently, photon counts and acquisition time limits the discrimination of multiple protein-

bound lifetimes, and thus most analysis of NAD(P)H lifetime in cells is performed using a two-

exponential decay. More efficient photon collection methods are under development (51) that will 
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enable higher-order exponential fits. Future work is also required to further interpret changes in 

protein-bound NAD(P)H lifetimes in cells. Overall, a better understanding of NAD(P)H FLIM 

signals enables unique, non-destructive insights into cellular metabolism.  

 

3.5 Materials and methods  

3.5.1 Fluorescence lifetime imaging   

Fluorescence intensity and lifetime images were acquired using a custom-built multiphoton 

fluorescence lifetime system (Bruker Fluorescence Microscopy, Middleton, WI), with a 40x oil-

immersion objective (1.3 NA, Nikon, Tokyo, Japan) and an inverted microscope using 

epifluorescence illumination (TiE, Nikon). A titanium:sapphire laser (Chameleon Ultra II, 

Coherent, Santa Clara, CA) was tuned to 750 nm for two-photon excitation of NAD(P)H and tuned 

to 890 nm for two-photon excitation of FAD. A 440/80nm bandpass filter was used to collect 

NAD(P)H fluorescence emission, and a 550/100nm filter was used to collect FAD emission. A 

pixel dwell time of 4.8 μs collected 256x256 pixel images over a 270 μm x 270 μm field of view, 

with a total integration time of 60 seconds for cells and 120 seconds for solutions. A GaAsP PMT 

(H7422P-40, Hamamatsu Photonics, Hamamatsu, Japan) detected emitted photons. TCSPC 

electronics (SPC-150, Becker & Hickl, Berlin, Germany) were used to acquire fluorescence decay 

curves with 256 time bins. The second harmonic generated signal from urea crystals at 900 nm 

excitation was used to measure the instrument response function, which had a full width at half 

maximum of 220 ps. A fluorescent bead (Polysciences Inc., Warrington, PA) was imaged daily as 

a fluorescence lifetime validation. The single-component lifetime of the bead was stable (2.13 ± 

0.03 ns, n=16), and consistent with published values (11, 24, 27, 30). 
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3.5.2 Enzyme solutions 

Tris-buffered saline (diH20, 50mM Tris, 150mM NaCl) at pH 7.6 and 21°C was used as 

the solvent for all solutions. LDH from porcine heart (#L7525, Sigma) or MDH from porcine heart 

(#M1567, Sigma) were mixed with 50 μM NADH (#43420, Sigma) to generate solutions with 

distinct free-to-bound ratios of NADH. G6PDH from S. cerevisiae (#G6378, Sigma) was mixed 

with 50 μM NADPH (#N7505) in a similar manner. Previous reports indicate that self-quenching 

of NADH occurs above 250 mg/L (~ 375 μM) (57) in Tris buffer. In our solution studies, 50 μM 

was used to minimize self-quenching. Desired concentrations of enzyme were calculated using the 

following equation to generate solutions with a range of free-to-bound NAD(P)H ratios: 

[Enzyme] =
[𝑁𝐴𝐷(𝑃)𝐻]−(𝛼1)

𝐹∗𝑆
                      (3.1) 

Here, 𝛼1 represents the desired fraction of unbound NAD(P)H, S represents the integer number of 

binding sites per enzyme molecule, and F is the fraction of enzyme binding sites to be occupied, 

calculated using the following equation: 

𝐹 =
𝛼1∗[𝑁𝐴𝐷(𝑃)𝐻]

𝛼1∗[𝑁𝐴𝐷(𝑃)𝐻]+𝐾𝐷
                     (3.2) 

Published values for the dissociation constants (KD) of NAD(P)H to LDH, MDH, and G6PDH 

were used for these calculations, in addition to the number of NADH binding sites per enzyme 

(52-54, 58, 59). Solutions of only 50 μM NADH or NADPH were also imaged. Four mixtures of 

50 μM NADH with both LDH and MDH were generated with varying amounts of the two enzymes 

as described in Table 3.1. Enzyme concentrations in this experiment were chosen that gave a wide 

range of LDH to MDH ratios. Following mixing, a 100 μl droplet of each solution was placed in 

a separate 35 mm glass-bottom imaging dish, and a glass coverslip was placed over each droplet 

to reduce evaporation. Solutions were imaged at room temperature. 
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3.5.3 Enzyme solution image analysis 

A histogram of photon counts per temporal bin, or decay curve, was constructed for each 

image by binning all pixels together to increase photon counts for improved fitting accuracy (SNR 

>3000). This decay curve was deconvolved with the instrument response function using 

SPCImage. For solutions with one enzyme, decay curves were fit to a two-component exponential 

decay according to Equation 3.3, where 𝐼(𝑡) represents the fluorescence intensity measured at time 

t after the laser pulse, and C represents a constant level of background light (20, 60).  

    𝐼(𝑡) = 𝛼1𝑒𝑥𝑝−𝑡/𝜏1 + 𝛼2𝑒𝑥𝑝−𝑡/𝜏2 + 𝐶                                    (3.3) 

A two-exponential model was chosen because the chi-squared goodness of fit value did not 

improve for a three-exponential model versus a two-exponential model. 𝜏1 was fixed at 450 ps, 

the measured lifetime value of a pure NADH solution. For solutions with two enzymes, Equation 

3.4 was used to fit decay curves to a three-exponential decay, with 𝜏1 fixed at 450 ps (to represent 

free NADH), 𝜏2 fixed at 1.2 ns (to represent NADH bound to MDH, or NADH-MDH) and 𝜏3 was 

fixed at 1.6 ns (to represent NADH bound to LDH, or NADH-LDH).  

       𝐼(𝑡) = 𝛼𝑁𝐴𝐷𝐻−𝐹𝑟𝑒𝑒𝑒𝑥𝑝−𝑡/450 𝑝𝑠 + 𝛼𝑁𝐴𝐷𝐻−𝑀𝐷𝐻𝑒𝑥𝑝−𝑡/1.2𝑛𝑠 + 𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻𝑒𝑥𝑝−𝑡/1.6𝑛𝑠 + 𝐶   (3.4) 

The lifetime values of NADH used in our three-component fit (Eq. 3.4) were fixed based 

on our previous measurements in individual NADH-enzyme solutions (Fig. 3.1). Fixing these 

values reduces free fitting parameters and significantly improves the accuracy of their relative 

contributions (51). The relationship between actual [LDH] / [LDH + MDH] and measured 

𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻 / (𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻 + 𝛼𝑁𝐴𝐷𝐻−𝑀𝐷𝐻) was calculated with a regression line with y-intercept 

fixed at 0. A 95% confidence interval for this line was calculated, along with its coefficient of 

determination and p-value. 
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3.5.4 Cell culture, metabolic inhibition, and imaging 

The MCF10A noncancerous mammary epithelial cell line (36 y.o. Caucasian female) was 

obtained from the American Type Culture Collection (#CRL-10317, Mannasas, VA) and grown 

in DMEM/F-12 (#11330, Gibco, Gaithersburg, MD) supplemented with 5% horse serum (#16050, 

Gibco), 20 ng/mL EGF (#AF-100-15, Peprotech, Rock Hill, NJ), 0.5 μg/mL hydrocortisone 

(#H0888, Sigma, St. Louis, MO), 100 ng/mL cholera toxin (#C8052, Sigma), 10 μg/mL insulin 

(#I1882, Sigma), and 1% penicillin/streptomycin (#15070, Gibco). The HPDE6 human pancreatic 

duct epithelial cells were obtained from ABM (#T0005, Richmond, BC, Canada) and grown in 

DMEM (#11965, Gibco) supplemented with 10% fetal bovine serum (#TMS-013-B, EMD 

Millipore) and 1% penicillin/streptomycin. For imaging, 1x105 cells were seeded 24 hours prior to 

drug treatment in 35mm glass-bottom dishes (#P35G-1.5-14-C, MatTek Corp, Ashland, MA). 

After 24 hours, media was replaced with either standard media, media with DMSO vehicle 

(#D8418, Sigma), media with 10 μM FX11 (#427218, EMD Millipore, Billerica, MA) in 1% 

DMSO, or media with 50 mM DCA (#347795, Sigma). All cell culture media formulations 

contained glucose and glutamine. 48 hours after this treatment for FX11 and DCA, cells were 

imaged at 3-4 different locations in each dish for a total of 100-550 cells imaged per treatment 

group. NAD(P)H images were first acquired, followed immediately by an FAD image of the same 

field of view. All imaging experiments were performed after cells equilibrated to room 

temperature. To ensure cell viability and minimize time spent outside of the cell incubator, 

experiments were kept brief (<20 minutes). Cell viability was also confirmed following imaging. 

All cell metabolic inhibitor experiments were repeated in triplicate. 
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3.5.5 Enzyme activity assays 

LDH (#MAK066) and PDH (#MAK183) Activity Assay Kits (Sigma) were used to 

quantify enzyme activities in MCF10A and HPDE6 cells. Enzymes were isolated from 1x106 cells 

for each activity assay. Enzyme activity levels are reported in milliUnits, which corresponds to 

nanomoles of reaction product generated per minute. All enzyme activity experiments were 

repeated 3-5 times. 

 

3.5.6 Cellular image analysis 

NAD(P)H fluorescence lifetime images of cells were analyzed similarly to images of 

NADH-enzyme solutions using SPCImage software (Becker & Hickl). Binning of only 3x3 pixels 

was used to preserve spatial resolution (SNR >15). Equation 3.3 was used to extract the free and 

protein-bound configurations of NAD(P)H from decay curves. The lifetime of free NAD(P)H was 

not fixed in this analysis due to the heterogeneity of the intracellular environment in terms of pH, 

O2, and viscosity. Again, a two-exponential model was chosen because the chi-squared goodness 

of fit value did not improve for a three-exponential model versus a two-exponential model. 

NAD(P)H 𝜏𝑚 is calculated by taking a weighted average of the free and protein-bound lifetimes: 

      𝜏𝑚 = 𝛼1 ∗ 𝜏1 + 𝛼2 ∗ 𝜏1                                                    (3.5) 

An automated cell segmentation routine was written using CellProfiler to identify individual cells 

and extract average fluorescence intensity and fluorescence lifetime values for each cell in the field 

of view (minus background and nuclear signals) (61). Intensity values for each pixel were 

calculated by integrating the decay curve corresponding to that pixel. Optical redox ratio values 

were calculated for each pixel (without binning) by dividing the intensity of NAD(P)H by the 

intensity of FAD. Then, the average redox ratio across all pixels in each cell cytoplasm was 
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calculated. The redox ratio on a per-cell basis was used for all statistical comparisons. Reported 

mean redox ratios are normalized to control values. The mean lifetime (𝜏𝑚) of NAD(P)H, which 

represents the weighted average of the free and protein-bound lifetimes, was calculated for each 

cell cytoplasm using Equation 3.5. For each imaging variable, values for all cells in a dish were 

averaged together. An analysis of the sources of variability in NAD(P)H FLIM signals in our cell 

experiments shows that error due to fitting of decay curves is far outweighed by biological 

variation (Appendix A Table A.1). 

 

3.5.7 Cellular fuel sources 

1x105 MCF10A cells were seeded 24 hours prior to starvation in 35mm glass-bottom 

dishes. Then, standard media was replaced with glucose-free, pyruvate-free, and serum-free 

DMEM (#11966, Gibco) overnight. FLIM images of NAD(P)H in three fields of view were taken 

in each dish immediately before and immediately after the replacement of media with fresh serum-

free media containing either 10 mM sodium pyruvate or 10 mM sodium lactate (#P2256 and 

#L7022, Sigma). A total of 200-300 cells were imaged per condition, and individual cells were 

analyzed. This experiment was repeated in triplicate. 

 

3.5.8 Statistical analysis 

Differences in optical redox ratios, NAD(P)H intensities, and FAD intensities between 

treatment groups in cells were tested across 3 or more replicates using a ratio paired student’s t-

test. All standard deviations in figures are calculated across experimental replicates. Differences 

in NAD(P)H lifetime variables between solutions and differences in cellular NAD(P)H lifetime 

variables between treatment groups were tested across 3 or more replicates using an unpaired 



 

 

54 

 

student’s t-test with Welch’s correction for samples of unequal variance. Differences in enzyme 

activity levels between control and treated cells were tested across 3-5 experiments using the same 

test. A significance level of 0.05 was used to determine statistical significance in all tests. 
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CHAPTER 4 

Cellular Metabolic Heterogeneity In Vivo is Recapitulated in Tumor Organoids 

Sharick, J.T., Jeffery, J.J., Karim, M.R., Walsh, C.M., Esbona, K., Cook, R.S., Skala, M.C. 

“Cellular metabolic heterogeneity in vivo is recapitulated in tumor organoids.” In review. 

4.1 Abstract 

Heterogeneous populations within a tumor have varying metabolic profiles, which can 

muddle the interpretation of bulk tumor imaging studies of treatment response. Although methods 

to study tumor metabolism at the cellular level are emerging, these methods provide a single time 

point ‘snap-shot’ of tumor metabolism, and require a significant time and animal burden, while 

failing to capture the longitudinal metabolic response of a single tumor to treatment. Here, we 

investigated a novel method for longitudinal, single-cell imaging of metabolism across 

heterogeneous tumor cell populations using optical metabolic imaging (OMI), which measures 

autofluorescence of metabolic co-enzymes as a report of metabolic activity. We also investigated 

whether in vivo cellular metabolic heterogeneity can be accurately captured using tumor-derived 

three-dimensional organoids in a genetically engineered mouse model of breast cancer. OMI 

measurements of response to paclitaxel and the phosphatidylinositol-3-kinase (PI3K) inhibitor 

XL147 in tumors and organoids taken at single cell resolution revealed parallel shifts in metabolic 

heterogeneity. Interestingly, these previously unappreciated heterogeneous metabolic responses in 

tumors and organoids could not be attributed to tumor cell fate or varying leukocyte content within 

the microenvironment, suggesting that heightened metabolic heterogeneity upon treatment is 

largely due to heterogeneous metabolic shifts within tumor cells. Together, these studies show that 

OMI revealed remarkable heterogeneity in response to treatment, which could provide a novel 

approach to predict the presence of potentially unresponsive tumor cell subpopulations lurking 
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within a largely responsive bulk tumor population, which might otherwise be overlooked by 

traditional measurements. 

 

4.2 Introduction 

There is accumulating evidence that tumor cell populations are heterogeneous, enabling 

heterogeneous responses to treatments that may either enhance or inhibit treatment sensitivity (1-

4). Minority populations of tumor cells with innate treatment resistance have been identified, such 

as CD24+ breast cancer cells, which exhibit resistance to certain chemotherapies (5, 6). The 

presence of minority tumor cell subpopulations with innate resistance to treatment can ultimately 

result in tumor recurrence, even under circumstances when the original tumor, comprised mainly 

of treatment sensitive cells, responds to treatment. Clinicians lack the tools necessary to assess this 

heterogeneity and to recommend optimal treatment plans for each individual patient. It is also 

difficult to study the process by which tumors evolve to obtain variability in cellular treatment 

sensitivity. Current techniques to perform high-throughput in vivo drug screens and assess 

heterogeneity are destructive to the cells and require enormous animal burden. These limitations 

not only hinder our understanding of the mechanisms behind tumor heterogeneity and recurrence, 

but also obstruct the discovery of novel drugs and drug combinations that combat the emergence 

of therapy-resistant subpopulations of cells. To address these problems, a platform is needed that 

faithfully recapitulates and quantifies in vivo cellular heterogeneity in vitro. 

Next-generation single-cell sequencing can be used to characterize genetic diversity by 

identifying mutant subclones (7-11), and the number of subclonal driver mutations has predictive 

value for a patient’s overall survival (12). However, the predictive ability of single cell sequencing 

in the clinical setting relies on genetic mutations that are already known. Therefore, the remarkable 
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advances provided by single cell sequencing still cannot provide a true predictive analysis of 

treatment-resistance tumor cell subpopulations that may lurk within a larger tumor cell population. 

Further, the sensitivity of a cell to a specific drug is a complex combination of both genetic and 

non-genetic factors, including cellular metabolism (13, 14). To fuel aberrant proliferation rates, 

cancer cells are able to reprogram their metabolic machinery to incorporate nutrients into required 

pathways, even in the absence of growth factor signals (15, 16). However, not all cells in a tumor 

alter their metabolism in the same manner. In response to unique levels of oxygen, glucose, pH, 

cytokines, and extracellular matrix proteins in their microenvironment, individual cells adapt 

appropriately to maximize their survival (14, 17). These mechanisms of adaptation also affect cell 

resistance to cytotoxic drugs and immunotherapies (18, 19), resulting in subpopulations of tumor 

cells with differing sensitivities to treatment. This highlights the need for a functional readout of 

heterogeneity that is based on cell metabolism. 

Given the limitations of genetic testing on predicting treatment response, alternative 

approaches which directly measure drug response in tumor cells are under investigation. For 

example, testing treatment response in mouse patient-derived xenograft (PDX) models captures 

the influence of in vivo genetic heterogeneity, and can be used to predict patient response to many 

therapies ex vivo (20), but require enormous numbers of animals for high-throughput drug 

screening, and cannot be performed in a clinically beneficial time frame. Alternatively, in vitro 

cancer organoids can be used to screen drugs directly on patient cells, alleviating the burdens of 

time, animals, and cost (21). Organoids maintain the genetic, histopathological, functional surface 

markers, and 3-dimensional characteristics of the original tumor for a variety of cancer types (22-

25). Additionally, organoids contain stromal cells that can facilitate therapeutic resistance (26). 

Many organoids can be cultured from a single patient biopsy, supporting the feasibility of 
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screening patient-derived tumor organoids for sensitivity to a variety of treatments. 

Optical metabolic imaging (OMI) is a label-free two-photon microscopy technique that 

quantifies single-cell metabolic changes with treatment, both in tumors in vivo (27) and in tumor-

derived organoids (28). OMI uses the endogenous fluorescent properties of metabolic coenzymes 

NAD(P)H and FAD. The optical redox ratio, or the ratio of the fluorescence intensity of NAD(P)H 

to that of FAD, reflects the redox state of the cell (29-31). The fluorescence lifetimes of NAD(P)H 

and FAD are distinct for the free-and protein-bound conformations of both molecules, and thus 

reflect enzyme binding (32-34). These OMI endpoints, integrated to form a composite OMI index, 

reflect early metabolic shifts and thus can evaluate drug response prior to changes in cell viability 

or tumor size (21, 35, 36). The non-destructive nature of this technique allows heterogeneity to be 

tracked in organoids over time to analyze the potential for drug resistance evolution in the original 

tumor. This is not possible with other methods for measuring heterogeneity (e.g. flow cytometry, 

single-cell sequencing, or immunolabeling) because these standard methods are destructive. 

OMI of cancer organoids has been validated as an accurate predictor of in vivo drug 

response in xenograft models generated from human breast cancer and head and neck cancer cell 

lines (21, 35) and a mouse model of pancreatic cancer (36), but it is unclear whether the 

heterogeneity measured in organoids also accurately mirrors the original tumor. Here, we 

investigate the feasibility of studying in vivo heterogeneity using OMI measurements in organoids 

derived from the polyomavirus middle T (PyVmT) mouse model, which closely models the stages 

and progression of human breast cancer, exhibits more heterogeneity than human cell line 

xenografts, and can develop in a fully immunocompetent mouse (37). This study demonstrates that 

OMI of in vitro tumor organoids accurately captures in vivo heterogeneous response to treatment 

in a relevant breast cancer model.  
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4.3 Materials and methods 

4.3.1 Orthotopic PyVmT tumors 

Animal research was approved by the Institutional Animal Care and Use Committees at 

Vanderbilt University and the University of Wisconsin-Madison. Orthotopic tumors were initially 

generated by injecting 106 PyVmT cell line suspended in 100 μl of a chilled 1:1 mixture of DMEM 

(Gibco #11965) and Matrigel (Corning #354234) into the 4th inguinal mammary fat pads of 6-

week old FVB female mice (The Jackson Laboratory #001800) using a 26 gauge needle. The 

PyVmT cell line was derived from tumors isolated from transgenic FVB MMTV-PyVmT mice 

(The Jackson Laboratory #002374). Tumors were passaged by mechanically dissociating an 

existing tumor, passing the tumor cell suspension through a 70 μm strainer, and injecting the cells 

into a new 6-week old FVB mouse. 

 

4.3.2 FDG-PET/CT imaging 

Mice were randomized and imaged prior to treatment (when tumors grew to >200 mm3), 

and then imaged weekly over a 14-day time course at the University of Wisconsin Small Animal 

Imaging and Radiotherapy Facility by trained staff (J.J.J., J.T.S.). 10 mg/kg paclitaxel (Vanderbilt 

University pharmacy/University of Wisconsin pharmacy) was diluted in 150 μl PBS and injected 

i.p. twice weekly. 50 mg/kg XL147 (Selleckchem) was suspended in 100 μl 1% DMSO and 

delivered by oral gavage daily. Control mice received 100 μl 1% DMSO by o.g. daily and 150 μl 

PBS by i.p. injection twice weekly. Prior to PET/CT imaging, mice were fasted for 12 hours. One 

hour prior to imaging, ~9.25 MBq of [18F]FDG was delivered by tail vein injection, and mice were 

immediately anesthetized under 4% isoflurane, maintained at 1.5%, and warmed with a heated bed 

until the end of the imaging procedure. The mice were scanned using an Inveon microPET/CT 
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(Siemens Medical Solutions, Knoxville, TN) in the prone position. Forty-million counts per mouse 

were collected for the PET scan to obtain adequate signal-to-noise. PET data were histogrammed 

in to one static frame and subsequently reconstructed using ordered-subset expectation 

maximization (OSEM) of three dimensions followed by the maximum a posteriori algorithm, and 

CT attenuation and scatter correction were applied based on the NEMA NU 4 image-quality 

parameters (38). Inveon Research Workplace software (Siemens Medical Solution, Knoxville, 

TN) was used to measure tumor volume and glucose uptake. PET and CT images were co-

registered, and manual regions-of-interest (ROIs) were drawn around each tumor. FDG uptake 

was measured as the decay corrected percent injected dose normalized by the mass of the tissue 

(%ID/gtissue) assuming the density of the ROI tissue is equal to water. Five tumors from five mice 

were imaged per treatment group.  

 

4.3.3 Fluorescence lifetime imaging 

A custom multiphoton fluorescence lifetime system (Bruker Fluorescence Microscopy) 

was used to acquire fluorescence images. A titanium:sapphire laser (Chameleon Ultra II, Coherent) 

was used for excitation, while GaAsP photomultiplier tubes (H7422P-40, Hamamatsu) was used 

to detect emission photons. A 40x water immersion objective (Nikon, 1.15 NA) was used with an 

inverted microscope (Nikon, TiE). Two-photon excitation of NAD(P)H and FAD was performed 

with 750 nm and 890 nm light, respectively. A 440/80 nm filter was used to isolate NAD(P)H 

fluorescence emission, and a 550/100 nm filter for FAD fluorescence emission. 256x256 pixel 

images were acquired using a pixel dwell time of 4.8 μs and a 60 second collection time. Time-

correlated single photon counting electronics (SPC-150, Becker & Hickl) were used to acquire 

fluorescence lifetime data with 256 time bins. A single Fluoresbrite YG microsphere 
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(Polysciences) was imaged each day as a fluorescence lifetime standard. The measured lifetime 

(2.15 ± 0.08 ns, n=7) was stable and consistent with previously published values (27, 33, 35, 39, 

40). For each field of view, an NAD(P)H image was acquired first followed immediately by an 

FAD image. 

 

4.3.4 Intravital OMI 

48 hours after initial treatment, and 1 hour following final treatment, mice were 

anesthetized using isoflurane, and a small portion of skin was removed to expose the underlying 

tumor. OMI was performed on at least four fields of view and at least 450 total cells per tumor. 

Following imaging, mice were euthanized while under anesthesia, and tumors were extracted and 

fixed. Five tumors from five different mice were imaged per treatment group. 

 

4.3.5 Tissue processing and organoid culture 

Excised tumors were rinsed in PBS and thoroughly minced in DMEM with dissecting 

scissors. The resulting cell macro-suspension was chilled on ice and mixed with Matrigel at a 1:2 

ratio, and 100 μl of the resulting mixture was pipetted into 35 mm glass-bottom dishes (#P35G-

1.5-14-C, MatTek). Gels were allowed to solidify slowly at room temperature for 30 minutes, 

and then placed in a 37°C, 5% CO2 incubator for 1 hour before being overlaid with DMEM 

supplemented with 10% FBS and 1% penicillin-streptomycin (Gibco). 

 

4.3.6 Organoid imaging 

24 hours prior to imaging, organoid media was replaced with fresh media containing 500 

nM paclitaxel, 25 nM XL147, or 0.1% DMSO vehicle. These doses were chosen to replicate in 
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vivo doses (21). Organoids were imaged after 24, 48, and 72 hours of treatment. At least six 

organoids from each treatment group were imaged at each time point, containing at least 290 cells 

total for each treatment group. 

 

4.3.7 OMI endpoint images 

The optical redox ratio was computed from NAD(P)H and FAD lifetime images. First, the 

fluorescence intensities of NAD(P)H and FAD are determined by the total number of photons 

detected over the collection time. Then, the intensity of NAD(P)H is divided by the intensity of 

FAD in each pixel. SPCImage software was used to analyze fluorescence lifetime images (Becker 

& Hickl) (41). First, fluorescence decay curves for NAD(P)H and FAD are generated for each 

pixel by assigning all photon events into 256 temporal bins. Detected photons from the 8 

neighboring pixels are also included in each curve to increase photon counts. This decay curve is 

deconvolved with the measured instrument response function, and fit with a two-component 

exponential decay (Equation 4.1). 

𝐼(𝑡) = 𝛼1𝑒𝑥𝑝−𝑡/𝜏1 + 𝛼2𝑒𝑥𝑝−𝑡/𝜏2 + 𝐶                                        (4.1) 

𝐼(𝑡) represents the fluorescence intensity measured at time 𝑡 following a laser pulse, 𝛼1 

and 𝛼2 represent the percentage of the overall signal made up by the short and long lifetime 

components respectively, 𝜏1 and 𝜏2 are the short and long lifetime components respectively, and 

𝐶 represents background light. The use of a two-component fit was chosen in order to differentiate 

the free (𝜏1) and bound (𝜏2) states of NAD(P)H and the free (𝜏2) and bound (𝜏1) states of FAD 

(32, 42). The mean lifetime (𝜏𝑚) of NAD(P)H and FAD for each pixel is the weighted average of 

the free and bound lifetimes (Equation 4.2). 

𝜏𝑚 = 𝛼1 ∗ 𝜏1 + 𝛼2 ∗ 𝜏2                                                   (4.2) 
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A CellProfiler routine was written to automatically distinguish between individual cell 

cytoplasms and the nuclei they encircle (43, 44). For each cytoplasm detected, values for the redox 

ratio and all NAD(P)H and FAD lifetime variables were calculated by averaging the incorporated 

pixels within the cytoplasm. 

 

4.3.8 OMI index 

The redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 were normalized to average values in control 

cells for the OMI index calculation. In vivo, values are normalized to averages of all cells imaged 

in all control mice on the same day. In vitro, values are normalized to averages of all cells from all 

control organoids imaged on the same day. In both cases, the OMI index is calculated for each cell 

using a linear combination of the control-normalized redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 with 

coefficients of (1,1,-1), respectively. A decrease in OMI index correlates with drug sensitivity (21). 

 

4.3.9 Heterogeneity analysis 

Histograms were generated for all cells within a group using individual cell OMI indices. 

The histogram is fit to Gaussian mixture distribution models containing one, two, or three 

components, using an iterative expectation maximization algorithm. Each component represents a 

distinct subpopulation of cells. Goodness of fit for each model was evaluated using the Akaike 

information criterion (45), and only the model with best fit was implemented. For each group, this 

process is repeated 1,000 times. For visual comparison, example distributions are normalized to 

have equal areas under the curve. Similar numbers of cells were imaged in each tumor and in each 

organoid treatment group to provide similar power to identify subpopulations in each distribution 

(46). The heterogeneity index is a validated metric for quantifying heterogeneity in a population 
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(27, 47). Here we present a modified version, the weighted heterogeneity index (wH-index), which 

also takes into account the standard deviations of all subpopulations. 

wH-index = ∑  (1 − 𝑝𝑖𝑙𝑛 (𝑝𝑖 + 1)) ∗ (𝜎𝑖 + 𝑑𝑖)                                 (4.3) 

Here, 𝑖 represents each subpopulation, 𝑑 represents the distance between the median of 

each subpopulation and the median of the entire distribution, 𝑝 represents the proportion of all 

cells belonging to that subpopulation, and 𝜎 is the standard deviation. 

 

4.3.10 Histological analysis 

Immediately following in vivo tumor imaging, tumors were collected and fixed in 10% 

neutral buffered formalin for 48 hours. Tumors were oriented and paraffin embedded such that 5 

μm slices were taken from the imaged portion of the tumor. Also immediately following imaging, 

Matrigel droplets containing organoids were detached from glass coverslips and encased in 

agarose. These agarose gels were placed in 10% neutral buffered formalin for 48 hours, paraffin 

embedded, and sliced into 5 μm sections starting from the center. Organoid histology experiments 

were duplicated and results were combined. Tumors and organoid sections were stained using 

immunohistochemistry for CD45 (ab10558, Abcam, 32 min.), vimentin (ab92547, Abcam, 32 

min.), alpha smooth muscle actin (αSMA) (ab5694, Abcam, 32 min.), wide spectrum cytokeratin 

(ab9377, Abcam, 28 min.), polyoma virus middle T antigen (sc-53481, SantaCruz, 60 min.), Ki67 

(ab15580, Abcam, 28 min.), cleaved caspase 3 (9661, Cell Signaling, 28 min.), phospho-histone 

H3 (9701, Cell Signaling, 16 min.), and phospho-PRAS40 (2997, Cell Signaling, 12 min.). Positive 

staining was visualized with diaminobenzidine (DAB) and counter-stained with hematoxylin. 
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4.3.11 Histology imaging and quantification 

Multispectral image cubes were acquired using a Nuance multispectral imaging 

microscope and software (Perkin Elmer) (48). Images of transmitted light were taken from 420 nm 

to 720 nm with 20 nm steps and converted to optical densities using a blank reference image. 

Image cubes were unmixed using a spectral library to isolate individual stains and exclude 

background signals. Individual cells (stained with DAB and counterstained with hematoxylin) in 

tumor and organoid images were automatically segmented using InForm software (Perkin Elmer). 

In organoid images, machine learning algorithms were trained to distinguish between individual 

cellular organoids, extracellular matrix, and background. For tumors, algorithms were trained to 

separate tumor and stromal compartments. All algorithms had precision >92%. Only cells in tumor 

or organoid compartments were quantified. Individual cells were scored as positive or negative for 

a particular target antibody by thresholding for the mean value within that cell. At least 4 random 

fields of view were acquired per stain per tumor, for a total of at least 23 images per stain per 

treatment group. Organoids containing less than 5 cells were rejected from analysis, and at least 

35 organoids were quantified per stain per treatment group. 

 

4.3.12 Statistical analysis 

Normalized tumor volumes and glucose uptake values were compared using a student t-

test with Bonferroni correction for multiple comparisons. Significant differences in OMI variables, 

wH-indices, and IHC percentages between treatment groups were tested using a Wilcoxon rank-

sum test. Treatment effect size was calculated with Glass’s Δ (49), with directionality determined 

by the response of HER2+ cell line xenografts to trastuzumab (21). 
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4.4 Results 

4.4.1 PET/CT measures in vivo treatment response 

Response to treatment with paclitaxel and XL147 was measured in orthotopic PyVmT 

allograft tumors and tumor organoids. Paclitaxel is an FDA-approved chemotherapy for breast 

cancer that has been shown to reduce tumor growth rates in orthotopic PyVmT tumors (50). 

XL147, an inhibitor of the phosphatidylinositol-3 kinase family (PI3K), was also chosen due to 

the dependence of the PyVmT model on PI3K activity (51-53), and for its use in clinical trials for 

breast cancer. To verify response to treatment, FDG-PET measurements were taken of tumors 

treated with paclitaxel, XL147, and combination (P+X) over 14 days (Fig. 4.1). Subsequent CT 

measurements were also taken in order to better visualize the tumor in the mammary fat pad and 

distinguish tumor-associated signal from background (Fig. 4.1A). While XL147 alone and 

paclitaxel alone did not affect tumor growth after 2 weeks, the combination of both drugs 

significantly decreased tumor growth vs. vehicle (p<0.05, Fig. 4.1B). No differences in FDG-

uptake were observed with treatment (Fig. 4.1C). A reduction in pPRAS40 staining in XL147 

treated tumors and organoids confirms successful PI3K inhibition (Appendix B Fig. B.1). 

 

Figure 4.1. FDG-PET/CT of  PyVmT in vivo treatment response. A, Example PET/CT image 

showing glucose uptake in an orthotopic PyVmT tumor (arrow) growing on the right mammary 

fat pad. Scale bar = 1 cm. B, The effect of drug treatment on tumor growth. All volumes are 

normalized to pre-treatment volume. N=5 tumors per treatment group. * p<0.05 vs. vehicle. C, 

Glucose uptake did not change with drug treatment. 
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4.4.2 OMI of cellular metabolic heterogeneity in vivo 

Intravital OMI was performed to determine how treatment affects tumor metabolic 

heterogeneity in vivo at a cellular level. Representative images demonstrate that OMI can visualize 

single-cell metabolic properties in these tumors (Fig. 4.2A). Response was quantified using the 

OMI index after 48 hours of treatment with either vehicle or P+X in 5 mice per group (Fig. 4.2B). 

Across all cells from all tumors, P+X treated cells had a significantly lower OMI index compared 

with vehicle controls (p<0.0001, Fig. 4.2C). Histograms of cell OMI indices were fit to Gaussian 

mixture distribution models (Fig.4.2D, plotted separately in Appendix B Fig. B.2). Vehicle treated 

tumors exhibited higher degrees of variance in their single-cell OMI index distributions compared 

to P+X treated tumors. The smallest subpopulation detected in tumors represented 29.0% of the 

overall population (vehicle). The degree of heterogeneity in each tumor is quantified using a 

modified form of the heterogeneity index (27, 47) with an additional term added for the standard 

deviation of each individual subpopulation (wH-index). P+X treatment was found to significantly 

decrease the in vivo wH-index vs. vehicle (p<0.05, Fig. 4.2E). 
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Figure 4.2. OMI of drug response heterogeneity in vivo. A, Representative images of the redox 

ratio, NAD(P)H mean lifetime (𝜏𝑚) and FAD 𝜏𝑚 in vivo in PyVmT tumors treated with vehicle or 

paclitaxel + XL147 (P+X) for 48 hours. Scale bar = 100 μm. B, OMI Index quantified at the single 

cell level 48 hours after treatment in vivo for each tumor. Each dot represents one cell. A decrease 

in the OMI index indicates drug response. Error bars indicate mean ± SD. N>450 cells/tumor. C, 

Decrease in average OMI Index with treatment across all cells from all tumors. Error bars indicate 

mean ± SD. * p<0.0001 vs. vehicle. N>3,300 cells/group. D, Population density distributions of 

drug response at the single-cell level for each tumor. E, The effect of treatment on the degree of 

OMI Index heterogeneity per tumor quantified by the wH-index. Error bars indicate mean ± SD. 

N=1000 fits/tumor. Each dot represents one tumor. *p<0.05 vs. vehicle. 

 

4.4.3 OMI of cellular metabolic heterogeneity in organoids 

Next, responses to the same therapies were measured in PyVmT tumor-derived organoids 

to determine if organoid heterogeneity is similar to PyVmT tumors in vivo. Representative images 

demonstrate the size and morphology of the organoids and the OMI endpoint spatial distributions 

(Fig. 4.3A). Single therapies were tested in parallel to P+X combined therapy, and OMI index was 

calculated at the single-cell level after 24, 48, and 72 hours of treatment. Organoids treated with 

P+X had a lower mean OMI index compared to control organoids (p<0.0001, Fig. 4.3B and 

Appendix B Fig. B.3A,B), in agreement with the in vivo results. Examples of Gaussian mixture 

modeling showed multiple subpopulations in the control organoids, and only a single population 
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with smaller overall variance in the P+X treated organoids (Fig. 4.3C). The degree of heterogeneity 

was significantly decreased in P+X treated organoids vs. control organoids at 72 hours (p<0.0001, 

Fig. 4.3D), just as it was in vivo at 48 hours. The mean wH-index values were higher at 48 hours 

in vivo (1.26 and 0.60 for vehicle and P+X treated respectively) compared to 72 hours in vitro 

(0.90 and 0.08 for vehicle and P+X treated respectively). Similar wH-indices were found between 

treatment groups in organoids at 24 and 48 hours of treatment (Fig. 4.3D, example distributions in 

Appendix B Fig. B.3C,D). The smallest subpopulation detected in organoids represented 12.2% 

of the overall population (paclitaxel, 24 hours). The optical redox ratio, NAD(P)H 𝜏𝑚, and FAD 

𝜏𝑚 also change significantly with P+X treatment in both organoids and tumors (Appendix B Fig. 

B.4). Coefficients of variation for the optical redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 showed 

similar trends within organoids and in vivo tumors (Appendix B Fig. B.5). 
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Figure 4.3. OMI of drug response heterogeneity in PyVmT organoids. A, Representative 

images of the redox ratio, NAD(P)H 𝜏𝑚 and FAD 𝜏𝑚 in organoids at 72 hours of treatment. Scale 

bar = 100 μm. B, OMI index quantified at the single cell level. N=6 organoids/group. N>300 

cells/group. Each dot represents one cell. Error bars indicate mean ± SD. * p<0.0001 vs. vehicle. 

C, Example subpopulation analysis of the OMI index in all organoid cells. Brackets in legend 

indicate number of subpopulations for each group. D, The effect of treatment on the degree of OMI 

index heterogeneity per tumor quantified by the wH-index. Error bars indicate mean ± SD. N=1000 

fits/group for all 6 organoids/group. * p<0.0001. 

 

4.4.4 Comparison of drug treatment effect sizes on OMI variables 

The effect size of drug treatment on individual OMI variables was calculated for all cells 

in tumors and organoids using Glass’s Δ (49) (Fig. 4.4). P+X treatment had large effects (Δ>0.75) 

on the redox ratio and OMI index at 24, 48, and 72 hours in organoids (Fig. 4.4A-C), and in tumors 

at 48 hours (Fig. 4.4D). P+X did not have a large effect on individual lifetime variables, except at 

48 hours in tumor-derived organoids. XL147 alone also had a large effect on the OMI index and 

redox ratio at all time points in organoids. Paclitaxel alone had a large effect on the redox ratio at 
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only 24 hours in organoids, and did not have a large effect on OMI index at any time point. The 

correlation between Glass’s Δ values with P+X treatment in vivo at 48 hours versus organoids at 

24, 48, and 72 hours was significant at all time points (p<0.05, Pearson’s correlation), indicating 

that changes in OMI variables with P+X treatment in organoids faithfully mirror in vivo changes.  

 

Figure 4.4. Effect sizes of treatment on OMI variables in PyVmT tumors and organoids. A-

C, Glass’s Δ effect size of treatment on OMI variables across all PyVmT tumor-derived organoid 

cells at (A) 24, (B) 48, and (C) 72 hours. * Δ > 0.75. D, Glass’s Δ effect size of treatment on OMI 

variables across all PyVmT tumor cells. 

 

4.4.5 Characterization of cell types in PyVmT tumors and organoids 

Histology of PyVmT tumors and organoids was performed to determine if the distinct cell 

subpopulations measured in Figures 4.2 and 4.3 were comprised of different cell types, cells 

undergoing apoptosis or proliferation, or cells simply employing unique metabolic strategies. 

Expression of vimentin and αSMA and loss of wide spectrum cytokeratin expression in all tumors 

and organoids indicate that cells had undergone epithelial to mesenchymal transition prior to 

imaging (Fig. 4.5). Expression of PyVmT antigen in both tumors and organoids (Fig. 4.5) confirm 

that cells matched the tumors of origin.  
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Figure 4.5. Characterization of tumors and organoid cells. Example images demonstrate that 

tumor and organoid cells express vimentin and α-smooth muscle actin, and do not express 

cytokeratins. Cells are confirmed positive for PyVmT antigen. 4x scale bar = 1 mm. 20x scale bar 

= 200 μm.  

 

4.4.6 Quantification of potential sources of heterogeneity in PyVmT tumors and organoids 

Machine learning algorithms were trained using inForm software to distinguish between 

individual cellular organoids in histology images, and to identify cells and quantify expression 

both in organoids and in vivo. The expression of Ki67 and phospho-histone H3 (pHH3), two 

proliferation markers, was quantified along with cleaved caspase 3 (CC3), a marker of apoptosis. 

Ki67 is expressed in the S, G2, and M phases of the cell cycle, while pHH3 is specific to cells in 

M phase (54). The percentage of cells expressing Ki67 was similar between tumors and organoids 

and also did not change after 48 hours of treatment in either setting (Fig. 4.6A). The percentage of 

cells in apoptosis was similar between tumors and organoids (both <20%), but did not change after 

48 hours of treatment in either setting (Fig. 4.6B and Appendix B Fig. B.6A). pHH3 was expressed 
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in significantly fewer cells in tumors and organoids compared to Ki67 (Fig. 4.6C and Appendix B 

Fig. B.6B). Significantly fewer of these cells in M-phase were found in P+X treated tumors 

compared to vehicle controls (p<0.05), but treatment did not significantly change the number of 

M-phase cells in organoids. Small subpopulations of CD45+ leukocytes were present in both 

tumors and organoids (Fig. 4.6D and Appendix B Fig. B.6C). A smaller percentage of CD45+ 

leukocytes were present in organoids compared to the original tumors, and fewer were present in 

P+X treated organoids compared to vehicle (p<0.05). A majority of cells in organoids and tumors 

were positive for αSMA (Fig. 4.6E and Appendix B Fig. B.6D). The percentage of αSMA+ cells 

was not significantly different between organoids and tumors, and did not significantly change 

with treatment in either setting. The variance of positive staining of all markers across all FOV 

and organoids was not affected by treatment. These cell fates and cell types are unlikely to be 

responsible for the decrease in OMI index and its heterogeneity with P+X treatment because none 

of the positive percentages of these markers significantly changed with treatment in both tumors 

and organoids. 
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Figure 4.6. Quantification of heterogeneity and treatment response in PyVmT tumors and 

organoids with histology. A, Automatic cell segmentation and quantification of Ki67 expression 

in 20x images of PyVmT tumor and organoids. Scale bar = 200 μm. N>4 FOV per tumor, 5 tumors 

per group. N>39 organoids per group. B, CC3 expression in tumors and organoids. N=5 FOV per 

tumor, 5 tumors per group. N>44 organoids per group. C, pHH3 expression in tumors and 

organoids. N=5 FOV per tumor, 5 tumors per group. N>60 organoids per group. D, CD45 

expression in tumors and organoids. N>4 FOV per tumor, 5 tumors per group. N>45 organoids per 

group. E, αSMA expression in tumors and organoids. N>4 FOV per tumor, N>5 tumors per group. 

N>20 organoids per group. Error bars indicate mean ± SD. * p<0.05 vs. control.  

 

4.5 Discussion 

To optimize a treatment plan for an individual cancer patient, a clinician must understand 

how various drug options will affect all the cells in a patient’s uniquely heterogeneous tumor. 

While recent technological advances have improved our fundamental understanding of 

intratumoral heterogeneity, we still lack tools for cancer treatment planning that incorporate 

distinct metabolic subpopulations. Cancer organoids allow for rapid, high-throughput drug 

screening directly on tumor cells in a relevant 3-dimensional microenvironment (21, 23, 35, 36, 

55). Current methods for evaluating drug response in organoids either damage the sample, 

overlook cellular heterogeneity, or do not directly screen drugs on patient-derived cells. To address 
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these limitations, we have developed OMI to non-invasively quantify metabolic heterogeneity 

within living organoids using the fluorescent properties of metabolic coenzymes NAD(P)H and 

FAD (21, 35). OMI detects minority metabolic subpopulations of drug-resistant cells within 

organoids, and this information can predict long-term tumor drug response. These capabilities have 

been confirmed in breast (21, 46) and head and neck (35) cell line xenografts, and in a pancreatic 

cancer mouse model (36). However, cell line tumors in immunocompromised mice do not capture 

the cellular heterogeneity of primary human tumors, and it remains unclear whether metabolic 

heterogeneity in primary tumor-derived organoids mirrors the heterogeneity of the original tumor. 

In this study, OMI was used to compare subpopulations of cell metabolism in tumors and tumor-

derived organoids of the immunocompetent PyVmT breast cancer model. We confirm that 

organoids accurately capture in vivo metabolic heterogeneity, demonstrating the feasibility of 

using organoids to study tumor response to treatment. 

CT images confirmed that P+X treatment reduced PyVmT tumor volume in vivo over 14 

days in immunocompetent allografts (Fig. 4.1). Tumor volume did not change over the first week 

of treatment, and FDG uptake did not change with therapy over two weeks. However, OMI was 

sensitive to metabolic treatment response in only 48 hours (Fig. 4.2). This highlights the enhanced 

sensitivity of OMI to early metabolic changes compared to traditional methods of measuring 

treatment response, in agreement with previous reports in immunocompromised xenografts (27).  

Intravital OMI was performed in mice treated with vehicle or P+X for 48 hours (Fig. 4.2), 

and the degree of heterogeneity within each tumor was characterized by the wH-index. P+X treated 

tumors exhibited a significantly lower degree of heterogeneity compared to control tumors 

(p<0.05), further suggesting that this treatment combination could be beneficial. OMI was also 

used to measure response to P+X in PyVmT tumor-derived organoids (Fig. 4.3). Paclitaxel and 
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XL147 single therapies were also screened with low additional effort and cost, underlining the 

high-throughput nature of organoid versus animal drug screens. Additionally, due to the non-

invasive nature of OMI, measurement of response was performed at 24, 48, and 72 hours in the 

same set of organoids. OMI measurements at 72 hours in organoids, of all the time points acquired, 

most accurately replicated in vivo heterogeneity. This agrees with previous reports that early 

metabolic drug response at 72 hours in organoids predicts long-term in vivo tumor drug response 

(21). The higher degree of heterogeneity in organoids at 72 hours post-treatment for single agent 

treatments compared to P+X treatment (Fig. 4.3) may explain why single therapies alone did not 

reduce overall tumor growth (Fig. 4.1), despite a decrease in mean OMI index. It is possible that 

only a subpopulation of the cells were sensitive, which led to disease progression. In contrast, P+X 

treated organoids exhibited a lower wH-index at 72 hours compared to controls and single 

therapies (Fig. 4.3D), which suggests that this drug combination worked synergistically to 

overcome the resistance to single agent treatments. The higher fold change in wH-index with P+X 

treatment in organoids compared to in vivo tumors may be due to differences in efficiency of drug 

delivery. While drug gradients caused by drug diffusion do exist in large organoids, this may not 

completely capture the irregularity of drug diffusion throughout solid tumors. Evaluating the 

degree of drug response heterogeneity in organoids using the wH-index was a better predictor of 

long-term tumor growth than the average response across all cells. P+X treatment also had similar 

effects on individual OMI variables in tumors and organoids, including a large effect on the optical 

redox ratio, and small effects on FAD lifetime variables (Fig. 4.4). These parallels suggest that 

cellular level drug response in tumor-derived organoids can be used to analyze heterogeneous 

responses to treatment in the tumor of origin.  

 We next assessed potential sources of the shifts in heterogeneity found in tumors after 48 
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hours of treatment and in organoids after 72 hours of treatment using IHC (Fig. 4.5). These results 

indicate that PyVmT tumors in this study progressed to a mesenchymal phenotype at the time of 

imaging, closely resembling basal-like human breast cancer (56). Organoid cultures successfully 

captured these mesenchymal properties of the original tumor (Fig. 4.5).  

 Traditional IHC measures of therapeutic response (CC3, Ki67, pHH3), were also evaluated 

as potential sources of metabolic heterogeneity (Fig. 4.6) because metabolic activities are linked 

to apoptosis and proliferation (57, 58). PyVmT tumor allografts incorporate the host’s acquired 

immune system, which is an advantage over cell line xenografts grown in athymic nude mice. 

Immune cells and tumor cells have distinct metabolic properties (19, 59), and thus could also 

contribute to OMI heterogeneity. A small subset of CD45+ leukocytes were found in both tumors 

and organoids using IHC, and P+X treatment significantly reduced the percentage of leukocytes 

in organoids, but not in vivo. This may be because organoid culture conditions were not optimized 

to maintain mouse leukocytes. Finally, mesenchymal transition can also affect cellular drug 

response and metabolism (60), but our IHC results indicate that this mesenchymal phenotype is 

nearly homogenous and consistent with treatment, and thus not the cause of OMI index 

heterogeneity.  

None of the markers tested changed significantly in both tumors and organoids, indicating 

that apoptosis, proliferation, and the presence of immune cells and αSMA+ cells are unlikely to be 

responsible for the decrease in OMI index and its heterogeneity with P+X treatment. These 

markers are likely not associated with the high OMI index subpopulations in control organoids at 

72 hours and control tumors, which were affected by P+X treatment. Overall, we did not identify 

a marker of cell type or cell fate that accounted for the metabolic heterogeneity detected with OMI. 

These results suggest that the subpopulations identified with OMI are likely due to metabolic 
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differences between cells. Future studies could confirm this finding using emerging single-cell 

mass spectrometry on dissociated tumors and organoids, but these techniques are still in 

development (61, 62). Single cell RNA analysis of dissociated tumors and organoids could also 

support our findings, but does not offer a comparable measure to the more downstream metabolic 

activity of cells that OMI provides. Similarly, fluorescent reporters can quantify metabolic 

properties within single live cells that are correlated with the optical metabolic variables reported 

here (e.g., glucose uptake (63), pH (64), membrane potential (65), hypoxia (66), NADH/NAD+ 

redox state (67)). Overall, comparison of OMI with IHC highlights that OMI provides an early 

measure of tumor response compared to traditional markers, consistent with previous results (35). 

 This study validates OMI of primary tumor-derived organoids as a unique, powerful tool 

to study in vivo tumor metabolic heterogeneity. This tool could also improve clinical treatment 

decisions, because minority subpopulations of treatment-resistant cells within an otherwise 

responsive tumor can initiate patient recurrence (2, 3, 21). These results are the first to show that 

in vitro organoids capture the early metabolic changes in heterogeneity that occur in vivo with 

treatment in an immunocompetent tumor. OMI of organoids quantifies single-cell response to 

many drugs in a relevant three-dimensional microenvironment, using a single tissue sample, and 

can be performed longitudinally to track the evolution of heterogeneity over time. This technology 

could provide a personalized medicine platform to perform high-throughput screening of drugs 

directly on patient cells, and detect metabolic heterogeneity. This would allow clinicians to quickly 

analyze cellular heterogeneity in response to numerous treatment options for an individual patient 

to more robustly inform on treatment decisions. Additionally, this technique could reduce the 

animals and time required to develop new therapeutic strategies that overcome tumor 

heterogeneity and achieve better outcomes in patients. 
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CHAPTER 5 

Optical Metabolic Imaging of Heterogeneous Drug Response in Pancreatic Cancer Patient 

Organoids 

 

Sharick, J.T., Walsh, C.M., Sprackling, C.M., Pasch, C.A., Parikh, A.A., Matkowskyj, K.A., 

Deming, D.A., Skala, M.C. “Optical metabolic imaging of heterogeneous drug response in 

pancreatic cancer patient organoids.” In review. 

 

5.1 Abstract 

New tools are needed to match pancreatic cancer patients with effective treatments. Patient-

derived organoids offer a high-throughput platform to personalize treatments and discover novel 

therapies. Currently, methods to evaluate drug response in organoids are limited because they 

cannot be completed in a clinically relevant time frame, only evaluate response at one time point, 

and most importantly, overlook cellular heterogeneity. In this study, non-invasive optical 

metabolic imaging (OMI) of cellular heterogeneity in organoids was evaluated as a predictor of 

clinical treatment response. Organoids were generated from fresh patient tissue samples acquired 

during surgery and treated with the same drugs as the patient’s prescribed adjuvant treatment. OMI 

measurements of heterogeneity in response to this treatment were compared to later patient 

response, specifically to the time to recurrence following surgery. OMI was sensitive to patient-

specific treatment response in as little as 24 hours. OMI distinguished subpopulations of cells with 

divergent and dynamic responses to treatment in living organoids without the use of labels or dyes. 

OMI of organoids agreed with long-term therapeutic response in patients. With these capabilities, 

OMI could serve as a sensitive high-throughput tool to identify optimal therapies for individual 

pancreatic cancer patients, and to develop new effective therapies that address cellular 

heterogeneity in pancreatic cancer. 

 

 



 

 

89 

 

5.2 Introduction 

Pancreatic cancer has one of the lowest 5-year survival rates of all cancer types (8%) (1), 

and is projected to be the second leading cause of cancer death by 2030 (2). Surgery is required to 

cure pancreatic cancer (3), but can only be performed in 5-10% of cases, and only offers a 10.4% 

5-year survival rate (4). Chemotherapy can enhance survival after surgery and standard treatments 

in the adjuvant setting include gemcitabine and gemcitabine combined with capecitabine (5-

fluorouracil (5-FU) pro-drug) (5). Promising treatments for early-stage pancreatic cancer 

following surgery include gemcitabine combined with nab-paclitaxel, and FOLFIRINOX. 

Currently, oncologists must weigh these drug treatment options for individual patients based solely 

on potential side effects and have no a priori indication of whether a pancreatic cancer patient will 

respond to standard therapies. There is a need for a predictive tool to screen and identify alternative 

therapies that would benefit individual patients with either resectable or more advanced 

unresectable pancreatic cancer. Such a tool would minimize the needless costs and side effects 

accompanying ineffective treatment, while maximizing long-term survival rates. Additionally, the 

discovery of novel therapies would be accelerated by the ability to rapidly investigate the clinical 

efficacy of many drug candidates for many patients.  

Tailoring treatment based on genomic analysis alone is insufficient due to poor 

understanding of the connections between pancreatic tumor driver mutations and drug response. 

Despite being less genetically diverse than most cancers, targeted approaches to treating pancreatic 

cancer have failed in clinical trials and drug treatment is limited to cytotoxic chemotherapies. Most 

pancreatic tumors do not express a specific therapeutic target (6), and the driver mutations present 

in a patient’s cancer do not predict their response to chemotherapy. Alternatively, pancreatic 

organoids have emerged as an appealing method to tailor treatments by performing high-
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throughput drug screening directly on a patient’s tumor cells (7-9). In vitro organoids recapitulate 

the genetic and histopathological characteristics of the original pancreatic tumor, along with its 

complex 3-dimensional organization (10-14). Organoid cultures also preserve interactions 

between tumor cells, immune cells (15), and fibroblasts (16), which can influence tumor drug 

response and are potential drug targets (17, 18). Generally, methods for measuring drug response 

in organoids have involved either cell viability assays, pooling of proteins, DNA, and RNA from 

many organoids, or tracking of organoid diameter changes. These methods homogenize the 

response of an entire organoid or many organoids and ignore cellular heterogeneity, which drives 

tumor treatment resistance (19-22). It is possible that minority subpopulations of lethal drug-

resistant cells go completely undetected without more advanced assessment tools. Additionally, 

these methods generally neglect cellular metabolism, which is a major factor determining cellular 

drug response and heterogeneity (23-25). 

Optical metabolic imaging (OMI) is a non-destructive, high-resolution fluorescence 

microscopy technique that quantifies the metabolic state of individual cells within a single 

organoid using cellular autofluorescence (26, 27). The fluorescence properties of NADH and 

NADPH overlap and are referred to as NAD(P)H. NAD(P)H, an electron donor, and FAD, an 

electron acceptor, are fluorescent metabolic co-enzymes present in all living cells. The optical 

redox ratio, defined as the ratio of the fluorescence intensity of NAD(P)H to that of FAD, reflects 

the redox state of the cell (28-30), and is sensitive to shifts in metabolic pathways (27, 31, 32). The 

fluorescence lifetimes of NAD(P)H and FAD are both two-exponential with distinct lifetimes for 

the free-and protein-bound conformations, and thus reflect the protein-binding activities of 

NAD(P)H and FAD (33-35). The optical redox ratio, NAD(P)H, and FAD fluorescence lifetimes 

all provide complimentary information, and can be combined into a composite endpoint called the 
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OMI index (36). This metric distinguishes drug-resistant and responsive cells by their metabolic 

states and is robust and sensitive in pancreatic organoids (7).  

OMI of organoids could improve predictions of patient outcomes for several reasons. First, 

drug-induced changes in cell metabolism precede changes in tumor size or overall cell viability (7, 

27, 36, 37), and thus can measure drug response faster than conventional methods such as apoptosis 

and proliferation assays. Second, OMI analysis of cell subpopulations identifies and quantifies 

tumor heterogeneity (37, 38), which is vital to accurately capture patient drug response. Finally, 

OMI is non-invasive and does not require exogenous labels, so treatment response can be tracked 

over time in the same organoids. This is not possible with standard techniques which, by necessity, 

destroy samples. Therefore, OMI provides a fast, dynamic method to evaluate heterogeneous drug 

response at the organoid and single-cell level, integrating tumor heterogeneity into treatment 

planning and drug discovery. OMI of organoids has been validated as an accurate predictor of in 

vivo drug response in mouse models of pancreatic cancer (7), but has not yet been evaluated in 

humans. This study is the first to demonstrate that OMI of cellular metabolic heterogeneity in 

pancreatic tumor organoids provide an early measure of long-term in vivo drug response for 

individual patients.  

 

5.3 Materials and methods 

5.3.1 Tissue processing and organoid culture 

Human tissue was collected with informed consent from all patients, and all studies were 

approved by the Institutional Review Board at the University of Wisconsin-Madison. Surgically 

resected tissue was placed in cold chelation buffer on ice for one hour. Tissues were washed with 

PBS and digested at 37°C in DMEM/F12 medium (Invitrogen) containing 1 mg/mL collagenase 
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(Sigma), 0.125 mg/mL dispase (Invitrogen), 10% FBS (Gibco), and 1% pen-strep (Gibco) for 2-3 

hours with intermittent shaking. The resulting cell macro-suspension was rinsed in PBS, re-

suspended in 1:1 DMEM/F12:Matrigel, plated in 50 μl droplets, and allowed to solidify at 37°C, 

5% CO2 in a cell incubator. Once solidified, droplets were overlaid with DMEM/F12 

supplemented with 7% FBS, 20 μM Y-27632 (Sigma), 50 ng/ml EGF (Invitrogen), RSPO-

conditioned medium (homemade) and 1% penicillin-streptomycin (Gibco). FBS, Y-27632, and 

RSPO-conditioned medium were removed from cultures if fibroblasts were out-growing tumor 

cells. 

 

5.3.2 Drug screening 

24 hours prior to imaging, media was replaced with fresh media containing 85 μM 

gemcitabine (39), 10 μM 5-FU, 200 nM TAK-228 (40, 41), 250 nM ABT-263 (42, 43), 5 μM 

oxaliplatin, 10 μM nab-paclitaxel, 50 nM SN-38 or combinations of each. Doses were selected to 

replicate clinically relevant peak plasma concentrations. FOLFIRINOX treatment was comprised 

of 5-FU, oxaliplatin, and SN-38. After the first imaging time point (24 hours), gemcitabine, nab-

paclitaxel, SN-38, and oxaliplatin were removed from cultures to simulate single bolus delivery, 

while 5-FU, TAK-228, and ABT-263 exposure was maintained throughout the experiment (to 

simulate daily oral delivery). Chemotherapy drugs were obtained from the University of Wisconsin 

Carbone Cancer Center Pharmacy. TAK-228 was obtained from LC Laboratories, and ABT-263 

was obtained from Apex Bio. 
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5.3.3 Multiphoton imaging 

Fluorescence imaging was performed using a custom multiphoton fluorescence lifetime 

system (Bruker Fluorescence Microscopy). A 40x water immersion objective (Nikon, 1.15 NA) 

was used with an inverted microscope (Nikon, TiE). A titanium:sapphire laser (Spectra-Physics 

InSight DS+) was used for excitation, while GaAsP photomultiplier tubes (H7422P-40, 

Hamamatsu) detected emission light. 750 nm and 890 nm light were used for two-photon 

excitation of NAD(P)H and FAD, respectively. A 440/80 nm filter was used to collect NAD(P)H 

fluorescence emission, and a 550/100 nm filter was used to collect FAD fluorescence emission. 

Images were acquired over 60 seconds, with a pixel dwell time of 4.8 μs for 256x256 pixel images. 

Fluorescence lifetime data with 256 time bins was acquired using time-correlated single photon 

counting electronics (SPC-150, Becker & Hickl). A Fluoresbrite YG microsphere (Polysciences) 

was imaged daily as a fluorescence lifetime standard, which had a stable lifetime (2.09 ± 0.05 ns, 

n=61), consistent with previously published values (26, 33, 35). 

 

5.3.4 Organoid imaging 

Imaging of organoids was performed in 35 mm glass-bottom dishes (#P35G-1.5-14-C, 

MatTek). At least five representative organoids were imaged in each treatment group at each 

time point. At least two additional images of the fibroblast monolayer on the coverslip were 

taken, if present. Images were acquired 1, 2, 3, 5, and 7 days after initial treatment.  

 

5.3.5 Cyanide experiment 

Four previously untreated organoids from Patient 1 underwent OMI immediately before 

and after the addition of media containing 12 mM NaCN (Sigma), for a final concentration of 
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6 mM. OMI endpoints were quantified at the single-cell level, at least 60 cells per group. Redox 

ratio values were normalized to the pre-treatment average. 

 

5.3.6 Image analysis 

NAD(P)H and FAD fluorescence lifetime images were analyzed using SPCImage software 

(Becker & Hickl) (44). Briefly, a histogram of photon counts per temporal bin, or decay curve, is 

generated for each pixel by binning the photon counts of all 9 surrounding pixels. This decay curve 

is deconvolved with the instrument response function, and then fit to a two-component exponential 

decay (Equation 5.1). 

    𝐼(𝑡) = 𝛼1𝑒𝑥𝑝−𝑡/𝜏1 + 𝛼2𝑒𝑥𝑝−𝑡/𝜏2 + 𝐶                                (5.1) 

Here, 𝐼(𝑡) represents the fluorescence intensity measured at time 𝑡, 𝛼1 and 𝛼2 represent 

the fractional contributions of the short and long lifetime components to the overall signal 

respectively, 𝜏1 and 𝜏2 are the short and long lifetime components respectively, and 𝐶 represents 

background light. The two lifetime components are used to distinguish between the free and bound 

forms of NAD(P)H and FAD (45, 46). The mean lifetime (𝜏𝑚) is a weighted average of the free 

and bound lifetimes, and is calculated for both NAD(P)H and FAD in each pixel using Equation 

5.2.  

𝜏𝑚 = 𝛼1 ∗ 𝜏1 + 𝛼2 ∗ 𝜏2                                                    (5.2) 

The optical redox ratio was calculated for each pixel by dividing the intensity of NAD(P)H 

by the intensity of FAD. A customized CellProfiler (v1.0.6025) routine was written to mask 

individual cell cytoplasms and extract average NAD(P)H and FAD intensities and lifetime 

components for each cell cytoplasm (47, 48). All reported redox ratios are normalized to average 

control values of the same patient and time point. 
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5.3.7 OMI index calculation 

The OMI index, in this study, is a linear combination of three independent OMI endpoints 

(redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚), each centered around the average value measured in 

control cells within each patient at the same experimental time point. This differs from previous 

descriptions (7, 36) where the end points are mean-centered across all cells in all treatment groups. 

This modification allows drug responses to be compared between patients in this study. As before, 

the redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 are given coefficients of (1,1,-1). A decrease in OMI 

index relative to control correlates with drug response, while an increase or lack of change 

indicates drug resistance. 

 

5.3.8 Subpopulation analysis 

A Gaussian mixture distribution model was used to assess heterogeneity of cellular 

metabolism (7, 36, 38, 49). OMI values for all cells within a treatment group and time point are 

input into this model described by Equation 5.3. 

𝑓(𝑦; Φ𝑔) = ∑ 𝜋𝑖𝜙(𝑦; 𝜇𝑖, 𝑉𝑖)
𝑔
𝑖=1                   (5.3) 

Here, 𝑔 represents the number of subpopulations in the model, 𝜙(𝑦; 𝜇𝑖, 𝑉𝑖) is a normal 

probability density function where 𝜇𝑖 represents the mean and 𝑉𝑖 represents variance, and 𝜋𝑖 is the 

mixing proportion. Models containing 𝑔 = 1, 2, and 3 subpopulations are fit to the data, and the 

goodness of fit for each model is assessed using the Akaike information criterion (AIC) (50). The 

best fit of the three models, equivalent to the lowest AIC, is used to evaluate heterogeneity. For 

comparison, distributions are normalized such that all have an area under the curve of 1. The 

weighted heterogeneity index (wH-index, Eq. 5.4) is based on the Gaussian distribution models 

described by Eq. 5.3, and  is a modified form of the Shannon diversity index used to quantify the 
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degree of heterogeneity (37, 51). 

              wH-index = ∑  (1 − 𝑝𝑖𝑙𝑛 (𝑝𝑖 + 1)) ∗ (𝜎𝑖 + 𝑑𝑖)                                  (5.4) 

Here, 𝑖 represents each subpopulation in the Gaussian distribution model, 𝑑 represents the 

distance between the median of each subpopulation and the median of the entire distribution, 𝑝 

represents the proportion of all cells belonging to that subpopulation, and 𝜎 is the standard 

deviation.  

 

5.3.9 Organoid immunofluorescence 

Organoids were rinsed in PBS and fixed for 20 minutes in 4% paraformaldehyde (VWR). 

Fixed organoids were rinsed and stored in PBS at 4°C until stained. Organoids were blocked for 

one hour in PBS with 10% goat serum and 0.3% Triton-X 100 (Sigma) at room temperature 

followed by co-incubation with Ki67 antibody conjugated to AlexaFluor 488 (1:50, Cell Signaling 

#11882S) and CC3 antibody conjugated to AlexaFluor 555 (1:50, Cell Signaling #9604S). 

Organoids were then washed in PBS and mounted to a slide using ProLong™ Diamond Antifade 

Mountant with DAPI (Molecular Probes). DAPI was imaged on the multiphoton microscope at 

40x magnification using 750 nm for excitation and 440/80 nm bandpass filter for emission. 

AlexaFluor 488 was imaged using 965 nm for excitation and 550/100 nm filter for emission. 

AlexaFluor 555 was imaged using 1050 nm excitation and a 585/65 nm filter. Six or more 

organoids per treatment group were imaged and the percentage of Ki67-positive cells and cleaved 

caspase-3 positive cells in each organoid were quantified. 
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5.3.10 Patient-derived xenografts 

Animal research was approved by the UW-Madison Institutional Animal Care and Use 

Committee. Organoids from Patient 13 were pelleted, re-suspended in media, and mixed 1:1 with 

Matrigel. This mixture was subsequently injected (100 μl) subcutaneously into bilateral flanks of 

female NOD scid gamma mice at 6 weeks old (NOD.Cg-Prkdcscid Il2rgtm1Wj1/SzJ, The Jackson 

Laboratory) for initial PDX establishment. For treatment experiments, extracted tumors were 

mechanically minced to form a cell suspension, which was then mixed with Matrigel for injection 

into experimentally naïve female athymic nude mice at 6 weeks old (Hsd:Athymic nude-

Foxn1nu/nu, Envigo). Tumor volume was measured with calipers using the formula 

0.5*length*width2. When average tumor volume reached ~150 mm3, mice were randomized into 

two groups. 20 mice received 100 mg/kg gemcitabine and 100 mg/kg nab-paclitaxel weekly via 

intraperitoneal injection while 23 control mice received only PBS weekly. Tumor volume was 

measured twice weekly. Mice were euthanized and tumors were collected when humane endpoints 

were reached. 

 

5.3.11 High-depth targeted gene sequencing 

Patient 13 organoids were sequenced using the Qiagen Comprehensive Cancer Panel and 

molecular barcode technology, with greater than 500x median coverage. 

 

5.3.12 UMAP clustering 

UMAP (Uniform Manifold Approximation and Projection) was performed on metabolic 

imaging data from all organoid cells (control and treated) from all patients and time points (N ~ 

45,000) using the UMAP.py package (52). Nine metabolic measures: redox ratio, NAD(P)H 𝜏𝑚, 
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NAD(P)H 𝛼1, NAD(P)H 𝜏1, NAD(P)H 𝜏2, FAD 𝜏𝑚, FAD 𝜏1, FAD 𝜏2, and FAD 𝛼1 were reduced 

to two components. Points could have 10 neighbors in the manifold structure, and cosine was used 

to measure distance in the multivariate space. The two resulting components were visually 

displayed using the CRAN package ggplots2 (53). 

 

5.3.13 Statistics 

Differences in OMI index, optical redox ratio, NAD(P)H 𝜏𝑚, FAD 𝜏𝑚, CC3+%, and 

Ki67+% between treatment groups were tested using a Wilcoxon rank-sum test. Normalized tumor 

volumes were compared using a student t-test and a D’agostino-Pearson normality test. Treatment 

effect size was calculated with Glass’s Δ (54). 

 

5.4 Results  

5.4.1 Organoid generation, drug screening, and optical metabolic imaging 

Organoids were generated from fresh patient tissue samples acquired during distal 

pancreatectomy or pancreaticoduodenectomy (Whipple resection) surgeries. The overall rate of 

successful organoid formation was 67% (12 of 18 patients) (Fig. 5.1A), including mostly 

pancreatic tumors (pancreatic ductal adenocarcinomas (PDAC) and anaplastic carcinoma of the 

pancreas), along with two pancreatic intraepithelial neoplasia (PanIN) lesions and one ampullary 

adenocarcinoma (Appendix C Table C.1). 50% of the successfully cultured patient samples 

underwent neoadjuvant treatment prior to resection, including one patient that was downgraded 

from PDAC to PanIN following a complete pathologic response to chemotherapy (Patient 5). 

Neoadjuvant treatment did not impede organoid formation (75% and 60% success rates for 

pretreated and non-pretreated samples respectively). Viability and OMI were validated for 
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pancreatic organoids by quantifying metabolic inhibition to cyanide, a known inhibitor of the 

electron transport chain (Appendix C Fig. C.1). The effects of cyanide on OMI endpoints agreed 

with previous reports (27). After an establishment period, organoids were treated with a panel of 

standard and experimental pancreatic cancer therapies and imaged over a time course (Fig. 5.1B). 

This drug panel included 5-FU and gemcitabine chemotherapy, along with an experimental 

combination of TAK-228 (mTORC1/2 inhibitor) and ABT-263 (Bcl-2 and Bcl-xL inhibitor). 

Strategies to inhibit mTOR kinase activity could potentially induce apoptosis (55, 56), but this 

process is inhibited by antiapoptotic proteins of the Bcl-2 family (57). Thus, the combination of 

an mTORC1/2 inhibitor (TAK-228) with a Bcl-2 and Bcl-xL inhibitor (ABT-263) could strongly 

induce apoptosis in pancreatic cancer. Additional standard drugs were tested on organoids from 

Patients 6, 13, and 18 at later time points after patient treatment plans were obtained. The length 

of the organoid establishment period varied by patient between 4 and 12 days (Fig. 5.1C), and 

ended when organoids were clearly visible and proliferating with rounded edges. Differences in 

size and cellular quality of patient tumor samples likely contributed to the variance in time to 

maturation for organoid lines. One line (Patient 6) was thawed after being frozen, requiring 

additional time to re-establish a usable culture. Representative images demonstrate that 

multiphoton microscopy measures OMI endpoints with high resolution (Fig. 5.1D-F). This allows 

endpoints to be quantified in individual cells by masking each cell nucleus and cytoplasm using 

NAD(P)H fluorescence intensity (Fig. 5.1G). Tumor cells often grew as 3-dimensional hollow 

spheres (Fig. 5.1H), but other morphologies such as solid spheres were noted. The effects of drugs 

on the three OMI endpoints at 72 hours is summarized by comparing the mean values across all 

cells (Fig. 5.1I-K). A decrease in the mean optical redox ratio or NAD(P)H 𝜏𝑚 (see Equation 5.2), 

or an increase in the mean FAD 𝜏𝑚 is considered an indicator of response to that treatment, based 
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on previous studies in breast organoids (36). The OMI index combines the complimentary 

information provided by the three endpoints for each individual cell (Fig. 5.1L), and a decrease in 

the mean OMI index with treatment indicates a metabolic response. At the cellular level, Patient 

14 organoids did not respond to 5-FU on average, but did respond to gemcitabine and targeted 

therapy (all p<0.05 vs. control).  

 

Figure 5.1. Pancreatic organoid generation, drug screening, and optical metabolic imaging. 

A, Pie charts depicting the success rate for generating viable organoids from patient pancreatic 

lesions (top left), the distribution of PDAC, PanIN, anaplastic cancer, and ampullary cancer among 

successfully generated organoids (bottom left), and the distribution of previously treated versus 

untreated tumors among successfully generated organoids (right). B, Experimental workflow 

begins with a brief period where organoids are allowed to expand after initial generation, followed 

by drug treatment, and a series of time points where OMI is performed to track dynamic organoid 

drug responses. C, Time between organoid generation and drug treatment for each individual 

patient in the study. * Patient 6 organoids were thawed from frozen stocks and required additional 



 

 

101 

 

time in culture. Representative redox ratio (D), NAD(P)H 𝜏𝑚 (E), and FAD 𝜏𝑚 (F) images of an 

untreated pancreatic organoid taken 6 days after surgical resection (Patient 14). Scale bar is 50 μm. 

G, Masks of individual cell cytoplasms overlaid onto NAD(P)H intensity image. H, Representative 

brightfield image of pancreatic organoids (Patient 14). Scale bar is 200 μm. The effect of 72 hours 

of drug treatment on the redox ratio (I), NAD(P)H 𝜏𝑚 (J), and FAD 𝜏𝑚 (K) of pancreatic organoids 

quantified at the single-cell level (Patient 14). L, The effect of 72 hours of drug treatment on OMI 

index, a composite metric of metabolic drug response (Patient 14). Error bars indicate mean ± 

SEM. * p<0.05 vs. control. Red bar indicates response to treatment (significant reduction in mean 

redox ratio, NAD(P)H 𝜏𝑚, or OMI index, or significant increase in mean FAD 𝜏𝑚). 

 

5.4.2 OMI of organoids resolves differential sensitivities to relevant drug treatments 

A wide variety of OMI index responses were elicited across treatment conditions and 

patient samples. In addition to statistical significance of these drug responses, treatment effect 

sizes were calculated on all OMI measurements in order to determine their magnitude. A heatmap 

of OMI index treatment effect size, calculated using Glass’s Δ at 72 hours post-treatment, shows 

significant inter-patient heterogeneity for drug response in organoids (Fig. 5.2A; additional drugs 

and time points in Appendix C Fig. C.2). In a subset of patient samples, a significant fibroblast 

population (co-cultured with organoids) migrated from the 3D matrix and adhered to the 2D glass 

coverslip. Heterogeneity in these fibroblasts has been shown in organoid models of murine 

pancreatic cancer (7, 58). A heatmap of OMI index treatment effect size, calculated using Glass’s 

Δ at 72 hours post-treatment, also shows inter-patient drug response heterogeneity in co-cultured 

fibroblasts (Fig. 5.2B; Appendix C Fig. C.3). Not all drugs were tested on every patient’s cells for 

the full time-course. Drug choices were made based on the availability of viable organoids and the 

clinical treatment plans (or lack thereof) for individual patients. All organoids were initially treated 

with the drug panel in Figure 5.1 because gemcitabine and 5-FU combination therapy was most 

likely to be prescribed after surgery (excluding Patient 6; it was known in advance that they would 

receive oxaliplatin rather than gemcitabine). When additional drugs were prescribed for a patient 

such as nab-paclitaxel or the FOLFIRINOX regimen, their panels were expanded to incorporate 
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those treatments. Responses to a chemotherapy drug (5-FU) and an experimental targeted therapy 

combination (TAK-228 and ABT-263) at days 1, 3, and 7 demonstrate how OMI can track single-

cell drug responses over time within organoids (Fig. 5.2C; additional drugs and time points in 

Appendix C Fig. C.4) and co-cultured fibroblasts (Fig. 5.2D; Appendix C Fig. C.5). For example, 

response data show an increased response to TAK-228 and ABT-263 combination targeted therapy 

over time, while 5-FU remained ineffective for most patients. 
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Figure 5.2. OMI of organoids resolves differential sensitivities to relevant drug treatments. 

A and B, Heatmap representation of the OMI index treatment effect size (Glass's Δ) at 72 hours in 

organoids (A) and fibroblasts co-cultured with organoids (B). * Glass's Δ ≥ 0.75. C and D, Boxplot 

comparing metabolic responses to 5-FU and ABT-263 combined with TAK-228 (A+T) between 

patients and time points in organoids (C) and fibroblasts co-cultured with organoids (D). Response 

is measured using OMI index at the single-cell level. A decrease in OMI index versus control 

indicates response to treatment. Center line indicates median, box indicates interquartile range 

(IQR), and whiskers indicate most extreme data point within 1.5*IQR. ‘^’ and ‘~’ indicate the 

patient lesion was diagnosed as PanIN or ampullary cancer, respectively. * p<0.05 vs. control.  

 

5.4.3 OMI captures non-genetic cellular heterogeneity in pancreatic organoids 

Additional analysis was performed on Patient 13 organoids to evaluate the utility of OMI. 

The combination of gemcitabine and nab-paclitaxel was used in addition to the standard treatment 

panel on Patient 13’s organoids to mimic the treatment received prior to sample collection (Fig. 

5.3A). Population density modeling was used to determine whether cellular subpopulations of 

metabolic response were present in organoids for each treatment condition at 72 hours (Fig. 5.3B; 

additional drugs in Appendix C Fig. C.6). Metabolic subpopulations were observed in controls and 

organoids treated with gemcitabine and nab-paclitaxel (G+P) combination. Patient 13 responded 

poorly to this treatment prior to surgery and organoid generation. OMI of organoids treated with 

the experimental combination of TAK-228 and ABT-263 resulted in a single, homogeneous drug-

responsive population. 

High-depth targeted gene sequencing was performed on untreated Patient 13 organoids to 

determine whether subclonal populations could be resolved to explain the metabolic heterogeneity 

(Fig. 5.3C). A mutation in TP53 tumor-suppressor gene (stop-gain Gln165*) and a mutation in the 

KRAS oncogene (G12V) were found with allele frequencies of 100% and 52%, respectively, 

indicating a single population of cells with homogeneous driver mutations. Mutations with allele 

frequencies between 10-30% are indicative of potential subclonal populations (59). Only 4 

alterations were found to occur within this range, with 3 of the 4 at frequencies just below the top 
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of this range. None of the alterations identified are pathogenic or known to alter tumor biology. 

This indicates that this patient sample was quite homogeneous on a genetic level and the treatment 

subpopulations identified are likely related to metabolic changes and not differing mutation 

profiles. To test whether OMI agreed with traditional cell markers, a subset of organoids were 

fixed at 72 hours of treatment and dual-stained using immunofluorescence for cleaved caspase-3 

(CC3) and Ki67 to quantify apoptosis and proliferation rates, respectively (Fig. 5.3D,E; Appendix 

C Fig. C.7). Three treatments caused both a significant increase (p<0.05 vs. control) in apoptosis 

and a significant decrease in proliferation: gemcitabine, gemcitabine and nab-paclitaxel, and TAK-

228 and ABT-263. When averages were compared, proliferation rates correlated with changes in 

cell metabolism measured by OMI index (p<0.001), but apoptosis rates did not (Appendix C Fig. 

C.8). A patient-derived xenograft line was generated and athymic nude mice were treated with 

combination therapy of gemcitabine and nab-paclitaxel (Appendix C Fig. C.9) to determine if in 

vivo treatment response correlates with that seen in organoids. Tumor growth was tracked by direct 

caliper measurement and an early reduction was observed over the first 7 days (p<0.05); however, 

the effect was not sustained.  
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Figure 5.3. OMI captures non-genetic cellular heterogeneity in pancreatic organoids. A, 

Representative images of the redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 in organoids generated from 

Patient 13 (anaplastic carcinoma of the pancreas), treated with standard chemotherapies and 

experimental targeted therapies for 72 hours. Scale bar is 50 μm. B, Normalized density 

distributions of the OMI index of individual cells contain subpopulations with G+P treatment, but 

not ABT-263 +T treatment after 72 hours. Bracketed number indicates number of subpopulations. 

C, High-depth targeted cancer gene sequencing of Patient 13 organoids. Allele frequencies of 

~50% for KRAS and 100% for TP53 were found (black bars). Alterations with allele frequencies 

of 10-30% were detected (gray bars), but none of these alterations were pathogenic. D, Cleaved 

caspase-3 staining of organoids shows differences in apoptosis between treatment conditions after 

72 hours of treatment. E, Ki67 staining of organoids shows differences in proliferation between 

treatment conditions after 72 hours. Each dot represents one organoid (mean ± SEM), and red 

indicates significant response to treatment. *p<0.05 vs. control. 
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5.4.4 Heterogeneity of drug response in organoids agrees with later patient recurrence during 

adjuvant therapy 

Seven patients received adjuvant drug treatment following surgical resection of their 

tumor. Clinical treatment efficacy was tracked and compared to the OMI prediction of drug 

response at 72 hours post-treatment in patient-matched organoids. Four patients whose organoids 

exhibited a homogeneous response to the patient’s prescribed therapy were classified as “predicted 

responders” (Fig. 5.4). Representative redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 images demonstrate 

the morphological variety as well as a decrease in size or structural integrity with treatment of 

organoids generated from these patients (1, 2, 6, and 14) (Fig. 5.4A-D). Representative images of 

collapsed organoids that lose their hollow morphology (Fig. 5.4C,D), are the result of treatment 

sensitivity and are generally not present in untreated cultures. Furthermore, the OMI index reflects 

an organoid response to the prescribed treatment for these patients (p<0.0001) (Fig. 5.4E-H). 

Glass’s Δ effect size was calculated for each treatment’s OMI index value in addition to statistical 

significance, and was found to be consistently greater than 0.75 for these patients. Cellular 

population density modeling of organoids from Patients 1, 2, 6, and 14 did not reveal distinct 

metabolic subpopulations of response (Fig. 5.4I-L). In each case, one homogeneous population of 

response was found. Fibroblasts co-cultured with organoids from Patients 2 and 14 also showed 

homogeneous response to the patient’s prescribed therapy (Appendix C Fig. C.10). 
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Figure 5.4. Organoids of Patients 1, 2, 6, and 14 exhibit homogeneous response to patient 

therapy. A-D, Representative redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 images of pancreatic 

organoids from Patients 1 (A), 2 (B), 6 (C), and 14 (D). Left columns indicate control organoids, 

and right columns indicate organoids treated with the same drugs as the patient adjuvant treatment. 

Scale bar is 50 μm. E-H, The effect of the same drugs on the OMI index averaged across all cells 

in organoids derived from Patient 1 (E), 2 (F), 6 (G), and 14 (H). Error bars indicate mean ± SEM. 

* p<0.0001. I-L, Single-cell OMI index subpopulation analysis of treatment response in organoids 

from Patient 1 (I), 2 (J), 6 (K), and 14 (L). 

 

Three patients (3, 8, and 18) whose organoids exhibited treatment response heterogeneity 

were classified as “predicted non-responders” (Fig. 5.5). Representative images show a lack of 

apparent response in terms of OMI endpoints (Fig. 5.5A-C). On average, cells from Patient 3 and 

8 organoids did not respond to the patient’s prescribed treatment (p<0.05 increase in OMI index 

and no significant change, respectively, Fig. 5.5D,E). Unlike 3 and 8, the OMI index of Patient 

18’s organoid cells significantly decreased with treatment (p<0.0001, Fig. 5.5F), but further OMI 

analysis also predicts poor response for this patient. The treatment effect size was small (Glass’s 
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Δ < 0.3) in organoids for all three patients, and all exhibited multiple subpopulations of tumor cells 

post-treatment, some of which overlapped completely with control distributions or contained OMI 

index values above control (Fig. 5.5G-I). Patient 3 organoids treated with gemcitabine and 5-FU 

exhibited a drug-responsive minority subpopulation with a smaller OMI index than the mean of 

the control population (yet still within the control distribution), but also a larger drug-resistant 

subpopulation that had a higher OMI index than the mean of the control population (Fig. 5.5G). 

Patient 8 organoids contained high and low OMI index subpopulations that were not affected by 

5-FU treatment beyond a small increase in the percentage of cells falling in the high OMI index 

group (Fig. 5.5H). A majority of cells from Patient 18 treated with FOLFIRINOX showed response 

to treatment, but two FOLFIRINOX-resistant subpopulations remained (Fig. 5.5I). Fibroblasts co-

cultured with organoids from Patient 3 also showed a lack of response to gemcitabine and 5-FU, 

along with treatment-induced metabolic heterogeneity (Appendix C Fig. C.10). 
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Figure 5.5. Organoids of Patients 3, 8, and 18 exhibit partial or no response to patient 

therapy. A-C, Representative redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 images of pancreatic 

organoids from Patients 3 (A), 8 (B), and 18 (C). Left columns indicate control organoids, and 

right columns indicate organoids treated with the same drugs as the patient adjuvant treatment. 

Scale bar is 50 μm. D-F, The effect of the same drugs on the OMI index averaged across all cells 

in organoids derived from Patient 3 (D), 8 (E), and 18 (F). Error bars indicate mean ± SEM. * 

p<0.05. G-I, Single-cell OMI index subpopulation analysis of treatment response in organoids 

from Patient 3 (G), 8 (H), and 18 (I). 

 

The time between surgical resection and the first evidence of recurrence, or recurrence free 

survival (RFS) time, was plotted for these seven patients (Fig. 5.6A). One year of follow-up data 

is available for Patients 1, 2, 3, 6, 8, and 14. Patients 3 and 8, classified as predicted non-

responders, experienced recurrences within one year. Patients 1, 2, 6, and 14, classified as 

predicted responders, each survived at least one year after surgery without a recurrence. One year 
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of follow-up data is not yet available for 18. Patients 1, 6, 14, and 18 have no signs or symptoms 

of disease at the time of this writing. Patients with a RFS >12 months had a higher OMI index 

Glass’s Δ in organoids at 72 hours post-treatment than patients with a RFS <12 months (Fig. 5.6B). 

The degree of heterogeneity, quantified by the wH-index, decreased in treated vs. control 

organoids in patients with a RFS >12 months, and increased in treated vs. control organoids in 

patients with a RFS <12 months (Fig. 5.6C). 

 

Figure 5.6. Patient clinical outcomes while on adjuvant therapy. A, Swimmer plot indicating 

the number of months without recurrence following surgical resection of the tumor and adjuvant 

treatment. Patients are classified as predicted responders and non-responders based on organoid 

response profiles. Arrows indicate that the patient continues to survive without recurrence at the 

time of publication. ‘~’ indicates the patient’s lesion was diagnosed as ampullary cancer. B, 

Patients with RFS > 12 months had higher OMI index effect sizes at 72 hours (Glass's Δ) than 

patients with RFS < 12 months (mean ± SEM). Dotted line represents proposed cutoff of Δ = 0.75. 

C, Patients with RFS > 12 months show a decrease in wH-index with treatment compared to 

control organoids. Patients with RFS < 12 months show an increase in wH-index with treatment 

compare to control organoids. Error bars not visible. N=1000 fits/group. 
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5.4.5 Dimensional reduction of single-cell OMI data reveals organoid cell clustering by patient of 

origin 

UMAP dimensional reduction analysis was performed on the OMI variables of organoid 

cells imaged at all time points (45,752 cells) to determine whether cells from different patients 

exhibited unique metabolic profiles (Fig. 5.7). Cells from the same patient generally clustered 

together (Fig. 5.7A). Some patients (e.g. 6, 13, 17) formed a primary cluster and a secondary, 

smaller cluster. Plotting control and treated cells separately revealed that these secondary clusters 

occurred due to drug treatment (Fig. 5.7B,C). 

 

Figure 5.7. UMAP dimensional reduction analysis of organoid cell metabolism reveals 

clustering by patient. A, UMAP of all organoid cells from all time points color-coded post-

analysis by patient of origin. B, Untreated cells only. C, Drug-treated cells only. ‘^’ and ‘~’ indicate 

the patient lesion was diagnosed as PanIN or ampullary cancer, respectively. 

 

5.5 Discussion 

Pancreatic organoids can be used for drug screens directly on patient cells, which could 

enable rational treatment planning for individual patients (7-9). Organoids also provide a platform 

to discover new drugs and drug combinations to treat pancreatic cancer patients, who currently 

suffer from a severe lack of effective treatment options. Existing methods to evaluate drug 

response in organoids ignore cellular heterogeneity, which can lead to patient relapse. Thus, our 

group developed OMI as a single-cell analysis tool to detect minority subpopulations of drug-
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resistant cells existing within living organoids that would otherwise appear responsive. We have 

previously shown that OMI detects subpopulations of drug response in murine PDAC organoids 

and early treatment responses in human pancreatic organoids (7). Here, we investigate for the first 

time whether OMI measurements of early drug response heterogeneity in organoids can capture 

meaningful treatment responses in individual pancreatic cancer patients. 

Organoids were successfully generated from PDAC, precancerous PanIN, anaplastic 

carcinoma of the pancreas, and ampullary adenocarcinoma tissue samples, with equal success for 

both pre-treated and treatment-naïve samples. While some time is required to establish healthy 

organoids for drug screening, OMI measurements began within a 4-12 day window of the patient’s 

surgery. This is crucial for generating individualized treatment plans because pancreatic cancer is 

often advanced at diagnosis, and any delay to receiving effective therapy may increase mortality. 

Three independent OMI endpoints (redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚) were quantified in 

response to panels of standard drugs (gemcitabine and 5-FU) and experimental targeted therapies 

that have shown promise in pancreatic cancer (TAK-228 and ABT-263) (Fig. 5.1). Each OMI 

endpoint captures unique metabolic information (27), and quantitatively combining these three 

independent measurements into the OMI index provides a technique to evaluate early metabolic 

response to treatment. An oncologist could use this technology to quickly determine if a patient 

would benefit from experimental targeted therapies over standard chemotherapies, rather than 

waiting for standard chemotherapy to fail while exposing the patient to unnecessary toxicities.  

OMI was used to track drug response at the single-cell level over a time course of treatment 

for 11 pancreatic cancer, PanIN, and ampullary cancer patients (Fig. 5.2). Time courses are vital 

to evaluate response, because cells often evolve mechanisms of drug resistance that are not 

immediately apparent. For example, Patient 17 organoids initially responded to 5-FU (p<0.05 vs. 
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control, Glass’s Δ = 1.66 at 24 hours), but became resistant at day 7 (p>0.05 vs. control, Glass’s Δ 

= -0.04). This is a major advantage of OMI over methods that destroy the sample. Drug response 

was also evaluated using OMI in patient-derived fibroblasts, which grew along with organoids for 

most patients. The dense fibrotic extracellular matrix surrounding pancreatic tumors can hinder 

drug delivery by reducing blood flow and raising interstitial fluid pressure (60, 61). Thus, it may 

be vital to evaluate whether drugs can target both the tumor and its stromal microenvironment to 

enhance delivery (16, 17). For example, Patient 18’s organoids showed response to the 

combination of TAK-228 and ABT-263 (Glass’s Δ > 0.75) at 72 hours while co-cultured Patient 

18 fibroblasts did not, suggesting that this drug regimen could successfully kill tumor cells but 

may have difficulty reaching them. This highlights the need for OMI-organoid technology to aid 

in the discovery of new treatment strategies to target both a tumor and its stroma. Additionally, 

there were multiple instances of novel drug combinations outperforming standard chemotherapies. 

For instance, TAK-228 and ABT-263 elicited a more significant metabolic response in both Patient 

3 organoids and fibroblasts than the prescribed standard gemcitabine and 5-FU regimen.  

Our group has shown that OMI non-invasively distinguishes unique groups of cells by their 

metabolic properties in human breast cancer (36, 38), human head and neck cancer (37), and 

murine PDAC (7). Here, we performed subpopulation analysis on Patient 13 organoid cells to 

evaluate whether OMI could distinguish cells with distinct drug responses in human pancreatic 

cancer (Fig. 5.3; Appendix C Fig. C.6). Indeed, many treatments caused two distinct 

subpopulations to form in organoids within 72 hours post-treatment, including the standard 

chemotherapy regimen given to the patient prior to surgery and organoid generation (gemcitabine 

with nab-paclitaxel). This suggests that a drug-resistant cell subpopulation persisted throughout 
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the patient’s neoadjuvant treatment, and was captured in the organoids. Accordingly, pathology of 

the patient’s resected tumor indicated a poor response to gemcitabine with nab-paclitaxel.  

Conversely, targeted therapies induced single populations of homogenous response in 

Patient 13 organoids. While the combination of gemcitabine and nab-paclitaxel caused a similar 

average reduction in OMI index as the combination of TAK-228 and ABT-263, the former showed 

heterogeneity and a drug-resistant population, while the latter showed a homogeneous response. 

This suggests that this targeted therapy combination (TAK-228 and ABT-263) may have been a 

beneficial alternative for Patient 13. One month after surgery, metastasis in the liver was found on 

an ultrasound, and the patient died less than two weeks later. This highlights the need for a 

technology that can rapidly evaluate drug sensitivity in patient cells. 

Untreated Patient 13 organoids were also deep-sequenced to determine if genetic 

heterogeneity could be the source of metabolic subpopulations in untreated organoids. Our 

metabolic imaging data shows greater heterogeneity than predicted by deep sequencing, as no 

subclonal populations with pathogenic mutations were found in these organoids. This suggests that 

the OMI index heterogeneity is likely not genetic in nature, and that OMI is more effective for 

detecting divergent populations in organoid cultures than destructive sequencing techniques. This 

work also highlights the importance of metabolic heterogeneity within cancer samples to capture 

therapeutic response. At 72 hours, a subset of Patient 13 organoids were fixed and stained for 

proliferation and apoptosis markers. In some cases, OMI detected shifts in metabolism with 

treatment that had not triggered apoptosis, suggesting that metabolic changes can precede 

Ki67/CC3 indicators of cell fate, and are an earlier indicator of drug efficacy. 

The combination of gemcitabine and nab-paclitaxel was evaluated in vivo in a PDX line 

established from Patient 13 organoids. A small but transient response in average tumor growth was 



 

 

116 

 

detected (Appendix C Fig. C.9). This poor response is in agreement with the heterogeneous effect 

found in organoids using OMI. While the PDX model accurately captured the presence of drug 

resistance in Patient 13’s cells, it required months to first establish the PDX line, expand it, and 

then assess a time course of treatment. While PDX models are an important tool, our studies show 

that drug screens on organoids can provide more detailed response information with increased cost 

effectiveness in a clinically meaningful time frame.  

OMI of organoids generated from tissues collected at surgery agreed with patient outcome 

on adjuvant therapy (Fig. 5.4-5.6). Treatment response in organoids was evaluated on the basis of 

both metabolic heterogeneity in treated organoids, as well as the effect size of the OMI index 

response. For Patients 1, 2, 3, 6, 8, and 14, OMI of organoid heterogeneity predicted whether or 

not the patient survived one year post-surgery without a recurrence. Based on data from this initial 

patient cohort, a proposed OMI index effect size cutoff of 0.75, in parallel with a decrease in wH-

index could classify patients as predicted responders vs. non-responders. We cannot yet evaluate 

our prediction that Patient 18 will experience a recurrence within one year of surgery. Overall, our 

results suggest that early metabolic responses in pancreatic organoids can successfully capture the 

response of tumor cells in vivo that are not removed during surgery. In all cases, organoid viability 

yielded sufficient material to measure heterogeneity in response to the patient’s prescribed drug 

treatment and evaluate multiple alternative drug options, highlighting the potential of OMI of 

organoids to aid in drug discovery and development within diverse patient populations. While 

many other factors beyond tumor cell treatment response affect pancreatic cancer survival in the 

adjuvant setting (i.e. surgical margins, stage, grade, etc.), the organoid-OMI platform can be used 

to identify drug resistance and eliminate objectively poor drug options.  
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Finally, we used a dimensionality reduction approach to determine the influence of patient 

of origin on cellular metabolism in pancreatic organoids (Fig. 5.7). UMAP analysis was performed 

on metabolic parameters from all 45,000+ cells, completely naïve to patient of origin. These 

organoid cells clearly clustered by patient, but also show clear heterogeneity within each patient. 

This reinforces the fact that cells from a patient are metabolically heterogeneous, but more 

metabolically similar to each other than cells from other patients. This metabolic diversity between 

patients as well as within patients underlines the need for personalized medicine approaches to 

cancer treatment that incorporate single-cell metabolic measurements. 

Organoids offer a compelling platform for the interrogation of a variety of drugs ex vivo. 

This platform provides an extracellular matrix that can support co-culture of both patient-derived 

cancer cells and fibroblasts, thus creating a more robust model of human disease. OMI has many 

benefits over existing methods to assess drug response in organoids, in part because it is completely 

non-destructive and it measures unique features of cell metabolism. OMI can measure response on 

the single-cell level to assess heterogeneity as quickly as 24 hours post-treatment and can track 

dynamic responses over time. We used these optical imaging tools to show that organoid drug 

screens can assess heterogeneous drug responses in pancreatic cancer patients (and one rare 

ampullary cancer patient) within a clinically meaningful time frame. Additionally, the ability to 

detect a drug-resistant subpopulation of cells following neoadjuvant treatment failure was 

demonstrated with OMI, and alternative treatment options were evaluated. In cases where multiple 

treatment options are likely beneficial, clinicians could use this platform to select the regimen that 

presents the fewest side effects for the patient, significantly improving quality of life. Taken 

together, OMI of organoids is a sensitive, high-throughput tool to select the best treatments for 
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individual pancreatic cancer patients based on single-cell metabolic response, which could 

improve patient outcomes and enable new drug discovery.  
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CHAPTER 6 

Conclusions and Future Directions  

6.1 Summary and Conclusions 

The goal of this dissertation is to develop and characterize OMI of patient-derived 

organoids to quantify drug-induced changes in cellular metabolic heterogeneity for breast and 

pancreatic cancer personalized medicine. Selecting optimal treatment plans for individual patients 

is hindered by intratumor heterogeneity, as small cell subpopulations evade treatment and re-

establish a potentially more aggressive tumor (1, 2). Tumor organoids offer a platform for high-

throughput drug screening on breast and pancreatic cancer cells ex vivo to guide therapeutic 

decisions (3, 4). In order to account for heterogeneity, new technology to non-invasively evaluate 

subpopulations of drug response in patient organoids is needed. Current methods for examining 

subpopulations include flow cytometry, sequencing, histology, and immunolabeling, but these 

techniques require fixing or dissociating the organoids. OMI could provide an alternative that uses 

endogenous contrast to detect functional metabolic changes at the single-cell level. The 

combination of tumor organoids and OMI will enable optimal treatment decisions for individual 

patients that effectively target all subpopulations of cells within heterogeneous tumors. 

 Chapter 2 provides background information to contextualize the work presented in this 

dissertation. This chapter begins by describing treatment options for breast and pancreatic cancer 

as well as standard treatment decision-making procedures. Next, the problem of tumor 

heterogeneity is defined and its clinical implications are discussed, along with the significance of 

cell metabolism. Additionally, the advantages of using tumor-derived organoid culture for patient-

specific drug screening are given. Finally, the chapter introduces the main technological 
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components that OMI comprises, including multiphoton microscopy, fluorescence lifetime 

imaging, and endogenous metabolic contrast. 

 Chapter 3 addresses Aim 1 by characterizing previously unidentified relationships between 

FLIM signals and flux through key cellular metabolic pathways. Experiments in solution 

demonstrate that NAD(P)H FLIM can accurately quantify the relative concentration of multiple 

enzyme species in a mixture. NAD(P)H FLIM also detects changes in key metabolic pathways 

that control the path of carbon from glucose uptake to the electron transport chain in breast and 

pancreatic epithelial cell lines. The main conclusion of this chapter is that NAD(P)H FLIM is 

sensitive to changes in flux through the pentose phosphate pathway, changes in flux through the 

lactate production pathway, and rejection of carbon from the TCA cycle. These pathways can be 

upregulated in cancer to support tumor progression and drug resistance (5-9). This improves our 

ability to interpret the biochemical causes behind shifts in NAD(P)H FLIM measurements, and to 

non-invasively investigate mechanisms that allow drug-resistant cell subpopulations to evade 

treatment. Using OMI, oncologists can personalize treatment plans that target the resistance 

mechanisms in these subpopulations. 

 Chapter 4 addresses Aim 2 by comparing OMI measurements of heterogeneity in tumors 

and tumor-derived organoids in response to therapy. Immunocompetent FVB mice harboring 

allografts of the PyVmT breast cancer model were treated with a clinically relevant chemotherapy 

and targeted inhibitor and imaged in vivo. Organoids derived from PyVmT allografts were treated 

likewise and imaged. A novel weighted heterogeneity index (wH-index) was used to quantify and 

compare cellular diversity in both settings. The main conclusion of this chapter is that OMI of in 

vitro tumor organoids accurately captures in vivo heterogeneous response to treatment. 

Additionally, IHC of tumors and organoids was performed to pinpoint potential sources of 
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metabolic heterogeneity. This work supports the translation of OMI of tumor-derived organoids 

as a platform to study the effect of drugs on in vivo tumor heterogeneity, both for clinical treatment 

planning as well as basic cancer biology studies. This is an important result because standard 

methods of measuring heterogeneity in tumors require significant animal burden, are destructive 

to the cells, and do not measure metabolism in a relevant 3D microenvironment.  

 The objective of Chapter 5 is to compare OMI measurements of drug-induced 

heterogeneity in organoids with long-term treatment response in pancreatic cancer patients. An 

oncologist could use this technology to quickly determine the most beneficial treatment regimen 

for an individual patient, rather than waiting for standard drugs to fail and exposing the patient to 

unnecessary toxicities. Additionally, this tool could accelerate the discovery of new treatment 

options for pancreatic cancer, which are urgently needed. To address Aim 3, organoids were 

generated from surgically resected pancreatic lesions, and treated with a panel of relevant 

therapies. For a subset of tumor samples, this panel included the same drugs that the patient 

received following surgery. The main conclusion of this study is that OMI of early heterogeneous 

drug responses in organoids was strongly associated with patient recurrence-free survival, 

suggesting that OMI-based insights into how drugs affect the degree of cellular heterogeneity 

could be clinically relevant. Currently, oncologists do not have any a priori indications as to 

whether an individual patient will respond to a standard therapy, and thus would greatly benefit 

from this technology. 

 This dissertation characterizes OMI for monitoring heterogeneous drug responses in breast 

and pancreatic cancer patient-derived organoids. OMI utilizes endogenous metabolic contrast to 

non-invasively resolve treatment response in individual cells. This provides novel insights into 

drug effects that are not obtainable using prevailing technologies, which are inherently destructive 
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or low-resolution. These include the differentiation of responsive and non-responsive cell 

subpopulations, as well as longitudinal tracking of these subpopulations over time. These benefits 

make OMI of organoids an attractive platform for basic science, drug discovery, and personalized 

breast and pancreatic cancer treatment planning. 

 

6.2 Future Directions 

OMI to Guide Neoadjuvant Treatment in Breast Cancer 

New technologies are needed to match newly diagnosed breast cancer patients with the 

best treatment options for neoadjuvant therapy. This platform could allow oncologists to quickly 

optimize individualized treatment plans which successfully target and kill all cancer cell 

subpopulations with minimal toxicities. We have begun to test the hypothesis that OMI of cellular 

heterogeneity in organoids derived from diagnostic core needle biopsies can accurately predict 

patient response to their neoadjuvant therapy. OMI drug screen predictions of treatment efficacy 

will be validated using standard surgical pathology. An independent pathologist will evaluate 

surgical specimens and assign each patient a residual cancer burden (RCB) score and class. This 

score is based on the extent of remaining visible tumor following neoadjuvant therapy, with zero 

indicating pathological complete response (pCR), and higher scores corresponding with greater 

degrees of residual cancer. 

Viable organoids have been generated from core needle biopsies of a variety of subtypes of 

breast tumors (Table 6.1). These organoids exhibit a variety of morphologies, including hollow, 

cystic organoids and dense, solid organoids (Fig. 6.1). CellProfiler is used to mask individual 

cytoplasms and analyze cellular heterogeneity, as described in Chapters 4 and 5. 
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Table 6.1. Receptor expression and treatment status of biopsied patients. Samples 

from patients #1-22 were used to develop and optimize organoid generation and 

imaging protocols. 

 

 

Figure 6.1. Breast tumor biopsy organoid culture and imaging. A, Brightfield images of Patient 

23 organoids, featuring a hollow morphology. Scale bar = 100 μm. B, Representative NAD(P)H 

intensity image of a Patient 23 organoid (left) and masks of individual cell cytoplasms overlaid 

onto the image (right). Scale bar = 100 μm. C, Brightfield images of Patient 27 organoids, featuring 

a dense and solid morphology. Scale bar = 250 μm. D, Representative NAD(P)H intensity image 

of a Patient 27 organoid (left) and masks of individual cell cytoplasms overlaid onto the image 

(right). Scale bar = 100 μm. 

 

Breast tumor biopsy organoids are treated with a variety of standard therapies, including 

the patient’s prescribed neoadjuvant regimen, if applicable. These include trastuzumab for HER2+ 

patients, and chemotherapy combinations such as paclitaxel, doxorubicin, and cyclophosphamide 

for HER2- and triple negative patients. Treatment response is evaluated with single-cell resolution 
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in the organoids using OMI (Fig. 6.2). 
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Figure 6.2. OMI of patient breast tumor biopsy organoids. Representative images of the optical 

redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 in organoids generated from (A) Patient 23, (B) Patient 

24, (C) Patient 25, (D) Patient 26, and (E) Patient 27 breast tumor biopsies. Scale bar = 100 μm. 

 

In Patient 26 organoids, the patient’s neoadjuvant treatment regimen of doxorubicin, 

cyclophosphamide, and paclitaxel (A+C+T) significantly reduced the mean OMI index after 72 

hours (Fig 6.3A). A+C+T treatment also reduced the degree of metabolic heterogeneity present in 
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the organoids, as quantified by the wH-index described in Chapters 4 and 5 (Fig. 6.3B,C). 

Together, this suggests that this treatment is likely to be beneficial for the patient. Based on this 

data, we predict Patient 26 to experience an RCB of zero (pCR) on A+C+T treatment. Standard 

markers of proliferation (Ki67) and apoptosis (cleaved caspase-3) were quantified at the single cell 

level in organoids in response to A+C+T, which agreed with the OMI measurements of response 

(Fig 6.3D-G). 

 
Figure 6.3. OMI of Patient 26 breast tumor biopsy organoids agrees with standard markers 

. A, OMI index of Patient 26 organoids at 72 hours decreased with C+T and A+C+T treatment. B, 

OMI index cell subpopulation analysis of Patient 26 organoids at 72 hours. C, The effect of 

treatment on OMI index heterogeneity quantified by the wH-index in Patient 26 organoids. D-E, 

Representative images of control (D) and A+C+T treated (E) organoids stained for Ki67 (green, 

proliferation), cleaved caspase-3 (red, apoptosis), and DAPI (blue, nuclei). Scale bar = 100 μm. F, 

Cleaved caspase-3 staining of organoids shows differences in apoptosis between treatment 

conditions after 72 hours of treatment. G, Ki67 staining of organoids shows differences in 

proliferation between treatment conditions after 72 hours. Each dot represents one organoid. Error 

bars indicate mean ± SEM. * p<0.05 vs. control. 

 

 These early results in a diverse cohort of patients demonstrate the feasibility of making 

biologically relevant measurements of single-cell drug response in biopsy-derived organoids with 

OMI. Future studies will continue to accrue a large cohort of patients planning neoadjuvant 
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therapy. Early heterogeneous metabolic changes with treatment in organoids will be compared to 

patient treatment response to validate OMI of organoids as a predictive tool for breast cancer 

personalized medicine. 

 

Increase OMI Imaging Speed 

A limitation of OMI for high-throughput organoid drug screening is the time required. In 

order to be clinically beneficial, future work will need to address this concern. Potential solutions 

will likely involve both: 1) automating the process of locating and focusing on organoids for OMI, 

and 2) reducing FLIM acquisition time. The former could be addressed by adding lower 

magnification widefield fluorescence microscopy to automatically detect the coordinates of 

organoids for subsequent OMI. A microscope stage-compatible environmental chamber could be 

used to maintain ideal culture conditions. The latter issue, the reduction of FLIM acquisition time, 

is a topic of great importance in the field, with many solutions being pursued. For example, data 

analysis techniques to accurately report lifetimes using fewer photon counts are being established 

(10), but these have not yet been evaluated specifically for organoid OMI. Additionally,  

multiphoton FLIM systems that employ analog measurements have been developed to increase 

imaging speed (11, 12), and were recently applied to NAD(P)H metabolic imaging (13). Widefield 

microscopy techniques with a large field of view, such as structured illumination microscopy (14, 

15), could also potentially be optimized to rapidly perform single-cell OMI in organoids. 

Reduction of overall experimental time would also facilitate the screening of additional drug 

combinations, doses, and schedules. 
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Large Scale Clinical Study of Organoid-OMI Response Prediction 

 To confirm clinical utility, organoid-OMI predictions of patient-specific drug response 

need to be validated in a larger cohort of breast and pancreatic cancer patients. To increase 

enrollment, multiple institutions would ideally collaborate to share fresh tissue samples and 

clinical follow-up data. Initial studies would continue to be prospective and observational in 

nature, where individual patient-drug pairs are classified into categories of predicted response. 

With a larger dataset in hand, the methodology for classification can be optimized. For example, 

the current formulas for calculating the OMI index or the treatment effect size may require fine-

tuning to improve patient response classification. 

Once validated using a sufficient number of patients, a clinical trial would be designed to 

confirm that guiding treatment choices in patients with OMI of organoids improves patient 

outcome over standard of care. In one arm, high-throughput drug screens would be performed on 

patient organoids and evaluated with OMI to select the optimal treatment. In the control arm, 

patients would be treated by the current standard of care. Clinical outcome data would be analyzed 

to determine whether this personalized medicine approach can improve response rate and overall 

survival while reducing toxicity.  

 

Tracking Metabolism of Individual Cells Over Time 

OMI is non-destructive, and thus could be used to track how an individual tumor or 

organoid cell responds metabolically to treatment over time. By acquiring repeated OMI images 

of the same field of view over time and registering cells between images, cells could be 

individually classified based on their temporal profile of response. This could distinguish between 

cells that: respond gradually, respond acutely, are consistently resistant, or have an initial response 
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followed by consistent resistance. For example, this analysis could be used to determine whether 

a cell which appears to be responding to treatment, initially had more metabolic activity which 

decreased with treatment, or had low baseline metabolic activity independent of treatment. 

Tracking time-courses of response in individual cells could provide novel insights into how 

individual subpopulations of cells in tumors and organoids react when a stress is applied. 

 

Additional Characterization of Metabolic Subpopulations in Organoids 

 OMI detects treatment-resistant subpopulations of cells within intact organoids. The 

unique biological characteristics that allow these cells to evade treatment is important to 

understand, in order to design additional treatment plans to target them. Results from Chapter 4 

suggest that subpopulations identified with OMI in PyVmT mouse tumor organoids represent 

metabolic differences between tumor cells, but additional studies are required to further 

characterize heterogeneity. These studies would involve imaging organoids with OMI and 

subsequently characterizing individual cells using established techniques. Examples include flow 

cytometry, mass cytometry, immunofluorescence, and immunohistochemistry. Additionally, the 

ability of OMI to correctly identify subpopulations has been validated using mixtures of 2D breast 

cancer cell lines (16), but this should also been confirmed in 3D. These studies could also take 

advantage of exogenous fluorescent reporters to quantify metabolic properties of single live cells, 

such as glucose uptake (17), pH (18), membrane potential (19), hydrogen peroxide (20), hypoxia 

(21), and NADH/NAD+ redox state (22).  

 

OMI of Organoids for Personalized Cancer Immunotherapy 

Patient-derived organoids also provide a platform to guide the optimal selection of 
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immunotherapies and study tumor-immune interactions (23). However, previous studies have used 

live and dead cell fluorescent labels and immunofluorescence to evaluate response. OMI could be 

used to non-destructively observe the activation and behavior of individual immune cells in 

response to treatment in organoids based on their unique metabolic profiles (24, 25). Future studies 

in immunocompetent animal models could validate OMI of organoids as an accurate predictor of 

in vivo immunotherapy response. 

 

Prediction of Therapy Response in Additional Cancer Types 

 Future studies will validate the ability of OMI to predict long-term therapy response in 

other cancers, such as lung, colorectal, prostate, ovarian, and skin, and neuroendocrine tumors, 

among others. Applying OMI to diseases other than cancer may be beneficial as well, especially 

where quantifying cellular metabolism is advantageous. For example, late-onset Alzheimer’s 

disease is associated with defective mitochondria, abnormal redox potential, and increased 

glycolysis (26). 

 

Further Biochemical Interpretation of NAD(P)H and FAD Fluorescence Lifetimes 

 The free and bound states of NAD(P)H and FAD have unique fluorescence lifetimes which 

can be distinguished by fitting time-resolved photon count data with multiple exponentials decays. 

Changes in 𝛼1 and 𝛼2 can thus be interpreted as changes in the ratio of free to bound molecules. 

NAD(P)H and FAD 𝜏1 and 𝜏2 are known to be affected by temperature, pH, protein-binding, and 

quenching by molecules such as O2 (27). NAD(P)H 𝜏2 is unique to the enzyme that it is bound to. 

On one hand, a key benefit of these measurements is that they are highly sensitive to many specific 

metabolic perturbations in cells. On the other hand, interpreting the specific biochemical origin 
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behind a change in 𝜏1 or 𝜏2 remains difficult. Additional experiments in cells similar to those in 

Chapter 3 will continue to increase our understanding of how changes in flux through certain 

metabolic pathways affect FLIM variables. A model could then be constructed that works in the 

reverse direction, to take changes in NAD(P)H and FAD lifetime data and determine the most 

likely metabolic underpinnings. Such a model could help identify potential pathways driving 

treatment resistance. 

 

6.3 Contribution to the Field and Societal Impact 

Contributions to Biophotonics 

 The research in this dissertation has led to a number of contributions to the field of 

biophotonics. First, the work described in Chapter 3 addresses an ongoing need to enhance the 

biochemical interpretation of autofluorescence FLIM data. Experiments using metabolic inhibitors 

demonstrate the sensitivity of NAD(P)H FLIM to key enzymatic steps that control the path of 

carbon from glucose uptake to ETC activity. It is also shown that NAD(P)H 𝜏2 is more sensitive 

to these key enzymatic steps than the NAD(P)H intensity, free NAD(P)H lifetime, or relative 

amounts of free and protein-bound NAD(P)H. This is the first study to demonstrate that NAD(P)H 

𝜏2 can distinguish NADH bound to two different metabolic enzymes in a single solution, and thus 

quantify changes in the relative activities of unique enzymes. In total, this work enhances the 

interpretability of  NAD(P)H FLIM signals, bolstering OMI as a clinically relevant tool to non-

invasively probe cellular metabolism. 

 Studies presented in Chapter 4 are the first to compare in vivo OMI measurements of drug 

response with FDG-PET imaging of glucose uptake in an immunocompetent breast cancer model. 

OMI endpoints were sensitive to treatment response in as few as 48 hours, while FDG-PET 
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imaging was not, even after 2 weeks. This provides evidence, in a relevant tumor model, that 

biophotonics techniques can be used to detect treatment response prior to standard radiology. For 

the first time, parallel treatment effects between in vivo tumor cells and organoids were 

demonstrated in an immunocompetent cancer model using OMI. This further validates that 

endogenous fluorescence signals in organoids are sensitive to physiologically relevant metabolic 

alterations. Previously, studies of cell metabolism have been primarily performed in vivo, which 

either requires significant animal burden to achieve large sample sizes, or in some cases may not 

even be feasible at all. However, these results suggest that the combination of optical technology 

and organoid culture provides a more practical and advantageous methodology. 

 Chapter 5 presents the first in-depth characterization of the optical redox ratio and 

NAD(P)H and FAD lifetimes in patient-derived pancreatic cancer organoids. This work provides 

key information strengthening the interpretation of these OMI endpoints by comparing drug 

responses in organoids to standard measures such as cell death, cell proliferation, long term tumor 

growth in xenografts, and clinical treatment outcomes in patients. The sensitivity of OMI endpoints 

to many clinically approved pancreatic cancer drugs has not been previously demonstrated in 

organoids, including nab-paclitaxel, 5-fluorouracil, oxaliplatin, SN-38, and the FOLFIRINOX 

regimen. 

 

Contribution to Cancer Biology 

 This work has a number of implications for improving future basic science research in 

cancer biology. Deregulated cellular metabolism is an emerging hallmark of cancer and expanding 

area of study (28). In order to support neoplastic proliferation, cells must reprogram their 

metabolism to effectively incorporate available nutrients (29). This dissertation provides 
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substantial evidence that OMI delivers novel insights into cancer cell metabolism to characterize 

metabolic treatment effects and identify new drugs to target metabolic deficiencies (30). For 

example, in Chapter 3, NAD(P)H FLIM was used to probe changes in the activity of LDH and 

PDH, which are key metabolic enzymes that can contribute to cancer progression and treatment 

resistance (6-9).  

Unlike standard techniques for probing cell metabolism, such as metabolite analysis, RNA 

expression, proteomics, and FDG-PET imaging, OMI can resolve the functional metabolic states 

of individual cells. In Chapter 4, OMI of heterogeneous treatment response in tumor organoids 

was shown to accurately capture in vivo changes. This platform has the potential to greatly 

accelerate basic studies of tumor heterogeneity, which currently have a number of limitations. 

First, OMI can be used to evaluate tumor heterogeneity directly in vivo under many experimental 

conditions with many replicates, but this requires an enormous number of animals. Also, extraction 

of animal model tumors for standard techniques such as flow cytometry, single-cell genetic 

sequencing, or histology prevents longitudinal studies of cellular heterogeneity evolution over 

time. Finally, even in cases where patient tumors are accessible for OMI imaging directly in vivo, 

the heterogeneous effect of only one treatment can be evaluated.  

Results presented here show that OMI of organoids can overcome these limitations. This 

technology could provide new insights into the causes and development of cancer and intratumor 

heterogeneity. The complex influences of specific genes, signaling pathways, and metabolic status 

on tumor heterogeneity and progression could be investigated using knock-out models. Three-

dimensional co-cultures of tumor cells with fibroblasts, immune cells, and other cells could be 

used to study tumor-microenvironment interactions and understand how these interactions drive 

cellular diversity. High-throughput screening can be performed on organoids to analyze how drug 
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treatment itself can drive the emergence of drug-resistant subpopulations, and identify new 

treatment strategies to prevent this emergence. For example, adaptive treatment strategies, which 

involve alternating between classes of drugs or modifying doses over time, could be tested to 

maintain a stable, drug-responsive tumor and prolong progression-free survival (31, 32). 

Chapter 4 demonstrated that PyVmT immunocompetent organoids also maintain very 

similar levels of proliferation and apoptosis as compared to the tumor of origin, along with 

expression of epithelial markers, mesenchymal markers, and the PyVmT antigen. CD45+ immune 

cells were present in organoids as well, which can affect tumor treatment response (33). In all, this 

work provides support for using organoids to model complex tumors in a relevant 

microenvironment. 

In order to quantify the degree of heterogeneity measured in a sample and compare between 

experimental conditions, the wH-index was developed as a novel analysis tool to quantify the 

degree of metabolic heterogeneity present in a distribution of cells. This index incorporates the 

number of cell subpopulations, the variance of each subpopulation, their separation, and their 

relative proportions. In Chapter 4, the wH-index in drug-treated organoids predicted long term 

PyVmT tumor growth. In Chapter 5, a decrease in the wH-index with treatment in the pancreas 

organoids was associated with longer recurrence free survival. These relationships provide 

evidence that OMI-based insights into the effect of drugs on cellular heterogeneity could be 

clinically relevant. 

 

Impacts on Clinical Cancer Treatment 

 Along with the aforementioned studies of in vivo tumor metabolism and heterogeneity, the 

development of OMI for measuring drug response in organoids could also transform preclinical 
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drug development. Long-term studies of drug efficacy require an enormous number of animals 

and other resources to complete, and yet a majority of drug candidates fail by late clinical trial 

stages (34). Alternatively, OMI can be used in a high-throughput manner to screen large libraries 

of potential drug candidates on in vitro organoids, and make longitudinal measurements of drug 

response. Rather than requiring mice for every experimental condition and time point of interest, 

organoid culture can be used to test every condition with only a small amount of tumor tissue. 

Chapter 4 & 5 also demonstrate that early changes in metabolism, measured with OMI, 

significantly precede changes in in vivo tumor growth. This suggests that drug candidates could be 

evaluated in a fraction of the time compared to current methods. Additionally, the analysis methods 

presented in this dissertation incorporate single-cell heterogeneity, which is key to determining 

drug efficacy. OMI could be used to more efficiently select the most promising drug candidates 

for clinical trials, significantly reducing the time and cost required to develop new cancer drugs. 

 In particular, pancreatic cancer treatment suffers from a lack of approved drug treatment 

options, none of which have been demonstrated to cure cancer on their own. In Chapter 5, a novel 

combination of targeted therapies, TAK-228 (mTORC1/2 inhibitor) and ABT-263 (Bcl-2 and Bcl-

xL inhibitor), was tested on patient-derived pancreatic cancer organoids for the first time. This 

combination induced significant metabolic responses to treatment across all patient organoid lines, 

and exhibited a low degree of single-cell heterogeneity. This combination shows promise for use 

in patients, demonstrating the ability of OMI to accelerate the discovery of novel treatment 

strategies. 

 An estimated 2.5 million new cases of breast and pancreatic cancer were diagnosed in 2018 

worldwide (35). Development of OMI for high-throughput drug evaluation could also 

revolutionize personalized medicine for these diseases. Organoids would be generated from tumor 
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biopsies or surgical resections, and a library of drug treatment options would be screened to 

identify the optimal choice for an individual patient. The ability to analyze heterogeneous 

responses allows drugs or drug combinations that kill all cell subpopulations to be identified and 

recommended. These studies characterize OMI measurements of drug response in primary tumor 

organoids, which accurately predicted long-term tumor response in a human-like breast cancer 

model, and agreed with long-term recurrence-free survival in pancreatic cancer patients. This work 

advances the development of OMI as a personalized medicine tool to improve patient outcomes 

and minimize unnecessary side-effects in breast and pancreatic cancer. 
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APPENDIX A 

Supplementary Material for Chapter 3 

 

Figure A.1. NAD(P)H fluorescence lifetime decay curve and fitting examples from single-

enzyme binding experiments in solution. (A-D) NADH fluorescence lifetime decay curves from 

a representative 1x1 binned pixel of solutions of 50 μM NADH alone or mixed with the indicated 

concentration of LDH. (E-H) NADPH fluorescence lifetime decay curves from a representative 

1x1 binned pixel of solutions of 50 μM NADPH alone or mixed with the indicated concentration 

of G6PDH. (I-N) NADH fluorescence lifetime decay curves from a representative 1x1 binned 

pixel of solutions of 50 μM NADH alone or mixed with the indicated concentration of MDH 

(experiments from Fig. 3.1). Screengrabs taken from SPCImage software (Becker & Hickl). Blue 

dots represent lifetime decay histogram data (y-axis = number of photons, logarithmic scale). 

Green line represents the instrument response function (IRF). Red line indicates exponential decay 

fit. t1, t2, a1, and a2, refer to 𝜏1, 𝜏2, 𝛼1, and 𝛼2 respectively (Equation 3.3). The “components” 

box determines whether decay curves are fit using the sum of 1, 2, or 3 exponential decays. The 

“shift” box gives the number of time channels between the IRF and rising edge of the fluorescence 

curve. The “scatter” box represents the contribution of signal from scattering photons, which is set 

to zero in these experiments. The “offset” box (in number of photons) represents the constant 

baseline level of light (parameter C in Eq. 3.3), and is calculated from time channels before the 

rising part of the fluorescence decay. The 𝜒2 goodness of fit values are close to 1 in all experiments, 
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indicating excellent fits to the lifetime decay curves. Deviations between fit and photon count data 

are represented by a weighted residual plot below the decay plot. 

 

 

 

Figure A.2. NAD(P)H fluorescence lifetime example images from enzyme mixture binding 

experiments in solution. (a) Fluorescence lifetime images of 50 μM NADH and 50 μM NADPH. 

(b,c) Representative images, color-coded for 𝛼2, of mixtures containing 50 μM NADH and 2.6 

μM MDH (b), and 50 μM NADH and 39.1 μM MDH (c). (d,e) Representative images, color-coded 

for 𝜏2, of NADH-MDH mixtures containing 50 μM NADH and 2.6 μM MDH (d), and 50 μM 

NADH and 39.1 μM MDH (e). (f,g) Representative images, color-coded for 𝛼2, of NADPH-

G6PDH mixtures containing 50 μM NADPH and 6.0 μM G6PDH (f), and 50 μM NADPH and 

18.9 μM G6PDH (g). (h,i) Representative images, color-coded for 𝜏2, of NADPH-G6PDH 

mixtures containing 50 μM NADPH and 6.0 μM G6PDH (h), and 50 μM NADPH and 18.9 μM 

G6PDH (i). Scale bar = 50 μm. All images binned 5x5 pixels for clarity. 
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Figure A.3. NADH fluorescence lifetime decay curve and fitting examples from enzyme 

mixture binding experiments in solution. NADH fluorescence lifetime decay curves from a 

representative 1x1 binned pixel of 50 μM NADH alone or mixed with the indicated concentrations 

of LDH and MDH (experiments in Fig. 3.2). See Figure A.1 legend for explanation of SPCImage 

parameters. t1-3 refer to 𝜏1, 𝜏2, and 𝜏3 respectively and are fixed according to Equation 3.4. a1-3 

refer to 𝛼𝑁𝐴𝐷𝐻−𝐹𝑟𝑒𝑒, 𝛼𝑁𝐴𝐷𝐻−𝑀𝐷𝐻, and 𝛼𝑁𝐴𝐷𝐻−𝐿𝐷𝐻 respectively (Eq. 3.4). 
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Figure A.4. Absolute activities of PDH and MDH in cells. (A-B) Mean and standard deviations 

of the absolute LDH (A) and PDH (B) activities in 106 MCF10A cells after 48 hours of 10μM 

FX11 and 48 hours of 50mM DCA treatment vs. vehicle, respectively. * p<0.05 vs. control. n = 3-

4 experiments. (C-D) Mean and standard deviations of the absolute LDH (C) and PDH (D) 

activities in 106 HPDE6 cells after 48 hours of 10μM FX11 and 48 hours of 50mM DCA treatment 

vs. vehicle, respectively. n = 3-5 experiments. 
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Figure A.5. Examples of time-dependent LDH and PDH activity with fitting. (A-B) NADH 

generated over time by LDH (A) and PDH (B) isolated from 106 MCF10A cells after 48 hours of 

10μM FX11 and 48 hours of 50mM DCA treatment vs. vehicle, respectively. Example data is from 

one single reaction from one experiment. Linear fits are calculated using first and last points in 

each reaction. The coefficient of determination (R2) accounts for all time points. (C-D) NADH 

generated over time by LDH (C) and PDH (D) isolated from 106 HPDE6 cells after 48 hours of 

10μM FX11 and 48 hours of 50mM DCA treatment vs. vehicle, respectively. Example data shown 

from one single reaction per line. 

 

 

Figure A.6. NAD(P)H fluorescence lifetime decay curve and fitting examples from MCF10A 

and HPDE6 cells. (A-D) NAD(P)H fluorescence lifetime decay curves from a representative 1x1 

binned pixel in the cytoplasm of MCF10A cells under each of the indicated metabolic inhibitor 

treatment conditions. (E-H) NAD(P)H fluorescence lifetime decay curves from a representative 

1x1 binned pixel in the cytoplasm of HPDE6 cells under each of the indicated metabolic inhibitor 

treatment conditions (experiments in Fig. 3.3-3.9). See Figure A.1 legend for explanation of 

SPCImage parameters. 
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Figure A.7. NAD(P)H fluorescence lifetime decay curve and fitting examples from starved 

MCF10A fed with pyruvate or lactate. NAD(P)H fluorescence lifetime decay curves from a 

representative 1x1 binned pixel in the cytoplasm of MCF10A cells that have been starved or fed 

the indicated fuel source (experiments in Fig. 3.10). See Figure A.1 legend for explanation of 

SPCImage parameters. 
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Table A.1. Sources of variability in NAD(P)H FLIM measurements. Coefficients of variation 

and proportion of variation due to fitting uncertainty for NAD(P)H 𝜏2, 𝜏1, and 𝛼1 for each 

treatment condition in both cell types. The variation of NAD(P)H 𝜏1, 𝜏2, and 𝛼1 in each 

cell/treatment group within an individual pixel due to fitting was calculated by simulating decay 

curves with 𝜏1, 𝜏2, and 𝛼1 values that represented the measured values in each cell/treatment group 

(Fig. 3.7-3.9). For each of the 8 conditions, 65,536 curves were simulated using MATLAB 

(MathWorks) and random Poisson noise (square root of the number of photons) was added to each 

curve. The number of photons and the SNR of the simulated curves represent those acquired in 

our cell experiments. Each curve was fit in SPCImage (Becker & Hickl) and the standard deviation 

of the new fitted parameters was used to determine the coefficient of variation of fitting within a 

pixel. Coefficients of variation between experimental replicates, between cells within an 

experiment, and between pixels within a single cell (all factors that make up biological variation) 

were also quantified for each condition by calculating the coefficient of variation (ratio of standard 

deviation to mean). The proportion of total variance (sum of squared coefficients of variance) of a 

lifetime parameter that can be attributed to variability within a pixel (squared coefficient of 

variance within a pixel) was calculated and is displayed for each treatment condition and cell type. 
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APPENDIX B 

Supplementary Material for Chapter 4 

 

Figure B.1. Decreased expression of pPRAS40 with treatment in PyVmT tumors and 

organoids. A-B, Example histology and spectral unmixing of pPRAS40 expression in PyVmT 

tumors treated with vehicle (A) and paclitaxel and XL147 (P+X) for 48 hours (B). C-D, Examples 

of pPRAS40 expression in PyVmT organoids treated with vehicle (C) and XL147 for 72 hours 

(D). 4x scale bar = 1 mm. 20x scale bar = 200 μm. 
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Figure B.2. OMI index heterogeneity in individual PyVmT tumors. Distributions of drug 

response at the single-cell level for (A) vehicle and (B) P+X treated tumors. 
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Figure B.3. OMI of drug response heterogeneity in PyVmT organoids at additional time 

points. A-B, OMI index quantified at the single cell level at (A) 24 hours and (B) 48 hours of 

treatment. N=6 organoids/group. N>290 cells/group. Error bars indicate mean ± SD. * p<0.0001 

vs. vehicle. C-D, Example subpopulation analysis of the OMI index in all organoid cells at (C) 24 

hours and (D) 48 hours of treatment. Brackets in legend indicate number of subpopulations for 

each group. 
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Figure B.4. OMI endpoints of drug response in single cells. Normalized redox ratio, NAD(P)H 

𝜏𝑚, and FAD 𝜏𝑚 at (A) 24 hours, (B) 48 hours, (C) 72 hours in PyVmT organoids, and at (D) 48 

hours in PyVmT tumors. Error bars indicate mean ± SD. * p<0.0001 vs. vehicle. Each dot 

represents one cell. 
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Figure B.5. Coefficients of variation of OMI variables across individual cells. A-B, 

Coefficients of variation (standard deviation divided by the mean, CV) of each OMI variable 

across all cells imaged (A) in vivo and (B) in tumor-derived organoids. C, CV of each OMI variable 

within each tumor in vivo. Each row represents a tumor. D, CVs of each OMI variable within each 

treatment group in organoids. Each row represents a treatment group. E, CVs of each OMI variable 

within each field of view (FOV) imaged in vivo. Each row represents a FOV. F, CVs of each OMI 

variable within each organoid. Each row represents an organoid. 
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Figure B.6. Automatic cell segmentation and quantification in PyVmT tumors and organoids 

with histology. Examples images of (A) CC3, (B) pHH3, (C) CD45, and (D) αSMA expression 

in 20x histology images of PyVmT tumor and organoids. Scale bar = 200 μm.  
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APPENDIX C 

Supplementary Material for Chapter 5 

Table C.1. Characteristics of patient tissue samples acquired from surgical resection of 

pancreatic lesions. RFS, recurrence-free survival. Asterisk indicates that a recurrence has 

occurred.  
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Figure C.1. Metabolic perturbation with cyanide validates OMI and organoid viability. A, 

Representative redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚 images of Patient 1 pancreatic organoids 

before and after 6mM cyanide treatment. Scale bar is 100 μm. B, Optical redox ratio increases 

with cyanide. C, NAD(P)H mean lifetime decreases with cyanide. D, FAD mean lifetime increases 

with cyanide treatment. Error bars indicate mean ± SD. * p<0.05. N=4 pancreatic organoids 

comprising 64 cells. 
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Figure C.2. Effect sizes of drug treatment on individual OMI endpoints in organoids. A-D, 

Heatmap representation of the treatment effect size (Glass's Δ) at each time point for the OMI 

index (A), redox ratio (B), NAD(P)H 𝜏𝑚 (C), and FAD 𝜏𝑚 (D). ‘^’ indicates the patient lesion was 

diagnosed as PanIN. ‘~’ indicates the patient lesion was diagnosed as ampullary cancer. * Glass's 

Δ ≥ 0.75 vs. control. 
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Figure C.3. Effect sizes of drug treatment on individual OMI endpoints in patient-derived 

fibroblasts co-cultured with organoids. A-D, Heatmap representation of the treatment effect size 

(Glass's Δ) at each time point for the OMI index (A), redox ratio (B), NAD(P)H 𝜏𝑚 (C), and FAD 

𝜏𝑚 (D). ‘^’ indicates the patient lesion was diagnosed as PanIN. ‘~’ indicates the patient lesion was 

diagnosed as ampullary cancer. * Glass's Δ ≥ 0.75 vs. control. 
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Figure C.4. Significance of drug treatment effects on individual OMI endpoints in organoids. 
A-D, Boxplot summaries comparing the effect of all drugs between patients and time points in 

organoids on the OMI index (A), redox ratio (B), NAD(P)H 𝜏𝑚 (C), and FAD 𝜏𝑚 (D). ‘^’ indicates 

the patient lesion was diagnosed as PanIN. ‘~’ indicates the patient lesion was diagnosed as 

ampullary cancer. * p<0.05 vs. control.  
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Figure C.5. Significance of drug treatment effects on individual OMI endpoints in patient-

derived fibroblasts co-cultured with organoids. A-D, Boxplot summaries comparing the effect 

of all drugs on patient-derived fibroblasts at all time points for the OMI index (A), redox ratio (B), 

NAD(P)H 𝜏𝑚 (C), and FAD 𝜏𝑚 (D). ‘^’ indicates the patient lesion was diagnosed as PanIN. ‘~’ 

indicates the patient lesion was diagnosed as ampullary cancer. * p<0.05 vs. control. E, 

Representative OMI images of fibroblast monolayer co-cultured with organoids derived from 

Patient 3 at 24 hours of treatment. 

 

 

 

Figure C.6. Population distribution modeling in response to additional drugs in Patient 13 

organoids. Normalized density distributions of the OMI index of individual cells after 72 hours. 

Bracketed number indicates number of subpopulations.  

 

 
Figure C.7. Dual immunofluorescence of cell fate in pancreatic organoids. Composite images 

of Patient 13 organoids stained for Ki67 (green), cleaved caspase-3 (red), and DAPI (blue). A, 

Control organoids. Scale bar is 100 μm. B, organoids treated for 72 hours with the combination of 

TAK-228 and ABT-263. 
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Figure C.8. Correlation between OMI index, proliferation, and apoptosis in pancreatic 

organoids. OMI index positively correlates with percentage of cells expressing Ki67 (filled 

circles). OMI index does not significantly correlate with percentage of cells expressing CC3 (open 

squares). Each dot represents the average value for one treatment group of Patient 13 organoids at 

72 hours of treatment. N=8 conditions. 

 

 

 
Figure C.9. Growth response to gemcitabine and nab-paclitaxel combination therapy in 

tumors grown from Patient 13 organoids in athymic nude mice. Error bars indicate mean ± 

SEM. * p<0.05 vs. control. N>20 tumors per group at day 7, N>13 tumors per group at day 14 and 

beyond.  
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Figure C.10. Response to patient adjuvant therapy in patient-derived fibroblasts. A-C, 

Representative redox ratio, NAD(P)H 𝜏𝑚, and FAD 𝜏𝑚. images of fibroblasts co-cultured with 

organoids from Patients 2 (A), 3 (B), and 14 (C). Left columns indicate control fibroblasts, and 

right columns indicate fibroblasts treated with drugs matched to the patient’s adjuvant treatment. 

G+F = gemcitabine + 5-FU. Scale bar is 50 μm. D-F, The effect of the same drugs on the OMI 

index averaged across all fibroblasts derived from Patient 2 (D), 3 (E), and 14 (F). Error bars 

indicate mean ± SEM. * p<0.0001. G-I, Single-cell OMI index subpopulation analysis of treatment 

response in fibroblasts from Patient 2 (G), 3 (H), and 14 (I). 


