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CHAPTER I 

 

INTRODUCTION TO DEVELOPMENTAL SIGNALING PATHWAYS 

Introduction 

 
 The fundamental processes of metazoan development are widely conserved 

throughout the animal kingdom. Among the conserved components are two critical 

developmental pathways, the Wnt signaling pathway and the Notch signaling pathway. 

These pathways are similar in many ways, including ligand-dependent activation of the 

pathway in wild-type conditions, key transcriptional co-activators which form 

transcriptional activation complexes, and a downstream effector protein in which the 

stability of the protein is tightly regulated in order to regulate the transcriptional activity 

of the pathway. Because these developmental pathways regulate organismal growth 

and development, they can potentially be co-opted when key regulatory genes are 

mutated. Both the Wnt pathway and the Notch pathway are very often misregulated in 

human cancers. In this work, Chapter I sets the historical and scientific foundation for 

key mechanistic questions in both the Wnt and Notch pathways which are explored in 

greater mechanistic detail in Chapters III and IV. Chapters V and VI conclude with 

discussion and future directions from the findings presented in this document. 

Cell Signaling and Signal Transduction of Developmental Pathways 

Cell signaling is a form of cellular communication in which cells interact with their 

surroundings, process this information, and provided an appropriate response to these 
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signals. The process in which a cell recognizes, processes, and responds to a signal is 

called signal transduction. 

The process of signal transduction regulates and coordinates all metazoan 

developmental processes. Metazoan organismal development is a highly regulated and 

coordinated series of signal transduction events between cells and other cells which 

cooperate to form a fully functional reproducing animal. 

One of the earliest studies involving signal transduction and development comes 

from the work of Hans Spemann in the early 20th century. In this seminal work, 

Spemann, along with Hilde Mangold, showed that transplantation of the dorsal lip of the 

blastopore of an amphibian embryo beginning gastrulation onto the other side of 

another developmentally staged embryo resulted in the formation of two body axes in 

the grafted embryo, producing a mirror image twin. One of these axes was formed by 

the endogenous dorsal lip of the blastopore while the other was formed by the 

transplanted dorsal lip tissue. The transplanted dorsal lip induced the formation of a 

complete dorsal axis in a location that normally forms the ventral side of the embryo. 

Due to its inductive potential, the dorsal lip of the amphibian blastopore was termed the 

organizer (Spemann and Mangold, 1938; Spemann and Mangold, 2001). This landmark 

discovery provided major evidence that cells signal to each other and that these signals 

can induce cooperative growth and development. Because of this work, Spemann was 

awarded the Nobel Prize in Medicine or Physiology in 1935. 

 Currently, 18 signal transduction pathways have been identified (Gerhart, 1999). 

These signaling pathways typically have conserved structural mechanisms in order to 

transduce the signal. Some type of ligand is released into the extracellular environment  
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or expressed at the surface of the siganal-sending cell and binds to a cell surface 

receptor. This ligand-bound receptor gets activated. Then, the activated receptor 

transduces the signal intracellularly. Finally, intracellular signal transduction occurs 

through secondary messengers which send the signal through the cell via other 

messengers to ultimately induce a physiological response. 

 Current evidence suggests that 5 of the 18 currently known signaling pathways 

control developmental processes (Gerhart, 1999). As metazoans evolved multi-

cellularity, a means of signaling between these multiple cells also evolved in order to 

facilitate communication between these cells. These cell-cell signaling pathways that 

evolved in response to multicellularity are the developmental signaling pathways that 

are conserved throughout all metazoans. Two of these developmental pathways, the 

Wnt/β-catenin signaling pathway and the Notch signaling pathway, will be described in 

more detail later in this document. This dissertation will focus primarily on Notch 

signaling. 

 The description of these signaling processes as “pathways” paints an inaccurate 

picture of the diversity and complexity of metazoan development. These signaling 

processes, rather than being discrete, independent “pathways”, are interconnected, 

forming a signaling “network”. Abundant evidence exists that there is crosstalk between 

these “pathways”, in which the activation or non-activation of a receptor of one pathway 

affects another pathway (van Amerongen and Nusse, 2009). In this chapter I will 

describe the history and importance of Wnt/β-catenin signaling, the history and 

importance of Notch signaling, and the evidence of cross-talk between the two that links 

them into a signaling network. 
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Historical Significance: Wnt Signaling in Development and Disease 

 The canonical Wnt/β-catenin signaling pathway plays a critical role in cell fate 

determination, cell proliferation, cell polarity, and cell death during embryonic 

development and in tissue homeostasis in adults. The Wnt pathway is named for its 

ligands, the Wnt family of secreted glycoproteins, was discovered nearly 40 years ago. 

The history of Wnt/β-catenin signaling highlights the roles of this pathway in both 

development and disease. Many of the details of Wnt/β-catenin signaling can be found 

in other reviews [reviewed in (MacDonald et al., 2009; Saito-Diaz et al., 2013)]. 

 In 1976, Sharma and Chopra described a Drosophila melanogaster mutant which 

had absent or reduced wings and halteres, which they named wingless (wg). Based on 

the mutant phenotype, they hypothesized that the wingless locus played a critical role in 

development (Sharma and Chopra, 1976). This hypothesis was confirmed in 1980 when 

Wieschaus and Nusslein-Volhard identified wg as a segmentation gene in a Drosophila 

mutagenesis screen for gene required in segmentation(Nusslein-Volhard and 

Wieschaus, 1980). For this landmark discovery in developmental biology, Nusslein-

Volhard and Wieschaus were awarded the Nobel Prize in Physiology or Medicine in 

1995. 

Several years later, Nusse and Varmus conducted a forward genetic screen to 

identify genes which could lead to tumorigenesis. They used mouse mammary tumor 

virus (MMTV) insertion sites and identified a locus termed int-1, short for integration-1, 

which induced mouse mammary tumors (Nusse et al., 1984; Nusse and Varmus, 1982). 

Later, comparative genomic studies identified wg and int-1 as homologs, and the name 
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was merged into the mnemonic Wnt (Nusse et al., 1991). The injection of int-1 in 

Xenopus embryos induced the formation of a secondary body axis, confirming the role 

of int-1 as both an oncogene and a critical component of vertebrate early axis formation 

(McMahon and Moon, 1989a; McMahon and Moon, 1989b). These studies take 

together suggest that the Wnt proteins play a critical role in normal development as well 

as a critical role in carcinogenesis. 

Drosophila mutagenesis screens (similar to the one described earlier from 

Nusslein-Volhard and Wieschaus) played an important role in identifying components of 

the Wnt/β-catenin signaling pathway (Nusslein-Volhard and Wieschaus, 1980). In the 15 

years after that initial publication, key Wnt pathway components such as armadillo (the 

Drosophila homolog of β-catenin), dishevelled (Dsh), shaggy (the Drosophila homolog 

of glycogen synthase kinase 3, GSK3), frizzled (Fz), and arrow (the Drosophila homolog 

of LRP5/6) (Bhanot et al., 1996; Klingensmith et al., 1994; Riggleman et al., 1990; 

Riggleman et al., 1989; Siegfried et al., 1992; Wehrli et al., 2000) were identified. 

The Wnt/β-catenin pathway was then linked to the formation of the Spemann-

Mangold organizer referenced earlier in this chapter (Spemann and Mangold, 1938). 

Injection of Wnt-1 and XWnt8 into Xenopus blastomeres induces a secondary axis due 

to a second organizer (Smith and Harland, 1991; Sokol et al., 1991). This secondary 

axis formation was also phenocopied using other Wnt/β-catenin pathway components 

(Dominguez et al., 1995; Fagotto et al., 1999; Guger and Gumbiner, 1995; He et al., 

1995; Sokol et al., 1995). Many of these other components were identified by their 

effects on vertebrate development, such as Axin (Zeng et al., 1997), APC (Munemitsu 

et al., 1995; Rubinfeld et al., 1993), and the co-receptor LRP5/6 (Pinson et al., 2000; 
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Tamai et al., 2000; Wehrli et al., 2000). All of these major Wnt components can induce 

secondary axis formation in Xenopus embryos, and the axis duplication assay has 

emerged as a powerful validation tool to identify bona fide regulators of Wnt/β-catenin 

signaling.  

Many developmental signaling pathways are also critical drivers of cell growth 

and cell-cell signaling in cancer. The Wnt/β-catenin signaling pathway is no exception. 

Perturbations in Wnt/β-catenin signaling lead to a large number of diseases, varying 

from congenital birth defects to multiple types of cancer [reviewed in (MacDonald et al., 

2009)]. Perhaps the most well-known connection between Wnt/β-catenin signaling and 

cancer is a genetic lesion in the Wnt pathway component APC that occurs colorectal 

cancer. In familial adenomatous polyposis (FAP), a form of hereditary colorectal cancer 

(Kinzler et al., 1991; Nishisho et al., 1991), patients missing one copy of APC lose their 

second copy of APC and develop benign polyps at an early age. These polyps then 

develop other mutations and lead to invasive colon carcinoma. Later, loss of both APC 

alleles was linked to over 80% of sporadic, nonhereditary colorectal cancers (Kinzler 

and Vogelstein, 1996). Misregulated Wnt/β-catenin signaling was then found in many 

other types of cancers, including liver cancer, skin cancer, lung cancer, Wilms’ Tumor, 

breast cancer, prostate cancer, and others [reviewed in (Klaus and Birchmeier, 2008) 

and (Saito-Diaz et al., 2013)]. Developmental genetic defects can also result from 

misregulated Wnt/β-catenin signaling (Boyden et al., 2002; Gong et al., 2001; Lammi et 

al., 2004; Niemann et al., 2004; Toomes et al., 2004; Xu et al., 2004). Understanding 

the molecular mechanisms governing Wnt/β-catenin signaling is critical towards both 
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understanding the pathophysiological effects of Wnt/β-catenin misregulation and 

designing therapeutics against the Wnt/β-catenin signaling pathway. 

The Current Model of the Wnt/β-catenin Signaling Pathway 

 Wnt signaling promotes a variety of cellular responses in development, 

physiology, and disease. The original hypothesis was that Wnt signaling promotes these 

responses by activating different transcriptional target genes in different cellular 

contexts. This pathway, in which Wnt signaling activates specific transcriptional target 

genes, was previously referred to as “canonical” Wnt signaling. I have referred to it as 

Wnt/β-catenin signaling to distinguish it from other Wnt-mediated pathways. Other Wnt-

mediated pathways signal cytoplasmic changes involving the action cytoskeleton 

(Wnt/PCP pathway) and intracellular calcium stores (Wnt/Ca2+ pathway). These other 

pathways may be regulated by the tyrosine kinase receptors ROR and RYK (Nusse, 

2008). In recent years, even the simplicity of the two pathway model has been 

questioned (van Amerongen et al., 2008). These other pathways are outside the scope 

of this document. For all intents and purposes, every reference to Wnt signaling refers 

to Wnt/β-catenin signaling.  

 The Wnt/β-catenin signaling pathway, fundamentally, results in the cytoplasmic 

protein β-catenin entering the nucleus to modulate transcription. When Wnt ligand is not 

bound, β-catenin is continually degraded by the β-catenin destruction complex. The 

destruction complex consists of the scaffold proteins Axin and APC and the protein 

kinases GSK3 and Casein Kinase 1 (CK1) [Figure 1.1 (Saito-Diaz et al., 2013)].  
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Figure 1.1. The current model of Wnt/β-catenin signaling. (Left panel) In the absence of Wnt, 
cytoplasmic β-catenin forms a complex with APC, Axin, GSK3, and CK1α. β-Catenin is 
phosphorylated by CK1α and subsequently phosphorylated by GSK3. The phosphorylated form 
of β-catenin is recognized by the E3 ubiquitin ligase SCFβ-TRCP, which targets β-catenin for 
proteasomal degradation. In the absence of nuclear β-catenin, Wnt target genes are repressed. 
APC, adenomatous polyposis coli; GSK3, glycogen synthase kinase 3; CK1α, casein kinase 1 
alpha. (Right panel) In the presence of Wnt ligand, a receptor complex forms between Fz, 
LRP5/6, and Wnt. The recruitment of Dsh by Fz leads to LRP5/6 phosphorylation by CK1α and 
GSK3 followed by recruitment of Axin to LRP5/6. The latter disrupts Axin-mediated 
phosphorylation/degradation of β-catenin, leading to accumulation of β-catenin in the cytoplasm 
and its translocation to the nucleus, where it acts as a transcriptional co-activator with TCF to 
activate Wnt-responsive target genes. Fz, Frizzled; Dsh, Dishevelled; TCF, T-cell factor [Figure 
from (Saito-Diaz et al., 2013)].  
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Activation of Wnt/β-catenin signaling removes APC from the complex and 

relocalizes the other components to the plasma membrane via the adaptor Dsh, thus 

stabilizing β-catenin which enters the nucleus to mediate transcription (Figure 1). Thus, 

Wnt/β-catenin signaling can be divided into three general molecular events: (1) surface 

receptor activation, (2) inhibition of the β-catenin destruction complex, and (3) activation 

of a Wnt-specific nuclear transcriptional complex. The next sections of this document 

consider each of these steps more closely. 

Wnt/β-catenin Signaling: Surface Receptor Activation 

 The secreted Wnt proteins are cysteine-rich morphogens between approximately 

350-400 amino acids which can act in both short-range and long-range signaling. There 

are at least 19 vertebrate Wnt proteins and are capable of activating the pathway. Wnt 

ligands bind to their receptor Frizzled (Fz). The structural basis of Wnt-receptor 

interactions has been characterized (Janda et al., 2012). All of the Wnt ligands contain 

an N-terminal signal peptide for secretion and are N-linked glycosylated (Smolich et al., 

1993; Takada et al., 2006; Willert et al., 2003). The N-glycosylation of the Drosophila 

Wnt homolog Wg is stimulated by lipid modifications (Tanaka et al., 2002). Early studies 

suggested that glycosylation of Wnt was dispensable for Wnt activity (Mason et al., 

1992), but more recent studies have demonstrated the requirement of glycosylation for 

Wnt secretion (Komekado et al., 2007; Kurayoshi et al., 2007). 

 The Wnt proteins contain multiple charged amino acids and undergo lipid 

modifications which are required for activity (Bradley and Brown, 1990). Wnt3a protein 

(and by extension Wnts in general) is acylated with a palmitate at Cys77 and a 

palmitoleate at Ser209 (Takada et al., 2006; Willert et al., 2003). Interestingly, the 
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crystal structure of the Wnt/receptor complex shows Cys77 engaged in disulfide 

bonding and the palmitoleate at Ser209 docked inside a hydrophobic groove on a 

cysteine-rich domain (CRD) of the receptor, playing a direct role in Wnt-receptor 

interaction (Janda et al., 2012).  

 These lipid modifications of Wnt are mediated by an endoplasmic reticulum (ER)-

embedded, multi-pass transmembrane O-acetyl transferase known as Porcupine (Porc) 

[reviewed in (MacDonald et al., 2009; Port and Basler, 2010; Saito-Diaz et al., 2013)]. 

Porc was initially identified in Drosophila as a segment polarity gene was the first gene 

shown to be required in Wnt-secreting cells. Loss-of-function of Porc leads to 

accumulation of Wnt in the ER (Kadowaki et al., 1996; van den Heuvel et al., 1993) and 

overexpression of Porc results in a high percentage of Wnts that are lipid-modified (Galli 

et al., 2007). The p24 family of proteins is required for modified Wnts to get transported 

from the ER to the Golgi (Buechling et al., 2011; Port et al., 2011). Once in the Golgi, 

the trans-Golgi seven-pass transmembrane protein Wntless (Wls transports Wnt from 

the Golgi to the plasma membrane. Wls binds to the palmitoylated Ser209 which is 

mediated by Porc (Herr and Basler, 2011). WIs is recycled back to the plasma 

membrane via a protein complex known as the retromer. The retromer complex routes 

WIs back from endosomes into trans-Golgi in a retrograde manner (Coudreuse et al., 

2006; Port and Basler, 2010). WIs gets degraded in the endosome in the absence of the 

retromer complex (Yang et al., 2008). The addition of exogenous WIs bypasses the 

requirement of the retromer (Franch-Marro et al., 2008; Port et al., 2008) Together, 

Porc, Wls, and indirectly, the retromer complex, form a pathway critical for secretion of 

Wnt ligands (Figure 1.2).  
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Figure 1.2. Synthesis and export of Wnt ligand. Wnt ligand undergoes multiple posttranslational 
modifications in the ER. Glycosylation and palmitoylation of Wnt ligand (the latter mediated by 
the transmembrane protein Porc) are required for its translocation to the Golgi apparatus. 
Palmitoylation of Wnt allows it to bind Wls, which provides a mechanism for transportation to the 
plasma membrane. The retromer complex recycles Wls from the plasma membrane back to the 
Golgi [Figure from (Saito-Diaz et al., 2013)]. 
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The soluble Wnt ligands bind to the Frizzled (Fz) family of seven transmembrane 

domain receptors, which share structural features with G-protein coupled receptors 

(GPCRs). Biochemical experiments showed that Wnt binds to the CRD domain of Fz 

with a binding affinity in the low nanomolar range (Bhanot et al., 1996; Hsieh et al., 

1999). Because of Fz’s topological similarity to classical GPCRs, heterotrimeric G-

protein signaling has been hypothesized as critical in transducing Wnt signaling. A link 

between G proteins and Wnt signaling has been suggested in several studies. First, in 

Drosophila, studies suggest that Gαo transduces signaling through Fz and interacts with 

the scaffold protein Axin to promote its localization to the plasma membrane (Egger-

Adam and Katanaev, 2009; Katanaev et al., 2005). In mammalian cell culture, depletion 

of Gαo and Gαq inhibited Wnt/β-catenin (Liu et al., 2005). Reconstitution experiments in 

Xenopus egg extract show that Gαo, Gαq. Gαi2, and Gβγ can inhibit β-catenin 

phosphorylation and turnover. Gβγ was proposed to promote GSK3 recruitment to the 

membrane that enhanced low-density lipoprotein receptor-related protein 6  (LRP6) 

phosphorylation and activation (Jernigan et al., 2010).  

 LRP5 and LRP6 are functionally redundant single pass transmembrane 

receptors which serve as co-receptors of Wnt/β-catenin signaling (Pinson et al., 2000; 

Tamai et al., 2000; Wehrli et al., 2000). In Drosophila wingless signaling, the lone LRP 

family member is known as Arrow. Although there have been some differences in 

potency, LRP5 and LRP6 were shown to be mechanistically nearly identical in the 

Wnt/β-catenin signaling pathway, despite some differences during development (He et 

al., 2004; Mi and Johnson, 2005). Biochemical and structural studies have shown that 
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different Wnt ligands bind to different extracellular domains of LRP5/6 (Ahn et al., 2011; 

Bourhis et al., 2010; Chen et al., 2011; Cheng et al., 2011). Wnt binding to Fz and 

LRP5/6 leads to the production of phosphatidylinositol 4,5-biphosphate (PIP2) (Pan et 

al., 2008). The production of PIP2 has been hypothesized to promote the 

oligomerization and clustering of Fz and LRP6 into “signalosomes” upon activation of 

Wnt/β-catenin signaling. The in vivo physiological significance of signalosome formation 

is still being investigated (Bilić et al., 2007; Cong et al., 2004b). PIP2 production also 

promotes recruitment of destruction complex components to LRP5/6 on the plasma 

membrane, possibly through Amer1/WTX (APC membrane recruitment 1 or Wilms 

tumor gene on the X chromosome), a tumor suppressor in Wilms’ tumor which binds to 

Axin and GSK3. Amer1/WTX’s recruitment to the plasma membrane is PIP2- dependent 

(Major et al., 2007; Tanneberger et al., 2011). The recruitment of the destruction 

complex to the plasma membrane upon Wnt binding leads to the phosphorylation of 

LRP5/6 in an event known as the “initiation step” of Wnt/β-catenin signaling (Baig-Lewis 

et al., 2007). LRP5/6 is phosphorylated by the destruction complex kinases GSK3 and 

CK1 at PPPSPxS motifs on LRP5/6 which are both necessary and sufficient to activate 

Wnt/β-catenin signaling (Davidson et al., 2005; MacDonald et al., 2009; MacDonald et 

al., 2008; Tamai et al., 2004; Wolf et al., 2008; Zeng et al., 2005). The recruitment of the 

concentration-limiting scaffold protein Axin (Lee et al., 2003) brings additional GSK3 

and CK1 molecules to the plasma membrane during the “amplification step” (Baig-Lewis 

et al., 2007). Subsequently, the activated and phosphorylated LRP6 intracellular domain 

inhibits further GSK3 activity by directly binding to it (Cselenyi et al., 2008; Piao et al., 

2008; Wu et al., 2009). This GSK3 inhibition by phosphorylated LRP6 frees up β-catenin 
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from getting phosphorylated by GSK3 and targeted for ubiquitin-mediated degradation, 

thus transducing the signal further downstream. The mechanistic relationship between 

LRP6 and GSK3 amplification and then inhibition requires further study.  

 Other molecules linked to agonizing or antagonizing Wnt/β-catenin signaling 

have been identified. There are two classes of secreted Wnt/β-catenin antagonists. One 

class, consisting of secreted Fz-related proteins (sFRPs) and Wnt inhibitory factors 

(WIFs), bind and sequester Wnt ligands and prevent their interaction with Wnt receptors 

(Bovolenta et al., 2008). The other class, made up of Dkk1 and Wise/SOST members, 

binds to LRP5/6 and blocks its interaction with Wnt ligands (Mao et al., 2002; Semenov 

et al., 2001). Other Wnt/β-catenin agonists include Norrin and R-Spondin (Kazanskaya 

et al., 2004; Kim et al., 2006; Nam et al., 2006; Wei et al., 2007; Xu et al., 2004). R-

spondin may be a driver of colorectal cancer (Seshagiri et al., 2012) and has been 

shown to bind to leucine-rich repeat-containing GPCRs 4,5 and 6 (LGR4/5/6), which are 

intestinal stem cell markers , but how this binding agonizes Wnt/β-catenin signaling is 

still unclear (Barker et al., 2007; Carmon et al., 2011; de Lau et al., 2011; Glinka et al., 

2011; Snippert et al., 2010). Recent studies suggest that R-spondin stabilizes the 

Wnt/β-catenin receptors Fz and LRP5/6 by inhibiting the activity of two E3 Ubiquitin 

Ligases, RNF43 and ZNRF3, which target Fz and LRP6 for degradation (Hao et al., 

2012; Koo et al., 2012). This stabilization of Fz and LRP5/6 potentiates Wnt/β-catenin 

signaling. Very recently, the type 1 transmembrane protein Tiki was identified in an 

expression cloning screen that perturbed axis formation in X. laevis embryos (Zhang et 

al., 2012). Tiki was identified as a novel metalloprotease that cleaves the N-terminal 8 

amino acids of mature Wnt proteins which results in the formation of large, soluble 
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oligomeric Wnt complexes due to oxidation and the formation of disulfide bonds in vitro. 

Whether the formation of these inactive Wnt complexes is how Tiki affects the Wnt/β-

catenin pathway in vivo is still unclear. 

 Another critical component of the Wnt/β-catenin pathway is the cytoplasmic 

effector protein Dishevelled (Dsh). Dsh is required genetically in Drosophila wingless 

signaling (Klingensmith et al., 1994) and there are 3 vertebrate paralogs encoded by 3 

distinct genes (Dvl1-3) (Semenov and Snyder, 1997; Sussman et al., 1994; Yang et al., 

1996). Dsh gets phosphorylated and recruited to the cytoplasmic portion of the receptor 

upon Wnt-receptor binding (Rothbacher et al., 2000; Semenov and Snyder, 1997; 

Yanagawa et al., 1995). This Dsh phosphorylation is independent of LRP6 activation 

(Gonzalez-Sancho et al., 2004). Dsh contains 3 known structural domains, the DEP, the 

PDZ, and the DIX domains. The PDZ and DIX domains have been shown to be 

important in Dsh binding to Fz (Tauriello et al., 2012; Wong et al., 2003; Wong et al., 

2000). The DIX domain is thought to polymerize and promote receptor clustering 

(Schwarz-Romond et al., 2007). Though Dsh is thought to be upstream of LRP6 in the 

Wnt/β-catenin pathway (Tolwinski et al., 2003) and can stimulate PIP2 production (Pan 

et al., 2008), in Drosophila and Xenopus egg extracts Dsh activates Wnt/β-catenin 

independently of Arrow/LRP6 (Salic et al., 2000b; Wehrli et al., 2000). In another 

invertebrate species, Caenorhabditis elegans, there is a Dsh homolog but no LRP5/6 

homolog, suggesting that Dsh might play a more critical role in different phyla (Phillips 

and Kimble, 2009). Dsh is likely regulated by ubiquitin-mediated proteasomal 

degradation through at least 3 known E3 ubiquitin ligases, the HECT-type ligases 

NEDL1 and ITCH and the SCF-type ligase KLHL12 (Angers et al., 2006; Miyazaki et al., 



16 
 

2004; Wei et al., 2012). This degradation is also mediated by the Naked2 protein as a 

co-factor (Hu et al., 2010). Additionally, the deubiquitinase CYLD (encoded by the 

familial cylindromatosis tumor suppressor gene) negatively regulated Wnt/β-catenin 

signaling (Tauriello et al., 2010). 

 These Wnt/β-catenin pathway components (Wnt, Fz, LRP5/6, and Dsh) and their 

regulators (Porc, WIs, sFRPs, WIFs, PIP2, ITCH, NEDL1, KLHL12, and others) combine 

to form a highly regulated network of plasma membrane surface proteins that are critical 

for Wnt/β-catenin signal transduction. After surface receptor activation and transduction 

of the signal, the cytoplasmic β-catenin destruction complex comes into play. 

Wnt/β-catenin Signaling: The β-catenin destruction complex 

The β-catenin destruction complex is a macromolecular machine that efficiently 

phosphorylates β-catenin and targets it for degradation. I will first describe the 

molecules involved in the formation of the β-catenin destruction complex (Figure 1.1) 

and follow with the current model of Wnt/β-catenin signaling pathway upon receptor 

activation [reviewed in (Chen et al., 2014b; Saito-Diaz et al., 2013)]. 

 The transcriptional regulator β-catenin, as mentioned earlier, is the primary 

effector of the Wnt/β-catenin signaling pathway.  In the absence of Wnt/β-catenin 

signaling, the destruction complex targets β-catenin for degradation by SCFβ-TRCP, a 

Skp1-Cullin-Fbox (SCF) E3 Ubiquitin Ligase complex family member. When Wnt/β-

catenin signaling is active, β-catenin degradation is inhibited and translocates from the 

cytoplasm to the nucleus to activate Wnt/β-catenin signaling. There are other substrates 

of the destruction complex but their physiological relevance is still unclear. β-catenin 

was originally identified in Drosophila as the segment polarity armadillo as a component 
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of the adherens junction in Xenopus (McCrea et al., 1991; Nusslein-Volhard and 

Wieschaus, 1980). Structurally, β-catenin contains a central core consisting of 12 helical 

42 amino acid armadillo repeats which form a superhelix (Huber et al., 1997). The 

unstructured N-terminal and C-terminal ends of β-catenin form dynamic interactions with 

the armadillo repeats (Xing et al., 2008). These armadillo repeats form a positively 

charged groove which regulates β-catenin’s interaction with other Wnt/β-catenin 

pathway components (i.e. APC, Axin, TCF/Lef) as well as E-cadherin (Graham et al., 

2000; Huber et al., 1997; Huber and Weis, 2001; Xing et al., 2003; Xing et al., 2004). 

The cellular signals that regulate whether newly synthesized β-catenin mediates gene 

transcription or maintains the adherens junction are not well-understood. There is 

substantial evidence that overexpression of cadherins inhibits Wnt/β-catenin gene 

transcription and promotes localization of β-catenin to the membrane (Gottardi et al., 

2001; Heasman et al., 1994; Sadot et al., 1998; Sanson et al., 1996; Shtutman et al., 

1999; Stockinger et al., 2001). Further evidence of the interplay between cadherins and 

Wnt/β-catenin signaling occurs when the proteolytic cleavage of cadherins by ADAM1- 

and presinilin-1 (a subunit of γ-secretase) activates Wnt/β-catenin target gene 

expression (Marambaud et al., 2002; Maretzky et al., 2005; Reiss et al., 2005; Uemura 

et al., 2006). Evidence for direct crosstalk between cadherins and Wnt/β-catenin 

signaling has been elusive, as E-cadherin knockdowns did not activate Wnt/β-catenin 

signaling (Herzig et al., 2007; Kuphal and Behrens, 2006). These results combine to 

suggest that there are two distinct pools of β-catenin, which is further supported by a 

study demonstrating that β-catenin can exist as a monomer and a dimer bound to α-

catenin (Gottardi and Gumbiner, 2004). The monomeric form preferentially activates 
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Wnt/β-catenin signaling and the dimeric form preferentially binds cadherins. 

Surprisingly, β-catenin’s mechanism of nuclear translocation is still unclear. 

 The scaffold protein Axin is a critical, concentration-limiting negative regulator of 

Wnt/β-catenin signaling (Lee et al., 2003). Axin is encoded by the fused gene locus in 

mice (Zeng et al., 1997). Its primary function is to serve as a scaffold for the destruction 

complex by binding to the other components and bringing them into close proximity with 

each other (Figure 1.1). Structural analysis has visualized the interactions between Axin 

and APC (Spink et al., 2000), Axin and β-catenin (Xing et al., 2003), and Axin and 

GSK3β (Dajani et al., 2003). Studies in Drosophila embryos suggest that Axin forms 

oligomers in vivo, and can potentially act as a cytoplasmic anchor  of Armadillo/β-

catenin and prevent nuclear translocation, thus inhibiting Wnt/β-catenin signaling 

(Peterson-Nedry et al., 2008; Tolwinski and Wieschaus, 2001). Axin is found at low 

concentrations and serves as the concentration-limiting component of destruction 

complex formation in Xenopus (Lee et al., 2003). The concentration of Axin plays a 

critical role in creating specificity for Wnt/β-catenin signaling as many component of the 

destruction complex play roles in other signaling pathway (i.e. GSK3) (Forde and Dale, 

2007; Lee et al., 2003). Due to the critical nature of Axin concentration on Wnt/β-catenin 

signaling, Axin protein levels are very highly regulated. GSK3 phosphorylation inhibits 

Axin degradation (Yamamoto et al., 1999), and studies in Xenopus egg extract and in 

Drosophila show that APC is required for Axin turnover, likely due to compensatory 

regulation due to fluctuation in APC protein levels (Lee et al., 2003). Axin stability is 

regulated by the E3 Smad ubiquitin regulatory factor 2 (Smurf2) (Kim and Jho, 2010) 

and the poly(ADP-Ribose) Polymerase (PARP) Tankyrase, which poly(ADP-ribosy)lates 
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(PARsylates) Axin through the addition of poly(ADP-Ribose) moieties to promote the 

ubiquitination and degradation of Axin through its poly(ADP-Ribose) moieties (Huang et 

al., 2009a). The discovery of two distinct Tankyrase inhibitors, IWR-1 and XAV939, 

which stabilize Axin and inhibit Wnt/β-catenin signaling further confirms the importance 

of Axin protein levels (Chen et al., 2009; Huang et al., 2009a). These tankyrase 

inhibitors act by inhibiting Axin PARsylation and thus inhibiting Axin turnover. Recently, 

two separate groups have identified RNF146 as the poly(ADP-Ribose)-directed E3 

ubiquitin ligase that ubiquitinates and targets Axin for degradation (Callow et al., 2011; 

Zhang et al., 2011). RNF146 directly binds to poly(ADP-Ribose) and maintains low 

steady-state levels of Axin. In addition, the deubiquitinase ubiquitin-specific protease 34 

(USP34), catalyzed the deubiquitination of Axin and increases its steady-state levels in 

cells (Lui et al., 2011). Axin can also be stabilized by SUMOylation at its C-terminus 

which inhibits ubiquitination (Kim et al., 2008). Very recently, quantitative measurements 

of Axin protein levels in a large panel of mammalian cells suggest that Axin protein 

levels dynamically regulate the dynamics of Wnt/β-catenin signaling (Tan et al., 2012). 

These results combine to strongly suggest that regulating Axin protein levels is likely a 

major mechanism for regulating Wnt/β-catenin signaling. 

 The serine/threonine kinase GSK3 is a critical regulator of β-catenin degradation. 

GSK3 is widely expressed and plays a role in many different cellular processes (Forde 

and Dale, 2007) and inhibition of GSK3 activity is critical for activation of Wnt/β-catenin 

signaling in all paradigms. The Drosophila homolog of GSK3 is called shaggy, or zeste 

white 3 (Siegfried et al., 1992). Mammals have two distinct GSK3 genes, α and β, which 

are functionally redundant in Wnt/β-catenin signaling (Doble et al., 2007). GSK3 gets its 
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name from its initial discovery in glucose metabolism as a kinase for glycogen synthase 

(Embi et al., 1980). GSK3 usually requires its substrates to be phosphorylated (or 

primed), and thus often acts in concert with other kinases. GSK3 phosphorylates β-

catenin at Ser33, Ser37, and Thr41 and this phosphorylation is required for β-catenin 

degradation (Peifer et al., 1994; Yost et al., 1996). The structure of GSK3β contains an 

activation loop which gives it its priming mechanism and a bilobed topology including a 

β-sheet domain linked to a C-terminal α-helix domain (Dajani et al., 2001; Haar et al., 

2001). GSK3 activity is also regulated by an auto-inhibitory phosphorylation at Ser9 

which blocks access to the catalytic site (Cross et al., 1995; Dajani et al., 2001). GSK3 

phosphorylates other components of the Wnt/β-catenin pathway in addition to β-catenin 

(Rubinfeld et al., 1996; Willert et al., 1999; Zeng et al., 2005). 

 The priming kinase that acts in concert with GSK3 to regulate Wnt/β-catenin 

signaling is CK1α. The CK1 family of kinases has seven different paralogs encoded by 

7 distinct genes (α, β, γ1, γ2, γ3, δ, and ε) (Knippschild et al., 2005; Price, 2006). 

Similar to GSK3, CK1 is widely expressed and plays important roles in multiple cellular 

processes. All the CK1 family members have highly similar catalytic domains, but the 

length and sequence of their C-terminal non-catalytic domains differ significantly. CK1α, 

which contains a short (~24 amino acid) C-terminal domain, appears to be an outlier 

compared with the other family members, which contain longer C-terminal tails (~200 

amino acids). CK1α, γ, δ, and ε are thought to be positive regulators of the Wnt/β-

catenin pathway through phosphorylation of pathway components (Cong et al., 2004a; 

Gao et al., 2002; Kishida et al., 2001; Lee et al., 2001; Peters et al., 1999; Sakanaka et 

al., 1999; Swiatek et al., 2004; Yanagawa et al., 1995; Zeng et al., 2005; Zhang et al., 
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2006). Some CK1 paralogs are also thought to negatively regulate the Wnt/β-catenin 

pathway (Gao et al., 2002; Hammerlein et al., 2005; Kishida et al., 2001; Liu et al., 

2002; Rubinfeld et al., 2001). CK1α phosphorylates β-catenin at Ser45 and serves as 

the priming kinase for GSK3 at the destruction complex (Liu et al., 2002). Two separate 

genome-wide S2 Drosophila RNAi screens identified CKIα as critical to suppress Wnt/β-

catenin signaling, which is consistent with the dual kinase (priming kinase followed by 

processive kinase) model at the destruction complex (DasGupta et al., 2005; Lum et al., 

2003). Consistent with this model, CK1α activation by the antihelminthic drug pyrvinium 

strongly inhibited Wnt/β-catenin signaling by enhancing β-catenin phosphorylation and 

subsequent degradation (Thorne et al., 2010). 

 The 2843 amino acid scaffold protein APC, which is 310 kDa, acts as a negative 

regulator of Wnt/β-catenin signaling. The gene was first identified as a mutation site in 

FAP, a familial form of colon cancer (Kinzler et al., 1991). Like β-catenin, APC plays 

many cellular roles and which likely occur due to different subpopulations of protein 

(Faux et al., 2008). The C-terminal region of APC regulates microtubule dynamics in 

mitosis and cell migration through binding to EB1 and Discs large (Matsumine et al., 

1996; Su et al., 1995), though this function is independent of Wnt/β-catenin signaling 

(Nathke, 2006). APC binds to β-catenin and mutations in APC increased β-catenin 

protein levels in cancer cells (Rubinfeld et al., 1993; Su et al., 1993). APC also binds to 

GSK3 and Axin (Fagotto et al., 1999; Ikeda et al., 1998; Itoh et al., 1998; Rubinfeld et 

al., 1996). In fact, overexpression of the concentration-limiting protein Axin can 

compensate for the loss of APC (Lee et al., 2003). Additionally, a mutant form of Axin 

which can’t bind to APC can still inhibit Wnt/β-catenin signaling similarly to wild-type 
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Axin, suggesting that APC isn’t strictly required for Wnt/β-catenin inhibition in the 

presence of Axin (Hart et al., 1998). Unfortunately, APC’s precise mechanistic role in 

regulating Wnt/β-catenin signaling is still unclear and several different models have 

been proposed [reviewed in (Cadigan and Peifer, 2009; Chen et al., 2014b; MacDonald 

et al., 2009; Saito-Diaz et al., 2013)]. None of the proposed models are mutually 

exclusive and the strongest evidence supports APC’s role in regulating the steady state 

levels of cytoplasmic β-catenin, but it is very likely that APC plays multiple roles in the 

Wnt/β-catenin signaling pathway similar to several other components of the pathway 

(Chen et al., 2014b; Saito-Diaz et al., 2013). APC is regulated by post-translational 

modifications such as phosphorylation (Morin et al., 1997; Rubinfeld et al., 1996; Salic 

et al., 2000b) and ubiquitination. The E3 ubiquitin ligase that targets APC for 

degradation is still unknown. APC has, however, been linked to two deubiquitinases: the 

COP9 signalosome-associated deubiquitinase, USP15, which stabilizes APC and binds 

the destruction complex(Huang et al., 2009b), and Trabid, which removes K63-linked 

ubiquitin chains from APC and acts as a positive regulator of Wnt/β-catenin signaling 

(consistent with APC being a negative regulator of Wnt/β-catenin signaling) (Tran et al., 

2008). The mechanism of K63-linked ubiquitin chains regulating APC is still unknown. 

 All the previous destruction complex components mentioned have been 

reconstituted biochemically and are considered “core” components of the destruction 

complex. Some molecular studies have identified other components which may also be 

a part of the destruction complex which have not been confirmed biochemically. One of 

these is the heterotrimeric phosphatase PP2A. Multiple studies in multiple systems have 

implicated PP2A as both an activator of Wnt/β-catenin signaling (Hsu et al., 1999; 
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Ratcliffe et al., 2000; Willert et al., 1999) but also as an inhibitor of Wnt/β-catenin 

signaling (Gao et al., 2002; Li et al., 2001; Seeling et al., 1999). It is likely that PP2A, 

similar to GSK3 and CK1, can both activate and inhibit the Wnt/β-catenin in a context-

dependent manner. Presenilin 1 (PS1), the catalytic subunit of γ-secretase, a protease 

critical in both Notch signaling and Alzheimer’s disease, has been shown to inhibit 

Wnt/β-catenin signaling (Kang et al., 2002; Killick et al., 2001). PS1 appears to function 

as an alternative scaffold to Axin to promote GSK3 phosphorylation of β-catenin and 

uses Protein Kinase A (PKA) as a priming kinase instead of CK1 (Kang et al., 2002). 

Interestingly, PS1’s ability to promote β-catenin degradation is dependent on E-

cadherin, possibly linking the hypothesized two pools of β-catenin described earlier 

(Serban et al., 2005). Other proteins that have been implicated in regulating Wnt/β-

catenin signaling through the destruction complex include PP2C, PP1, Amer1/WTX, and 

the ankyrin protein Diversin (Itoh et al., 2009; Luo et al., 2007; Major et al., 2007; 

Schwarz-Romond et al., 2002; Strovel et al., 2000). 

 The β-catenin destruction complex is evolutionarily conserved from metazoans to 

humans. Even though it is traditionally considered a cytoplasmic complex, it has also 

been found functional in the nucleus (Bienz, 2002; Cong and Varmus, 2004; Sierra et 

al., 2006; Wiechens et al., 2004). The complex is constitutively active, with cells 

constantly cycling between synthesis and degradation of β-catenin. On the surface, this 

appears to be a futile cycle of synthesis and degradation. However, the existence of 

these futile cycles in signaling is thought to be critical for more diverse modulation of 

these signals, allowing for complex behaviors such as stochastic bistability (Samoilov et 

al., 2005). Axin nucleates the formation of the complex by binding to GSK3, CK1, and 
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APC. These interactions have already been mapped (Dajani et al., 2003; Sobrado et al., 

2005; Spink et al., 2000). β-catenin then binds to APC and Axin and enters the 

assembled complex. The kinetics of complex formation and whether it is stochastic or 

ordered are still unclear (Lee et al., 2003). The phosphorylation of Axin by GSK3 and of 

APC by CK1 and GSK3 increases their respective affinities for β-catenin (Ha et al., 

2004; Willert et al., 1999). The N-terminal region of β-catenin, upon Axin binding, 

becomes positioned for phosphorylation by CK1 at Ser45. This priming phosphorylation 

leads to subsequence successive phosphorylation at Thr41, Ser37, and Ser33 (Amit et 

al., 2002; Liu et al., 2002). Phosphorylated APC competes β-catenin off of Axin and thus 

allows for a new β-catenin molecule to bind Axin, continuing the cycle (Kimelman and 

Xu, 2006). APC phosphorylation may also prevent the action of PP2A on β-catenin (Su 

et al., 2008). GSK3 phosphorylation of β-catenin causes recognition of β-catenin by β-

TRCP, a recognition subunit of SCF complex E3 ubiquitin ligases (Jiang and Struhl, 

1998; Kitagawa et al., 1999; Lagna et al., 1999; Liu et al., 1999; Marikawa and Elinson, 

1998). SCFβ-TRCP directly catalyzes the polyubiquitination of β-catenin (via K48 linkages) 

and its subsequent proteasome-mediated degradation. This degradation ensures low 

steady state levels of β-catenin are maintained to prevent aberrant signal transduction. 

One recent study shows that the HECT domain E3 Ligase EDD ubiquitinates β-catenin 

and prevents its degradation (Hay-Koren et al., 2010). The full physiological significance 

of EDD ubiquitination still needs to be elucidated.  

 The constitutively active β-catenin destruction complex becomes inhibited upon 

Wnt binding and receptor activation and β-catenin protein levels increase. The actual 

mechanistic details are still being investigated but the central unifying principle in all 
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proposed models is the inhibition of GSK3 enzymatic activity. These models are as 

follows: 1) Dissociation of the destruction complex upon Wnt activation, 2) Inhibitory 

phosphorylation of GSK3 at Ser9, 3) LRP6 Binding and direct inhibition of GSK3, 4) 

Axin degradation upon Wnt activation which prevents formation of the complex and 5) 

global inhibition of GSK3 through sequestration into multi-vesicular bodies (MVBs). The 

details of each individual model are reviewed in [(Saito-Diaz et al., 2013) and (Chen et 

al., 2014b)]. The inhibition of GSK3 and thus the β-catenin destruction complex allows 

for the accumulation of β-catenin in the cytoplasm where it eventually translocates to 

the nucleus and activates a Wnt/β-catenin specific transcriptional response. As 

mentioned earlier, β-catenin serves as the main effector of the pathway and transduces 

the signal into the nucleus. 

Wnt/β-catenin signaling: Transcriptional activation 

β-catenin accumulation in the cytoplasm, and subsequently the nucleus, was 

widely considered the driving force of Wnt/βcatenin signaling. Contrary to the prevailing 

model, recent studies have shown that the fold change, rather than the absolute 

concentration increase, of β-catenin activates Wnt/β-catenin signaling (Goentoro and 

Kirschner, 2009). The same group also showed that an approximately 2 fold change in 

β-catenin levels is sufficient to activate Wnt/β-catenin signaling (Goentoro et al., 2009). 

β-catenin does not contain any classical nuclear localization signals (NLS) or nuclear 

export signals (NES) and how its localization is regulated is still under intense 

investigation. Once it gets into the nucleus, β-catenin interacts and acts as a co-factor 

with the TCF/LEF family of transcription factors which are critical for Wnt/β-catenin 

signal transduction (Behrens et al., 1996; Molenaar et al., 1996). TCF, in the absence of 
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β-catenin, interacts with the co-repressor Groucho/transduction-like enhancer 

(Gro/TLE1-3) to repress gene transcription. TCF binds to the DNA at a Wnt-responsive 

element (WRE), of which there are over 6000 in a colon cancer cell line that regulate 

the transcription of 300-400 genes (Hatzis et al., 2008). These TCF proteins are 

regulated by post-translational modifications such as phosphorylation (Hammerlein et 

al., 2005; Hikasa et al., 2010; Hikasa and Sokol, 2011; Ishitani et al., 2003; Ishitani et 

al., 1999; Lee et al., 2001; Lo et al., 2004; Smit et al., 2004) and ubiquitination (Yamada 

et al., 2006). There is also evidence of a deubiquitinase USP4 regulating TCF4 (Zhao et 

al., 2009). In the classical model of Wnt/β-catenin signaling, the displacement of 

Gro/TLE by β-catenin causes TCF/LEF to switch from a repressor to a transcriptional 

activator. This was originally thought to be due to direct displacement (Daniels and 

Weis, 2005), but recent studies show that the X-linked inhibitor of apoptosis (XIAP) 

monoubiquitinates Gro/TLE and decreases its affinity for TCF/LEF, thus allowing β-

catenin to bind TCF/LEF (Hanson et al., 2012). 
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Figure 1.3. Nuclear TCF/β-catenin transcriptional complexes. Upon Wnt/β-catenin signaling, 
DNA-bound TCF/β-catenin recruits many other transcriptional complexes to Wnt target genes. 
Dotted lines represent interactions between the transcriptional complexes and β-catenin. 
During active Wnt target gene transcription, the co-repressor Gro/TLE cycles on and off of 
β-catenin in an XIAP-dependent manner with the other transcriptional complexes. Gro/TLE, 
Groucho/transducin-like enhancer of split [Figure from (Saito-Diaz et al., 2013)]. 
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β-catenin binds to the nuclear transcriptional co-factors BCL9 and Pygopus 

(Pygo) to mediate Wnt/β-catenin pathway-specific transcription (Figure 1.3) (Belenkaya 

et al., 2002; Parker et al., 2002; Thompson et al., 2002). Pygo, BCL9, TCF, and β-

catenin represent a core transcriptional complex required for Wnt/β-catenin transcription 

(Fiedler et al., 2008; Schwab et al., 2007; Sustmann et al., 2008). In addition, β-catenin 

also interacts with multiple proteins involved in chromatin remodeling (Mosimann et al., 

2009; Willert and Jones, 2006). Wnt/β-catenin signaling requires responses at the 

plasma membrane, in the cytoplasm via the destruction complex, and in the nucleus via 

the β-catenin transcriptional complex. The Notch signaling pathway, the other pathway I 

will be describing, shares many features in common with the Wnt/β-catenin pathway, 

including a role for ligand-receptor interactions at the membrane, cytoplasmic regulatory 

events on the primary effector of the pathway, and required transcriptional complex 

formation in the nucleus leading to transcriptional activation. In fact, the Wnt/β-catenin 

and the Notch pathway have extensive cross-talk and there is evidence that activation 

of one pathway can regulate the activation of the other pathway. These will be 

discussed later on in this chapter. 
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Historical Significance: Notch Signaling in Development and Disease 

The canonical Notch signaling pathway is a highly conserved developmental 

signaling pathway critical in cell fate determination through lateral inhibition, 

differentiation, proliferation, cell death, and neuronal development in developing 

embryos and stem cell and tissue maintenance in adults. The Notch pathway is named 

for its family of single transmembrane Notch receptors. The Notch gene was first 

identified by John Dexter in the lab of Thomas Hunt Morgan who noticed a notched 

wing phenotype in Drosophila melanogaster (Dexter, 1914). A few short years later, 

Morgan identified the mutant alleles (Mohr, 1919; Morgan, 1917; Morgan and Bridges, 

1916). Details about the Notch pathway can be found in several excellent reviews 

[reviewed in (Fortini, 2012; Kopan, 2010)]. 

 The following decades yielded genetic data indicating that the Notch locus was 

X-linked and had extremely complex allelic interactions [reviewed in (Artavanis-

Tsakonas and Muskavitch, 2010)] leading to multiple speculative hypotheses on its 

biochemical nature (Foster, 1973; Thorig et al., 1981a; Thorig et al., 1981b). The Notch 

gene was identified as a “neurogenic” mutation in Drosophila in the 1980s, linking the 

mutation to developmental phenotypes (Lehmann et al., 1983). Further confirming the 

importance of Notch signaling in development, Nusslein-Volhard and Weischaus 

conducted a series of Drosophila mutagenesis screens for embryonic phenotypes 

yielded six loci that were later identified as core components in the Notch signaling 

pathway (Nüsslein-Volhard et al., 1984; Nusslein-Volhard and Wieschaus, 1980). In the 

mid-1980s, Spyros Artavanis-Tsakanos and Michael Young independently cloned the 

Notch receptor and identified it as a single-pass transmembrane receptor and attributed 
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its wing-notching phenotype to gene haploinsufficiency (Artavanis-Tsakonas et al., 

1983; Kidd et al., 1986; Kidd et al., 1983; Wharton et al., 1985). Notch was 

subsequently cloned in other organisms, including C. elegans and Xenopus (Austin and 

Kimble, 1987; Coffman et al., 1990; Greenwald et al., 1987). These initial studies 

provided insight into the role of Notch signaling in multiple fields of biology, including 

developmental and stem cell biology, neuroscience, and cancer biology (Fortini et al., 

1993).  

 The Notch locus in Drosophila and was shown to be both pleiotropic and 

haploinsufficient. Notch loss-of-function mutations lead to a change in cell fate from 

dermoblasts to neuroblasts in Drosophila embryos. One of the major insights from the 

experiments in Drosophila embryos was the apparent necessity for the Notch-sending 

and Notch-receiving cells to be adjacent to each other (Doe and Goodman, 1985; 

Greenspan, 1990). Further studies in other tissues and other animals confirmed Notch’s 

broad pleiotropic effect and its requirement in signaling between neighboring cells. 

Proper regulation of Notch pathway is critical in nearly all cell fate decisions made 

between neighboring cells and this pleiotropic effect can be extended to multiple 

developmental processes including differentiation, proliferation, and apoptosis. The 

particular developmental process affected by Notch affects in a specific tissue is likely 

context-dependent, but it is clear that very tight regulation of Notch activity is critical for 

determining cell fates in adjacent cells. The Notch pathway is very sensitive to dosage 

effects, as loss-of-function and gain-of function mutations in Notch can often lead to the 

“same phenotype”. Notch signaling has also been associated with stem cell 

maintenance and proliferation (Austin and Kimble, 1987). Stem cell maintenance and 
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differentiation is dependent on cell-cell communication between stem cells and their 

surrounding environment, or niche, and as mentioned above, Notch is critical for 

processes that require cell-cell communication. The list of tissue-specific stem cells 

regulated by proper Notch signaling is expanding rapidly (Liu et al., 2010).  In fact, many 

Notch reviewers have termed Notch a “stem cell pathway” because of its extensive 

involvement in stem cell biology (Brack et al., 2008; Casali and Batlle, 2009; Dreesen 

and Brivanlou, 2007; Farnie and Clarke, 2006). 

 Developmental pathways are often misregulated in cancers due to their critical 

roles in cellular growth, differentiation, proliferation, and cell-cell signaling. The Notch 

pathway, similar to the Wnt pathway, is misregulated in many types of cancers. Perhaps 

the most well-characterized link between the Notch signaling pathway and 

tumorigenesis is from studies on the molecular mechanisms underlying T-cell acute 

lymphoblastic leukemia (T-ALL). Gain-of-function mutations in the Notch pathway were 

first identified in cancer in the early 1990s (Ellisen et al., 1991; Gallahan and Callahan, 

1997; Gallahan et al., 1987; Jhappan et al., 1992; Reynolds et al., 1987). These were 

the first human homologs of the Drosophila Notch gene and they were identified as a 

chromosomal translocation within T-ALL patients (Ellisen et al., 1991; Reynolds et al., 

1987). In the original study, four out of the 40 T-ALL patients had this mutation, that 

results in a dominant active, ligand-independent NOTCH1 receptor, which was termed 

TAN1 for translocation-associated Notch homolog. This discovery was the first direct 

link between Notch signaling and human cancer. A few years later, experiments using 

murine bone marrow (BM) reconstitution showed that TAN1 was causative for disease 

development. Mice transplanted with TAN1-expressing BM progenitors developed T cell 
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neoplasms two weeks after BM transplantation (Pear et al., 1996). This evidence was 

supported by in vitro studies and in vivo studies (Capobianco et al., 1997; Girard et al., 

1996). It wasn’t until the early 2000s, however, when Aster and colleagues identified 

activating mutations in NOTCH1 were present in over 50% of all T-ALL patient cases 

(Weng et al., 2004). NOTCH1 mutations were later identified in many other types of 

hematopoietic tumors as well as solid tumors [reviewed in (Ntziachristos et al., 2014; 

South et al., 2012). Interestingly, the Notch pathway has both oncogenic and tumor 

suppressive roles in human cancers in a context-dependent manner , including breast 

cancer, lung cancer, skin cancer, liver cancer, colorectal cancer, glioblastoma, AML, 

CLL, and others (Balint et al., 2005; Fabbri et al., 2011; Klinakis et al., 2011; Licciulli et 

al., 2013; Qi et al., 2003; Sun et al., 2014; Villanueva et al., 2012; Wang et al., 2011; 

Weng et al., 2004). Unsurprisingly, Notch signaling is also often misregulated in 

congenital developmental diseases consistent with its role in progenitor cell regulation 

(Eldadah et al., 2001; Garg et al., 2005; Joutel et al., 1996; Li et al., 1997; McDaniell et 

al., 2006; Oda et al., 1997; Simpson et al., 2011; Sparrow et al., 2006). Due to the 

Notch pathway’s critical roles in both development and disease, understanding the 

molecular mechanisms governing Notch signaling is critical for our understanding of the 

pathophysiological effects of Notch pathway misregulation and for designing 

therapeutics against the Notch signaling pathway. Unfortunately, many of the molecular 

mechanisms of the Notch pathway have not been fully elucidated biochemically and 

many of the present therapeutics for the Notch pathway have proven unsuccessful 

when taken to clinical trials due to non-therapeutic Notch-mediated effects in the GI 

tract and the formation of skin cancers.  
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The Current Model of the Notch Signaling pathway 

The most widely characterized pathway initiated by the classical Notch-ligand 

interaction is generally referred to as “canonical” Notch signaling. Other Notch-

dependent signaling pathways can occur independently of the processes and molecules 

required for the classical Notch pathway or through cross-talk with other pathways (such 

as the Wnt/β-catenin pathway). These other Notch pathways are referred to as “non-

canonical” Notch signaling. Details on non-canonical Notch signaling has been reviewed 

elsewhere [reviewed in (D'Souza et al., 2010; Heitzler, 2010)] and is outside the scope 

of this document. Unless specifically referred to as non-canonical, all references to 

Notch signaling refer to canonical Notch signaling.  

The Notch signaling pathway, at its core, results in the generation and 

translocation of the Notch Intracellular Domain (NICD) into the nucleus to activate a 

Notch-specific transcriptional program. In the core Notch signaling pathway, the Notch 

transmembrane receptor (existing as a heterodimer) on a signal-receiving cell interacts 

extracellularly with the canonical Notch pathway ligands Delta/Serrate/Lag-2 (DSL) on a 

neighboring signal-sending cell. This ligand-receptor interaction initiates an ADAM 10 

metalloprotease proteolysis (S2) which allows the remaining Notch receptor to be 

proteolyzed by the ubiquitously expressed protease γ-secretase (S3). This γ-secretase 

proteolysis generates the release of NICD. The S3 proteolysis can occur at the plasma 

membrane or in the early endosome, as γ-secretase is present at both cellular 

compartments. Recent studies suggest that γ-secretase is more active at the low PH of 

the early endosome. The stability of the NICD is regulated but very little is known about 

how NICD stability is regulated. Finally, the NICD translocates to the nucleus and binds 
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to the transcriptional co-activator C-promoter binding factor1 [CBF1 (also known as 

recombination signal binding protein for immunoglobulin kappa J region (RBPJ-κ)]. In 

Drosophila, CBF1 is known as Suppressor of Hairless (Su(H)) and in C. elegans, 

Longevity-assurance gene-1 (LAG-1). Collectively, this transcriptional co-factor is called 

CSL (for CBF1/Su(H)/LAG-1). The transcriptional complex, consisting of NICD, MAM, 

and CSL is thought to activate a canonical Notch-mediated transcriptional program 

[Figure 1.4, adapted from (Andersson et al., 2011)].  
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Figure 1.4. The core Notch pathway contains a limited set of components that form the signal 
transmitting chain in the pathway: a ligand (light blue), a Notch receptor (green and red) and the 
transcription factor CSL (green). In addition, some components (Furin (not shown), ADAM 10 
secretase (green lightning bolt), γ-secretase (yellow lightning bolt) and MAML (blue oval)) are 
not part of conveying the signal but are nevertheless crucial for allowing the signal to be 
transmitted from one step to the next in the pathway. Briefly, the Notch receptor is synthesized 
as a single transmembrane receptor that is Furin cleaved to yield a bipartite heterodimeric 
Notch receptor, which is presented on the cell surface of a ‘receptor-expressing’ cell. This 
receptor can be activated at the plasma membrane by binding to Notch ligands on ‘ligand-
expressing’ cells. This leads to the removal of the extracellular domain of Notch, which is then 
targeted for lysosomal degradation. The remaining portion of the receptor, termed the Notch 
extracellular truncated (NEXT) domain, undergoes sequential cleavage by ADAM secretases 
and γ-secretase as it becomes endocytosed, yielding the Notch intracellular domain (NICD). 
NICD then translocates to the nucleus where it binds the DNA-binding protein CSL 
(CBF1/Suppressor of Hairless/LAG-1) and activates the transcription of Notch target genes 
[adapted from (Andersson et al., 2011)]. 
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The Notch pathway is very unusual among signal transduction pathways 

because there is no evidence of an amplification step in between receptor activation 

and transcriptional activation. The Notch receptor also serves as the transcriptional co-

activator rather than acting through another effector protein. Interestingly, each 

activated Notch receptor generates one NICD and is consumed during the signal 

transduction process, making the Notch pathway particularly sensitive to gene dosage. 

The core Notch signal transduction pathway can be broken down into three distinct 

molecular events: 1) Notch surface receptor activation, 2) Regulation of the NICD, and 

3) Activation of a Notch-specific nuclear transcriptional complex by NICD. The next 

sections of this document will describe each of these steps in greater detail as well as 

how the non-core components regulate the Notch pathway.  

 

Notch Signaling: Surface Receptor Activation 

 The Notch receptor is a family of single pass trans-membrane receptors that is 

critical in cell-cell signaling. In mammals, there are 4 Notch receptors (called Notch1-4) 

[reviewed in (D'Souza et al., 2010)]. All of the mammalian Notch receptors share 

structural similarities (Figure 1.5). These receptors contain many of the same structural 

motifs and are likely to be regulated in a similar fashion. These Notch receptors bind to 

the cell surface expressed Delta-Serrate-LAG-2 ligands (Jagged1, Jagged 2, Delta-like 

1 (Dll1), Delta-like 3 (Dll3), and Delta-like 4 (Dll4)) (Figure 1.6).  
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Figure 1.5. The structural conservation of mammalian Notch receptors. Diagrammatic 
representation of the four known mammalian receptors. EGF: epidermal growth factor; HD: 
heterodimerization domain; ICN: intracellular domain; LNR: cysteine-rich LNR repeats; TM: 
transmembrane domain; RAM: RAM domain; NLS: nuclear localizing signals; ANK: ankyrin 
repeat domain; NCR: cysteine response region; TAD: transactivation domain; PEST: region rich 
in proline (P), glutamine (E), serine (S) and threonine (T) residues [adapted from (Pancewicz 
and Nicot, 2011)]. 
 

 

  



38 
 

The Notch receptors are translated as pre-proproteins and are cleaved by a 

Furin-like protease (S1) in the trans-Golgi network and then trafficked to the plasma 

membrane. This cleaved heterodimer is prsented on the cell surface composed of a 

large extracellular domain non-covalently linked to the intracellular domain (Blaumueller 

et al., 1997; Logeat et al., 1998). The extracellular domain of all Notch receptors 

contains different numbers of epidermal growth-factor-like repeats (EGF-like) (36 for 

Notch1 and Notch2, 34 for Notch3, and 29 for Notch4) which are critical in ligand-

receptor binding (Fig 1.5). A subset of the EGF-like repeats are calcium-binding EGF-

like repeats (cbEGF), that are required for ligand binding. Genetic experiments in 

Drosophila and cell aggregation assays have identified EGF-like repeats 11 and 12 on 

Notch as the major ligand-binding site. This region binds in a calcium-dependent 

manner but does not have full functionality, suggesting that other EGF-like repeats likely 

also contribute to ligand binding (Rebay et al., 1993; Rebay et al., 1991). Structural 

studies later indicated that EGF-like 12, via an interaction between an aromatic residue 

(Y/F/W) and a both a hydrophobic residue (I/L/V/P) with a glycine is the critical binding 

pocket for the Notch ligand in a calcium-dependent manner (Cordle et al., 2008; 

Hambleton et al., 2004). Additionally, the relative strength of receptor-ligand binding can 

be modulated by post-translational modifications of these EGF-like repeats. O-

glycosylation of the EGF-like repeats, including the addition of O-fucose and O-glucose 

on EGF-like repeat 12, primes the Notch receptor for further modification (Stanley and 

Okajima, 2010). The addition of O-fucose is mediated by O-fucosyltransferase 1 

(Pofut1) and is not directly required for Notch signaling (Okajima et al., 2008) but is 

required for subsequent glycosylation of Notch receptors by the glycosyltransferase 
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Fringe proteins (Lunatic Fringe, Manic Fringe, and Radical Fringe in mammals). The 

Fringe proteins add N-acetylglucosamine (GlcNAc) sugars to the O-fucose moiety and 

modulate ligand-receptor binding by increasing the affinity for Delta-like and decreasing 

affinity for Serrate-like ligands (Hicks et al., 2000; Kato et al., 2010; Okajima et al., 

2003). The expression domains of Fringe genes often coincides with either Delta or 

Jagged but not both and this expression often leads to active Notch signaling only at the 

margins in between the Delta and Jagged expressed regions (Irvine and Wieschaus, 

1994; Marklund et al., 2010; Wu and Rao, 1999). A substitution in the O-fucose site on 

EGF-like repeat 12 led to decreased Notch signaling (Ge and Stanley, 2008; Lei et al., 

2003). Notch can also be glycosylated by the glycosyltransferase Rumi (Poglut1) and 

this glycosylation is required for Notch signaling (Acar et al., 2008; Fernandez-Valdivia 

et al., 2011). Two enzymes of the glycosyltransferase 8 family also glycosylate the 

Notch receptor (Sethi et al., 2010). Recently, a secreted Fringe protein, chondroitin 

sulfate synthase 1(CHSY1) was identified as a negative regulator of Notch signaling 

(Tian et al., 2010). It is clear that glycosylation plays a critical role in regulating Notch 

signaling through regulation of receptor-ligand binding, but further structural, molecular, 

and biochemical studies are still needed to identify the individual contributions of each 

glycosylation event.  

The extracellular domain of the Notch receptor also contains three LIN-12-Notch 

(LNR) repeats and a hydrophobic region known to mediate heterodimerization (HD). 

Those two regions, along with the S1 cleavage site (Furin-mediated) and the S2 

cleavage site (ADAM 10/17 metalloprotease-mediated) comprise the negative 

regulatory region (NRR) of the Notch receptor. The NRR normally autoinhibits the S2 
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cleavage by sterically blocking access to the S2 cleavage site through a hydrophobic 

core (Gordon et al., 2009). Mutations in the NRR which mutate the hydrophobic core 

and cause ligand-independent Notch receptor activation are the most common mutation 

in T-ALL, a Notch-mediated cancer (Malecki et al., 2006; Weng et al., 2004). The 

autoinhibitory conformation of the NRR is calcium-dependent, as depletion of calcium 

activates the receptor (Rand et al., 2000). The autoinhibitory effect of the NRR is 

relieved by a conformational change in the Notch heterodimer, through ligand 

endocytosis in response to ligand-receptor binding.   

The 5 canonical mammalian Notch ligands (Jagged1, Jagged2, Dll1, Dll3, Dll4) 

can be divided into two general classes, a Delta/Delta-like family and a Serrate/Jagged 

family. All of the ligands have a Notch-binding site within a DSL domain as well as N-

terminal domain and EGF-like repeats. The Jagged family of ligands also contains a 

cysteine rich domain (CRD) and Jagged1, Jagged2, and Dll1 all contain two Delta and 

OSM-11-like proteins (DOS) domains (Figure 1.6).  
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Figure 1.6. Domain organization of mammalian Notch ligands. Five mammalian ligands are 
classified into two categories, Delta-like (Dll1, Dll3, Dll4) and Serrate-like (Jagged1, Jagged2), 
based on structural homology to the two Drosophila ligands, Delta and Serrate. All Notch 
ligands have an N-terminal domain, a DSL (Delta/Serrate/LAG-2) domain and EGF-like repeats. 
Jagged1 and Jagged2 contain a cysteine-rich domain, whereas Jagged1, Jagged2 and Dll1 
have two DOS (Delta and OSM-11-like proteins) domains located immediately following the 
DSL domain. DSL ligands are transmembrane proteins of which the extracellular domain 
contains a characteristic number of EGF-like repeats and a cysteine rich N-terminal DSL 
domain. The DSL domain is a conserved motif found in all DSL ligands and required for their 
interaction with Notch [adapted from (Kume, 2012)]. 
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To date, there is little evidence of differences in signaling output between 

different receptor-ligand combinations with the exception of Dll3, which lacks a DOS 

domain and is the most structurally divergent of the Notch ligands (Dunwoodie et al., 

1997). Dll3 is incapable of activating Notch receptors from a neighboring cell (Ladi et al., 

2005) and is rarely present on the cell surface (Chapman et al., 2011; Geffers et al., 

2007). Because there are differences in signaling output between different receptor-

ligand combinations, there must be some mechanism for establishing the specificity of 

Notch signaling. One way that Notch provides specificity is through restricting the 

distribution of specific ligands and receptors to specific intracellular compartments. An 

example of this phenomenon is in Drosophila sensory organ development, in which 

Delta is specifically recycled during asymmetric cell division and sorted exclusively into 

cells adjacent to Notch-expressing cells (Emery et al., 2005; Jafar-Nejad et al., 2005). 

Notch ligands can also be specifically localized to cellular extensions such as filopodia, 

which can activate signaling at distances larger than typical cell-cell distances (Cohen et 

al., 2010b; De Joussineau et al., 2003). There is also some evidence that cell motility 

dynamics can affect the specificity of Notch signaling (Del Bene et al., 2008).  

Because most cells express both canonical Notch pathway ligands and Notch 

receptors at their cell surface, the proper directionality of Notch signaling must be firmly 

established. One way that directionality of Notch signaling is established is through cis-

inhibition, in which ligands that activate receptors on neighboring cells (trans-activation), 

inhibit receptors expressed on the same cell surface (de Celis and Bray, 1997; del 

Alamo et al., 2011; Micchelli et al., 1997; Miller et al., 2009; Sprinzak et al., 2010). Cis-

inhibition downregulates the Notch receptor at the cell surface (Matsuda and Chitnis, 
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2009) but this does not always occur (Fiuza et al., 2010), and cis- inhibition also cell-

autonomously downregulates Notch target genes. As mentioned earlier, Dll3 likely 

serves exclusively as a cis-inhibiting ligand and cannot activate receptors in trans (Ladi 

et al., 2005). Some recent reports have started to unravel how the individual ligands can 

affect trans-activation and cis-inhibition. The extracellular DSL-EGF-like repeat 3 

domain of Serrate is critical in both trans-activation and cis-inhibition (Cordle et al., 

2008) and mutations in the intracellular domain of Serrate affect trans-activation but not 

cis-inhibition (Glittenberg et al., 2006). Additionally, reports have shown that Notch 

ligand and receptor intracellular domains (ICDs) display competitive interactions. NICD 

can suppress the antiproliferative effect of Delta ICD in endothelial cells (Kolev et al., 

2005). Conversely, Jag1 ICD suppresses NICD-induced transcription in COS cells 

(LaVoie and Selkoe, 2003). Interestingly, the signal-sending cell can also undergo cis-

inhibition in which the Notch receptor inhibits the ligand on the same cell surface 

(Becam et al., 2010). Also, many of the non-canonical ligands of Notch signaling are 

capable of cis-inhibition. One specific example is Delta-like homolog 1/2 (Dlk1/2), which 

competes with trans-presented canonical ligands to bind Notch receptors (Baladron et 

al., 2005). A model for trans-activation vs. cis-inhibition was proposed in which trans-

activation occurs in a graded manner in response to increasing concentrations of ligand, 

while cis-inactivation occurs with a sharp threshold of Notch ligand co-expression, 

potentially leading to a bistable switch which generates mutually exclusive sending and 

receiving states (Sprinzak et al., 2010) .This model still needs to be further tested in 

vivo.  



44 
 

Upon ligand-receptor binding, the ADAM metalloproteases cleave the Notch 

receptor (whose autoinhibitory NRR has been removed) in the extracellular space 

between the two cells at the S2 cleavage site. Different ADAM proteases have been 

implicated in Notch S2 cleavage (Brou et al., 2000; Canault et al., 2010; Tian et al., 

2008; Tousseyn et al., 2009; van Tetering et al., 2009), and one recent study claims that 

specific ADAM proteases cleave Notch in a ligand-dependent  or  –independent manner 

(Bozkulak and Weinmaster, 2009). The structural aspects of S2 cleavage were 

reviewed recently [reviewed in (Kovall and Blacklow, 2010)]. The S2 cleavage is often 

considered the limiting regulatory step in Notch receptor activation. 

The S2 cleavage creates the membrane-tethered Notch extracellular truncation 

(NEXT) region. The NEXT immediately becomes a substrate for regulated 

transmembrane cleavage by the γ-secretase complex at the S3 cleavage site. γ-

secretase is a multi-subunit protease complex containing presenilin, nicastrin, presenilin 

enhancer 2 (Pen2) and anterior pharynx-defective 1 (Aph1) (Jorissen and De Strooper, 

2010). γ-secretase is ubiquitously expressed and cleaves transmembrane proteins at 

residues within the transmembrane domain. Although the original model for S3 

cleavage suggested that it follows constitutively after the S2 cleavage, recent studies 

suggest that the activity of γ-secretase is regulated, both with regard to cleavage 

efficacy and the position of the cleavage site in the receptor. γ-secretase complexes 

containing different presenilin subunits (PS1 or PS2) have different cleavage 

preferences for amyloid precursor protein (APP), although how this difference affects 

Notch signaling is yet to be determined (Jorissen and De Strooper, 2010). One report 

suggests that nicastrin is not required for γ-secretase-mediated processing of Notch, but 



45 
 

important for the stability of the γ-secretase complex (Zhao et al., 2010). Other proteins 

that regulate the function of the γ-secretase complex include CD147 (also known as 

BSG), transmembrane protein 21 (Tm21, also known as Tmed10) and γ-secretase 

activating protein (GSAP also known as Pion) (Chen et al., 2006; He et al., 2010; Zhou 

et al., 2006). The actual effect of these regulatory proteins on Notch receptor processing 

still needs to be investigated. The S3 cleavage has been shown heterogeneous in terms 

of the cleavage site. NICD fragments generated by S3 cleavage can have either an N-

terminal valine (Val) or an N-terminal serine/leucine (Ser/Leu) and the Ser/Leu-NICD 

fragments are less stable than Val-NICD fragments (Tagami et al., 2008). Notch 

processing is also regulated by the estrogen receptor (ER), and inhibition of ER activity 

by tamoxifen increases Notch activity (Rizzo et al., 2008). Neuronal activity can also 

enhance Notch processing through the protein activity-regulated cytoskeleton-

associated protein (Arc)/activity-regulated gene 3.1 protein homolog (Arg3.1) (Alberi et 

al., 2011), giving another way to modulate Notch signaling.  

 

Notch Signaling: Regulation of the NICD 

It is not clear whether the S3 cleavage occurs at the cell surface or in the early 

endosome upon endocytosis of the receptor. Endocytosis of the Notch receptor is 

thought to be a critical step in transduction of the Notch signal. Notch initially binds to 

the γ-secretase complex at the cell surface (Hansson et al., 2005), but there is evidence 

that the majority of cleavage occurs after internalization of the receptor by endocytosis 

(Vaccari et al., 2008) as well as evidence of cleavage at the membrane (Kaether et al., 

2006; Sorensen and Conner, 2010; Tarassishin et al., 2004). It is likely that the 

localization of Notch cleavage is context-dependent and serves as another method of 
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modulating Notch signaling (Tagami et al., 2008). Notch receptor endocytosis requires 

monoubiquitination of the receptor at lysine 1749 (Gupta-Rossi et al., 2004). This 

monoubiquitination is followed by deubiquitination by eIF3f, a subunit of translation 

initiation factor E74-like factor 3 (EIf3), which is required for Notch to be processed by γ-

secretase (Moretti et al., 2010). The Notch receptor is regulated by the putative E3 

ubiquitin ligase Deltex, which has been implicated in the regulation of Notch processing 

and internalization (Diederich et al., 1994; Hori et al., 2004; Matsuno et al., 1995; Wilkin 

et al., 2008; Yamada et al., 2011). Deltex also may serve as a bridge between eIF3f and 

Notch in early endosomes (Moretti et al., 2010). The exact role of Deltex in the Notch 

pathway is still in question. It has mostly been described as a positive regulator of Notch 

signaling (Fuwa et al., 2006; Matsuno et al., 1995; Matsuno et al., 2002; Wilkin et al., 

2008), but several reports have also described it as a negative regulator of Notch 

signaling (Mukherjee et al., 2005; Sestan et al., 1999). Additionally, Deltex may not be 

required for Notch signaling in all developmental contexts (Fuwa et al., 2006). Loss of 

Deltex function does not seem to severely affect T-cell development, a Notch-

dependent process, in the mouse (Lehar and Bevan, 2006). Recently, it has been 

hypothesized that canonical Notch signaling and Deltex-activated Notch signaling are 

two distinct events activated in different endocytic compartments (Yamada et al., 2011). 

Another regulator of Notch signaling is the endocytic adaptor protein Numb. 

Numb, which is found in both Drosophila and vertebrates, and Numb-like, the 

mammalian homolog of Numb, act as suppressors of Notch signaling (Rhyu et al., 1994; 

Uemura et al., 1989; Zhong et al., 1997). Numb acts mechanistically by recruiting the 

E3 ubiquitin ligase itchy (Itch), the mammalian homolog of Drosophila Suppressor of 
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deltex [Su(dx)], to promote degradation of the Notch receptor (Beres et al., 2011) and to 

regulate post-endocytic sorting for Notch1 (McGill et al., 2009). Numb differentially 

regulates the different Notch receptors and a recent report shows that Numb can 

negatively regulate Notch1 and Notch2 but not Notch3 during myogenic differentiation 

(Beres et al., 2011). There are 6 alternatively spliced NUMB isoforms in humans. The 

two most recently identified ones, NUMB5 and NUMB6, are less potent Notch 

antagonists than the others (Karaczyn et al., 2010), though it is possible that the 

observed difference is due to Numb’s interaction with other signaling pathway 

components such as p53 and Gli1, a Hedgehog pathway effector (Colaluca et al., 2008; 

Di Marcotullio et al., 2006). Sanpodo, a Drosophila transmembrane protein with no 

known vertebrate homolog, also regulates Notch signaling by associating with Notch 

and Numb during asymmetric cell division (O'Connor-Giles and Skeath, 2003). Sanpodo 

agonizes Notch signaling in the absence of Numb but inhibits Notch signaling in the 

presence of Numb (Babaoglan et al., 2009). These data suggest that the relationship 

between Notch and Numb may not be unidirectional as Notch may regulate Numb as 

well. For example, high levels of Notch reduce Numb and Numb-like protein levels in 

the developing chick CNs and in cultured cells (Chapman et al., 2006). In addition, 

Notch controls the expression of Numb by upregulating it in cells that not did inherit 

Numb during cell division but require Numb for Notch repression (Rebeiz et al., 2011). 

Intracellular trafficking has been shown to regulate Notch signaling after its 

internalization. Ectopic ligand-independent Notch signaling is activated when the sorting 

of Notch from early endocytic vesicle to multivesicular bodies (MVBs) or lysosomal 

compartments is defective. This is shown in endosomal sorting complex required for 
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transport (ESCRT) and lethal giant discs [lgd; also known as l(2)gdl] mutants (Childress 

et al., 2006; Jaekel and Klein, 2006; Vaccari et al., 2008). Drosophila sensory organ 

precursors (SOPs) traffic Notch via a specialized endocytic route which generates 

differential Notch signaling in the resulting daughter cells. This trafficking is mediated by 

Smad anchor for receptor activation (SARA) endosomes, which segregate into one of 

the two daughter cells during asymmetric SOP cell division. Delta and Notch are both 

internalized into SARA endosomes and asymmetrically localized to one of the cells 

during SOP mitosis, resulting in the ligand-dependent appearance of NICD in only that 

cell (Coumailleau et al., 2009). SARA itself is not required for this process. 

The Notch intracellular domain serves as the major effector of the canonical 

Notch signaling pathway. All Notch receptors contain the RAM23 domain (which 

mediate interactions with CSL) and seven Ankyrin/CDC10 repeats (ANK), necessary for 

protein-protein interactions. In addition, Notch receptors 1-3 contain two nuclear 

localization signals (NLS) compared to one NLS in Notch4. The NLS is necessary to 

target the intracellular domain to the nucleus where the transcriptional activation domain 

(TAD) activates downstream events. Notch3 and Notch4 contain no identifiable TAD 

domain and weakly activate transcription. All four Notch receptors contain a C-terminal 

Pro-Glu-Ser-Thr rich domain (PEST) for degradation (Kovall and Blacklow, 2010). It has 

become increasingly clear in recent years that the NICD is subject to a large number of 

post-translational modifications which have the potential to modulate Notch signaling.  

NICD undergoes multiple post-translational modifications, including 

phosphorylation, ubiquitination, hydroxylation, and acetylation [Figure 1.7; adapted from 
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(Andersson et al., 2011)]. Below, I will describe, separately, the regulation of each type 

of post-translational modification on NICD and their impact on Notch signaling. 

  



50 
 

 
Figure 1.7. The NICD undergoes multiple post-translational modifications. The NICD is 
composed of several domains (JM, RAM, ANK, TAD and PEST), two nuclear localization 
signals and several ankyrin repeats. These various domains and motifs can be modified by 
phosphorylation, hydroxylation, ubiquitination or acetylation to alter signaling through NICD. The 
specific proteins that mediate these modifications are described in the text [from (Andersson et 
al., 2011)].  
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Phosphorylation: The NICD is modified extensively by phosphorylation. One of 

the key kinases in developmental signaling pathways is GSK3β. The literature is 

conflicted about GSK3’s role in Notch signaling. One report suggests that GSK3β 

phosphorylates NICD C-terminally to the ANK repeats and inhibits NICD2-mediated 

induction of Notch target genes such as hairy and enhancer of split 1 (Hes1) (Espinosa 

et al., 2003) but another suggests that GSK3 stabilizes NICD1 (Foltz et al., 2002). Other 

reports have been published which suggest GSK3 as a positive regulator of Notch 

signaling through stability or localization (Guha et al., 2011; Han et al., 2012). Other 

reports suggest that GSK3 is in fact a negative regulator of Notch signaling (Jin et al., 

2009b; Kim et al., 2009). Cyclin C/CDK8 phosphorylates NICD and has been shown to 

be critical in regulating the activity and stability of the NICD (Fryer et al., 2002; Fryer et 

al., 2004). Granulocyte colony stimulating factor (Csf) also phosphorylates NICD2 at Ser 

2078, leading to its transcriptional activation (Ingles-Esteve et al., 2001). Notch has also 

been shown to be phosphorylated by Akt (Song et al., 2008), Calcium/Calmodulin-

dependent kinase IV (CaMKIV) (Choi et al., 2013), CK2 (Ranganathan et al., 2011a), 

Nemo-like kinase (NLK) (Ishitani et al., 2010), Down syndrome associated kinase 

DYRK1A (Fernandez-Martinez et al., 2009), Abelson tyrosine kinase (Abl) (Xiong et al., 

2013), CaMKII (Ann et al., 2012; Mamaeva et al., 2009), Disabled-1 (Dab-1) tyrosine 

kinase (Keilani et al., 2012), Protein Kinase Cδ (PKCδ) (Kim et al., 2012), Adaptor-

Associated Kinase 1 (AAK1) (Gupta-Rossi et al., 2011), and DDR1 tyrosine kinase (Kim 

et al., 2011). 

 Ubiquitination: The NICD can also be modified by ubiquitination. The 

ubiquitination of NICD has been shown to modulate its half-life [reviewed in (Le Bras et 
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al., 2011)]. As mentioned earlier, the putative E3 ubiquitin ligase Deltex likely serves as 

a positive regulator of Notch signaling, possibly through a ligand-independent pathway 

distinct from canonical Notch signaling (Yamada et al., 2011). The most well-

characterized E3 ubiquitin ligase for NICD is F-box and WD-40 domain protein 7 

(Fbxw7; also known as Cdc4 and SEL-10), which ubiquitinates NICD within the PEST 

domain and promotes its rapid degradation (Fryer et al., 2004; Gupta-Rossi et al., 2001; 

Oberg et al., 2001; Wu et al., 2001). Functionally, Fbxw7 is critical in controlling 

stemness and neuronal fate versus glial differentiation in the developing brain 

(Matsumoto et al., 2011). The transcriptional activity of NICD1, but not NICD4, was 

enhanced in by a dominant negative form of Fbxw7 (Wu et al., 2001).  In contrast to 

those results, Fbxw7-/- mice showed that Notch4 ICD, but not Notch1, 2, and 3 ICDs 

was elevated following Fbxw7 knockout (Tsunematsu et al., 2004). These results also 

strongly suggest that the individual Notch receptors are regulated differently. Recently, it 

has been shown serum- and glucocorticoid-inducible kinase (SGK1) forms a trimeric 

complex with NICD and Fbxw7 and enhances Fbxw7-mediated NICD degradation (Mo 

et al., 2011). The importance of NICD stability is supported by the fact that NOTCH1 

and FBXW7 mutations are found in T-cell acute lymphoblastic leukemia (T-ALL) 

(Erbilgin et al., 2010; Malyukova et al., 2007). Gain-of-function mutations in NOTCH1 

are found in over 50% of T-ALL patients (Weng et al., 2004) and loss-of-function 

mutations in FBXW7 have also been found (Malyukova et al., 2007; Mansour et al., 

2009; O'Neil et al., 2007).  Interestingly, there is some evidence that NICD1 stability is 

still modulated even in the absence of FBXW7/PEST domain-mediated ubiquitination 

(O'Neil et al., 2007; Tsunematsu et al., 2004). These results suggest that there is 
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another region of NICD1 that regulates its stability. These NOTCH1 mutations are 

concentrated at the HD domain and the PEST domain; the HD domain mutants promote 

ligand-independent activation and the PEST domain mutants confers resistance to 

ubiquitination and subsequent degradation (Weng et al., 2004). Additionally, T-ALL cell 

lines lacking functional FBXW7 have extended NICD1 half-lives (Malyukova et al., 2007; 

Mansour et al., 2009; O'Neil et al., 2007). Mutations in the PEST domain of NOTCH1 

have also been found in non-small-cell lung cancer (Westhoff et al., 2009), suggesting 

that NICD stability, and consequently Notch signaling, can lead to cancer. One other E3 

ubiquitin ligase that ubiquitinates Notch is Itch (Cornell et al., 1999; Qiu et al., 2000) 

which is required for Notch1 degradation in the absence of ligand (Chastagner et al., 

2008). An extensive list of NICD interacting proteins can be found in (Andersson et al., 

2011). Much is still not known about many of these interactions, which have only been 

observed in overexpression studies. Whether they interact with NICD under 

physiological conditions in cultured cells or in vivo, with free NICD in the cytoplasm or 

nucleoplasm of the signal-receiving cell, or with the NICD-CSL-MAML transactivating 

complex inside the nucleus could inform future studies on NICD regulation.  

 Hydroxylation and Acetylation: NICD is also affected by two other types of post-

translational modification, hydroxylation and acetylation. NICD is hydroxylated by the 

asparagines hydroxylase factor-inhibiting HIF1α (FIH1l also known as HIF1AN), which 

hydroxylates NICD at N1945 and N2012 (Coleman et al., 2007; Zheng et al., 2008). 

This might contribute to signaling specificity because Notch2 and Notch3 are 

hydroxylated whereas Notch4 is not. The in vitro studies suggest that HIF1α a negative 

regulator of Notch, but HIF1α targeted mice do not display a Notch gain-of-function 
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phenotype (Zhang et al., 2010). Another recent study has recently identified the 

deacetylase sirtuin 1 (Sirt1) as critical to the acetylation/deacetylation of NICD in 

endothelial cells, affecting NICD half-life (Guarani et al., 2011).  

 These results clearly indicate that the NICD is extensively modified by post-

translational modifications, which serve to regulate the NICD. Most of these 

modifications affect the stability or half-life of NICD, implicating NICD protein turnover as 

a critical step in regulating the canonical Notch signaling pathway. Further studies on 

the regulation of NICD protein turnover would be extremely critical for understanding the 

mechanisms of the pathway between receptor activation and transcriptional activation. 

Not much is known about how these mechanisms that affect NICD turnover alter 

canonical Notch signaling. 

 

Notch Signaling: Activation of a NICD-CSL-MAML transcriptional complex 

 Upon Notch activation, the liberated NICD translocates to the nucleus where it 

binds to CSL and the scaffold protein MAML; this NICD-CSL-MAML complex 

subsequently activates downstream target genes. This transcriptional activation is 

central to canonical Notch signaling (Kovall and Blacklow, 2010). The Notch-mediated 

transcriptome appears to be very diverse in different cell types, contributing to the 

specificity of Notch signaling. Genome-wide Notch transcriptome studies in healthy or 

mutated T-cells (Chadwick et al., 2009; Dohda et al., 2007; Palomero et al., 2006; 

Weerkamp et al., 2006), mouse embryonic stem (ES) cells (Main et al., 2010; Meier-

Stiegen et al., 2010), alveolar epithelial cells (Aoyagi-Ikeda et al., 2011), endometrial 

stromal cells (Mikhailik et al., 2009), C2C12 mouse myoblast cells (Buas et al., 2009), 

and Drosophila myogenic cells (Krejci et al., 2009) yield a vast array of diversity in their 
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target gene transcriptomes. In addition to the diversity in target gene activation, Notch 

signaling is also affected by cell cycle stage [reviewed in (Kageyama et al., 2009)], and 

through cell lineage progression(e.g. in T-cell development [reviewed in (Radtke et al., 

2010)]), and during neural differentiation of ES cells in vitro, when cyclin D1 is activated 

in a specific temporal window during ES cell neural differentiation (Das et al., 2010).  

The canonical Notch signaling pathway directly activates the downstream hairy 

and enhancer of split-related (HESR) genes, a family of basic helix-loop-helix (bHLH) 

transcriptional repressors. The HESR genes have been shown to be activated by Notch 

during tumor progression (Sethi et al., 2011; Wendorff et al., 2010). Surprisingly, in the 

five cell types listed above which have done genome-wide transcriptome analysis, 

hairy/enhancer-of-split related with YRPQ motif 1 (Hey1) was upregulated in four of the 

five.  Additionally, Hes5 was upregulated in only the ES cells. These data suggest that 

even though there are some common upregulated target genes, there is no universal 

target gene upregulated in all cases of Notch signaling. The list of immediate Notch 

target genes which are upregulated in parallel with the HESR genes is quite extensive; 

including c-Myc (Rao and Kadesch, 2003; Satoh et al., 2004; Weng et al., 2006), cyclin 

D1 (Cohen et al., 2010a; Ronchini and Capobianco, 2001; Satoh et al., 2004), cyclin D3 

(Joshi et al., 2009), cyclin-dependent kinase 5 (CDK5) (Palomero et al., 2006), p21 

(Rangarajan et al., 2001), Snail (Sahlgren et al., 2008), and platelet-derived growth 

factor receptor beta (PDGFRβ) (Jin et al., 2008; Morimoto et al., 2010). The differences 

in Notch-mediated transcriptome response after receptor activation is only partially 

understood. The prevailing model is that CSL binds DNA via conserved CGTGGGAA 

motifs to target promoters and in the absence of NICD represses transcription. Upon 
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Notch pathway activation, NICD, along with MAML, is thought to displace co-repressors 

and recruit co-activators to the NICD-CSL complex, leading to transcriptional activation 

of target genes. Certain genes, at least in Drosophila, appear repressed in the absence 

of Notch signaling (Bardin et al., 2010; Castro et al., 2005; Koelzer and Klein, 2006). 

However, other studies in Drosophila suggest that Su(H), the Drosophila homolog of 

CSL, is actively recruited to its binding sites by NICD rather than being placed there 

during the “Notch-off” state (Krejci and Bray, 2007). The binding coefficient between 

CSL and DNA is weaker than previously thought (Friedmann and Kovall, 2010), and the 

affinity of CSL for the RAM domain of NICD is unchanged by DNA binding (Friedmann 

et al., 2008), suggesting that the interaction between CSL and DNA is likely to be 

dynamic.   

 Each different Notch receptor has distinct tissue-specific expression patterns, 

and this distinction between the Notch receptors can lead to transcriptional specificity. 

The configuration of CSL-binding sites influences the likelihood of recruiting NICD1 or 

NICD3 (Ong et al., 2006). NICD1 is highly active on paired CSL binding sites while 

NICD3 is highly active when binding to CSL motifs adjacent to zinc-finger transcription 

factor binding sites (Ong et al., 2006). The dimerization potential of NICD can also 

influence the target gene repertoire by restricting the response to dimeric CSL binding 

sites (Cave et al., 2005). Structural analysis of the NICD dimeric complex suggests 

flexibility in spacer length is tolerable (Arnett et al., 2010). There is evidence that NICD 

multimerization is an initial step in forming the active transcriptional complex (Vasquez-

Del Carpio et al., 2011). Additionally, because there is some difference in target gene 

expression, it is likely that there might be distinct biological functions for each Notch 
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receptor. NICD2, but not NICD1, promotes tumor growth in xenografts in a 

medulloblastoma model (Fan et al., 2004). NICD1 and NICD3 signaling generate 

distinct phenotypes in the pancreas (Apelqvist et al., 1999; Hald et al., 2003) but have 

similar phenotypes in adult CNS progenitor cells (Tanigaki et al., 2001). NICD3, but not 

NICD1 or NICD2, can drive the formation of invasive gliomas during embryonic CNS 

development (Pierfelice et al., 2011). One recent study suggests that the difference in 

signaling between the Notch receptors comes primarily from its extracellular domain 

(Liu et al., 2013). 

 Another way to generate signaling specificity is through feedback loops with 

downstream target genes. One example is c-Myc, which activates genes in concert with 

NICD-CSL that NICD-CSL does not activate alone (Palomero et al., 2006). In smooth 

muscle cells, Hey1 and Hey2 are activated by Notch and dampen Notch-mediated 

transcription by blocking NICD-CSL binding to DNA (Tang et al., 2008) that may affect 

the duration of the Notch signal. Another example of Notch feedback is the Notch target 

gene Notch-regulated ankyrin repeat protein (Nrarp), which feeds back to modulate 

Notch signaling while also potentiating Wnt signaling (Ishitani et al., 2005; Phng et al., 

2009).  

 The cooperation of NICD-CSL and other transcription factors may also play a 

role in generating signal specificity. Proneural bHLH proteins cooperate with NICD-CSL 

to regulate HESR gene expression (Holmberg et al., 2008) and synergistic 

transcriptional responses between NICD-CSL and GATA factors (Neves et al., 2007), 

NF-κB (Vilimas et al., 2007), and Twist (Bernard et al., 2010) has also been 

demonstrated. In addition, the spacing between the binding sites has been shown to be 
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important (Swanson et al., 2010). The binding of CSL to the N-terminal region of NICD 

likely also affects the regulation of the NICD itself, as described earlier. As mentioned 

previously, SCFFbxw7 then serves as an “off” switch to turn off Notch transcription by 

binding and degrading the NICD. This degradation also serves as a mechanism to 

continually refresh the Notch signal by degrading a post-transcriptionally active NICD 

and freeing up CSL and MAML to bind another NICD. Much remains unknown about 

why CSL is sometimes bound to the DNA in the absence of NICD but in other cases is 

recruited to the DNA by NICD.  

 The Notch signaling pathway has many key features in common with other 

developmental signaling pathways, including the Wnt/β-catenin pathway. However, very 

little is known about the cytoplasmic mechanism of the Notch pathway relative to other 

pathways. Notch is unique in that an obvious amplification step in the cytoplasm has yet 

to be identified, and the receptor itself serves as the downstream effector and 

transcriptional co-activator. Due to the importance of the NICD and the critical role that 

the downstream effector plays in other pathways, it is very likely that the NICD is very 

highly regulated at the protein level, possibly through cross-talk with other pathways but 

also through distinct mechanisms that affect only the NICD. The next section of the 

introduction focuses on regulation of Notch signaling through crosstalk with other 

developmental pathways, specifically the Wnt/β-catenin pathway.  

 

Notch and Wnt Signaling: Evidence for Wntch Signaling? 

 Due to the small number of developmentally critical signaling pathways and the 

diverse functions required for embryonic development, it has become increasingly clear 
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that many of these pathways operate cooperatively to form a signaling network. 

Interestingly, Notch cross-talk has been shown to occur at all three levels of pathway 

interaction; epistasis of one pathway to another, convergence of two pathways to the 

same target genes, and direct interaction between components of each pathway.. The 

most well-characterized pathway that has been shown to cross-talk with the Notch 

pathway is the Wnt/β-catenin pathway and in this document I will focus on the cross-talk 

between canonical Notch signaling and canonical Wnt/β-catenin signaling. 

 Wnt/β-catenin signaling and Notch signaling are oftentimes required for similar 

developmental processes (Arias and Hayward, 2006) and multiple instances of Wnt-

Notch crosstalk have been observed. Wnt/β-catenin signaling upregulates Jag1 as a 

target gene of β-catenin in the hair follicle (Estrach et al., 2006), upregulates Dll4 during 

vascular remodeling (Corada et al., 2010) and induced Notch2 expression in colorectal 

cancer cells (Ungerback et al., 2011). These studies suggest that Wnt/β-catenin 

signaling promotes Notch signaling. These two pathways can also converge 

downstream of the receptor; β-catenin can bind to NICD in neural precursor cells 

(Shimizu et al., 2008) and form complexes with NICD-CSL in arterial cells but not 

venous endothelial cells (Yamamizu et al., 2010). Intriguingly, the Dll1 ICD induces Wnt 

reporter activity and upregulates the expression of connective tissue growth factor 

(CTGF) (Bordonaro et al., 2011). Additionally, the scaffold protein MAML, which is 

critical for Notch transcriptional activation, binds to both GSK3β (Saint Just Ribeiro et 

al., 2009) and β-catenin (Alves-Guerra et al., 2007). MAML binding to GSK3β (which is 

inhibited by Wnt/β-catenin signaling) decreases MAML-mediated transcriptional activity 

(Saint Just Ribeiro et al., 2009) and MAML can act as a transcriptional co-activator for 
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β-catenin to increase expression of cyclin D1 and c-myc, target genes of Wnt/β-catenin 

signaling (Alves-Guerra et al., 2007). These data further supports that Notch signaling 

and Wnt/β-catenin signaling can positively regulate each other. Another unexpected 

level of crosstalk occurs at the receptor level, where the soluble Frizzled-related 

proteins (sFRPs), Wnt/β-catenin antagonists, bind to ADAM10 metalloprotease and 

downregulate its activity, inhibiting Notch signaling. This regulation affects the Notch-

dependent process of retinal neurogenesis, which is also Wnt-independent (Esteve et 

al., 2011). All of these suggest that Notch signaling and Wnt/β-catenin signaling affect 

each other positively. However, other studies have actually identified another method of 

crosstalk in which Notch signaling inhibits Wnt/β-catenin signaling (Hayward et al., 

2008; Munoz-Descalzo et al., 2012).  

Notch loss of function has been shown to result in ligand independent activation 

of Wnt/β-catenin signaling (Brennan et al., 1999a; Demehri and Kopan, 2009; Hanlon et 

al., 2010; Kwon et al., 2011; Kwon et al., 2009; Lawrence et al., 2001; Lin et al., 2008; 

Nicolas et al., 2003; Pan et al., 2004). This regulation is likely a post-translational effect 

of Notch on Wnt signaling. In some systems, gain of function of Notch downregulates 

the activity of β-catenin (Acosta et al., 2011; Deregowski et al., 2006; Hayward et al., 

2005; Kwon et al., 2011; Langdon et al., 2006; Nicolas et al., 2003; Sanders et al., 

2009). Additionally, Notch’s regulation of Wnt/β-catenin signaling is independent of its 

transcriptional activity as it does not depend on CSL binding or generation of the NICD 

(Acosta et al., 2011; Hayward et al., 2005; Kwon et al., 2011; Sanders et al., 2009). 

Genetic experiments in Drosophila have also identified alleles of Notch that affect 

interactions with Wnt/β-catenin signaling (Brennan et al., 1997; Brennan et al., 1999c; 
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Langdon et al., 2006; Ramain et al., 2001; Ruel et al., 1993). These data all strongly 

suggest a role for Notch in inhibiting Wnt/β-catenin signaling in vivo and in vitro. 

Structure function analysis has identified functionally distinct domains in Notch 

receptors for Wnt/β-catenin signaling and for canonical Notch signaling (Arias, 2002; 

Brennan et al., 1999b; Brennan et al., 1999c; Heitzler, 2010; Langdon et al., 2006). This 

suggests that Notch may interact with components of Wnt/β-catenin signaling directly. In 

support of this possibility, multiple reports have shown that Notch interacts either 

genetically or molecularly with key components of the Wnt/β-catenin signaling pathway: 

Dishevelled, APC, Axin, TCF/LEF, GSK3 and β-catenin itself (Axelrod et al., 1996; 

Espinosa et al., 2003; Foltz et al., 2002; Hayward et al., 2006; Hayward et al., 2005; 

Herranz et al., 2008; Jin et al., 2009a; Kwon et al., 2011; Langdon et al., 2006; Lee et 

al., 2009; Munoz-Descalzo et al., 2010; Munoz-Descalzo et al., 2011; Sanders et al., 

2009; Shimizu et al., 2008; Strutt et al., 2002). Furthermore, NICD and β-catenin can be 

found in the same endocytic vesicles.  

There is strong evidence that Notch signaling and Wnt/β-catenin signaling can be 

described as two arms of a signaling network rather than as two distinct, discrete 

signaling pathways. In cell culture studies, the Wnt/β-catenin and Notch pathways 

cooperate to maintain adult stem cells in the skin (Blanpain and Fuchs, 2009; Blanpain 

et al., 2006; Lowry et al., 2005), the intestine (Robine et al., 2005; Sancho et al., 2004; 

van Es et al., 2005), and skeletal muscle (Brack et al., 2008). In the intestine, treatment 

with gamma secretase inhibitors (GSIs) to inhibit Notch signaling also inhibits Wnt/β-

catenin signaling (van Es et al., 2005) but loss of function of CSL does not suppress 

Wnt/β-catenin signaling (Peignon et al., 2011). These results strongly favor a model in 
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which Notch and Wnt signaling are functionally interconnected and can be integrated 

into a single functional signaling unit which some have termed “Wntch” signaling 

(Hayward et al., 2008; Munoz-Descalzo et al., 2010; Munoz-Descalzo et al., 2011; 

Munoz Descalzo and Martinez Arias, 2012; Sanders et al., 2009). These interactions 

can be summarized as one interconnected molecular network in Figure 1.8 [Figure 1.8, 

from (Munoz Descalzo and Martinez Arias, 2012)]. 
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Figure 1.8. Structure and function of Wntch. (A) Summary of the interactions between elements 
of Wnt and Notch signalling and outline of the network that configures Wntch signalling. For 
details see text. The transcriptional interactions are labelled in yellow. (1) Effects of GSK3 
activity that destabilized β-catenin and NICD. (2) Wnt signalling inhibits GSK3 and thus 
stimulates β-catenin and CSL/NICD function. These effects are likely to be cell type specific and 
depend on basal levels of GSK3 activity. (3) Notch, in a CSL independent manner, inactivates 
the transcriptional activity of β-catenin. (4) Wnt signalling inhibits the CSL independent activity of 
Notch. (B) Activity of the network outlined in A in different conditions. Notice that activation of 
Wnt signalling can lead to DSL-Notch-CSL signalling [from (Munoz Descalzo and Martinez 
Arias, 2012)]. 
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The simplest and most obvious explanation for “Wntch” signaling is that the 

transcriptional effectors somehow converge to then regulate both pathways. However, 

the results have that been observed cannot be easily explained by that hypothesis 

alone. One key observation is that ligand independent Notch trafficking inhibits Wnt/β-

catenin signaling. Experiments in Drosophila imaginal discs, mammalian cells, and 

embryos show that Notch inhibits β-catenin activity even when the Notch receptors 

cannot interact with DSL ligands nor bind to CSL for transcriptional activation (Hayward 

et al., 2005; Kwon et al., 2011; Sanders et al., 2009). Even though these Notch 

receptors cannot activate canonical Notch signaling, they still get endocytosed and 

trafficked, which allows them to specifically target the transcriptionally competent form 

of Arm/β-catenin but does not significantly affect the overall cytosolic pool of β-catenin 

(Hayward et al., 2005; Kwon et al., 2011; Sanders et al., 2009). There is evidence that 

the dephosphorylated transcriptionally competent form of β-catenin is recruited to the 

plasma membrane upon Wnt activation and might have different regulators than the 

cytosolic pool (Hendriksen et al., 2008). Notch’s regulatory effect on β-catenin might be 

through Axin, which is thought to be membrane-anchored and has been shown to 

interact with Notch and APC to regulate Armadillo in Drosophila (Hayward et al., 2006; 

Munoz-Descalzo et al., 2011; Tolwinski et al., 2003; Tolwinski and Wieschaus, 2001). It 

is still unclear whether Axin’s interactions with Notch are related to its function as a 

membrane anchor.  

The effect of Notch on dephosphorylated β-catenin likely occurs through other 

adaptor proteins. In Drosophila, ligand independent trafficking of Notch requires Dsh, a 

positive regulator of Wnt/β-catenin signaling (Munoz-Descalzo et al., 2010; Munoz-
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Descalzo et al., 2011). In mammalian cells, the Notch regulation of β-catenin is likely 

through the adaptor protein Numb (Cheng et al., 2008; Kwon et al., 2011). In both 

Drosophila and mammalian cells, the putative E3 and adaptor protein Deltex 

participates in CSL independent Notch signaling to regulate β-catenin (Langdon et al., 

2006; Ordentlich et al., 1998; Ramain et al., 2001). Taken together, a model for Notch-

mediated inhibition of Wnt/β-catenin signaling emerges where Notch interacts with 

dephosphorylated β-catenin at the membrane and degrades or sequesters β-catenin. 

This likely requires some combination of Dsh, Numb, and Deltex (Gupta-Rossi et al., 

2004). Validation of such a model will require further biochemical studies.  

There is also evidence that Wnt signaling can modulate Notch signaling. 

Wingless, the Drosophila homolog of Wnt, has been shown to regulate Notch signaling 

(Munoz-Descalzo et al., 2010; Wesley, 1999). Multiple reports have also shown that the 

classical DSL ligand Jagged1 is a target gene of β-catenin-mediated transcription 

(Amoyel et al., 2005; Estrach et al., 2006; Galceran et al., 2004; Rodilla et al., 2009). 

Interestingly, MAML is also a transcriptional co-activator for β-catenin (Alves-Guerra et 

al., 2007; Kankel et al., 2007).  

The idea of a single functional Wntch signaling module is a compelling one, as 

evidence shows that each of these individual pathways can influence the output of the 

other one. This strongly suggests that these two pathways are functionally 

interconnected, forming a signaling network to regulate cell growth and proliferation and 

cell fate decisions. This is likely the first step towards integrating signal transduction into 

one large network where the activation of one pathway regulates the activation of other 

pathways. More studies to elucidate the mechanistic underpinnings of “Wntch” signaling 
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will critical towards an integration of Notch and Wnt signaling into a single functional 

paradigm. 
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CHAPTER II 

 

MATERIALS AND METHODS: PROTEIN DEGRADATION IN XENOPUS EGG 
EXTRACT 

  

One critical aspect of studying developmental signaling networks is the use of 

proper systems to study them in. I used Xenopus egg extract as one of the primary 

systems to study degradation of Notch. Details about the use of Xenopus egg extract 

can be found in this chapter and in Chen et al. 2014a (Chen et al., 2014a). This system 

can be used to study both Wnt signaling and Notch signaling. 

 

Reconstitution of β-catenin degradation in Xenopus egg extract 

Introduction 

Xenopus laevis egg extract has been used extensively to study many cell 

biological processes including cytoskeletal dynamics, nuclear assembly and import, 

apoptosis, ubiquitin metabolism, cell cycle progression, signal transduction, and protein 

turnover(Blow and Laskey, 1986; Chan and Forbes, 2006; Dabauvalle and Scheer, 

1991; Forbes et al., 1983; Glotzer et al., 1991; Kornbluth et al., 2006; Lohka and Masui, 

1983; Maresca and Heald, 2006; Masui and Markert, 1971; Mitchison and Kirschner, 

1984; Murray, 1991; Newport and Kirschner, 1984; Salic et al., 2000b; Shennan, 2006; 

Theriot et al., 1994; Tutter and Walter, 2006; Verma et al., 2004). The Xenopus egg 

extract system is amenable to the biochemical analysis of a legion of cellular processes 

because egg extract represents essentially undiluted cytoplasm that contains all the 

essential cytoplasmic components necessary to execute these processes and enable 
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investigation. Large quantities of egg extract can be prepared at one time for 

biochemical manipulations that require large amounts of material (e.g. protein 

purification or high-throughput screening)(Thorne et al., 2010; Thorne et al., 2011; Yu et 

al., 1996). Another advantage is that the concentration of specific proteins in Xenopus 

egg extract can be precisely adjusted by addition of recombinant protein and/or 

immunodepletion of endogenous proteins in contrast to transfection of plasmid DNA 

where expression of the protein of interest is difficult to control. In addition, the lack of 

available recombinant proteins can be overcome by the addition of transcripts encoding 

the protein of interest, taking advantage of the freshly prepared Xenopus egg extract’s 

high capacity to translate exogenously added mRNA.  

The regulation of protein degradation is critical for the control of many cellular 

pathways and processes(Hinkson and Elias, 2011). Xenopus egg extract has been 

used extensively to study protein degradation as the system allows for multiple ways to 

monitor protein turnover without confounding influences of transcription and translation. 

The Wnt signaling pathway is a highly conserved signaling pathway that plays critical 

roles in development and disease. The turnover of β-catenin, the major effector of the 

Wnt pathway, is highly regulated, and an increased steady-state level of -catenin is 

critical for the activation of Wnt target genes. The importance of -catenin degradation 

is highlighted by the fact that mutations in the Wnt pathway that inhibit β-catenin 

degradation found in ~90% of all sporadic cases of colorectal cancer(Kinzler and 

Vogelstein, 1996). -catenin degradation by components of the Wnt pathway can be 

faithfully recapitulated in Xenopus egg extract to study the mechanism of its turnover as 

well as to identify novel small molecule modulators of its degradation (Cselenyi et al., 
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2008; Guger and Gumbiner, 1995; Jernigan et al., 2010; Lee et al., 2001; Lee et al., 

2003; Major et al., 2007; Salic et al., 2000b; Seeling et al., 1999; Thorne et al., 2010; 

Thorne et al., 2011).  

Methods for the preparation of Xenopus egg extract for studying the cell cycle 

have been described in previous JoVE publications (Cross and Powers, 2008a; Cross 

and Powers, 2008b; Willis et al., 2012). The current protocol describes a modification of 

these methods and is optimized for the degradation of [35S]-radiolabeled -catenin and 

luciferase-tagged -catenin in Xenopus egg extract. The radiolabeled degradation 

assay allows for direct visualization of protein levels via autoradiography. 

[35S]methionine is incorporated into the protein of interest using an in vitro translation 

reaction that can then be directly added to a degradation reaction. In addition, the 

radiolabeled protein turnover assay does not require an antibody against the protein of 

interest or an epitope tag, which can influence protein stability. Because even small 

changes in protein levels, as reflected in changes in the intensity of the radiolabeled 

protein band, are readily visualized by autoradiography, the [35S]-radiolabeled 

degradation assay represents a very useful method for visualization of protein 

turnover(Salic et al., 2000b).  

Fusion of -catenin to firefly luciferase (hereafter referred to as 

simply”luciferase”) allows for more precise and quantitative measurements of protein 

level, and the capacity to more readily determine the kinetic properties of -catenin 

turnover(Thorne et al., 2010; Thorne et al., 2011). A major advantage of the luciferase 

assay is that it provides a strong quantitative system that is easily scaled up. The 

following protocol provides simple methods for assaying -catenin degradation and a 
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robust, efficient, and effective method for high-throughput screening of novel -catenin 

modulators. 

 

Protocol 

1. Preparation of Xenopus egg extract 

Each frog yields approximately 1 mL of usable egg extract. Extracts from 10 

frogs are typically prepared at one time, and the volume of buffer described below is for 

performing a 10-frog Xenopus egg extract prep. The buffer volume can be adjusted 

accordingly for larger or smaller preparations of egg extract. The process of collecting 

eggs and processing them into extract is most efficient when conducted by two people. 

1.1) Egg collection  

1.1.1) To prime the frogs, inject each female frog with 100 U of Pregnant Mare Serum 

Gonadotropin (PMSG) from a freshly made 250 U/mL stock. Use a 3 mL tuberculin 

syringe with a 27g needle to inject subcutaneously, with the bevel of the needle up, into 

the dorsal lymph sac. This is approximately 1 cm towards the midline from the notched 

discolorations along the length of the legs of the frog.  

1.1.2) Store primed frogs in water at 18°C for 5-10 days. For standing water tank 

systems, the animal density is approximately 4 liters of water per female frog. The 

minimum time required for priming to take effect is 5 days, and the effects of priming 

wear off after 10 days.  

1.1.3) Prepare 0.5 x Marc’s Modified Ringers (MMR) solution from a 20 x MMR stock. 

20 x MMR consists of 2 M sodium chloride, 40 mM potassium chloride, 40 mM calcium 
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chloride, 20 mM magnesium chloride, and 100 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid  (HEPES), pH 7.4.  

1.1.4) Set up buckets for all injected frogs (one frog per 4 L bucket). Although more than 

one frog can be placed in the same bucket for egg collection, if one of the frogs lays 

predominantly poor quality eggs, a substantial amount of effort will be required to 

separate the poor quality eggs from those that are suitable for making extract. Thus, 

maximizing the number of frogs in the same tank to minimize the amount of buffer used 

for egg collect is not worth the risk.   

1.1.5) Inject 750 U Human Chorionic Gonadotropin (HCG) into the dorsal lymph sac of 

each frog using a 27g needle as described in 1.1.1.  

1.1.6) Place each of the HCG-injected frogs into individual 4 L buckets containing 0.5 x 

MMR cooled to 16°C.  

1.1.7) Place the containers with the frogs in a 16°C incubator to collect eggs overnight 

(15-16 hours). Maintaining the proper temperature is critical for the entire procedure, 

from collecting eggs to preparing egg extract. 

1.2 Dejellying eggs  

Eggs are covered with a jelly coat that must be removed prior to making extract. The 

likelihood of spontaneous lysis of the eggs increases as the time between egg laying 

and extract preparation increases. Thus, it is important to proceed through the following 

steps as rapidly as possible.  

1.2.1) Prepare 4 L of 1 x MMR, 50 mL of 0.1 x MMR, and 400 mL of 2% cysteine, pH 

7.7, made in distilled water. All solutions should be maintained at 16°C.  
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1.2.2) To expel additional eggs, one can gently squeeze the lower back and abdomen 

of the frog.  

1.2.3) Remove the frogs and the bulk of the MMR, to leave the eggs in approximately 1-

200 mL of MMR in each bucket.  

1.2.4) Remove debris with a transfer pipet, and assess the quality of the eggs. High 

quality eggs are generally marked by a clear separation between the darkly pigmented 

animal hemisphere and the lightly colored vegetal hemisphere and have the highest 

dark-to-light contrast. Discard with a transfer pipet any eggs that appear stringy, 

mottled, or lysed (white and puffy) as they will decrease the overall quality of the extract. 

If >10% of the eggs are of poor quality, the entire batch should be discarded. 

1.2.5) Combine eggs into a 500 mL glass beaker and pour out as much MMR as 

possible while keeping eggs submerged.  

1.2.6) Rinse eggs by gentle swirling with twice the egg volume of MMR. Repeat 2X, and 

remove any debris or obviously poor quality eggs.  

1.2.7)  Add approximately 100 mL of 2% cysteine to the glass beaker, swirl gently to 

mix, and allow eggs to settle for 5 minutes at 16°C. Pour off the cysteine. Dejellying is 

marked by the gradual appearance of jelly coats floating above the eggs and the more 

compact packing of the eggs as they now occupy a smaller volume without the jelly 

coat.  

1.2.8) Add another 100 mL of 2% cysteine, gently swirl, wait 5 minutes, and then slowly 

pour off the cysteine. Repeat until eggs have become tightly compacted (usually by the 

third cysteine treatment). Note that if eggs are left too long in cysteine, they are prone to 

lysis. Similarly, dejellied eggs are fragile and prone to mechanical lysis if they are 
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swirled too vigorously or if they are exposed to air. Once the eggs have been dejellied, it 

is important to rapidly proceed to the centrifugation steps. 

1.2.9) Pour off cysteine, and rinse away the jelly coat and other debris by gently 

washing eggs in 1 x MMR. Pour off buffer carefully along the side of the beaker. Repeat 

2X or until MMR solution is no longer cloudy. While rinsing with 1 x MMR continue to 

remove the bad eggs using a transfer pipet.  

1.2.10) Perform a final gentle rinse with 30 mL 0.1 x MMR, and gently pour off as much 

of the buffer as possible. Again, remove any obviously bad eggs.  

1.3) Packing and crushing eggs by centrifugation 

The extract described below that is used for -catenin degradation is a variant of 

the cytostatic factor extract (metaphase II-arrested). In contrast to the low-speed and 

high-speed extract used for cell cycle studies, intermediate speed extract works best for 

-catenin degradation. Interphase extract similarly promote robust -catenin 

degradation although is more labor intensive to prepare.  

1.3.1) Add Leupeptin, Pepstatin, Aprotinin mixture (LPA, a protease inhibitor) at 10 

μg/mL (diluted from a 10 mg/mL stock solution in DMSO) and Cytochalasin D at 20 

μg/mL (diluted from a 10 mg/mL stock solution in DMSO) into the remaining 20 mL of 

0.1 x MMR.  

1.3.2) Add 0.1 x MMR containing LPA and Cytochalasin D to the washed eggs, swirl 

gently, and incubate for 5 minutes at 16°C. 

1.3.3) Transfer eggs into 16°C pre-chilled 50 mL centrifuge tubes, allow the eggs to 

settle, and remove residual buffer from the top. To prevent exposure to air, withdraw a 

small amount of buffer into the transfer pipet prior to withdrawing eggs for transfer. 
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Continue to transfer additional eggs into the centrifuge tubes and remove residual buffer 

from the top until the eggs fill the centrifuge tube to the top (maximize the yield of 

extract).  

1.3.4) To pack the eggs, spin centrifuge tubes at 400 x g for 60 seconds at 4°C. 

Remove residual buffer from the top of the centrifuge tubes.  

1.3.5) For the crushing spin, spin tubes at 15,000 x g for 5 minutes at 4°C. 

1.4) Collecting cytoplasmic layer of extract  

(At this point extract should be kept cold during throughout the process, and all steps 

should be performed at 4°C.) 

1.4.1) Clear a hole in the lipid layer using P1000 pipet tip. 

1.4.2) Collect the cytoplasmic layer (between the dark pigmented layer and the light lipid 

layer) using a new P1000 pipet tip (See Figure 1) into clean pre-chilled centrifuge tubes. 

For high-quality extract that robustly degrades -catenin, the amount of pigmented and 

lipid layer that is withdrawn with the cytoplasmic layer should be minimized.  

1.4.3) Spin extracted cytoplasmic layer at 15,000 x g for 10 minutes at 4°C and again 

collect the cytoplasmic layer. Repeat the spin and extraction 1X. The extract should be 

“straw colored.”  If there is substantial contamination with the pigmented and lipid layers 

at this point, one can repeat the spin one more time (although excessive spins will 

decrease the capacity of the extract to degrade -catenin). 

1.4.4) Add LPA and Cytochalasin D to the extract at final concentrations of 10 μg/mL 

each. 

1.4.5) (optional) Freshly prepared extract has a high capacity to translated exogenously 

added mRNA. Unfortunately, this capacity is lost once the extract is frozen. For 
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translation, add capped mRNA (0.1 mg/ml), RNAsin (1.5 U/L), and energy 

regeneration mix (2.1.1) and incubate the reaction at RT for 2 hr. Use translated extract 

immediately for -catenin degradation assays or snap-freeze in liquid nitrogen for later 

use. Capped mRNA can be readily prepared using commercially available kits. 

1.4.6) Snap-freeze extract in liquid nitrogen. Extracts are stored in small (200 μL) 

aliquots for single use because they rapidly lose their capacity to degrade -catenin if 

refrozen. For long-term storage, extract can be stored in liquid nitrogen. For short-term 

storage, extract can be stored at -80°C, although the capacity of extract to degrade -

catenin can be dramatically reduced with extended storage at -80°C (longer than 2 

months).  

2. Preparing extract for -catenin degradation assay  

2.1) Depletion from Xenopus extract 

A major advantage of Xenopus extract is the capacity to readily deplete components of 

a pathway and precisely add back a defined amount of a protein in order to determine 

its dose-dependent effects. 

2.1.1) Use freshly prepared Xenopus egg extract or quickly thaw frozen extract and 

place on ice. All manipulations should be performed in the cold.   

2.1.2) Add extract to 1/10 the volume of pelleted antibody or affinity beads (e.g. 20 L 

pelleted beads to 200 L extract). In order to minimize dilution of the extract, care 

should be taken to withdraw as much liquid from the beads as possible before addition 

of extract. Gel loading tips with long, tapered tips used for gel loading work well for this 

purpose. 

2.1.3) Rotate extract-bead mix at 4°C for 1 hour. 
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2.1.4) Spin extract-bead mix at 12,600 x g in microfuge at 4 °C for 30 seconds. 

Alternatively, if magnetic beads are used, apply magnetic field to collect beads. 

2.1.5) Transfer depleted extract to a fresh microfuge tube on ice. Be careful not to 

transfer any beads with the extract. 

2.1.6) Prepare extract for -catenin degradation assay as described in 2.2. 

2.1.7) Confirm efficiency of depletion by immunoblotting both depleted extract and 

beads. 

2.2) Optimizing Xenopus extract for -catenin degradation 

-catenin degradation in Xenopus egg extract is an energy-dependent process that 

quickly depletes the endogenous ATP stores. Consequently, an energy regeneration 

system is required to maintain robust -catenin degradation. 

2.2.1) Prepare a 20 x energy regeneration (ER) mix consisting of 150 mM creatine 

phosphate, 20 mM ATP, 600 μg/mL creatine phosphokinase, and 20 mM MgCl2. ER 

should be aliquoted and stored at -80°C. Repeated freeze/thaw cycles should be 

avoided, so small frozen aliquots are preferable.  

2.2.2) Quickly thaw Xenopus egg extract by rubbing the frozen tube between your 

hands. Place the tube on ice just before all of the extract has melted.  

2.2.3) Add 10 μL of energy regeneration mix (20 x ER) into an aliquot (200 uL) of 

Xenopus egg extract. Mix thoroughly by quickly flicking the tube and vortexing. Pulse-

spin and immediately place on ice. 

2.2.4) (optional) The turnover of -catenin can be slightly enhanced in Xenopus egg 

extract by addition of ubiquitin (1.25 mg/ml final). Cycloheximide (0.1 mg/ml final) can 

also be added to minimize translation of endogenous transcripts. 
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2.2.5) Aliquot the appropriate volumes for degradation assay into pre-chilled microfuge 

tubes on ice. For radiolabeled -catenin degradation assays, withdraw 2-5 l extract for 

each time point.   

3. Radiolabeled -catenin degradation assay in Xenopus egg extract 

(All steps should be performed on ice unless otherwise indicated). 

3.1) Preparing radiolabeled -catenin  

3.1.1) Prepare freshly in vitro-synthesized [35S]methionine-radiolabeled protein using 

commercially available kits. Generating 35S-labeled proteins are easily and efficiently 

produced using commercially available in vitro-coupled transcription-translation kits. It is 

important that the translated protein is sufficiently labeled such that changes in protein 

turnover can be readily visualized.  

3.1.2) To confirm successful radiolabeling, perform SDS-PAGE/autoradiography with 

0.5 μL of the translated protein. The radiolabeled -catenin protein band should be 

clearly visible on film within a few hours (4-6 hours). The intensity of the radiolabeled -

catenin band can be quantified using ImageJ, ImageQuant, or an alternative 

quantitative software program.  

3.1.3) Snap-freeze the radiolabeled protein in liquid nitrogen for storage until use. 

Prolonged storage (>2 months) and multiple freeze/thaw (greater than 2) can severely 

impact the capacity of the radiolabeled -catenin to degrade robustly in Xenopus egg 

extract. 

3.2) Performing -catenin degradation assay 

3.2.1) Add 1-3 μL (depending on the strength of the radiolabeled band signal) of in vitro-

translated -catenin (and other proteins, small molecules, etc. that are being tested) into 
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20 μL of Xenopus reaction mix on ice. Mix thoroughly by quickly flicking the tube and 

vortexing. This is an important step as Xenopus egg extract is very viscous, and 

incomplete mixing will affect the consistency of the results. Pulse spin and place on ice.   

3.2.2) Start the -catenin degradation reaction by shifting the tubes to room 

temperature. 

3.2.3) At the designated time point, remove 1-5 L of the sample and mix immediately 

with SDS sample buffer (5 x volume) to stop the reaction. To make sure the degradation 

reaction is completely terminated, flick tube several times and vortex vigorously. 

3.2.4) Perform SDS-PAGE/autoradiography. Run 1 L equivalents (~ 50 g of protein) 

of the extract for each time point/lane. Degradation of -catenin in Xenopus egg extract 

should be evidenced by the time-dependent decrease in intensity of the radiolabeled -

catenin band (see Figure 2). Results can be quantified using ImageJ, ImageQuant, or 

other preferred imaging software if necessary. 

3.2.5) (optional) Soak SDS-polyacrylamide gel in fixing solution (10% acetic acid and 

30% methanol in distilled water) prior to drying to decrease background radioactivity 

and increase the quality of the image. 

4. -catenin-luciferase degradation assay in Xenopus egg extract  

Perform all steps on ice unless otherwise indicated. 

4.1) Preparing -catenin-luciferase 

4.1.1) Non-radiolabeled, luciferase-tagged -catenin can be synthesized using the 

transcription-translation coupled system with complete amino acid mix.  

4.1.2) Confirm production of the luciferase-tagged -catenin by measuring luciferase 

activity from 0.5-1 μL of the reaction. Background luminescence can be assessed by 
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measuring luminescence from an untranslated reaction mix. Multiple commercial kits 

are available for measuring luciferase activity. Long-lived luminescence, however, 

works particularly well for the degradation assay. 

4.2) Performing -catenin-luciferase degradation assay 

4.2.1) Thaw and prepare and Xenopus egg extract as in 2.2. 

4.2.2) Add in vitro-translated -catenin-luciferase fusion (from 4.1) into prepared 

Xenopus reaction mix (from 2.2) on ice and mix well as in 3.2.1. The activity of the -

catenin luciferase that is added to the extract is typically between 20-50,000 relative 

luminescence units (RLU)/L of extract (based on measurements obtained from 4.1.2).  

Starting signal should be approximately 100,000 RLU (2-5 L of the in vitro-translated -

catenin-luciferase fusion).  

4.2.3) Shift the extract to room temperature to start the degradation reaction. 

4.2.4) Remove an aliquot of the reaction at the indicated time and snap-freeze in liquid 

nitrogen. Triplicate samples are typically removed for analysis for each time point. 

Frozen extract can be stored at -80°C until they are ready to be analyzed.  

4.2.5) Thaw samples ice, transfer samples to standard white 96 well plates on ice, and 

process for luciferase activity. 
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Representative Results 

Xenopus egg extract is a robust biochemical system for investigating -catenin 

turnover. The concentration of -catenin in Xenopus egg extract is ~25 nM (Salic et al., 

2000b). Under optimal conditions, the egg extract is capable of degrading -catenin at a 

rate of 50-100 nM/hr and is half-maximal at 200 nM (Lee et al., 2003). There are several 

critical steps for successful reconstitution of -catenin degradation using Xenopus egg 

extract. These include 1) generating high quality Xenopus egg extract and the manner 

by which egg extract is prepared, 2) generating quality radiolabeled -catenin and -

catenin-luciferase protein, 3) optimizing reaction conditions to support -catenin 

degradation, and 4) proper processing of reaction time points. 

A high-quality preparation of Xenopus egg extract in which -catenin is robustly 

degraded depends on both the quality of the eggs and how the eggs are handled prior 

to the crushing step as well how the extract is subsequently centrifuged to obtain the 

final extract. As mentioned in the protocol, it is important to ensure that only high quality 

eggs (evidenced by sharp contrast between the dark animal hemisphere and light 

vegetal hemisphere) are used, that poor quality eggs (stringy, mottled, or white puffs) 

are removed throughout the process, that eggs are maintained at a cool temperature 

(16°C) throughout the procedure, and that the procedure is carried out as quickly as 

possible. It is important not to sacrifice quality for quantity of extract. Additionally, as 

previously mentioned, eggs from a frog that lays poor quality eggs (>10%) should be 

entirely discarded.  

The extract described above is a modification of meiosis II-arrested CSF extract 

(Masui and Markert, 1971). The preparation of Xenopus egg extract for -catenin 
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degradation (intermediate speed extract) differs from classic extracts prepared for 

studying cell cycle (Cross and Powers, 2008a; Cross and Powers, 2008b; Willis et al., 

2012), which are low-speed or high-speed extracts (Salic and King, 2005). Adapting 

Xenopus egg extract for optimal degradation of other proteins may require altering the 

centrifugation speed and number of spins. Low-speed extract contains intact organelles 

and other large cellular components. Thus, higher speed spins will alter the composition 

of the extract and potentially remove inhibitory and/or essential components that will 

affect degradation of the protein of interest. The preparation of intermediate speed 

extract herein described is optimized for degradation of -catenin by components of the 

Wnt pathway. Spinning the extract greater than 4X can significantly decrease the 

capacity of the extract to degrade -catenin (although it has minimal effect on the 

degradation of another Wnt component, Axin). -catenin is susceptible to caspase-

mediated proteolysis in low-speed spin extract and does not noticeably degrade in high-

speed spin extract. Thus, it is likely that different speed extracts will be optimal for 

degradation of components of other signaling pathways.  

The generation of 35S--catenin and -catenin-luciferase can be performed using 

a number of commercially available kits. Protein production using transcription-

translation coupled systems is highly dependent on the quality of the plasmid: highly 

pure midi-preparations of plasmids work better and are more reliable compared to DNA 

mini-preparations. For radiolabeling -catenin, freshly obtained [35S]methionine or 

translabel ([35S]methionine plus [35S]cysteine) is preferred. Note that methionine and 

cysteine both have a tendency to oxidize with prolonged storage thereby decreasing 

their incorporation into -catenin in the in vitro transcription-translation coupled reaction. 
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Because prolonged storage and repeated freeze-thawing cycles can inhibit degradation, 

small amounts of the radiolabeled -catenin are prepared at a time and used soon after.  

The amount of protein translated and the number of methionines in the protein 

determine the strength of the radiolabeled signal. For -catenin, there should be no 

problems obtaining strong radioactive signals for degradation assays. For proteins with 

few methionines and/or that do not translate well, a [35S]methionine and [35S]cysteine 

mix can be used instead of [35S]methionine and/or added an epitope tag (Myc) that 

contains multiple methionines. Although success with various expression plasmids 

containing the appropriate phage promoters (T7, T3, and SP6) can be obtained for in 

vitro transcription-translation reactions, pCS2-based plasmid generally gives the best 

results. In addition, the signal of the translated protein can sometimes be dramatically 

increased by deleting the endogenous 5’ UTR. Finally, for large-scale experiments (e.g. 

high-throughput screening), a large quantity of recombinant -catenin-luciferase may be 

required. -catenin-luciferase from the Sf9/baculovirus system degrades with similar 

kinetics as the wild-type -catenin in Xenopus extract and embryos (Salic et al., 2000b). 

Alternatively, a high-yield in vitro expression system (e.g. wheat germ-based) has been 

successfully used for high-throughput screening (Thorne et al., 2010; Thorne et al., 

2011). 

In order to reliably measure the degradation of -catenin in the extract system, it 

is important that the initial signal from either the radiolabeled -catenin or the luciferase 

-catenin fusion is sufficiently robust. Thus, some amount of optimization by the 

experimenter on the size of the degradation assay, the number of time points needed, 

and the efficiency of the in vitro translation reaction will be required. When assembling 
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the degradation reaction, there are several steps one can take to enhance the chance 

of obtaining robust degradation. Firstly, all reagents should be thawed quickly and 

placed on ice prior to their complete thaw. Because the degradation of -catenin is 

highly energy dependent, it is important that the ER is relatively fresh. Secondly, 

Xenopus egg extract is viscous, and it is critical that the reaction is thoroughly mixed 

after addition of radiolabeled -catenin/-catenin-luciferase fusion, ER, protein, small 

molecule modulators, etc. Thirdly, pre-incubating the reaction mix for 20-30 minutes on 

ice gives more reproducible results when testing effects of small molecule modulators.   

The capacity to deplete proteins from Xenopus egg extract represents a powerful 

tool to assess protein function and their concentration-dependent effects. As an 

example, we demonstrate that depleting GSK3 from Xenopus egg extract blocks the 

degradation of -catenin, indicating the important role of GSK3 in -catenin turnover. 

Different depletion conditions will need to be empirically determined for different 

proteins. For example, abundant proteins will require an increase in the amount of 

antibody or affinity ligand beads used to achieve full depletion. A good starting point is 

to use packed beads at 1/10 the volume of the extract in order to minimize extract 

dilution. In addition to the strength of binding of the antibody/affinity ligand to the target 

protein, the type of beads (e.g. sepharose, agarose, or magnetic) used may impact the 

efficiency of protein depletion from Xenopus egg extract(Trinkle-Mulcahy et al., 2008). 

Finally, it would be ideal to analyze the extent of depletion (typically by immunoblotting). 

Once the -catenin reaction is completed, the manner by which the samples are 

processed can greatly affect the results of the experiment. The concentration of 

Xenopus egg extract preps prepared in the manner described is 52.41 mg/mL ± 5.40 
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mg/mL, and it is important not to overload the capacity of the SDS-PAGE gel; this is not 

a problem with the luciferase--catenin assay. Thus, for each time point, no more than 1 

L equivalent of extract should be loaded into each lane of an SDS-PAGE gel. To 

further enhance the quality of the results, the gel fixation step (optional) will decrease 

background radioactivity and increase the signal-to-noise ratio. For the luciferase assay, 

a decrease from an initial signal of 100,000 RLU in Xenopus egg extract faithfully 

reflects the change in the protein levels of the -catenin-luciferase fusion protein.  

The Xenopus egg extract system represents an attractive system to study the 

regulation of -catenin degradation. The extract system allows for the precise control of 

the concentration of individual proteins via depletion and reconstitution. The capacity to 

monitor their effects on the kinetics of -catenin turnover over time allows for a better 

understanding the biochemical mechanism of this crucial step in Wnt signal 

transduction. Such manipulations have provided deep insight into the complex 

molecular interactions between components of the Wnt pathway and were critical for the 

development of the first mathematical model of the Wnt pathway (Lee et al., 2003). One 

caveat is that the concentrations of Wnt pathway components in Xenopus egg extract 

and mammalian cell lysates have been found to differ, possibly reflecting differences in 

the way the Wnt pathway is regulated during embryogenesis versus the adult situation 

(Tan et al., 2012). The capacity to perform both radioactive and enzymatic, luciferase-

based assays using Xenopus egg extract provides added powerful complementary 

qualitative and qualitative tools for studying the biochemical regulation of -catenin 

degradation.    
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In addition to monitoring the turnover of -catenin, degradation of the negative 

Wnt regulator, Axin, can be monitored in Xenopus egg extract either as a radiolabeled 

protein or fusion to luciferase. Using a variant of luciferase, Renilla, fused to Axin, was 

previously adapted for the luciferase degradation assay into a high-throughput format to 

simultaneously screen for modulators of two Wnt pathway proteins, β-catenin and Axin 

(Thorne et al., 2010; Thorne et al., 2011). This biochemical screen identified the FDA-

approved drug, pyrvinium that increased and decreased the degradation rate of β-

catenin and Axin, respectively, in Xenopus egg extract (Thorne et al., 2010). Pyrvinium 

was subsequently validated in cultured human cells and in various model organisms 

(e.g. Xenopus and C. elegans) as a small molecule inhibitor of the canonical Wnt 

pathway. In summary, the Xenopus egg extract system is a versatile biochemical 

system that can be exploited in a multitude of ways to study the mechanism of Wnt 

signaling as well as for identification of small molecule modulators of the Wnt pathway. 

The biochemical method described herein can be applied to other signaling pathways in 

which protein degradation may play a critical role.   
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Figure 2.1. A schematic representation of the preparation of concentrated Xenopus egg extract. 
Eggs are collected from HCG-injected Xenopus laevis females, compacted with a low-speed 
(400 x g) spin, and crushed and separated with a medium-speed (15,000 x g) spin. Take care to 
inject subcutaneously into the dorsal lymph sac, remove the bad eggs carefully, and carefully 
separate the high-quality cytoplasmic extract from the lower-quality darker extract [Figure from 
(Chen et al., 2014a)]. 
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Figure 2.2. β-catenin degrades robustly when incubated in Xenopus egg extract. (A) A 
schematic of a degradation assay. (B) [35S]-labeled β-catenin prepared by an IVT reaction 
degrades robustly when incubated in Xenopus egg extract. Addition of MG132 (200 μM) to 
Xenopus egg extract inhibits β-catenin degradation. Mutation to alanines of the GSK3 
phosphosites within β-catenin (β-catenin SA) or addition of LiCl (25 mM) (C) inhibits β-catenin 
degradation. [Figure adapted from (Chen et al., 2014a)]. 
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Figure 2.3. Luciferase-tagged β-catenin degrades when incubated in Xenopus egg extract. (A) 
Radiolabeled β-catenin-luciferase degrades at a rate similar to that of untagged β-catenin 

protein. As with the wild-type protein, addition of LiCl (25 mM) inhibits -catenin-luciferase 
degradation. Luciferase alone does not noticeably turn over in Xenopus egg extract. Changes in 

luciferase activity of the -catenin-luciferase fusion parallel the changes in its protein levels. (B) 

Addition of LiCl (25 mM) or depletion of GSK3 (C) inhibits -catenin-luciferase turnover as 
assessed by measuring luciferase activity. (D) Immunoblotting for in vitro translated β-catenin-
luciferase (using an anti-luciferase antibody) revealed significant amounts of free luciferase 
protein in certain preps that likely contributes to the higher background when compared to the 
radiolabeled degradation assay. [Figure from (Chen et al., 2014a)]. 
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Figure 2.4. Regulated degradation of -catenin-luciferase in Xenopus extract can be adapted to 

a high-throughput format. A representative checkerboard analysis for -catenin-luciferase using 
MG132 (450 μM) as an inhibitor of β-catenin degradation. Shaded columns indicate MG132-
treated wells, and lighter columns represent vehicle (DMSO)-treated wells. Quantification and Z-
factor calculation result in a score of 0.3 indicating an acceptable assay for potential use in high-
throughput screening. [Figure from (Chen et al., 2014a)]. 
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CHAPTER III 
 

IDENTIFICATION OF A NOTCH1 INTRACELLULAR DOMAIN DEGRON THAT 
REGULATES SIGNALING IN A PARALOG-SPECIFIC MANNER 

 

Materials and Methods 

Preparation of Xenopus egg extract 

Meiosis II-arrested cytostatic factor (CSF) Xenopus egg extract was prepared as 

described in Chen et al. 2014 (Chen et al., 2014a). The Xenopus egg extract generated 

was used for all [S35]-methionine radiolabeled degradation assays and luciferase-tagged 

fusion protein degradation assays. A schematic showing the general process of 

preparing Xenopus egg extract is shown in Figure 2.1 (Figure 2.1). 

 

[S35]-radiolabeled degradation assay in Xenopus egg extract 

Xenopus egg extract was collected as previously described (Chen et al., 2014a). 

Either [S35] radiolabeled protein or Luciferase-tagged protein was in vitro transcribed 

and translated using rabbit reticulocyte lysate using the Promega protocol (Rabbit 

reticulocyte lysate, nuclease treated, Promega). In vitro transcribed and translated 

protein was incubated in Xenopus egg extract and samples were taken at specific time 

points and placed into SDS-PAGE sample buffer. The [S35] radiolabeled samples at 

each time point were subjected to SDS-PAGE and were assessed by autoradiography 

as previously described (Chen et al., 2014a). The difference in radioactivity over time 

directly corresponds to the protein levels at those specific time points. A decrease in 
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radioactivity is directly proportional to a decrease in protein levels also. An example of a 

[S35]-radiolabeled degradation assay in Xenopus egg extract is shown in Figure 2.2 

[Figure 2.2 (Chen et al., 2014a)]. 

 

Luciferase-tagged fusion protein degradation assay in Xenopus egg extract 

Additionally, Luciferase-tagged proteins were also used to assess protein 

degradation. Luciferase-tagged proteins are valid tools for assessing protein 

degradation because Luciferase-tagged proteins still exhibits the same kinetics as 

untagged proteins [Figure 2.3; (Chen et al., 2014a)]. Because SDS Sample Buffer 

quenches the enzymatic activity of Luciferase, the Luciferase-tagged in vitro transcribed 

and translated proteins were snap-frozen in liquid nitrogen immediately for each time 

point. After all time points have been taken, the Luciferase-tagged samples for each 

time point were placed into a 96-well plate and assessed by luminescence readings 

taken by a luminometer as previously described (Chen et al., 2014a). Just as for the 

[S35]-radiolabeled samples, a change in the luminescence over time is directly 

proportional to a change in protein levels. An example of this is shown in Figure 2.3 

[Figure 2.3; (Chen et al., 2014a)]. This change can be quantified because the 

luminescence readout gives specific numbers for each time point. Since NICD1 has 

similar degradation kinetics with [S35]-radiolabeling and Luciferase fusions, both of these 

readouts were used to assess NICD degradation. His-CSL-Flag was purified from SF21 

cells as previously described (Vasquez-Del Carpio et al., 2011). GST-β-catenin (gift 

from Wenqing Xu) was expressed and purified from bacterial cell lysates with 

glutathione beads (Merck Millipore) according to the manufacturer’s suggestions. 
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High-throughput degradation assay in Xenopus egg extract 

One advantage that studying protein degradation in Xenopus egg extract has 

over cell culture is the ability to adapt the egg extract system to high-throughput assays, 

such as screening for modulators of Notch signaling (Chen et al., 2014a; Thorne et al., 

2011). An example of data from the high-throughput luciferase assay is shown in figure 

2.4 (Figure 2.4). We used the high-throughput assay to perform a preliminary small 

molecule screen for kinase inhibitors that modulate NICD turnover. Please see future 

directions for more about this screen. 

 

Plasmids/Cloning 

The AIP4 and AIP4 C830A plasmids were generous gifts from Dr. Adriano 

Marchese at Loyola University-Chicago. The full-length mNotch1 and the Hes-1 reporter 

plasmid were gifts from Stacey Huppert. The Fbxw7 clone came from DNASU 

(HsCD00404060, DNASU).  

The hNICD(NT1-CT2), (NT1-CT3), (NT1-CT4), (CT2-NT1), (CT3-NT1), and 

(CT4-NT1) fusion plasmids were generated by NdeI digestion at an internal NdeI site at 

position 1016 of NICD1 and position 1034 of NICD2 (NdeI, NEB). NdeI sites were 

created using single site directed mutagenesis inside NICD3 and NICD4 at the 

conserved residues that corresponded to the NdeI sites in NICD1 and NICD2. These 

mutagenesis reactions did not change amino acid sequences and only changed the 

nucleotide sequence. The NdeI sites were near regions conserved in all NICD paralogs. 

The two distinct regions of each individual NICD paralog were then ligated together 
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using traditional ligation protocols (T4 DNA Ligase, NEB) and sequenced to confirm 

correct insertions.  

Other DNA plasmids were generated by traditional PCR-based subcloning 

methods. Standard PCR amplification of template DNA containing the 8 base-cutting 

restriction endonuclease FseI at the 5’ end and the 8 base-cutting restriction 

endonuclease AscI at the 3’ end (FseI, AscI, both from NEB) was performed to generate 

PCR amplicons. These PCR amplicons were then ligated into their respective vectors 

using standard ligation protocols (T4 DNA Ligase, NEB). The complete list of primers 

used for this subcloning is listed in Table 2.1. 
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Primer Name Primer sequence 

hNICD1 FseI Start extra 
A Fwd 

CGCGGGCCGGCCAATGGTGCTGCTGTCCCGCAAGCGC 

hNICD1 Stop AscI Rev CAATGGCGCGCCTTACTTGAAGGCCTCCGGAATGCGG
GC 

hNICD1 no stop AscI  R CAATGGCGCGCCCTTGAAGGCCTCCGGAATGCG 

hNICD2 FseI extra A F CGGCCGGCCAATGGTAATCATGGCAAAACGAAAGCGT 

hNICD2 AscI R CAATGGCGCGCCTCACGCATAAACCTGCATGTT 

hNICD2 no stop R CAATGGCGCGCCCGCATAAACCTGCATGTTGTT 

hNICD3 FseI extra A F CGGCCGGCCAATGGTCATGGTGGCCCGGCGCAAG 

hNICD3 AscI R CAATGGCGCGCCTCAGGCCAACACTTGCCTCTT 

hNICD3 no stop R CAATGGCGCGCCGGCCAACACTTGCCTCTTGGG 

hNICD4 FseI extra A F CGGCCGGCCAATGGTCCTCCAGCTCATCCGGCGT 

hNICD4 AscI R CAATGGCGCGCCCTATTTTTTACCCTCTCCTCCTTGGTT 

hNICD4 no stop R CAATGGCGCGCCTTTTTTACCCTCTCCTCCTTGGTT 

hNICD1 ΔPEST R CAATGGCGCGCCCTAGGAGCTGTCCAGCAGGCAGCC 

hNICD1 ΔPEST no stop 
R 

CAATGGCGCGCCGGAGCTGTCCAGCAGGCAGCC 

hNICD1 2342* AscI R  CAATGGCGCGCCTCAGGGGGCCTGTGTGCTCAG 

hNICD1 2342* no stop R CAATGGCGCGCCGGGGGCCTGTGTGCTCAGGGG 

hNICD1 2399* AscI R CAATGGCGCGCCTCACAGGTTCTGCTGCTGCATCTGTA
A 

hNICD1 2399* no stop R CAATGGCGCGCCCAGGTTCTGCTGCTGCATCTGTAACA
G 

hNICD1 2493* AscI R  CAATGGCGCGCCTCAGGAGTAGCTGTGCTGCGAGGGG
GGCGTCAG 

hNICD1 2493* no stop R CAATGGCGCGCCGGAGTAGCTGTGCTGCGAGGGGGGC
GTCAGGAA 

hNICD1 2518* AscI R CAATGGCGCGCCTCAAGGAACACGGGACGGGGTGAGG
AAGGG 

hNICD1 2518* no stop R CAATGGCGCGCCAGGAACACGGGACGGGGTGAGGAAG
GGGTG 

hNICD1- NICD2 1 Fwd CGGCGGGAGCCCCTCGGCCAGGATGCTGTGGGGCTG 

hNICD1- NICD2 1 Rev CAGCCCCACAGCATCCTGGCCGAGGGGCTCCCGCCG 

hNICD1- NICD2 2 Fwd GACGTCAATGTCCGCGGGCCAGATGGCTGCACCCCA 

hNICD1- NICD2 2 Rev TGGGGTGCAGCCATCTGGCCCGCGGACATTGACGTC 

hNICD1- NICD2 3 Fwd ACAGACCGCACGGGCGAGATGGCCCTGCACCTTGCA 

hNICD1- NICD2 3 Rev TGCAAGGTGCAGGGCCATCTCGCCCGTGCGGTCTGT 

hNICD1 NT-10aa Fwd GAATGGCCGGCCAATGCATGGCCAGCTCTGGTTCCCT 

hNICD1 NT50 Rev  ATTGGGCGCGCCACCGTCTGAAGCGTTCTTCAG 

hNICD2 NT51 Rev ATTGGGCGCGCCAGCTTCTGAGACTTGCAC 

hNICD3 NT50 Rev ATTGGGCGCGCCCTCACCCTTGGCCATGTT 

hNICD4 NT50 Rev ATTGGGCGCGCCTGCCTTTGGCTTCAGTGC 

mNICD1 FseI F  CGGCCGGCCGATGGTGCTGCTGTCCCGCAAGCGC 
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mNICD1 AscI R  CGGCGCGCCCTAGTTTATTTTCTTGGAACAG 

mNICD4 FseI F  GAATGGCCGGCCAATGGTCCTCCAGCTCATTCGGCGA 

mNICD4 AscI R CAATGGCGCGCCCTAGTTCAGATTTCTTACAAC 

dNICD FseI Fwd TATAGGCCGGCCAATGGTGAAATACGTAATTACT 

dNICD AscI Rev ATATGGCGCGCCTCAAATGTAGATGGCCTC 

Fbxw7 FseI extra A F CGGCCGGCCAATGAATCAGGAACTGCTCTCT 

Fbxw7 ΔFbox extra A  CGGCCGGCCAATGAACAAATTACGGCAAAGT 

Fbxw7 AscI R CAATGGCGCGCCTCACTTCATGTCCACATCAAA 

NICD1 CT NdeI F GGATCATATGGACCGCCTGCCGCGCGACATC 

NICD2 CT NdeI F AGACCATATGGATCGTCTTCCCCGGGATGTG 

NICD3 CT NdeI F AGACCATATGGACAGGCTGCCGCGGGACGTA 

NICD4 CT NdeI F AGACCATATGGGGCTAGCGCCGGCGGACGTC 

NICD3 Add NdeI F AACCGTGAGATCACCGACCATATGGACAGGCTGCCGC
GGGAC 

NICD3 Add NdeI R GTCCCGCGGCAGCCTGTCCATATGGTCGGTGATCTCAC
GGTT 

NICD4 Add NdeI F GCCCGAGAGCTGCGGGACCATATGGGGCTAGCGCCGG
CGGACGT 

NICD4 Add NdeI R ACGTCCGCCGGCGCTAGCCCCATATGGTCCCGCAGCT
CTCGGGC 

Table 2.1. List of all primers used in this thesis. All sequences are read from left to right and 5’ 
to 3’. 
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Site-directed Mutagenesis 

Another large portion of the DNA plasmids generated in this study were 

generated through either single site directed mutagenesis or multi site directed 

mutagenesis. Multi site directed mutagenesis was performed according to original 

Agilent Technologies protocol (QuikChange Lightning Multi Site Directed Mutagenesis 

Kit, Agilent Technologies) and using the Agilent Technologies PCR program. Single site 

directed mutagenesis was performed using the following protocol adapted from Agilent 

Technologies: 

Step 1 

PCR reaction containing: 

35.4 μL H20 

5.0 μL 10X PFU Turbo Polymerase Buffer 

5.0 μL 2.5 mM dNTPs 

1.0 μL template DNA (30 ng/μL) 

1.3 μL Forward primer (100 ng/μL) 

1.3 μL Reverse primer (100 ng/μL) 

1.0 μL PFU turbo (Agilent Technologies) 

 for a total volume of 50 μL 

 

Step 2  

PCR the reaction mix with the following program: 

Lid 95°C 

1) 95°C 50 seconds (can use 98°C if needed) 
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2) 95°C 50 seconds (can use 98°C if needed) 

3) 55°C 50 seconds 

4) 68°C 24 minutes 

Repeat Steps 2-4 17 times 

5) 68°C 24 minutes 

6) Hold at 12°C indefinitely 

Step 3 

Add 1 μL of DpnI (DpnI, NEB) into each PCR reaction mix and incubate at 37°C for 1 

hour. DpnI digests methylated DNA so should digest template DNA but not amplified 

DNA. 

Step 3 

Transform into bacteria (10 μL of DpnI-digested PCR product into 100 μL of DH5α 

competent cells) and plate onto agar plates containing antibiotic for plasmid. 

Step 4 

Pick bacterial colonies and miniprep to isolate plasmid DNA. 

Step 5 

Sequence colonies to identify the correctly mutagenized clones. 

 

The complete list of mutagenesis primers used in this study is provided in Table 2.2. 
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Primer Name Primer Sequence 
hNICD1 S2538A F  ACTGGTCCGAGGGCGTCTCCGCCCCTCCCACCAGCATGCAGTC 

hNICD1 S2538A R  GACTGCATGCTGGTGGGAGGGGCGGAGACGCCCTCGGACCAGT 

hNICD1 

S2514A/S2517A F  

AGCACCCCTTCCTCACCCCGGCCCCTGAGGCCCCTGACCAGTGGTCCAG

CTC 

hNICD1 

S2514A/S2517A R  

GAGCTGGACCACTGGTCAGGGGCCTCAGGGGCCGGGGTGAGGAAGGG

GTGCT 

hNICD1 L2X F CATCGATGGCCGGCCAATGGTGCTGTCCCGCAAGCGCCGGCGGC 

hNICD1 L2X R  GCCGCCGGCGCTTGCGGGACAGCACCATTGGCCGGCCATCGATG 

hNICD1 S4M F GGCCGGCCAATGGTGCTGCTGATGCGCAAGCGCCGGCGGCAGCATG 

hNICD1 S4M R CATGCTGCCGCCGGCGCTTGCGCATCAGCAGCACCATTGGCCGGCC 

hNICD1 R5A F CGGCCAATGGTGCTGCTGTCCGCCAAGCGCCGGCGGCAGCATGGCC 

hNICD1 R5A R GGCCATGCTGCCGCCGGCGCTTGGCGGACAGCAGCACCATTGGCCG 

hNICD1 Q10K F GCTGTCCCGCAAGCGCCGGCGGAAGCATGGCCAGCTCTGGTTCCCTG 

hNICD1 Q10K R CAGGGAACCAGAGCTGGCCATGCTTCCGCCGGCGCTTGCGGGACAGC 

hNICD1 Q13S F CAAGCGCCGGCGGCAGCATGGCTCGCTCTGGTTCCCTGAGGGCTTC 

hNICD1 Q13S R GAAGCCCTCAGGGAACCAGAGCGAGCCATGCTGCCGCCGGCGCTTG 

hNICD1 Bas Reg 1 

F 

GCTCTGGTTCCCTGAGGGCTTCACTCTTCGCCGAGAGGCCAGCAAGAAG

AAGCGG 

hNICD1 Bas Reg 1 

R 

CCGCTTCTTCTTGCTGGCCTCTCGGCGAAGAGTGAAGCCCTCAGGGAAC

CAGAGC 

hNICD1 Bas Reg 2 

F 

GAGGGCTTCACTCTTCGCCGAGATGCCAGCAATCACAAGCGGCGGGAG

CCCCTCGGC 

hNICD1 Bas Reg 2 

R 

GCCGAGGGGCTCCCGCCGCTTGTGATTGCTGGCATCTCGGCGAAGAGT

GAAGCCCTC 

hNICD1 L2X/S4M 

F 

CATCGATGGCCGGCCAATGGTGCTGATGCGCAAGCGCCGGCGGCAGC 

hNICD1 L2X/S4M 

R 

 GCTGCCGCCGGCGCTTGCGCATCAGCACCATTGGCCGGCCATCGATG 

hNICD1 L2X/S4M 

R5A F 

CATCGATGGCCGGCCAATGGTGCTGATGGCCAAGCGCCGGCGGCAGCA

TG 

hNICD1 L2X/S4M 

R5A R 

CATGCTGCCGCCGGCGCTTGGCCATCAGCACCATTGGCCGGCCATCGAT

G 

hNICD1 L2X/S4M 

Q10K F  

CTGATGCGCAAGCGCCGGCGGAAGCATGGCCAGCTCTGGTTCCC 

hNICD1 L2X/S4M 

Q10K R  

 GGGAACCAGAGCTGGCCATGCTTCCGCCGGCGCTTGCGCATCAG 

hNICD1 R1758S F CGGCCAATGGTGCTGCTGTCCTCCAAGCGCCGGCGGCAGCATGGCC 

hNICD1 R1758S R GGCCATGCTGCCGCCGGCGCTTGGAGGACAGCAGCACCATTGGCCG 

hNICD1 R1761W 

F 

GTGCTGCTGTCCCGCAAGCGCTGGCGGCAGCATGGCCAGCTCTGC 

hNICD1 R1761W 

R 

GCAGAGCTGGCCATGCTGCCGCCAGCGCTTGCGGGACAGCAGCAC 

hNICD1 S1776C F GTTCCCTGAGGGCTTCAAAGTGTGTGAGGCCAGCAAGAAGAAGCGG 

hNICD1 S1776C R CCGCTTCTTCTTGCTGGCCTCACACACTTTGAAGCCCTCAGGGAAC 

hNICD1 R1783W 

F 

GTCTGAGGCCAGCAAGAAGAAGTGGCGGGAGCCCCTCGGCGAGGAC 

hNICD1 R1783W 

R 

GTCCTCGCCGAGGGGCTCCCGCCACTTCTTCTTGCTGGCCTCAGAC 
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hNICD1 R1784L F GAGGCCAGCAAGAAGAAGCGGCTGGAGCCCCTCGGCGAGGACTCC 

hNICD1 R1784L R GGAGTCCTCGCCGAGGGGCTCCAGCCGCTTCTTCTTGCTGGCCTC 

hNICD1 P1796H F GAGGACTCCGTGGGCCTCAAGCACCTGAAGAACGCTTCAGACGGT 

hNICD1 P1796H R ACCGTCTGAAGCGTTCTTCAGGTGCTTGAGGCCCACGGAGTCCTC 

hNICD1 WAAAAP 

F  

CCTGAGTCCCCTGACCAGTGGGCCGCCGCGGCCCCGCATTCCAACGTCT

CCGAC 

hNICD1 WAAAAP 

R 

GTCGGAGACGTTGGAATGCGGGGCCGCGGCGGCCCACTGGTCAGGGGA

CTCAGG 

hNICD1 1771-

1774A F 

CAGCATGGCCAGCTCTGGTTCGCTGCGGCCGCCAAAGTGTCTGAGGCC

AGCAAG 

hNICD1 1771-

1774A R 

CTTGCTGGCCTCAGACACTTTGGCGGCCGCAGCGAACCAGAGCTGGCC

ATGCTG 

hNICD1 

D1839N/R1841Q F 

CCTGACCTGGACGACCAGACAAACCACCAGCAGTGGACTCAGCAGCAC

CTG 

hNICD1 

D1839N/R1841Q R 

CAGGTGCTGCTGAGTCCACTGCTGGTGGTTTGTCTGGTCGTCCAGGTCA

GG 

hNICD2 NT2-5 F CATCGATGGCCGGCCAATGGTACTGCTGTCCCGCAAACGAAAGCGTAA

GCATGGC 

hNICD2 NT2-5 R GCCATGCTTACGCTTTCGTTTGCGGGACAGCAGTACCATTGGCCGGCCA

TCGATG 

hNICD2 NT2-5 

K9Q F 

CTGTCCCGCAAACGAAAGCGTCAGCATGGCTCTCTCTGGCTGCCTG 

hNICD2 NT2-5 

K9Q R 

CAGGCAGCCAGAGAGAGCCATGCTGACGCTTTCGTTTGCGGGACAG 

hNICD2 N1 Bas 

Reg 1 F 

CTCTGGCTGCCTGAAGGTTTCAAAGTGTCTGAGGATGCAAGCAATCACA

AGCGT 

hNICD2 N1 Bas 

Reg 1 R 

ACGCTTGTGATTGCTTGCATCCTCAGACACTTTGAAACCTTCAGGCAGC

CAGAG 

hNICD2 N1 Bas 

Reg 2 F 

GAAGGTTTCAAAGTGTCTGAGGCCAGCAAGAAGAAGCGTCGTGAGCCA

GTGGG 

hNICD2 N1 Bas 

Reg 2 R 

CCCACTGGCTCACGACGCTTCTTCTTGCTGGCCTCAGACACTTTGAAAC

CTTC 

mN1 FL 

L1744X/S1747M F 

CTTTGTGGGCTGTGGGGTGCTGATGCGCAAGCGCCGGCGGCAGCA 

mN1 FL 

L1744X/S1747M R 

 TGCTGCCGCCGGCGCTTGCGCATCAGCACCCCACAGCCCACAAAG 

mN1 FL 

L1744X/S1747M/Q

1753K F 

CTGATGCGCAAGCGCCGGCGGAAGCATGGCCAGCTCTGGTTCCCT 

mN1 FL 

L1744X/S1747M/Q

1753K R 

 AGGGAACCAGAGCTGGCCATGCTTCCGCCGGCGCTTGCGCATCAG 

mN1 FL 2467* F CCTTCCCAGCACAGTTACTCCTAGTCCCCTGTGGACAACACCCCC 

mN1 FL 2467* R GGGGGTGTTGTCCACAGGGGACTAGGAGTAACTGTGCTGGGAAGG 

Table 2.2. List of all primers used for mutagenesis. Sequences are read left to right and 

5’ to 3’. 

 



100 
 

Gene Vector Collection # 

hNICD1 CS2 EL1868 

hNICD1-Luciferase  CS2 EL1869 

hNICD1-MYC CS2 EL1870 

hNICD1-GFP CS2 EL1871 

hNICD2 CS2 EL1872 

hNICD2-Luciferase CS2 EL1873 

hNICD2-MYC CS2 EL1874 

hNICD3 CS2 EL1875 

hNICD3-Luciferase CS2 EL1876 

hNICD3-MYC CS2 EL1877 

hNICD4 CS2 EL1878 

hNICD4-Luciferase CS2 EL1879 

hNICD4-MYC CS2 EL1880 

hNICD1S3A CS2 EL1881 

hNICD1S3A-Luciferase CS2 EL1882 

hNICD1S3A-MYC CS2 EL1883 

hNICD1S2493Δ CS2 EL1891 

hNICD1S2493Δ -Luciferase CS2 EL1892 

hNICD1S2493Δ -MYC CS2 EL1893 

hNICD1/2(NT1-CT2) CS2 EL1896 

hNICD1/2(NT1-CT2)-Luciferase CS2 EL1897 

hNICD1/3(NT1-CT3) CS2 EL1898 

hNICD1/3(NT1-CT3)-Luciferase CS2 EL1899 

hNICD1/4(NT1-CT4) CS2 EL1900 
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hNICD1/4(NT1-CT4)-Luciferase CS2 EL1901 

hNICD2/1(NT2-CT1) CS2 EL1902 

hNICD2/1(NT2-CT1)-Luciferase CS2 EL1903 

hNICD3/1(NT3-CT1) CS2 EL1904 

hNICD3/1(NT3-CT1)-Luciferase CS2 EL1905 

hNICD4/1(NT4-CT1) CS2 EL1906 

hNICD4/1(NT4-CT1)-Luciferase CS2 EL1907 

hNICD1/2(NT35) CS2 EL1908 

hNICD1/2(NT35)-Luciferase CS2 EL1909 

hNICD1/2(NT125) CS2 EL1910 

hNICD1/2(NT125)-Luciferase CS2 EL1911 

hNICD1/2(NT176) CS2 EL1912 

hNICD1/2(NT176)-Luciferase CS2 EL1913 

hNICD1L1755Δ CS2 EL1914 

hNICD1L1755Δ-Luciferase CS2 EL1915 

hNICD1L1755Δ-MYC CS2 EL1916 

hNICD1S1757M CS2 EL1917 

hNICD1S1757M-MYC CS2 EL1918 

hNICD1Q1763K CS2 EL1920 

hNICD1Q1763S CS2 EL1921 

hNICD1KRR CS2 EL1922 

hNICD1NTΔ10 CS2 EL1851 

hNICD1NTΔ10-Luciferase CS2 EL1852 

hNICD1NTΔ10-MYC CS2 EL1923 

hNICD1L1755Δ-GFP CS2 EL1925 
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hNICD1S1757M-GFP CS2 EL1926 

hNICD1L1755Δ / S1757M-GFP CS2 EL1927 

hNICD1LSQ CS2 EL1931 

hNICD1LSQ-MYC CS2 EL1932 

hNICD1(1-50)-Luciferase CS2 EL1933 

hNICD1(1-50)-GFP CS2 EL1934 

hNICD1(1-50)L1755Δ-Luciferase CS2 EL1935 

hNICD1(1-50)S1757M-Luciferase CS2 EL1937 

hNICD1(1-50)S1757M-GFP CS2 EL1938 

hNICD1(1-50)L1755Δ / S1757M-Luciferase CS2 EL1947 

hNICD1(1-50)L1755Δ / S1757M-GFP CS2 EL1948 

hNICD1(1-50)LS-Luciferase CS2 EL1950 

hNICD1(1-50)LS-GFP CS2 EL1951 

hNICD2(1-50)-GFP CS2 EL1952 

hNICD2(1-50)-Luciferase CS2 EL1953 

hNICD3(1-50)-GFP CS2 EL1954 

hNICD3(1-50)-Luciferase CS2 EL1955 

hNICD4(1-50)-GFP CS2 EL1956 

hNICD4(1-50)-Luciferase CS2 EL1957 

hNICD1NTΔ10 / S2493Δ-MYC   CS2 EL1958 

hNICD1NTΔ10 / S2493Δ CS2 EL1959 

hNICD1LSQ / S2493Δ CS2 EL1962 

hNICD1LSQ / S2493Δ-MYC CS2 EL1963 

hNICD1R1758S CS2 EL1964 

hNICD1R1758S-MYC CS2 EL1965 
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hNICD1R1761W CS2 EL1966 

hNICD1R1761W-MYC CS2 EL1967 

hNICD1S1776C CS2 EL1968 

hNICD1S1776C-MYC CS2 EL1969 

hNICD1R1783W CS2 EL1970 

hNICD1R1783W-MYC CS2 EL1971 

hNICD1R1784L CS2 EL1972 

hNICD1R1784L-MYC CS2 EL1973 

hNICD1LSQ / S2A CS2 EL1976 

hNICD1LSQ / S2A CS2 EL1977 

hNICD1NTΔ10 / S2A CS2 EL1978 

hNICD1NTΔ10 / S2A-MYC CS2 EL1979 

hNICD1W4AP CS2 EL1980 

hNICD1W4AP-MYC CS2 EL1981 

hNICD1S2A / W4AP CS2 EL1982 

hNICD1S2A / W4AP-MYC CS2 EL1983 

hNICD1NTΔ10 / W4AP CS2 EL1984 

hNICD1NTΔ10 / W4AP-MYC CS2 EL1985 

hNICD1NTΔ10 / S2A / W4AP CS2 EL1986 

hNICD1NTΔ10 / S2A / W4AP-MYC CS2 EL1987 

hNICD11771-74A CS2 EL1988 

hNICD11771-74A-MYC CS2 EL1989 

hNICD1/2KRR-Luciferase  CS2 EL1994 

hNICD1/2NT10 / KRR-Luciferase CS2 EL1996 

hNICD1NTΔ10 / 1771-74A-MYC CS2 EL1997 
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hNICD11771-74A / S2493Δ-MYC CS2 EL1998 

hNICDNTΔ10 / 1771-74A / S2493Δ-MYC CS2 EL1999 

mNotch1S2467Δ pcDNA3.1 EL2001 

mNotch1LSQ pcDNA3.1 EL2003 

mNotch1LSQ / S2467Δ pcDNA3.1 EL2004 

mNICD1 CS2 EL2007 

mNICD4 CS2 EL2008 

dNICD1 CS2 EL2009 

Fbxw7DN CS2 EL2013 

Fbxw7 CS2 EL2014 

mNotch1 pcDNA3.1 Gift from Stacey Huppert 

FLAG-Itch pCMV-10 Gift from Adriano 

Marchese 

FLAG-ItchC380A pCMV-10 Gift from Adriano 

Marchese 

Renilla luciferase CS2 EL986 

Hes1-Luciferase pGL2-

Basic 

Gift from Stacey Huppert 

GST-β-catenin pGEX Gift from Wenqing Xu 

GST pGEX GE Healthcare Life 

Sciences 

Table 2.3 List of all plasmids generated in this thesis 
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siRNA constructs 

Two distinct siRNA sequences for RBPj knockdown (Dharmacon) were 
transfected into HEK293 cells. The sequences are as follows:  
RBPj 1 sense 5’-GGAAAUAGUGACCAAGAAAUGUU-3’  
RBPj 1 antisense 5’-CAUUUCUUGGUCACUAUUUCCUU-3’  
RBPj 2 sense 5’-GGUGAGUGCUUCAGUUAUAGUUU-3’ 
RBPj 2 antisense 5’-ACUAUAACUGAAGCACUCACCUU-3’ 
 

Mammalian Cell Culture 

 HEK293 cells were maintained in Dulbecco’s Modified Eagle Medium 

(Corning) supplemented with 1% L-Glutamine, 10% (v/v) FBS, 100 µg/ml streptomycin, 

and 100 U/ml penicillin at 37oC with 5% CO2. Transient transfections were performed 

using Fugene HD (Promega) according to the manufacturer’s suggestions. For 

cycloheximide (Sigma-Aldrich) chase experiments, media supplemented with 100 µg/ml 

cyclohexamide was added to cells at the 0 minute time point. Cell were then incubated 

in the presence of cyclohexamide for the duration of the experiment. For microscopy, 

cell were plated on glass bottom MatTek dishes (MatTek Corporation) for imaging. 

Hes-1 Reporter Assays 

HEK293 cells were transiently transfected with 1 µg Hes1-Luciferase, 0.5 µg 

Renilla luciferase, and 1 µg of the indicated Notch construct. Luciferase and Renilla 

luciferase activities were assessed after 24 hrs using the Dual-Glo Luciferase Assay 

System (Promega) according to the manufacturer’s instructions. Experiments were 

performed in triplicate and replicated at least two times, and significance was 

determined using a two-tailed student t-test. The luciferase levels are read on a 

luminometer (Optima Fluostar, as described by Promega (Dual-Glo Luciferase Assay 



106 
 

System, Promega). Renilla is used as a control for background luciferase and for cell 

death. The readings are normalized to wild-type NICD or full-length Notch1.  

 

Zebrafish Somite Formation Assay 

mRNAs were synthesized using the SP6 or T7 mRNA Message Machine 

(Ambion). Zygotes were either injected with 25 pg/nl or 100 pg/nl mRNA mixed with 

phenol red using the MPPI-2 injection system (Applied Scientific Instruments). Injected 

embryos were incubated at 28oC until the 10-13 somite stage and scored for proper 

somitogenesis using a Zeiss stemi 2000-CS scope. Live embryos were embedded in 

0.8% agarose and images taken with an Olympus DP72 camera at 4X magnification. 

For immunostaining, embryos were permeabilized with 10 μg/ml Proteinase K and 

stained with α-EphA4 (Tyr-602) (ECM Biosciences) overnight at 40C. Primary antibodies 

were then detected with Alexa-488 secondary antibodies (Life Technologies) and 

imaged on a Nikon Eclipse 80I equipped with a photometrics CoolSNAP ES camera. 

Significance was assessed using Fisher's exact test. 

 

Immunoblot analysis 

 Cells were incubated in non-denaturing lysis buffer (50 mM Tris-HCl 

pH7.4, 300 mM NaCl, 5 mM EDTA, 1% (w/v) Trition X-100, 1 mM PMSF) for 30 min on 

ice. Lysates were rigorously vortexed once at 15 min during the incubation. At the end 

of the incubation, lysates were cleared by centrifugation. Total protein was assessed 

using the Bio-Rad protein assay dye reagent (Bio-Rad). SDS-PAGE and 

immunoblotting were performed using standard techinques. To assesses changes in 
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steady-state protein levels, 1 ug of each DNA construct was transfected into an 

equivalent number of HEK293 cells. 48 hr post-transfection, cells were lysed and 50 µg 

of total protein processed for SDS-PAGE and immunoblottting. The following antibodies 

were used: α-Fbxw7 (Bethyl Laboratories, Cat# A301-720A), α-MYC (9E10), α-Flag 

(Sigma-Aldrich), α-β-Tubulin (Clone E7, Developmental Studies Hybridoma Bank, 

University of Iowa, IA). Secondary antibodies conjugated to horseradish peroxidase 

were purchased from Bethyl Laboratories. Blots were analyzed using ImageJ software. 

 

Live-Cell Imaging 

MatTek dishes were maintained at 37°C by heated stage (Warner Instruments). 

Single-plane confocal videos were taken using a Yokogawa QLC-100/CSU-10 spinning 

disk head (Visitec assembled by Vashaw) attached to a Nikon TE2000E microscope 

using a CFI PLAN APO VC 100× oil lens, NA 1.4, with or without 1.5× intermediate 

magnification, and a back-illuminated EM-CCD camera Cascade 512B (Photometrics) 

driven by IPLab software (Scanalytics). A krypton-argon laser (75 mW 488; Melles 

Griot) with AOTF was used for color excitation. Custom double dichroic mirror and filters 

(Chroma) in a filter wheel (Ludl) were used in the emission light path. Intensity in live-

cells expressing various GFP constructs was measured using ImageJ software. Cells of 

interest were outlined with a selection tool, and measurements were set (area, 

integrated density, and mean gray value). Data points are plotted as the percent of 

initial intensity. 

  



108 
 

Introduction 

The Notch pathway is a highly conserved, metazoan signaling pathway critical for 

organismal development (Koch et al., 2013; Kopan and Ilagan, 2009). Improper 

regulation of the Notch pathway has been shown to contribute to numerous human 

diseases including cancer (Koch and Radtke, 2010; Louvi and Artavanis-Tsakonas, 

2012; Ntziachristos et al., 2014; Ranganathan et al., 2011b; South et al., 2012). The 

Notch pathway communicates transcriptional decisions between adjacent cells through 

the direct interaction of a Delta/Serrate/Lag-2 (DSL) type-1 transmembrane ligand on 

the signaling cell and a Notch type-1 transmembrane receptor on a receiving cell 

(D'Souza et al., 2010). The interaction between ligand and receptor promotes a series 

of proteolytic events resulting in liberation of the Notch intracellular domain (NICD) from 

its membrane tether. Once NICD is liberated into the cytoplasm, it enters the nucleus 

where it forms a complex consisting of CSL (CBF1/RBPjk/Su(H)/Lag-1), MAML 

(Mastermind-like), and CoA (coactivators) (Kovall and Blacklow, 2010). Formation of 

this multimeric complex drives transcription of Notch target genes to promote 

differentiation, stem cell maintenance, proliferation, or apoptosis. In the prevailing 

model, transcriptional termination is mediated, in part, by the E3 ubiquitin ligase 

complex, SCFFbxw7, which promotes its ubiquitin-mediated degradation (Moretti and 

Brou, 2013).  

Much of our understanding of Notch pathway regulation comes from studies of 

Notch mutations in human leukemias. Notch1 is a major driver of T-Cell Acute 

Lymphoblastic Leukemia (T-ALL), and mutations of Notch1 in T-ALL have been studied 

in detail (Ellisen et al., 1991; South et al., 2012; Sulis et al., 2008; Weng et al., 2004). 
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Most mutations occur in the heterodimerization domain (HD) that lead to constitutive 

cleavage and liberation of NICD1 from the holoprotein as well as mutations that truncate 

the C-terminal PEST domain, thereby leading to increased NICD1 stability. Enhanced 

stability of these truncated forms of NICD1 is due to loss of the Fbxw7 recognition 

sequence, LTPSPE, and a poorly characterized phosphoregulated domain (WSSSSP) 

(Chiang et al., 2006; Ellisen et al., 1991; Sulis et al., 2008; Weng et al., 2004). The 

importance of NICD1 turnover in limiting Notch signaling is further highlighted by 

findings, which implicate loss-of-function mutations in Fbxw7 to drive T-ALL (Malyukova 

et al., 2007; O'Neil et al., 2007; Thompson et al., 2007). 

Multiple studies indicate that SCFFbxw7-mediated turnover of NICD1 is not the 

sole mechanism for regulating its steady-state levels, and, thus, its transcriptional 

activity. Mutants of NICD1 that disrupt its interaction with SCFFbxw7 are still ubiquitinated 

and degraded (O'Neil et al., 2007; Thompson et al., 2007). Similarly, NICD1 is degraded 

in Fbxw7-/- mouse embryonic fibroblasts (Tsunematsu et al., 2004). Non-SCFFbxw7-

mediated degradation has been shown to occur via the HECT type E3 ligase, Itch, 

although this mechanism remains unclear (Moretti and Brou, 2013).  

 We have previously used the Xenopus egg extract system to study the 

cytoplasmic regulation of β-catenin turnover (Chen et al., 2014a; Lee et al., 2001; Salic 

et al., 2000a). We now apply the Xenopus egg extract system to study cytoplasmic 

human NICD1 (hNICD1) protein turnover and have identified a novel hNICD1-specific 

degron at its N-terminal end distinct from its C-terminal PEST domain degradation 

elements. We show that mutations in this degron stabilize hNICD1 and potentiate 

hNICD1 activity in vitro and in vivo. Degradation mediated by the N-terminal degron is 
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inhibited by hNICD1 binding to CSL. Finally, we present evidence that mutations within 

the N-terminal degron may function as a driver of Notch1 signaling in human cancers. 

Results 

NICD1 degrades robustly in Xenopus egg extract 

To recapitulate cytoplasmic NICD turnover, we utilized the Xenopus egg extract 

system that has been previously shown to support β-catenin degradation via 

components of the Wnt pathway (Chen et al., 2014a; Lee et al., 2003; Salic et al., 

2000b). We found that radiolabeled in vitro-translated (IVT) hNICD1 degrades robustly 

in Xenopus egg extract. The addition of MG132, a proteasome inhibitor, inhibited the 

degradation of both hNICD1 and β-catenin (Figure 3.1A). Recombinant GST-β-catenin, 

however, potently inhibited the turnover of radiolabeled IVT -catenin but had no effect 

on the turnover of hNICD1 (Figure 3.1B). β-catenin degradation by Wnt pathway 

components requires its phosphorylation by Glycogen synthase kinase 3 (GSK3), and 

addition of inhibitors of GSK3 (e.g. LiCl or BIO) blocks -catenin turnover in Xenopus 

egg extract (Figure 3.2; (Chen et al., 2014a; Salic et al., 2000b)); in contrast, addition of 

LiCl or BIO to extract does not observably decrease the half-life of hNICD1 (Figure 3.2). 

These results show that hNICD1 degradation in Xenopus egg extract occurs in a 

proteasome-dependent manner distinct from that of -catenin. 
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Figure 3.1. hNICD1 is degraded in Xenopus egg extract.  (A) In vitro-translated [35S]hNICD1 
and [35S]β-catenin were incubated in Xenopus egg extract in the presence of DMSO (-) or 
MG132 (+). Samples were removed at indicated times and analyzed by SDS-
PAGE/autoradiography. (B) Same as in (A) except extract was supplemented with MG132 and 
recombinant GST or GST-β-catenin. (C) Schematic of the four human NICD Notch paralogs. 
RAM is RBP-Jκ Associated Module domain, ANK is Ankyrin repeats domain, TAD is 
Transcriptional Activation Domain, and PEST is Proline, Glutamic acid, Serine, Threonine rich 
region. (D) Radiolabeled hNICD paralogs were incubated in extract. Samples were removed at 
the indicated times for analysis by SDS-PAGE/autoradiography. In contrast to hNICD1, hNICD2, 
3, and 4 did not noticeably degrade in Xenopus egg extract. (E) Graph of densitometry 
measurements from (D). (F) Degradation of hNICD Luciferase fusions (hNICD1, 2, 3, and 4-
Luc) parallels degradation of their radiolabeled, untagged versions in Xenopus egg extract. In-
vitro translated NICD Luciferase fusions were incubated in extract and samples removed at the 
indicated times for luminescence measurement. Graph represents mean Luciferase signal for 
two independent experiments (performed in triplicate) normalized to the value of the initial time 
point (100%). 
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NICD degradation within Xenopus egg extract is restricted to the NICD1 paralog 

To determine whether turnover of NICD is paralog-specific, we tested the 

capacity of extract to degrade human NICD2, NICD3, and NICD4 in Xenopus egg 

extract (Figure 3.1C). In contrast to hNICD1, we find that hNICD2, hNICD3 and hNICD4 

are stable throughout the time course of the experiment (Figure 3.1D-E). In order to 

more readily quantify the degradation of NICD proteins in Xenopus egg extract, we 

generated hNICD paralogs fused at their C-terminal ends to firefly Luciferase 

(Luciferase), normally a stable protein in extract (Chen et al., 2014a). We find that the 

hNICD1 Luciferase fusion has a similar half-life in extract as radiolabeled hNICD1 (Fig 

3.1F and Fig 3.3B). The half-lives of hNICD2, 3, and 4 Luciferase fusions were also 

similar to the half-lives of the radiolabeled non-fusion proteins (Figure 3.1F). Residual 

Luciferase activities of the fusion proteins likely reflect the presence of background 

Luciferase protein produced by internal translational start sites in the IVT reaction (Chen 

et al., 2014a). The differential degradation of NICD paralogs is evolutionarily conserved: 

both mouse NICD1 and mouse NICD4 degraded with similar kinetics as their human 

orthologs (Figure 3.3B). Interestingly, we find that the single Drosophila NICD ortholog 

is stable in Xenopus egg extract (Figure 3.3B). 
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Figure 3.2. hNICD1 degradation in Xenopus egg extract occurs independent of GSK3. 
Radiolabeled in vitro-translated [35S]β-catenin or [35S]hNICD1 were incubated in the presence or 
absence of the GSK3 inhibitors LiCl (25 mM) or BIO (375 µM). Samples were removed at the 
indicated times and processed for SDS-PAGE/autoradiography. Water and DMSO were 
controls for LiCl and BIO, respectively. 
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Figure 3.3. NICD1 is degraded in Xenopus egg extract, in contrast to other NICD 
paralogs, and degradation is not affected by C-terminal fusions. (A) [35S]Met-labeled 
hNICD1 and hNICD1-Luc (Luciferase) were incubated in Xenopus egg extract, and samples 
were removed at the indicated times for analysis by SDS-PAGE/autoradiography. (B) Mouse 
NICD1 and NICD4 paralogs (mNICD1 and mNICD4) degrade similarly to their human 
counterparts in Xenopus egg extract. Drosophila dNICD does not degrade in extract. Mouse 
NICD1 (mNICD1), mouse NICD4 (mNICD4), and Drosophila NICD (dNICD1) were incubated in 
Xenopus egg extract and analyzed as in (A). (C) Degradation rates of radiolabeled hNICD 
paralogs fused at the C-terminal end to a MYC epitope are indistinguishable from their non-
tagged versions. Radiolabeled hNICD paralogs fused at their C-terminal ends with the MYC 
epitope were incubated in Xenopus egg extract and analyzed by SDS-PAGE/autoradiography. 
(D) In contrast to Xenopus egg extract, C-terminal MYC fusions of all hNICD paralogs degrade 
when expressed in HEK293 cells. Cells expressing hNICD-MYC paralogs were collected at the 
indicated times after addition of cycloheximide (100 μg/ml) and immunoblotting was performed. 
Tubulin is loading control. 



115 
 

NICD1 degradation in Xenopus egg extract does not require its PEST domain or 

Fbxw7 

 We next sought to assess differences between the turnover of NICD proteins in 

Xenopus egg extract and in cultured human cells. To facilitate detection by 

immunoblotting, NICD paralogs were fused at their C-terminal ends with a MYC epitope. 

When NICD MYC fusions were added to Xenopus egg extract, we observed essentially 

identical turnover rates as their non-tagged versions (Figure 3.4C). We next assessed 

protein turnover in HEK293 cells by cycloheximide chase. In contrast to our Xenopus 

egg extract experiments, we find that all NICD paralogs degrade with similar half-lives 

comparable to those that have been previously reported in cultured human cells (Figure 

3.4D) (Choi et al., 2013; Fryer et al., 2004; Malyukova et al., 2007; Mo et al., 2007; 

Palermo et al., 2012; Tsunematsu et al., 2004).  

 All NICD paralogs contain a conserved C-terminal PEST domain that regulates 

its turnover and is recognized, in part, by the SCFFbxw7 ubiquitin ligase complex (Gupta-

Rossi et al., 2001; Moretti and Brou, 2013; Oberg et al., 2001; Wu et al., 2001). 

Because our Xenopus egg extract preparation is predominantly cytoplasmic in 

character, whereas the Fbxw7 E3 ligase that mediates NICD turnover is predominantly 

nuclear (O'Neil et al., 2007), it is possible the inability of extract to support degradation 

of NICD2, 3, and 4 reflects the absence of a component of the SCFFbxw7 complex. 

Consistent with this possibility, we found that, in contrast to HEK293 cell lysates, we 

were unable to detect Fbxw7 in our extract using an antibody that recognizes a highly 

conserved region of Fbxw7 present in the Xenopus protein (Figure 3.4A).  
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 If Fbxw7 is absent or present at a very low concentration in Xenopus egg extract, 

we hypothesize that hNICD1 degradation is occurring independently of the SCFFbxw7 

complex. hNICD1S3A is a mutant in which three phosphorylated serine residues at 

positions 2514, 2517, and 2539 necessary for recognition by Fbxw7 have been 

changed to alanines (Figure 3.4B) (Fryer et al., 2004; O'Neil et al., 2007; Thompson et 

al., 2007). The hNICDS2493Δ mutant (found in T-ALL patients) encodes a truncation at 

residue S2493 that removes its Fbxw7 recognition site (Figure 2B) (Weng et al., 2004). 

We found that both mutants degrade at rates indistinguishable from that of wild-type 

hNICD1 in Xenopus egg extract (Figure 3.4C-E). Essentially identical results were 

obtained with other mutants encoding truncations within the PEST domain found in T-

ALL patients and with a truncation that completely abolishes the C-terminal PEST 

domain (data not shown).  
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Figure 3.4. PEST domain mutants of hNICD1 degrade in Xenopus egg extract. (A) Fbxw7 
is not detectable in Xenopus egg extract. Equivalent amounts of HEK293 cell lysates and 
Xenopus egg extract (30 ug each) were processed for immunoblotting. Fbxw7 was detected 
using an antibody that recognizes a conserved region of Fbxw7 present in the Xenopus and 
human proteins. Asterisks indicates non-specific band. (B) Schematic of hNICD1 PEST domain 
mutants. (C) The Fbwx7 binding mutant, hNICDS3A, and the PEST domain truncation mutant 
hNICDS2493Δ degrade at similar rates as wild-type hNICD1. (D) Graph of densitometry 
measurements in (C). (E) Turnover rates of hNICD1 PEST mutants fused to Luciferase are 
similar to their untagged, radiolabeled forms in Xenopus extract. In-vitro translated hNICD1S3A 

and hNICD1S2493Δ Luciferase fusions were added to Xenopus extract and sample removed at 
the indicated times for Luciferase activity measurements. Graph represents mean of two 
independent experiments (performed in triplicate) and normalized to value of the initial time 
point (100%). 
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The N-terminal end of hNICD1 encodes a degron required for degradation in 

Xenopus egg extract 

To identify the PEST-independent degron of hNICD1, we generated chimeric 

proteins in which the N- and C-terminal portions of hNICD1 (just upstream of the ANK 

repeats) were swapped for the corresponding regions of other hNICD paralogs (Figure 

3.5A and E). We found that all swaps containing the N-terminal ends of hNICD1 

degraded at a similar rate as wild-type hNICD1 (Figure 3.5B-D). In contrast, constructs 

with C-terminal fragments of hNICD1 were stable throughout the time course of the 

experiment (Figure 3.5F-H). These data suggest that the regulatory region controlling 

hNICD1 degradation in Xenopus egg extract is located within its N-terminal end. We 

performed further swapping analysis to delineate the N-terminal region of hNICD1 

responsible for promoting its degradation in Xenopus egg extract (Figure 3.6A). We 

found that the N-terminal 35 amino acid fragment of hNICD1 is sufficient to confer 

robust degradation of hNICD2 (Figure 3.6B). Collectively, these results demonstrate 

that the amino terminus of hNICD1 contains a Notch1-specific degron (N1-Box) that is 

both necessary and sufficient to degrade hNICD1 in Xenopus egg extract. 
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Figure 3.5. The N-terminal half of hNICD1 promotes hNICD1 degradation in Xenopus egg 
extract. (A) Schematic of hNICD chimeras containing N-terminal hNICD1 fusions. (B) Chimeric 
mutants of NICD paralogs containing the N-terminal half of hNICD1 all degrade in Xenopus egg 
extract. Radiolabeled chimeric mutants were incubated in extract, and samples removed at the 
indicated time points for analysis by SDS-PAGE/autoradiography. (C) Graph of densitometry 
measurements in (B). (D) N-terminal hNICD1 chimeras fused to Luciferase degrade at a similar 
rate as the non-tagged proteins. In vitro-translated proteins were incubated in Xenopus egg 
extract, samples were removed at the indicated times, and Luciferase activity determined. 
Experiments were performed in triplicate. Graphs show mean SD of Luciferase signal 
normalized to the value of the initial time point. (E) Schematic of hNICD chimeras encoding C-
terminal hNICD1 fusions. (F) Chimeric mutants of NICD paralogs containing the C-terminal half 
of hNICD1 are stable in Xenopus egg extract. (G) Graph of densitometry measurements in (F). 
(H) Similar to their radiolabeled, untagged versions, C-terminal hNICD1 chimeras fused to 
Luciferase are stable in Xenopus egg extract. 
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Figure 3.6 Mutations within the 35 amino acid N-terminal region of hNICD1 inhibit its 
degradation in Xenopus egg extract. (A) Schematic of hNICD1 and hNICD2 chimeras. 
Parenthesis indicates the number of N-terminal amino acids of hNICD1 present in each 
chimera. (B) Radiolabeled hNICD1/2 chimeras containing at least the N-terminal 35 amino acids 
of hNICD1 degrade robustly in Xenopus extract. (C) Alignment of the N-terminal regions of the 
human NICD paralogs. (D) Mutation of hNICD1 at position L1755, S1757, or Q1763 potently 
inhibits degradation of hNICD1. Radiolabeled hNICD1 point mutants of non-conserved residues 
within the N-terminal 35 amino acids were incubated in extract and their stability analyzed by 
SDS-PAGE/autoradiography. Δ indicates amino acid deletion. KRR is Lysine rich region. (E) 
Quantification of densitometry from (D). (F) N-terminal mutants of hNICD1 are transcriptionally 
active. hNICD1 point mutants were co-transfected with a HES1-Luciferase Notch reporter into 

HEK293 cells and Luciferase activity assessed after 24 hr. Graph represents  S.D. of 
Luciferase signal normalized to Renilla luciferase (transfection control) of at least 3 independent 
experiments (performed in triplicate).. ***p-value<0.0001, **p-value<0.05 relative to wild-type 
hNCID1. ns is not significant. 
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  We next sought to identify the essential N1-Box residues that facilitate hNICD1 

turnover in Xenopus egg extract. Alignment of the N-terminal end of all four human 

NICD paralogs (Figure 3.6C) revealed non-conserved residues within the first 35 amino 

acids of hNICD1 (corresponding to amino acids 1754-1788 of full-length Notch1) that 

may contribute to hNICD1-specific degradation in extract. To test this possibility, non-

conserved residues within this region of hNICD1 were mutated to their corresponding 

hNICD2 residues, and their stability in extract was assessed (Figure 3.6D-E). We find 

that, in contrast to wild-type hNICD1, the L1755Δ (deletion of residue 2), S1757M, and 

Q1763K mutants of hNICD1 are all stable in Xenopus egg extract as is the triple mutant 

(hNICD1LSQ; Figure 3.7A). Further confirmation of the importance of the first 10 amino 

acids in hNICD1 comes from our demonstration that the hNICD1NTΔ10 mutant (lacking 

the N-terminal 10 amino acids) is stable in extract (Figure 3.7A).  

To confirm that the increased stability of point mutants is not due to protein 

misfolding, we performed Notch transcription assays (Figure 3.6F). All five mutants 

tested retained the capacity to stimulate HES1-Luciferase reporter activity, indicating 

that the proteins were not grossly misfolded. Furthermore, the three stabilized mutants 

demonstrate increased reporter activity (Figure 3.6F). Based on these results, we tested 

whether replacing the N-terminal 10 amino acids of hNICD2 with those of hNICD1 was 

sufficient to promote degradation of the predominantly hNICD2 chimera (Figure 3.7B-

C). Whereas hNICD1/2 chimeras that exchanged the first 10 residues (hNICD1/2NT10) or 

the Lysine rich region (hNICD1/2KRR) did not promote degradation, a combination of 

these swaps (hNICD1/2NT10/KRR) showed enhanced turnover (Figure 3.7B). Substantial 

degradation was observed for the hNICD1/2 chimera that replaced the N-terminal 35 
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amino acids of hNICD2 with those of hNICD1 (Figure 3.7B). These results suggest that, 

although the N-terminal 10 amino acids of hNICD1 are critical for mediating its 

degradation, the N-terminal 35 amino acids of hNICD1 represents the minimal unit that 

is required to impart hNICD2 with the capacity to degrade in extract (the N1-Box).  

   



123 
 

 



124 
 

Figure 3.7. The first 10 amino acids of hNICD1 are critical for N1-Box-mediated 
degradation, whereas the first 50 amino acids of hNICD1 are required to promote 
degradation of heterologous proteins. (A) The N-terminal ten amino acids of hNICD1 contain 
amino acids critical for its degradation. Radiolabeled hNICD1NTΔ10 and hNICD1LSQ were 
incubated in Xenopus egg extract and samples removed at the indicated times for analysis by 
SDS-PAGE/autoradiography. (B) Degradation of hNICD1/2 chimera-Luciferase fusions in 
Xenopus egg extract parallels degradation of the radiolabeled, untagged versions in extract. In 
vitro-translated hNICD1/2 chimeras fused to Luciferase were incubated in extract, samples 

removed at the indicated times, and Luciferase activity determined. Graph represents mean  
s.e.m. from three independent experiments (performed in triplicate). (C) Schematic showing the 
first 35 residues of the hNICD1/2 chimeras used in (B). (D) The N-terminal 50 amino acids of 
hNICD1 and their mutants were fused to Luciferase and incubated in Xenopus egg extract. 
Samples were removed at the indicated times, and Luciferase activity measured. Graph 

represents mean  s.e.m. of two independent experiments (performed in triplicate) and 
normalized to the value of the initial time point. (E) Fusion of the N-terminal 50 amino acids of 
hNICD1 to GFP promotes its degradation in human cultured cells. GFP, hNICD1-GFP and 
hNICD1(1-50)-GFP were expressed in HEK293 cells. At time 0 min, cycloheximide (100 µg/ml) 
was added and live cell imaging performed. Representative images are shown. (F) In contrast to 
hNICD1, the N-terminal 50 amino acids of hNICD2 and 3 fused to GFP were stable in HEK293 

cells. Graph represents mean  s.e.m. of GFP fluorescence normalized to value of the initial 
time point. Experiments were performed at least twice with >10 cells quantified for each 
construct.  
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To determine whether the N-terminal region of hNICD1 can act in an 

autonomous fashion to promote turnover of a stable heterologous protein, we fused the 

N-terminal 50 residues of hNICD1 to Luciferase. We chose 50 amino acids because, 

based on secondary structure predictions, it represents a discrete structural unit, and 

we sought to minimize protein misfolding. We found that hNICD1(1-50)-Luc degraded in 

extract in contrast to Luciferase alone (Figure 3.7D). To further demonstrate that 

mutants identified in our hNICD1/2 chimera studies represent critical amino acids of the 

N1-Box (rather than altering accessibility or conformation of a degradation signal 

elsewhere on the protein), we generated the analogous L1755Δ, S1757M, and Q1763K 

mutants in the hNICD1(1-50)-Luc fusion (Figure 3.7D). As expected, all the mutants 

were stable in Xenopus extract, indicating that residues L1755Δ, S1757M, and Q1763K 

are critical for N1-Box activity.  

We tested if the hNICD1 N1-Box was functional in human cells by fusing the N1-

Box to GFP and monitoring its turnover by live-cell imaging upon cycloheximide 

treatment. In contrast to GFP alone, hNICD1(1-50)-GFP showed a loss of fluorescence 

similar to the rate for the full-length hNICD1-GFP fusion (Figure 3.7E,F). As controls, we 

showed that GFP fusions of the first 50 amino acids of hNICD2 and 3, and the 

hNICD1(1-50) triple mutant (hNICD1(1-50)LSQ) did not exhbibit substantial GFP turnover 

over the time course of our measurements (Figure 3.7F). These results indicate that the 

degradation machinery that recognizes the N1-Box of hNICD1 is evolutionarily 

conserved in both Xenopus egg extract and cultured human cells. 
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The N1-Box controls hNICD1 stability and activity in vitro and in vivo 

Our initial studies with the L1755Δ, S1757M, and Q1763K mutants of hNICD1, 

which were all more stable than the wild-type protein in Xenopus egg extract, indicate 

that they stimulated higher levels of Notch reporter activity (Figure 3.6F). We next 

examined whether N1-Box-regulated degradation of hNICD1 correlates with Notch 

transcriptional activity. The N1-Box mutants, hNICD1NTΔ10 and hNICD1LSQ, were tagged 

at their C-terminal end with the MYC epitope to facilitate their detection, equivalent 

amounts of DNA were transfected into HEK293 cells, and protein levels were assessed 

by immunoblotting (Figure 3.8A). As expected, both N1-Box mutants display higher 

steady-state levels of protein compared to wild-type hNICD1, consistent with a 

decreased rate of degradation of the mutants (Figure 3.8A and 3.9). Consistent with 

their increased stability, both hNICD1NTΔ10 and hNICD1LSQ have greater transcriptional 

activity than wild-type hNICD1 (Figure 3.8B). To ensure that the increased transcription 

we observe is not an artifact of transiently expressing the intracellular domain fragment, 

and to demonstrate evolutionary conservation, we generated the analogous N1-Box 

mutant in the full-length mouse Notch1 receptor (mNotch1LSQ). Consistent with our 

hNICD1 studies, full-length mNotch1LSQ demonstrated elevated Notch transcriptional 

activity compared to full-length wild-type mNotch1 (Figure 3.8C). A mutation in the HD 

domain of human Notch1 (L1601P) identified in T-ALL patients has been shown to 

result in a constitutively activated “leaky” Notch1 receptor due to its constitutive 

cleavage from the plasma membrane (Chiang et al., 2006; Thompson et al., 2007; 

Weng et al., 2004). When the L1601P mutant is combined with mNotch1LSQ, an 

additional increase in transcriptional activation is observed (Figure 3.8C). These studies 
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indicate that regulation of steady-state levels of NICD1 by N1-Box alters Notch1 

transcriptional activation.  

In order to demonstrate that the N1-Box regulates Notch1 function in an in vivo 

context, we assessed its effects on somite formation in the developing embryo of Danio 

rerio. The Notch1 receptor has an established role in somitogenesis in mice and in D. 

rerio (Harima and Kageyama, 2013; Lewis et al., 2009), and misregulation of Notch 

signaling during development results in readily observable disruption of the symmetric, 

bilaterally formed somites (Figure 3.8D). Conveniently, this biological readout is highly 

dose-sensitive: injecting 100 pg mNotch1 mRNA results in defects in somitogenesis in 

90% of the embryos, whereas only 25% of embryos are affected with injection of 25 pg 

mNotch1 mRNA (Figure 3.8D). Consistent with a role for N1-Box in vivo, injecting 

embryos with 25 pg mRNA of the mouse Notch1 N1-Box mutant, mNotch1LSQ, resulted 

in 47% of embryos with defective somite formation, nearly double that of wild-type 

mNotch1 mRNA (Figure 3.8E). A similar effect on somitogenesis is observed in the 

background of the constitutively activated L1601P mutation (Figure 3.8E). These results 

support a role for N1-Box in regulating Notch1 signaling in vivo. 
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Figure 3.8. hNICD1 N1-Box mutants have elevated steady-state levels and increased 
activity in cultured human cells and zebrafish embryos. (A) N1-Box mutants (hNICDNTΔ10 

and hNICDLSQ), the Fbwx7 binding mutant (hNICD1S2A), the WSSSSP mutant (hNICD1W4AP), or 
combinations of these mutants were expressed in HEK293 cells and immunoblotting of lysates 
performed. Tubulin is control. (B) Stabilizing hNICD1 mutants of the N1-Box, Fbwx7, and 
WSSSP exhibit higher transcriptional activity compared to wild-type hNICD1. hNICD1 mutants 
alone or in combination were transfected with a HES1-Luciferase Notch reporter into HEK293 

cells and luciferase activity assessed after 24 hr. Graphs show mean  S.D.. of Luciferase 
signal normalized to Renilla Luciferase (transfection control) of at least 2 independent 
experiments (performed in triplicate). p-value is <0.002 relative to wild-type hNICD1 for all 
mutants.  (C) The full-length Notch1 N1-Box mutant exhibits increased Notch transcriptional 
activity. HEK293 cells were transfected with plasmids encoding full-length mNotch1 receptor, 
mNotch1LSQ, mNotch1L1601P, or mNICD1L1601P/LSQ plus the HES1-Luciferase Notch reporter. 
mNICD1L1601p is an HD mutant that is constitutively cleaved from the holoreceptor to release the 
intracellular domain. Graphs shows the mean + S.D. Luciferase activity normalized to Renilla 
luciferase (transfection control) and is representative of four independent experiments 
performed in triplicate. *p-value<0.007 relative to wild-type. (D) The N1-Box Notch1 mutant 
exhibit enhanced capacity in zebrafish embryos to disrupt somitogenesis. (Top) Representative 
images taken at the 10-13 somite stage of an uninjected D. rerio embryo or injected with 100 pg 
of mNotch1 mRNA. (Bottom). Graph is percentage of D. rerio embryos at the 10-13 somite 
stage with defective somites. All data is from 3 clutches collected from 3 unique breeding pairs 
per clutch. n=78-200 embryos per injection. Compared to 25 pg Notch1 mRNA injection: 
P<0.05. Compared to 25 pg injection of hNICD1LSQ; S2467Δ mRNA injection: P<0.005, except for 
comparison to the Notch1 100 pg injection which is insignificant. 

 
  



130 
 

Two cis elements have been identified within the PEST domain that facilitate 

NICD turnover - the conserved LTPSPE sequence recognized by the SCFFbxw7 complex 

(Fryer et al., 2002; Fryer et al., 2004; O'Neil et al., 2007; Thompson et al., 2007) and the 

WSSSSP sequence (Chiang et al., 2006). In order to determine the contributions of 

these two degradation signals and the N1-Box on NICD1 protein stability, we made 

mutants that disrupted their functions both singly and in combination. Consistent with 

previous studies, we find that mutation within the LTPSPE (S2514A/S2517A; 

hNICD1S2A), WSSSSP (hNICD1W4AP), both LTPSPE and WSSSSP (hNICD1S2A/W4AP), or 

truncation of the PEST region (hNICD1S2493Δ), results in increased protein levels when 

expressed in cultured cells (Figure 3.8A) (Chiang et al., 2006; Fryer et al., 2004; O'Neil 

et al., 2007; Thompson et al., 2007; Weng et al., 2004). Increased steady-state levels of 

hNICD1S2A and hNICD1W4AP mutants are also observed in combination with the NTΔ10 

mutation when compared to wild-type hNICD1. Interestingly, there is an observable 

enhancement in protein levels when the hNICD1NTΔ10 mutation is combined with W4AP 

and/or S2493Δ, but not with the S2A mutation. All stabilizing mutants activate the HES1 

reporter to a greater extent than wild-type hNICD1, and differences in protein levels of 

individual hNICD1 mutants roughly correlate with the capacity of the mutant to activate 

Notch transcription in reporter assays (Figure 3.8B). Consistent with their enhanced 

stability, hNotch1W4AP and hNotch1S2493Δ, when combined with NTΔ10, exhibit increased 

transcriptional activation (in contrast to hNICD1S2A) (Figure 3.8B). These results suggest 

the WSSSSP sequence and the N1-Box act independently of each other. The absence 

of further activation by hNICD1NTΔ10 or hNICD1W4AP upon mutation in the Fbwx7 binding 
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site may indicate that stabilization by NTΔ10 or WSSSSP fully saturates the SCFFbxw7 

complex, which may be limiting.   

This pattern of interaction between the NTΔ10 and S2493Δ mutations in hNotch1 

was also observed in zebrafish embryos in our somitogenesis assay. The number of 

embryos with somitogenesis defects following injection of mNotch1S2467Δ mRNA was 

statistically greater when compared to injection of wild-type mNotch1 mRNA (Figure 

3.8E). Similarly, the N1-Box mutant (mNotchLSQ) was more potent than the PEST 

truncation mutant, and the effect of the N1-Box and PEST truncation double mutant on 

somitogenesis was greater than either one alone (Figure 3.8E). A similar pattern was 

observed in zebrafish somitogenesis in the L1601P mutant background. 
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Figure 3.9. hNICD1 degron mutants have decreased rates of degradation in cultured 
human cells. MYC-tagged hNICD1, N1-Box mutants (hNICDNTΔ10 and hNICDLSQ), PEST 
mutants (hNotch1S2A, hNotch1W4AP, and hNICD1S2493Δ) and a combination mutant 
(hNICD1NTΔ10/S2493Δ) were expressed in HEK293 cells. Cycloheximide (100 µg/ml) was added at 
0 min and samples collected at the indicated times for immunoblotting. Tubulin is loading 
control. 
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The N1-Box is not regulated by Fbxw7 or Itch 

It is possible that there are Fbxw7 sites in hNICD1 other than its PEST region. To 

more carefully assess whether Fbxw7 regulates the N1-Box, we overexpressed Fbxw7 

and a dominant-negative form (Fbxw7DN) that lacks the Fbox domain necessary for 

interaction within the SCF complex (Skaar et al., 2013; Wu et al., 2001). As previously 

reported, overexpression of Fbxw7 decreases, whereas overexpression of Fbxw7DN 

increases, steady-state levels of hNICD1 in HEK293 cells (Figure 3.10A) (Gupta-Rossi 

et al., 2001; Wu et al., 2001). In contrast, overexpressing Fbxw7 or Fbxw7DN did not 

affect levels of the Fbxw7 binding site mutant, hNICD1S2A (Figure 3.10A). The effects of 

overexpressing Fbxw7 and Fbxw7DN on wild-type hNICD1 were similarly observed for 

hNICD1W4AP (Figure 3.10A), consistent with a previous study suggesting that the 

WSSSSP site acts independently of the SCFFbxw7 complex (Chiang et al., 2006). A 

similar effect was observed with NICD1NTΔ10, indicating that the N1-Box-mediated 

degradation of NICD1 is independent of the SCFFbxw7 complex. 
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Figure 3.10. N1-Box mutants do not affect the capacities of the E3 ligases, Fbxw7 and 
Itch, to regulate hNICD1 levels in cultured human cells. (A) Overexpression of Fbxw7 and 
Fbxw7DN decreases and increases, respectively, steady-state levels of hNICD1, hNICDNTΔ10, 
and hNotch1W4AP. In contrast, overexpression of Fbxw7 and Fbxw7DN had no effect on levels of 
the Fbxw7 binding mutant, hNICDS2A. (B) Overexpression of ITCH and its dominant-negative 
mutant, ITCHC380A, decreases and increases, respectively, steady-state levels of all hNICD1 
constructs. Expression studies were performed in HEK293 cells. hNICD1 constructs were 
tagged at their C-terminal ends with MYC, and Itch and ItchC380A were tagged at their C-terminal 
ends with FLAG to facilitate their detection by immunoblotting. Tubulin is loading control. 
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The E3 ubiquitin ligase, ITCH, has also been shown to promote PEST domain-

independent NICD1 degradation, although its binding site has not been well 

characterized (Mazaleyrat et al., 2003; McGill and McGlade, 2003; Qiu et al., 2000). As 

previously shown, overexpression of ITCH decreases, whereas overexpression of a 

dominant-negative form of ITCH, ITCHC380A, increases, the steady-state levels of 

hNICD1 in HEK293 cells (Figure 3.10B). We find that similar results are obtained for all 

the mutants, indicating that ITCH does not mediate NICD1 degradation through the N1-

Box, WSSSSP, or LTPSPE.  

 

Binding of CSL to hNICD1 regulates its stability 

 Because of the sequence overlap between the N1-Box and the RAM domain (the 

major cis factor involved in CSL binding (Nam et al., 2003; Tamura et al., 1995)) (Figure 

3.11A), we tested whether the binding of CSL to hNICD1 could influence hNICD1 

stability. To examine this possibility, we incubated recombinant CSL (expressed and 

purified from the Sf21/baculovirus system) with Xenopus egg extract and assessed its 

effect on hNICD1 turnover. We find that CSL inhibits degradation of hNICD1 in extract 

in a dose-dependent manner (Figure 3.11B-C). If the regulation of NICD1 stability by 

CSL occurs via direct binding, mutants of NICD1 that prevent it from binding to CSL 

should no longer be inhibited by CSL. This appears to be the case as the degradation of 

the hNICD11771-74A mutant, which lacks the capacity to interact with CSL (Chu and 

Bresnick, 2004; Vasquez-Del Carpio et al., 2011), is not inhibited by recombinant CSL 

(Figure 3.11B-C). We speculate that the predominantly cytoplasmic character of 

Xenopus egg extract contains low levels of CSL in contrast to human cells; thus, 

hNICD11771-74A should turn over at a faster rate than wild-type hNICD1. Consistent with 
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this, we observe lower steady-state level of hNICD11771-74A than wild-type hNICD1 when 

expressed in HEK293 cells (Figure 3.11D-E).  

Because degradation of the NICD via the SCFFbxw7/PEST domain is dependent 

on assembly of a transcriptional complex involving CSL (Fryer et al., 2002; Fryer et al., 

2004), we predict that turnover of the hNICD11771-74A mutant is primarily mediated by the 

N1-Box. If this is the case, an N1-Box/CSL-binding double mutant should be more 

stable than the N1-Box mutant. This increased stability is due to incapacity of the CSL-

binding mutant to assemble into a transcriptional complex (in contrast to the N1-Box 

mutant) and, thus, would not be degraded via the SCFFbxw7 complex. Consistent with 

this idea, we find that the steady-state level of hNICD1NTΔ10/1771-74A is greater than that of 

hNICD1NTΔ10 (Figure 3.11D-E).  

Conversely, in an hNICD1 PEST mutant, the inability to bind CSL should lead to 

decreased protein stability due to enhanced N1-Box-mediated degradation. Consistent 

with this model, we find that the steady-state level of hNICD11771-74A / S2493Δ  is lower than 

that of hNICD1S2493Δ (Figure 3.11D-E). These results provide strong evidence that CSL 

binding to NICD1 inhibits its turnover by blocking N1-Box-mediated degradation. 
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Figure 3.11. N1-Box-mediated hNICD1 degradation in Xenopus egg extract and cultured 
human cells is inhibited by its binding to CSL. (A) Schematic showing overlap of the N1-Box 
(yellow) and RAM domains (blue). Overlapping sequence is displayed in green. The ΦWΦP 
motif is outlined by a black box. (B) Recombinant CSL inhibits degradation of hNICD1 (but not a 
CSL binding mutant of hNICD) in a dose-dependent manner in Xenopus egg extract. 
Radiolabeled hNICD1 or hNICD11771-74A were incubated in Xenopus egg extract in the presence 
of increasing amounts of recombinant CSL. Samples were removed after 1 hr and subjected to 
SDS-PAGE/autoradiography. (C) Graph of densitometry measurements in (B) normalized to 
Tubulin. (D) Steady-state levels of the CSL binding mutant, hNICD111771-74A, are lower than the 
wild-type protein in cultured human cells. Plasmids encoding the indicated N1-Box and CSL 
binding mutants tagged with the MYC epitope were transfected into HEK293 cells and 
immunoblotting performed. Tubulin is loading control. (E) Graph of densitometry measurements 

in (D). Graph shows mean  SD of MYC intensities normalized to Tubulin for 4 independent 
experiments. ***p-value<0.01, *p-value<0.1. 
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Mutations within the N1-Box are potential drivers of Notch-mediated 

tumorigenesis 

Multiple studies have identified mutations in the Notch1 receptor as a major 

cancer driver (Koch et al., 2013; Ntziachristos et al., 2014; South et al., 2012). Because 

our studies indicate that loss of N1-Box mutation promotes Notch signaling to an equal 

or greater extent than mutations found in T-ALL patients, we sought to determine 

whether mutations within the N1-Box also occur in human cancers. Utilizing the NIH 

Catalogue of Somatic Mutations in Cancer (COSMIC) database, we identified two gain-

of-function mutations in patient tumors that are located within the first 35 residues of 

hNICD1 (Figure 3.12A). We find that both mutants (hNICD1R1758S and hNICD1S1776C) 

exhibit greater Notch transcriptional activity than wild-type hNICD1 and have elevated 

steady state protein levels when compared to wild-type hNICD1 (Figure 3.12B-C).  

Furthermore, we demonstrate that these mutants have enhanced activity in vivo, and 

injection of D. rerio embryos with mRNA from either mutant show significantly increased 

defects in somitogenesis compared to injection of wild-type hNICD1 mRNA (Figure 

3.12D). These studies are consistent with mutations within the N1-Box as potential 

cancer drivers that act by stabilizing NICD1. 
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Figure 3.12. Mutations within the N1-Box of hNotch1 in human cancers have enhanced 
signaling activity. (A) Table of somatic mutations found within residues 1754-1788 of hNotch1 
(residues 1-35 of hNICD1) from the COSMIC database. (B) Both mutants in the N1-Box 
demonstrate elevated Notch reporter activity. HEK293 cells were transfected with plasmids 
encoding hNICD1 mutants found in human cancers in (A) and the HES1-Luciferase Notch 
reporter. Graph is representative of at least three independent experiments performed in 

triplicate and show  S.D. of Luciferase signal normalized to Renilla luciferase (transfection 
control). **p-value<0.007 for all mutants versus hNICD1. (C) The R1758S and S1776C mutants 
of hNotch1 have elevated steady-state protein levels when expressed in cultured cells. HEK293 
cells were transfected with MYC epitope-tagged hNICD1 encoding the human N1-Box cancer 
mutants and immunoblotting performed. Tubulin is loading control. Intervening lanes were 
removed. (D) Graph is percentage of D. rerio embryos at the 10-13 somite stage with defective 
somites injected with 50 pg of the indicated hNICD1 mRNA. All data is from at least 3 clutches 
collected from 3 different breeding pairs. n=30-320 embryos per injection. ***p-value<0.0005 
versus hNICD1. 
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Discussion 

In T-ALL, mutations of Notch1 that truncate the C-terminal PEST domain remove 

key cis factors necessary for its proteasomal-mediated degradation, highlighting the 

importance of regulating NICD1 protein levels upon its liberation from the plasma 

membrane (Ntziachristos et al., 2014; South et al., 2012). Prior studies indicated that 

degradation of the intracellular domain of Notch1 (the most ubiquitously expressed of 

the four Notch paralogs) differs from those of the other three Notch paralogs (Chiang et 

al., 2006; Tsunematsu et al., 2004; Wu et al., 2001). Herein, we identify the N1-Box, a 

novel degron of NICD1 that we identified using Xenopus egg extract. We show that the 

N1-Box is transferable as an autonomous degron and that its activity is inhibited by 

NICD1 binding to CSL. We show that the N1-Box is conserved in vertebrates and that 

mutations in the N1-Box lead to increased Notch1 activity in vivo in zebrafish. Finally, 

we demonstrate that mutations in the N1-box of Notch1 found in human cancers have 

increased steady-state levels and enhanced activity. Further evidence for an in vivo role 

for the N1-Box comes from a previous report demonstrating that a chimeric receptor 

encoding the Notch2 extracellular domain and the Notch1 intracellular domain 

(Notch21) is two-fold more active compared to wild-type Notch1 when expressed at 

similar levels in mice (Liu et al., 2013). Interestingly, the Notch21 chimeric fusion 

deleted the N1-Box of NICD1. Thus, it is possible that the increased activity of this 

chimera is due to increased stability of its intracellular domain. Based on our results, we 

propose a model (Figure 3.13) in which the liberated NICD1 (upon cleavage from the 

Notch1 receptor by γ-secretase) has two fates: (1) rapid degradation and inactivation via 

its N1-Box or (2) binding to CSL and Notch transcriptional complex components to drive 
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transcription of Notch target genes (Figure 3.13). Termination of Notch1 signaling 

occurs upon ubiquitin-mediated degradation by the SCFFbxw7/proteasome.  
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Figure 3.13. Model of N1-Box-mediated regulation of hNotch1 signaling. See text for 
details. 
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Previous studies have shown that the NICD has the capacity to assemble into 

higher order (intramolecular or intermolecular) forms, and disruption of these higher 

order forms are required for NICD binding to CSL (Kelly et al., 2007; Vasquez-Del 

Carpio et al., 2011). It is possible that these higher order complexes may promote N1-

box-mediated degradation by blocking NICD1 binding to CSL. Alternatively, these 

higher order structures may inhibit NICD1 turnover as well as transcriptional activation 

by blocking the activity of the N1-box and its overlapping RAM domain. Further studies 

are needed to resolve these two possibilities. 

Although it is obvious that there are advantages for a mechanism to terminate 

transcription by proteolysis, it is not as clear why a cell would have a mechanism for 

degrading cytoplasmic NICD1. Why is the cytoplasmic level of NICD1 not limited 

exclusively by its release from the holoprotein upon receptor activation? One possibility 

is that this system dampens the stochastic flux in the system, thereby minimizing noise. 

Thus, a threshold level of Notch receptor activation needs to occur in order for 

transcription to be activated. This may explain why the Drosophila NICD does not 

encode an N1-Box as stochastic flux in Notch signaling plays an important role during 

neuroblast differentiation via the mechanism of lateral inhibition (Artavanis-Tsakonas et 

al., 1999). Conversely, once the transcriptional complex is fully saturated (i.e. all CSL is 

occupied by NICD1), unbound NICD1 could be degraded to limit the activation window. 

This model is consistent with the digital response model proposed for Notch1 pathway 

activation (Ilagan et al., 2011). Regardless, the importance of NICD1-mediated 

degradation in maintaining normal Notch1 signaling in humans is evidenced by our 
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findings that mutations of the N1-Box that lead to hNICD1 stabilization are found in 

human cancers. 

Of the four Notch paralogs, why is the N1-Box only present in the Notch1 

paralog? It is possible that differences in regulation between the four Notch paralogs 

may also simply reflect differences in their transcriptional behavior. One example is the 

requirement for Notch2 over Notch1 in liver development (Sparks et al., 2010), in which 

decreased levels of the Notch2 receptor, but not Notch1, leads to Alagille syndrome 

(McDaniell et al., 2006). Also consistent with differences in the transcriptional behavior 

between different Notch paralogs is the observation that certain Notch-driven cancers 

are associated with particular Notch paralogs (Bellavia et al., 2000; Callahan and 

Raafat, 2001; Capobianco et al., 1997; Kiaris et al., 2004; Pancewicz and Nicot, 2011).   

Currently, γ-secretase inhibitors (GSIs) are the best characterized Notch pathway 

therapeutics. Unfortunately, because of their pan-Notch inhibitory activities, there are 

many associated adverse effects that limit their long-term use (Espinoza and Miele, 

2013; Extance, 2010; Milano et al., 2004; Morell and Strazzabosco, 2013; van Es et al., 

2005; Wong et al., 2004). Thus, one long-term goal for treating Notch-driven cancers is 

to develop paralog-specific drugs in order to minimize adverse effects associated with 

pan-Notch inhibition. Our identification of the NICD1-specific N1-Box provides a 

potential path to develop Notch1-selective inhibitors. Compounds that disrupt NICD1-

CSL interaction may be particularly potent as they would not only block NICD1-

mediated transcription, but also promote NICD1 degradation. The development of such 

compounds would be greatly facilitated by the identification of the E3 ubiquitin ligase for 

the N1-Box. 
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CHAPTER IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

Introduction 

 The work presented in this dissertation represents mostly biochemical, cell-

based, and in vivo experiments identifying a novel regulatory region of NICD1 which 

stabilizes the NICD and hyperactivates Notch-mediated transcription which elucidates a 

novel mechanism that modulates the Notch signaling pathway. In the current Chapter, I 

discuss and provide future directions for the results described in the previous two 

Chapters. I have divided this chapter into parts I and II. Part I focuses exclusively on the 

regulation of the NICD via its novel N1-Box and the implications for Notch signaling. 

Part II focuses on the future of the Notch-Wnt signaling network and the implications for 

“Wntch” signaling.  

Part I 

Discussion 

 Utilizing Xenopus egg extract, cell-based assays, and zebrafish embryos we 

identified and characterized the N1-Box region of NICD1 as a regulatory domain of 

Notch signaling, which has not been previously characterized. This novel region is very 

likely a driver of Notch-mediated cancers in which Notch acts as an oncogene. 

Additionally, we have identified cis-acting factors of NICD1 that regulate the capacity of 

the N1-Box to promote degradation.  
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Our initial observation was that human NICD1 degrades robustly in Xenopus egg 

extract, and NICD2, 3, and 4 do not (Figure 3.1). NICD1 degradation is proteasome-

dependent, as the addition of MG132 inhibits its turnover (Figure 3.1). NICD1’s 

degradation occurs distinctly from the previously characterized β-catenin degradation in 

Xenopus egg extract (Figure 3.1). Additionally, degradation of NICD1 is GSK3-

independent, contradicting previous reports about Notch1 degradation (Espinosa et al., 

2003; Foltz et al., 2002; Jin et al., 2009b) (Figure 3.2). These results were validated 

using mouse NICD1 and NICD4 and tagged versions of the human NICDs, which also 

degrade differentially (Figure 3.2). Interestingly, all 4 Myc-tagged NICD constructs 

degrade in HEK293 cells as assessed by cycloheximide chase assay, even though only 

NICD1-Myc degrades in Xenopus egg extract (Figure 3.3). The Xenopus egg extract 

system allows us to separate distinct dynamic degradation pathways, which is much 

more difficult in cell culture. The degradation of NICD1 in Xenopus egg extract is 

independent of previously-identified PEST/Fbwx7-dependent degradation of NICD1 in 

cell culture (Figure 3.4). So which domain regulates NICD1 turnover in Xenopus egg 

extract? 

We generated N-terminal and C-terminal fragments of NICD1 fused with the 

respective N-terminal and C-terminal fragments of the other NICD paralogs to address 

that question. We were able to identify that NICD1 degradation is N-terminal dependent 

(Figure 3.5). We narrowed the N-terminal regulatory region of NICD1 down to the first 

35 amino acids of NICD1 (Figure 3.6). The NICD1 and the Notch 2, 3, 4 ICDS have 

conserved N-terminal domains within those 35 amino acids but the very N-terminus is 

not conserved among the Notch paralogs. We found that three key residues at the very 
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N-terminal region of NICD1 (L2, S4, and Q10 in human NICD1) stabilize the NICD1 

when they are individually mutated to resemble NICD2 in Xenopus egg extract (Figure 

3.6). These stable mutated forms of NICD1 also hyperactivate Notch signaling in 

HEK293 cells (Figure 3.6). When these three residues are collectively mutated to 

resemble NICD2, the NICD1 is stable in HEK293 cells (Figure 3.6). These results 

indicate that the N-terminal region of NICD1 is necessary for its degradation. But is this 

N-terminal region sufficient to promote degradation?  

The heterologous addition of the N-terminal region of N1ICD onto the stable 

proteins NICD2, GFP, and Luciferase was sufficient to promote their degradation in 

Xenopus egg extract and in HEK293 cells (Figure 3.6; Figure 3.7). Our results show that 

the N-terminal region of NICD1 is both necessary and sufficient to promote degradation 

of proteins, fully validating it as a novel degron. We have designated this new regulatory 

region of NICD1 as the N1-Box. Our results show that the N1-Box is both necessary 

and sufficient to promote degradation of proteins in Xenopus egg extract and HEK293 

cells.  

Next, we investigated the potential cooperation between the newly identified N1-

Box and previously established regulatory domains of NICD1, particularly the PEST 

domain and the WSSSSP domains (Chiang et al., 2006; Fryer et al., 2004). The N1-Box 

hyperactivates Notch signaling to a higher extent than the other previously established 

domains and this hyperactivation is additive with the WSSSSP domain but none of the 

others (Figure 3.8), strongly suggesting that the WSSSSP domain acts through a 

parallel pathway with the N1-Box or acts upon the N1-Box in some way. Up until this 

point, all of our experiments were performed with the NICD1 rather than the full-length 
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canonical Notch receptor. Do these stabilizing N1-Box mutations affect canonical Notch 

signaling in the context of full-length Notch receptors? 

The stabilized N1-Box mutant isoform of full-length mouse Notch1 hyperactivates 

Notch signaling in HEK293 cells and in zebrafish embryos (Figure 3.8). These results 

were validated using a constitutively active form of mouse Notch1 (Figure 3.8). 

Interestingly, the N1-Box mutant isoform of Notch1 hyperactivates Notch signaling to a 

larger extent than the PEST domain mutant of Notch1, supporting our cell culture 

transcriptional reporter assay results (Figure 3.8). These results, taken collectively, 

show that the N1-Box of Notch1 both stabilizes the NICD1 and hyperactivates canonical 

Notch signaling in mammalian cell culture and in vivo in zebrafish embryos. This 

transcriptional hyperactivation is higher for the N1-Box mutants than for the previously 

characterized PEST domain mutants. We next ask whether mutations in the N1-Box are 

found in human cancers and whether these cancers have elevated Notch signaling.  

We found that mutations in the N1-Box identified from the COSMIC database in 

Notch-driven cancers also confer stability to NICD1 in cell-based assays, which strongly 

suggests that the N1-Box mutations are correlated with Notch-driven cancers (Figure 

3.12). These results show that mutations in the N1-Box of Notch1 are associated with 

human diseases, marking the novel N1-Box regulatory region as a potential therapeutic 

for Notch-mediated cancers. Curiously, there are not a large number of mutations in the 

N1-Box that are linked to cancer. Our hypothesis is that cis-binding factors on Notch1 

affect the N1-Box’s ability to promote degradation.  

Next, we investigated the role of known cis-binding factors on regulation of the 

N1-Box-dependent degradation. Based on structural analysis, the CSL/Su(H)/Lag-1 
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binding site is located in the RAM domain, adjacent to the N1-Box. The addition of 

recombinant CSL inhibits NICD1 degradation in a dose-dependent manner in Xenopus 

egg extract and this effect is reversed in a CSL-binding mutant that cannot bind to CSL 

(1771-1774A) (Figure 3.11). These results are validated in HEK293 cells, where the 

steady state level of the CSL-binding mutant is significantly lower than wild-type NICD1 

because it can no longer be shielded from degradation by CSL (Figure 3.11). 

Interestingly, an N1-Box and CSL-binding double mutant appears to be even more 

stable than the N1-Box mutant alone (based on the quantification), further supporting 

the idea that CSL binding affects the N1-Box. These results partially elucidate a 

mechanism for regulation of the N1-Box which is dependent on CSL binding and 

subsequent CSL-mediated transcription.  

Based on our results, a model emerges in which the N1-Box is actively degrading 

NICD1 upon cleavage by δ-secretase. This degradation is independent of ligand 

activation. Then, upon recruitment of CSL to the N1ICD, the N1-Box domain no longer 

promotes degradation as it is sterically inhibited by CSL binding to the RAM domain 

(Figure 3.13). But why does Notch1 specifically have this extra level of regulation that is 

not present in the other paralogs? Notch1 is the most widely expressed paralog of 

Notch and there is some evidence of ligand-independent signaling through Deltex 

(Fuwa et al., 2006; Yamada et al., 2011). It is likely that this mechanism of regulating 

protein levels is used to modulate the natural variability of signaling between cells as 

Notch signaling requires a very precise amount to undergo proper cell-cell signaling.  

One emerging idea about signal transduction pathways is the idea of bistability 

within the system, where a threshold of signal must be reached within each individual 
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cell which then acts in a binary fashion to either activate signaling maximally or not 

activate signaling. Our data suggest that the N1-Box may be the switch that imparts 

Notch1 signaling bistability in an organismal setting. Because Notch1 is so highly 

expressed in comparison to other Notch paralogs, it is likely that Notch1 requires an 

additional level of signal modulation in order to prevent ectopic signaling, and the N1-

Box is likely at least a partial contributor to Notch1’s potential bistability. So how does 

our model for the regulation of the Notch1 intracellular domain fit into the prevailing 

models of how Notch signaling is regulated? 

 The previous prevailing model for the regulation of NICD stability was that it was 

regulated by the N-end rule of protein stability. In the N-end rule, the N-terminal amino 

acid of a protein determines its half-life (Bachmair et al., 1986). NICDs which start with 

valine or methioninie were thought to escape the N-end rule which made them stable 

enough to activate transcription (Tagami et al., 2008). Our results showed that the N-

end rule is not a likely explanation for the stability of the Notch1 mutants, as the wild-

type NICD1 starts with a valine but is significantly less stable than the NICD1 (NTΔ10) 

that starts with an histidine and should be subject to the N-end rule. In addition, point 

mutations in the N1-Box which do nto affect the initial valine can also greatly affect 

stability of the NICD1. Our results show that NICD1’s stability is regulated by additional 

factors other than the traditional N-end rule.  

One other recently proposed model is that the Notch extracellular domain is the 

only domain critical for Notch signaling. One recent report showed that a chimeric Notch 

receptor containing the Notch2 extracellular domain and the Notch1 intracellular domain 

(Notch21) is two-fold more active than wild-type Notch1 when expressed at similar 
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levels in mice. Their conclusion was that the Notch extracellular domain was the critical 

region in the regulation of Notch signaling and that the intracellular domains are actually 

interchangeable to transduce the signal (Liu et al., 2013). Ostensibly, this conflicts with 

our conclusions that the N1-Box of the intracellular domain is likely the most important 

region for regulation of Notch signaling. Interestingly, the Notch21 chimeric fusion 

deletes the N1-Box of NICD1, which according to our results leads to a more stable 

intracellular domain. Thus, it is possible that the increased activity of this chimera is due 

to increased stability of its intracellular domain. A series of experiments to fully combine 

these two models would start by comparing Notch signaling from the Notch21 chimeric 

receptor to the Notch1 receptor in which the N1-Box is mutated. Our data suggests that 

the Notch21 chimera and either the N1(LSQ) or the N1(NTΔ10) would have similar 

levels of Notch signaling, due to an increase in the stability of the NICD1. 

   

Future Directions 

Identifying the complete regulatory mechanism of the N1-Box 

 This dissertation identifies a novel regulatory region of Notch1 termed the N1-

Box which serves as a major regulator of Notch1 protein stability. It also elucidates a 

mechanism for how the N1-Box can be regulated in vivo upon CSL binding to inhibit N1-

Box-mediated degradation. However, the full mechanism of N1-Box regulation still 

needs to be elucidated. Proteins are often regulated by post-translational modifications. 

The degradation of NICD1 is proteasome-dependent in Xenopus egg extract. 

Proteasome-mediated degradation requires the involvement of an E3 ubiquitin ligase 

which adds ubiquitin moieties to lysine residues and targets the protein to the 
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proteasome. The candidate E3s which have been previously linked to Notch1 stability 

(ITCH, SCFFbxw7) degraded NICD1 in HEK293 cells in the N1-Box stabilized mutant 

similarly to wild-type NICD1 (Figure 3.10). In addition, there is a basic region in NICD1 

which contains a string of lysines that is not found in the other NICD paralogs, strongly 

suggesting that NICD1 is being regulated by an E3 distinct from those we tested. These 

residues are very likely to be targets of ubiquitination and degradation. 

One way to identify the E3 ubiquitin ligase for the N1-Box of NICD1 is to perform 

a screen for mammalian E3s that increase NICD1 turnover. The Xenopus egg extract 

system would be very amenable to this type of screen and using luciferase-tagged 

proteins we could do a high throughput screen with a quantifiable readout. Validation of 

any hits from the screen would then be performed in cell culture using a transcriptional 

reporter assay also using luciferase levels as the readout for protein levels. Any hits 

identified can be validated in cultured cells and Xenopus egg extract in a low throughput 

manner. The effect of any E3s that alter NICD1 turnover via the N1-Box of NICD1 

needs to be investigated thoroughly. If it is directly affecting the N1-Box, then the 

degradation of NICD1 would be inhibited in the N1-Box mutant. In Chapter I, I discussed 

that NICD1 is modulated by other post-translational modifications, and these can affect 

the stability of NICD1 and are worth investigating. Oftentimes, ubiquitination is regulated 

by phosphorylation at nearby residues.  

The other major post-translational modification that could potentially regulate the 

stability of the NICD1 is phosphorylation. Previous literature has suggested that 

phosphoregulation of NICD1 can regulate its stability (Choi et al., 2013; Foltz et al., 

2002; Fryer et al., 2004). Because the regulation of Notch is so tightly regulated in vivo, 
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modulation of Notch1 in either direction could be critical in affecting canonical Notch 

signaling. We have performed a small molecule kinase inhibitor screen for modulators 

of NICD1 turnover in Xenopus egg extract using luciferase-tagged NICD1 and 

assessing for changes in NICD1 degradation via luciferase signal. The library we used 

was the TOCRIS kinase inhibitor toolbox [used in (Jester et al., 2010)] 

(http://www.tocris.com/dispprod.php?ItemId=224690#.U-L8TM90zwo). 

Our screen identified Ataxia telangiectasia mutated (ATM) and Ataxia 

telangiectasia and Rad3-related protein (ATR), two well-characterized DNA damage 

responding serine/threonine kinases that phosphorylate key tumor suppressors such as 

p53 and CHK2, as modulators of NICD1 turnover in Xenopus egg extract. Further 

characterization of the role of ATM and ATR on NICD1’s stability should be pursued. 

These studies should include structure-function analysis, functional assays in cell 

culture, and then potentially even in vivo studies. Follow up validation on any other hits 

from the screen should also be investigated. If validated, the screen can begin to 

identify other novel targets for therapeutics for treatment on Notch-mediated cancers. 

Additionally, it would be interesting to identify whether any of these kinases affects the 

capacity of the N1-Box to promote degradation. The N1-Box contains multiple serines 

and threonines, making it highly likely to be phosphorylated.  

If an E3 and a kinase that act on the N1-Box can both be identified, the next step 

would be to identify the relationship between these two post-translational modifications. 

Phosphorylation can both promote and inhibit ubiquitination and subsequent 

proteasome-mediated degradation in other signaling pathways (Orford et al., 1997; 

Yamamoto et al., 1999). Would the phosphorylation of the N1-Box promote or inhibit its 

https://email.mc.vanderbilt.edu/owa/redir.aspx?C=j3bwwz0i6kudk8yLSmpL3Z-HI6z9hdEIzro-S26rX68sDXV11_0b7AGwEdY5u1YuRGsMJntWNeA.&URL=http%3a%2f%2fwww.tocris.com%2fdispprod.php%3fItemId%3d224690%23.U-L8TM90zwo%29
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ubiquitination? Is it context-dependent or tissue-specific? These are the key questions 

that still need to be answered about the regulation of the N1-Box.  

We have also already shown that CSL binding to the N1-Box affects its ability to 

get degraded. Previous literature showed that CSL binds to the RAM and Ankyrin 

domains of NICD with high affinity (Hsieh et al., 1996). But is CSL binding to NICD1 

regulated? Previous literature has shown that in the nucleus, the scaffold protein MAML 

binds to the CSL/NICD complex and is required to activate transcription of the 

CSL/NICD transcriptional complex (Fryer et al., 2002). Potentially the post-translational 

modifications are actually affecting CSL binding to the RAM domain in the N1-Box, 

which would then promote degradation of NICD1. The role of ubiquitination and/or 

phosphorylation on CSL binding is still unclear, and this would be another interesting 

question to address.  

How about the role of the prevailing models in the regulation of Notch signaling? 

One key experiment would be to assess the stability of the Notch21 chimera vs. wild-

type Notch1 and vs. stabilized Notch1. It is likely that the differential signaling levels for 

the Notch21 chimera vs wild-type Notch1 is due to a difference in the stability of each 

respective ICD, as we have shown that the stable mutants of NICD1 lead to 

hyperactivation of Notch signaling in mammalian cell culture and strongly suggests 

Notch hyperactivation in D. rerio embryos. 

 

In vivo disease models of the N1-Box 

Although we have identified a novel degron, called the N1-Box, in NICD1, and 

shown that it is functional in canonical Notch signaling in cell culture and in zebrafish 



156 
 

embryos, there are still many unanswered questions about the in vivo importance of the 

N1-Box in Notch-mediated disease. The first step is to do tumorigenic assays in cancer 

cell lines using our N1-Box mutants, such as colony formation assays to assess for 

tumorigenesis. If N1-Box mutants can induce tumorigenesis in cell culture, one very 

obvious next step is to make a mouse model of the stabilized N1-Box mutant of NICD1. 

Because T-ALL and other leukemias are primarily Notch-driven in humans, we propose 

to express an inducible N1-Box mutant Notch1 under the control of a leukocyte specific 

promoter in an inducible Cre-LoxP background mouse. Upon tamoxifen induction, N1-

Box-mutant NICD1 expression will potentially induce tumorigenesis in the adult mouse, 

which would demonstrate that the N1-Box can in fact induce Notch-mediated tumors in 

vivo. Alternatively, we could generate tissue-specific mouse models for the other tissues 

that are susceptible to Notch-driven cancers, such as mammary glands, liver, skin, 

lungs and others. In addition, we could make a stabilized N1-Box mouse that is not 

inducible which express mutant N1 throughout development and look for other Notch-

driven phenotypes. Generating tissue-specific mutant lines for the specific mutations 

that stabilized human NICD1 (Figure 3.5) and assessing their ability to induce 

tumorigenesis would also be quite interesting and important. Are these stable mutants 

identified from a human database actually able to induce tumorigenesis, or is the 

Notch1 mutation a secondary mutation? The mouse model is an ideal model to test 

many of these hypotheses.  

The generation of a mouse model will allow us to assess whether the differential 

signaling observed in the Notch21 chimeric mice can be explained by the increased 

stability of the N1-Box. Based on our results in Xenopus egg extract, mammalian cell 
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culture, and zebrafish embryos we would expect the N1-Box mutant mice to have an 

increased level of Notch signaling, similar to the Notch21 chimeric mice. Further 

experiments should also be performed to fully elucidate the relationship between the 

chimeric receptors and the stabilized N1-Box mutant receptors. 

Additionally, Notch mutations have been linked to multiple developmental defects 

in humans, including Alagille syndrome (McDaniell et al., 2006), aortic valve disease 

(Garg, 2006; Garg et al., 2005), Hajdu-Cheney syndrome (Simpson et al., 2011), 

CADASIL (Joutel et al., 1996), and T-ALL (Weng et al., 2004). The N1-Box mutant 

mouse models in which the mutant form of NICD is expressed at birth would be very 

useful in studies involving developmental defects caused by misregulated Notch 

signaling. In summary, a mouse model of the N1-Box mutant would be very beneficial to 

helping fully elucidate the mechanisms regulating Notch signaling and also the 

mechanisms regulating the N1-Box. 

 

Part II 

Discussion 

 As discussed in Chapter I, there appears to be extensive crosstalk between the 

Notch signaling pathway and the Wnt signaling pathway (Hayward et al., 2008; Munoz 

Descalzo and Martinez Arias, 2012), and some refer to the Wnt/Notch signaling network 

as the “Wntch” signaling network. Many aspects of these two pathways converge and 

studying how one pathway affects the other would be quite interesting and the 

identification of a novel regulatory region of NICD1 opens up new avenues for exploring 

the interplay between Wnt and Notch signaling.  
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One example of convergence into the “Wntch” pathway is the observation that 

Presenilin 1, a core subunit of the δ-secretase complex which cleaves Notch, negatively 

regulates β-catenin stability and transcriptional activity and can promote 

phosphorylation of β-catenin independent of Axin (Kang et al., 2002; Killick et al., 2001). 

Other examples of Wnt/Notch signaling convergence have been described extensively 

in Chapter I and include convergence on Dsh (Ramain et al., 2001; Sokol, 1996), 

TCF/LEF (Galceran et al., 2004; Ross and Kadesch, 2001; Shimizu et al., 2008), and 

even the core components themselves (Corada et al., 2010; Hayward et al., 2006; 

Hayward et al., 2005; Jin et al., 2009a). Based on previous literature, regulating one of 

these two pathways can also regulate the other one, allowing for combinatorial 

treatment for both Wnt and Notch-mediated diseases.  

 

Identifying Novel Therapeutic Targets of Notch Signaling 

 Due to the importance of Notch signaling in many types of diseases, both 

developmental defects and cancer, studying how this signaling network is properly 

regulated would be critical to addressing Notch-mediated disease. How would the 

discovery of the novel N1-Box of Notch1 help address that question? This allows 

researchers to identify novel targets for development of therapeutics against Notch-

mediated cancers. Most of the current treatments for Notch focus on δ-secretase 

inhibitors (GSIs), most of which are unable to pass clinical trials due to toxicity issues 

and off-target side effects due to δ-secretase’s promiscuity and effect on multiple cell 

types and tissues. Our research has uncovered both a novel regulatory region of the 
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NICD1, the N1-Box, as well as a novel regulatory mechanism involving the cis-binding 

factors CSL and the WSSSSP motif of NICD1.  

 There are two novel approaches to take for development of therapeutics based 

on our research. The first is to target the N1-Box directly by activating the E3 

responsible for promoting the degradation of NICD1. E3 activation would decrease 

NICD1 levels and reduce Notch signaling, which would be critical in treating Notch-

dependent cancers which have ectopic Notch signaling. Identifying small molecules 

which target NICD1 degradation via the N1-Box would be one way to specifically target 

Notch1 as opposed to the other Notch paralogs and other proteins that are dependent 

on δ-secretase. This would reduce potential off-target effects and likely reduce toxicity 

to the patients. One caveat with targeting an E3 is that most E3s have multiple 

substrates and it is possible that there will be other off-target effects distinct from the 

GSIs. Regardless, our studies open up a significant opportunity for the development of 

anti-cancer therapeutics against Notch1-driven cancers by increasing the specificity of 

the therapeutic and decreasing off-target effects. 

 In Chapter III, we showed that CSL binding can inhibit N1-Box-mediated 

degradation and stabilize the NICD1 in Xenopus egg extract and HEK293 cells. A 

second novel approach for therapeutics would be to target CSL binding to NICD1. 

Previous literature has suggested that CSL is a nuclear specific protein (Chiang et al., 

2006; Ong et al., 2006) which binds to DNA and activates transcription in a complex 

with NICD and MAML inside the nucleus. Inhibiting CSL binding would clearly affect 

CSL-dependent Notch signaling. Previous literature provides us evidence that CSL-

independent Notch signaling is mediated by Deltex (Hori et al., 2004). However, in 
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Xenopus egg extract (a cell-free and nucleus-free system), CSL binding disrupts NICD1 

degradation through the N1-Box. Interestingly, this inhibition is independent of the 

transcriptional inhibition due to loss of CSL binding in cell culture as a CSL-binding 

mutant further changes the stability of N1-Box mutants in Xenopus egg extract (which 

does not undergo CSL-mediated transcriptional activity). Identifying small molecules 

which disrupt CSL binding to NICD1 would allow for constitutive activation of N1-Box-

mediated degradation and modulation of Notch signaling. Although CSL binds to all the 

Notch paralogs to activate signaling, NICD2, 3, and 4 do not contain the N1-Box, and, 

thus, their stability is not likely to be affected by CSL binding.  

In addition, the disruption of the WSSSSP motif likely affects N1-Box-mediated 

degradation. The WSSSSP motif is heavily phosphorylated and is shown to regulate 

NICD stability. Identifying small molecules which could affect the phosphorylation of the 

WSSSSP motif could also serve as a potential new target for therapeutics. We showed 

that mutation of the WSSSSP motif cooperates with the N1-Box to hyperactivate Notch 

signaling, which strongly suggests that the WSSSSP motif is actually inhibiting Notch 

signaling in some fashion, likely through promoting its degradation. Being able to 

stabilize the phosphorylation of the WSSSSP motif through a potential therapeutic 

would  also help be useful in the treatment of Notch-mediated cancers. 

Collectively, our data identifies novel regulators of Notch signaling which have 

not been previously reported. WE show that NICD1 degrades in a cell-free system 

giving researchers additional tools for identifying modulators of the Notch signaling 

network (specifically the Notch pathway) that were not available previously. Because 

the N1-Box is specific to Notch1, inhibiting the N1-Box should not lead to global Notch 
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phenotypes but only Notch1-specific phenotypes, allowing researchers to parse out the 

involvement of Notch1 specifically vs. the other Notch paralogs in vivo. This work will 

help us take a small step forward towards identifying effective and usable new 

therapeutics for Notch signaling. Any potential therapeutics for Notch signaling may also 

have the potential to potentiate or dampen Wnt/β-catenin signaling because of the 

extensive crosstalk between the Notch and Wnt/β-catenin signaling pathways.  
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